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Abstract

Face morphing attacks pose a significant threat to biometric security systems by

enabling multiple individuals to authenticate with a single compromised creden-

tial i.e., a morphed face image. This thesis investigates the use of multimodal

large language models (MLLMs) for morphing attack detection, demonstrating

that foundation models trained on large-scale, heterogeneous data possess latent

forensic capabilities that can be adapted for specialized security tasks.

We evaluate four open-source models in a zero-shot setting, including Gemma-

3 27B, Qwen2.5-VL 32B, Llama-4 Scout 17B, and Mistral Small 3.1 24B, across

diverse datasets covering landmark-based, GAN-based, and diffusion-based mor-

phing attacks. Even without task-specific training, these models achieve measur-

able detection performance, confirming that multimodal language models inher-

ently encode useful representations. To improve zero-shot detection reliability,

we developed a structured forensic prompt, which guides the models through a

systematic six-step procedure for detecting visual artifacts created during the

blending of facial images. This structured prompting approach enhances both

detection accuracy and interpretability of the outputs.

The primary contribution of the thesis lies in parameter-efficient fine-tuning

through Low-Rank Adaptation (LoRA). Using only 0.61% of trainable parame-

ters, we fine-tuned Gemma-3 12B. This fine-tuned model substantially outper-

formed its zero-shot counterpart, reducing the average Equal Error Rate by more

than half. It achieved near-perfect detection on landmark-based morphs, compet-

itive results on challenging GAN-based and diffusion-based morphs. Overall, this

research establishes multimodal large language models as a viable and promis-

ing direction for morphing attack detection, combining generalization and inter-

pretability with competitive performance against state-of-the-art approaches.
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Povzetek

Napadi zlitih obrazov (angl. face morphing attacks) predstavljajo resno grožnjo

biometričnim varnostnim sistemom, saj omogočajo, da se z enim kompromiti-

ranim poverilom, tj. obrazno sliko, overi več oseb. Čeprav obstoječe metode za

zaznavanje napadov zlitih obrazov (MAD) kažejo obetavne rezultate,se soočajo

z omejitvami pri posploševanju na različne tehnike zlivanja (angl. morphing

techniques), pomanjkanja razložljivosti in odvisnosti od specializiranih učnih po-

datkov. V tej magistrski nalogi raziskujemo nov pristop, uporabo večmodalnih

velikih jezikovnih modelov (MLLM) za zaznavanje napadov zlitih obrazov, pri

čemer izhajamo iz domneve, da temeljni modeli, učeni na podatkih internet-

nega obsega (angl. internet-scale data), vsebujejo latentne forenzične analitične

sposobnosti, ki jih je mogoče prilagoditi za specializirane varnostne naloge.

Predstavljamo evalvacijo odprtokodnih večmodalnih velikih jezikovnih mod-

elov za zaznavanje zlitih obrazov, pri čemer obravnavamo štiri najsodobneǰse

modele: Gemma-3 27B, Qwen2.5-VL 32B, Llama-4-Scout 17B in Mistral Small

3.1 24B. Z obsežnimi eksperimenti na sedmih različnih podatkovnih zbirkah, ki

vključujejo metode za generiranje zlitih obrazov na osnovi značilnih točk, GAN

modelov, ter z difuzijskimi metodami, pokažemo, da ti modeli dosegajo merljive

zmožnosti zaznavanja tudi brez dodatne optimizacije prednaučenega modela. Naš

pristop brez optimizacije prednaučenega modela (angl. zero-shot) je pokazal, da

je Gemma-3 27B najučinkoviteǰsi model, saj je dosegel povprečno enako stopnjo

napake (EER) 32,09 %, z izjemnimi rezultati pri difuzijskih napadih (6,15 % EER

na podatkovni zbirki Greedy-DiM).

Za izbolǰsanje zaznavnih sposobnosti smo razvili strukturiran forenzični

poziv (angl. prompt), ki večmodalne jezikovne modele vodi skozi sistematičen

šeststopenjski postopek zaznavanja vizualnih artefaktov, nastalih kot posledica

vii
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zlivanja obrazov. V vsaki stopnji model oceni prisotnost značilnih anomalij in jim

dodeli oceno zaupanja na lestvici od 0 do 10.000, pri čemer vǐsja vrednost pomeni

večjo gotovost v zaznavo artefakta. Ta pristop načrtovanje pozivov (angl. prompt

engineering) je v povprečju izbolǰsal točnost zaznavanja za 10.3 %, ter zagotovil

razložljive, strukturirane izpise, ki pojasnjujejo utemeljitev vsake odločitve, s

čimer se večmodalni jezikovni modeli preoblikujejo iz “črnih škatel” v pregledna

forenzična orodja.

Osrednji prispevek je uspešna prilagoditev splošnonamenskih večmodalnih

jezikovnih modelov z učinkovitim učenjem parametrov. Z uporabo Low-Rank

Adaptation (LoRA) in zgolj 0,61 % učljivih parametrov smo doučili model

Gemma-3 12B na slikah sintetično zlitih obrazov, ki posnemajo napade zlitih

obrazov. Rezultirajoči model je dosegel zelo dobre rezultate v različnih scenarijih

ovrednotenja, v določenih kategorijah pa je celo presegel obstoječe najsodobneǰse

modele.

Model smo preizkusili na več podatkovnih zbirkah, ki zajemajo različne tipe

morfiranih obrazov, in pokazali, da doučeni model Gemma-3 12B-MAD dosega

konkurenčno učinkovitost v primerjavi z obstoječimi pristopi. Rezultati kažejo,

da dosežemo nižje stopnje napak kot klasične metode zaznavanja zlitih obrazov,

pri čemer se prednost še poveča pri strožjih operativnih pragovih, kjer močno

zmanǰsamo število lažnih zavrnitev. Posebej izstopa uspešnost pri zaznavanju

zlitih obrazov narejenih na osnovi značilnih točk, kjer na podatkovni zbirki FRLL

dosegamo skoraj popolne rezultate.

Ob primerjavi z metodami, ki se učijo na nenadzorovan ali samonadzorovan

način, se naš pristop uvršča med najsodobneǰse, saj zagotavlja stabilno in

konkurenčno zaznavanje tudi v zahtevneǰsih primerih, kjer ohranja nizko stop-

njo lažnih zavrnitev (BPCER). Poleg tega rezultati potrjujejo, da učinkovitost

ne določa zgolj velikost uporabljenega modela, temveč predvsem ciljno učenje

modela na specifično področje zaznavanja zlitih obrazov.

Z vidika praktične uporabe ponuja doučeni model pomembne prednosti. Sis-

tem omogoča do 30-kratno pohitritev inferenciranja v primerjavi z pristopom

brez optimizacije prednaučenega modela (iz 30 sekund na manj kot 1 sekundo

na sliko). Ta drastična optimizacija je posledica uporabe manǰsega modela (12B



Povzetek ix

namesto 27B), precej enostavneǰsega poziva (angl. prompt), ki ne zahteva kom-

pleksnega razmǐsljanja, in predvsem spremembe naloge iz generiranja besedila v

klasifikacijo. Poleg tega sistem deluje na eni sami grafični kartici, kar ga naredi

primernega za uporabo v realnih varnostnih okoljih.

Raziskava dokazuje, da so večmodalni veliki jezikovni modeli učinkovit pristop

za zaznavanje napadov zlitih obrazov ter da jih je mogoče uspešno doučiti

za specializirane biometrične varnostne naloge, pri čemer dosegajo primerljivo

učinkovitost z najsodobneǰsimi metodami. Delo odpira nove poti za izkorǐsčanje

predhodnega učenja na podatkih internetnega obsega v domeno varnostnih ap-

likacij, ter ponuja okvir za prilagajanje večmodalnih jezikovnih modelov tudi za

druge izzive zaznavanja biometričnih napadov.

Ključne besede: računalnǐski vid, globoko učenje, umetna inteligenca, analiza

obrazov, napadi zlitih obrazov
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1 Introduction

Face-morphing attacks have emerged as a threat to biometric identification sys-

tems, exploiting the blending of facial images from two or more individuals to

produce a synthetic face that can impersonate multiple identities, as illustrated

in Figure 1.1 [2, 3]. By inserting a morphed face image into a document such as

a passport, as demonstrated in Figure 1.2, an attacker and their accomplice may

both pass automated face matching checks using the same credential [4]. These

attacks undermine the integrity of security processes (e.g., border control) by al-

lowing impostors, and potentially even criminals, to be authenticated as someone

else, unless the morphing is detected. This risk has motivated intensive research

into Morphing Attack Detection (MAD) techniques aimed at automatically dis-

tinguishing morphed images from bona fide ones [4, 5, 6, 1].

ZLIVANJE OBRAZOV
FACE MORPHING

ZLIVANJE OBRAZOV JE POSTOPEK, KI Z ALGORITMI UMETNE 
INTELIGENCE ZDRUŽI OBRAZNE LASTNOSTI DVEH OSEB

BIOMETRIČNI SISTEMI ZA 
PREVERJANJE POTNIH LISTOV NA 
SLIKI PRIČAKUJEJO ENO 
IDENTITETO. ZLIVANJE OBRAZOV 
LAHKO VODI DO PREVAR.   

SCENARIJ PREVARE/NAPADA

+ =

LMILMI
Laboratory for Machine Intelligence

Figure 1.1: Face morphing process: Two or more source facial images (left) are

blended to create a synthetic morphed face (right) that preserves recognizable

characteristics of both contributing identities, enabling multiple individuals to

authenticate using the same biometric credential.

MAD approaches can be categorized by their operational scenario. Differential

MAD methods leverage a trusted reference (such as a live capture) alongside

the suspect image, comparing two samples to discern inconsistencies [4, 7, 8].

1
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ZLIVANJE OBRAZOV
FACE MORPHING
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INTELIGENCE ZDRUŽI OBRAZNE LASTNOSTI DVEH OSEB

BIOMETRIČNI SISTEMI ZA 
PREVERJANJE POTNIH LISTOV NA 
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Figure 1.2: Face morphing attack scenario: A morphed facial image embedded in

an identity document (e.g., passport) allows both the primary holder and accom-

plice to successfully pass automated face recognition systems at border control

or security checkpoints, compromising the integrity of biometric authentication.

Although effective in controlled settings such as passport issuance or automated

border gates, differential methods are impractical when only a single image is

available (for example, forensic analysis of a single photo) [4]. This has spurred

the development of single-image MAD techniques that analyze one photo for

telltale morphing artifacts [4, 5, 6].

Traditional single-image detectors often relied on hand-crafted visual features

or simple classifiers, but these showed limited robustness. In many cases, studies

yielded optimistic detection rates by evaluating on morphs generated with basic

tools that leave visible artifacts [9]. Such conditions do not reflect sophisticated

real-world morphs, which can be created with advanced software or generative

models and contain far more subtle artifacts [9]. A key limitation of conventional

MAD algorithms is their poor generalizability. Methods tend to perform well

on the specific morphing techniques or datasets they were trained on, but can

fail dramatically when confronted with morphs from unseen generation methods

or novel attack scenarios [9, 6, 1].

Deep learning–based MAD systems have achieved higher accuracy than earlier

approaches, yet they too are susceptible to overfitting to the training distribu-

tion [9, 6]. Moreover, most existing detectors operate as black-box classifiers,

providing little or no explanation for their decisions, an issue in high-stakes ap-
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plications where interpretability is critical [10]. These limitations highlight

the need for more robust and transparent MAD solutions that can cope with the

evolving landscape of morphing techniques.

Recent advances in artificial intelligence offer promising avenues to address

these challenges. In particular, the integration of deep learning and image foren-

sics has already improved morph detection capabilities, achieving significant gains

in sensitivity and specificity over earlier methods. Researchers have explored

a range of modern architectures, from convolutional neural networks (CNNs)

and vision transformers to autoencoder-based anomaly detectors and generative

models, to boost detection performance and generalization [5, 11]. For example,

several works incorporate high-level CNN feature extractors or leverage residual

noise analysis to distinguish morphed faces, achieving detection equal error rates

well below 10 under evaluation conditions [12].

Notably, some studies have introduced domain-agnostic AI models into the

MAD task. Foundation models trained on massive datasets, which demonstrate

strong zero-shot learning abilities, are being repurposed for morphing attack de-

tection [4, 10, 8]. The appeal of such models lies in their potential to combat

the generalization problem. By virtue of learned broad visual representations,

they can adapt to new attack types more readily than bespoke classifiers. For

example, one recent approach adapts a pre-trained vision–language foundation

model (CLIP) to the morph detection domain via lightweight fine-tuning, achiev-

ing performance on par with state-of-the-art dedicated MAD algorithms and even

outperforming them in certain cross-dataset evaluations [4]. This suggests that

general-purpose vision models can be harnessed to build more resilient

detectors.

