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Abstract

The process of establishing an acceptable model of an observed dynamic system from
measured data is a challenging task that occupies a major portion of the work of the math-
ematical modeler. In this thesis, we propose a knowledge-based approach to automated
modeling of dynamic systems based on equation discovery methods.

Most work in equation discovery is concerned with assisting the empirical approach to
modeling physical systems. Following this approach, the observed system is modeled on a
trial-and-error basis to �t observed data. None of the available domain knowledge about
the observed system (or a very limited portion thereof) is used in the modeling process.
The empirical approach is contrasts with the theoretical approach to modeling, in which
the basic physical processes involved in the observed system are �rst identi�ed. A human
expert then uses domain knowledge about the identi�ed processes to write down a proper
structure of the model equations.

The equation discovery methods presented in the thesis deal with the problem of in-
tegrating the theoretical and empirical approaches to modeling of dynamic systems by
integrating di�erent types of theoretical knowledge in the discovery process. Two di�erent
types of domain-speci�c modeling knowledge are considered herein. The �rst concerns
basic processes that govern the behavior of systems in the observed domain. The second
concerns existing models that are already established in the domain.

In addition, the scope of the existing equation discovery methods is extended toward
the discovery of partial di�erential equations that are capable of modeling both temporal
and spatial changes of the state of the observed system.

The newly developed methods are successfully applied to di�erent tasks of modeling
real-world systems from arti�cial and real measurement data in the domains of population
dynamics, neurophysiology, classical mechanics, hydrodynamics, and Earth science.
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1

Introduction

Scientists and engineers build mathematical models to analyze and better understand the
behavior of real-world systems. Establishing an acceptable model for the observed system
is a very di�cult task that occupies a major portion of the work of the mathematical
modeler. It involves observations and measurements of the system behavior under various
conditions, selecting a set of system variables that are important for modeling, and formu-
lating the model itself. This thesis deals with the automated modeling task, i.e., the task
of formulating a model on the basis of observed behavior of the selected system variables.
We propose a framework for automated modeling of real-world systems based on equation
discovery methods.

Equation discovery is an area of machine learning (Langley, 1995; Mitchell, 1997) that
studies methods for computational discovery of quantitative laws, expressed in the form
of equations, in collections of measured data. Equation discovery methods are mainly
used for automated modeling of real-world systems from measurements and observations.
The area of equation discovery is strongly related to the area of system identi�cation
(Ljung, 1993). However, most system identi�cation methods work under the assumption
that the structure of the model equations is known, i.e., provided by a human expert,
and are concerned with determining the proper values of the constant parameters in the
model. The focus of equation discovery methods, on the other hand, is on the problem of
identifying both an adequate structure of the model equations and appropriate values of
the constant parameters.
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10 Introduction

State of the art equation discovery methods can be used to discover algebraic (Langley
et al., 1987; Kokar, 1986; Falkenhainer & Michalski, 1990; Zembowicz & �ytkow, 1992;
Washio & Motoda, 1997) or ordinary di�erential equations (Todorovski, 1993; Dºeroski &
Todorovski, 1995; Kriºman, 1998; Todorovski, 1998; Todorovski & Dºeroski, 1997). While
algebraic equations are mainly used to establish models of static systems that have reached
an equilibrium state, ordinary di�erential equations can be used for modeling the behavior
of dynamic systems, i.e., systems that change their state over time (Gershenfeld, 1999).
Ordinary di�erential equations are limited to modeling changes of the observed system
along a single (typically temporal) dimension. In order to model changes of the state of
the observed system along several dimensions (e.g., spatial and temporal), the extended
formalism of partial di�erential equations can be used (Gershenfeld, 1999; Murray, 1993).

Most of the work in the area of equation discovery is concerned with assisting the
empirical approach to modeling physical systems. Following this approach, the observed
system is modeled on a trial-and-error basis to �t observed data. The scientist �rst chooses
a structure of the model equations from some general class of structures (such as linear
or polynomial) that is believed to be adequate, �ts the constant parameters, and checks
whether the simulation matches the observed data. If not, the procedure is repeated until
an adequate model is found. None of the available domain knowledge about the observed
system (or a very limited portion thereof) is used in the modeling process. The empir-
ical (data-driven) approach is in contrast to the knowledge-driven theoretical approach
to modeling, where the basic physical processes involved in the observed system are �rst
identi�ed. A human expert then uses domain knowledge about the identi�ed processes to
write down a proper structure of the model equations. Finally, the values of the constant
parameters of these equations are �tted against the observed data using standard system
identi�cation methods (Ljung, 1993).

The empirical approach to modeling is completely data-driven, and the models obtained
following this approach do not necessarily reveal the processes that govern the behavior
of the observed system. These models are referred to as black-box models, as opposed to
white-box models, i.e., models that reveal the structure of the observed system and the
processes that govern its behavior. White-box models are obtained following the theoretical
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knowledge-driven approach to modeling. While most of the equation discovery methods
are data-driven, our goal is to develop knowledge-driven methods capable of integrating
domain-speci�c modeling knowledge into the process of equation discovery. Such methods
would allow for integration of theoretical and empirical approaches to automated modeling
of real-world systems and establishing white-box models of the observed phenomena.

1.1 Goals

The goal of the thesis is to develop new methods that will extend the scope of equation
discovery along the two dimensions presented in Figure 1.1.
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Figure 1.1: Extending the scope of the equation discovery methods.

The �rst dimension represents the amount and type of knowledge employed in the
process of equation discovery. It starts with purely data-driven methods that use no
knowledge in the process of equation discovery. The dimension continues with methods
that use domain-independent knowledge (e.g., knowledge about measurement units of the
system variables), through the methods where domain-speci�c modeling knowledge is used,
toward purely knowledge-driven methods. Existing equation discovery methods range from
purely data-driven to such that are capable of integrating limited portions of domain
knowledge. The goal here is to extend the amount of the domain knowledge that can be
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used in the process of equation discovery. The goal is achieved by developing an automated
modeling framework based on new equation discovery methods, capable of integrating
modeling knowledge from the domain of use, supplied by a human expert. Two di�erent
types of domain-speci�c modeling knowledge are considered in the thesis. The �rst concerns
basic processes that govern the behavior of systems in the observed domain. The second
concerns existing models that are already established in the domain. Using modeling
knowledge in the process of equation discovery would allow for integration of empirical
and theoretical approach to modeling and establishing comprehensible white-box models
of the observed real-world systems.

The second dimension represents the complexity of the formalism for representing equa-
tion based models. It ranges from algebraic equations, capable of modeling stable states
of the observed system that reached its equilibrium, to ordinary and partial di�erential
equations capable of modeling changes of the observed system along a single (temporal) or
several (temporal and/or spatial) dimensions, respectively. The goal here is to to extend
the class of equations that existing equation discovery methods can handle. This goal is
achieved by developing a new equation discovery method capable of discovering partial
di�erential equations that can be used for modeling both temporal and spatial changes of
the state of the observed system.

1.2 Original contributions

The thesis contributes to several important aspects of equation discovery methods that
improve their applicability to tasks of modeling real-world dynamic systems. First, the
scope of existing equation discovery methods is extended to handle partial di�erential
equations. Second, a formalism for encoding modeling knowledge from a speci�c domain of
use is proposed. An equation discovery method is developed that is capable of integrating
encoded knowledge in the process of equation discovery. Finally, an equation discovery
method is developed capable of starting the discovery process with an existing model of
the observed system in order to improve its �t to newly measured data. The contributions
stated above will be further elaborated in the following subsections.
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1.2.1 Discovery of partial di�erential equations

Existing equation discovery methods are capable of discovering algebraic and ordinary
di�erential equations. The latter are limited to modeling the change of the observed
system state along a single (usually the temporal) dimension. On the other hand, partial
di�erential equations (PDEs) can be used for modeling the change of the observed system
state along several dimensions. In the thesis, a method capable of discovering PDEs is
presented. The method is based on a transformation of the task of PDEs discovery to the
simpler task of discovery of ordinary algebraic equations or ordinary di�erential equations.
In both cases, the transformation allows for the application of existing equation discovery
methods to the task of discovery of PDEs. The presented method for PDEs discovery
extends the scope of equation discovery methods toward modeling systems whose state
changes along several (e.g., temporal and spatial) dimensions.

1.2.2 Integration of domain-speci�c knowledge in the equation dis-
covery process

Existing equation discovery methods support the empirical approach to modeling where
none or a very limited portion of the knowledge from the domain of interest is used. The
empirical approach produces black-box models that do not reveal the processes that gov-
ern the behavior of the observed system. In the thesis, a formalism for encoding modeling
knowledge from a speci�c domain of interest is presented. The modeling knowledge is
organized in the form of a taxonomy of basic processes that govern the behavior of the dy-
namic systems in the domain at hand. For each process class in the taxonomy, a number of
alternative equation model fragments, used by human experts in the domain, are speci�ed.
Also, the formalism encodes knowledge about how to combine these models of individual
basic processes into a single model of the whole system. A new equation discovery method
capable of using the encoded knowledge to constrain the space of candidate equations is
presented. This method allows for the integration of the theoretical and empirical ap-
proaches to modeling real-world systems. The method can be used for automated building
of white-box models that reveal the structure of the observed system and the processes
that govern its behavior.
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1.2.3 Revision of equation based models

An important type of domain knowledge takes the form of existing model of the observed
system, already developed by domain experts. While existing equation discovery methods
are not capable of integrating existing models in the process of discovery, a new method
is presented that starts the process of equation discovery from a given initial model. The
method discovers a revised model that �ts the newly measured data better than the initial
one. The method follows the minimal revision principle used in earlier theory revision
systems. The principle states that among theories (models) with similar accuracy, the
ones that are as similar as possible to the initial theory (model) are to be preferred. The
usual minimality of change heuristics used in (logical) theory revision are adapted for the
case of revising models based on equations.

1.3 Organization of the thesis

The manuscript of the thesis is organized as follows. This chapter has provided an intro-
duction to the material presented in the thesis. It has speci�ed the goals of the thesis and
summarized its main contributions.

Chapter 2 gives a brief overview of the previous research that is related to the work
presented in the thesis. The overview includes areas of mathematical modeling, system
identi�cation, knowledge-driven machine learning, equation discovery, and qualitative rea-
soning.

The next four chapters present the main contributions of the thesis. Chapter 3 presents
two methods for discovering partial di�erential equations and their empirical evaluation on
several tasks of reconstructing known PDE models from the population dynamics and neu-
rophysiology domains. Chapter 4 presents the framework for automated modeling based on
integration of domain-speci�c modeling knowledge in the process of equation discovery. In
the chapter, we illustrate the usability of the framework by encoding modeling knowledge
from domains of population dynamics, chemical kinetics, classical mechanics as well as
domain-independent modeling knowledge based on the measurement units of the observed
system variables. We present the results of the empirical evaluation of the modeling frame-
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work in Chapter 5. The experiments include applications of the framework to the tasks of
modeling dynamic systems from the domains of population dynamics, classical mechanics,
and hydrodynamics. The next Chapter 6 presents an equation discovery method capable
of revising existing models, based on equations, and its application to the task of revising
an environmental model of the net production of carbon by terrestrial plants in the Earth
ecosystem using real-world measurements data.

Finally, Chapter 7 concludes the thesis with summary and discussion of directions for
future research.
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2

Background and related work

In this chapter we give a brief overview of the research work that presents a relevant
background or is related to the work presented in the thesis. Note that research on modeling
and simulation of dynamic systems is vast and present in many di�erent scienti�c domains.
It is beyond the scope of this thesis (and, to be honest, beyond the abilities of the author) to
give a comprehensive overview of all related work. Thus, in this chapter we will concentrate
mainly on research closely related to the work presented latter.

2.1 Mathematical modeling and system identi�cation

Scientists formulate mathematical models in order to analyze and better understand the
behavior of real-world systems (Gershenfeld, 1999). Mathematical models can integrate
potentially vast collections of observations and measurements into a single entity. They
can be used for simulation and prediction of the future behavior of the observed system
under varying conditions. A very important aspect of mathematical models is that they
can reveal the processes that govern the behavior of the observed system or phenomena.

The �rst milestone in the process of modeling a real-world system is the choice of the
modeling formalism. Ordinary di�erential equations (ODEs) are one of the most widely
accepted formalisms for modeling dynamic systems, i.e., systems that change their state
over time (Gershenfeld, 1999). ODEs have the limitation of modeling changes of the
observed system over one (typically temporal) dimension only. On the other hand, the
extended formalism formalism of partial di�erential equations can be used to model changes

17



18 Background and related work

of the state of the observed system over several dimensions (e.g., spatial and temporal)
(Gershenfeld, 1999; Murray, 1993).

Note that the models based on ordinary and partial di�erential equations are purely
deterministic models. Simulation of deterministic models always produce a unique and
exact behavior of the observed system. However, in reality many phenomena are not
deterministic. Probabilistic and stochastic models can be used to model the behavior of the
observed system as well as the uncertainty of the predicted behavior. Di�erent formalisms
can be adapted to represent probabilistic models, stochastic di�erential equation being one
of them (Gershenfeld, 1999).

In the thesis, we deal with deterministic models based on ordinary and partial di�er-
ential equations. There are two main aspects to the process of establishing of an equation
based models of the observed real-world system. First, an appropriate structure has to be
determined for the equations involved (the model identi�cation problem). Second, accept-
ably accurate values for the parameters are to be determined (the parameter estimation
problem). Research in the area of system identi�cation focuses on developing methods for
solving the parameter estimation problem (Ljung, 1993). Most of the system identi�cation
methods make one of the following two assumptions. The �rst is that the structure of
the model is provided by a human expert in the domain of interest. The second assump-
tion is that the structure of the model is chosen from some general well-known class of
model structures, such as linear equations, polynomials, or neural networks with di�erent
topologies.

The modeling approach that makes the �rst assumption, that the model identi�cation
problem is solved by a human expert, is also known as theoretical approach to modeling.
Following this approach, the expert �rst identi�es the processes that govern the behavior
of the observed system. Then, using domain-speci�c knowledge about the identi�ed pro-
cesses, the expert writes down a proper structure of the model equations. In contrast to
the knowledge-driven theoretical approach, the empirical approach adopts a data-driven
trial-and-error paradigm. The scientist �rst chooses a structure of the model equations
from some general class of structures (such as linear or polynomial) that is believed to
be adequate, �ts the constant parameters, and checks whether the simulation match the
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observed data. If not, the procedure is repeated until an adequate model is found. A very
limited portion (if any) of the domain knowledge about the observed system is used in the
modeling process. Consequently, the models obtained following the empirical approach
do not necessarily reveal the processes that govern the behavior of the observed system.
These so-called black-box models are typically obtained using the data-driven empirical
approaches to modeling. They are in contrast to the white-box models that reveal the
physical structure of the observed system and the processes that govern its behavior.

2.2 Background knowledge in machine learning

Studies in machine learning have shown that using background expert supplied knowledge
from the domain of interest leads to better performance of learned models on novel test
examples (Pazzani & Kibler, 1992). This is especially true in complex domains where the
space of possible models is huge and the amount of training examples is limited. Although
these results are well known, many machine learning methods do not allow for explicit
integration of knowledge in the learning process. The expert knowledge is usually involved
in the preparation or preprocessing phase, when the set of variables (features) important
for modeling of the observed phenomena are chosen, or after the learning process is over
and learned model is interpreted.

Notable exception are learning methods developed within the area of inductive logic
programming (ILP) (Lavra£ & Dºeroski, 1994). The use of background knowledge there is
explicit and background knowledge is part of the learning task speci�cation. ILP methods
deal with induction of �rst-order logic programs from examples and background knowledge
is also represented in �rst-order logic.

The use of background knowledge is closely related to the notion of inductive bias
(Nédellec et al., 1996), which refers to any kind of basis for choosing one generalization
over another. Di�erent kinds of inductive bias include language bias (i.e, the de�nition of
the hypothesis space), search bias (i.e., which part of the hypothesis space is searched and
how), and validation bias (i.e., acceptance or stopping criterion). Depending on how bias
is speci�ed within a learning method, it may be non-declarative (built-in), parametrized,
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or declarative. Typical methods for inducing decision trees (Quinlan, 1993), are examples
of methods with non-declarative language bias, since they explore the �xed hypothesis
space of decision trees built using variables from the given data set. Parametrized bias
would let the user in�uence the bias by setting some of its parameters, such as the depth
of decision trees. Finally, a declarative language bias lets the user tailor the search space
according to background knowledge. Thus, declarative language bias provides a powerful
way of integrating background knowledge in the process of learning. Nédellec et al. (1996)
provide an overview of declarative bias formalisms used in ILP. Note however that these
formalism are developed for the concepts and models expressed in �rst-order logic and are
not directly applicable to the task of building models based on algebraic and di�erential
equations.

Another type of background knowledge is existing theories already available in the
domain of interest. Theory revision methods such as Either (Ourston & Mooney, 1994)
and Kbann (Towell & Shavlik, 1994) start with an existing theory and revise it in order to
improve its accuracy on newly acquired training data. Again, revision of theories expressed
in �rst-order logic has been explored also within the area of ILP, as reviewed by Wrobel
(1996). However, theory revision research is mainly concerned with the revision of theories
expressed in propositional or �rst-order logic. Therefore, the developed methods are not
directly applicable to the task of revising models based on equations.

2.3 Equation discovery

Equation discovery (Langley et al., 1987) is the area of machine learning (Langley, 1995;
Mitchell, 1997) that aims at developing methods for computational discovery of quantita-
tive laws, expressed in the form of equations, in collections of measured data. Equation
discovery methods are mainly used for automated modeling of real-world systems from
measurements and observations. The area of equation discovery is strongly related to
the area of system identi�cation (Ljung, 1993), but they di�er somehow in their focuses.
While the area of system identi�cation emphasizes the parameter estimation aspect of the
modeling (i.e., determining the proper values of the constant parameter of a given model
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structure or a class of model structures), the research in equation discovery focuses on
identifying the proper structure of the model equations. Equation discovery methods usu-
ally use standard system identi�cation (Ljung, 1993) or non-linear optimization methods
(Press et al., 1986) for solving the parameter estimation problem.

Early approaches to equation discovery dealt with rediscovering empirical laws from
the history of science. Initial methods were in�uenced by the methods and approaches
used by human scientists. Experiments with early equation discovery systems showed that
many apparently complex laws can be discovered by using simple heuristics.

Bacon (Langley et al., 1987) was the pioneer among equation discovery methods.
It incorporated a set of data-driven heuristics for detecting regularities (constancies and
trends) in data and for formulating hypotheses based on them. Hypotheses in Bacon are
proposed at di�erent levels of description. At each level of description, all but two variables
are held constant and hypotheses connecting the two changing variables are considered.
Using a small set of data-driven heuristics, the method was able to rediscover a number of
physical laws including the ideal gas law, the law of gravitation, the law of refraction and
Black's speci�c heat law (Langley et al., 1987). In the process of development from early
approaches to the present, the focus of the equation discovery methods has shifted from
rediscovering known quantitative laws and models to discovery of new quantitative laws
and automated modeling of real-world systems (Langley, 2000).

In the rest of this section we will review the development of equation discovery methods
from two perspectives: the amount of background knowledge integrated into the process
of equation discovery and the ability to discover di�erent types of equations.

2.3.1 Background knowledge and language bias

As mentioned in the previous section, language bias can be seen as one way to incorporate
background knowledge into learning methods. In the case of equation discovery, language
bias can be used to constrain the space of possible equations to those that are not in con�ict
with the existing knowledge about the domain. For example, consider the case where the
measured variables of an observed system are not dimensionless, so that some algebraic
combinations of the system variables, such as addition or subtraction of mass and energy,
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are not valid. Beyond this simple example, there are possibilities for more sophisticated
inconsistencies of equation structures with background knowledge about the domain of
the observed system. Thus, in order to make equation discovery methods applicable to
problems from di�erent domains, their language bias should be made declarative, i.e., allow
the user to in�uence or specify the space of candidate equations. In this way, the user can
tailor the space of possible equations to the speci�c domain and modeling task at hand.

However, the language bias of early equation discovery methods is usually non-declara-
tive and often takes the form of pre-de�ned, reasonably small class of possible equation
structures, such as polynomials or trigonometric functions. Bringing this to the extreme,
Sche�er (1993) proposes the use of very strong pre-de�ned class of only 5 candidate equa-
tion structures. The bias was implemented in the E* method for discovery of bivariate
equations, which relate only two variables. Sche�er (1993) reported the results of exper-
iments based on 155 di�erent cases systematically collected from issues of the Physical
Review journal. Using this very strong language bias, E* was able to reconstruct the
correct models in about a third of the test cases.

Two other equation discovery methods, EF (Zembowicz & �ytkow, 1992) and La-
grange (Todorovski, 1993; Dºeroski & Todorovski, 1995), use polynomials as a pre-de�ned
language bias. They let the user in�uence the space of candidate equations by specifying
values of di�erent parameters, such as the maximal degree of the polynomial or maximal
number of terms on the right-hand side of the equation (Dºeroski & Todorovski, 1995). In
addition, EF (Zembowicz & �ytkow, 1992) lets the user specify functions that can be used
to introduce new variables that appear in the polynomials. Lagrange also allows the use
of trigonometric functions for introducing new variables. However, note that these limited
ways of specifying the language bias do not allow for integration of the domain-speci�c
modeling knowledge in the process of equation discovery.

One type of (domain-independent) knowledge used by existing equation discovery meth-
ods to constrain the space of possible equations is information about measurement units of
the observed system variables. The equation discovery method Coper (Kokar, 1986) uses
such knowledge and considers equations that properly combine variables and terms with
di�erent measurement units. The constraints used in Coper are based on dimensional
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analysis theory (Giordano et al., 1997). The equation discovery method SDS (Washio &
Motoda, 1997) extends this approach to cases in which the exact measurement units of the
system variables are not known. In such cases, SDS employs knowledge about the type of
the measurement scale for each system variable, which is combined with knowledge from
measurement theory to constrain the space of possible equations. The relation between
domain-independent knowledge used in SDS and the domain-speci�c knowledge used in
the framework presented in the thesis will be discussed in Chapter 4.

Knowledge about measurement units or the measurements scale types thereof is domain
independent. Experts from a speci�c domain of interest can usually provide much more
modeling knowledge about the system or domain at hand than merely enumerating the
measurement units of the system variables. Many textbooks on mathematical modeling
give comprehensive overviews of the modeling knowledge for speci�c domains, such as
biology (Murray, 1993) or biochemistry (Voit, 2000). In order to incorporate this knowledge
in the process of equation discovery, we should provide the user with more sophisticated
declarative bias mechanisms. First steps in this direction were taken in by Lagramge
(Todorovski, 1998; Todorovski & Dºeroski, 1997), which used the formalism of context-
free grammars to specify the space of possible equations. Grammars are general enough to
express many di�erent types of domain-speci�c knowledge. For example, knowledge about
the measurement units of system variables has been used to build a grammar for modeling a
mechanical pole on cart system (Todorovski, 1998). In another example, knowledge about
the basic processes that govern population dynamics was used for automated modeling of
phytoplankton growth in Lake Glumsø in Denmark from a sparse and noisy set of real-world
measurements (Todorovski et al., 1998).

A drawback of Lagramge is that it is not very easy for domain experts to express or
encode their domain knowledge about in the form of a grammar. Another problem with
grammars is that they are usually task speci�c. That means a grammar built for modeling
one system (e.g., phytoplankton growth in Lake Glumsø) cannot be reused for modeling
other systems from the same domain (e.g., another lake with a slightly di�erent set of
observed variables). Nevertheless, the use of grammars to specify the space of possible
equations is crucial for all the methods developed in the thesis. In Chapter 4, we propose
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a method capable of integrating domain-speci�c modeling knowledge into the process of
equation discovery by transformation of the knowledge into grammars. In Chapter 6, we
use grammars to integrate existing models from the domain in the process of equation
discovery.

2.3.2 Discovery of di�erential equations

The most important contribution of the equation discovery system Lagrange (Todor-
ovski, 1993; Dºeroski & Todorovski, 1995) is an extension of the scope of equation discov-
ery to di�erential equations. Lagrange can discover a set of algebraic and/or di�erential
equations involving more than two variables from observational data only. The basic idea
of Lagrange is to extend the set of system variables with numerically calculated time
derivatives of the given variables. Then, an arbitrary equation discovery method can be
used to discover algebraic equations in the extended set of variables. However, an algebraic
equation in the extended set of variables that includes time derivatives may actually be an
ordinary di�erential equation. A similar approach will be used in Chapter 3 to discover
partial di�erential equations.

This simple approach has a major drawback of introducing large errors by numerical
di�erentiation (Press et al., 1986), which makes Lagrange very sensitive to noisy data.
The equation discovery method GoldHorn proposes the use of numerical integration
instead of di�erentiation to avoid calculation of the highest order derivatives (Kriºman,
1998). The improvement is based on the fact that numerical integration is much more pre-
cise and stable than numerical di�erentiation. The successor of Lagrange, Lagramge
is also capable of discovering ordinary di�erential equations using the GoldHorn method
to avoid numerical calculation of the highest order derivatives (Todorovski & Dºeroski,
1997; Todorovski, 1998).

2.3.3 Lagramge

The equation discovery method Lagramge is capable of discovering a single ordinary
di�erential equation of the form v̇d = E, where vd is a user-speci�ed dependent system
variable, v̇d is the time derivative of vd, and E is an expression that can be derived using
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a user provided context-free grammar G (Hopcroft & Ullman, 1979). Lagramge can
employ exhaustive or heuristic search through the space of equation structures speci�ed
by the grammar G.

Each equation structure considered during the search contains one or more generic
constant parameters. In order to obtain the equation out of the equation structure, the
values of these generic constant parameters are �tted against the measurements of the
observed system variables. The quality of the obtained equation is then evaluated using
the SSE (sum of squared errors) heuristic function:

SSE(v̇d = E) =
m∑

i=1

(vd(i)− v̂d(i))
2,

where vd(i) is the measured value of the vd variable at i-th measurement point, v̂d(i) is
the value of the vd at the same measurement point i, but obtained with simulating the
equation v̇d = E, and m is the number of measurement points. The SSE heuristic function
measures the discrepancy between the measured values of the dependent variable and the
value obtained with simulating the equation.

An alternative MDL heuristic function can be used in Lagramge that takes into
account the complexity of the equation:

MDL(v̇d = E) = SSE(v̇d = E) +
l(E)

10 · lmax

· SSE(v̇d = E0),

where l(E) is the length of the expression on the right-hand side of the equations (expressed
in number of terminal symbols), lmax is the maximal length of expression that can be derived
by the grammar, and E0 is the simplest (and �rst) expression derived by the grammar.
The second term in the equation for MDL introduces a penalty for the complexity of
the equation. Thus, the MDL heuristic function introduces a preference toward simpler
equations in Lagramge.

As output, Lagramge returns the best equation encountered during its heuristic
search, according to the SSE or MDL heuristic function. We present further details of
the Lagramge algorithm elsewhere (Todorovski & Dºeroski, 1997; Todorovski, 1998).
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2.4 Qualitative reasoning and
compositional modeling

Many arti�cial intelligence approaches to the task of modeling physical systems fall within
the area of qualitative reasoning (QR) (Kuipers, 1994), which deals with the problem of
reasoning about physical systems in the presence of incomplete knowledge. The represen-
tational formalisms in this framework allow for qualitative descriptions (models) of the
mechanisms in the physical world that emphasize the qualitative di�erences and ignore
others. The qualitative di�erences are those that are important for the observer/modeler
of the system.

As in traditional approaches to mathematical modeling, the �rst milestone in the qual-
itative modeling process is the choice of the modeling formalism. Several alternatives have
been proposed in the QR literature. The most well known is the one of qualitative dif-
ferential equations (QDE), associated with the QSIM algorithm for simulating qualitative
models (Kuipers, 1994). The QDE formalism lets the modeler to abstract the ordinary
di�erential equations of the model, in order to obtain QDEs.

While QDEs and the QSIM framework were proposed primarily to support the repre-
sentation and simulation of qualitative models, Forbus (1984) qualitative process theory
(QPT) provides a framework for building qualitative models. In this framework, the mod-
els of physical systems are organized around the central notion of physical processes. A
process is speci�ed by the components of the system to which the process applies, internal
and external conditions for the activity of the process, constraints on the parameters of
its components, and e�ects of the process on these parameters. The automated modeling
framework QPC (Farquhar, 1993) uses (and extends) the QPT representation to organize
domain-speci�c knowledge into three parts: an ontology of objects or components of the
system, a library of model fragments that specify models of processes or components of
the observed system, and knowledge about how to compose models of the whole system
out of the model fragments. QPC uses QDEs and QSIM for representing and simulation
qualitative models.
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The QPC modeling framework follows the paradigm of compositional modeling (Falken-
heiner & Forbus, 1991), an automated approach to building qualitative models from obser-
vations in presence of domain-speci�c modeling knowledge. In the compositional modeling,
knowledge is organized as a library of model fragments. Given a modeling task speci�cation
(or scenario), compositional modeling methods compose a set of appropriate fragments into
a model that is suitable for modeling the observed system. The obtained model is eval-
uated by qualitative simulation. The compositional modeling approach is mainly applied
to the tasks of building qualitative models. For example, Garrett et al. (2004) apply this
approach to the task of inducing qualitative models of chemical reaction pathways from
noisy measurement data.

Although the concepts introduced within the QR area are also relevant for automated
building of quantitative models of real-world systems, this idea has not been widely ex-
plored. A notable exception is the Pret reasoning system for automated modeling of
dynamic systems (Bradley et al., 2001; Stolle, 1998), which employs two kinds of knowl-
edge. The �rst is domain-speci�c knowledge in the form of �conservation rules�, such as
Kircho�'s law in the domain of electrical circuits, which speci�es that the sum of input and
output currents at any observed point in the circuit is zero. Similarly, the force balance
rule in the mechanics speci�es that the sum of forces at any observed coordinate of the
mechanical system is zero. These rules are more general than domain knowledge about
model fragments used in compositional modeling approaches, and constrain the space of
possible models much less. Pret compensates this lack of constraints by using second kind
of domain-independent knowledge about models based on ordinary di�erential equations.
An example of such rule speci�es that �a model with oscillatory behavior must be second-
order�. This kind of rule allows for very e�cient elimination of inappropriate models by
high-level qualitative reasoning. We further discuss the relation of Pret to our framework
for automated modeling in Chapter 4.