Beyond vision-first models, there is also growing interest in multimodal AI sys-

tems that combine visual and language understanding for security tasks. Lever-

aging the reasoning capabilities of large language models (LLMs) alongside im-

age analysis could facilitate both high adaptability and interpretability in detec-

tion. In fact, early experiments have demonstrated that cutting-edge multimodal

LLMs are capable of detecting face morphing attacks in a zero-shot manner,

that is, without any task-specific training, while also producing human-readable

explanations of how they identified the morph [10]. Zhang et al. (2025) [10]
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report that a state-of-the-art multimodal LLM (OpenAI’s GPT-4 with vision)

showed remarkable generalization to previously unseen morphs, successfully flag-

ging various morphing techniques and providing rationale for each decision [10].

This proof-of-concept highlights the untapped potential of advanced AI, includ-

ing foundation models and multimodal LLMs, to significantly improve MAD by

addressing both the robustness and explainability deficits of traditional methods.

In summary, face morphing attacks represent a serious security challenge for

face recognition systems, and conventional detection methods encounter notable

limitations in real-world deployment. The latest literature emphasizes a shift

toward more generalized and intelligent solutions, from deep CNN-based detectors

to adaptations of large pretrained models and even LLM-driven strategies, in

order to keep pace with increasingly sophisticated morphing techniques [4, 1,

13]. Building upon this growing body of work, our present research investigates

the use of open-source multimodal large language models for morphing attack

detection. By exploring zero-shot and fine-tuning paradigms with state-of-the-

art vision–language models, our aim is to advance the state of MAD toward

greater accuracy, generalizability to unseen attacks, and improved transparency

in decision-making. The following sections provide an overview of related work,

describe our proposed MLLM-based MAD framework, and discuss experimental

results in comparison to existing techniques.

1.1 Motivation

While recent preliminary investigations have demonstrated the potential of multi-

modal large language models (LLMs) for morphing attack detection (MAD) [10],

significant research gaps remain that limit our understanding of their practical

viability and optimal implementation strategies. These gaps provide the specific

motivation for the comprehensive investigation presented in this thesis.

Current evaluations of multimodal LLMs for MAD have been limited in scope

and methodology. Existing studies primarily focus on proprietary, closed-source

models such as GPT-4 Turbo [14, 10], leaving the capabilities of open-source

alternatives largely unexplored. This limitation creates a knowledge gap for re-
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searchers and practitioners who require accessible, reproducible, and customizable

solutions for morphing attack detection. Understanding the relative performance

of open-source multimodal LLMs across different architectures and parameter

scales is essential for establishing their practical utility in real-world security ap-

plications.

The absence of prompt engineering methodologies represents another signif-

icant limitation in current research. While early investigations have shown that

appropriate prompting can elicit morphing detection capabilities from LLMs [10],

these efforts lack principled frameworks for prompt design, optimization, and

standardization. The development of structured analytical protocols that consis-

tently guide multimodal LLMs through forensic examination processes remains

an unexplored research direction with substantial implications for detection reli-

ability and explanation quality in the field of morphing attack detection [15].

Furthermore, the potential for enhancing multimodal LLM performance

through targeted fine-tuning has not been systematically investigated for mor-

phing attack detection. Parameter-efficient adaptation techniques such as Low-

Rank Adaptation (LoRA) [16] offer promising avenues for specializing foundation

models to the MAD domain while preserving their generalization capabilities and

computational efficiency [4]. However, the optimal strategies for fine-tuning mul-

timodal LLMs on morphing detection tasks, including training data composition,

architectural adaptations, and loss function design, remain unexplored.

Finally, the lack of comprehensive benchmarking against established MAD

approaches prevents accurate assessment of where multimodal LLMs stand rela-

tive to current state-of-the-art methods. Rigorous comparative evaluations across

diverse datasets and morphing techniques are necessary to establish the practical

advantages and limitations of LLM-based approaches, informing their potential

integration into existing security frameworks.

1.2 Goals of the Thesis

The primary objectives of this research are structured around four interconnected

goals that collectively advance morphing attack detection through the application
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of multimodal large language models (LLMs).

Evaluate Zero-Shot Morphing Attack Detection Capabilities of Open-

Source Multimodal LLMs. The first goal involves conducting a comprehen-

sive assessment of state-of-the-art open-source multimodal language models, in-

cluding Gemma-3 27B [17], Qwen2.5-VL 32B [18], Llama-4-Scout 17B [19], and

Mistral Small 3.1 24B [20], for their inherent ability to detect face morphing at-

tacks without task-specific training. This evaluation encompasses testing across

diverse morphing techniques and datasets to establish baseline performance and

identify the most promising architectures for this security application.

Develop and Optimize Prompt Engineering Strategies for MAD. The

second goal focuses on designing sophisticated prompt engineering methodolo-

gies that transform multimodal LLMs into effective forensic analysis tools for

MAD. This involves creating structured analytical frameworks that guide models

through systematic examination of facial images, incorporating domain-specific

knowledge about morphing artifacts, and establishing standardized output for-

mats that facilitate both automated evaluation and human interpretation.

Implement Parameter-Efficient Fine-Tuning for Enhanced Detection

Performance. The third goal addresses the adaptation of multimodal large

language models to the morphing attack detection domain through Low-Rank

Adaptation (LoRA) fine-tuning techniques [16]. This includes developing training

methodologies that leverage synthetic morphing attacks, comparing classification

head approaches with generative fine-tuning strategies, and evaluating the impact

of domain adaptation on both detection accuracy and generalization capabilities.

Establish Comprehensive Benchmarking Against State-of-the-Art

Methods. The final goal involves conducting rigorous comparative evaluations

against established MAD approaches, including supervised deep learning meth-

ods [5, 21], unsupervised anomaly detection techniques [6], and recent foundation

model adaptations [4]. This benchmarking extends across multiple datasets repre-
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senting various morphing generation techniques to provide assessments of relative

performance, generalization capability, and practical deployment considerations.

1.3 Structure

The remainder of this thesis is organized into five chapters that systematically

present the theoretical foundations, methodological approaches, experimental de-

sign, empirical results, and conclusions of this research.

Chapter 2 provides a comprehensive review of related work in morphing

attack detection, establishing the theoretical and empirical context for our con-

tributions. This chapter examines the evolution of face morphing techniques from

traditional landmark-based approaches to sophisticated generative methods, sur-

veys existing detection methodologies ranging from classical image forensics to

modern deep learning approaches, and analyzes recent developments in founda-

tion model applications for biometric security tasks.

Chapter 3 presents the detailed methodology underlying our experimen-

tal framework. This chapter describes the selection and configuration of mul-

timodal large language models under investigation, outlines the systematic

prompt engineering process developed for zero-shot morphing detection, de-

tails the parameter-efficient fine-tuning procedures using Low-Rank Adaptation

(LoRA) [16], and specifies the comprehensive baseline methods implemented for

comparative evaluation.

Chapter 4 describes the experimental design, dataset configuration employed

throughout this research, and the empirical results obtained from both zero-shot

and fine-tuned evaluations of multimodal LLMs for morphing attack detection.

This chapter characterizes the diverse morphing attack datasets utilized for eval-

uation, including FRLL-Morphs [22], FRGC-Morphs [23], FERET-Morphs [24],

Greedy-DiM [25],MIPGAN-II [26],MorGAN [27], SMDD [28], andMorDiff [29].

It further details the evaluation protocols and metrics applied for performance

assessment, and presents the computational infrastructure and implementation

considerations for reproducible experimentation. The analysis compares the per-

formance of different prompt engineering strategies, evaluates the detection ca-
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pabilities of various model architectures, assesses the effectiveness of fine-tuning

approaches, and provides comprehensive benchmarking results against state-of-

the-art detection methods across multiple datasets and morphing techniques.

Chapter 5 concludes the thesis by synthesizing the key findings, discussing

their implications for the broader field of biometric security, acknowledging lim-

itations of the current approach, and outlining promising directions for future

research in foundation model applications for morphing attack detection and ex-

plainable biometric security systems.



2 Related Work

In this chapter, we examine different face morphing techniques, morphing attack

detection (MAD) methods, and the use of foundational models and large language

models (LLMs) for MAD up until now.

2.1 Face Morphing Techniques

Modern face morphing attacks fall into three broad families that differ in how

the blend is constructed and in the artifacts they leave behind: landmark-based

warping in the pixel domain, GAN-based generation in a model’s latent space,

and newer diffusion-based methods that synthesize a blend through iterative de-

noising. It is useful to distinguish image-level from representation-level morphs.

Image-level (landmark) pipelines detect facial keypoints on two sources, estab-

lish correspondences, warp one or both faces to an intermediate geometry (e.g.,

piecewise-affine over Delaunay triangles), and linearly blend pixels—often with

feathering, smoothing, or histogram adjustments to hide seams [12]. Typical

cues are local ghosting, doubled edges, and texture discontinuities around the

eyes, nostrils, lip borders, and hairlines. Representation-level methods instead

embed both faces into a generator’s latent manifold, combine them (by interpo-

lation or identity-constrained optimization), then decode a synthetic face. These

approaches usually remove visible seams but introduce generator-specific regu-

larities—“frequency fingerprints”—that appear as structured spectral patterns

or abnormal power distributions, even when the image looks flawless [1].

Landmark-based morphs are well represented in FRLL-Morphs under studio-

quality, frontal conditions that make artifact analysis clean and consistent, as

9
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(a) Face 01 (bona fide) (b) Face 01 10 (morph) (c) Face 10 (bona fide)

Figure 2.1: Landmark-based morphing (FRLL OpenCV): Facial keypoints are

detected on source images (a, c), correspondences established, and faces warped

to intermediate geometry using Delaunay triangulation, followed by pixel blend-

ing (b). Characteristic artifacts include ghosting, doubled edges, and texture

discontinuities around eyes, lips, and hairlines.

demonstrated in Figure 2.1; FRLL also includes OpenCV, FaceMorpher, AMSL,

and StyleGAN2 subsets for cross-technique evaluation [22, 24, 23]. The LMA-

DRD line of work extends landmark morphing to re-digitized (print–scan) sce-

narios that mimic passport issuance; the print–scan chain both attenuates and

distorts landmark artifacts and adds its own noise, which is crucial for deployment

realism [5]. Large synthetic corpora such as SMDD offer privacy-friendly training

with landmark morphs at scale and are frequently used in competition settings

like SYN-MAD 2022 [28, 3]. Compared to the controlled FRLL setting, FRGC-

and FERET-based morph sets bring more varied backgrounds, illumination, and

legacy image characteristics; that domain shift alone can reduce S-MAD accuracy

if a model has overfit to FRLL’s studio conditions [23, 24].

GAN -based morphs illustrate representation-level generation, as shown in

Figure 2.2. MorGAN pioneered latent-space blends using an encoder–decoder

GAN and provides both GAN and landmark (LMA) attacks for comparison [27].

StyleGAN2 -based pipelines underpin two important subsets: the StyleGAN2

splits inside FRLL/FRGC/FERET morph collections and MIPGAN, where

identity-aware latent optimization produces high-resolution, ICAO-compliant

morphs in both digital and print–scan form [26]. These images are typically pho-

torealistic with few visible seams; their telltales are more often spectral/textural,

consistent with the frequency-fingerprint perspective used in SelfMAD [1].
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(a) Face 01 (bona fide) (b) Face 01 10 (morph) (c) Face 10 (bona fide)

Figure 2.2: GAN-based morphing (FRLL StyleGAN): Source faces (a, c) are

embedded into StyleGAN’s latent manifold, combined through latent space in-

terpolation, then decoded as a synthetic face (b). These approaches introduce

generator-specific regularities and structured spectral patterns.

Diffusion-based morphs are the latest wave, represented in Figure 2.3. Two

strong variants are common in benchmarks: (i) diffusion autoencoder interpo-

lation (e.g., MorDIFF ), which linearly interpolates semantic latents and spher-

ically interpolates stochastic components before decoding, and (ii) guided tra-

jectory search/optimization (e.g., Greedy-DiM ), which steers the denoising pro-

cess using identity constraints to produce exceptionally seamless, high-match

morphs; Morph-PIPE provides another diffusion pipeline used in recent eval-

uations [29, 25, 30]. These attacks preserve identity well and exhibit minimal

pixel-space seams; when detectable, cues tend to be subtle periodicities or abnor-

mal spectral densities, again aligning with the frequency-artifact view [1].