28 Background and related work



3

Discovery of partial di�erential
equations

Ordinary di�erential equations (ODEs) are one of the most widely accepted formalisms
for modeling dynamic systems, i.e., systems that change their state over time. Several
equation discovery methods allow for the discovery of ODEs (Todorovski, 1993; Dºeroski &
Todorovski, 1995; Kriºman, 1998; Todorovski, 1998; Todorovski & Dºeroski, 1997). These
enable the application of equation discovery to the omnipresent task of modeling real-
world dynamic systems. However, note that ODEs can only model changes in the observed
system over one dimension, typically time. In order to model changes of the observed
system over several dimensions (e.g., spatial and temporal), an extended formalism of
partial di�erential equations (PDEs) should be used. PDEs are one of the most powerful
and widely accepted analytical formalisms for modeling biological systems, being used
routinely to model physiological transport processes, such as gas exchange mechanisms and
�uid �ow in arteries, predator-prey behavior, the movement and growth of carcinogenic
cells, viral infection in humans, animal coat patterns, �uid-�ow in arteries, transmission of
the electric signals along and between nerve cells, etc. (Murray, 1993).

In this chapter, we present two methods that are capable of PDE discovery. The
approach to discovering PDEs is based on the transformation principle already used for
discovering ODEs in the Lagrange method described earlier. We consider two di�erent
transformation approaches. In the �rst, we extend the initial set of system variables with
their partial derivatives with respect to the given temporal and spatial dimensions of the

29
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observed system. The partial derivatives are calculated using numerical di�erentiation
methods (Press et al., 1986). Thus, the original problem of PDE discovery in the original
set of system variables is transformed to the problem of discovery of algebraic equations in
the extended set of variables, where an arbitrary equation discovery method can be used.
The proposed methodology is straightforward, but the transformed problem tends to be
much more complex than the original one, especially for systems with many dimensions.

The increased complexity is due to the increased number of variables in the extended
set, which can signi�cantly enlarge the space of possible equations. In order to constrain
the space of possible PDEs, we also investigate an alternative approach, where the problem
of discovery of PDEs is �rst decomposed into a number of ODE discovery problems. The
idea here is to take slices of the training data for �xed values of all but dimension and
search for ODEs in these slices. The ODE structures that are most frequently discovered
in di�erent slices are used to constrain the space of candidate PDEs. The discovery problem
in the constrained (and therefore less complex) space can be addressed following the �rst
straightforward approach.

We evaluate these approaches empirically on several tasks of reconstructing known PDE
models. These include the well-known FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo
et al., 1962) for the conductance of sodium and potassium ions across the cell membrane,
which plays an important role in the transfer of signals between nerve cells. The exper-
iments show that the applicability of the �rst approach is limited to the re-construction
of simple PDE models, while the second approach can reconstruct the structure of the
FitzHugh-Nagumo model from simulated data.

The chapter is organized as follows. We present the relevant background for partial
di�erential equations in Section 3.1 and then de�ne the problem of PDE discovery in
Section 3.2. Section 3.3 presents the straightforward approach to PDE discovery and
discusses its limitations and inability to re-construct complex PDE models. Section 3.4
presents the two-stage approach to discovering complex PDEs, along with the results of
its empirical evaluation. Section 3.5 summarizes the chapter.
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3.1 Partial di�erential equations

Ordinary di�erential equations (ODEs) are used to describe the behavior of dynamic sys-
tems, i.e., systems whose state changes over time. In ordinary di�erential equations, time
is the only dimension along which change of state is considered. The time change of the
variable u is assessed through the (ordinary) derivative of u with respect to time t, de�ned
as:

du

dt
=

d

dt
u = lim

∆t→0

u(t + ∆t)− u(t)

∆t
,

where u(t + ∆t) and u(t) denote the values of variable u at time points t + ∆t and t,
respectively. This is the �rst-order (time) derivative of u. The second derivative is de�ned
as:

d2u

dt2
=

d

dt
(
du

dt
).

The symbols u̇ and ü are also used to denote the �rst and second order time derivative of
u, respectively, i.e., u̇ = du/dt and ü = d2u/dt2.

Consider now another variable v that changes its state along two dimensions t (time)
and x (one-dimensional space). The change of v along the space dimension is assessed
through the partial derivative of v with respect to x, which is de�ned as:

∂v

∂x
= lim

∆x→0

v(t, x + ∆x)− v(t, x)

∆x
.

Similarly, we can de�ne the partial derivative of v with respect to time t. These two
derivatives (∂v/∂t and ∂v/∂x) are the two �rst-order partial derivatives of v. There are
three second-order derivatives of v. The one with respect to t and x, which describes the
change of v along both dimensions, is de�ned as:

∂2v

∂t∂x
=

∂

∂t
(
∂v

∂x
) =

∂

∂x
(
∂v

∂t
).

The other two second-order derivatives of u are ∂2v/∂t2 and ∂2v/∂x2.
A partial di�erential equation (PDE) is an equation that involves one or more partial

derivatives of a variable with respect to more than one dimension. The order of a PDE is
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the order of the highest-order derivative that appears in the equation. An example of a
�rst-order PDE is the non-linear �rst-order wave equation:

∂u

∂t
+ u · ∂u

∂x
= 0,

and an example of a second-order PDE is the linear second-order wave equation:

∂2u

∂t2
− ∂2u

∂x2
= 0.

The latter second-order wave PDE is used to model a vibrating ideal elastic string (e.g.,
guitar string) �xed at both ends. If the string is distorted at some initial time and then
allowed to vibrate, the wave displacement along the string in time will be a solution of this
equation. It is also widely used for modeling other physical systems, such as propagation
of sound waves in a tube.

Given a model of a dynamic system in the form of one or more ODEs, the behavior of the
system can be simulated/derived by solving the these equations. To solve ODEs, an initial
state must be provided. A general numerical integration method, such as Runge-Kutta
integration (Press et al., 1986; Gershenfeld, 1999), can then be applied.

For PDEs, the situation is more complicated. Boundary conditions, which are more
complex than just specifying an initial state, are required. A similar range of choices is
available for performing the time integration as for ODEs, while the spatial derivatives
are typically handled using either �nite di�erence or �nite element methods (Gershenfeld,
1999). In either case, a suitable spatial mesh must be generated, with a �ner mesh typically
giving a smaller numerical error during simulation, but requiring a larger computational ef-
fort. Many PDE problems, including the FitzHugh-Nagumo model considered latter in this
chapter, are also non-linear and may be very sensitive to slight changes in initial conditions
or display di�erent behavior for slight variations in equation parameters. Where experi-
mental systems display such complex behavior, it can be very di�cult to determine the
appropriate form of the equations and may require lengthy and painstaking observational
work in the laboratory, as was the case for Hodgkin and Huxley (1952).



Partial di�erential equations 33

ODE wave PDE wave

d2u

dt2
= −u

∂2u

∂t2
=

∂2u

∂x2

u(0) = 0,
du

dt
(0) = 1 u(0, x) = e−x2
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Figure 3.1: Simulation of an ordinary di�erential wave equation (left-hand side) and partial
di�erential wave equation (right-hand side).

A comparison of two simple wave models, one of them based on ODEs and the other
based on PDEs, is given Figure 3.1. The left-hand side of the �gure presents an ODE
that can be used to model the time change of the position of a pendulum. The initial
condition is simple: it speci�es the initial position of the pendulum u(0) and its initial
velocity du

dt
(0). The right-hand side of the �gure presents a PDE that can be used for

modeling the vibration of an elastic string �xed at both ends. In contrast with the ODE,
the simulation of the PDE gives insight into the spatial propagation of a vibration along
the string (as the graphs in Figure 3.1 illustrate). However, the initial conditions necessary
for the simulation of the PDE model are more complex. They must provide the model
of the initial impulse that causes the vibration of the string. For the simulation results
presented in Figure 3.1, we used a narrow Gaussian pulse of the form u(0, x) = e−x2 as an
initial condition.
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3.2 Problem de�nition

The problem of discovering partial di�erential equations can be formalized as follows:
Given

• a set of variables of the observed system V = {V1, V2, . . . , Vn}, observed or measured
along

• a set of dimensions D = {D1, D2, . . . , Dd}

• where the table of m measurements of the system variables takes the form:

D1 D2 . . . Dd V1 V2 . . . Vn

d1,1 d2,1 . . . Dd,1 V1,1 V2,1 . . . Vn,1

d1,2 d2,2 . . . Dd,2 V1,2 V2,2 . . . Vn,2
... . . . ... ... . . . ...

d1,m d2,m . . . Dd,m V1,m V2,m . . . Vn,m

�nd a (set of) PDE equation(s) that minimizes the discrepancy between the mea-
sured values of the system variables and their values obtained by simulation of the
discovered equation(s).

3.3 A straightforward approach to PDE discovery

Our �rst approach to PDE discovery mirrors the one taken in Lagrange (Todorovski,
1993; Dºeroski & Todorovski, 1995), which transforms the task of ODE discovery to the
task of discovering algebraic equations. The transformation is done by introducing (nu-
merically calculated) time derivatives of the observed system variables as new variables.
In a similar manner, we transform the task of PDE discovery to the task of discovering
algebraic equations by introducing numerically calculated partial derivatives of the system
variables as new variables. In this section, we give a detailed description of the PDED-1
algorithm that implements the straightforward approach. Then, we illustrate its use on
two tasks that involve re-constructing PDE based wave models. In conclusion, we will
discuss the problems and limitations of the straightforward approach.



A straightforward approach to PDE discovery 35

3.3.1 The PDED�1 algorithm

Table 3.1 presents the PDED-1 algorithm that implements the straightforward approach
to PDE discovery. The algorithm takes as input measurements of the variables of the
observed system V along the dimensions from D, as well as the highest order o of the
partial derivative that can appear in the discovered PDEs.

Table 3.1: A straightforward algorithm for discovery of partial di�erential equations.

procedure PartialDerivatives(V , D, o)
1 P =
2 for oc = 1 to o do
3 foreach multi-set Dc ⊂ D such that |Dc| = oc do
4 foreach V ∈ V do
5 P = P ∪ {partial derivative of V with respect to dimensions in Dc}
6 endfor
7 endfor
8 endfor
9 return P

endprocedure

procedure PDED-1(V , D, o)
10 P = PartialDerivatives(V , D, o)
11 foreach V ∈ V do
12 Lagramge (V ∪ P , ∂ou

∂to
, G)

13 endfor
endprocedure

In the �rst step, PDED-1 uses a numerical method (Press et al., 1986) to calculate
the partial derivatives of the system variables from V with respect to the dimensions
in D up to the user speci�ed maximum order of o. This task is implemented in the
PartialDerivatives procedure (lines 1�9 in Table 3.1). Each partial derivative of a
given variable V is calculated using the following procedure. First a �fth degree multi-
variate polynomial is �tted through the values of V , where the dimensions from D are
used as polynomial variables. The �tted polynomial is then analytically di�erentiated
with respect to the appropriate dimensions. Finally, the derivative of the polynomial is
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Table 3.2: The grammar used by Lagramge for discovery of PDEs. It speci�es an
arbitrary polynomial of the observed variables (denoted by a single non-terminal symbol
Variable).

Polynomial -> Term | Term + Polynomial
Term -> const | const * Product
Product -> Variable | Variable * Product

evaluated for the appropriate values of the dimensions to obtain the numerical derivative of
V . The numerical calculation of a partial derivative is performed in line 5 of the PDED-1
algorithm.

The �rst two loops (in lines 2 and 3) enumerate all possible combinations of dimensions
up to the maximal order of o. Multi-sets, which allow duplicate elements, with cardinality
at most o are used for this purpose. For example, consider a system with two variables
V = {u, v} measured along two dimensions of time and space D = {t, x}. In case the user
speci�es omax = 2, �ve multi-sets will be enumerated. Two of these, {t} and {x}, have
cardinality 1 (oc = 1) and lead to calculation of the four �rst-order partial derivatives:
∂u/∂t, ∂v/∂t, ∂u/∂x, and ∂v/∂x. Another three, {t, t}, {t, x}, and {x, x}, with cardinality
2 (oc = 2) lead to the calculation of the six second-order partial derivatives: ∂2u/∂t2,
∂2v/∂t2, ∂2u/∂t∂x, ∂2v/∂t∂x, ∂2u/∂x2, and ∂2v/∂x2.

Once PDED-1 has calculated the set of partial derivatives P , an existing equation
discovery method, capable of discovering algebraic equations can be applied to the extended
set of system variables V ∪ P . Our current implementation employs Lagramge for this
purpose. Recall that Lagramge requires two parameters to be speci�ed, a dependent
variable Vd and a grammar G, to discovers equations of the form Vd = E, where E is an
expression that can be derived using the grammar G. The experiments presented here
use the highest-order partial derivatives of the system variables with respect to the time
dimension (i.e., ∂oV

∂to
) as dependent variables. Lagramge is then employed once for each

dependent variable. All the experiments with PDE discovery use the grammar presented
in Table 3.2 that speci�es an arbitrary polynomial of the extended set of system variables,
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i.e., the set that includes initial system variables and their partial derivatives.
Reconsider the previous example, in which V = {u, v}. Lagramge will be employed

two times, �rst with ∂2u
∂t2

as a dependent variable and then with a ∂2v
∂t2

as a dependent
variable on the left-hand side of the equation. In both cases, the right-hand side will be a
multivariate polynomial of the observed variables and their partial derivatives.

3.3.2 Experimental evaluation of PDED�1

We evaluated the PDED-1 algorithm on di�erent tasks of re-construction of known PDE
based models. In each experiment, we selected a known model and simulated it to obtain
training data. Then PDED-1 was applied to the training data with an appropriate setting
of the o parameter. We measured the success of PDED-1 in terms of whether the structure
of the original model equation is among the ten best equation structures returned.

We obtain the structure of an equation by rewriting it in a canonical form such that the
left-hand side contains only the highest-order time derivative and abstracting the constant
parameters in the left-hand side to generic constants. Thus, the structure of the equation
∂u/∂t + 0.657043 · u · ∂u/∂x is ∂u/∂t = −c1 · u ∂u/∂x. We do not explore here a logical
semantics for this generalization, except to note that two equations will be said to have
the same structure if there is a trivial rewrite of the abstracted coe�cients that makes the
structures identical. For example, ∂u/∂t = −0.657043 · u ∂u/∂x and ∂u/∂t = u ∂u/∂x

have the same structure.

Wave equations

PDED-1 successfully re-constructs the structure of textbook equations, including the non-
linear �rst-order wave equation

∂u

∂t
+ u · ∂u

∂x
= 0

and the second-order wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0
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from simulated data. The actual forms of the recovered equations are:

∂u

∂t
= −0.657043 · u · ∂u

∂x

and
∂2u

∂t2
= −1.05818 · 10−5 + 1.00098 · ∂2u

∂x2
.

The error in the coe�cient for the �rst-order wave equation is high. This is due to the
large errors in the numerically calculated partial derivative of u. In general, numerical
calculation of partial derivatives introduces large errors, as does the numerical calculation
of ordinary derivatives, especially if the measurements are sparse (taken on a coarse mesh).

Predator-Prey Model

We next tested PDED-1 on the slightly more complex task of reconstructing a population
dynamics model. The predator-prey model describes situations such as the population of
rabbits and foxes on an island, where foxes prey on rabbits and rabbits have an unlimited
supply of food. Variable u is the dimensionless population of the prey, v is the dimensionless
population of the predator. This model allows for spatial variations so that the predators
have to move to catch the prey, and the prey can move to evade the predator:

∂u

∂t
= u(1− u− v) + 0.1 · ∂2u

∂x2

∂v

∂t
= v(u− 0.02) + 0.1 · ∂2v

∂x2
.

The training data set was generated with a simple simulation method for PDEs, using
numerical approximations of the partial derivatives. The simulation step size in the t-
direction is 10−5 and the step size in the x-direction is 0.5. The small time step is needed
for the stability of the numerical approximation. The numerical solutions for u and v were
then saved at 201 values of x equally spaced between −50 and 50, and 35 values of t,
equally spaced between 0 and 34, giving a total of 201 ·35 = 7035 data points. No external
noise was added to the numerical solution. However, the training data set is not completely
noise free, due to the numerical error of the simulation method and saving the simulation
results at a coarser mesh than the one used for simulation.
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In the experiments with PDED-1, both heuristic functions, SSE and MDL, were used
in combination with beam search (width 25) through the space of multivariate polynomial
equations. In both cases, none of the 25 best equations found by Lagramge corresponded
to the structure of the original predator-prey equations. Exhaustive search could not be
used for this task, due to a vast search space that contains 7.5 · 1011 equation structures.
Thus, PDED-1 fails to recover the correct structure of the predator-prey equations. To
better understand why, let us consider more closely the di�culty of the PDE discovery
task.

3.3.3 Problems and limitations of PDED�1

The PDE discovery problem becomes more di�cult if: (1) we have sparser measure-
ments (coarser mesh), (2) higher-order derivatives are involved, and (3) the degree (of
non-linearity) of terms in the equations is higher.

The �rst two items are related to numerical di�erentiation errors, while items 2 and 3
are related to the number of possible models considered during the search. The coarser the
mesh and the higher the derivatives order, the larger the errors. The higher the derivatives
order and the degree of terms, the greater the number of possible equations.

The �rst di�culty is due to the large error introduced by numerical di�erentiation.
Using �ner measurement mesh (i.e., having dense measurements along all dimensions) can
help. However, it is well known that the numerical di�erentiation methods are unstable:
increasing the resolution of the mesh above some limit can increase the numerical error
(Press et al., 1986).

Two di�culties arise when we have a large space of possible equations. First, it takes a
long time to search this space, and thus only non-exhaustive heuristic search strategies can
be applied. Second, it is more di�cult to select the appropriate equation structure. Given
the same data, the more models we consider, the more likely we are to �nd models that
�t the data by chance rather than true regularities. The �rst di�culty is addressed, and
can be partly overcome, using non-exhaustive strategies (like beam search). The second
di�culty can be overcome by introducing a stronger language bias, that constrains the
space of possible equations.
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In the case of the predator-prey model, the size of the space of polynomial equations
that contains the target equations is of the order 1011. We can identify this as the main
reason for the failure of our straightforward approach. Greedy (beam) search considers only
a fraction of the space of all possible equations, but misses the original equation structure.
We therefore need to constrain the space of possible models and equations.

As we show in Chapter 4, modeling knowledge from the domain of interest can be
used to constrain the space of possible equations. In contrast to the knowledge-driven
approach presented there, in the rest of this chapter we explore a data-driven approach to
constraining the space of equations.

3.4 A two-level approach to PDE discovery

Our second approach to PDE discovery relies on a transformation into the simpler problem
of ODE discovery, that implements involves two stages. In the �rst, the algorithm learns
how to constrain the space of possible PDEs by decomposing the problem of PDE discovery
into a number of ODE discovery problems. The idea is to take slices of the training data
for �xed values of all but the time dimension and search for ODEs in each slice. The
structures of the ODEs that are most frequently (re)discovered in di�erent slices are used
to constrain the space of candidate PDEs.

In the second stage, the PDE discovery problem in the constrained (and therefore
much less complex) space is solved following the straightforward approach presented in the
previous section. This section gives a detailed description of the Padles algorithm that
implements the two-stage approach, along with with the results of the empirical evaluation
on two reconstruction tasks.

3.4.1 The Padles algorithm

Table 3.3 presents the Padles algorithm, which that implements the two-stage approach
to PDE discovery. The algorithm takes as input the measurements of the variables of the
observed system V , along the dimensions from D, as well as the highest order o of the
partial derivative that can appear in the discovered PDEs.
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Figure 3.2: Simulation data of the predator-prey model presented in Section 3.3 (left-
hand side) and slices of the data for four di�erent �xed values of the space dimension x
(right-hand side).

In the �rst stage (lines 1-9), the problem of PDE discovery is decomposed into a number
of ODE discovery problems. Each problem is concerned with �nding an ODE for a slice of
the original data, where the values of all but one dimension (time) are �xed. The slicing
of the data (implemented in lines 1-3 of the algorithm in Table 3.3) is illustrated by an
example in Figure 3.2. The graph on the left-hand side represents the changes of the value
of the system variable u along dimensions t and x. The graphs on the right-hand side
represent four slices of the data, which are obtained by �xing the value of the x dimension
to the values 0, 1, 5, and 10, respectively.

In each of the slices, the system variable is changing along a time dimension. Therefore,
each slice of the data can be modeled using an ODE. Note that the ODE models the
individual slices of the data are expected to be similar (in structure) to the PDE model of
the whole data, with the exception of the terms that involve the partial derivatives with
respect to the spatial dimensions. When the values of all space dimensions are �xed, the
values of the partial derivatives with respect to these dimensions diminish, since they assess
the change of the system variable along these dimensions. Therefore, a good approximate
structure of the ODE model in each slice can be obtained by disregarding the partial
derivatives with respect to the space dimensions. The "slicing" strategy presented here is
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similar to the "levels of description" heuristic used in equation discovery system Bacon,
where all but two variables are held constant at each level, and allows to discover equations
relating arbitrary number of variables, using simple heuristics about bi-variate relations
(i.e., relations involving two variables only) (Langley et al., 1987).

If we follow this reasoning in the opposite direction, we can say that ODE models of
individual slices of data can give us a good starting point for the structure of the PDE
model of the whole data. Consider again the �rst equation of the predator-prey model
from Section 3.3. The ODE structure most frequently discovered in the di�erent slices of
the data is ∂v/∂t = c1 · uv + c2 · v, which is equivalent to the structure of the PDE if we
disregard the partial derivative ∂2u

∂x2 .

Table 3.3: A two-stage algorithm for the discovery of partial di�erential equations.

procedure Padles(V , D, o)
1 foreach tuple of values Dx of D − {t} do
2 Vx = {measurements M , such that DimensionValues(M , D − {t}) = Dx}
3 endfor
4 P = PartialDerivatives(V , D, o)
5 foreach variable V ∈ V do
6 foreach Vx do
7 EV,x = the set of 20 best equations from Lagramge(Vx ∪ {t}, dV/dt, G)
8 endfor
9 Let SV be the set of most-frequent equation structures in ∪xEV,x

10 Build grammar GV based on the structures in SV

11 Lagramge(V ∪ P , ∂V/∂t, GV )
12 endfor

endprocedure

The above reasoning lets us use the ODEs discovered in the individual slices of data
to constrain the space of possible PDEs. The constraints are induced for each system
variable in V separately (line 5). First, ODEs are discovered in each data slice Vx (lines
6-9). Again, Lagramge method is applied to this task. The structures of the 20 best
ODEs (the union of the ten best according to the SSE heuristic and ten best according to
the MDL heuristic) are kept for each data slice (line 7). Then all the structures found in
the di�erent data slices are merged and their frequencies are calculated. Only the most
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frequent ones are used to determine the possible PDE structures that are to be considered
in the second stage of the algorithm (line 9). In particular, Padles keeps only equation
structures with frequencies within the interval [fmax/2, fmax], where fmax is the frequency
of the most frequent equation structure.

Table 3.4: An example grammar used to extend the most frequent ODE structures, dis-
covered in the �rst stage, to PDE structures for the �rst equation of the predator-prey
model, presented in Section 3.3.

PDE -> ODE + const * PD | ODE

PD -> ∂u/∂x | ∂2u/∂x∂t | ∂2u/∂x2

PD -> ∂v/∂x | ∂2v/∂x∂t | ∂2v/∂x2

ODE -> const * u * v + const * v
ODE -> const * u * v
...

Finally, a context-free grammar is built that extends the most frequently discovered
ODE structures into appropriate PDE structures. The grammar has three nonterminal
symbols. The productions for the ODE nonterminal enumerate the most frequent ODE
structures, the productions for PD enumerate the partial derivatives with respect to at
least one dimension other than time, and the start symbol PDE is used to extend the ODE
structures to appropriate PDE structures by linearly combining the partial derivative with
the ODE structure. Table 3.4 presents an example of a context-free grammar used to
discover the second predator-prey equation.

Note that the grammar de�nes a limited class of PDEs, where the partial derivatives
with respect to variables other than time are linearly coupled with the rest of the equation
terms. Although this is a serious restriction on the class of PDEs that can be discovered
by the method, this restricted class still includes relevant models of biological systems
(Murray, 1993). However, note that this limitation can be easily lifted by adding alternative
productions to the grammar.
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The second stage of Padles algorithm involves Lagramge to search through the
constrained space of PDE structures (line 11 in Table 3.3) and �nd the ones that �t
training data best. Note that Lagramge is applied to the extended data set consisting of
system variables and their partial derivatives, which are calculated numerically using the
PartialDerivatives procedure from Table 3.1.

3.4.2 Experimental evaluation of Padles

We evaluated the Padles algorithm on two tasks that involved reconstructing known PDE
based models of biological systems. The �rst is the predator-prey model that PDED-1
algorithm could not reconstruct. The second is the FitzHugh-Nagumo model of signal
transmission between nerve cells.

Predator-prey model

Padles successfully reconstructed the structure of the predator-prey model from simulated
data. Analysis of the results for each of the two equations revealed two interesting points.

First equation (for ∂u/∂t). In the �rst stage experiments, 64 di�erent ODE structures
were discovered in the slices of original data. After �ltering out the infrequent ones,
seven ODE structures remained, which the context-free combined into a total of 49
possible PDE structures. In the second stage, Lagramge successfully reconstructed
the original structure of the �rst predator-prey equation (for ∂u/∂t) out of these 49
possibilities.

Second equation (for ∂v/∂t). In the �rst stage, Padles found 96 di�erent ODE structures
and kept 19 most frequent ones. The grammar then combined these 19 ODE struc-
tures into a total of 113 possible PDE structures. Again, Lagramge successfully
reconstructed the original structure of the second predator-prey equation (for ∂v/∂t).

The comparison of the number of possible PDE structures considered in the process of
equation discovery explains why Padles succeeds and PDED-1 does not. Using the �rst
stage experiments, the number of possible PDE structures was reduced by a factor of over
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109. This reduction of the complexity of the search space makes the reconstruction task
feasible. Having successfully reconstructed a moderately complex PDE model using the
Padles, we now turn to the task of re-constructing more complex and practically relevant
PDE model.

FitzHugh-Nagumo model

The research on modeling electric signaling or �ring of individual nerve or neurons is
particularly common in the �eld of neural communication modeling. Hodgkin and Huxley
(1952) were awarded a Nobel prize for their seminal work on establishing mathematical
model of neuron �ring and propagation of impulses along the nerve axon. FitzHugh (1961)
and Nagumo et al. (1962) independently derived simpli�ed versions of the Hodgkin-
Huxley equations, which retain the most important biological features. The form of the
FitzHugh-Nagumo equations is

∂v

∂t
=

∂2v

∂x2
+ v(v − a)(1− v)− w

∂w

∂t
= b(v − dw),

where a, b, and d, are constant parameters, and v and w are functions of time t and
distance x. For a given initial condition (e.g., a narrow Gaussian pulse), this system might
display any one of three types of behavior: simple decay; a single traveling wave solution; or
multiple traveling wave solutions, determined by the values of the three parameters. These
might correspond, respectively, to a nerve stimulus being inadequate to initiate axon �ring;
a nerve stimulus being su�cient to initiate a single nerve impulse; and repeated nerve �ring
such as occurs in the sinus node in the heart.

Three behavior traces (data sets) were generated using numerical simulation of the
model. The �rst data set was generated using the values for the constant parameters
of a = −0.02, b = 0.005, and d = 3. The other two data sets were generated using two
di�erent initial conditions and the values for the constant parameters of a = 0.02, b = 0.005,
and d = 3. The equations were simulated using the same method as in the predator-prey
experiments. The numerical solutions for v and w were then saved at 201 values of x
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Table 3.5: Number of all and frequent ODE structures discovered in the �rst stage and
number of PDE structures de�ned by the appropriate context-free grammars for the �rst
(left-hand side) and the second FitzHugh-Nagumo equation (right-hand side).

First equation Second equation
1 2 3 1 2 3

All ODE structures 328 291 182 334 277 247
Frequent ODE structures 9 19 6 8 8 8
PDE structures 63 113 42 56 56 56

Table 3.6: Ranks of the original PDE structure among the ten best equations discovered
by Padles in the experiments with three di�erent data sets and two di�erent heuristics
used by Lagramge.

First equation Second equation
1 2 3 1 2 3

MDL *5 *5 *2 1 1 1
SSE 6 *5 1 * * *

equally spaced between −100 and 100, and 13 values of t, equally spaced between 0 and
120, giving a total of 201 · 13 = 2613 data points in each data set. No external noise was
added to the numerical solution.

Tables 3.5 and 3.6 sumarize the analysis of the results of the experiments with each of
these three data sets.

First equation (for ∂v/∂t). The summary of the �rst stage in Table 3.5 shows the number
of possible PDE structures is reduced to 63, 113, and 42 for the �rst, second, and
third data set, respectively.

A summary of the second stage is presented in Table 3.6, which shows the rank of
the original PDE equation structure among the ten best equations discovered by
Padles. The *N means that the true PDE structure was not among the ten best as
evaluated by the respective error heuristic (MDL or SSE), but a structure with one
missing term (and otherwise identical to the original one) had rank N. The true PDE
structure of the �rst equation is discovered in the experiments with the �rst and the
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third data set using the SSE heuristic. In the experiment with the second data set,
a PDE with a similar but simpler equation structure was found.

Second equation (for ∂w/∂t). The summary of results in the right-hand side of Table 3.5
shows that, after the �rst stage, the number of PDE structures was reduced to 56
for all the data sets. Out of these 56 possible structures, the original structure of the
second FitzHugh-Nagumo equation was recovered in the experiments with all three
data sets, using the MDL heuristic.

In summary, Padles successfully recovers the structure of a complex and practically im-
portant PDE model from simulated data.

3.4.3 A �nal remark

Note that the context-free grammar used in the second phase of the two-level approach
(see Table 3.4) de�nes a limited class of PDEs, where the partial derivatives with respect
to variables other than time are linearly coupled with the rest of the equation terms. The
latter are de�ned upon the ODE structure, most frequently discovered in the �rst phase
of the two-level approach. Note however, that we could use polynomials of the system
variables for the rest of equation terms and thus avoid the �rst phase of the algorithm.
Such a grammar would de�ned a more complex space of equations then the one obtained
with the �rst phase learning, but still far less complex than the space of polynomials of
variables and their partial derivatives considered by the straightforward approach. The
experiments show that the use of such an intermediate grammar allows for successful
reconstruction of the predator-prey model, but still fails to reconstruct the �rst equation
of the FitzHugh-Nagumo model.

3.5 Summary

In this chapter, we described two methods for PDE discovery. The �rst is a straightforward
extension of existing equation discovery methods to the task of PDE discovery and is
capable of reconstructing simple textbook PDEs. However, due to the complexity of the
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space of potential PDEs, it cannot reconstruct more complex models. The second method
uses a data-driven approach to constrain the space of possible PDEs by decomposing the
task of PDE discovery to a number of simpler ODE discovery tasks. The second method
can reconstruct an important class of PDE based mathematical models of neurophysiology
systems that have very wide-ranging applications (Murray, 1993).

While the use of PDE models is common in the physical sciences and engineering,
our motivation has predominantly been the modeling of biological systems. The need
for quantitative models of biological processes is growing rapidly, and we expect it to
play a signi�cant role in establishing the kind of mathematical understanding sought from
enterprises like the Human Physiome Project (Bassingthwaighte, 2002 Web page update).
We believe that an automated model discovery method of the form proposed here will
greatly assist the analysis of data expected to result from the project.

Further work is needed before methods for the discovery of partial di�erential equations
can be useful to domain experts. In the short term, further experiments with more models
and with truly observational data are necessary. The simulated data used in our exper-
iments contain some error, but this have a di�erent nature then the measurement errors
found in real measurement and observational data. We need to establish that Padles
works robustly under both conditions.

The work presented in this chapter has focused on data-driven approach to equation
discovery, in which di�erent models are constructed on a trial-and-error basis, and the
selection is made based on their �t to data. This contrasts with a knowledge-driven ap-
proach, in which the basic processes involved in the modeled system are �rst identi�ed. In
the next chapter, we will shift our focus from data-driven to knowledge-driven approaches
to the discovery of equation-based models.



4

Domain-speci�c modeling knowledge for
equation discovery

Most state-of-the-art equation discovery methods follow the empirical data-driven approach
to modeling, in which very little (if any) domain-speci�c knowledge is used to guide the
modeling process. One type of knowledge used by some of the existing equation discov-
ery methods involves measurement units of variables of the observed system (Washio &
Motoda, 1997). However, domain experts can provide much more knowledge about the
domain at hand than merely enumerating the measurement units of the observed system
variables.

Many textbooks on mathematical modeling give a comprehensive overview of relevant
knowledge about a speci�c domain, e.g., biology (Murray, 1993) or biochemistry (Voit,
2000). In order to incorporate this knowledge in the process of equation discovery, it must
be appropriately encoded. The encoded knowledge can be then used to constrain the space
of equations considered during equation discovery.

The discovery method Lagramge (Todorovski, 1998) relies on the formalism of con-
text-free grammars to specify the space of possible equations. Grammars are general
enough to express many di�erent types of domain-speci�c knowledge. For example, knowl-
edge about the measurement units has been used to build a grammar for modeling the pole
on cart mechanical system (Todorovski, 1998). In another example, knowledge about the
basic processes that govern population dynamics was used to automatically model phyto-
plankton growth in Lake Glumsø in Denmark from a sparse and noisy set of real-world

49
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measurements (Todorovski et al., 1998). However, it is di�cult for domain experts to
express or encode their modeling knowledge about a domain in the form of a grammar.
Another limitation of grammars is that they are typically task dependent. For example,
the grammar used for modeling phytoplankton growth in Lake Glumsø, can not be reused
for similar tasks with di�erent sets of system variables.

This chapter presents a more �exible formalism for encoding domain knowledge. The
formalism organizes knowledge in a taxonomy of process classes, each of which represents an
important class of basic processes that in�uence behavior in the domain. For each process
class, a number of alternative equation models, usually used by modeling experts in the
domain, can be speci�ed. Knowledge also encodes how to combine the models of individual
basic processes into a single model of the whole system. We illustrate the use of the
formalism by encoding knowledge from three domains: population dynamics, biochemical
kinetics, and spring mechanics. In addition, we also encode domain independent knowledge
about measurement units of the observed system variables within the formalism.

The resulting knowledge is independent of the particular modeling task and allows
automated modeling of an arbitrary system in the target domain. In order to use the
knowledge for automated modeling of a particular observed system, we require a modeling
task speci�cation that states the types of the system variables along with the process
classes that are expected to in�uence the system behavior. Whereas the domain-speci�c
knowledge should be provided by a modeling expert with extensive experience, the task
speci�cation can be provided by a user who is familiar with the domain but who does not
have much modeling expertise.

In order to integrate this knowledge into the equation discovery methods, we again
invoke the transformation principle. Given the modeling task speci�cation, the encoded
knowledge is used to build a grammar that speci�es the space of possible models for
the observed system. Nonterminal symbols in the grammar denote process classes, while
the alternative productions for each nonterminal symbol specify possible expressions for
modeling the corresponding process class. The starting symbol of the grammar combines
the expressions for individual processes into candidate models of the whole system. The
Lagramge method is then used to search through the space of candidate models of the
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observed system and �nd the one that �ts the measured data best. The grammar parse
tree used to derive this best model indicate the processes that govern the behavior of the
observed system.

The chapter is organized as follows. We introduce the formalism for encoding domain-
speci�c modeling knowledge in Section 4.1 and illustrate its use on the example from the
population dynamics domain. Section 4.3 presents further examples of encoding modeling
knowledge in several other domains, as well as of encoding domain-independent modeling
knowledge. We present the method for transforming the encoded knowledge into gram-
mars for equation discovery and the necessary improvements of Lagramge in Section 4.2.
Finally, Section 4.4 summarizes the chapter and discusses related research.

4.1 Encoding of domain-speci�c modeling knowledge

Our new formalism for encoding domain-speci�c modeling knowledge organizes the content
in three parts. The �rst contains knowledge about what types of variables occur in systems
from the domain of interest. The second part contains models of typical processes that
govern the behavior of systems in the domain. The third part encodes knowledge about
how to combine models of individual processes into a single model of the entire system. We
will illustrate the use of the formalism on the example of population dynamics modeling.
Thus, we start with an introduction to the basics of population dynamics modeling. We
will �nish the section with examples of several population modeling tasks speci�cations.

4.1.1 Population dynamics modeling

The domain of population dynamics falls within the �eld of population ecology, which
studies the structure and dynamics of populations. A population is a group of individuals
of the same species that inhabit the same area. More speci�cally, we consider modeling
the dynamics of populations, especially how their density changes through time (Murray,
1993).

For example, consider a simple model based on two populations, foxes and rabbits. The
latter graze on grass and the foxes are carnivores that hunt rabbits. We assume that rabbits
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Figure 4.1: Trajectories in time space (left) and phase space (right) for the simulation of
a simple Volterra-Lotka model with the values of the constant parameters set to a = 0.1,
b = 0.009, c = 0.01, and d = 0.05, and initial population densities N(0) = 1 and P (0) = 10.

are the only food of foxes, an unlimited supply of grass is available to the rabbits, and there
are no seasonal changes. Under these assumptions, if the rabbit population is large, the fox
population grows rapidly. However, this causes many rabbits to be eaten, thus diminishing
the rabbit population to the point where the food for foxes is not su�cient. Consequently,
the fox population decreases, which causes faster growth of the rabbit population.

Population dynamics models are based on the seminal research work by Volterra (1926)
and Lotka (1920), in which they proposed a simple model of predator-prey interaction
between two species (Murray, 1993):

Ṅ = aN − bNP

Ṗ = cNP − dP,

where N is the prey (rabbit) population density and P is the predator (fox) population
density. Figure 4.1 shows the simulation of the Volterra-Lotka model with values of the
constant parameters set to a = 0.1, b = 0.009, c = 0.01, d = 0.05 and initial population
densities N(0) = 1, P (0) = 10. The trajectories re�ect the oscillatory change of population
densities described above.

The simple Volterra-Lotka model has the following structure. The �rst term aN in the
�rst equation models the prey population growth in the absence of predation. The model
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used makes the assumption that the growth is unlimited and exponential. The e�ect of
predation on the prey population growth is modeled by the second term −bNP in the
�rst equation. The assumption here is that the predation rate is proportional to the prey
and predator populations. The predation contribution to the predator population growth
is modeled by the same term (cNP ) in the second equation. Finally, in the absence of
predator-prey interactions, the predator decay is exponential (term −dP ).

The insight into the structure of the Volterra-Lotka model and the function of the
individual terms in the equations is important, because it provides considerable knowledge
in the domain of population dynamics. It is this kind of knowledge that we intend to
formalize and use for automated modeling with equation discovery. We will formalize this
population dynamics knowledge in the following sections.

4.1.2 Taxonomy of variable types

The �rst part of the domain knowledge is the taxonomy of variable types that can be
used in the models. Table 4.1 presents an example of such a taxonomy for the population
dynamics domain.

Table 4.1: A taxonomy of variable types that are can be used in population dynamics
models.

type Concentration is nonnegative_real_number
type Population is Concentration
type Inorganic is Concentration

The generic variable type in the population dynamics domain is concentration, since
we are interested in the change of concentrations of di�erent populations inhabiting the ob-
served environment. The de�nition of concentration speci�es that this type must be a non-
negative real number. The concentration type has two sub-types. The �rst, population,
denotes a concentration of an organic species, such as foxes and rabbits in the example
from the previous section. The second type, inorganic, denotes the concentration of an
inorganic nutrient that can be consumed by organic species. Note that inheritance rule



54 Domain-speci�c modeling knowledge for equation discovery

applies to the taxonomy, so that the population and inorganic types are also known to be
nonnegative real numbers.

4.1.3 Taxonomy of process classes

The most important part of the modeling knowledge is the taxonomy of process classes.
Each process class represents a class of basic processes that govern or in�uence the behavior
of dynamic systems in the domain of interest. Table 4.2 presents an example of a taxonomy
of process classes for the population dynamics domain.

Table 4.2: A taxonomy of process classes, each representing a class of processes that
in�uence the behavior of the population dynamics systems.

process class Growth(Population p)

process class Exponential_growth is Growth
expression const(growth_rate,0,1,Inf) * p

process class Decay(Population p)

process class Exponential_decay is Decay
expression const(decay_rate,0,1,Inf) * p

process class Feeds_on(Population p, Concentration c)
condition p 6= c

process class Unsaturated_feeds_on(Population p, Concentration c) is Feeds_on
expression p * c

process class Saturated_feeds_on(Population p, Concentration c) is Feeds_on
expression p * c / (c + const(saturation_rate,0,1,Inf))

The taxonomy consists of three generic process classes. The �rst, Growth, represents
the processes of a single species' growth in when the in�uence of any (predator-prey)
interaction with other populations in the observed environment is neglected. Similarly,
the second process class Decay represents the processes of a single population's decay.
Finally, the Feeds_on process class refers to processes of predator-prey interaction between
two populations (in cases where the variable c represents a population) or grazing of a
population on an inorganic nutrient (in cases where c denotes an inorganic nutrient).
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Each of the Growth and Decay classes has a single subclass that speci�es an (unlimited)
exponential growth (or decay) of the population. On the other hand, the Feeds_on pro-
cess class has two subclasses, each specifying an alternative model of consumption. The
�rst consumption model, speci�ed by Unsaturated_feeds_on, corresponds to unlimited
consumption. This model assumes that the predation capacity of the predator population
is unlimited. However, this assumption is often unrealistic, as in many cases the predators
do have a limited predation capacity. When the prey population density is small, the
predation rate is proportional to it, but when the prey population becomes abundant, the
predation capacity saturates to some limit. An alternative class that corresponds to cases
of saturated consumption is speci�ed by Saturated_feeds_on.1

The de�nition of each process class consist of three parts, each specifying one aspect
of the processes in the class and/or the models thereof. We will present each part in more
detail below.

Types of variables involved. The �rst part of the de�nition speci�es what types of variables
that can in�uence and be in�uenced by processes in the class. Recall that variable
types are de�ned in the taxonomy. For example, each process in the Growth process
class involves a single population p. Furthermore, the processes in the Feeds_on class
involve one population variable p and one variable c of type concentration, which can
be either a population or an inorganic nutrient.

The declarations of variable types are inherited through the taxonomy of process
classes. For example, processes in the Exponential_growth class inherit from the
parent class Growth the fact that they involve a single variable of type population.

Conditions on variables involved. The second part of the process class de�nition speci�es
additional constraints on the variables involved in the processes. The condition p 6= c

in the Feeds_on process class forbids cannibalism within a single species, so that the
population cannot predate on itself.

1Note that there are also other possible models of saturated consumption, which we discuss in Sec-
tion 4.3.
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Declaration of process models. The �nal part of the process class de�nition speci�es the
equation template that is used by domain experts to model processes in the class.
This template includes variables involved in the process, and generic constant pa-
rameters. The values of the generic constant parameters can be latter �tted against
measurements of the system. In the equation template, symbol const(name, lo-

wer_bound, initial, upper_bound) is used to specify a generic constant parame-
ter. The symbol speci�es the name of the constant parameter, along with its lower
bound, default value, and upper bound. For example, consider the equation template
used to model Exponential_growth processes. This involves a single nonnegative
(note that a lower bound of 0 as well as in�nite upper bound are speci�ed) constant
parameter that represents the growth rate with the default value of 1. Note that the
default value of the constant parameter is used as its initial value when �ting the
model parameters against measured data.

Note that each process model, encoded within our formalism, should be de�ned as an
expression template that evaluates to a single real-valued number. Note however, that this
does not mean that the process model in�uence a single system variable. As we present
in the following section, a single process can in�uence more than one system variable, as
speci�ed by the appropriate combining schemes.

Note furthermore that specifying a single process model for a class does not imply that
each process class have a single model template. The taxonomy of process classes is de�ned
in such a way that it speci�es that the process model can be used for modeling processes
in the current class as well as processes from the more general (ancestor) classes in the
taxonomy. For example, the taxonomy from Table 4.2 speci�es that either saturated or
unsaturated model template can be used for modeling Feeds_on processes.

4.1.4 Schemes for combining models of individual processes

Our modeling formalism also speci�es schemes that are used to combine the models of indi-
vidual processes into a model of the whole system. Table 4.3 presents two such combining
schemes for combining processes in population dynamics.
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Table 4.3: Combining schemes specify how to combine the models of individual population
dynamics processes into a model of the entire system.

combining scheme Population_dynamics(Inorganic i)
i̇ = -

∑
p const(_,0,1,Inf) * Feeds_on(p, i)

combining scheme Population_dynamics(Population p)
ṗ = + Growth(p) - Decay(p)

+
∑

food const(_,0,1,Inf) * Feeds_on(p, food)
-

∑
predator const(_,0,1,Inf) * Feeds_on(predator, p)

The �rst combining scheme speci�es how to build the equation that models the time
change of an inorganic nutrient i from the individual process models. The time derivative
i̇ of i is negative sum of all expressions used to model those Feeds_on interactions in which
an arbitrary population p consumes the inorganic nutrient i. Note that the Feeds_on(p,
i) symbol is used to denote the process model for the Feeds_on process class. The ∑

aggregation function is used to sum up the models of all such proceses; note that the scope
of p in the sum is de�ned by the declaration of the Feeds_on process class. Potentially,
the scope of p is the set of all population type variables.

The second combining scheme speci�es how to combine process models into equations
for modeling the change of a population p. The �rst line speci�es that the time derivative of
p increases with the population growth Growth(p) and decreases with its decay Decay(p).
In contrast to the case of inorganic nutrient, where all Feeds_on processes negatively
in�uence the change, Feeds_on processes can positively or negatively in�uence the change
of p, depending on its role in the interaction. The processes that involve p as a consumer
or predator positively in�uence the change of p, while the processes where p is involved
as a prey negatively in�uence the change of p. Again, in�uences of these processes are
summed up, as shown in the last two lines in Table 4.3.

The use of aggregation functions is bene�cial when the processes are not present in the
observed system. In such cases, the use of the ∑ function speci�es that the value of these
corresponding terms equals zero. Similarly, the use of the ∏ (product) aggregation function
in a term would specify that the value of the term equals one, when the corresponding
processes are not present.
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4.1.5 Speci�cation of the modeling task

Our modeling knowledge, presented above, is general in the sense that it supports modeling
of an arbitrary system that involves population dynamics. In order to use the knowledge
for modeling of a particular system, a speci�cation of the system must be provided. The
speci�cation includes a list of system variables and their associated types, along with a list
of processes (and their classes) that govern the dynamics of the observed system.

Table 4.4: A task speci�cation used for modeling the Volterra-Lotka system of a single
predator-prey interaction between two populations.

variable Population rabbit, fox

process Growth(rabbit) rabbit_growth
process Decay(fox) decay_fox
process Unsaturated_feeds_on(fox, rabbit) fox_rabbit_predator_prey

Table 4.4 gives an example of a modeling task speci�cation for the Volterra-Lotka
predator-prey system. This includes the types of the two system variables, representing
the populations of rabbits and foxes and the three processes of rabbit population growth,
fox population decay, and predator-prey interaction between foxes and rabbits.

An automated modeling system can use the encoded modeling knowledge to transform
the task speci�cation into a model as described below. First, the combining scheme for a
population type variable from Table 4.3 is applied to the �rst system variable to obtain
the equation for the temporal change of the rabbit population:

˙rabbit= Growth(rabbit)− 0 + 0− const(_, 0, 1, Inf) ∗ Unsaturated_feeds_on(fox, rabbit),

which combines the two processes (rabbit_growth and fox_rabbit_predator_prey) that
involve the rabbit population. Note the 0 terms in the middle, which is due to the absence
of Decay(rabbit) and Feeds_on processes where rabbit is the predator or consumer.
Similarly, the same combining scheme, applied to the second system variable, generates
the equation for the temporal change of the fox population

˙fox= 0− Decay(fox) + const(_, 0, 1, Inf) ∗ Unsaturated_feeds_on(fox, rabbit)− 0.
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This equation combines the two processes of fox_decay and fox_rabbit_predator_prey.
To obtain the �nal model, each process class instance in these equations must be replaced
with the appropriate expressions speci�ed in the process taxonomy from Table 4.2. For
example, consider the Growth(rabbit) instance of the Growth class in the equation for
changes in the rabbit population. Querying the taxonomy for all possible expressions used
to model Growth(rabbit), we obtain a single expression const(growth_rate, 0,1,Inf)

* rabbit, which speci�es an unlimited exponential growth. Finally, performing two more
similar queries to the taxonomy, for the Decay(fox) and Unsaturated_feeds_on(fox,

rabbit) process class instances, we obtain the following model (with generic constant
parameters):

˙rabbit = const(growth_rate, 0, 1, Inf) ∗ rabbit− const(_, 0, 1, Inf) ∗ fox ∗ rabbit
˙fox = −const(_, 0, 1, Inf) ∗ fox + const(_, 0, 1, Inf) ∗ fox ∗ rabbit.

The model has exactly the same structure as the Volterra-Lotka model, that we pre-
sented in the beginning of this section. This model structure is the only one that can be
obtained given the task speci�cation from Table 4.4. However, this is not always true,
as the formalized knowledge allows for task speci�cations at di�erent levels of detail,
some leading to a number of di�erent model structures. The less detailed the speci�-
cation, the larger the number of possible structures. In the example above, we speci-
�ed that the predation rate of foxes on rabbits is unlimited. An alternative speci�cation
of the fox_rabbit_predator_prey process that does not specify whether the predator
rate is saturated or unsaturated, i.e., the speci�cation process Feeds_on(fox, rabbit)

fox_rabbit_predator_prey, would leave both modeling alternatives possible, thus giving
two possible model structures.

In the second modeling task speci�cation example presented in Table 4.5, we observe
an aquatic ecosystem that involves an inorganic nutrient, phytoplankton and zooplankton
(Crispi & Mosetti, 1993). Here the �rst variable (nut) has inorganic type, while the other
two variables (phyto and zoo) are populations. The phyto_decay and zoo_decay processes
specify that the populations of phytoplankton and zooplankton tend to decrease in absence
of any interactions with the environment and other species. The two Feeds_on processes
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Table 4.5: A task speci�cation used for modeling a simple aquatic ecosystem that consists
of two consumption interactions between three populations of inorganic nutrient, phyto-
plankton, and zooplankton.

variable Inorganic nut
variable Population phyto, zoo

process Decay(phyto) phyto_decay
process Feeds_on(phyto, nut) phyto_nut_consumption

process Decay(zoo) zoo_decay
process Feeds_on(zoo, phyto) zoo_phyto_predator_prey

specify that phytoplankton consumes inorganic nutrient and that zooplankton consumes
phytoplankton. The type of consumption (saturated or unsaturated) is not speci�ed.

The speci�cation leads to four possible model structures, with di�erent types of con-
sumption between phytoplankton and nutrient, and between zooplankton and phytoplank-
ton, which can be passed to an automated modeling method. Given the observed values
of the system variables over time, the automated modeling method must choose the model
that �ts the observed data best. The following section presents an example of such an
automated modeling framework based on the equation discovery method Lagramge.

4.2 Using the modeling knowledge
for equation discovery in Lagramge

We schematize the integration of domain-speci�c modeling knowledge into the process of
equation discovery in Figure 4.2. The integration relies on the transformation principle.
The domain-speci�c knowledge is transformed into a grammar based on the declarations
of the system variables and processes. The resulting grammar speci�es the space of can-
didate models for the observed system. The equation discovery method Lagramge can
be then used to search through the space of candidate models and �nd the one that �ts
the measured data best. The grammar derived from the modeling knowledge is not nec-
essarily context-free as in Lagramge, so we must improve Lagramge to allow the use
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Figure 4.2: An automated modeling framework based on the integration of domain-speci�c
modeling knowledge in the process of equation discovery.

of context-dependent constraints in the grammar. This section presents the algorithm for
transforming the modeling knowledge into a grammar, as well as the improvements to
Lagramge that allow its use for equation discovery.

4.2.1 Transforming the modeling knowledge into a grammar

The algorithm for transforming the encoded knowledge into grammar takes two arguments
as input. The �rst is the library of modeling knowledge for the domain at hand, and the
second is the modeling task speci�cation for the types of the variables and the classes of
the processes.

The transformation of the modeling knowledge proceeds in a top-down manner. It
starts with the starting symbol and assigns productions to it, then proceeds with other
nonterminal symbols. The starting symbol of the grammar corresponds to the combining
schemes in the encoded knowledge, which is used to combine the models of individual
processes into a single model of the entire system. Other nonterminal symbols in the
grammar correspond to process classes. Alternative productions for each nonterminal
symbol specify alternative models of the corresponding process class.

For example, consider the aquatic ecosystem example from Table 4.5 in Section 4.1.5.
The start symbol uses the combining schemes from Table 4.3 to compose a model of the
whole ecosystem as follows:

Start ->
time_deriv(nut) = - const[_:0:1:] * Feeds_on_phyto_nut;
time_deriv(phyto) = 0 - Decay_phyto + const[_:0:1:] * Feeds_on_phyto_nut

- const[_:0:1:] * Feeds_on_zoo_phyto;
time_deriv(zoo) = 0 - Decay_zoo + const[_:0:1:] * Feeds_on_zoo_phyto.

The right-hand side of the production builds three equations, one for each variable of the ob-
served ecosystem. The �rst equation is created by summing the e�ects of all the consump-
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tion processes that involve inorganic nutrient nut as food. Only one such process is speci-
�ed for the system (process Feeds_on(phyto, nut) in Table 4.5). The second equation is
formed by summing the growth processes for the phyto population (the leading 0 means
that no such process is speci�ed), the phyto decay processes (i.e., Decay(phyto)), the con-
sumption processes where phyto is involved as consumer (i.e., Feeds_on(phyto, nut)),
and the predator-prey processes where phyto has the role of prey (i.e., Feeds_on(zoo,
phyto)). The third equation, for the change of the zoo concentration, is built in a similar
manner.

Table 4.6: The grammar specifying the candidate models for modeling the simple aquatic
ecosystem presented in Table 4.5.

Start ->
time_deriv(nut) = - const[_:0:1:] * Feeds_on_phyto_nut;
time_deriv(phyto) = 0 - Decay_phyto + const[_:0:1:] * Feeds_on_phyto_nut

- const[_:0:1:] * Feeds_on_zoo_phyto;
time_deriv(zoo) = 0 - Decay_zoo + const[_:0:1:] * Feeds_on_zoo_phyto

Feeds_on_phyto_nut -> Unsaturated_feeds_on_phyto_nut
Feeds_on_phyto_nut -> Saturated_feeds_on_phyto_nut
Unsaturated_feeds_on_phyto_nut -> phyto * nut
Saturated_phyto_nut -> phyto * nut / (nut + const[saturation_rate:0:1:])

Decay_phyto -> Exponential_decay_phyto
Exponential_decay_phyto -> const[decay_rate:0:1:] * phyto

Feeds_on_zoo_phyto -> Unsaturated_feeds_on_zoo_phyto
Feeds_on_zoo_phyto -> Saturated_feeds_on_zoo_phyto
Unsaturated_feeds_on_zoo_phyto -> zoo * phyto
Saturated_zoo_phyto -> zoo * phyto / (phyto + const[saturation_rate:0:1:])

Decay_zoo -> Exponential_decay_zoo
Exponential_decay_zoo -> const[decay_rate:0:1:] * zoo

Note that each of the process instances on the right-hand side (i.e., Feeds_on_phy-
to_nut, Decay_phyto, etc.) are nonterminal symbols. The productions for each of these
nonterminal symbols are based on the de�nition of the corresponding class in the taxonomy
of process classes from Table 4.2. Table 4.6. presents the complete grammar with all the
nonterminal symbols and their productions.
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For example, consider the two productions for the Feeds_on_phyto_nut nonterminal
symbol. Each corresponds to one of the subclasses of the Feeds_on class. Furthermore, we
obtain the production for Unsaturated_feeds_on_phyto_nut by instantiating the gen-
eral expression for the Unsaturated_feeds_on class with the appropriate values of the
process class parameters. By instantiating the same expression with zoo and phyto pa-
rameter values, we obtain the production for Unsaturated_feeds_on_zoo_phyto. Sim-
ilarly, by following the Decay part of the process classes taxonomy, we obtain the pro-
ductions for Decay_phyto and Decay_zoo symbols. Note that the terminal symbols nut,
phyto, and zoo represent the system variables, while the terminal symbols of the form
const[name:lower:init:upper] denote constant parameters. This symbol includes the
name of the constant parameter, the lower and upper bound of its value, and its default
initial value init.

Strictly speaking, the grammar in Table 4.6 is not context-free. The production for
the starting symbol generates two Feeds_on_phyto_nut symbols, one in the �rst equation
and another in the second. In a context-free grammar, these two nonterminal symbols can
generate two di�erent expressions. In population dynamics models, however, these two
expressions must be the same. The use of context-dependent constraints can overcome
this limitation of context-free grammars.

Note that the grammar in Table 4.6 contains redundancy due to the similar productions
for the same process class, since they all have the same form and only di�er due to the
di�erent process variables. This redundancy can be avoided using the Prolog notation
of de�nite clause grammars, which allows the use of parameters in nonterminal symbols
(Bratko, 2001). Using this notation, the four Feeds_on productions can be replaced by
two de�nite clauses of the form Feeds_on(P, I) -> Unsaturated_feeds_on(P, I) and
Feeds_on(P, I) -> Saturated_feeds_on(P, I). The use of de�nite clause grammars
is not supported in our current implementation of Lagramge, but it seems a plausible
direction for further development.

4.2.2 Necessary improvements to Lagramge

In order to use grammars like the one from Table 4.6 for equation discovery, we devel-
oped the equation discovery system Lagramge 2.0, an improved version of Lagramge
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Table 4.7: The top-level of the Lagramge 2.0 algorithm.

procedure Lagramge-2.0(V , G, b)
1 M0 = simplest parse tree in G
2 M0.quality = Fit_model(M0, V)
3 Q = {T0}
4 repeat
5 Qr = {re�nements of parse trees in Q}
6 foreach parse tree M ∈ Qr do
7 M .quality = Fit_model(M , V)
8 endfor
9 Q = {best b trees from Q ∪Qr according to H}

10 until Q unchanged during the last iteration
11 print Q

(Todorovski, 1998). These incorporated improvements along three fronts. First, the use
of context-dependent constraints in the grammar must be supported. Second, a system of
simultaneous equations must be discovered at once instead of discovering an equation for
each system variable separately. Third, the constraints on the lower and upper bound of
the values of the constant parameters must be considered.

Table 4.7 presents the top-level algorithm of Lagramge 2.0. The algorithm takes
as input the measurements of the system variables V , a context-dependent grammar G

specifying the space of possible models, and a parameter b specifying the beam width used
in the beam search procedure. The output of Lagramge 2.0 consists of the b best models
according to some evaluation criterion.

The search space of Lagramge is ordered using two re�nement operators on parse
trees, as described by Todorovski (1998). The �rst is used for e�cient enumeration of
all the parse trees up to a maximum tree depth dmax. This re�nement operator is used
for exhaustive search through the space of possible parse trees. The second re�nement
operator is used for heuristic beam search through the space of parse trees. Table 4.7
outlines the beam search procedure of Lagramge 2.0. For a description of the exhaustive
search procedure and the corresponding re�nement operator, see Todorovski and Dºeroski
(1997) and Todorovski (1998).
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In each iteration of the beam search procedure, Lagramge computes the re�nements
of the parse trees in the current beam Q and collects them in Qr (line 5). Each parse
tree in Qr generates a model of an observed system with generic constant parameters.
Lagramge �ts the values of the constant parameters against the measurements of the
system variables V using the Fit_model procedure (line 7). The �tting procedure mini-
mizes the discrepancy between the measured values of the system variables and the values
obtained from simulating the model. This discrepancy equals the sum of squared errors
(SSE). Lagramge measures the quality of the model as the SSE of the model with the
optimized values of the constant parameters. At the end of each iteration, only the best b

trees are kept in the beam Q. Lagramge proceeds with the beam search until the beam
elements remain unchanged.

In the next three subsections, we present the three necessary improvements of the
original version of Lagramge.

Context-dependent constraints

The context-dependent aspects of the grammar from Table 4.6, described in the previous
section, are implemented in Lagramge 2.0 in form of constraints. An arbitrary number
of these constraints can be attached to each production in the grammar. Each constraint
speci�es that two or more nonterminal symbols on the right-hand side of the production
must generate the same expression. Examples of productions with context-dependent
constraints appear in Table 4.8.

Table 4.8: Examples of grammar productions with context-dependent constraints.