Because technique and acquisition matter, robust evaluation mixes both gen-

eration families and capture conditions. Under consistent studio imagery (FRLL),

detectors can isolate technique effects; under more varied FRGC/FERET condi-

tions, natural artifacts and background complexity stress generalization. Adding

print–scan (LMA-DRD) exposes acquisition-chain shifts. Including GAN (Mor-

GAN, MIPGAN ) and diffusion (MorDIFF, Greedy-DiM, Morph-PIPE ) sets

probes representation-level fingerprints. The consistent lesson is that technique-

agnostic S-MAD benefits from learning both families of cues: local pixel irreg-

ularities typical of landmark warping and global/frequency signatures typical of

latent-space generation, thereby reducing cross-technique performance drops ob-

served when training on only one morph type [1].
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(a) Face 01 (bona fide) (b) Face 01 10 (morph) (c) Face 10 (bona fide)

Figure 2.3: Diffusion-based morphing (Greedy-DiM): Advanced synthesis through

iterative denoising processes with greedy optimization strategies. Source faces (a,

c) undergo diffusion-guided trajectory search to produce highly seamless morphs

(b) with exceptional identity preservation while introducing subtle periodicities

and abnormal spectral densities.

2.2 Morphing attack detection

Research in morphing attack detection distinguishes between single-image (S-

MAD) detection and differential (D-MAD) detection using a trusted live im-

age [9]. Single-image methods operate on just the document or uploaded photo,

which is the most common and challenging scenario. Differential methods, in con-

trast, have the benefit of a second image of the same person (e.g., a live capture

at border control) for comparison [9]. Most recent research (and all the methods

discussed below) concentrate on single-image detection (S-MAD).

2.3 Hand-Crafted Morphing Attack Detection (MAD)

Initial efforts to detect morphed faces borrowed techniques from image forensics

and facial biometrics. Researchers experimented with handcrafted features that

could expose the subtle artifacts of blending. Texture-based detectors were among

the first: for example, filtering the image with Local Binary Patterns (LBP) [31]

or Binarized Statistical Image Features (BSIF) [32] and training an SVM clas-

sifier [33, 9]. The rationale is that morphing disrupts the natural micro-texture

of genuine face images. Simple LBP-based classifiers performed reasonably on



2.4 Deep Learning-Based Morphing Attack Detection (MAD) 13

known morph datasets (often attaining >90% TPR at 10% FPR in intra-dataset

tests [9]) and even showed that fusing multiple texture features (LBP, SIFT,

HOG, etc.) could boost accuracy [9].

Another line of attack used noise analysis, operating on the assumption that

morphing two images inconsistently alters the sensor noise patterns. Methods

based on Photo Response Non-Uniformity (PRNU) analysis attempted to detect

morphs via inconsistencies in the camera noise fingerprint [34, 35]. Similarly,

frequency-domain cues (e.g., artifacts revealed by Fourier or wavelet transforms)

and edge inconsistencies were investigated. These classical approaches demon-

strated that morphed images are not “perfectly natural” and often carry de-

tectable traces.

However, they fell short in generalization. As Scherhag et al. (2019) [36] note

in their survey, detectors relying on general image descriptors suffered severe per-

formance drops when evaluated on morphs from new sources or algorithms [36].

For instance, an LBP-based detector trained on landmark morphs might mis-

classify most GAN-morphs as bona fide, and vice versa. Overall, the pre-deep

learning era established useful baselines (often with Equal Error Rates in the

10–20% range on seen attacks [9]) but underscored the need for deep learning

based methods that can automatically discover more discriminative morph cues.

2.4 Deep Learning-Based Morphing Attack Detection

(MAD)

Research in MAD has progressed from simple forensic analysis to advanced deep

learning methods. We organize current approaches into several categories and

highlight representative methods in each, including their contributions, evaluation

results, and limitations.
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2.4.1 Supervised Deep Learning-Based MAD

Supervised CNN detectors remain the dominant paradigm through 2020–2023,

typically trained on labeled bona fide versus morphed images. Many architec-

tures have been explored, from standard classification backbones (VGG [37],

ResNet [38], Inception [39]) to bespoke networks for morph detection.

A notable method, MixFaceNet-MAD, originates from the efficient face recog-

nition architecture MixFaceNet (Boutros et al., 2021 [21]), recognized for its

compact size and robust performance. Damer et al. adapted MixFaceNet for

morph detection [28], training it from scratch on the synthetic SMDD morph

dataset and evaluating its performance on real-world data. Despite its lightweight

design, MixFaceNet-MAD demonstrated commendable cross-dataset accuracy.

For instance, when trained on SMDD and evaluated on datasets like FRLL,

FERET, and FRGC, MixFaceNet-MAD established a baseline performance level

for comparison. However, its supervised nature necessitates extensive and diverse

training datasets to effectively handle various morph styles. Evaluation within

the SPL-MAD study indicated competitive Equal Error Rates (EER) on certain

morph types but highlighted limitations in detecting GAN-based morphs, sug-

gesting the necessity of specialized training techniques or augmentation strategies

to enhance generalization [6].

Several MAD approaches also leverage variants of widely-used architectures

such as Inception [39] and ResNet [38]. One prominent baseline is InceptionV3-

MAD, as discussed in recent evaluations [5]. While these models typically achieve

strong performance on intra-dataset tests (often obtaining APCER and BPCER

below 5% on known attacks), they tend to overfit, resulting in poorer cross-

dataset generalization [6]. For instance, SPL-MAD experiments demonstrated

significantly higher errors for Inception-based models on unseen morph types

(e.g., FRLL-OpenCV morphs exhibited a BPCER@1% of approximately 24.32%),

underscoring challenges in generalization. These findings suggest that, without

specific measures, standard deep CNNs inherently learn dataset-specific cues,

limiting their robustness to novel morph attacks. However, when augmented with

specialized training or attention mechanisms, Inception- and ResNet-based MAD

models provide foundational structures for more advanced detection methods.
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Pixel-Wise MAD (PW-MAD), proposed by Damer et al. (2021) [5], offers

another compelling supervised approach. PW-MAD employs pixel-wise binary

supervision by using annotated masks highlighting morph artifacts versus gen-

uine regions. These masks, approximated from source-image differences, guide

CNNs to predict pixel-level morph regions, thereby fostering a richer understand-

ing of morphing artifacts. This approach demonstrated superior generalization

capabilities compared to conventional single-label classifiers, notably enhancing

detection performance against unseen morph attacks. Damer et al.’s experiments

indicated significant improvements in detecting novel morphs due to the explicit

pixel-level supervision provided by PW-MAD [5].

2.4.2 Unsupervised and Self-Supervised Approaches for Generalized

MAD

While powerful, supervised MAD methods historically suffered from poor general-

ization, excelling on known attack types but faltering on novel morphs. Recent ef-

forts have aimed to improve robustness through network architecture innovations,

data augmentation, and training paradigms such as self-supervision or one-class

learning. Several notable unsupervised and self-supervised deep learning-based

MAD approaches have emerged in this context.

Fang et al. (2022) introduced Self-Paced Learning MAD (SPL-MAD), an

unsupervised method leveraging abundant face recognition data, which may in-

advertently include morphs, treating MAD as an anomaly detection problem [6].

SPL-MAD employs a Convolutional Autoencoder (CAE), trained solely on bona

fide images, using reconstruction error to detect morphs. Crucially, they incorpo-

rated a self-paced curriculum: initially training on “easy” samples, gradually in-

tegrating more challenging ones while automatically weighting samples by recon-

struction loss. This approach ensures outliers do not skew the training, resulting

in impressive generalization and outperforming many supervised methods across

diverse datasets, including benchmarks like MorPH and LMA [6]. The primary

strength of SPL-MAD lies in its open-set detection capability, not presuming

knowledge of specific attack styles. However, it requires meticulous training on

ideally morph-free datasets, as hidden morphs could undermine its effectiveness.

Additionally, subtle morphs resembling bona fide faces might evade detection.
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Despite these limitations, SPL-MAD marked a significant step towards general

solutions and set the groundwork for diffusion-based methods.

Building upon this foundation, Ivanovska and Štruc (2023) proposed MAD-

DDPM, a one-class approach utilizing Denoising Diffusion Probabilistic Models

(DDPMs) [40]. MAD-DDPM trains a diffusion autoencoder exclusively on bona

fide images, capturing their manifold. During inference, high reconstruction er-

ror or low likelihood indicates morph images as out-of-distribution. Evaluations

on CASIA-WebFace (training) and FRLL-Morphs, FERET-Morphs, and FRGC-

Morphs (testing) showed that MAD-DDPM achieved competitive or superior de-

tection rates compared to supervised models, particularly excelling at detecting

diffusion-based morphs (e.g., MorDIFF ), leveraging its inherent diffusion mod-

eling strength [40]. Despite outstanding performance, its high computational

cost and susceptibility to falsely flagging other anomalies (e.g., heavy makeup

or plastic surgery) remain limitations. Nevertheless, MAD-DDPM currently rep-

resents state-of-the-art unsupervised MAD, significantly lowering Equal Error

Rates (EERs).

Beyond pure one-class approaches, some works have pursued disentanglement

and self-supervision to improve generalization. Neto et al. (2022) introduced Or-

thoMAD, emphasizing orthogonal identity disentanglement through a novel reg-

ularization term integrated into a ResNet-18 classifier [11]. OrthoMAD produces

two latent vectors per face image, ideally encoding identical information for bona

fide images, thus making orthogonality challenging. Conversely, morphs contain-

ing multiple identities are encouraged to generate distinct orthogonal vectors.

Tested across five morph types in FRLL datasets, OrthoMAD achieved superior

APCER/BPCER performance, especially for StyleGAN2 and OpenCV morphs,

benefiting from simplicity and computational efficiency compared to autoencoder-

based approaches. However, its orthogonality assumption might falter with highly

skewed morph blends, and care must be taken to avoid false positives in bona fide

images. Nevertheless, OrthoMAD effectively integrates face recognition knowl-

edge directly into MAD tasks, providing an accessible and practical solution.

Similarly focusing on identity disentanglement, Caldeira et al. (2023) intro-

duced IDistill, an interpretable method explicitly separating identities present in

morphs using a two-part model [13]. An initial autoencoder separates identity
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features into distinct latent vectors, subsequently distilled into a classifier network

determining morph presence based on identity vector distances or orthogonality.

IDistill achieved state-of-the-art results on multiple datasets, outperforming or

remaining competitive with prior methods. Its interpretability allows potential

identification of individuals in morphs, progressing towards demorphing or accom-

plice identification. However, IDistill demands a robust face recognition backbone

and may struggle with balanced morph blends. Despite these challenges, its bal-

anced performance and interpretability, evaluated on public datasets and openly

available for reproducibility, highlight a meaningful advancement in MAD re-

search.

Lastly, Ivanovska et al. (2025) proposed SelfMAD, a self-supervised frame-

work generating simulated morph-like artifacts during training, negating the need

for actual morph supervision [1]. This approach encourages learning generic

morph cues rather than specific attack types, dramatically improving generaliza-

tion. SelfMAD achieved groundbreaking results, significantly reducing detection

errors (EER) by over 64% compared to previous unsupervised methods and by

66% versus leading supervised methods in cross-dataset scenarios. The success of

SelfMAD underscores the effectiveness of leveraging unlabeled data and synthetic

perturbations, aligning with contemporary trends emphasizing methods resilient

to evolving morphing techniques without exhaustive morph galleries.

Apart from the mentioned approaches, one thread of MAD research lever-

ages the observation that morphing processes often degrade certain image quality

measures. By treating morph detection as an image quality assessment problem,

these methods avoid explicit supervised training on morphs; instead, they exploit

Face Image Quality Assessment (FIQA) [41, 42, 43, 44] or general Image Qual-

ity Assessment (IQA) [45, 46, 47, 48, 49, 50] scores to distinguish morphs from

bona fide images. Fu and Damer (2022) conducted an extensive study in this

direction [51], examining several unsupervised IQA-based detection techniques.