E -> A + B + A, B + A { A.1 == A.2; A.1 == A.3; }
E -> A + B + A, B + A { A.1 == A.2; B.1 == B.2; }

In the �rst production, the two constraints A.1 == A.2 and A.1 == A.3 specify that
all three occurrences of the symbol A (referred to as A.1, A.2, and A.3) on the right-hand
side of the production should generate the same sub-expression. For example, the expres-
sion a1 + b1 + a1, b2 - a2 cannot be generated using the �rst production, because the
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�rst and third occurrence of the A symbol generate di�erent expressions (i.e., A.1 -> a1

is di�erent from A.3 -> a2). On the other hand, the expression a1 + b1 + a1, b2 -

a1 can be generated using the �rst production. However, the latter expression cannot be
derived using the second production due to the second constraint B.1 == B.2. Finally,
the expression a1 + b1 + a1, b1 - a1 can be derived using both productions. Thus,
the production for the Start nonterminal symbol from Table 4.6 must include the con-
straints Feeds_on_phyto_nut.1 == Feeds_on_phyto_nut.2 and Feeds_on_zoo_phyto.1

== Feeds_on_zoo_phyto.2.
Lagramge 2.0 improves the original Lagramge re�nement operators to take into

account such context-dependent constraints. The new re�nement operators generate only
parse trees that satisfy the constraints.

Simultaneous equations

The Lagramge method was not capable of discovering models that consist of simulta-
neous equations. This task was performed by discovering an equation for each dependent
variable in turn. The inability to discover simultaneous equations prevents the application
of context-dependent constraints on the expressions in two di�erent equations.

Lagramge 2.0 improves on the original procedure that evaluates a parse tree on the
given measurements of the system variables V . The new Fit_model procedure can evaluate
an entire model that consists of one or several simultaneous equations at once.

As before, the heuristic functions SSE and MDL functions are used in Lagramge
2.0 to estimate the quality of the equation based models. The SSE of a complete model
that contains of simultaneous equations is calculated as a sum of SSE of the individual
equations:

SSE(M) =
∑

vd∈V
SSE(M.vd),

where M.vd represents a single model equation for the system variable vd. The MDL
heuristic is calculated in the same way as for a single equation, except that the complexity
of the entire model is taken into account. Again, the complexity of the model equals the
sum of complexities of individual model equations.
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Note that summing the SSE of individual system variables can be problematic in cases
when system variables have di�erent scales. In such cases, a weighted sum should be
applied, although we do not address the issue in our current implementation. We assume
that the measurements have been normalized in such a way that all the system variables
have comparable scales.

Lower and upper bounds on the values of the constant parameters

Finally, the downhill simplex and Levenberq-Marquart algorithms (Press et al., 1986)
that Lagramge uses to infer the values of the constant parameters, do not let the user
specify lower and upper bounds on them. Thus, in Lagramge 2.0 we replaced these
algorithms with a non-linear optimization algorithm, proposed by Bunch et al. (1993),
that can take into account such bounds on parameter values. Following our formalism for
encoding domain-speci�c knowledge, the default value of a constant parameter speci�ed
there is used as its inital value for the parameter optimization method.

Finally, non-linear optimization methods su�er from the problem of getting stuck in a
local optimum that is the nearest to the initial values of the parameters to be optimized
(Press et al., 1986). This makes them sensitive to the choice of the initial parameter
values. A technique that is usually used to increase the robustness of such methods is
restarting them with di�erent randomly chosen combinations of initial values. This multi-
start technique increases the likelihood of �nding a true local, or even global optimum, so
Lagramge 2.0 incorporates this method, with the number of restarts being speci�ed by
the user.

4.2.3 Implementation

The algorithm for transforming the domain-speci�c knowledge and modeling task speci-
�cations into grammars as well as Lagramge are implemented in the C programming
language using the Gnu C Compiler. Both algorithms were developed, tested, and run on
an Intel platform working under the RedHat Linux operating system. All the programs
are available for download from http://www-ai.ijs.si/�ljupco/ed/.
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4.3 Examples of encoded modeling knowledge
The described formalism is general enough to represent knowledge from di�erent domains.
We illustrate this by encoding modeling knowledge from the domains of population dynam-
ics, chemical kinetics, and engineering. Furthermore, we show that the formalism allows
for encoding of domain-independent knowledge, such as knowledge about the measurement
scales used for measuring the system variables.

4.3.1 Population dynamics

The simple Volterra-Lotka model we used for illustrative purposes in the previous sec-
tion makes several assumptions about the population dynamics processes involved. These
assumptions are not always realistic and should be relaxed in order to allow practical appli-
cations of these models for modeling real-world environments. The simple Volterra-Lotka
model can be schematized as:

Ṅ = growth_rate(N)− feeds_on(P,N)

Ṗ = feeds_on(P, N)− decay_rate(P ).

The �rst assumption made in the simple Volterra-Lotka model is that the growth rate
of the prey population in the absence of predation is proportional to its density, so that
growth_rate(N) = aN . However, this means that the growth of the population is expo-
nential and unlimited, which is unrealistic in many cases. Natural environments sometimes
have carrying capacity for the population that limits the population density. For example,
this can be a limited supply of grass that rabbits graze on. In such cases, one can use the
alternative logistic growth model (Murray, 1993):

growth_rate(N) = aN(1− N

K
),

where K is a constant that determines the carrying capacity of the environment.
The second assumption made in the simple Volterra-Lotka model is that the predation

rate is proportional to the densities of both the predator and the prey populations. In
analogy with growth, this means that the predation growth is exponential and unlimited.
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Table 4.9: An extension of the process class taxonomy for the population dynamics domain
from Table 4.2 with a new process class that represents logistic growth processes.

process class Logistic_growth is Growth
expression const(growth_rate,0,1,Inf) * p

* (1 - p / const(capacity,0,1,Inf))

Table 4.10: A re-de�nition of the Feeds_on process class for the population dynamics
domain from Table 4.2 in order to take into account the saturation of the predation (or
consumption) rate.

process class Feeds_on(Population p, Concentration c)
condition p 6= c
expression p * Saturation(c)

Again, in some cases the predators have limited predation capacity. When the prey popula-
tion density is small the predation rate is proportional to it, but when the prey population
becomes abundant, the predation capacity saturates to some limit. Several di�erent terms
can be used to model the predator saturation response to the increase of prey density
(Murray, 1993):

(a) A
N

N + B
; (b) A

N2

N2 + B
; (c) A(1− e−BN),

where A is the limit value of the predation capacity saturation and B is the constant that
determines the saturation rate.

Relaxing the assumptions made in the Volterra-Lotka model in these ways, we can build
di�erent, more complex and more realistic models of predator-prey population dynamics.
The modeling knowledge about di�erent models of population growth and predator rate
saturation can be easily encoded within the formalism from the previous section.

For example, we can extend the Growth process class with the new subclass that de�nes
the logistic growth model as Table 4.9 shows.

Furthermore, to take into account saturation we can rede�ne the process classes of
Feeds_on and Predator_prey as in Table 4.10.

Note that the new de�nitions of the new process class refers to the function Saturation.
In order to specify di�erent alternatives for modeling saturation, we can introduce a taxon-
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Table 4.11: Taxonomy of function classes specifying di�erent expressions for modeling the
saturation of predation rate in population dynamics.

function class Saturation(Concentration c)

function class No_saturation is Saturation
expression c

function class Saturation_type_1 is Saturation
expression c / (c + const(saturation_rate,0,1,Inf))

function class Saturation_type_1 is Saturation
expression c * c / (c * c + const(saturation_rate,0,1,Inf))

function class Saturation_type_3 is Saturation
expression 1 - exp(-const(saturation_rate,0,1,Inf) * c)

Table 4.12: A taxonomy of variable types that can appear in population dynamics models
with multi-species interactions.

type Concentration is nonnegative_real_number
type Concentrations is set(Concentration)

type Population is Concentration
type Populations is set(Populations)

type Inorganic is Concentration

omy of function classes. The de�nitions in this new taxonomy are the same as de�nitions
of process classes. We distinguish between functions and processes because the former
do not represent processes from the domain; rather they are used to specify alternative
subexpressions that commonly appear in models of individual processes.

Table 4.11 presents the taxonomy of function classes for specifying di�erent saturation
responses. The unsaturated response is speci�ed by the �rst No_saturation function class.
The last three function classes specify the three alternative saturation responses presented
above.

The modeling knowledge presented so far allows for modeling interactions between
only two species. However, in nature we can observe interactions between many species.
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Table 4.13: The de�nition of the multi-species Feeds_on process class specifying the de-
pendence of population p on one or more food sources cs at the same time.

process class Feeds_on(Population p, Concentrations cs)
condition p /∈ cs
expression p *

∏
c∈cs Saturation(c)

For example, we can have three populations of foxes, rabbits, and pheasants, where foxes
can feed on both rabbits and pheasants as alternative food sources. This multi-species
interaction can be still represented within our formalism by two two-species interactions
of Feeds_on(fox, rabbit) and Feeds_on(fox, pheasant). The two predation process
happen in parallel and are combined additively, which means that there are two Feeds_on

terms in the di�erential equation for the (predator) population of foxes. In contrast to
this kind of interactions that represent dependence on several alternative food sources, a
population may depend on consumption of several food sources at the same time. For
example, some species of phytoplankton in aquatic ecosystems need both phosphorus and
nitrogen as inorganic nutrients at the same time to achieve optimal growth. In our formal-
ism, this would be represented as Feeds_on(phyto, {nitro, phosp}). Thus, in order to
encode models of this kind of multi-species interactions, we must extend our formalism to
handle sets of variables. This can be declared using set types, as in Table 4.12. The two
new set types of Concentrations and Populations denote non-empty sets of variables of
Concentration and Population type, respectively.

Now we can de�ne a more general Feeds_on class that can be used to model depen-
dence on one or more nutrients and/or prey populations at the same time, as presented
in Table 4.13. Note that the second process class argument, cs, represents a set of food
sources, on which population p depends. Like the original de�nition in Table 4.2, the
condition p /∈ cs is used to specify that the population cannot predate on itself. The
expression �rst multiplicatively combines the predator saturation terms on di�erent food
sources and �nally multiplies the obtained product with p. Thus, the expression used to
model the Feeds_on(phyto, {nitro, phosp}) process is phyto * Saturation(nitro)

* Saturation(phosp).
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population dynamics

single species single nutrient
multiple species
and/or nutrients

growth decay flow
predator-prey

and/or consumption
competitive exclusion symbiosis

exponential
(unlimited)
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exponential inflow outflow unsaturated saturated unsaturated saturated unsaturated saturated

Figure 4.3: An improved taxonomy of classes of processes used for modeling population
dynamics.

Another extension of the population dynamics library involves di�erent kinds of inter-
actions between species. Until now, we have concentrated on one type of predator-prey (or
consumption) interaction, where the growth rate of one (prey) population decreases while
the other (predator) increases. There are also two other important types of interactions
between two species (Murray, 1993). If the growth rate of both populations decreases, then
we observe the process of competitive exclusion. This kind of interaction appears when two
species compete for the same limited food source or inhibit each other's growth in some
other way. The other kind of interaction, symbiosis or mutuality, involves enhancements of
the growth rates of both populations. Symbiosis usually plays a crucial role in the survival
of such species.

Taking into account these other types of interactions, we can enhance our basic taxon-
omy of process classes to obtain the one that is presented graphically in Figure 4.3. The
complete formalized library of modeling knowledge about process classes in this enhanced
taxonomy appears in Appendix A.

Finally, we should note that the library of modeling knowledge for population dynamics
presented here can be also used in other areas of mathematical biology. For example,
modeling the dynamics of infectious diseases (Capasso, 1993) is an important area where
the structure of mathematical models is identical to the models of population dynamics.

4.3.2 Biochemical kinetics

Biochemical reactions take place continually in the metabolic processes of all living or-
ganisms. Biochemical kinetics studies the rates of biochemical reactions and the dynamic
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Figure 4.4: An example metabolic pathway map representing a network of two chemical
reactions involving four chemical substances and an enzyme.

change of the concentration of various reactants (proteins and enzymes) involved in a partic-
ular metabolic process (Voit, 2000). The dynamic change of the reactants' concentrations
is modeled using ordinary and partial di�erential equations.

The metabolic process is usually presented graphically as a network of chemical reac-
tions, that is referred to as a metabolic pathway map. Figure 4.4 presents an example of
a simple metabolic pathway map that consists of two chemical reactions (Voit, 2000). The
�rst chemical reaction is activated by enzyme e, takes two substrate substances a and b at
input, and produces a single substance c. The second chemical reaction does not involve
activating enzymes and transforms c into d.

There are several methods for transforming a metabolic pathway into ordinary di�er-
ential equations for modeling the change of the concentrations of a, b, c and d. Here we
consider the S-system method, presented by Voit (2000). In the S-system approach, the
di�erential equations for the metabolic pathway from Figure 4.4 would be formulated as:

ȧ = −βa · e · aγa · bγb

ḃ = −βb · e · aγa · bγb

ċ = αc · e · aγa · bγb − βc · cγc

ḋ = αd · cγc ,

where αc, βa, and βb are constant parameters representing the rates of the chemical re-
action, while ca and cb are constant parameters representing the kinetic orders of the
reaction with respect to the chemical substances a and b, respectively. Following the S-
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Table 4.14: Library of modeling knowledge for the biochemical kinetics domain.

type Concentration is nonnegative_real_number

type Substance is Concentration
type Substances is set(Substance)

type Enzyme is Concentration
type Enzymes is set(Enzyme)

process class Reaction(Enzymes es, Substances ins, Substances prods)
condition ins ∩ prods = ∅
expression

∏
e∈es e *

∏
i∈ins pow(i, const(_, 0, 1, Inf))

combining scheme Biochemical_kinetics(Substance s)
ṡ =

∑
s∈prods const(_, 0, 1, Inf) ∗ Reaction(es, ins, prods))

-
∑

s∈ins const(_, 0, 1, Inf) ∗ Reaction(es, ins, prods))

system method, each chemical reaction is represented by a single term that appears in the
equations for all the substances that are involved in the reaction. In our example, there
are two such terms, i.e., e · aγa · bγb and cγc , corresponding to the �rst and second chemical
reaction, respectively.

Following the rules of the S-system method, we can formalize the library of modeling
knowledge for the domain of biochemical kinetics, as presented in Table 4.14. The single
process class Reaction represents biochemical reactions, Each of which is activated by a set
of enzymes es, takes substrates ins at input, and generates a set of products prods. The
expression used to model a chemical reaction builds a term that positively in�uences the
change of products concentrations and negatively in�uences the change of inputs concen-
trations. The last two facts are encoded in the combining scheme. The example metabolic
pathway map from Figure 4.4 can be then formalized using the task speci�cation from
Table 4.15.

Encoding knowledge about the kinetics of biochemical metabolic pathways opens an
important potential application area of automated modeling. The need for quantitative
models of biological processes is growing rapidly, and we expect it to play a signi�cant role
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Table 4.15: Task speci�cation used for modeling the metabolic pathway from Figure 4.4.

variable Substance a, b, c, d
variable Enzyme e

process Reaction({e}, {a, b}, {c}) reaction_1
process Reaction({}, {c}, {d}) reaction_2

in establishing the kind of mathematical understanding sought from enterprises like the
Human Physiome Project (Bassingthwaighte, 2002 Web page update). We believe that
an automated model discovery method of the form proposed here will greatly assist the
analysis of the large quantities of data expected to be available as a result of the project.

4.3.3 Spring mechanics domain

Although the targeted application areas of the modeling framework developed in this thesis
are environmental and biochemical dynamic systems, the formalism can be also used to
encode knowledge in engineering domains. Here we present a formalization of knowledge
about spring mechanics, used in the Pret reasoning system for automated modeling of
dynamic systems (Bradley et al., 2001; Stolle, 1998).

Pret uses domain knowledge about engineering domains that is encoded in the form
of domain rules. For example, its mechanical knowledge consists of a single force balance
rule and a single variable type representing a point coordinate in the observed system. The
force balance rule applies to every point coordinate in the observed system and speci�es
that the sum of all forces that apply to a point coordinate is zero. Bradley et al. (2001)
emphasize that the rule is not strictly domain-speci�c. In the electrical domain, the same
rule is expressed by Kircho�'s law, which states that the sum of currents at an observed
point in an electrical circuit is zero. Thus, the modeling knowledge used in Pret is not
domain-speci�c but rather general knowledge used for modeling dynamic systems in various
engineering domains.

We will illustrate the use Pret's of domain knowledge on the spring and masses dy-
namic system from Bradley et al. (2001), as depicted in Figure 4.5. Table 4.16 presents
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q1 q2

Figure 4.5: Springs and masses dynamic system.

Table 4.16: The domain-speci�c knowledge used in Pret for modeling springs and masses
system from Figure 4.5.

(point-sum <force> 0)

(state variables <q1> <q2>)
(point coordinates <q1> <q2>)
(hypotheses

(<force> (* m1 <q̈1>)
(<force> (* m2 <q̈2>)
(<force> (* k1 <q1>))
(<force> (* k2 (- <q1> <q2>))
(<force> (* k3 <q2>)))

the knowledge used for modeling the spring and masses system. The �rst row in the table
represents the domain-speci�c knowledge, in particular the force balance rule. The next
two rows specify the observed system variables and their types. Finally, the last �ve rows
encode knowledge that is task speci�c to the observed system. They specify forces that
potentially govern the dynamics of the springs and masses.

An analysis of Pret's knowledge for modeling springs and masses reveals several impor-
tant di�erences between our approaches. Our knowledge representation formalism follows
the compositional modeling paradigm (Kuipers, 1994; Falkenheiner & Forbus, 1991), in
which the model fragments of individual processes (or components) are combined into a
model of the entire system. In contrast, the hypotheses in Pret do not necessarily cor-
respond to the processes or components in the domain. Rather, they represent quantities
that obey a balance rule in the domain. In the mechanics, these quantities are forces that
obey the force balance law, whereas in the electrical domain they correspond to currents
that follow the Kircho�'s law.
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Table 4.17: Representation of the modeling knowledge used in Pret for modeling the
springs and masses system.

type Coordinate is real

function class Single_spring_force(Coordinate q)
expression const(k,0,1,Inf) * q

function class Two_springs_force(Coordinate q1, Coordinate q2)
condition q1 6= q2
expression const(k,0,1,Inf) * (q1 - q2)

combining scheme Spring_mechanics(Coordinate q)
q̈ = -

∑
Single_spring_force(q) -

∑
q2 Two_spring_force(q, q2)

+
∑

q1 Two_spring_force(q1, q)

Despite this fundamental di�erence between the approaches, the knowledge used in
Pret for modeling the springs and masses system can be encoded in our formalism, as
shown in Table 4.17. There are several important di�erences to the knowledge represen-
tation from Table 4.16. First, although the combining scheme used in our formalization is
based on the force balance rule, it is written in a form that makes it an explicit form of the
model.2 On the other hand, the balance force rule in Pret is represented in its implicit
form ∑

Forces = 0.

Second, the two knowledge representations di�er in terms of the spaces of possible
models they specify. The combining scheme states that the models of the mass-spring
systems must be second-order, i.e., they must include the second-order derivatives of the
system variables. This kind of knowledge is encoded within Pret in the form of general
ordinary di�erential equations (ODE) rules and not as a domain-speci�c knowledge. An
ODE rule in Pret speci�es that models of systems with oscillatory behavior must be
second-order. Thus, Pret will also consider the zero (algebraic equations) and �rst-
order models of the mas-spring system, and using the qualitative reasoning with the above

2The implicit form of a model of a dynamic system with a single variable x is f(x, ẋ) = 0, as opposed
to the explicit form ẋ = g(x). Note that most existing methods for simulating and �tting the parameters
of a dynamic system model operate on the explicit form only.
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mentioned general ODE rule Pret will rule out these models. Furthermore, Pret will
consider models with a single model equation. Again, reasoning with general ODE rules
encoded in the knowledge base will discard these models. On the other hand, the grammar
obtained by transforming the knowledge from Table 4.17 will produce only models that
include equations for both coordinates of the system.

The third di�erence in our knowledge representations lies in the generality of the en-
coded knowledge. Although Pret's knowledge could be extended could be extended to
incorporate a third mass body in the system by adding additional <hypothesis> declara-
tion, our knowledge can be used without any additional speci�cations except for declaration
of a new system variable.

4.3.4 Dimensional analysis

Giordano et al. (1997) review dimensional analysis as a method for mathematical modeling
that helps determine the relationships between measured system variables on the basis of
the their dimensions or measurement units. The approach rests on the assumption that
the system variables have dimensions and that the form of the equations relating them
does not change with the measurement units.

The key theorem of dimensional analysis is the Buckingham Pi theorem, which provides
a method for grouping the system variables into dimensionless terms. The bene�t of
grouping is that it reduces the number of independent variables, since there are fewer
dimensionless terms than system variables. The early equation discovery method Coper
(Kokar, 1986) employed dimensional analysis and the Buckingham Pi theorem to constrain
the space of possible equations.

The application of dimensional analysis methods (including the version used by Coper)
is limited to the cases where the dimensions of all system variables are known. Washio
and Motoda (1998) have extended the original Buckingham Pi theorem to the cases where
only information about the type of the measurement scale used to measure the system
variables is available. The measurement scale provides information about the nature of the
measured quantity. Three types of measurement scales are usually acknowledged: interval,
ratio, and absolute scale.
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Table 4.18: A taxonomy of measurement scale types used for measuring the system vari-
ables.

type Absolute is real
type Absolutes is set(Absolute)

type Ratio is real
type Ratios is set(Ratio)

type Interval is real
type Intervals is set(Interval)
type Intervals_covering is set(Intervals)

Interval Scale can be used for quantities that possess magnitude, i.e., one value can be
judged greater than, less than, or equal to another. In addition, the units of mea-
surement are the same across the entire measurement scale regardless of where the
unit falls. Temperature is an example of an interval quantity, as the di�erence be-
tween 100 degrees and 99 degrees is the same as the di�erence between 40 degrees
and 39 degrees. Interval quantities do not necessarily have an absolute zero point,
e.g., a temperature of zero degrees does not indicate that there is no temperature.

Ratio Scale is more speci�c than interval scale, as it must have an absolute (invariant)
zero point. Distance or mass are both examples of ratio scale quantities, where the
distance or mass of zero indicates no distance or mass.

Absolute Scale is more speci�c than ratio scale, as it must have an absolute (invariant)
unit, i.e., the distance between two consecutive tics on the measurement scale. Both
counts and dimensionless quantities are examples of absolute scale quantities.

The extended Buckingham theorem, proposed by Washio and Motoda (1998), speci�es
how original system variables with known measurement scale types can be combined into
dimensionless terms, referred to as �regimes�. The taxonomies of function classes de�ned
in Table 4.19, Table 4.20, and Table 4.21 formalize the rules of the extended Buckingham
theorem for building �regimes� out of system variables of ratio, interval, and a mixture of
ratio and interval scale types, respectively.
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Table 4.19: A taxonomy of function classes that transforms variables of ratio scale-types
into dimensionless regimes.

function class Ratio_regime(Ratios rvs) is Regime

function class Ratio_regime_1() is Ratio_regime
expression

∏
r∈rvs pow(fabs(r), const(a,-Inf,1,Inf))

function class Ratio_regime_2() is Ratio_regime
expression

∑
r∈rvs const(a,-Inf,1,Inf) * log(fabs(r))

Table 4.20: A taxonomy of function classes that transforms variables of interval scale-types
into dimensionless regimes.

function class Linear_combination(Intervals ivs)
expression const(c,-Inf,1,Inf) +

∑
i∈ivs const(b,-Inf,1,Inf) * fabs(i)

function class Interval_regime(Intervals_covering ivsc) is Regime

function class Interval_regime_1() is Interval_regime
expression

∏
ivs∈ivsc pow(Linear_combination(ivs), const(a,-Inf,1,Inf))

function class Interval_regime_2(Intervals ivs) is Interval_regime
condition ∧ivs1∈ivsc ivs1 ∩ ivs = ∅
expression

∑
ivs1∈ivsc const(a,-Inf,1,Inf) * log(Linear_combination(ivs1))

+ Linear_combination(ivs)

The rules of the extended Buckingham theorem de�ne a huge space of possible �regimes�
even for a small number of system variables, especially if many of them are of interval type.
The space can quickly become intractable. To overcome this problem, Washio and Motoda
(1997) propose a set of data-driven heuristics that can prune the space of possible regimes
to the ones that are used to model the observed system. Their pruning heuristics makes
the space of possible regimes tractable for large sets of variables, which lets their equation
discovery method, SDS, to reconstruct complex models of electrical circuits from noisy
data.

However, the knowledge encoded in the taxonomy of function classes do not encode
the heuristics for pruning the space of possible regimes. The encoding of the data-driven
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Table 4.21: A taxonomy of functions that transforms variables of mixed (ratio and interval)
scale-types into dimensionless regimes.

function class Mixed_regime(Ratios rvs, Intervals_covering ivsc) is Regime

function class Mixed_regime_1() is Mixed_regime
expression Ratio_regime_1(rvs) * Interval_regime_1(ivsc)

function class Mixed_regime_2(Intervals ivs) is Mixed_regime
expression Ratio_regime_2(rvs) + Interval_regime_2(ivsc, ivs)

heuristics would require additional constructs that would allow for conditions based on the
characteristics of the data.

Despite the limitation mentioned above, the encoded domain-independent knowledge
based on the extended Buckingham theorem constitutes an important step toward the inte-
gration of dimensional analysis with other aspects of domain-speci�c modeling knowledge.
In order to make the encoded knowledge operational, we have to encode the SDS pruning
heuristics within the function classes. Furthermore, we also have to de�ne a combining
scheme that will combine the regimes into model equations.

4.4 Summary

In this chapter, we have presented an approach to automated modeling of dynamic sys-
tems that allows for the representation and use of domain-speci�c modeling knowledge.
The approach follows the compositional modeling paradigm, where the fragment models
representing individual processes are combined into models of the entire system (Kuipers,
1994; Falkenheiner & Forbus, 1991). The knowledge is organized in a taxonomy of process
classes, each representing an important class of processes in the observed domain. The
knowledge includes also states how to combine models of individual processes into a model
of the entire system.

This high-level knowledge representation can be automatically transformed to the op-
erational form of grammars that specify the space of candidate models of the observed
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system. Equation discovery method Lagramge can be then used to search through the
space of candidate models and �nd the one that �ts the measured data best. The gram-
mars generated using the presented approach are context-dependent and generate complete
models consisting of simultaneous (di�erential) equations. The equation discovery method
Lagramge 2.0 was developed that can deal with context-dependent grammars as well as
simultaneous equations.

While our approach to automated modeling follows the compositional modeling para-
digm (Falkenheiner & Forbus, 1991), the Pret reasoning system for automated modeling
employs di�erent kinds of modeling knowledge (Bradley et al., 2001; Stolle, 1998). The �rst
kind of knowledge used in Pret is domain-speci�c knowledge in the form of �conservation
rules�. An example of such a rule in the spring mechanics domain speci�es that �the sum of
forces at any observed coordinate of the mechanical system is zero�. These rules are more
general than the domain knowledge about model fragments and their composition used in
compositional modeling approaches. Therefore, Pret rules constrain the space of possible
models much less. Pret compensates this lack of constraints by using a second kind
of domain-independent knowledge about models of dynamic systems based on ordinary
di�erential equations. An example of such a rule speci�es that �a model with oscillatory
behavior has to be second-order�. This kind of ODE rules allows Pret to e�ciently rule out
inappropriate models by high-level abstract (qualitative) reasoning. As we have illustrated
in Section 4.3.3, both kinds of modeling knowledge, used in Pret, can be easily encoded
within our formalism. Note however, Lagramge is not capable of ruling out inappropriate
candidate models based on qualitative reasoning, but rather tries to perform quantitative
simulation of the candidate models and �nd out that it can not �t the measured data well.

Another related study is presented by Garrett et al. (2004). They apply the compo-
sitional modeling approach to the task of inducing models of chemical reaction pathways
from noisy measurement data. However, the models they induce are qualitative. Although
the concepts introduced within the area of compositional modeling are also relevant for
automated building of quantitative models of real-world systems, this idea has not been
widely explored.
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Our approach is similar to the Ecologic approach (Robertson et al., 1991) in the sense
that it allows for representing modeling knowledge and domain-speci�c knowledge. How-
ever, in Ecologic, the user has to select himself among the alternative models, whereas in
our approach observational data is used to select among the alternatives. It is also related
to process-based approaches to qualitative physics (Forbus, 1984). We can think of the
food-chain or domain-speci�c part of the knowledge as describing processes qualitatively,
whereas the modeling part together with the data introduces the quantitative component.
However, the Ecologic approach is limited to modeling systems in the environmental
domain, whereas our approach is applicable in a variety of domains.

An immediate direction of further (and partly ongoing) work is establishing libraries of
encoded knowledge in di�erent domains and applying the framework on real-world prob-
lems. First steps toward establishing a library for modeling of aquatic ecosystems, based
on recent developments in the domain, have been already made (Atanasova and Kompare
2003, personal communication). Furthermore, the same team of experts work on a library
for establishing models of equipment used for waste water treatment. In both cases, the
libraries will be used for automated modeling based on collections of measurement data.

A serious limitation of our automated modeling framework is the assumption that the
domain expert can specify the set of processes that govern the behavior of the observed
system. In many real-world situations, the domain expert will not be able to specify the
list of processes, but can only provide the speci�cation of system variables. In such cases,
the task of the automated modeling method is to �nd the set of processes that govern the
behavior of the observed system as well as the particular modeling alternative for each
of the processes in the set. Thus, the task speci�cation will only provide the list of the
observed system variables.

The information about possible classes of processes from the taxonomy along with the
set of system variables and their types, can be used to enumerate all possible processes
that can appear in the observed system. These are equivalent to all possible instantiations
of the process and function classes in the library of domain-speci�c knowledge. As we
have illustrated in the springs and masses example, grammar productions can be used
to enumerate all subsets of the set of all possible processes. However, this approach is
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impractical, since the number of possible process and function class instantiations explodes
with the number of system variables.

{}

Single_spring_force(q1) Single_spring_force(q2) Two_springs_force(q1,q2) Two_springs_force(q2,q1)

Single_spring_force(q1)
Single_spring_force(q2)

Single_spring_force(q1)
Two_springs_force(q1,q2)

Single_spring_force(q1)
Two_springs_force(q2,q1) ...

Single_spring_force(q1)
Single_spring_force(q2)

Two_springs_force(q1,q2)
...

Single_spring_force(q1), Single_spring_force(q2)
Two_springs_force(q1,q2), Two_springs_force(q2,q1)

Figure 4.6: The search space of all possible subsets of processes that can govern the behavior
of the springs and masses system from Figure 4.5.

One way to overcome this limitation is to apply a two-level search method through the
space of possible models. At the higher level, search through the space of subsets of possible
processes should be performed (for an illustration of the possible ordering of the search
space for modeling the springs and masses system see Figure 4.6). At each node in the
search space, the particular set of processes can be used to specify the space of candidate
models in the form of a grammar. Then, the search on the lower level is performed to �nd
the model, based on the particular set of processes, that �ts the measured data best. The
search at the lower level will �nd the set of processes and the model that �ts the measured
data best. The development of the two-level search procedure is another direction for
further development of the automated modeling framework.

In the next chapter, we will empirically evaluate the proposed framework for automated
modeling on several tasks of modeling dynamic systems from synthetic and real-world
measurement data.



5

Experimental evaluation
and examples of use

In this chapter, we empirically evaluate our modeling framework on tasks of modeling
dynamic systems from the domains of population dynamics, spring mechanics, and hy-
drodynamics. The chosen tasks illustrate the usability and �exibility of the proposed
framework and evaluate its performance.

In the �rst series of experiments on synthetic data, we examine the ability of our
framework to reconstruct known models from noisy simulation traces. The goal of these
experiments is to evaluate the inductive performance and noise robustness of the frame-
work. The experimental results show that both context-dependent constraints and bounds
on the constant parameters greatly improve the e�ciency, inductive performance, and noise
robustness of Lagramge.

In the second series of experiments, we study the ability of the framework to induce
models of dynamic systems from real-world measurement data. The experiments show that
Lagramge can build accurate and comprehensible models of population dynamics from
real-world measurements. Our framework compares favorably with the equation discovery
method GoldHorn (Kriºman, 1998) and with previous version of Lagramge in terms of
�exibility and performance on the tasks of modeling algae growth in the Lagoon of Venice
(Co�aro et al., 1993) and Lake Glumsø (Jørgensen et al., 1986). The last experiment, on
modeling the water level in Ringkøbing fjord, shows the applicability of the framework to
the task of completing partially speci�ed models.
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5.1 Reconstructing known models from synthetic data

In the �rst series of experiments, we applied our framework to several tasks of recon-
structing known models from synthetic data. This experimental setup is bene�cial since
it allows a comparison of the discovered model with the original one and an evaluation of
the reconstruction success. This is the �rst evaluation criterion used in the studies.

In each experiment, we �rst choose a model of a dynamic system and simulate it
from ten randomly chosen initial states to obtain ten simulation traces. These are used
for model induction experiments with Lagramge. In order to evaluate error of induced
models on test data unseen during the discovery process, we use 10-fold cross-validation
procedure. In each iteration of this procedure, Lagramge induces a model from nine
out of ten simulation traces, the induced model is in turn tested for consistency with the
remaining tenth trace. We measure the discrepancy between simulations of the original
and induced model using root mean squared error (RMSE) measure. The cross-validated
RMSE estimate is the second evaluation criterion. For simulating the original and induced
model, we use an adaptive-step method (Press et al., 1986), as implemented in the Octave1

programming language for numerical computations.
The third evaluation criterion is the complexity of the space of models considered in

the process of automated modeling.
In addition to testing the ability to reconstruct models from noise-free synthetic data,

we also tested the noise robustness of the proposed framework. To each trace, we added
arti�cially generated random Gaussian noise was added at �ve relative noise levels of 1%,
2%, 5%, 10%, and 20%. A relative noise level of l% means that we replaced the original
value x with the noisy value of x · (1 + l · r/100), where r is a normally distributed random
variable with mean zero and standard deviation one.

In the experiments with synthetic data, we aimed at evaluating the performance gain
due to the improvements to the earlier version of Lagramge. We evaluated separately
context-dependent constraints and bounds on the values of the constant parameters. In
order to do this, we induced models with four di�erent versions of a grammar. The �rst

1http://www.octave.org/



Reconstructing known models from synthetic data 87

is a fully constrained grammar (labeled L2), the second is a grammar without context-
dependent constraints (labeled L2-cdc), the third is a grammar without constant parame-
ters' bounds (labeled L2-cpb), and the last is a grammar without any constraints (labeled
L1, since it is equivalent to using the earlier version of Lagramge).

5.1.1 First experiment in the population dynamics domain

We performed the �rst experiment on the task of reconstructing models of a simple aquatic
ecosystem speci�ed in Table 4.5. This speci�cation along with the population dynamics
knowledge from Appendix A can be transformed to a grammar, which generates sixteen
candidate models of the ecosystem. Each takes a form of three di�erential equations (for
nut, phyto, and zoo) with generic constant parameters. We initialized the constant param-
eters with random values uniformly distributed over the [0, 2] interval and simulated each
model from ten initial states randomly chosen from the [0.5, 1.5] interval. Each simulation
trace included 100 time steps of 0.1 time units.

We used these traces (with arti�cially added noise) as training data for reconstructing
each of the sixteen models of the simple aquatic ecosystem in turn. Figure 5.1 and Table 5.1
summarize the results of the reconstruction experiments.

The graph in Figure 5.1 shows the improvement in noise robustness due to both context-
dependent constraints and bounds on the values of the constant parameters. The L2 line
shows that the fully constrained grammar is capable of reconstructing 90% of the models
(14 out of 16) from noise-free data and 50% of the models from data with 20% relative
noise.

Comparing the L2 line with the L2-cdc and L2-cpb lines shows that both context-
dependent constraints and bounds on the values of the constant parameters are almost
equally bene�cial for the noise-robustness of Lagramge. The grammar without context-
dependent constraints (L2-cdc) can reconstruct only 50% of the models from noise-free
data. Note that this equals the rate gained on data with 20% relative noise using fully-
constrained grammar. Similarly, the successful reconstruction rate signi�cantly drops, if a
grammar without bounds on the values of the constant parameters is used (L2-cpb). The
corresponding line on the graph shows that bounds on the values of constant parameters
becomes more important for successful reconstruction at higher noise levels.
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Figure 5.1: The percentage models that were successfully reconstructed by Lagramge
using four di�erent versions of the grammar. Legend: L2 = fully constrained grammar,
L2-cdc = grammar without context-dependent constraints, L2-cpb = grammar without
bounds on the values of the constant parameters, and L1 = fully unconstrained grammar
(which is equivalent to the previous version of Lagramge).

The successful reconstruction rate of previous version of Lagramge is much lower than
the one of the improved one at all noise levels. Previous version of Lagramge could not
reconstruct any model from data with 20% relative noise.

Furthermore, the comparison of the four lines on the graph in Figure 5.1 shows that
the performance improvements gained with the two kinds of constraints almost sum up.
That means that the two kinds of constraints are orthogonal, i.e., each improves a di�erent
aspect of Lagramge's induction performance.

Finally, context-dependent constraints reduce the complexity of the space of models
considered by Lagramge. While the context-dependent grammars generates 16 candidate
models, the context-free grammar (i.e., the one without context-dependent constraints)
generates 256 models. Thus, context-dependent constraints reduce the search space by a
factor of 16. This reduction is re�ected in reduced run times of Lagramge. The average
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Table 5.1: The average cross-validated root squared mean errors (RMSE) of the sixteen
models reconstructed by Lagramge using four di�erent versions of the grammar (see the
legend from Figure 5.1). For noisy data, errors on the left-hand side are measured with
respect to noisy data, while errors on the right-hand side are measured with respect to
noise-free data.

noise level L2 L2-cdc L2-cpb L1
no-noise 0.00643 0.00364 0.00404 0.00379
1% 0.00880 0.00797 0.00755 0.00660 0.00775 0.00689 0.0119 0.0109
2% 0.0139 0.0110 0.0131 0.00986 0.0132 0.0101 0.0131 0.00986
5% 0.0319 0.0214 0.0310 0.0201 0.0310 0.0201 0.0309 0.0199
10% 0.0293 0.0290 0.0278 0.0276 0.0279 0.0278 (*1) 0.118 0.0274
20% 0.0549 0.0523 0.0629 0.0502 0.0548 0.0530 (*5) 0.0647 0.0540

time2 of a single run with the context-dependent grammars was about 40 seconds, which
is more than 30 times less time than the average of 1500 seconds needed for a single run
with the context-free versions of the grammar.

In sum, integrating domain-speci�c knowledge in the process of automated modeling
reduces the space of candidate models and greatly improves the reconstruction ability,
noise robustness, and e�ciency of Lagramge.

Table 5.1 shows the average cross-validated RMSE of the sixteen models discovered by
Lagramge. For models induced from noisy data, we measured RMSE with respect to
both noisy (on the left-hand side of each column) and noise free data (on the right-hand
side). Note that, in most cases, these errors are comparable, the general trend is that
induced models �t the noise-free data better than the noisy data, which con�rms the noise
robustness of Lagramge.

Models discovered with unconstrained grammars (i.e., L2-cdc, L2-cpb, and L1) are on
average more accurate than the models discovered with fully constrained grammar. Gram-
mars without context-dependent constraints allow for models with inappropriate structure,
where two or more di�erent expressions are used for the same process in di�erent equations.
Grammars without bounds on the values of the constant parameters allow for models with
inappropriate (unrealistic) values of the constant parameters (e.g., negative growth or sat-

2All CPU run times are measured on an Intel platform with two 2GHz Pentium IV processors.
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uration rate). By analyzing the models induced using unconstrained grammars, we found
that some can �t the data better than the original models. This is why the average RMSE
with unconstrained grammars are lower than the ones with the fully constrained grammar.
However, note that inappropriate structure or constant parameters can lead to problem-
atic models that can not be simulated.3 The (*N) symbols beside the last two �gures from
Table 5.1 denote that N out of 16 reconstructed models could not be simulated. Thus, the
corresponding error is not an average RMSE of all 16 models, but only of those that were
successfully simulated.

The models we tried to reconstruct in the �rst experiment are not necessarily realistic,
since the values of the constant parameters in the models were chosen randomly. It is
known that some combinations of parameter values can lead to unstable or unrealistic
behaviors (i.e, a concentration of a species explodes beyond any reasonable limits (Murray,
1993)). Such unstable behaviors can make the reconstruction task much more di�cult or
even impossible, since they cause instability of the procedure that �ts constant parameters.
To avoid such di�culties, in the next two studies, we will focus on tasks of reconstructing
realistic population dynamic models, which have stable and realistic behaviors.

5.1.2 Reconstructing two simple population dynamics models

In the second experiment, we address two tasks of reconstructing realistic models of a
simple aquatic ecosystem. The considered ecosystem is similar to the one used in the �rst
experiment, as it involves three system variables of inorganic nutrient, phytoplankton, and
zooplankton and six processes, as shown in the �rst column of Table 5.2.

For the two models used in the experiments, we have to �rst decide on the modeling
alternative for each involved process. Second and third column of Table 5.2 show the choice
of modeling alternatives for the �rst and second model, respectively. The only di�erence
lies in the expression used to model the Feeds_on(phyto, {nut}) consumption process.
In the �rst model the consumption of nutrient by phytoplankton is unsaturated, while in
the second it is saturated.

3In population dynamics, the usual reason for the inability to simulate a model is �division by zero�
singularities encountered due to a negative value of the saturation rate constant parameter.
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Table 5.2: A task speci�cation used for modeling a simple aquatic ecosystem that involves
two consumption interactions between three system variables. The last two columns specify
modeling alternatives used for individual processes in each model.

Process First model Second model
Flow(nut) 2.0 2.0
Growth(phyto) 0.1 · (1− phyto/0.7) 0.1 · (1− phyto/0.7)
Decay(phyto) 0.2 · phyto 0.2 · phyto
Feeds_on(phyto, {nut}) phyto · nut phyto · nut/(nut + 0.5)
Decay(zoo) 0.1 · zoo 0.1 · zoo
Feeds_on(zoo, {phyto}) zoo · phyto/(phyto + 0.5) zoo · phyto/(phyto + 0.5)

Finally, expressions for the individual processes are combined into models of the entire
ecosystem as

˙nut = Flow(nut)− 1.0 · Feeds_on(phyto, {nut})
˙phyto = Growth(phyto)− Decay(phyto) + 0.7 · Feeds_on(phyto, {nut})

−0.5 · Feeds_on(zoo, {phyto})
˙zoo = −Decay(zoo) + 0.25 · Feeds_on(zoo, {phyto}).

Figure 5.2 presents the simulation traces of the �rst and the second model. We generated
the simulation traces that were used in the experiments by simulating the models using
ten randomly chosen initial states chosen using a random variable uniformly distributed
over the [0.5, 1.5] interval. Each simulation trace included 100 time steps of 0.5 time units.

Table 5.3 summarizes the results of the second experiment. They show that context-
dependent constraints reduce the space of candidate models by a factor of 16. While
the context-dependent grammar generates 64 models, the context-free grammar speci�es
the space of 1024 models. Context-dependent constraints reduce the average run time of
Lagramge by a factor of 20. While the average time for a single run with the context-
dependent grammar was about �ve minutes, a single run with the context-free grammar
took about two hours.

Lagramge successfully reconstructed both models from the data with up to 5% rel-
ative noise using the fully constrained grammar. From data with 10% relative noise,
Lagramge failed to reconstruct the �rst model; the discovered model suggests exponen-
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Figure 5.2: Simulation of two �rst (left-hand side) and second (right-hand side) model of
the simple aquatic ecosystem for the initial values of the system variable set to nut(0) =
phyto(0) = zoo(0) = 1.0.

Table 5.3: Number of candidate models considered during the search, number of success-
fully reconstructed models (SR), and the average cross-validated RMSE of the models
reconstructed by Lagramge using four di�erent grammar versions.

L2 L2-cdc L2-cpb L1
number of candidate models 64 1024 64 1024
noise level SR RMSE SR RMSE SR RMSE SR RMSE
no-noise 2 0.0714 1 0.0855 2 0.250 0 0.0557
1% 2 0.0601 1 0.0823 1 0.0601 1 0.0905
2% 2 0.0726 2 0.190 1 0.0726 0 0.142
5% 2 0.221 0 0.106 1 0.121 0 0.103
10% 1 0.345 0 0.308 1 0.503 0 0.438
20% 1 0.514 0 0.549 0 0.425 0 0.509

tial phytoplankton growth as opposed to the logistic growth in the original model. From
data with 20% relative nose, Lagramge failed to reconstruct the second model; while
the original model has zooplankton predation of type 1, the reconstructed model suggests
saturation of type 3.

The fully constrained grammar clearly outperforms unconstrained grammars both in
terms of cross-validated RMSE and in terms of successful reconstruction rate. Comparing
the L2-cdc and L2-cpb columns in Table 5.3 shows that context-dependent constraints are
more important for successful reconstruction than bounds on the values of the constant
parameters. Note that previous version of Lagramge failed to reconstruct both models
at almost all noise levels.
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Table 5.4: A task speci�cation used for modeling a complex aquatic ecosystem consisting
of �ve interactions between �ve system variables. The second column speci�es the models
of the individual processes used to obtain the simulated data for the experiments.

Variables
variable Inorganic nitro, phosp
variable Population phytoa, phytob, zoo
Process Model
Flow(nitro) 0.2
Flow(phosp) 0.1
Growth(phytoa) 0.1 · phytoa · (1− phytoa/2.0)
Feeds_on(phytoa, {nitro,phosp}) phytoa · nitro · phosp/(phosp + 0.6)
Decay(phytob) 0.1 · phytob
Feeds_on(phytob, {nitro}) phytob · nitro · nitro/(nitro · nitro + 0.4)
Feeds_on(phytob, {phosp}) phytob · phosp
Decay(zoo) 0.5 · zoo
Feeds_on(zoo, {phytoa}) zoo · phytoa/(phytoa + 1.7)
Interaction({phytob,zoo}) zoo · phytob

5.1.3 Reconstructing a complex population dynamics model

In the third and last population dynamics experiment, we selected a fairly complex model
of an aquatic ecosystem involving two inorganic nutrients and three organic populations,
as shown in Table 5.4. The table speci�es the modeling alternatives chosen for individual
processes in the model, which represents an open aquatic ecosystem with constant in�ows
of nitrogen and phosphorus from the environment. The system involves two phytoplankton
species, phytoa and phytob. While the �rst has a limited growth and needs both inor-
ganic nutrients for survival and optimal growth, the second, phytob, consumes nitrogen
and phosphorus based nutrients (not necessarily both at the same time) and decays expo-
nentially. The zooplankton population also decays and consumes phytoa. Finally, there
is a symbiotic interaction between the zooplankton and the phytob phytoplankton. The
models of the individual processes are combined into a model of the entire ecosystem as

˙nut = Flow(nitro)− 1.2 · Feeds_on(phytoa, {nitro, phosp})
−0.4 · Feeds_on(phytob, {nitro})

˙phosp = Flow(phosp)− 0.7 · Feeds_on(phytoa, {nitro, phosp})
−1.2 · Feeds_on(phytob, {phosp})
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Figure 5.3: Simulation of the complex aquatic ecosystem model for the initial values of
the system variable set to nitro(0) = phosp(0) = 0.5, phytoa(0) = phytob(0) = 1.0, and
zoo(0) = 0.2.

˙phytoa = Growth(phytoa) + 0.7 · Feeds_on(phytoa, {nitro, phosp})
−1.5 · Feeds_on(zoo, {phytoa})

˙phytob = −Decay(phytob) + 0.2 · Feeds_on(phytob, {nitro})
+0.2 · Feeds_on(phytob, {phosp}) + 0.2 · Interaction({phytob, zoo})

˙zoo = −Decay(zoo) + 1.2 · Feeds_on(zoo, {phytoa})
+0.1 · Interaction({phytob, zoo}).

Figure 5.3 presents the behavior of the ecosystem. We generated the simulation traces that
were used in the experiments by simulating the models from ten randomly chosen initial
states. The initial values of the system variables were chosen using a random variable
uniformly distributed over the [0, 1] interval. Each simulation trace included 100 time
steps of 0.1 time units.

We ran experiments with Lagramge using a grammar built from the task speci�cation
and the modeling knowledge library from Appendix A. The grammar generates 262,144
candidate models. The space of candidate models explodes further if we use a context-free
grammar, which generates more than 1011 models. Thus, context-dependent constraints
reduce the space of candidate models by a factor of over 500,000. Due to the vast search
space, we decided to use a beam search strategy with beam width parameter set to 25.
The use of beam search reduced the average number of models considered by Lagramge
to 1200 for the context-dependent grammar (a single run took an hour on average), and
to 5000 for the context-free grammar (average time of a single run was about �ve hours).
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The results of the experiments show that Lagramge fails to reconstruct the model even
from noise free data using unconstrained grammars. In contrast, the completely constrained
grammar successfully reconstructed the original model from noisy data with relative noise
level up to 5%. Lagramge successfully reconstructed eight out of the ten processes of
the original model from the 10% noise data. Two processes that were not reconstructed
are Feeds_on(phytoa, {nitro,phosp}) (saturated instead of unsaturated consumption
was reconstructed) and Feeds_on(zoo, {phytoa}) (saturation of type 3 instead of type
1). Lagramge also failed to successfully reconstruct these two processes from the 20%
relative noise data. In addition, Lagramge reconstructed the wrong type of symbiotic
interaction between zooplankton and phytob phytoplankton.

5.1.4 Reconstructing a model of the mass-spring system

In our last experiment with synthetic data, we illustrate the capabilities of our framework
to integrate various types of domain knowledge in the process of automated modeling. We
use Pret's kind of domain knowledge in attempt to reconstruct the model of the springs
and masses system from Figure 4.5 (Bradley et al., 2001):

q̈1 = −0.1 · q1− 0.2 · (q1− q2)

q̈2 = 0.2 · (q1− q2)− 0.3 · q2.

Figure 5.4 presents the behavior of the system in time and phase space. The simulation
traces used in the experiments were generated from ten randomly generated initial states
(random values uniformly distributed over the [−0.5, 0.5] interval). The length of each
simulation trace was 100 time steps of 0.1 time units.

We performed experiments Lagramge using the grammar built from the task speci�ca-
tion and modeling knowledge presented in Table 4.17. Note that in this experiment the task
speci�cation includes only the list of system variables, i.e., variable Coordinate q1, q2.
In this case, the grammar enumerates all possible combinations of processes and/or func-
tions that can appear in the model. In the case of mass-spring model with two coordinates,
there are four possible functions, i.e., Single_spring_force(q1), Single_spring_for-
ce(q2), Two_springs_force(q1,q2), and Two_springs_force(q2,q1), that lead to 16
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Figure 5.4: Simulation of the springs and masses model with initial values of the system
variables set to q1(0) = 1 and q2(0) = 2: (left-hand side) time space and (right-hand side)
phase space trajectories.

possible subsets of functions or 16 candidate model structures.4 The average time of a
single run was 4 seconds.

Lagramge successfully reconstructed the original model using the constrained and
unconstrained grammar from data at all di�erent noise levels. However, note that the use
of context-dependent constraints does not in�uence the search space in this case, since
there is a single modeling alternative for each of the function classes.

5.2 Modeling from real-world measurements
In the second series of experiments, we applied our framework to three modeling tasks
that involved real-world data. Two tasks from the population dynamics domain have been
already addressed by existing equation discovery methods. The third task is from the
hydrodynamics domain. The evaluation criteria used in these experiments are root mean
squared error (RMSE) and comprehensibility of the discovered models as evaluated by
domain experts.

5.2.1 Modeling algal growth in the Lagoon of Venice

The Lagoon of Venice measures 550 km2, but is very shallow, with an average depth of less
than 1 m. It is heavily in�uenced by anthropogenic in�ow of nutrients � 7 [mio kg/year] of

4This approach of enumerating all the subsets of possible process and/or function instances with gram-
mar productions cannot be applied in general, since it does not scale well for a large number of candidate
class instances. We discuss this issue further in Section 4.4 as a direction for further research.
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nitrogen and 1.4 [mio kg/year] of phosphorus (Bendoricchio et al., 1994). These (mainly
nitrogen) loads are above the Lagoon's admissible trophic limit and generate its dystrophic
behavior, which is characterized by excessive growth of algae, mainly Ulva rigida. Four
sets of measured data were available (Co�aro et al., 1993) for modeling the growth of
algae in the Lagoon. The data were sampled weekly for slightly more than one year at
four di�erent locations in the Lagoon. Location 0 was sampled in 1985/86, locations 1,
2, and 3 in 1990/91. The sampled quantities are nitrogen in ammonia NH3, nitrogen in
nitrate NO3, phosphorus in orthophosphate P04 (all in [µg/l]), dissolved oxygen DO (in
percentage of saturation), temperature T ([degrees C]), and algal biomass B (dry weight
in [g/m2]).

In previous experiments with automated modeling of algal growth in the Lagoon of
Venice with equation discovery, the GoldHorn method (Kriºman, 1998) was used (Kom-
pare & Dºeroski, 1995). Since GoldHorn could not �nd an accurate model based on the
set of measured system variables, two additional variables were calculated and added to
the set of system variables. These are the growth and mortality rates, which are known
quantities in ecological modeling and were calculated according to the simpli�ed version of
an existing model of algal growth in the lagoon proposed by Co�aro et al. (1993). From
the extended set of system variables and data measured at Location 0, GoldHorn discov-
ered a di�erence equation for predicting biomass that, due to the large measurement errors
(estimated at the level of 20-50%), do not �t the data perfectly, but it still predicts most of
the peaks and crashes of the biomass concentration correctly (Kompare & Dºeroski, 1995).
Although the equation model involves the mortality rate, as calculated by domain experts,
the model itself is still a black-box model that does not reveal the limiting factors for the
biomass growth in the lagoon.

The task of modeling algae growth in the Lagoon of Venice from Table 5.5 speci�es
the types of the observed system variables and the processes that are important for the
biomass (algae) growth in the lagoon. Note that the speci�cation of the biomass_grazing
process leaves the nutrient parameter of the Feeds_on process class unspeci�ed (denoted
using the symbol *). Since ecologists did not know the limiting factors for the biomass
growth, they let Lagramge to search for the model that would reveal them.
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Table 5.5: A task speci�cation used for modeling biomass growth in the Lagoon of Venice.

variable Inorganic temp, DO, NH3, NO3, PO4
variable Population biomass

process Growth(biomass) biomass_growth
process Decay(biomass) biomass_decay
process Feeds_on(biomass, *) biomass_grazing

The experiments with Lagramge were performed using a grammar automatically built
from the task speci�cation and the library of modeling knowledge from Appendix A. The
grammar generates 6248 candidate model structures. Due to the high measurement errors
in the data, we used the MDL heuristic function to avoid over�tting. Among the 6248
candidate models, the model with the minimal value of the MDL heuristic function on the
Location 0 data was:

˙biomass = 6.17 · 10−5 · biomass · (1− biomass

1.80
)

+3.01 · 10−4 · biomass · DO · NO3

NO3 + 6.28
− 0.0319 · biomass.

The model for Location 0 tells us that the limiting factors for the biomass growth in the
lagoon are dissolved oxygen (DO) and nitrogen in nitrate (NO3).

Furthermore, Lagramge discovered another model from the Location 2 data:

˙biomass = 4.79 · 10−5 · biomass · (1− biomass

0.844
)

+0.406 · biomass · (1− e−0.216·temp) · (1− e−0.413·DO) · NH3

NH3 + 10

−0.0343 · biomass.

This model tells us that the limiting factors for the biomass growth are temperature (temp),
dissolved oxygen (DO), and nitrogen in ammonia (NH3). Although the two models are not
completely consistent, they both identify dissolved oxygen and nitrogen based nutrients to
be limiting factors for the biomass growth. The di�erences between the two models may
be due to the fact that the measurements were taken during two di�erent time periods.

In the experiments with the data measured on the other two locations (1 and 3), La-
gramge did not �nd an accurate model of the biomass growth. Note that these results still
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Figure 5.5: Simulations of the two models of the biomass growth in the Lagoon of Venice,
discovered by Lagramge, compared to the measured biomass concentration (left-hand
side: Location 0, right-hand side: Location 2).

compare favorably with results obtained by GoldHorn, which discovered an acceptable
model for Location 0 only.

Figure 5.5 compares the measured and simulated values of the biomass for both models.
We ran long-term simulations of the models from the initial value of the biomass without
restarting the simulation process at each measurement point. For values of all other system
variables needed during the simulation, e used the measurement at the nearest time point
in the past. As in the GoldHorn experiments, due to the high measurement errors of
the order 20-50%, the models discovered by Lagramge did not �t the measured data
perfectly. However, they correctly predict most of the peaks and crashes of the biomass
concentration. These events are more important to ecologists than the degree of �t. Note
an important advantage of these models over the one discovered by GoldHorn. While
the GoldHorn model is black-box, the models discovered by Lagramge identify the
most important limiting factors for the biomass growth in the Lagoon of Venice.

5.2.2 Modeling phytoplankton growth in Lake Glumsø

Lake Glumsø (Jørgensen et al., 1986) is situated in a sub-glacial valley in Denmark. It is
shallow with average depth of about 2 [m] and its surface area is 266,000 [m2]. For several
years, it was receiving mechanically-biologically treated waste water from a community
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Table 5.6: A speci�cation of the modeling the phytoplankton growth in Lake Glumsø task.

variable Inorganic temp, nitro, phosp
variable Population phyto, zoo

process Decay(phyto) phyto_decay
process Feeds_on(phyto, *) phyto_grazing
process Feeds_on(zoo, phyto) zoo_grazing

with 3,000 inhabitants and a surrounding area which was mainly agricultural with almost
no industry. The high nitrogen and phosphorus concentration in the treated waste water
has caused hypereutrophication. The lake contained no submerged vegetation, probably
due to the low transparency of the water and the oxygen de�cit at the bottom.

Domain experts considered concentrations of phytoplankton (phyto), zooplankton (zoo),
soluble nitrogen (nitro), soluble phosphorus (phosp), and with the water temperature
(temp) relevant for modeling the phytoplankton growth. These variables were measured at
14 distinct time points over a period of two months. The amount of measured data itself
was far too small for modeling, so additional processing was applied to obtain a suitable
data set (Kompare, 1995). First, dotted graphs of the measurements were plotted and
given to three human experts to draw a curve that, in their own opinion, described the
dynamic behavior of the observed system variable between the measured points. A prop-
erly plotted expert curve can be regarded as an additional source of reliable data. Curves
drawn by the human experts were then smoothed with Besier splines. Finally, three data
sets were obtained by sampling the splines derived from each of the three human experts'
approximations at regular time intervals with time step h = 0.03215 day. The data set
provided by the �rst expert was used for the experiments.

The task of modeling phytoplankton growth in the Lake Glumsø from Table 5.6 speci�es
the types of the observed system variables and the processes that are important for the
growth. Note that the speci�cation of the phyto_grazing process leaves the nutrient
parameter of the Feeds_on class unspeci�ed (denoted using the symbol *). This is because
experts did not know the limiting factors for the biomass growth, and therefore we let
Lagramge search for the model that would identify them.
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The experiments with Lagramge were performed using a grammar automatically built
form the task speci�cation and the library of modeling knowledge from Appendix A. The
grammar generates 496 candidate model structures. We used the MDL heuristic function
to avoid over�tting. Among the 496 candidate models, the model with the minimal value
of the MDL heuristic function on the measured data was:

˙phyto = 0.553 · temp · phosp

0.0264 + phosp
− 4.35 · phyto− 8.67 · phyto · zoo.

The structure of the discovered equation tells us that phosphorus is a limiting factor for
phytoplankton growth in the lake and that the growth is temperature dependent.

Note that the same model was already discovered by Lagramge (Todorovski et al.,
1998) using a hand-crafted grammar based on the human expert knowledge about modeling
population dynamics. However, there is an important di�erence between the experiment
performed here and the one performed with the previous version of Lagramge. In the
previous study, we were not able to specify bounds on the values of the constant parame-
ters, so the output of Lagramge was manually post-processed in order to �lter out the
equations with invalid values of the constant parameters (e.g., negative growth or satu-
ration rate). In the experiment with Lagramge 2.0 there is no need for this additional
step, since the knowledge about the valid values of the constant parameters was encoded
within the domain knowledge used for equation discovery.

5.2.3 Modeling the water level variation in Ringkøbing fjord

In the last series of experiments, we illustrate that the proposed formalism allows for partial
model speci�cation. In such a case, human expert speci�es only some parts of the model
structure and leaves others unspeci�ed or partly speci�ed. Our framework can be used
then to determine both the structure and parameters of the unspeci�ed parts.