Among the explored methods is MagFace, a face recognition model developed

by Meng et al. (2021) that inherently provides a face quality score based on

the magnitude of the embedding alongside its identity embeddings [41]. In the

context of MAD, MagFace’s quality scores tend to be lower for morphed im-

ages than for genuine ones [51]. Intuitively, a morph, representing an averaged
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or blended face, is less tightly clustered around any single identity, resulting in

embeddings with lower utility for recognition, which MagFace captures through

reduced embedding magnitudes. Fu and Damer found MagFace scores provided

effective separability between bona fide images and morph attacks across various

datasets and morph types [51]. For instance, on the MorGAN dataset, Mag-

Face achieved Attack Presentation Classification Error Rates (APCER) of ap-

proximately 0.61–0.66 for both GAN-based and landmark-based morphs, despite

these being relatively high error rates in absolute terms [51]. On the LMA-DRD

print-scan set, MagFace similarly outperformed other quality metrics, indicating

robust detection even after image degradation [51]. Overall, MagFace as an un-

supervised detector achieved accuracy exceeding 70% in distinguishing morphs

within mixed-dataset evaluations [51]. The primary strength of MagFace lies

in its generalization ability, given that it was not explicitly trained for morph

detection, yet successfully generalizes quality assessments to unseen morphing

attacks, particularly GAN-based morphs. However, a limitation arises with sub-

tler landmark-based morphs, which occasionally preserve higher facial utility and

may evade detection.

Another promising approach explored by Fu and Damer is CNNIQA, a no-

reference IQA CNN originally proposed by Kang et al. (2014) [45], which pre-

dicts quality scores based on local image patches [45]. In morphing attack de-

tection, inverted IQA scores (i.e., interpreting lower quality as indicative of a

morph) effectively signal morphing artifacts such as ghosting or double edges

in facial features [51]. CNNIQA proved highly sensitive to local distortions,

making it particularly suitable for detecting subtle inconsistencies introduced

by morphing processes. Fu and Damer demonstrated that CNNIQA performed

exceptionally well on landmark-based morphs, thereby complementing the capa-

bilities of MagFace [51]. Specifically, on datasets like FRLL-Morphs and FER-

ET/FRGC morphs, which predominantly feature landmark-based morphs, CN-

NIQA achieved among the lowest Average Classification Error Rates (ACER),

frequently below 0.30 at a threshold of 20% Bona Fide Presentation Classifica-

tion Error Rate (BPCER) [51]. The combination of MagFace and CNNIQA was

suggested as an effective fusion approach to comprehensively detect both GAN-

based and landmark-based morph attacks [51].

CNNIQA’s primary advantage lies in its independence from face labels and
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morph-specific training, solely relying on evaluating the naturalness of image

quality. However, this method has a notable limitation in its potential to mis-

classify genuine images affected by benign degradations such as poor lighting

or compression artifacts, interpreting them erroneously as morph traces. Thus,

calibration of IQA-based methods may be necessary to mitigate false positives

stemming from genuine images of lower quality. Nonetheless, unsupervised qual-

ity metrics like MagFace and CNNIQA have demonstrated generalized detection

accuracies exceeding 70%, supporting the concept that morphing processes inher-

ently leave detectable quality footprints. Such methods offer baseline detection

capabilities without requiring morph-specific training data, proving valuable in

real-world scenarios where novel morphing techniques continually emerge.

2.4.3 Foundation Models and Multimodal MAD

As the face morphing arms race continues, researchers have begun exploring large

pre-trained foundation models and multimodal AI to push the envelope in MAD.

Foundation models like CLIP (Contrastive Language–Image Pre-training) encode

extremely rich, generic visual features by training on huge image datasets with

natural language supervision. Such models demonstrate remarkable zero-shot

generalization to new tasks and domains [4].

Caldeira et al. (2025) [4] recognized this potential and proposed MADa-

tion, the first adaptation of a vision–language foundation model for morph detec-

tion [4]. Their approach fine-tunes CLIP’s image encoder with lightweight LoRA

(Low-Rank Adaptation) layers and a simple classification head for MAD, rather

than training a CNN from scratch [4]. The intuition is that CLIP’s broad visual

knowledge (e.g., understanding of faces, textures, anomalies) confers a strong

starting point, which can be adapted to detect morph-specific anomalies with

relatively few parameters. Indeed, MADation achieved competitive results with

state-of-the-art detectors, even surpassing them in some cross-evaluation scenar-

ios [4]. This is notable because it suggests that a small amount of task-specific

fine-tuning on a foundation model can yield generalization comparable

to specialized methods.

Alongside vision foundation models, researchers have also looked at multi-
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modal large language models (LLMs) for MAD. Zhang et al. (2025) [10] presented

a zero-shot approach using GPT-4 Vision, essentially prompting a multimodal

LLM to act as a morph detector by providing image inputs and questions [10].

Surprisingly, they found that a powerful LLM with vision capability (without any

fine-tuning on morph data) could achieve respectable accuracy in distinguishing

morphs, while also providing a textual explanation of its decision [10]. This “AI

judge” approach highlights the incredible generalization of foundation models: a

system like ChatGPT (vision-enabled) has implicitly learned about face realism

versus artifacts through its vast training data [10]. As a result, it can detect

anomalies in a face image that correlate with morphing, despite never being

trained for that task, and even articulate the reasoning (e.g., “the image has two

sets of eyebrows, indicating a blend”). Such capabilities combine robustness and

explainability, two facets that traditional MAD solutions often lack [10].

In summary, the field of Morphing Attack Detection (MAD) has evolved sig-

nificantly, moving from initial methods based on handcrafted features and im-

age quality analysis to more sophisticated deep learning techniques. Supervised

models, such as MixFaceNet-MAD [21], and PW-MAD [5], demonstrated strong

performance but often struggled with generalization, overfitting to the specific

morphing techniques they were trained on. This led to the development of un-

supervised and self-supervised approaches like SPL-MAD [6] and SelfMAD [1],

which improved robustness by learning to detect anomalies without requiring

labeled morph examples.

More recently, the focus has shifted towards leveraging large-scale, pre-trained

foundation models. Approaches like MADation [4], which adapts the CLIP

vision-language model, and preliminary studies using GPT-4 [10], have shown

that these generalist models possess latent forensic capabilities. They have

achieved competitive results, suggesting a new paradigm where broad visual

knowledge can be adapted for specialized security tasks, addressing the critical

challenge of generalization against new and unseen morphing attacks.

However, even these state-of-the-art detectors face an ongoing arms race,

where their accuracy is challenged by every new morphing technique, such as

those based on advanced GANs [26, 52] and diffusion models [29, 25]. Fur-

thermore, early research into foundation models for MAD has often relied on
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closed-source systems or narrowly scoped studies.

This master’s thesis builds directly on these pioneering efforts, positioning

itself at the forefront of foundation-model-based MAD. We address the limita-

tions of prior work by systematically evaluating open-source Multimodal Large

Language Models (MLLMs) for morph detection. Our contribution extends the

current paradigm in three key ways: first, by developing a structured prompt

engineering framework to unlock and guide the inherent forensic abilities of these

models; second, by exploring parameter-efficient fine-tuning (LoRA) [16] to spe-

cialize these general-purpose models for morph detection; and third, by providing

a comprehensive benchmark against traditional and state-of-the-art methods. In

doing so, this work aims to advance morph detection beyond prior studies by en-

hancing accuracy, ensuring interpretability, and improving resilience to unknown

attacks through the adaptable power of MLLMs.
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3 Methodology

3.1 Approach Overview

Our study comprises two major experimental pipelines: (i) zero-shot prompting,

where we evaluate off-the-shelf multimodal LLMs on the morph detection task

without additional training, and (ii) LoRA fine-tuning, where we adapt one model

on a custom training set and then evaluate it. In both cases, we conduct image-

only single-image morphing attack detection (S-MAD), i.e., the detector analyzes

each image in isolation, with no reference image for comparison. This setting

reflects the practical scenario of detecting a morph from a single submitted photo,

and it is more challenging than differential MAD (which has a live reference

capture).

The zero-shot pipeline involves designing a prompt, that would be appropri-

ate for all evaluated models (see Section 3.3) and capturing their raw textual

outputs on a suite of test images, followed by post-processing and metric compu-

tation. The fine-tuning pipeline involves training lightweight LoRA adapters on

a balanced morph/non-morph dataset (see Section 3.4) and then evaluating the

tuned model. All steps operate on single facial images only, emphasizing that our

system does not rely on any paired or differential inputs.

3.2 Multimodal LLMs

We evaluate four multimodal large language models (LLMs) that accept images

as input. All are open or research-access models smaller than GPT-4, chosen to

23
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represent the current state-of-the-art in vision-language foundation models and

to explore a range of model sizes.

Gemma-3 27B Vision [53]. A 27-billion-parameter multimodal model re-

leased by Google DeepMind (Apache 2.0 license) [54]. Gemma-3 uses a ViT-

L (Vision Transformer Large) as its image encoder, fused with a Mixture-

of-Experts text transformer. It supports a long context (up to 128k to-

kens) and is instruction-tuned for both image and text inputs. We included

Gemma-3 for its state-of-the-art performance on vision-language tasks and be-

cause its open checkpoint allows efficient fine-tuning with LoRA. (We used the

google/gemma-3-27b-it checkpoint from HuggingFace, 2025-01 version [17], for

all experiments.)

Qwen2.5-VL 32B [55]. A 32-billion-parameter vision-language model in the

Qwen series from Alibaba, licensed under Apache 2.0. The version used is

Qwen/Qwen2.5-VL-32B-Instruct from HuggingFace [18], featuring a native

dynamic-resolution ViT trained from scratch, window attention, and dynamic

resolution processing to efficiently handle images and long-form video inputs

with second-level temporal localization and precise object grounding via bounding

boxes or points [55]. This instruction-tuned “chat” variant supports multi-round

image-based dialogue and excels at fine-grained tasks such as OCR, document

parsing, chart/table comprehension, and diagram understanding. It represents a

flagship scale model in the series and demonstrates state-of-the-art performance

on multimodal comprehension benchmarks, particularly in visual question an-

swering and structured data extraction [55].

Llama-4-Scout 17B [19]. A multimodal model from Meta’s Llama 4 fam-

ily (Llama Community License), featuring 17 billion active parameters with 16

mixture-of-experts, totaling 109 billion parameters, and offering an industry-

leading 10 million token context window for long-form vision-language rea-

soning. “Scout” is trained from scratch, supports native early-fusion multi-

modal inputs, and excels in grounded image understanding, captioning, vi-

sual question answering, and document comprehension across 12 languages.
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We included a quantized variant of Llama-4-Scout to represent a high-

efficiency mid-size multimodal LLM, evaluating whether such a compact, quan-

tized model can perform well in morphing-attack detection. (Checkpoint:

meta-llama/Llama-4-Scout-17B-16E-Instruct, released April 5, 2025; infer-

ence deployment via vLLM quantization for accelerated execution.)

Mistral Small 3.1 24B [20, 56]. A 24-billion-parameter multimodal

model in the Mistral Small 3.1 series from Mistral AI, released under

the Apache 2.0 license (March 17, 2025). This instruction-tuned variant

(mistralai/Mistral-Small-3.1-24B-Instruct-2503) supports both text and

vision inputs and extends context length up to 128k tokens while maintain-

ing top-tier text performance [20]. It excels at multimodal reasoning, docu-

ment and image understanding, multilingual tasks across dozens of languages,

agent-like function calling, and fast inference even on a single RTX 4090 or

a 32 GB-RAM Mac. On multimodal instruct benchmarks (e.g., ChartQA,

DocVQA, MM-MT-Bench), it delivers performance on par with or exceeding

larger models like Gemma 3, with strong results across vision-heavy tasks such

as OCR and visual question answering (MMMU: ∼ 64%, ChartQA ∼ 86%,

DocVQA ∼ 94%) [56]. We included this model to explore whether a moderately-

sized open model can match larger architectures on visual reasoning and struc-

tured data interpretation, while offering ultra-efficient deployment. (Checkpoint:

mistralai/Mistral-Small-3.1-24B-Instruct-2503, March 2025 release.)

Summary. The four multimodal LLMs selected for evaluation: Gemma-3,

Qwen2.5-VL, Llama-4-Scout, and Mistral Small 3.1, span a diverse spectrum of

architectures, parameter scales, inference efficiency, and licensing openness. This

selection allows us to comprehensively assess the current capabilities and limita-

tions of state-of-the-art multimodal models in morphing attack detection tasks.