An example of such a task is modeling water level variation in Ringkøbing fjord, a
shallow estuary located at the Danish west coast, where it experiences mainly easterly
and westerly winds.5 Wind forcing causes large short term variation of the water level (h)

5The task was used as an exercise within a post-graduate course on modeling dynamic systems organized
in 2000. Since the Web page of the course is no longer available, we cannot provide a proper reference to
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Table 5.7: Formalization of the partially speci�ed model of the water level variation in the
Ringkøbing fjord.

function class Salt_water_drive(Opening a, Level h_sea, Level h, Surface A)
expression (h_sea - h + const[h_0:-5:0.1:5])

function class Fresh_water_flow(Flow Q_f, Surface A)
expression Q_f / A

combining scheme Water_level_change(Level h)
time_deriv(h) = (F(a) / A) * Salt_water_drive(a, h_sea, h, A) +

Fresh_water_flow(Q_f, A) + G(W_vel, W_dir)

measured at the gate between the estuary and the North Sea. Domain experts speci�ed
the following partial model for the temporal variation of the water level in the estuary:

ḣ =
f(a)

A
(hsea − h + h0) +

Qf

A
+ g(Wvel ,Wdir).

The water level response to the wind forcing, dependent on both wind speed (variable Wvel ,
measured in [m/s]) and direction (Wdir , measured in degrees), is modeled by an unknown
function g. Apart from wind forcing, the water level is dominated by the fresh water
supply (Qf , measured in [m3/s]). When the gate is closed, fresh water is accumulated in
the estuary causing a water level rise of Qf/A, where A is the surface area of the estuary
measured in squared meters. During periods when the gate is open, the stored fresh water
is emptied in the North Sea. The gate is also opened in order to maintain su�cient water
level in the estuary, in which case the water rise is driven by the di�erence between the
water level in the open sea (variable hsea , measured in meters), the water level in the
estuary (h, measured in meters), and the constant parameter (h0). The �ow is restricted
by the friction of the �ow, modeled by an unknown function f of number of gate parts
being open (a). Namely, the gate consists of 14 parts and allows for opening some parts
and closing others. The value of A is not directly observed, but a function that calculates
A on the basis of h is provided, so A can be also treated as observed variable.

In order to apply our framework to the task of model completion, we �rst encode
the partial speci�cation within our formalism. The formalization of the partial model
the original task speci�cation. Note also that we could not consult domain experts and therefore could
not obtain expert comments on the induced models.
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Table 5.8: Formalization of the modeling alternatives for the unspeci�ed parts of the model
of the water level variation in the Ringkøbing fjord.

function class F(Opening a)

function class F_0 is F
expression const[_:-5000:0.1:5000]

function class F_1 is F
expression Polynomial({a}, const[_:-5:0.1:5], 5)

function class G(Velocity W_vel, Direction W_dir)

function class G_0 is G
expression const[_:-5000:0.1:5000]

function class G_1 is G
expression Polynomial({W_vel, W_dir}, const[_:-5:0.1:5], 5)

function class G_2 is G
expression Polynomial({W_vel, sin(W_dir), cos(W_dir)}, const[_:-5:0.1:5], 5)

speci�cation from Table 5.7 follows the partial model formula proposed by the domain
experts. The formula is decomposed into two building blocks following the explanation of
the partial model speci�cation.

In the second step, we formalize the modeling alternatives for each of the unspeci�ed
parts of the model, i.e., the f and g functions. In the experiments, we use simple constant
and polynomial models due to the lack of additional domain knowledge. The modeling
alternatives used in the experiments are presented in Table 5.8. The �rst modeling alter-
natives F_0 and G_0 for f and g are the simplest possible models, i.e., constants within the
interval [−5000, 5000] with the initial values of 0.1. Next two alternatives (F_1 and G_1)
are polynomials of the appropriate system variables with constant parameters within the
interval [−5, 5] (and initial values of 0.1). The maximal degree of the polynomials is �ve.
Finally, we used one additional modeling alternative for the g function (G_2) that replaces
the wind direction value (that represents angle) with the sine and cosine transformation
thereof in the polynomial.
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Table 5.9: The root mean squared errors (RMSE, estimated on both training data and using
10-fold cross-validation) of the four water level variation models induced by Lagramge
with (three �rst rows) and without (last row) using the partial model speci�cation provided
by the domain experts. Last column gives number of candidate model structures (#CMS)
considered during the search.

task speci�cation training RMSE cross-validated RMSE #CMS
F_0 + G_0 0.0848 0.106 1
F_1 + G_1 0.0655 0.0931 378
F_1 + G_2 0.0585 0.0903 2184
polynomial 0.0556 2.389 2801

The data about the observed variables is collected by hourly measurements of all the
observed variables within the period from 1st of January to 10th of December 1999. We
used the task speci�cation presented in Tables 5.7 and 5.8 to induce a model from the
measurements with Lagramge. We examined three experimental conditions. In the �rst,
we used F_0 and G_0 modeling alternatives, in the second we used F_1 and G_1 modeling
alternatives, and in the third condition we used F_1 and G_2modeling alternatives. In order
to evaluate the bene�t of using partial model speci�cation, we looked at one additional
condition in which no knowledge was used. In this last condition, we used polynomial model
of the water level change in the fjord. We used 10-fold cross-validation for estimating the
RMSE of the induced models.

Table 5.9 summarizes the results of the experiments. The best cross-validated perfor-
mance is gained using the partial model speci�cation provided by the experts in combi-
nation with F_1 and G_2 modeling alternatives for the unspeci�ed parts of the structure.
Lagramge proposed the following models for f and g:

f(a) = 5 + 5 · a + 5 · a2 + 5 · a3 − 1.01 · a4

g(Wvel,Wdir) = −0.00137− 0.0106 · cos Wdir + 0.218 · cos Wdir · sin Wdir

+0.0106 ·Wvel · cos Wdir · sin Wdir − 0.0128 ·W 2
vel · cos Wdir · sin Wdir

−0.000428 ·W 3
vel · cos Wdir · sin Wdir.

The graph on the left-hand side of Figure 5.6 shows the simulation of this model compared
to the measured water level in the Ringkøbing fjord. We ran long-term simulation of the
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Figure 5.6: Simulation of the water level variation model induced by Lagramge compared
to the measured water level (left-hand side) and ratio of the gate opening and the wind
in�uences on the water level change in the Ringkøbing fjord as modeled by Lagramge.

Table 5.10: The RMSE and correlation coe�cient (r) for the short-term (one hour and one
day) prediction of the water level in the Ringkøbing fjord compared to the RMSE and r
of the simulation over the whole observation period.

prediction/simulation period RMSE r

one hour 0.0168 0.976
one day 0.0425 0.845
whole observation period 0.0585 0.659

model from the initial value of the water level without restarting the simulation process
at any measurement point. For values of all other system variables needed during the
simulation, we used the measurement at the nearest time point in the past.

Note that the model follows the general pattern of water level variation. The long-term
simulation of the model, however, fails to precisely capture the short-term (hour) changes
of the water level in the fjord. To test the short-term prediction power of the model, we
performed two additional simulations, which we restarted with the true measured water
level values at every hour and at every day (24 hours). Table 5.10 presents the results of
this analysis. They show that model is suitable for short-term prediction of the water level
in the Ringkøbing fjord.

Since the model induced by Lagramge follows the partial structure speci�cation pro-
vided by the human experts, further analysis of the model can be performed. For example,
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we can compare the in�uence of the gate opening (modeled by f(a)(hsea−h+h0)/A) with
the e�ect of the wind (modeled by g(Wvel,Wdir)). The graph on the right-hand side of
Figure 5.6 shows the ratio of the gate opening and the wind in�uences on the water level
change in the Ringkøbing fjord. The low magnitude of the ratio shows that the in�uence
of the wind prevails over the in�uence of the gate opening most of the time. The only ex-
ceptions occur in the period from 80 to 100 days from the beginning of the measurement,
that is, the end of March and beginning of April 1999.6

The polynomial model of the water level variation that ignores the partial speci�cation
of the model performs best on the training data. However, the model's small RMSE is
due to the over�tting of the training data, since the cross-validated RMSE of this model
(2.389) is much larger than the cross-validated RMSE of the models that follow the partial
structure speci�cation.

In sum, the Ringkøbing fjord experiments show the capability of our framework to
address modeling tasks in which human experts can partially specify the model structure
and leave some of its parts unspeci�ed.

5.3 Summary

In this chapter, we have presented an empirical evaluation of the automated modeling
framework on several tasks that involve modeling dynamic systems from synthetic data
and real-world measurements.

The results of the experiments with synthetic data show that context-dependent con-
straints can considerably reduce the space of candidate models considered in the process
of automated modeling. Thus, introducing such constraints in Lagramge improves its
e�ciency on automated modeling tasks. Furthermore, the results show that both context-
dependent constraints and bounds on the values of the constant parameters improve the
noise robustness of Lagramge. First, all the models discovered by Lagramge using
fully constrained grammars can be properly simulated and generate stable behaviors. Sec-
ond, all the models provide clear and comprehensible interpretation and explanation of the

6Note again that we could not obtain expert comments on these results.
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system behavior from a biological point of view. And third, fully constrained grammars
reconstruct the original model structure much more often than unconstrained grammars.
Finally, the experiments with the mass-spring model show that Lagramge can success-
fully use Pret's kind of knowledge for reconstructing models from noisy data.

The results of the experiments with measurement data show that our framework is
capable of building comprehensible dynamic systems' models from real-world data. Our
framework performs better than existing equation discovery methods on the tasks of model-
ing algae growth in Lagoon of Venice and Lake Glumsø in terms of performance, �exibility,
and comprehensibility of the discovered models. The �nal experiment on modeling water
level variation in Ringkøbing fjord illustrates the capability of our framework to address
modeling tasks, in which a human expert partially speci�es the model structure and leaves
other parts unspeci�ed. Lagramge can then be applied to complete the partially speci�ed
model, i.e., to induce the missing parts from data.

The experimental evaluation shows that our framework integrates several aspects of
domain-speci�c knowledge from variety of the domains in the process of automated mod-
eling. Still, there is an important aspect of domain knowledge that is outside its scope
� existing models already established in the domain of interest. Their integration in the
process of automated modeling is the topic of the next chapter.
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6

Revision of equation based models

Another type of domain-speci�c knowledge that is neglected by most equation discovery
methods are the existing models already established in the domain. Rather than starting
the search with an existing, current equation discovery methods start their search from
scratch. In contrast, theory revision methods (Ourston & Mooney, 1994; Wrobel, 1996)
start with an existing theory and use heuristic search to revise it in order to improve its
�t to data. However, research on theory revision research is mainly concerned with the
revision of models expressed in propositional or �rst-order logic. Therefore, the methods
are not directly applicable to the task of revising models based on equations.

In this chapter, we propose a �exible, grammar-based, equation discovery method for
revision of equation-based models. To support the revision of existing models, we �rst
transform the given model into an initial grammar that can be used to derive the given
model only. The nonterminals in the grammar and their productions re�ect the structure
of the initial model. Next, we extend the initial grammar with alternative productions
that specify the possible modeling alternatives. The modeling alternatives can be speci�ed
by a domain expert or can be determined from the encoded modeling knowledge about
the domain at hand. The extended grammar built in this manner speci�es the space of
possible revisions of the initial model. In the last step, we employ the equation discovery
method Lagramge to search through the space of possible revisions and �nd the one that
�ts the data better than the initial model.

109
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Theory revision methods follow the minimal revision principle: among theories of sim-
ilar goodness of �t to the data, ones that are closer to the original theory are preferred.
In order to incorporate this principle in our method, we modify the MDL heuristic func-
tion used in Lagramge that introduces preference toward simpler equations. The MDL
heuristic takes into account complexity of an equation along with its goodness of �t to
the data. We replace the complexity of an equation-based model in the MDL heuristic
with the distance of the model from the initial one. For measuring this distance, we use a
standard measure of distance between tree-structured terms (Shasha & Zhang, 1997).

We evaluate this method for revising quantitative models on a portion of the CASA
model that concerns the net production of carbon by terrestrial plants in the Earth ecosys-
tem (Potter & Klooster, 1997). Experimental results show that the method can �nd
revisions that considerably reduce the error of the initial CASA model on the available
data.

The chapter is organized as follows. Section 6.1 de�nes the problem of revising equa-
tion based models. Section 6.2 describes the transformation of the given initial model
into a grammar. We describe the process of adding modeling alternatives to the initial
grammar in Section 6.3. Section 6.4 describes the minimality of change principle for revis-
ing equation-based models. We present the experimental methodology used for evaluating
of the approach as well as the experimental results in Section 6.5. Finally, Section 6.6
summarizes the chapter and discusses related research.

6.1 Problem de�nition

The standard problem of theory revision can be de�ned as follows: Given an imperfect
domain theory in the form of classi�cation rules and a set of classi�ed examples, �nd an
approximately minimal revision of the domain theory that correctly classi�es the examples.

A representative method that addresses this problem is Either (Ourston & Mooney,
1994), which re�nes propositional Horn-clause theories using a suite of abductive, deduc-
tive, and inductive techniques. Deduction is used to identify the problems with the domain
theory, while abduction and induction are used to correct them. The problem of theory
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revision has received considerable attention in the �eld of inductive logic programming
(Lavra£ & Dºeroski, 1994), where a number of approaches have been developed for revis-
ing theories in the form of �rst-order Horn clauses. For an overview, we refer the reader
to Wrobel (1996).

By analogy with theory revision, the problem of revising equation-based models can be
de�ned as follows: Given

• an imperfect existing model MI of the observed system expressed in the form of
equations and

• a set of observations or measurements of the system variables,

�nd a revised model MR that

• minimizes the discrepancy between the observed values of the system variables and
the values obtained with simulating the model, and

• di�ers from the initial model MI as little as possible.

Although this de�nition is very similar to the one for theory revision, the possible changes
or revisions to the two types of models are quite di�erent. As theories are typically logical
theories in theory revision settings, the changes typically include the addition and deletion
of entire rules (propositional or �rst-order Horn clauses), as well as the addition and deletion
of conditions in individual rules. Latter in this chapter, we propose a framework for
specifying plausible changes to equation-based models.

6.2 Transforming the initial model into a grammar

In a typical setting for revising an equation-based model, we would only have observa-
tional data and the model, i.e., equations developed by scientists to explain a particular
phenomenon. A grammar that would explain how this model was actually derived and
provide options for alternative models is typically not available. This is especially true for
simpler models.
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Table 6.1: The CASA-NPPc model consists of a portion of the CASA model de�ning NPPc
variable.

NPPc = max(0, E · IPAR)
E = 0.389 · T1 · T2 ·W

T1 = 0.8 + 0.02 · topt − 0.0005 · topt2

T2 = 1.1814/((1 + exp(0.2 · (TDIFF − 10))) · (1 + exp(0.3 · (−TDIFF − 10))))
TDIFF = topt − tempc

W = 0.5 + 0.5 · eet/PET
PET = 1.6 · (10 ·max(tempc, 0)/ahi)A · pet_tw_m

A = 0.000000675 · ahi3 − 0.0000771 · ahi2 + 0.01792 · ahi + 0.49239
IPAR = FPAR_FAS ·monthly_solar · SOL_CONV · 0.5

FPAR_FAS = min((SR_FAS − 1.08)/srdiff , 0.95)
SR_FAS = (1 + fas_ndvi/1000)/(1− fas_ndvi/1000)

SOL_CONV = 0.0864 · days_per_month

However, when the model equations are complex, the model is rarely written as a single
equation de�ning the target variables. More often it is written as a set of equations de�ning
the target variable, which also contains equations that de�ne intermediate unobserved vari-
ables. The latter de�ne meaningful concepts in the domain of interest. Often, alternative
equations de�ning an intermediate variable would be possible and the modeling scientist
would choose one of these. These alternatives would rarely (if ever) be documented in the
model itself, but might be mentioned in a scienti�c article describing the derived model
and the modeling process.

Table 6.1 presents an example of such a complex equation based model, CASA-NPPc,
which is one portion of CASA, an earth-science model of the global production and absorp-
tion of biogenic trace gases in the Earth's atmosphere. The model, which is described in
detail in Section 6.5.1, de�nes the NPPc variable (the net primary production of carbon)
in terms of other variables, such as topt and tempc. Lower case variable names are used to
denote observable variables (with the exception of the dependent variable NPPc). The re-
maining variables are unobservable and must be computed from others using their de�ning
equations. The tree-structured graph in Figure 6.1 depicts the dependencies between the
observed and unobserved variables in the CASA-NPPc model. Square nodes in the graph
denote observable variables, while oval nodes denote unobservable intermediate variables.
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NPPc

E IPAR

T1 T2 W FPAR_FAS SOL_CONV monthly_solar

topt

TDIFF PET eet SR_FAS srdiff days_per_month

tempc A

ahi

pet_tw_m fas_ndvi

Figure 6.1: The dependencies between observed and unobserved variables in the CASA-
NPPc model from Table 6.1.

Table 6.2: A grammar derived from the CASA-NPPc model in Table 6.1. The grammar
generates the original CASA-NPPc model only.

NPPc -> max(0, E * IPAR)
E -> 0.389 * T1 * T2 * W
T1 -> 0.8 + 0.02 * topt - 0.0005 * topt * topt
T2 -> 1.1814 / ((1 + exp(0.2 * (TDIFF-10))) * (1 + exp(0.3 * (-TDIFF-10))))
TDIFF -> topt - tempc
W -> 0.5 + 0.5 * eet / max(PET, 0)
PET -> 1.6 * pow(10 * max(tempc, 0) / ahi, A) * pet_tw_m
A -> 0.000000675*ahi*ahi*ahi - 0.0000771*ahi*ahi + 0.01792*ahi + 0.49239
IPAR -> FPAR_FAS * solar * SOL_CONV * 0.5
FPAR_FAS -> min((SR_FAS - 1.08) / srdiff, 0.95)
SR_FAS -> (1 + fas_ndvi / 1000) / (1 - fas_ndvi / 1000)
SOL_CONV -> 0.0864 * days_per_month

A set of equations de�ning a target variable through some intermediate variables can
easily be turned into a grammar like the one presented in Table 6.2. The starting symbol of
this grammar represents the dependent variable NPPc, the nonterminal symbols represent
the intermediate variables, and the terminal symbols denote the observed variables and
the model's constant parameters. Each nonterminal symbol in the grammar has a single
production that generates the model equation used to calculate the respective intermediate
variable. Therefore, the grammar in Table 6.2 generates a single model that is equivalent
to the one from Table 6.1.

Note, however, that grammar in Table 6.2 lets us specify an arbitrary number of al-
ternative models for each intermediate variable by providing additional productions for
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the nonterminal symbols in the grammar. These additional productions would specify
alternative modeling choices, only one of which will eventually be chosen for the �nal (re-
vised) model. Observational data could be then used to select among combinations of such
choices, with a grammar-based equation discovery system like Lagramge.

6.3 Extending the initial grammar with alternative pro-
ductions

Note that when alternative productions are speci�ed for an intermediate variable, there
are no restrictions (at least in principle) on these productions. For example, they can
introduce new intermediate variables and productions de�ning them. They can also specify
arbitrary functional forms. However, they must eventually derive (in the context of the
entire grammar) valid sub-expressions involving the set of terminal symbols that represent
observed variables.

A very common alternative production would replace the particular constant parameter
value on the right-hand side of an existing production with a generic unspeci�ed constant
parameter, allowing the equation discovery system to re�t them to the given data. The
change can be achieved by replacing a terminal symbol that denotes a �xed value constant
parameter with the generic symbol const that allows for an arbitrary value of the constant
parameter. In our experiments with the CASA-NPPc model, we use alternative produc-
tions that allow for a 100% relative change of the initial value of a constant parameter.
This can be speci�ed by replacing the �xed value constant parameter v with a terminal
symbol const[_:0:v:2 · v]. Thus, the lower bound for the newly introduced constant
parameter is set to v − 100% · v = 0, while the upper bound is set to v + 100% · v = 2 · v.
The default value of the constant parameter is the same as its initial value, in that it is set
to v.

Slightly more complex alternative productions would allow for replacing a particular
polynomial on the right-hand side of a production with an arbitrary polynomial of the same
(intermediate) variable(s). An example of such alternative productions for the nonterminal
symbol T1 from the grammar in Table 6.2 is given in Table 6.3. These productions can be
used to generate an arbitrary polynomial of the system variable topt.
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Table 6.3: Two alternative productions that allow an arbitrary polynomial of the observed
variable topt to be used for calculating the value of T1.

T1 -> const
T1 -> const + (T1) * topt

This grammar-based framework lets human experts to point out which parts of the
model they are completely con�dent in. These parts should be left intact in the revision
process, i.e., no alternative productions should be speci�ed for the corresponding nonter-
minal symbols. For example, the Earth science experts who built the CASA model pointed
out what they considered its �weak� parts. The dotted nodes in the graph in Figure 6.1 the
intermediate variables for which they lacked con�dence in the associated equations. These
are the variables for which alternative productions should be added to the initial grammar.

Another source of alternative productions can be the domain-speci�c modeling knowl-
edge, encoded with the formalism presented in Chapter 4, although we do not explore this
possibility in our experiments.

6.4 The minimality of change principle

While the approach presented above takes into account the initial model, it allows for
a completely di�erent model to be derived, depending on which alternative productions
are provided for the intermediate variables. It is here that the minimal revision/change
principle comes into play: among theories of similar quality (�t to the data), ones that are
closer to the original theory are preferred.

The crucial concept that is necessary in order to implement the minimality of change
principle is the measure of change or distance between the revised model and the initial
model. Since parse trees are used in Lagramge to represent models, we use a measure of
distance between tree-structured terms as a measure of distance between models. Thus,
our distance measure assesses syntactic structural distance, i.e., the amount of change in
the structure of the model's equations.
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A common approach to computing distances between strings or tree structured terms
is the editing approach, leading to edit distance measure. Following the editing approach,
a set of basic edit operations is �rst de�ned. The edit operations available for editing
trees are relabeling (changing the label), deleting and inserting a node in the tree. Costs
are assigned to these operations, depending on the labels of the nodes involved. The
problem of computing the distance between two tree structured terms T1 and T2 is then
transformed into the problem of �nding a minimal cost sequence of basic editing operations
that transforms a tree T1 into a tree T2.

This problem is NP-complete for the case of unordered tree structures, i.e., structures
where the left-to-right order of the children of a node is unimportant. In our case, we are
dealing with ordered parse trees, since the left-to-right order of the children is important
and determined by the production applied to the nonterminal. Thus, the distance between
ordered tree structures can be e�ciently computed. An overview of algorithms that can
be used for computing an edit distance between ordered tree structures is given by Shasha
and Zhang (1997). The computation of distances between parse trees can be even more
e�cient, as illustrated be Richter (1997).

For the purpose of calculating the edit distance between equation based models (or
more precisely their parse trees), we use the algorithm proposed in (Richter, 1997). The
costs of the basic edit operations are: 1 for deleting a node, 1 for inserting a node, and 1 for
relabeling a node, if the label is actually changed or 0 otherwise. Note that for nonterminal
symbols which denote constant parameters, the actual value of the constant parameter is
considered to be a label.

Measuring the edit distance between two parse trees is illustrated on the example in
Figure 6.2. The �rst tree (on the left-hand side) is generated using a single T1 production
from the initial grammar in Table 6.2. It derives a second degree polynomial of the topt
variable used to calculate T1 in the original CASA-NPPc model from Table 6.1. The second
parse tree (on the right-hand side) is generated by the alternative productions for T1 from
Table 6.3. It generates a fourth degree polynomial of topt. The connections between the
nodes of the �rst and second parse tree in Figure 6.2 represent the minimal cost sequence of
editing operations that are needed to transform the �rst parse tree into the second. First,
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T1

0.8 + 0.02 * topt - 0.0005 * topt * topt

T1

topt * ( T1 ) + 3.65

topt * ( T1 ) + -0.992

topt * ( T1 ) + 0.137

topt * ( T1 ) + 0.00679

0.000111

Figure 6.2: Calculating the edit distance between two parse trees representing two poly-
nomials derived by the grammars in Table 6.1 (left-hand side) and Table 6.3 (right-hand
side).

the nodes in the �rst parse tree that are not connected to any node in the second tree have
to be removed. Since there is only one such node in the �rst parse tree the total cost of
the remove operations is 1. Second, the nodes in the second tree that are not connected to
any of the nodes in the �rst one have to be inserted. There are 19 such nodes, so the total
cost of the insert operations is 19. Finally, the connections between nodes represent the
relabeling operations. Note that there are three connections where relabeling is actually
necessary (i.e., the labels of the connected nodes are di�erent). Thus, the total cost of the
relabel operations is 3. Summing up the cost of the remove, insert and relabel operations
gives us the edit distance of 23. Therefore, the distance between the parse trees on the
left-hand side and the right-hand side of Figure 6.2 is 23.

Once we have de�ned a distance measure between models, we can incorporate it into
Lagramge by modifying the MDL heuristic that introduces preference toward simpler
equations. This heuristic, which takes into account both the complexity of an equation
and its goodness of �t to the data (Todorovski, 1998; Todorovski & Dºeroski, 1997), can
be stated as

MDL(M) = SSE(M) +
l(M)

10 · lmax

· SSE(M0),

where SSE(M) is the sum of squared errors of the current model on the training data,
SSE(M0) is the error of the simplest model, l(M) is the length of the current model M



118 Revision of equation based models

(in number of terminal symbols) and lmax the length of the most complex equation in the
search space. Since the Lagramge search space consists of parse trees with limited depth,
the maximal length lmax can be easily computed in advance. Roughly speaking, the second
part of the MDL heuristic function of Lagramge adds a penalty for equation complexity
to the sum of squared errors.

By analogy to the MDL heuristic, we can de�ne the MC (minimality of change) heuristic
function as

MC(M) = SSE(M) +
distance(M, M0)

C
· SSE(M0),

where distance(M, M0) is the distance between the current model M and the initial model
M0. Note that the maximal distance is not available as in the case of maximal length for
MDL, so we introduce a user-de�ned parameter C. This can be used to trade o� between
the current model's goodness of �t and its distance from the initial model. Large values
of C will diminish the �change penalty� term of the MC heuristic, leading to a preference
toward accurate models that are not necessarily similar to the initial one. On the other
hand, small values of C increase the �change penalty� term, leading to a preference toward
models that are similar to the initial one.

6.5 Experimental evaluation

We applied the method for revising of equation-based models to the task of revising the
part of the CASA model (Potter & Klooster, 1997). In this section, we brie�y review
the initial CASA-NPPc model, describe the methodology of the revision experiments, and
present the experimental results.

6.5.1 The CASA earth-science model

CASA model, developed by Potter and Klooster (1997) at NASA Ames, accounts for the
global production and absorption of biogenic trace gases in the Earth atmosphere, as well
as predicting changes in the geographic patterns of major vegetation types (e.g., grasslands,
forest, tundra, and desert) on the land.
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Table 6.4: Observed system variables and unobserved intermediate variables used in the
NPPc portion of the CASA model.

Observed system variables
NPPc is the net production of carbon by terrestrial plants at a site.
topt is the average temperature for the month at which fas_ndvi takes on its maximum value at a site.
tempc is the average temperature at a site for a given month.
eet is the estimated evapotranspiration (water loss due to evaporation and transpiration) at a site.
pet_tw_m is a component of potential evapotranspiration that takes into account the latitude, time of

year, and days in the month.
ahi is an annual heat index that takes the time of year into account.
fas_ndvi is the relative greenness as measured from space.
monthly_solar is the average radiation incoming for a given month at a site.

Unobserved intermediate variables
E is the photosynthetic e�ciency at a site after factoring various sources of stress.
T1 is a temperature stress factor (0 < T1 < 1) for cold weather.
T2 is a temperature stress factor (0 < T2 < 1), nearly Gaussian in form but falling o� more quickly at

higher temperatures.
W is a water stress factor (0.5 < W < 1).
PET is the potential evapotranspiration (water loss due to evaporation and transpiration given an unlim-

ited water supply) at a site.
A is a polynomial function of the annual heat index at a site.
IPAR is the energy intercepted from the sun after factoring in the time of year and days in the month.
FPAR_FAS is the fraction of energy intercepted from the sun that is absorbed photo-synthetically after

factoring in vegetation type.
SOL_CONV is 0.0864 times the number of days in each month.

CASA predicts annual global �uxes in trace gas production as a function of surface
temperature, moisture levels, soil properties, and global satellite observations of the land
surface. The model is based on di�erence equations that represent the terrestrial carbon
cycle, as well as processes that mineralize nitrogen and control vegetation type. These
equations describe relations among quantitative variables and lead to changes in the mod-
eled outputs over time. CASA operates on gridded input at di�erent levels of resolution,
but typical usage involves grid cells that are eight kilometers square, which matches the
resolution for satellite observations of the land surface.

The overall CASA model is quite complex, involving many variables and equations.
We decided to focus on one portion that lies on the model's �fringes� and that does not
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involve any di�erence equations. Table 6.4 describes the variables that occur in this sub-
model, in which the dependent variable, NPPc, represents the net production of carbon by
terrestrial plants. As Table 6.1 indicates, the model predicts this quantity as the product of
two unobservable variables, the photosynthetic e�ciency, E, at a site and the solar energy
intercepted, IPAR, at that site.

Photosynthetic e�ciency is in turn calculated as the product of the maximum e�ciency
(0.389) and three stress factors that reduce this e�ciency. One stress term, T2, takes into
account the di�erence between the optimum temperature, topt, and actual temperature,
tempc, for a site. The second factor, T1, involves the nearness of topt to a global optimum
for all sites. The third term, W, represents stress that results from lack of moisture as
re�ected by eet, the estimated water loss due to evaporation and transpiration, and PET,
the water loss due to these processes given an unlimited water supply. In turn, PET is
de�ned in terms of the annual heat index, ahi, for a site, and pet_tw_m, a modi�er on
PET to account for day length at di�ering locations and times of year.

The energy intercepted from the sun, IPAR, is computed as the product of FPAR_FAS,
the fraction of energy absorbed photo-synthetically for a given vegetation type, mon-
thly_solar, the average radiation for a given month, and SOL_CONV, the number of
days in that month. FPAR_FAS is a function of fas_ndvi, which indicates overall green-
ness at a site as observed from space, and srdi�, an intrinsic property that takes on di�erent
numeric values for di�erent vegetation types.

Of the variables we have mentioned, NPPc, tempc, ahi, monthly_solar, SOL_CONV,
and fas_ndvi, are observable. Two additional terms, eet and pet_tw_m, are de�ned else-
where in the model, but we assume their de�nitions are correct and thus we can treat them
as observables. The remaining variables are unobservable and must be computed from the
others using their de�nitions. This portion of the model also contains a number of numeric
parameters, as shown in the equations in Table 6.1.

6.5.2 Experimental methodology

The training data set used in the experiments of CASA-NPPc model revision consists of
303 data points, each of which contains measurements of the observed system variables for
a distinct location on the Earth.
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The quality of the revised models is assessed through the discrepancy between the
predicted and observed values of the dependent variable: the smaller the discrepancy, the
better the model. The discrepancy is measured using standard root mean squared error
(RMSE) measure, calculated as

√∑303
i=1(NPPci − ˆNPPci)2/303, where NPPci and ˆNPPci

are the observed and the predicted value of NPPc, respectively. The RMSE of the initial
model on the training data is 517.665.

In order to estimate the error of the revised models on test data unseen during the
process of revision, we applied a 30 fold cross-validation methodology. Following this
methodology, the data set of 303 examples is randomly partitioned into 30 partitions, with
approximately the same number of (ten) examples in each of them. In each iteration of the
cross-validation procedure, twenty-nine out of thirty partitions are used as training data
for revision of the initial model and the revised model is then used to predict the values of
the dependent variable NPPc on the remaining partition, unseen during the revision phase.
By repeating this process thirty times, once for each partition, we obtain 303 predictions
of the NPPc value for all the data points in the training set.

6.5.3 A grammar for the revision of the CASA-NPPc model

As described in Section 6.2, the given CASA-NPPc model was �rst transformed into the
initial grammar presented in Table 6.2. In addition, alternative predictions were added
to this initial grammar for the four intermediate equations for which experts were not
con�dent. (dotted nodes in the graph in Figure 6.1). Each of these alternative productions
speci�es one or more possible revisions of the initial CASA-NPPc model. Table 6.5 presents
the complete list of alternative productions added to the initial grammar.

Alternative productions for E

Ec-100 allows a 100% relative change of the constant parameter (with the initial
value of 0.389) in the equation for the intermediate variable E.

Es-exp allows for a replacement of the product T1 · T2 ·W from the product from
the initial E equation with an expression that allows for arbitrary exponents



122 Revision of equation based models

Table 6.5: Alternative productions added to the initial grammar from Table 6.2. Each of
them speci�es one or more revisions of the initial CASA-NPPc model.

Ec-100: E -> const[_:0:0.389:0.778] * T1 * T2 * W
Es-exp: E -> const[_:0:0.389:0.778] * pow(T1, const[_:0:1:])

* pow(T2, const[_:0:1:]) * pow(W, const[_:0:1:])
T1c-100: T1 -> const[_:0:0.8:1.6] + const[_:0:0.02:0.04] * topt

- const[_:0:0.0005:0.001] * topt * topt
T1s-poly: T1 -> const | const + (T1) * topt
T2c-100: T2 -> const[_:0:1.1814:2.3628] / ((1 +

exp(const[_:0:0.2:0.4] * (TDIFF - const[_:0:10:20])))
* (1 + exp(const[_:0:0.3:0.6] *
(-TDIFF - const[_:0:10:20]))))

T2s-poly: T2 -> const | const + (T2) * TDIFF
SR_FASc-25: SR_FAS -> (1 + fas_ndvi / const[_:750:1000:1250])

/ (1 - fas_ndvi / const[_:750:1000:1250])

on the three participating terms (i.e., a product of the form T1c1 · T2c2 ·W c3).
The initial values of the exponents are set to 1, in which case the product is
equivalent to that in the initial E equation.

Alternative productions for T1

T1c-100 allows for a 100% relative change of the initial values of the constant pa-
rameters in the T1 equation.

T1s-poly provides for a replacement of the initial second degree polynomial for
T1 with an arbitrary degree polynomial of the variable topt. Lagramge's
parameters were set to allow polynomials with the maximum degree of �ve.

Alternative productions for T2

T2c-100 enables 100% relative change of the initial values of the constant parameters
in the equation for T2.

T2s-poly supports replacement of the initial equation for T2 with an arbitrary de-
gree polynomial of the variable TDIFF. Again, the maximum degree of the
polynomial was limited to �ve.
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Alternative productions for SR_FAS

SR_FASc-25 lets a 25% relative change of the initial values of the constant parameters
in the SR_FAS equation. We used 25% here to avoid values of the constant
parameters below 750, which would cause singularity (division by zero) problems
in the equation for SR_FAS.

Note, however, that an arbitrary combination of these alternative productions can be
added to the initial grammar. If all the alternative productions are added at the same
time, then Lagramge will �nd the most bene�cial combination of revisions, i.e., the one
that leads to the best revision of the initial model. In this case, Lagramge considers 384
possible revisions of the original CASA-NPPc model.

6.5.4 Experimental results

Table 6.6 summarizes the results of the experiments with the di�erent modeling (revision)
alternatives, discussed above.

When we allow only a single of the seven presented alternatives (the �rst seven rows
of Table 6.6), revising the value of the parameters in the equation for SR_FAS gives
the largest error reduction over the initial CASA-NPPc model. The initial values of the
parameters (both are equal to 1000) de�ne an almost linear dependence of SR_FAS on the
observed system variable srdi�. The revised values of the constant parameters were equal
to the lower bound of 750, which increase the non-linearity of the dependence. However,
lower values of the parameters in the SR_FAS equation would cause singularity (division
by zero) problems, due to the range of the srdi� variable. In terms of consistency of the
revision with Earth science knowledge, we should note that the Earth scientists' con�dence
in the range of the srdi� variable was low due to the limited terrestrial coverage of the
NPPc measurements. Therefore, the theoretically based argument for high initial values
of the constant parameters in the SR_FAS equation is not very strong.

The T1s-poly revision replaces the original second-degree polynomial for calculating
T1 with a �fth degree polynomial. The structural revision T2s-poly replaced the complex
initial equation structure for calculating T2 with a fourth degree polynomial. While the
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Table 6.6: The root squared mean error (RMSE) of the revised model, the percentage of
relative error reduction (RER) of the revised model when compared to the RMSE of the
initial CASA-NPPc model (with RMSE of 517.665) and distance (DIST) of the revised
model from the initial one. The RMSE was estimated both on training data (training - the
left-hand side of the table) and using 30-fold cross-validation (CV - the right-hand side of
the table).

alternative training CV
production(s) RMSE RER (%) DIST RMSE RER (%) DIST
Ec-100 458.626 11.40 1 459.212 11.29 1.0
Es-exp 442.763 14.47 16 447.456 13.56 16.0
T1c-100 458.301 11.47 3 460.352 11.07 3.0
T1s-poly 450.265 13.02 46 455.819 11.95 46.0
T2c-100 457.048 11.71 3 457.926 11.54 3.0
T2s-poly 450.972 12.88 71 463.757 10.41 75.8
SR_FASc-25 441.419 14.73 2 441.419 14.73 2.0
All combined 411.627 20.48 60 421.758 18.53 62.6

initial form of the T2 equation is fairly well grounded in �rst principles of plant physiology,
it has not been extensively veri�ed from �eld measurements. Therefore, both empirical
improvements are plausible.

The most interesting structural revision was the one for the equation

E = 0.610 · T1 2.83 · T2 0.638 ·W 0

The proposed value of 0 for the exponent of the water stress factor W suggests it is
not important for predicting the photosynthetic e�ciency E. Earth scientists proposed
that this in�uence is already being captured by the satellite measurements of the relative
greenness, fas_ndvi , and this was unnecessary in the E equation.

The last row of Table 6.6 presents the results of the experiments with search for the
optimal combination of all the alternative revisions. As expected, the best combination
leads to the maximum relative error reduction of more than 20% on the training data
and 18.5% when cross-validated. The combination of Es-exp, T1s-poly, T2c-100, and
SR_FASc-25 productions led to the best revised model, as shown in Table 6.7.
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Table 6.7: The revised CASA-NPPc model obtained by allowing an arbitrary combination
of modeling alternatives from Table 6.5. The parts of the models that are not revised are
printed in gray.

NPPc = max(0, E · IPAR)
E = 0.312 · T11.36 · T20.728 ·W 0

T1 = 3.65− 0.992 · topt + 0.137 · topt2 − 0.00679 · topt3 + 0.000111 · topt4

T2 = 0.818/((1 + exp(0.0521 · (TDIFF − 10))) · (1 + exp(0 · (−TDIFF − 10))))
TDIFF = topt − tempc

W = 0.5 + 0.5 · eet/PET
PET = 1.6 · (10 ·max(tempc, 0)/ahi)A · pet_tw_m

A = 0.000000675 · ahi3 − 0.0000771 · ahi2 + 0.01792 · ahi + 0.49239
IPAR = FPAR_FAS ·monthly_solar · SOL_CONV · 0.5

FPAR_FAS = min((SR_FAS − 1.08)/srdiff , 0.95)
SR_FAS = (1 + fas_ndvi/750)/(1− fas_ndvi/750)

SOL_CONV = 0.0864 · days_per_month

After the initial experiments with the revision of the CASA-NPPc model presented
here, we found out that the Earth scientists who developed the CASA model corrected
the value of the constant parameter in the E equation from 0.389 to 0.56 independently of
our experiments. This change reduces the RMSE of the initial CASA-NPPc model on the
training data from 517.665 to 465.213. After re-running the revision experiments with the
new initial CASA-NPPc model, we obtained the results, as presented in Table 6.8.

The revisions of the new corrected initial CASA-NPPc model led to smaller relative
reduction of the RMSE. We obtained the maximum error reduction of almost 11% on
the training data and 9% when cross-validated when an optimal combination of modeling
alternatives was sought. Table 6.7 presents the best revised model that was obtained using
the combination of Es-exp, T1c-100, T2s-poly, and SR_FASc-25 productions. Note that
the sum of the reductions obtained with single alternative productions nearly add up to
the error reduction obtained with a combination of them.

Note also that the error of the revision of the corrected model on the training data
(414.739) is slightly higher than the error of the best model obtained with revising the
original CASA-NPPc model (411.627, see Table 6.6). This is due to the problems with
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Table 6.8: The root squared mean error (RMSE) of the revised model, the percentage of
relative error reduction (RER) of the revised model when compared to the RMSE of the
(corrected) initial CASA-NPPc model (with RMSE of 465.213) and distance (DIST) of
the revised model from the initial one. The RMSE was estimated both on training data
(training - the left-hand side of the table) and using 30-fold cross-validation (CV - the
right-hand side of the table).

alternative training CV
production(s) RMSE RER (%) DIST RMSE RER (%) DIST
Ec-100 458.626 1.42 1 460.5 1.01 0.9
Es-exp 443.029 4.77 16 443.032 4.77 16.0
T1c-100 458.301 1.49 3 460.799 0.95 3.0
T1s-poly 450.265 3.21 46 457.37 1.69 45.8
T2c-100 457.018 1.76 3 459.633 1.20 3.0
T2s-poly 450.972 3.06 71 461.642 0.77 73.4
SR_FASc-25 453.157 2.59 2 455.281 2.13 2.0
All combined 414.739 10.85 104 423.684 8.93 67.4

the convergence of the method for non-linear optimization of the values of the constant
parameters. It is well known that these methods can not guarantee convergence toward
the global (or real) optimal values, but can get stuck into a local (sub-)optimal values
that are closer to the initial values of the constant parameters (Press et al., 1986). This
imperfection of the non-linear optimization methods can be partly avoided by using the
multi-start procedure presented in Chapter 4 (Section 4.2). However, in these cases re-
starting the optimization with 25 randomly generated initial values still did not lead to
the optimal values of the constant parameters.

The comparison of the revised models in Table 6.7 and Table 6.9 shows that the revised
models are similar. Both suggest that the W (watter stress) segment should be removed
from CASA-NPPc model, since it is not important for calculating E. Furthermore, both
revised models suggest a lower value (750) for the constant parameter in the SR_FAS
equation. On the other hand, the models suggest di�erent revisions of the T1 and T2
equations.
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Table 6.9: The new revised CASA-NPPc model obtained by allowing an arbitrary com-
bination of modeling alternatives from Table 6.5. The parts of the models that are not
revised are printed in gray.

NPPc = max(0, E · IPAR)
E = 0.402 · T10.624 · T20.215 ·W 0

T1 = 0.680 + 0.270 · topt − 0 · topt2

T2 = 0.162 + 0.0122 · TDIFF + 0.0206 · TDIFF 2 − 0.000416 · TDIFF 3

−0.0000808 · TDIFF 4 + 0.000000184 · TDIFF 5

TDIFF = topt − tempc
W = 0.5 + 0.5 · eet/PET

PET = 1.6 · (10 ·max(tempc, 0)/ahi)A · pet_tw_m
A = 0.000000675 · ahi3 − 0.0000771 · ahi2 + 0.01792 · ahi + 0.49239

IPAR = FPAR_FAS ·monthly_solar · SOL_CONV · 0.5
FPAR_FAS = min((SR_FAS − 1.08)/srdiff , 0.95)

SR_FAS = (1 + fas_ndvi/750)/(1− fas_ndvi/750)
SOL_CONV = 0.0864 · days_per_month

In another experiment, we explored the in�uence of the minimality of change principle
on the revised models. For this purpose, we used the MC heuristic function (see Section 6.4)
with seven di�erent values of the C parameter: 32, 64, 128, 256, 512, 1024, and 2048. Recall
from Section 6.4 that the C parameter is used to trade o� between goodness of �t of the
model and minimality of change with respect to the initial model. Smaller values of C give
a higher preference toward models that are similar to the initial one.

Figure 6.3 summarizes the results of this experiment. As expected, the distance of the
revised model from the initial model constantly increases with the value of the C parameter.
The distance is greatest when SSE heuristic function is used, i.e., the minimality of change
principle is neglected. The trend of the relative error reduction, as estimated on training
data, is the same: it constantly increases and reaches a maximum with SSE. Thus, the
more distant the revised model, the more accurate it is on training data.

The revised model that is most similar to the initial one (i.e., the one found using
MC heuristic with C = 32) is obtained by revising the values of the constant parameters
(Ec-100 and SR_FASc-25) of the initial model, leading to an error reduction of 5.29%. This
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Figure 6.3: Relative error reduction and distance from the initial model for revised models
obtained using SSE and MC (minimality of change) heuristic function with di�erent values
of the C parameter.

shows that the revisions of the initial equations for E and especially SR_FAS are necessary
and important for the error reduction, even if we prefer a minimal change of the initial
CASA-NPPc model. The analysis of the second revised model obtained with C = 64 gives
further support for this claim, as it leads to an error reduction of 8.84% by revising these
two equations again, in this case proposing a more complex structural revision (Es-exp)
of the E equation.

However, the increasing the performance of the revised models on training data can
easily lead to over�tting, especially in cases when arbitrary revisions are allowed. Even
in these experiments with a limited set of revision alternatives, we can see that the cross-
validated error reduction does not constantly increase, and models that are closer to the
initial one can perform better on test data. In our experiments, the model obtained using
C = 512 (error reduction of 9.10%) slightly outperforms the model obtained using the SSE
heuristic (error reduction of 8.93%) when cross-validated. The revised model obtained using
C = 512 leaves the T2 equation unchanged and has a structure that is otherwise identical
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to that in Table 6.9, although the values of the constant parameters in the equations are
slightly di�erent. This shows that the revision of the T2 equation is not really important
for the reducing the error produced by the initial CASA-NPPc model.

6.6 Summary

In this chapter, we have proposed a �exible grammar-based method for revising equation
based models. We use the transformation principle to support the revision of existing mod-
els with equation discovery. First, the given existing model is transformed into a grammar
that can be used to derive the initial model only, with the nonterminals and their produc-
tions re�ecting the structure of the initial model. Domain experts then focus the revision
process on parts of the model and guide it by providing relevant modeling alternatives that
are added to the grammar as alternative productions. In this way, the revision process can
be interactive, as is quite often the case when revising theories expressed in logic. The
method also incorporates the minimality of change principle in a way that allows a trade
o� between the revised model's goodness and its similarity to the initial one.

We have applied our approach to the problem of revising a portion of CASA, which
models the production of carbon by terrestrial plants in the Earth ecosystem. Experimen-
tal study showed that small revisions of both the constant parameters and the equation
structure reduce the error of the model considerably (by almost 20%). This improvement is
regarded as non-trivial by Earth scientists who developed the CASA model. Furthermore,
an experiments with an improved version of the CASA-NPPc model still lead to a revised
model that has almost 9% lower error than the initial one. An additional experiment
showed the importance of the minimality of change principle from two aspects. First, this
heuristic can slightly improve the accuracy of the revised model on test data, the were not
used during the revision process. Second, changing the parameter for trading o� between
goodness of �t and similarity to the initial model can help identify the important revisions
that produce largest improvements of the accuracy of the initial model.

The research presented in the chapter is closely related to two other lines of work. In
the �rst, Saito et al. (2001) address the same task of revising models based on equations.
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Their approach transforms part of the model into a neural network, retrains the neural
network on available data, and transforms the trained network back into an equation-
based model. They obtained revised models with a considerably smaller error rate than
the original one, but gained slightly lower accuracy improvement than did our method. A
limitation of their approach is that it requires some hand-crafting to encode the equations
as a neural network. The authors state that �the need to to translate the existing CASA
model into a declarative form that our discovery system can manipulate� is a challenge
to their approach. Moreover, their method does not incorporate the minimality of change
principle.

The approach of transforming equation-based models to neural networks and using these
for re�nement is similar in spirit to the Kbann approach proposed in (Towell & Shavlik,
1994). There, an initial theory based on classi�cation rules is �rst encoded as neural
network. Then, the topology of the network is re�ned and the network is re-trained with
the newly observed data. Finally, the network is transformed back into rules. However, the
application of Kbann is limited to theories and models expressed as classi�cation rules.

In other related work, Whigham and Recknagel (2000) consider the task of revising an
existing model for predicting chlorophyll-a by using measured data. They use a genetic
algorithm to calibrate the equation parameters. They also use a grammar-based genetic
programming approach to revise the structure of two subparts of the initial model, one
at a time. A most general grammar that can derive an arbitrary expression using the
speci�ed arithmetic operators and functions was used for each subpart. Unlike the work
presented here, Whigham and Recknagel (2000) do not present a general framework for
the revision of equation-based models, although their approach is similar to ours in that
they use grammars to specify possible revisions. However, their grammars are too general
to provide much information about the domain at hand, and they do not incorporate
minimality of change ideas in their approach. This can be considered as a weakness, since
genetic programming methods tend to produce large expressions without a simplicity bias.

Our approach to revising the CASA model employs three kinds of domain knowledge.
Domain experts provided the initial CASA model, and they pointed out uncertain parts
of the model that should be considered for revisions. The third kind of knowledge con-
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cerns the alternative models to be used for the revision. In addition, the domain experts
provided feedback about the importance and comprehensibility of each of the proposed
revisions. However, there is still room for incorporating additional expert knowledge in the
revision process. In particular, note that the measure of distance between models is purely
syntactic, in sense that it calculates the minimal number of elementary edit operations
(i.e., deleting, inserting and relabeling a node) necessary to transform the initial model
into the revised one. By assigning di�erent costs of the elementary edit operations for
di�erent label nodes, we can introduce additional expert knowledge about the amount of
change introduced by the revisions. This can be seen as a way to introduce semantics in
the distance measure and constitutes an interesting direction for further work. However,
domain experts can also propose the distance measure that is purely semantic and based
on domain-speci�c knowledge about possible models. Such modi�ed distance measures
could be easily incorporated within the MC heuristic measure used in Lagramge.
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7

Conclusion

In the thesis we developed and empirically evaluated several methods that extend the scope
of equation discovery along two dimensions. The �rst dimension involves the formalism
for representing equation based models and the second concerns the amount and type of
domain knowledge integrated within the equation discovery process.

In Chapter 3, we presented a new method that extends the scope of existing discovery
methods to handle partial di�erential equations. These present an important class of
equations, since they are capable of modeling the change of the observed system along
more than one dimension, as opposed to ordinary di�erential equations, which can only
model changes in one (usually the temporal) dimension.

In Chapter 4, we proposed a framework for automated modeling of real-world systems
consisting of a knowledge representation formalism and an improved version of the equa-
tion discovery method Lagrange that can take into account the encoded knowledge. The
knowledge is organized around the basic processes in the domain in a way that is acces-
sible to domain experts. The formalism and the method are general enough to integrate
a great variety of domain-speci�c modeling knowledge into the equation discovery pro-
cess. Furthermore, in Chapter 6, we presented a method for revision of existing equation
based models. The methods described in these two chapters extend the capability of exist-
ing equation discovery methods to incorporate di�erent kinds of knowledge, ranging from
existing models to knowledge about basic processes in the domain of interest.

We applied the newly developed methods to a number of tasks to illustrate their capa-
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bilities. These tasks involve modeling from real-world measurements and synthetic data in
the domains of population dynamics, neurophysiology, classical mechanics, hydrodynamics,
and Earth science. The results of the modeling experiments provide important empirical
evidence for both the expressiveness of the knowledge representation formalism and the
inductive power of Lagrange.

The evaluation of the modeling framework on synthetic data shows the capability of the
method to reconstruct structures of fairly complex population dynamics and spring me-
chanic models from noisy data. The use of domain knowledge improves both the e�ciency
and the noise robustness of the equation discovery method Lagramge. The experiments
with the methods for discovering partial di�erential equations show that they can recon-
struct particularly important neurophysiology model of temporal and spatial propagation
of impulses along the nerve axon from noise-free simulation traces.

Finally, the application on the real-world tasks of modeling from measured data con-
�rms the usability of the approach. Lagramge identi�es comprehensible white-box mod-
els of algae growth in Lake Glumsø and Lagoon of Venice that help experts identify the
limiting factors for the algae growth, which causes environmental problems. The results
compare favorably with results obtained using the equation discovery method GoldHorn
and the previous version of Lagramge. With the experiments of modeling water level
variation in the Ringkøbing fjord, we illustrate the capability of the approach to complete
partially speci�ed models. Finally, we used our model revision method to improve the
accuracy of CASA, an earth-science model of the global production and absorption of bio-
genic trace gases in the Earth's atmosphere. The improvement is regarded as non-trivial
by Earth scientists who developed the model.

7.1 Original contributions

The thesis contributes to three important aspects of the equation discovery area. The
contributions to each of them are further discussed in the following subsections.
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7.1.1 Discovery of partial di�erential equations

A new method capable of discovering partial di�erential equations is presented. The utility
of the method is evaluated on several tasks of reconstructing known models of real-world
systems from synthetic data. These include a model from the domain of neurophysiology
that represents a wide and particularly important class of models of biological systems.

7.1.2 Integration of domain-speci�c knowledge in the equation dis-
covery process

A formalism for encoding domain-speci�c modeling knowledge is presented. The formal-
ism allows for encoding knowledge from a variety of domains, including population dy-
namics, biochemistry, and classical mechanics, as well as domain-independent knowledge
about modeling based on (possibly incomplete) information about measurement units of
the observed system variables. An automated modeling framework is presented based on
the discovery method capable of incorporating the encoded knowledge in the process of
equation discovery. The framework is successfully applied to several tasks of reconstructing
population dynamics models from synthetic data as well as completing a partially speci�ed
hydrodynamics model from real-world measurement data.

7.1.3 Revision of equation based models

A new method is developed capable of revising models based on equations. The method can
follow the minimality of change principle, i.e., among models with similar accuracy, prefer
the ones that are as similar as possible to the initial model. The method is successfully
used for revising real Earth science model using real-world measurements.

7.2 Limiations and further work

The directions for further work were already discussed in the summary sections of the
individual thesis' chapters. Here, we will provide an annotated list of directions for further
work. For further details, consult the summary sections of the appropriate chapter.
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7.2.1 Further evaluation

Further evaluation of the proposed methods for discovery of partial di�erential equations
should be performed before they acceptable to mathematical modelers. Further experi-
ments with more models and with truly observational data are necessary. The simulated
data used in the experiments presented in the thesis contain some errors (due to the nu-
merical error of the method used to simulate the PDEs of the original model), which are of
a di�erent nature to the measurement errors found in experimental data. We would need
to establish that the method works robustly under both conditions.

7.2.2 Domain knowledge

The immediate direction of further (and partly ongoing) work is establishing libraries of
encoded knowledge in di�erent domains. These libraries will be built in cooperation with
domain experts that have expertise in modeling real-world systems from measured data.
Establishing such libraries will make the developed methods usable by domain experts
that collect data about real-world systems, but are not experienced with the process of
modeling. First steps toward establishing a library for modeling of aquatic ecosystems,
based on recent developments in the domain, have been already made (Atanasova and
Kompare 2003; personal communication). Furthermore, the same team of experts work
on a library for establishing models of equipment used for waste water treatment. In both
cases, the libraries will be used for automated modeling based on collections of measurement
data.

The automated modeling approach based on transformation to grammars is limited to
modeling tasks where the domain expert is capable to provide processes that are expected
to be important for modeling the observed system. However, there are many real-world
tasks, where experts are not able to specify the list of processes. In these cases, the two
level search procedure should be developed that is capable discovering the processes that
in�uence the behavior of the observed system. At the high level the search will search for
the optimal set of processes. For each set of processes, the proposed modeling framework
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will be used at the lower level to �nd the model, based on the particular set of processes,
that �ts the measured data best.

Another direction of improvement is integration of other kind of domain knowledge in
the process of model revision, that is knowledge about distance between models. Domain
experts can either specify a semantic distance measure or specify "semantic based" costs
of the elementary edit operations for the editing distance measure. Formalization of this
kind of knowledge is an open issue that can be an interesting topic of further research.

7.2.3 Integration

The methods developed within the thesis are in the early development phase. Each method
is developed and evaluated independently of the others. For example, the methods do not
allow the revision of models based on partial di�erential equations, although in princi-
ple this should not be a problem. Furthermore, the formalism can easily encode domain
knowledge about changes of the systems along a spatial dimension, but the method for
discovering partial di�erential equations is not integrated within Lagramge. There is a
clear need for proper integration into a single modeling assistant that would allow establish-
ing new and revising existing models based on algebraic, ordinary and partial di�erential
equations.

The integrated modeling assistant should be further integrated within standard data
analysis and simulation environments1 that are routinely used by mathematical modelers.
Beside improved ease of use, the integration will enable standard techniques for parameter
estimation and sensitivity analysis to be used in conjunction with the automated modeling
framework to yield a proper scienti�c assistant.

Another direction for further work includes the integration of equation discovery (and
the revision of equation-based models) methods within the framework of inductive data-
bases (Imielinski & Mannila, 1996). In a given application domain, an inductive database
contains not only data about the domain, but also patterns or models, such as (in our
case) equations. Equation discovery operations can then be viewed as inductive queries
posed to the inductive database. They can discover models from data only or revise models

1Examples of such systems are MatLab (http://www.mathworks.com/), SciLab
(http://www-rocq.inria.fr/scilab/), and Octave (http://www.octave.org/).
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from the inductive database in light of newly collected data. Allowing constraints on the
search space of candidate models and constraints based on the distance of the induced
models from a given one are important primitives for building inductive queries posed on
an inductive database of equation based models.
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Appendix A

Complete library of modeling knowledge
for population dynamics

type Concentration is real
type Concentrations is set(Concentration)

type Population is Concentration
type Populations is set(Population)

type Inorganic is Concentration

function class Saturation(Concentration c)

function class No_saturation() is Saturation
expression c

function class Saturation_type_1() is Saturation
expression c / (c + const(saturation_rate,0,1,Inf))

function class Saturation_type_2() is Saturation
expression c * c / (c * c + const(saturation_rate,0,1,Inf))

function class Saturation_type_3() is Saturation
expression 1 - exp(-const(saturation_rate,0,1,Inf) * c)
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process class Growth(Population p)

process class Exponential_growth() is Growth
expression const(growth_rate,0,1,Inf) * p

process class Logistic_growth() is Growth
expression const(growth_rate,0,1,Inf) * p * (1 - p / const(capac,0,1,Inf))

process class Decay(Population p)

process class Exponential_decay() is Decay
expression const(decay_rate,0,1,Inf) * p

process class Flow(Concentration c)

process class Constant_inflow() is Flow
expression const(inflow_rate,0,1,Inf)

process class Constant_outflow() is Flow
expression -const(outflow_rate,0,1,Inf)

process class Feeds_on(Population p, Concentrations cs)
condition p not in cs
expression p * product({c}, c in cs, Saturation(c))

process class Interaction(Populations ps)
condition cardinality(ps) at least 2

process class Competitive_exclusion() is Interaction
expression -product({p}, p in ps, Saturation(p))

process class Symbiosis() is Interaction
expression product({p}, p in ps, Saturation(p))
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combining scheme Population_dynamics(Inorganic i)
time_deriv(i) = + sum({}, true, Flow(i))

- sum({p, food}, i in food, const(_,0,1,Inf) * Feeds_on(p, food))

combining scheme Population_dynamics(Population p)
time_deriv(p) = + sum({}, true, Growth(p))

+ sum({}, true, Flow(p))
+ sum({food}, true, const(_,0,1,Inf) * Feeds_on(p, food))
- sum({}, true, Decay(p))
- sum({p1, food}, p in food, const(_,0,1,Inf) * Feeds_on(p1, food))
+ sum({ps}, p in ps, const(_,0,1,Inf) * Interaction(ps))
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Dodatek B

Uporaba predznanja pri modeliranju
dinami£nih sistemov z avtomatskim
odkrivanjem ena£b
Raz²irjeni povzetek

Strokovnjaki gradijo matemati£ne modele zaradi analize in bolj²ega razumevanja obna²a-
nja realnih sistemov (Gershenfeld, 1999). Gradnja matemati£nega modela za opazovani
sistem je zelo zahtevna naloga, ki zajema opazovanje in meritve obna²anja sistema pod
raz£nimi pogoji, izbor spremenljivk, ki so pomembne za modeliranje sistema, ter gradnjo
matemati£ne formulacije (oziroma ena£b) modela. V disertaciji se ukvarjamo z nalogo av-
tomatskega modeliranja realnih sistemov ali natan£neje z nalogo gradnje matemati£nega
modela iz opazovanega obna²anja merjenih spremenljivk sistema.