By including models that vary in size from moderately sized to large, as well

as exploring quantized inference and long-context support, our evaluation pro-

vides valuable insights into both performance trade-offs and practical deployment

considerations.
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3.3 Prompt Engineering for Zero-Shot Morph Detection

The efficacy of a Multimodal Large Language Model (M-LLM) in a specialized,

zero-shot task like facial morph detection is profoundly dependent on the quality

of its prompt. The prompt serves not merely as a question but as a complex

instruction set that guides the model’s analytical focus, reasoning process, and

output format. Recognizing this, we undertook a systematic prompt engineering

methodology to develop a framework capable of eliciting precise and interpretable

forensic analysis from M-LLMs. Our process evolved from simple classification

queries to a sophisticated, structured analysis prompt designed to quantify sus-

picion rather than merely classifying an image.

3.3.1 Prompt Development and Discovery Process

The development of effective prompts for morphing attack detection followed

an iterative approach driven by performance evaluation and computational con-

straints. Due to the substantial inference times required for multimodal LLM

evaluation (30 seconds per image on average), initial prompt development was

performed on a representative subset of data before full-scale evaluation was per-

formed with promising configurations.

We started by testing OpenCV and StyleGAN morphs from the FRLL

dataset [22], chosen to cover two different cases, as illustrated in Figure 3.1.

OpenCV morphs show more visible artifacts and are therefore easier to detect;

even with “bad” prompts they often get flagged, which lets us track improvements

in prompting even when the harder cases sit near an EER of 50%. StyleGAN

morphs, being GAN-based and more sophisticated, were chosen as an indicator of

the prompt’s potential in a cross-dataset setting. We tested our prompt variants

on each LLM to find those suitable for the final evaluation, since some prompts

worked well on certain models but produced incoherent or unusable responses on

others.

Inspired by prior work in M-LLM prompting for analytical tasks [57] and

Chain-of-Thought (CoT) reasoning [58], we transitioned to more elaborate
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(a) FRLL OpenCV (b) FRLL StyleGAN

Figure 3.1: Representative examples from the two morphing techniques used for

prompt development testing: (a) OpenCV morphs and (b) StyleGAN morphs.

prompts. The core hypothesis was that by instructing the model to perform

a series of analytical steps, we could encourage a more robust reasoning process,

helping it identify subtle inconsistencies that a high-level classification might miss.

This led to the introduction of domain-specific knowledge into the prompts.

We incorporated explicit guidance on which visual artifacts to look for, draw-

ing from established literature on digital image forensics and morphing attack

characteristics [1]. For instance, prompts were enriched with instructions like:

“Scrutinize the image for common morphing artifacts, such as ghosting around

the eyes, unnatural skin texture, and blurred contours at the hairline.”

3.3.2 Development of an Integrated Scoring and Analysis Framework

Our preliminary prompting tests (see Section 5.1.1) indicated a key limitation

in using Multimodal Large Language Models (MLLMs) for classification: the

models struggled to accurately map their visual observations to discrete binary

labels such as “morph” or “bonafide”. To address this and capture more nu-

anced model judgments, a numerical confidence scoring system was developed

and implemented. The initial iteration of this system utilized a 0–100 scale with

a required precision of two decimal places.

However, analysis of the resulting score distributions revealed significant de-

ficiencies in this initial approach. The models exhibited a strong tendency to
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disregard the specified decimal precision, consistently generating round-number

scores (e.g., 10.00, 20.00, 50.00, 80.00). This clustering behavior demonstrated

that the 0–100 scale lacked the necessary resolution to elicit fine-grained confi-

dence assessments. The outputs were interpreted as arbitrary scores rather than

genuine confidence judgments, necessitating a methodological refinement.

To overcome these limitations, a comprehensive, multi-pronged strategy was

engineered. This refined methodology involved the concurrent enhancement of

the scoring mechanism, the formulation of a structured analytical process, and

the enforcement of a standardized output format.

The core of this strategy was the expansion of the confidence range to 0–

10,000. The increased granularity of this scale was designed to eliminate the

previously observed score clustering and enable the model to express more pre-

cise degrees of confidence. To complement this, a semantic mapping framework

was introduced to provide a clear interpretative guide for the numerical scores.

This framework establishes a direct link between the quantitative output and a

qualitative assessment by providing both simplified and detailed semantic descrip-

tions, ranging from basic threshold definitions to comprehensive interpretative

guidelines for forensic analysis.

Example of Semantic Scoring Guides.

A. Simplified Semantic Guide

• 0–1,000: Strong evidence of authentic face.

• 1,000–3,000: Likely authentic with minor irregularities.

• 4,000–7,000: Uncertain, requires careful analysis.

• 7,000–9,000: Likely morphed with moderate evidence.

• 9,000–10,000: Strong evidence of morphing attack.
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B. Detailed Interpretative Guide (Excerpt)

• Score 9,000–10,000 (Very High / Near Certainty): Overwhelming and clear

evidence of morphing. Multiple, strong artifacts are easily identifiable and

create an incoherent image.

• Score 1,000–4,000 (Low to Moderate Suspicion): One or two minor, in-

conclusive artifacts are present (e.g., slight unnatural smoothness, minor

asymmetry). These could potentially be explained by compression, light-

ing, or natural features, but warrant a degree of suspicion.

The culmination of our design process is a comprehensive prompt that inte-

grates guided reasoning, fine-grained scoring, and a structured output format.

This final prompt, used for our primary analysis, is designed to act as a complete

forensic analysis protocol for the M-LLM.

In tandem with these scoring enhancements, a structured, six-step analytical

framework was formulated to guide the models through a systematic forensic

examination. This framework ensured comprehensive analysis by directing the

models to sequentially evaluate core facial features, facial geometry, skin texture,

boundary characteristics, lighting consistency, and overall identity coherence.

• Step 1: Core Facial Feature Analysis: Focuses on high-information

areas like eyes and lips.

• Step 2: Facial Geometry and Symmetry Analysis: Guides attention

to structural coherence.

• Step 3: Skin Texture and Detail Analysis: Probes for unnatural

smoothing or lack of detail.

• Step 4: Boundary and Edge Analysis: Checks for common blending

artifacts at the face perimeter.

• Step 5: Lighting and Color Consistency Analysis: Examines the

physical plausibility of the image.
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• Step 6: Identity Coherence Analysis: A holistic check for whether the

features believably belong to a single individual.

The initial results showed significant performance improvements, which can

be attributed to providing the LLMs with a much clearer task and richer con-

text. Experimental validation revealed strong interdependencies between analyt-

ical components. Systematic removal of individual steps, even those appearing

to contribute minimally, resulted in consistent performance degradation. This

finding established the necessity of comprehensive rather than selective analysis,

with each step contributing to overall detection robustness.

Given the complexity of the multi-step prompts, enforcing a strict output

format became necessary to ensure the model provided coherent, readable, and

machine-parseable results. This standardization was crucial for the systematic

evaluation of the detailed analytical outputs generated by the framework.

3.3.3 Final Prompt Variants

The iterative development process yielded three main prompt configurations rep-

resenting key methodological milestones:

Prompt 1 (Structured Forensic Analysis – Semantic Guide A). Com-

plete six-step protocol with simplified semantic scoring and basic threshold defi-

nitions. Establishes foundational structured approach.

Prompt 2 (Extended Forensic Analysis – Semantic Guide A). Aug-

mented version incorporating additional sub-questions and expanded contextual

instructions. Tests impact of increased complexity.

Prompt 3 (Optimized Forensic Analysis – Semantic Guide B). Refined

implementation featuring detailed interpretative guide, streamlined instructions,

and mandatory reasoning explanations. Represents optimal balance of structure

and efficiency.
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The complete text of all three prompts is provided in Appendices A.1–A.3.

3.4 Gemma-3 12B Fine-Tuning

We fine-tuned the Gemma-3 12B Vision model using LoRA (Low-Rank Adapta-

tion) [16] adapters to specialize it for morph detection. LoRA allows us to inject

a small number of trainable parameters into the frozen pre-trained model, greatly

reducing the memory and data needs for fine-tuning [16]. We chose Gemma-3

for fine-tuning due to its strong zero-shot performance and open model weights.

3.4.1 Self-Supervised attack simulation pipeline

The methodology for constructing the training and validation datasets is central

to this work and is adopted directly from the self-supervised approach detailed

in the SelfMAD paper [1]. This method allows the model to learn generalizable

features of morphing attacks without being trained on any real morphed images,

thereby preventing overfitting to the artifacts of specific morphing techniques.

The entire process relies on using only bona fide images and synthetically intro-

ducing a wide range of artifacts that mimic those found in real-world morphing

attacks, as demonstrated in Figure 3.2.

To create a robust training environment, the bona fide images were processed

through a multi-stage pipeline designed to simulate attacks. This process begins

by first augmenting each bona fide image (IOS) to simulate subtle, real-world

variations in lighting, color, and quality. This step, which produces an augmented

image (IAS), ensures that the model becomes robust to normal photographic

variations. Both the original and augmented images (IOS and IAS) serve as the

“bona fide” class (label 0) during training.

The pipeline then introduces artifacts that mimic morphing attacks. To repli-

cate the ghosting, blurring, and geometric misalignments characteristic of tra-

ditional, landmark-based techniques, the augmented image (IAS) undergoes geo-

metric transformations (e.g., elastic deformation) and is then blended with the

original, non-augmented image (IOS). This blending is guided by a binary mask
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(a) Original bona fide image (b) Synthetically generated attack

Figure 3.2: Self-supervised attack simulation example: (a) Original bona fide im-

age from the training dataset, and (b) the corresponding synthetically generated

attack created through the SelfMAD pipeline, incorporating pixel-level artifacts

(geometric transformations, blending) to simulate morphing attack characteris-

tics without using real morphed images.

corresponding to specific facial regions, concentrating the simulated artifacts in

areas like the eyes and mouth where they are most common. This process yields

a “morphed source” image (IMS) containing localized, pixel-level irregularities.

Finally, to simulate the subtle fingerprints left by advanced generative models,

the pipeline introduces frequency-based artifacts. This is achieved by generating

a random, structured pattern (such as a grid or stripes), converting it to the

frequency domain using a Fast Fourier Transform (FFT), and superimposing its

frequency magnitudes onto the spectrum of the IMS image. An inverse FFT

then transforms the modified spectrum back into a final image (IFMS), which

now contains abnormal frequency patterns not present in pristine images. The

manipulated images from these last two stages (IMS and IFMS) constitute the

“attack” class, which, when trained against the bona fide class, teaches the model

to recognize a broad and generalized set of manipulation features.

The final training dataset for the classifier is composed of the original and

augmented bona fide images (IOS, IAS) as the authentic class, and the pixel-

and frequency-manipulated images (IMS, IFMS) as the attack class, maintaining

a balanced 1:1 ratio. This self-supervised approach forces the model to learn

a rich, generalized understanding of what constitutes a manipulation artifact,

rather than memorizing the quirks of a specific dataset.
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3.4.2 Model Fine-Tuning with Low-Rank Adaptation (LoRA)

While full fine-tuning of large foundation models like Gemma-3 offers a direct

path to adapting them for specific downstream tasks, it is an exceptionally

resource-intensive process. It requires updating all model parameters (in this

case, 12 billion), which not only demands significant computational power and

memory but also results in a new, large set of model weights for each task.

This approach is often infeasible and inefficient. Furthermore, aggressive updates

to the entire model can sometimes lead to “catastrophic forgetting,” where the

model loses some of the powerful, generalized knowledge acquired during its initial

pre-training [59].

To circumvent these challenges, we employ a parameter-efficient fine-tuning

(PEFT) strategy known as Low-Rank Adaptation (LoRA) [16]. LoRA provides

an effective and computationally efficient method for adapting large pre-trained

models by drastically reducing the number of trainable parameters, without in-

troducing any inference latency.

The LoRA Mechanism. The core hypothesis underpinning the LoRA

methodology is that the change in a model’s weights during adaptation to a new

task has a low “intrinsic rank”. This suggests that the weight update matrix,

which represents the difference between the initial pre-trained weights and the

final fine-tuned weights, can be effectively approximated by a low-rank decompo-

sition. Instead of updating the dense, high-dimensional weight matrix directly,

LoRA freezes the original pre-trained weights and injects a pair of small, trainable

“rank decomposition” matrices alongside them.

Formally, for a given pre-trained weight matrix W0 of dimensions d × k, its

update ∆W is represented by two smaller matrices, A (with dimensions r×k) and

B (with dimensions d × r), where the rank r is significantly smaller than d and

k (r j min(d, k)). During the forward pass, the output of the adapted layer is

modified by combining the output of the original frozen weights with the output

of these new low-rank matrices. The modified forward pass can be expressed as

h = W0x+∆Wx = W0x+BAx, (3.1)

as shown in Equation (3.1). Here, W0 is the original pre-trained weight matrix,
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which remains frozen and does not receive gradient updates during training. The

matrices A and B contain the only trainable parameters for this layer. This repa-

rameterization is highly efficient; for a large matrix W0, the number of trainable

parameters is reduced from d × k to r × (d + k). For our implementation with

r = 16, this results in a reduction of trainable parameters by several orders of

magnitude. At the start of training, A is typically initialized with a random

Gaussian distribution, and B is initialized to zero. This ensures that the initial

update

∆W = BA, (3.2)

as shown in Equation (3.2), is zero, so the model’s state at the beginning of the

adaptation process is identical to its pre-trained state.

A scaling factor, ³, is often applied to the low-rank update. In our work, we

follow this practice, and the update is scaled by α

r
. This decouples the learning

rate from the choice of rank and helps stabilize training by controlling the mag-

nitude of the adaptation. After training is complete, the weights can be merged

for deployment by explicitly calculating

W = W0 +
³

r
· B · A, (3.3)

as shown in Equation (3.3), ensuring that no additional parameters or computa-

tional steps are added during inference.

LoRA Implementation for Morphing Attack Detection. In our ap-

proach, we applied LoRA adapters to the Gemma-3 12B model. To ensure a

comprehensive adaptation for the morphing attack detection task, which involves

both visual feature extraction and contextual understanding, LoRA matrices were

injected into key components of the model’s architecture. Specifically, we adapted

the query (q) and value (v) projection matrices in every self-attention layer

of both the vision tower and the entire language model. This follows best practices

from prior work [4], which has shown that adapting the attention mechanism is

a highly effective way to steer a model’s focus toward task-specific features. The

LoRA hyperparameters were set to a rank of r = 16 and a scaling factor of

³ = 32. All LoRA parameters were trained using the AdamW optimizer with

standard ´1 = 0.9, ´2 = 0.999, and ϵ = 1e−8.
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Our approach involves augmenting the Gemma-3 architecture with a dedi-

cated classification head. This head is a simple, fully-connected neural network

layer appended to the final output of the model, which is trained to produce a

two-dimensional output corresponding to the “bona fide” and “morph” classes.

During training, the original weights of the Gemma-3 model were kept frozen,

while the LoRA adapter matrices and the new classification head were trained

concurrently. The entire framework was optimized using the Binary Cross-

Entropy (BCE) loss, a standard loss function for binary classification tasks.

The BCE loss is calculated as

LBCE = − [y · log(p) + (1− y) · log(1− p)] , (3.4)

where y is the ground truth label (0 for bona fide, 1 for morph), and p is the

probability of the sample being a morph, as predicted by the classification head.

To facilitate stable and effective training, we employed a differential learning rate

scheme. A very low learning rate of 6e−6 was used for the vision tower and 3e−7

for the language model, ensuring that the powerful, pre-trained backbone was

updated delicately. A much higher learning rate of 1e−4 was used for the small,

randomly-initialized classification head, allowing it to learn the classification task

rapidly from scratch.

In summary, the adaptation of the Gemma-3 model was accomplished using

the parameter-efficient LoRA framework. This strategy was chosen to effectively

retarget the model’s pre-trained knowledge towards the specialized task of mor-

phing attack detection while avoiding the prohibitive costs and risks of full fine-

tuning. The application of LoRA was comprehensive, targeting the self-attention

mechanisms across both the vision and language components. This methodol-

ogy allows for a comprehensive analysis of how a large foundation model can be

best adapted for this specific security application. The empirical results of this

adaptation, detailing the performance on the designated evaluation datasets, are

presented in the subsequent chapter.
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4 Experiments

This chapter presents a comprehensive empirical evaluation of multimodal large

language models for face morphing attack detection, encompassing zero-shot per-

formance assessment, prompt engineering optimization, LoRA fine-tuning, and

comparative analysis against established baseline methods. The evaluation ex-

amines four state-of-the-art multimodal LLMs across eight diverse datasets using

standardized ISO/IEC 30107-3 metrics [60] to assess detection capabilities and

practical deployment considerations.

4.1 Datasets

A number of specialized datasets have been created to train and evaluate MAD

algorithms, each with different morph generation techniques and evaluation pro-

tocols. We summarize the most prominent public datasets below, including their

creation methods and relevance.

4.1.1 Evaluation Dataset Overview

Our comprehensive evaluation employs eight specialized datasets represent-

ing diverse morphing generation techniques and evaluation protocols. These

datasets are organized into two categories based on their usage: primary evalu-

ation datasets used exclusively for testing model performance, and dual-purpose

datasets that serve both evaluation and baseline training according to the proto-

col used by SPL-MAD [6].

37
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4.1.1.1 Primary Evaluation Datasets

The following datasets were used exclusively for evaluation of our proposed meth-

ods and serve as the primary benchmarks for assessing morphing attack detection

performance across different morphing techniques and imaging conditions.

FRGC-Morphs: The Face Recognition Grand Challenge Morphs dataset con-

tains morphs generated from the FRGC v2 face dataset[23] [61], as illustrated

in Figure 4.2. Researchers created this by pairing subjects with similar appear-

ance and producing morphs using OpenCV, FaceMorpher, and StyleGAN2 for

each pair. In total, FRGC-Morphs provides 964 morphed images covering those

three techniques. The dataset’s structure is organized for vulnerability analysis

of face recognizers: it includes scripts to integrate with the original FRGC data

and defines protocols for using morphs as either gallery or probe images in verifi-

cation tests. For MAD research, FRGC-Morphs serves as a standard evaluation

set, especially to assess performance on GAN-based vs classical morphs. It was

used in studies like Sarkar et al. (2020) [61], which examined how GAN-morphs

(MorGAN) compare to landmark morphs in fooling FR systems. Although distri-

bution of FRGC-Morphs has been suspended (per Idiap), it remains referenced in

literature and the statistics (number of morphs and types) are often reported [61].

Together with FERET-Morphs and FRLL-Morphs, it forms a triad of benchmark

datasets each with around one thousand morphed images representing multiple

generation algorithms.

FRLL-Morphs: The Face Research Lab London Morphs dataset was derived

from high-quality frontal face images of the FRL London database [22][61][62], as

shown in Figure 4.2. It contains morphs created by five distinct techniques: Style-

GAN2 morphs (GAN-based blending)[52], WebMorph (landmark-based web tool)

[63], AMSL (an open-source landmark-based method from Hochschule Darm-

stadt) [64], FaceMorpher (another automated morphing software), and OpenCV

(classical image warping using facial landmarks), three of which are illustrated in

Figure 4.1. Each technique subset includes 1,222 morphed images and a smaller

set of 204 bona fide images. Notably, FRLL-Morphs does not provide a predefined

train-test split – it is generally used for evaluation only (to test generalization)
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(a) OpenCV morph (b) FaceMorpher morph (c) WebMorph morph

Figure 4.1: Landmark-based morphing techniques from FRLL dataset: (a)

OpenCV morphs using Delaunay triangulation with visible geometric artifacts,

(b) FaceMorpher morphs with automated blending algorithms, and (c) Web-

Morph morphs created through web-based landmark detection, all exhibiting

characteristic pixel-level artifacts such as ghosting and texture discontinuities.

because all images come from the same source set and the total number of iden-

tities is limited. FRLL-Morphs is a crucial benchmark because it offers a wide

variety of morphing approaches under consistent image conditions (studio-quality

images, controlled pose), enabling researchers to assess how detectors perform on

different morph types[11].

MIPGAN-II. The MIPGAN-II dataset was created by Zhang et al. using

face images from the FRGC-V2 database, containing morphs generated from 140

unique subjects (47 female, 93 male) with each subject contributing 7–21 addi-

tional samples for a total of 1,270 bona fide images [23, 26]. The MIPGAN-II

technique generates high-resolution (1024 × 1024) morphed images, as shown in

Figure 4.3, using StyleGAN2 architecture with a customized loss function in-

corporating perceptual quality, identity factors, and structural similarity mea-

sures [52, 26]. The approach differs from MIPGAN-I by utilizing the improved

StyleGAN2 foundation, resulting in enhanced image quality and reduced arti-

facts [52, 26]. The dataset includes 1,751 MIPGAN-II morphed images alongside

the corresponding bona fide samples, evaluated across three conditions: dig-

ital images, print-scanned images (using DNP-DS820 dye-sublimation printer

and Canon office scanner at 300 dpi), and print-scanned images compressed to

15kb [26]. The morphing process employs identity-prior driven optimization with
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(a) FRLL (b) FRGC (c) FERET

Figure 4.2: Dataset diversity across bona fide sources: (a) FRLL provides high-

quality frontal studio conditions, (b) FRGC offers more varied backgrounds and

illumination, and (c) FERET represents legacy image characteristics as well as

more diverse demographics, enabling comprehensive cross-dataset generalization

assessment.

weighted linear averaging of latent vectors from contributing subjects, followed

by synthesis network generation and multi-component loss function optimiza-

tion [26]. This dataset has demonstrated high attack success rates against both

commercial and deep learning-based face recognition systems across different op-

erational scenarios [26].

FERET-Morphs: This dataset is built from the older FERET face

collection[24], as shown in Figure 4.2, by selecting look-alike pairs and gener-

ating three types of morphs per pair [61][62]. The morphing tools used are the

same trio as in FRGC-Morphs (OpenCV, FaceMorpher, StyleGAN2). Sarkar et

al. (2022) introduced FERET-Morphs to complement FRGC-Morphs in evaluat-

ing vulnerability to GAN-based vs landmark-based morphs[62]. FERET-Morphs

contains 529 morphed images (for each technique), somewhat smaller in scale

than FRGC, owing to the number of suitable pairs available in FERET [51]. Like

FRGC/FRLL, it is usually used in conjunction with its source dataset for anal-

ysis and does not have a dedicated train/test split. The importance of FERET-

Morphs lies in its inclusion of older image data and demographics, helping test de-

tectors on different image qualities and distribution than FRLL or FRGC [65][51].
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MorDIFF. MorDIFF was introduced by Damer et al. (2023) to investigate the

potential of diffusion autoencoders for creating representation-level face morphing

attacks, addressing the limitations of GAN-based approaches in reconstruction

fidelity and identity preservation [29]. Built upon the Face Research Lab Lon-

don (FRLL) dataset [22], MorDIFF extends the SYN-MAD 2022 competition

dataset by using identical morphing pairs to enable direct comparison with ex-

isting techniques [3].

The dataset employs a novel diffusion-based morphing approach that inter-

polates both semantic and stochastic latent representations: linear interpolation

(Lerp) for semantic features and spherical linear interpolation (SLerp) for stochas-

tic components [66, 67], before decoding the combined latent code through a con-

ditional diffusion probabilistic model [68, 69]. MorDIFF contains 1,000 morphing

attack images generated from 1,000 carefully selected pairs (250 each for female

neutral, female smiling, male neutral, and male smiling expressions) alongside

204 bona fide images from FRLL. Pair selection utilized ElasticFace-Arc embed-

dings [70] with cosine similarity matching within gender and expression splits to

identify the most similar faces.

Vulnerability analysis demonstrated that MorDIFF attacks achieve signifi-

cantly higher Mated Morph Presentation Match Rates (MMPMR) than existing

GAN-based representation-level morphs (MIPGAN I/II [26]), with performance

approaching that of traditional image-level morphing techniques while exhibit-

ing superior visual quality and reduced generation artifacts, as demonstrated

in Figure 4.3. The dataset represents a critical advancement in understanding

next-generation morphing threats, as diffusion-based attacks combine the identity

preservation strength of image-level morphs with the artifact reduction benefits

of representation-level techniques.

Greedy-DiM. Greedy-DiM morphs were created by Blasingame et al. using

diffusion-based morphing with greedy optimization strategies [25]. Built from the

SYN-MAD 2022 competition dataset [3], which derives from the Face Research

Lab London (FRLL) dataset containing 102 individuals with high-quality frontal

images under neutral lighting conditions [22], the dataset employs 489 bona fide

image pairs (reduced from 500 due to technical issues). Pair selection was con-
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ducted using the ElasticFace face recognition system [70], identifying the top 250

most similar pairs for each gender based on cosine similarity.

The dataset includes morphs generated using two variants: Greedy-DiM-S

(greedy search strategy) and Greedy-DiM* (greedy optimization strategy), both

leveraging diffusion models with iterative sampling processes guided by identity-

based heuristic functions [25]. In this study, we utilized the Greedy-DiM variant

for evaluation, as illustrated in Figure 4.3.Greedy-DiM* achieves optimization

through gradient descent on noise predictions at each timestep, requiring only 270

Network Function Evaluations (NFEs) compared to 2,350 for competing methods

like Morph-PIPE [30].