Raziskave, opravljene v okviru disertacije sodijo na podro£je strojnega u£enja (Lan-
gley, 1995; Mitchell, 1997) ali bolj speci�£no na podro£je avtomatskega odkrivanja ena£b
(equation discovery) (Langley et al., 1987). Odkrivanje ena£b vklju£uje razvoj metod
za avtomatsko odkrivanje kvantitativnih zakonitosti, izraºenih v obliki ena£b, iz mnoºice
meritev. Metode za odkrivanje ena£b uporabljamo predvsem za avtomatsko modeliranje
realnih sistemov na osnovi meritev in opazovanj. Podro£je odkrivanja ena£b je zelo po-
vezano s podro£jem sistemske identi�kacije (system identi�cation) (Ljung, 1993). Metode
za sistemsko identi�kacijo slonijo na predpostavki znane strukture modela (ki jo ponavadi
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poda strokovnjak) in se osredoto£ijo na problem dolo£anja konstantnih parametrov mo-
dela. Za razliko od teh se metode za odkrivanje ena£b posve£ajo bolj problemu dolo£anja
ustrezne strukture modela ter manj problemu dolo£anja ustreznih vrednosti konstantnih
parametrov.

Obstoje£e metode za odkrivanje ena£b lahko odkrivajo algebrai£ne (Langley et al.,
1987; Kokar, 1986; Falkenhainer & Michalski, 1990; Zembowicz & �ytkow, 1992; Washio
& Motoda, 1997) ali navadne diferencialne ena£be (Todorovski, 1993; Dºeroski & Todoro-
vski, 1995; Kriºman, 1998; Todorovski, 1998; Todorovski & Dºeroski, 1997). Algebrai£ne
ena£be uporabljamo za modeliranje stati£nih sistemov, ki so ºe dosegli ravnovesno stanje, z
navadnimi diferencialnimi ena£bami pa lahko modeliramo obna²anje dinami£nih sistemov,
tj. sistemov, ki spreminjajo svoje stanje s £asom. Za modeliranje sprememb opazovanega
sistema v ve£ kot eni dimenziji (npr. prostorski in £asovni) hkrati uporabljamo raz²irjeni
formalizem parcialnih diferencialnih ena£b.

Ve£ina raziskav na podro£ju odkrivanja ena£b uporablja empiri£ni pristop k modelira-
nju dinami£nih sistemov. Ta pristop sledi paradigmi "poskus in napaka"(trial-and-error),
kjer preizku²amo razli£ne modele in i²£emo takega, ki se dovolj dobro prilega meritvam. Pri
empiri£nem modeliranju ponavadi ne uporabljamo predznanja s problemskega podro£ja.
Za razliko od empiri£nega pristopa pri teoreti£nem pristopu k modeliranju uporabljamo
predznanje s podro£ja uporabe. Strokovnjak s problemskega podro£ja najprej ugotovi,
kateri �zi£ni procesi vplivajo na obna²anje sistema, potem pa na osnovi procesov in mo-
delov, ki se obi£ajno uporabljajo za njihovo modeliranje, dolo£i stukturo ena£b, iz katerih
je sestavljen model. Na koncu uporabimo standarne metode sistemske identi�kacije za
dolo£anje ustreznih vrednosti konstantnih parametrov modela iz meritev (Ljung, 1993).

V disertaciji se ukvarjamo s problemom zdruºevanja teoreti£nega in empiri£nega pristo-
pa k modeliranju dinami£nih sistemov z vklju£evanjem teoreti£nega predznanja s podro£ja
uporabe v postopek odkrivanja ena£b. Razvili smo novo metodo za odkrivanje ena£b, ki
lahko upo²teva predznanje o modeliranju sistemov, kot ga poda strokovnjak s podro£ja
uporabe. Upo²tevamo dva tipa predznanja. Prvi tip se nana²a na znanje o osnovnih
procesih, ki vplivajo na obna²anje sistemov na obravnavanem podro£ju uporabe. Drugi
tip predznanja se nana²a na obstoje£e modele, ki so ºe uveljavljeni na podro£ju uporabe.
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Nadalje smo raz²irili doseg potencialne uporabe metod za odkrivanje ena£b na podro£je
parcialnih diferencialnih ena£b. Slednje lahko uporabimo za modeliranje tako £asovnih kot
prostorskih sprememb stanja opazovanega sistema.

V tem raz²irjenem povzetku bomo najprej predstavili izhodi²£a in podali pregled ob-
stoje£ih metod za odkrivanje ena£b. Nadaljevali bomo s pregledom vsebine disertacije in
kon£ali s povzetkom izvirnih prispevkov k znanosti.

B.1 Izhodi²£a in obstoje£e metode

Strokovnjaki gradijo matemati£ne modele zaradi analize in bolj²ega razumevanja obna²anja
realnih sistemov (Gershenfeld, 1999). Matemati£ni modeli ponujajo moºnost zdruºevanja
potencialno zelo velikih mnoºic opazovanj in meritev v celoto. Uporabljamo jih lahko
za simulacijo in napovedovanje bodo£ega obna²anja opazovanega sistema pod razli£nimi
pogoji. Nenazadnje je zelo pomembna lastnost matemati£nih modelov tudi moºnost, da
razkrijejo procese in pojave, ki vplivajo na obna²anje opazovanega sistema.

Prvi in osnovni korak v postopku modeliranja realnega sistema je izbor matemati£-
nega formalizma za modeliranje. Navadne diferencialne ena£be (NDE) so eden najbolj
raz²irjenih formalizmov za modeliranje dinami£nih sistemov, tj. sistemov, ki spreminjajo
stanje s £asom. Nekaj obstoje£ih metod za odkrivanje ena£b omogo£a odkrivanje NDE
(Todorovski, 1993; Dºeroski & Todorovski, 1995; Kriºman, 1998; Todorovski, 1998; Todo-
rovski & Dºeroski, 1997). Te metode omogo£ajo uporabo odkrivanja ena£b za avtomatsko
modeliranje dinami£nih sistemov, vendar je modeliranje z NDE omejeno na sisteme, ki
spreminjajo svoje stanje samo v eni (tipi£no £asovni) dimenziji. Za modeliranje sprememb
opazovanega sistema v ve£ kot eni dimenziji hkrati (npr. prostorski in £asovni) moramo
uporabiti raz²irjeni formalizem parcialnih diferencialnih ena£b.

Naslednji korak v postopku modeliranja je gradnja matemati£nega modela opazova-
nega sistema. Obstajata dva vidika gradnje modela. Prvi vidik je dolo£anje ustrezne
strukture ena£b, ki tvorijo model (problem dolo£anja strukture). Drugi vidik je dolo£a-
nje vrednosti konstantnih parametrov modela (problem kalibracije modela). Za re²evanje
problema kalibracije lahko uporabimo eno od ²tevilnih metod, razvitih na podro£jih sis-
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temske identi�kacije (Ljung, 1993) in nelinearne optimizacije (Press et al., 1986). Tudi pri
odkrivanju ena£b uporabljamo te metode za dolo£anje vrednosti konstantnih parametrov.
Osrednja tema raziskav na podro£ju odkrivanja ena£b je re²evanje problema dolo£anja
ustrezne strukture modela oziroma ena£b, ki tvorijo model.

Pri teoreti£nem pristopu k modeliranju problem dolo£anja strukture modela re²uje stro-
kovnjak s podro£ja uporabe. Strokovnjak najprej ugotovi, kateri procesi in pojavi dolo£ajo
obna²anje opazovanega sistema. Nato z uporabo predznanja o modeliranju sistemov s po-
dro£ja uporabe strokovnjak zgradi ustrezno strukturo modelskih ena£b. Za razliko od teo-
reti£nega pristopa, ki temelji na teoreti£nem predznanju, je empriri£ni pristop popolnoma
podatkovno voden in sledi paradigmi "poskus in napaka". Strokovnjak najprej predlaga
strukturo modela, ki se mu zdi ustrezna, z metodami sistemske identi�kacije dolo£i ustrezne
vrednosti parametrov modela in preveri, ali se simulacija dovolj dobro prilega meritvam.
�e se ne, ponavlja postopek toliko £asa, dokler ne najde ustreznega modela. V postopku
se tipi£no uporablja zelo malo (£e sploh kaj) predznanja s podro£ja uporabe. Posledica
tega je, da modeli, zgrajeni z empiri£nim pristopom, ponavadi ne razkrivajo procesov in
pojavov, ki dolo£ajo obna²anje opazovanega sistema. Zato jih tudi imenujemo modeli £rnih
²katel (black-box models), za razliko od modelov belih oziroma prozornih ²katel (white-
box models) pri katerih je razvidna zgradba opazovanega sistema s procesi in pojavi, ki
dolo£ajo njegovo obna²anje.

Ve£ina obstoje£ih metod za odkrivanje ena£b uporablja empiri£ni pristop k modeli-
ranju, kjer uporabljamo zelo omejeno koli£ino predznanja s podro£ja uporabe. En tip
predznanja, ki ga uporabljajo obstoje£e metode za odkrivanje ena£b, je znanje o merskih
enotah spremenljivk opazovanega sistema. Metoda za odkrivanje ena£b Coper (Kokar,
1986) uporablja merske enote za omejevanje prostora preiskanih struktur ena£b. Coper
obravnava samo tiste ena£be, ki pravilno kombinirajo spremenljivke in izraze z razli£nimi
merskimi enotami. Omejitve se nana²ajo na enostavna dejstva o zdruºljivosti merskih enot,
kot je recimo to, da ne moremo se²tevati ali od²tevati izrazov z razli£nimi merskimi eno-
tami. Metoda za odkrivanje ena£b SDS (Washio & Motoda, 1997) nadgrajuje Coper za
primere, ko natan£ne merske enote spremenljivk niso znane. V tem primeru SDS uporablja
znanje o tipu merskih lestvic, uporabljenih za merjenje spremenljivk opazovanega sistema,
za omejevanje prostora moºnih ena£b.
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Strokovnjaki s podro£ja uporabe pa lahko posredujejo veliko ve£ znanja kot samo na-
²tevanje merskih enot opazovanih spremenljivk. Obstaja veliko u£benikov o matemati£nem
modeliranju, ki podajajo pregled predznanja o modeliranju sistemov z dolo£enega podro-
£ja, kot sta na primer biologija (Murray, 1993) ali biokemija (Voit, 2000). Da razpoloºljivo
znanje vklju£imo v postopek avtomatskega modeliranja z odkrivanjem ena£b, ga moramo
najprej formalno zapisati. Formalizirano znanje lahko potem uporabimo za omejevanje
prostora ena£b, ki ga preiskujejo metode za avtomatsko odkrivanje ena£b. Metoda za
odkrivanje ena£b Lagramge (Todorovski, 1998) uporablja formalizem kontekstno neod-
visnih gramatik za dolo£anje prostora ena£b. Gramatika je splo²en formalizem, ki omogo£a
formalizacijo razli£nih tipov predznanja. Tako smo znanje o merskih enotah spremenljivk
opazovanega sistema na primer uporabili za uspe²no modeliranje dinami£nega sistema dvoj-
nega invertiranega nihala (Todorovski, 1998). V primeru modeliranja rasti planktona v
danskem jezeru Glumsø smo gramatiko zgradili na osnovi znanja o osnovnih procesih po-
pulacijske dinamike. Lagramge je s pomo£jo gramatike odkril zelo natan£en model iz
zelo ²umnih meritev. Vseeno pa je formalizem gramatik dokaj zapleten in pogosto tudi
neprimeren za uporabo s strani strokovnjaka s podro£ja modeliranja.

Na ²ir²em podro£ju umetne inteligence je bilo razvitih nekaj pristopov k avtomatskem
modeliranju dinami£nih sistemov. Ti pristopi podpirajo vklju£evanje znanja o modeli-
ranju sistemov s problemskega podro£ja v postopek avtomatskega modeliranja. Pristop
sestavljenega modeliranja (compositional modeling) uporablja znanje o tipi£nih modelskih
delcih (model fragments) s problemskega podro£ja ter na£inih za sestavljanje delcev v mo-
del celotnega sistema (Kuipers, 1994). Pristop sestavljenega modeliranja je v okviru na²e
raziskave samo posredno relevanten, ker je bil uporabljen za gradnjo kvalitativnih in ne
numeri£nih modelov. Drugi pristop k modeliranju dinami£nih sistemov, implementiran v
okviru metode Pret, temelji na kvalitativnem sklepanju (qualitative reasoning) (Bradley
et al., 2001). Za razliko od na²ega pristopa Pret gradi modele na osnovi znanja, ki temelji
na takoimenovanih �zakonih o ohranjanju koli£ine�. Primer takega zakona je Kircho�ov
zakon, ki dolo£a, da je vsota tokov v opazovanem vozli²£u elekri£nega vezja enaka ni£.

Drug tip znanja, ki ga obstoje£e metode za avtomatsko odkrivanje ena£b tipi£no spre-
gledajo, so modeli, ki so ºe uveljavjeni na podro£ju uporabe. Namesto da bi za£eli iskanje
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z obstoje£im modelom, metode za odkrivanje ena£b vedno za£enjajo iskanje "iz ni£". Za
razliko od njih metode za revizijo teorij (theory revision) (Ourston & Mooney, 1994; Wro-
bel, 1996) vedno za£nejo z obstoje£o teorijo in nato hevristi£no preiskujejo prostor revizij
za£etne teorije, da bi na²li tako, ki se bolj prilega opazovanim oziroma izmerjenim podat-
kom. A raziskave na podro£ju revizije teorij se tipi£no nana²ajo na logi£ne teorije in ne
na numeri£ne modele. Te metode torej niso uporabne za revizijo modelov, ki slonijo na
ena£bah.

B.2 Pregled vsebine

Disertacija je sestavljena iz sedmih poglavij. Prvo poglavje podaja uvod v disertacijo s
poudarkom na zastavljenih ciljih in poglavitnih prispevkih k znanosti. Drugo poglavje se
za£ne z uvodom v podro£je modeliranja realnih sistemov in nadaljuje s pregledom metod za
vklju£evanje predznanja v postopek avtomatskega u£enja. Najve£ji del drugega poglavja je
posve£en uvodu v podro£je avtomatskega odkrivanja ena£b in pregledu obstoje£ih metod.
Na koncu poda poglavje ²e pregled kvalitativnih pristopov k avtomatskemu modeliranju s
²ir²ega podro£ja umetne inteligence.

Sledi glavni vsebinski del disertacije, sestavljen iz ²tirih poglavij, ki predstavlja nove
metode in pristope k odkrivanju ena£b, razvite v okviru disertacije. Tretje poglavje podaja
opis dveh metod za avtomatsko odkrivanje parcialnih diferencialnih ena£b ter opis in re-
zultate njihove empiri£ne evalvacije. �etrto poglavje podaja opis pristopa k avtomatskemu
modeliranju realnih sistemov, ki sloni na vklju£evanju predznanja s podro£ja uporabe v
postopek odkrivanja ena£b. Pristop k avtomatskemu modeliranju smo empiri£no ovredno-
tili na nalogah modeliranja dinami£nih sistemov iz umetnih in realnih podatkov v petem
poglavju. �esto in zadnje poglavje v tem delu predstavi metodo za revizijo obstoje£ih
matemati£nih modelov, ºe uveljavljenih na podro£ju uporabe.

Sedmo poglavje podaja zaklju£ke disertacije. Za£ne se s pregledom vseh predstavljenih
metod, nato pa povzame rezultate njihovega empiri£nega vrednotenja. Nadaljuje se s
povzetkom izvirnih prispevkov disertacije, kon£a pa s smernicami za nadaljnje delo.

V nadaljevanju tega razdelka bomo podali bolj podroben pregled vsebine tretjega, £e-
trtega in ²estega poglavja disertacije.
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Slika B.1: Podatki, uporabljeni za rekonstrukcijo modela plenilec-plen, predstavljenega v
razdelku 3.3 (leva stran slike), ter "rezine"podatkov za ²tiri razli£ne vrednosti prostorske
dimenzije x (desna stran slike).

B.2.1 Odkrivanje parcialnih diferencialnih ena£b

Za odkrivanje parcialnih diferencialnih ena£b (PDE) uporabimo na£elo pretvorbe, ki je bilo
ºe uporabljeno za odkrivanje navadnih diferencialnih ena£b (NDE) v metodi Lagrange
(Todorovski, 1993; Dºeroski & Todorovski, 1995).

Preizkusili smo dva razli£na pristopa. Pri prvem za£etno mnoºico opazovanih spremen-
ljivk sistema raz²irimo z njihovimi parcialnimi odvodi glede na podane £asovne in prostor-
ske dimenzije. Pri tem uporabimo numeri£no metodo za ra£unanje parcialnih odvodov, ki
sloni na polinomski interpolaciji (Press et al., 1986). Tako izhodi²£ni problem odkrivanja
PDE pretvorimo v problem odkrivanja algebrai£nih ena£b, kjer lahko uporabimo katero-
koli obstoje£o metodo za odkrivanje ena£b. Predlagana metoda je zelo enostavna, vendar
je novi problem veliko zahtevnej²i od za£etnega. Razlog za pove£ano zahtevnost novega
problema je ²tevilo na novo vpeljanih spremenjivk, kar bistveno vpliva na velikost prostora
obravnavanih ena£b.

Da bi omejili prostor obravnavanih ena£b, preizkusimo ²e drugi pristop, pri katerem
problem odkrivanja PDE razstavimo na ve£ problemov odkrivanja NDE. To naredimo tako,
da podatke razdelimo na "rezineº nespremenljivo vrednostjo vseh dimenzij razen £asovne,
kot ponazarja Slika B.1. V vsaki rezini potem odkrivamo NDE. Strukture, ki smo jih
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population dynamics

single species single nutrient
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growth decay flow
predator-prey
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exponential
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exponential inflow outflow unsaturated saturated unsaturated saturated unsaturated saturated

Slika B.2: Taksonomija procesnih razredov za modeliranje sistemov s podro£ja populacijske
dinamike.

najpogosteje odkrili v razli£nih rezinah, uporabimo za omejitev prostora obravnavanih
PDE. Problem odkrivanja PDE v omejenem prostoru ena£b lahko re²ujemo z enostavnim
pristopom, opisanim zgoraj.

Uporabnost razvitih metod smo ponazorili s poskusi rekonstrukcije znanih modelov
realnih sistemov iz simuliranih podatkov. Prvi model je s podro£ja populacijske dina-
mike in se nana²a na razmerje dveh populacij, ki ºivita v istem okolju. Drugi model je
Fitzhugh-Nagumo model prenosa elektri£nega signala v ºiv£nih celicah (FitzHugh, 1961;
Nagumo et al., 1962). V obeh poskusih je metoda z omejevanjem prostora ena£b uspe²no
rekonstruirala originalne modele iz simuliranih podatkov.

B.2.2 Vklju£evanje predznanja s podro£ja uporabe v postopek od-
krivanja ena£b

Predlagani formalizem za zapis znanja o modeliranju sistemov s podro£ja uporabe omogo£a
organizacijo znanja v obliki taksonomije procesnih razredov. Primer take taksonomije,
zgrajen na osnovi predznanja s podro£ja populacijske dinamike (Murray, 1993), je podan
na sliki B.2.

Vsako vozli²£e predstavlja razred sorodnih osnovnih procesov, ki dolo£ajo oziroma bi-
stveno vplivajo na obna²anje sistemov s podro£ja populacijske dinamike. Za vsak procesni
razred opredelimo tip spremenljivk, ki vplivajo na ali so pod vplivom procesov iz razreda,
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Tabela B.1: Formalni opis razreda procesov populacijske rasti.

process class Growth(Population p)

process class Exponential_growth() is Growth
expression const(growth_rate,0,1,Inf) * p

process class Logistic_growth() is Growth
expression const(growth_rate,0,1,Inf) * p * (1 - p / const(capac,0,1,Inf))

ter seznam ena£b, ki jih strokovnjaki uporabljajo za modeliranje procesov iz tega razreda.
Primer opisa razreda procesov populacijske rasti je podan v Tabeli B.1.

Prvi, najbolj splo²ni procesni razred Growth dolo£a dejstvo, da so procesi populacijske
rasti odvisni od in vplivajo na eno samo populacijo, tj. spremenljivko p tipa Population.
Naslednja dva procesna razreda sta podrazreda procesnega razdreda Growth ter od njega
nasledita spremenjivko p. Prvi podrazred Exponential_growth dolo£a model neomejene
(eksponentne) rasti populacije p. Drugi podrazred Logistic_growth dolo£a model rasti,
ki je omejena s kapaciteto okolja, v katerem populacija ºivi. Kapaciteto okolja dolo£a
konstantni parameter capac, ki ga vpeljemo v model z uporabo simbola const(capac, 0,

1, Inf). Ta simbol dolo£a spodnjo (0) in zgornjo vrednost (neskon£no - Inf) konstantnega
parametra capac, ter njegovo privzeto vrednost (1).

Poleg znanja o osnovnih procesih s podro£ja uporabe in njihovih modelih, formalizem
omogo£a tudi zapis znanja o tem, kako modele posameznih osnovnih procesov iz razli£-
nih razredov sestavimo v modele celotnega sistema. Formalizem za predstavitev znanja
je splo²en in omogo£a predstavitev znanja z razli£nih podro£ij uporabe. Splo²nost forma-
lizma smo pokazali s formalizacijo znanja s podro£ij populacijske dinamike (Murray, 1993),
biokemi£ne kinetike (Voit, 2000), klasi£ne mehanike (Bradley et al., 2001) ter problemsko
neodvisnega znanja o modeliranju sistemov na osnovi podanih merskih enot opazovanih
spremenljivk (Washio & Motoda, 1997).

Pristop k avtomatskemu modeliranju, ki omogo£a zdruºevanje tako predstavljenega
predznanja v postopek odkrivanja ena£b, je predstavljen na sliki B.3. V procesu gradnje
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Slika B.3: Pristop k avtomatskemu modeliranju realnih sistemov, ki temelji na zdruºevanju
predznanja s podro£ja uporabe v postopek avtomatskega odkrivanja ena£b.

modela opazovanega sistema, informacijo o tipih spremenljivk primerjamo z zapisanim
predznanjem in ugotovimo, kateri osnovni procesi se lahko pojavijo v modelu. Na osnovi
tega in predznanja o modelih posameznih procesov zgradimo gramatiko, ki dolo£a prostor
moºnih modelov za opazovani sistem. Neterminalni simboli gramatike ozna£ujejo razrede
osnovnih procesov. Generativna pravila za vsak neterminalni simbol pa dolo£ajo prostor
moºnih modelov za ustrezni razred procesov. Za£etni simbol gramatike povezuje modele
posameznih procesov v moºne modele celotnega sistema. Tako zgrajena gramatika nam
omogo£a uporabo metode za odkrivanje ena£b Lagramge, ki prei²£e prostor moºnih mo-
delov, kot ga dolo£a gramatika, in najde tistega, ki se najbolj prilega meritvam opazovanih
spremenljivk. Drevo izpeljave modela, ki ga dolo£a gramatika, lahko uporabimo zato, da
ugotovimo, kateri osnovni procesi dolo£ajo obna²anje opazovanega sistema.

Zgoraj opisani pristop k modeliranju dinami£nih sistemov smo empiri£no preizkusili
na problemih rekonstrukcije ve£ znanih modelov populacijske dinamike iz simuliranih po-
datkov z razli£nimi stopnjami dodanega ²uma. Pristop je uspe²no rekonstruiral originalne
modele. Poskusi so tudi pokazali pove£ano odpornost na prisotnost ²uma v podatkih, ki je
posledica vklju£evanja predznanja v postopek odkrivanja ena£b. Uporabnost sistema smo
ponazorili tudi z re²evanjem problema izpopolnjevanja delno dolo£enega modela dinamike
vodne gladine v fjordu Ringkøbing iz realnih meritev opazovanih spremenljivk.

B.2.3 Revizija modelov, ki slonijo na ena£bah

Za revizijo obstoje£ih modelov zopet razvijemo metodo, ki temelji na na£elu pretvorbe.
Najprej podani obstoje£i model pretvorimo v za£etno gramatiko, ki lahko izpelje samo
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Tabela B.2: Za£etni CASA-NPPc model za napovedovanje rastlinske produkcije ogljika na
osnovi satelitskih opazovanj in atmosferskih meritev.

NPPc = max(0, E · IPAR)
E = 0.389 · T1 · T2 ·W

T1 = 0.8 + 0.02 · topt − 0.0005 · topt2

T2 = 1.1814/((1 + exp(0.2 · (TDIFF − 10))) · (1 + exp(0.3 · (−TDIFF − 10))))
TDIFF = topt − tempc

W = 0.5 + 0.5 · eet/PET
PET = 1.6 · (10 ·max(tempc, 0)/ahi)A · pet_tw_m

A = 0.000000675 · ahi3 − 0.0000771 · ahi2 + 0.01792 · ahi + 0.49239
IPAR = FPAR_FAS ·monthly_solar · SOL_CONV · 0.5

FPAR_FAS = min((SR_FAS − 1.08)/srdiff , 0.95)
SR_FAS = (1 + fas_ndvi/1000)/(1− fas_ndvi/1000)

SOL_CONV = 0.0864 · days_per_month

ta za£etni model. Gramatiko zgradimo tako, da upo²teva strukturo podanega za£etnega
modela. Tako zgrajeni za£etni gramatiki lahko dodamo generativna pravila, ki dolo£ajo
moºne alternativne modele. Te moºnosti lahko dolo£i strokovnjak, ali jih dolo£imo na
osnovi predznanja s podro£ja uporabe, zapisanega v zgoraj opisanem formalizmu. Raz²ir-
jena gramatika nam tako dolo£a prostor revizij za£etnega modela. Opis tega prostora z
gramatiko nam omogo£a uporabo metode Lagramge za iskanje tiste revizije za£etnega
modela, ki se najbolj prilega meritvam.

Metode za revizijo teorij sledijo na£elu minimalne spremembe. Ta dolo£a, da med
teorijami, ki se (pribliºno) enako prilegajo podanim podatkom, izberemo tisto, ki je najbolj
podobna za£etni teoriji. Da bi vklju£ili to na£elo v metodo Lagramge, smo raz²irili njeno
MDL hevristi£no funkcijo, ki daje prednost kraj²im ena£bam pred dalj²imi. Funkcija MDL
kombinira dolºino ena£be s stopnjo prileganja meritvam. �e zamenjamo dolºino ena£be z
razdaljo od za£etnega modela, dobimo hevristi£no funkcijo za ocenjevanje ena£b, ki sledi
na£elu najmanj²e spremembe. Za merjenje razdalje med modeli, ki slonijo na ena£bah,
uporabljamo standardne mere razdalje med strukturiranimi izrazi (Shasha & Zhang, 1997;
Richter, 1997).

Uporabnost metode za revizijo modelov, ki slonijo na ena£bah, smo ponazorili z revizijo
CASA-NPPc modela, ki so ga razvili strokovnjaki s podro£ja okoljskih znanosti (Potter &
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Klooster, 1997). Model CASA-NPPc uporabljajo za napovedovanje rastlinske produkcije
ogljika iz satelitskih opazovanj in atmosferskih meritev. Gre za relativno zapleten model,
ki je sestavljen iz ve£ ena£b (glej tabelo B.2). Razvita metoda za revizijo je odkrila model,
ki je bolj natan£en od za£etnega. �e ve£, z uporabo na£ela minimalne spremembe smo
ugotovili, katere revizije najbolj prispevajo k izbolj²ani to£nosti za£etnega modela.

B.3 Izvirni prispevki disertacije

Izvirni prispevki disertacije sodijo na podro£je avtomatskega odkrivanja ena£b. Prispevki
izpopolnijo obstoje£e metode za odkrivanje ena£b v smislu njihove uporabe za modeliranje
realnih sistemov. Raz²irili smo doseg uporabe metod za odkrivanje ena£b na podro£je par-
cialnih diferencialnih ena£b. Razvili smo formalizem za predstavitev znanja o modeliranju
sistemov s podro£ja uporabe. Razvili smo metodo za odkrivanje ena£b, ki lahko vklju£i zna-
nje, predstavljeno v zgoraj omenjenem formalizmu, v postopek odkrivanja ena£b. Razvili
smo tudi metodo za odkrivanje ena£b, ki je zmoºna revizije modelov, slone£ih na ena£bah.
Omenjeni prispevki so bolj podrobno opisani v naslednjih treh odstavkih.

Odkrivanje parcialnih diferencialnih ena£b

Razvili smo metodo za odkrivanje parcialnih diferencialnih ena£b (PDE). Metoda temelji
na pretvorbi problema odkrivanja PDE na enostavnej²i problem odkrivanja algebrai£nih
ali navadnih diferencialnih ena£b. V obeh primerih pretvorba omogo£a uporabo obstoje£ih
metod za odkrivanje ena£b za odkrivanje PDE. Razvoj take metode raz²iri doseg metod
za odkrivanje ena£b na podro£je avtomatskega modeliranja sistemov, ki spreminjajo svoje
stanje v ve£ kot eni dimenziji (npr. £asovni in prostorski).

Vklju£evanje predznanja s podro£ja uporabe v postopek odkrivanja
ena£b

Razvili smo formalizem za predstavitev znanja o modeliranju sistemov s podro£ja uporabe.
Predznanje je organizirano v obliki taksonomije osnovnih procesov, ki vplivajo na obna²anje
sistemov na obravnavanem podro£ju uporabe. Za vsak osnovni proces v taksonomiji so
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podane moºne ena£be, ki jih strokovnjaki s podro£ja uporabljajo za modeliranje procesa.
Formalizem tudi omogo£a predstavitev znanja o tem, kako modele posameznih osnovnih
procesov kombiniramo v enotni model celotnega sistema. Razvili smo novo metodo za
odkrivanje ena£b, ki je sposobna znanje, predstavljeno v zgoraj opisanem formalizmu,
vklju£iti v postopek odkrivanja ena£b. Razvoj formalizma in metode omogo£a zdruºevanje
teoreti£nega in empiri£nega pristopa k modeliranju realnih sistemov.

Revizija modelov, ki slonijo na ena£bah

Razvili smo metodo za odkrivanje ena£b, ki lahko za£ne postopek odkrivanja s podanim
obstoje£im modelom. Metoda prei²£e prostor moºnih revizij podanega modela in najde
tisto, ki se prilega opazovanim oz. izmerjenim podatkom bolje kot za£etni model. Metoda
omogo£a vkju£evanje obstoje£ih modelov, ºe uveljavljenih na podro£ju uporabe, v postopek
odkrivanja ena£b. Na£elo minimalnih sprememb (le-ta daje prednost revidiranim modelom,
ki so kar se da podobni za£etnemu), ki ga uporabljajo metode za revizijo logi£nih teorij,
smo prilagodili za uporabo na problemu revizije modelov, ki slonijo na ena£bah.
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