The approach demonstrated unprecedented attack effectiveness, achieving

100% Mated Morph Presentation Match Rate (MMPMR) across ArcFace [71],

AdaFace [72], and ElasticFace recognition systems. Images are processed at

256 × 256 resolution with alignment and cropping following the preprocessing

pipeline of the FFHQ dataset [73], making this dataset particularly significant

for evaluating next-generation diffusion-based morphing attacks that consistently

outperform both landmark-based and GAN-based methods.

(a) MIPGAN-II (b) Greedy-DiM (c) MorDIFF

Figure 4.3: Advanced morphing techniques in evaluation datasets: (a) MIPGAN-

II represents sophisticated GAN-based synthesis with identity-aware optimiza-

tion, (b) Greedy-DiM demonstrates cutting-edge diffusion-based morphing with

exceptional seamlessness, and (c) MorDIFF illustrates diffusion autoencoder in-

terpolation approaches.
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4.1.1.2 Dual-Purpose Datasets

These datasets served a dual role in our evaluation framework: as test sets for

performance assessment and as training data for supervised baseline implemen-

tations (PW-MAD [5], MixFaceNet-MAD [21], Inception-MAD [5]) following the

cross-dataset evaluation protocol established in SPL-MAD [6].

MorGAN. MorGAN was introduced by Damer et al. (2018) as the first com-

prehensive evaluation framework for GAN-based representation-level face mor-

phing attacks, representing a paradigm shift from traditional landmark-based

approaches to deep learning-generated morphs [27]. Built upon the CelebA

dataset [74] with extensive filtering to ensure ICAO-compliant frontal face im-

ages [75], MorGAN employs a novel generative adversarial network (GAN) ar-

chitecture that combines encoder–decoder components with adversarial training

to achieve superior identity preservation.

The dataset contains 1,000 MorGAN attacks, 1,000 landmark-based morph-

ing (LMA) attacks for comparison, 1,500 bona fide reference images (500 key

references and 1,000 secondary references), and 1,500 corresponding probe im-

ages, totaling 5,000 images across identity-disjoint train and test splits [27], as

exemplified in Figure 4.4. The MorGAN approach performs morphing in latent

space by encoding source images, linearly interpolating their representations with

´ = 0.5, and decoding the result through a generator enhanced with pixel-wise

reconstruction loss (³ = 0.3) to preserve facial identity information [27].

Despite technical limitations requiring 64 × 64 pixel resolution, vulnerability

analysis demonstrated that MorGAN attacks successfully compromise face recog-

nition systems while exhibiting different detectability characteristics compared to

traditional morphing methods [27]. The dataset’s significance lies in pioneering

representation-level morphing attacks and establishing the foundation for GAN-

based face morphing research, highlighting the evolving threat landscape that

detection systems must address.
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(a) MorGAN-GAN (b) MorGAN-LMA (c) Bona fide

Figure 4.4: MorGAN dataset comparison at original resolution (64×64 pixels):

(a) GAN-based morph created through encoder-decoder architecture with latent

space interpolation, (b) landmark-based morph (LMA) using traditional geomet-

ric warping for direct comparison, and (c) genuine bona fide image.

LMA-DRD. LMA-DRD (Digital and Re-digitized Landmark-based Morph

Dataset) was created by Damer et al. (2021) to address the critical gap in evaluat-

ing morphing attack detection performance on re-digitized images, which reflects

real-world passport issuance scenarios where printed photos are scanned [5]. Built

from the VGGFace2 dataset [76], LMA-DRD contains carefully filtered frontal

face images meeting International Civil Aviation Organisation (ICAO) travel doc-

ument requirements [77]. The dataset employs landmark-based morphing tech-

niques following the pipeline described in [78], pairing 197 key images with their

most similar counterparts based on OpenFace similarity measurements [79].

LMA-DRD provides 276 digital morphing attacks (D-M) and 364 digital bona

fide images (D-BF), with corresponding re-digitized versions (PS-M and PS-BF)

created through professional printing on glossy photo paper and scanning at 600

dpi, as shown in Figure 4.5. The dataset is organized into identity-disjoint train,

development, and test splits to prevent evaluation bias. Vulnerability analysis

using ResNet-100 ArcFace [71] demonstrates high Mated Morph Presentation

Match Rates (MMPMR) of 91.30% for digital attacks and 88.41% for re-digitized

attacks at 1.0% FMR (as recommended for border check operations [80]) [5].

LMA-DRD ’s unique contribution lies in its systematic investigation of the

print-scan degradation effect on morphing attack detection, making it essential

for evaluating detector generalization to real-world deployment scenarios where

physical document processing introduces additional artifacts and challenges.
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(a) LMA-DRD Digital (b) LMA-DRD Print-Scan

Figure 4.5: LMA-DRD dataset examples: (a) Digital morphing attack from the

LMA-DRD Digital subset, and (b) corresponding print-scan version from the

LMA-DRD Print-Scan subset, demonstrating how the physical printing and scan-

ning process affects the image.

4.1.2 Training Dataset Overview

The SMDD dataset served distinct training roles for different model categories in

our evaluation framework, requiring different data utilization strategies based on

the underlying training methodology.

4.1.2.1 Supervised Baseline Training

For supervised baseline implementations (PW-MAD [5], MixFaceNet-MAD [21],

Inception-MAD [5]), the complete SMDD dataset was utilized following conven-

tional supervised training protocols, employing both original morphed images and

bona fide samples with explicit binary labels.

SMDD. SMDD (Synthetic Morphing Attack Detection Development) was in-

troduced by Damer et al. (2022) as the first synthetic-based biometric attack

detection dataset, addressing critical legal and privacy challenges associated with

using real biometric data for MAD development under GDPR regulations [28].

Generated using StyleGAN2-ADA [81] trained on the Flickr-Faces-HQ (FFHQ)

dataset [73], SMDD begins with 500,000 randomly generated synthetic face im-

ages from Gaussian noise vectors, which are subsequently filtered to the highest-
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quality 50,000 samples using CR-FIQA quality assessment [82] to remove extreme

poses and occlusions.

The dataset employs a systematic construction methodology where 25,000

images serve as bona fide samples, while 5,000 key morphing images are each

paired with five randomly selected images from the remaining 20,000 samples,

creating 25,000 morphing pairs to maximize training diversity rather than at-

tack strength [28]. Morphing attacks are generated using the widely adopted

OpenCV /dlib landmark-based algorithm with Delaunay triangulation [83, 84],

followed by manual quality filtering to remove artifacts, resulting in 15,000 high-

quality morphing attacks. The complete dataset provides 40,000 training samples

(25,000 bona fide + 15,000 attacks) and 40,000 evaluation samples with identical

composition, totaling 80,000 images across identity-disjoint splits.

SMDD ’s groundbreaking contribution lies in demonstrating that privacy-

friendly synthetic data can successfully train MAD systems that generalize ef-

fectively to unknown real-world morphing techniques, potentially revolutionizing

biometric security research by eliminating the legal, ethical, and scalability con-

straints of real biometric data usage.

4.1.2.2 LoRA Fine-Tuning Data

Our Gemma-3 12B LoRA adaptation employed exclusively the bona fide subset

of SMDD (25,000 images), implementing a self-supervised framework inspired by

SelfMAD [1] to synthetically generate morphing artifacts during training, elimi-

nating dependence on pre-existing morphed samples.

Self-Supervised Artifact Generation Following the SelfMAD methodol-

ogy [1], the training process simulates morphing artifacts through a three-stage

pipeline: (i) image augmentation applying color, brightness, and quality varia-

tions; (ii) pixel-artifact generation using geometric transformations and blending

to replicate landmarks-based morphing irregularities; and (iii) frequency-artifact

generation superimposing structured patterns in the frequency domain to simu-

late GAN and diffusion-based morphing fingerprints.
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This approach enables the model to learn generalizable morphing detec-

tion features without overfitting to specific attack techniques, as demonstrated

by SelfMAD’s superior cross-dataset generalization compared to supervised ap-

proaches [1]. The synthetic artifact generation produces both pixel-space and

frequency-space irregularities, allowing classification of genuine images (original

and augmented) versus manipulated samples (pixel and frequency artifacts) with

a balanced 1:1 ratio.

4.1.3 Image Preprocessing

Our experimental framework required distinct preprocessing approaches for dif-

ferent evaluation scenarios, reflecting the varied requirements of baseline compar-

ison methods, zero-shot multimodal LLM evaluation, and fine-tuning procedures.

This section details the three preprocessing pipelines employed to ensure appro-

priate data preparation for each experimental condition.

Baseline Models Preprocessing. For benchmark training and evaluation of

classical MAD methods, we adhered to the preprocessing specifications estab-

lished in the original publications to ensure fair comparison and reproducibility.

Each baseline method utilized its documented preprocessing requirements, in-

cluding specific image resolution standards, normalization procedures, and aug-

mentation strategies as reported in their respective papers. Supervised methods

such as MixFaceNet-MAD, Inception-MAD, and PW-MAD were trained

using their published preprocessing pipelines [21, 5], with images resized to model-

specific dimensions and normalized according to their training protocols. Unsu-

pervised approaches including SPL-MAD and MAD-DDPM employed their

original preprocessing configurations [6, 40] to maintain consistency with reported

performance metrics.

Zero-Shot Multimodal LLM Preprocessing. For zero-shot evaluation of

multimodal large language models, we provided raw images to leverage each

model’s native preprocessing capabilities, allowing their built-in processors to

handle format conversion and optimization. Gemma-3 27B Vision employs a
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SigLIP vision encoder operating on fixed 896 × 896 square images, utilizing a

“Pan&Scan” algorithm to handle different aspect ratios and high resolutions by

adaptively cropping and resizing images [54, 85]. Qwen2.5-VL 32B supports

dynamic resolution inputs with configurable min pixels and max pixels param-

eters (default: min pixels = 256× 28× 28, max pixels = 1280× 28× 28), with

dimensions rounded to the nearest multiple of 28 [18]. Llama-4-Scout 17B [19]

incorporates early fusion for native multimodality through its AutoProcessor,

handling various input formats including image URLs and base64-encoded im-

ages [19]. Mistral Small 3.1 24B utilizes the mistral common library with

vLLM processing, supporting multimodal input through ImageURLChunk and

TextChunk components while requiring base64 format for certain API configura-

tions [56, 86]. This approach ensured that each model operated under its optimal

preprocessing conditions without introducing artifacts from manual preprocessing

steps.

Gemma-3 Fine-Tuning Preprocessing. For LoRA fine-tuning experiments

with Gemma-3 [54], we implemented a sophisticated preprocessing pipeline

specifically designed for morphing attack detection training. Images were pro-

cessed at 896× 896 pixel resolution to match the SigLIP vision encoder require-

ments [85]. The pipeline incorporated a multi-stage synthetic attack generation

system that created both genuine and manipulated training examples from the

SMDD dataset [28]. Self-blending techniques applied geometric transformations,

color space modifications, and statistical averaging effects to simulate morphing

artifacts. Frequency-domain enhancements introduced spectral artifacts through

Fourier transform manipulation, while extensive data augmentation included hor-

izontal flipping, random cropping with variable margins, color space perturba-

tions, and JPEG compression simulation. Images underwent normalization using

SigLIP-compatible parameters, with pixel values scaled to the [0, 1] range and

subsequently normalized with means and standard deviations of [0.5, 0.5, 0.5].

The preprocessing concluded with tokenization using structured prompts that

established forensic analysis context, with sequences padded to accommodate the

model’s 2048 token limit.
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4.1.4 Dataset Partitioning

To maintain experimental integrity, we implemented a carefully structured

dataset partitioning approach that accommodates multiple training and evalua-

tion scenarios. For supervised baseline methods, we followed their original train-

ing protocols as established in the literature. Specifically,MixFaceNet-MAD, PW-

MAD, and Inception-MAD baselines were trained on five distinct datasets follow-

ing the evaluation framework of Fang et al. [6]: SMDD [28], MorGAN-LMA [27],

MorGAN-GAN [27], LMA-DRD (Digital) [5], and LMA-DRD (Print-Scan) [5],

with each architecture trained independently on each dataset to assess cross-

dataset generalization capabilities. For our multimodal LLM fine-tuning experi-

ments, the bona fide subset of the SMDD dataset (25,000 images) [28] was used

with the SelfMAD self-supervised training methodology [1] for LoRA adaptation

of Gemma-3 [54], ensuring no overlap with zero-shot evaluation data. The re-

maining datasets, FRLL-Morphs [22], FRGC-Morphs [23], FERET-Morphs [24],

Greedy-DiM [25],MIPGAN-II [26], andMorDiff [29], served as evaluation bench-

marks for both zero-shot multimodal LLM assessment and comprehensive baseline

comparison. This partitioning strategy prevented data leakage between training

and evaluation phases while enabling rigorous cross-dataset generalization analy-

sis, providing reliable assessment of model performance across diverse morphing

techniques and generation methods that were unseen during training.

4.2 Evaluation Metrics

To rigorously assess the performance of our morph detection models, we adopt

the standardized metrics defined by the ISO/IEC 30107-3 standard for biomet-

ric presentation attack detection [60]. These metrics are designed to quantify a

model’s ability to correctly classify both bona fide (genuine) and attack (mor-

phed) images. Given that our model produces a continuous suspicion score, its

performance is evaluated across a range of decision thresholds (Ä).

The two primary error rates are the Bona Fide Presentation Classification

Error Rate (BPCER) and the Attack Presentation Classification Error Rate

(APCER).
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Bona Fide Presentation Classification Error Rate (BPCER). BPCER

measures the proportion of bona fide presentations that are incorrectly classified

as morphing attacks. This is analogous to the False Positive Rate (FPR) in a

standard binary classification context. It is calculated as

BPCER(Ä) =
NBF→A

NBF

, (4.1)

where NBF→A is the number of bona fide images with a morph suspicion score

exceeding the threshold Ä , and NBF is the total number of bona fide images.

Attack Presentation Classification Error Rate (APCER). APCER mea-

sures the proportion of morphing attack presentations that are incorrectly clas-

sified as bona fide. This corresponds to the False Negative Rate (FNR). It is

calculated as

APCER(Ä) =
NA→BF

NA

, (4.2)

where NA→BF is the number of attack images with a morph suspicion score below

the threshold Ä , and NA is the total number of attack images.

We conducted detailed analysis at fixed operating points to assess model per-

formance across various security thresholds. Specifically, we measured APCER at

fixed BPCER thresholds of 0.01%, 1%, 5%, 10%, and 20%, as well as BPCER at

corresponding fixed APCER thresholds. This multi-point analysis enables prac-

tical deployment considerations where different applications may require varying

false positive and false negative tolerance levels.

Equal Error Rate (EER). There is an inherent trade-off between APCER

and BPCER, controlled by the decision threshold. To provide a single, threshold-

independent performance summary, the Equal Error Rate (EER) is commonly

used. EER is the point at which the APCER and BPCER are equal. A lower

EER value indicates superior overall performance, as it represents a better balance

between correctly identifying attacks and not misclassifying genuine images. The

EER is found at the threshold Ä ∗ where

APCER(Ä ∗) = BPCER(Ä ∗). (4.3)
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Finally, to provide the most comprehensive assessment of a model’s discrim-

inative power across all possible thresholds, we use the Area Under the Receiver

Operating Characteristic Curve (AUC-ROC) as our evaluation metric. The ROC

curve is generated by plotting the True Positive Rate (TPR) against the False

Positive Rate (FPR).

Area Under the Receiver Operating Characteristic Curve (AUC-ROC).

The AUC-ROC provides a comprehensive, threshold-independent measure of the

model’s ability to distinguish between bona fide and morphed images. The True

Positive Rate (TPR) is defined as

TPR = 1− APCER, (4.4)

while the False Positive Rate (FPR) is equivalent to the Bona Fide Presentation

Classification Error Rate (BPCER):

FPR = BPCER. (4.5)

The area under this curve, or AUC, represents the probability that the model

will assign a higher suspicion score to a randomly chosen morphing attack image

than to a randomly chosen bona fide image. An AUC of 1.0 indicates a perfect

classifier, able to flawlessly separate attack and bona fide presentations, whereas

an AUC of 0.5 suggests performance no better than random chance. The AUC

is calculated by integrating the ROC curve:

AUC =

∫
1

0

TPR(FPR) dFPR. (4.6)

A key advantage of the AUC-ROC metric in morphing attack detection is that

it summarizes the model’s discriminative power over its entire operating range,

unlike the Equal Error Rate (EER) which evaluates performance at a single op-

erating point.

The comprehensive evaluation protocol ensures robust assessment of morphing

attack detection capabilities while providing detailed insights into model behavior

across diverse operational requirements and facilitating meaningful comparison

with established state-of-the-art methods.
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4.3 Zero-Shot Experimental Setup

To ensure a robust and replicable evaluation, we established a precise inference

configuration for all models. A key objective was to balance deterministic output

for consistency with the analytical flexibility required for the nuanced task of

morph detection.

We configured each model with a temperature of 0.1. This value was chosen

through experimentation; a temperature of 0.0, corresponding to pure greedy de-

coding, was found to be overly restrictive, limiting the models’ ability to generate

the detailed, reasoned analysis required by our more complex prompts. Con-

versely, a temperature of 0.1 provided a high degree of consistency, ensuring that

the core analytical outcomes (e.g., final suspicion scores, identified artifacts, and

overall judgment) remained stable across multiple iterations of the same query.

While this setting could result in trivial variations in the phrasing of the natural

language rationale fields, the critical quantitative and qualitative findings were

reliably reproducible. The top p parameter was not modified and was left at its

default value. To manage output length, the max new tokens parameter was ad-

justed based on the prompt type: a small limit (e.g., 1–5 tokens) was used for

prompts expecting a single-word or score-only answer, while a much larger limit

was set for the structured JSON output to ensure the full, unabridged response

could be generated.

The evaluation process was conducted sequentially for each model to ensure

controlled and isolated measurement. For a given model hosted on the 4-GPU

server, each image from the test datasets (described in Section 4.1.1) was pro-

cessed individually against the chosen prompt variant. There were no parallel

queries processing different images or prompts simultaneously. The model’s com-

plete, raw text output was meticulously recorded for every (image, prompt) pair,

forming the basis for our results analysis. Given the sequential nature of this

workflow, the total runtime to evaluate a single model across the entire dataset

was in the order of a couple of days up to a week. The inference times varied

significantly across the four multimodal LLMs due to their different architectural

complexities and optimization strategies. As shown in Table 4.1 Gemma-3 27B

required approximately 30 seconds per image, Qwen2.5-VL 32B required 25 sec-
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onds per image, Mistral Small 3.1 24B demonstrated the fastest processing time

at 9 seconds per image, while Llama-4-Scout 17B required 40 seconds per image

for complete inference including prompt processing and response generation.

Table 4.1: Average inference times for different multimodal LLMs in zero-shot

evaluation setting.

Model Parameters Inference Time (seconds/image)

Gemma-3 27B 27B 30

Qwen2.5-VL 32B 32B 25

Llama-4-Scout 17B 17B 40

Mistral Small 3.1 24B 24B 9

4.4 LoRA Fine-Tuning Setup

Following the comprehensive zero-shot evaluation of multimodal large language

models, we conducted systematic fine-tuning experiments to investigate the po-

tential performance gains achievable through domain-specific adaptation. These

experiments focused on adapting the Gemma-3 12B model using Low-Rank

Adaptation (LoRA) techniques, leveraging the self-supervised training method-

ology established in the SelfMAD framework to create synthetic morphing attack

detection training data.

For our experiment, we augmented the pre-trained Gemma-3 architecture

with a dedicated binary classification head. This adaptation allowed the model

to be optimized for binary classification through the use of a Binary Cross-

Entropy (BCE) loss function, as described in Equation (3.4).

4.4.1 Training and Validation Setup

Two separate training runs were conducted with the augmented Gemma-3 ar-

chitecture. The first run established a baseline by training only the classification

head for 2 epochs, with no LoRA parameters. This baseline training used the
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same setup as the main experiment: a learning rate of 1 × 10−4 for the classifi-

cation head, a batch size of 2 with gradient accumulation of 16, and a 500-step

warm-up. The second run then involved comprehensive fine-tuning with LoRA

adapters added to the entire model.

The Low-Rank Adaptation (LoRA) fine-tuning was executed on a high-

performance computing platform equipped with two NVIDIA A100 80GB GPUs,

where the 12.2-billion parameter Gemma-3 model was distributed using model

parallelism to ensure efficient training. LoRA adapters were applied to both the

vision and language components of the model, resulting in 74,657,537 trainable

parameters, which constitutes 0.61% of the model’s total parameters.

A differential learning rate strategy was implemented to fine-tune the model’s

components appropriately. The newly added classification head was trained with

a learning rate of 1 × 10−4, while the language and vision LoRA parameters

were updated more conservatively with learning rates of 7 × 10−6 and 9 × 10−6,

respectively. This approach allows for the rapid adaptation of the task-specific

classification layer while preserving the robust features of the pre-trained base

model.

Training was configured with a batch size of 2 and gradient accumulation of

16, yielding an effective global batch size of 32. The training schedule was set for

30 epochs and included a 500-step warm-up phase followed by a linear learning

rate decay.

Validation Performance Monitoring. To track generalization performance

and prevent overfitting, the model was evaluated on a validation set of 2,498

samples every 400 global steps. Performance was assessed using the Area Under

the Curve (AUC) metric, as described in Equation (4.6).

The model exhibited a rapid improvement in validation metrics within the first

epoch. The AUC score increased from 0.705 at step 400 to 0.944 at step 8000.

Peak performance was achieved within the second epoch, with the best model

checkpoint reaching a validation AUC of 0.966 at step 25,600. The validation

loss curve generally mirrored the training loss, indicating effective generalization

without significant signs of overfitting.
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Feature representation analysis during validation confirmed that the fine-

tuning process progressively enhanced the separability of features for genuine and

morphed images. The inter-class distance, a measure of the separation between

the two classes in the feature space, grew from 17.4 at step 400 to a peak of 104.4

at step 24,800 (see Figure 4.6). Similarly, the separation ratio improved from 32.4

to over 68.4 in the same interval, signifying that the LoRA updates successfully

refined the model’s ability to produce highly discriminative representations for

the morphing detection task.

This training regimen demonstrates the parameter-efficient power of LoRA in

adapting a large-scale foundation model for a specialized forensic task.

Following the training phase, a comprehensive evaluation was conducted

across all test datasets to quantify the performance gains achieved through

domain-specific adaptation. The evaluation focused on comparing the baseline

model, to the fine-tuned model incorporating Low-Rank Adaptation (LoRA). This

comparison highlights the impact of lightweight parameter-efficient fine-tuning

technique in the context of morphing attack detection.

4.5 Classical Baselines

To contextualize the performance of our proposed method, we conducted a com-

prehensive evaluation against a suite of state-of-the-art and foundational bench-

mark models. The selected benchmarks included three prominent supervised

deep learning classifiers: MixFaceNet-MAD [21, 28], PW-MAD [5], and a stan-

dard Inception-MAD classifier, all of which were our own re-implementations

based on their original papers. The evaluation was further extended to include

four recent unsupervised and self-supervised approaches. For SPL-MAD [6] and

MAD-DDPM [40], we utilized the officially provided pre-trained model weights

to ensure a faithful comparison to their reported results.

To ensure a rigorous analysis of generalization for the supervised models, we

adopted the comprehensive evaluation framework proposed by Fang et al. [6].

Each of the three supervised architectures was trained independently on five dis-

tinct datasets: LMA-DRD (Digital and Print-Scan versions), MorGAN (LMA
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and GAN versions), and SMDD. This process resulted in 15 distinct supervised

model checkpoints (3 architectures × 5 training sets), enabling a thorough analy-

sis of how training data composition affects model robustness. Finally, all bench-

mark models—including the 15 supervised checkpoints and the four prepared

unsupervised/self-supervised models—were systematically evaluated on the full

set of our evaluation datasets presented in Section4.1.1. The specific architectural

details and implementation notes for each of these baseline models are provided

below.

MixFaceNet-MAD. This supervised baseline is an adaptation of the Mix-

FaceNet architecture, a lightweight network originally designed for face recogni-

tion that utilizes mixed depthwise convolutional blocks [21]. Following its suc-

cessful application in the SYN-MAD 2022 competition [28, 3], we implemented

this model to serve as a robust classification benchmark.

Inception-MAD. As a classical baseline, we included an Inception-MAD clas-

sifier built upon the InceptionV3 architecture [39]. For our implementation, the

model was initialized with weights pre-trained on ImageNet. The final fully con-

nected layer and the auxiliary classifier’s output layer were replaced with a single

neuron to perform binary classification.

PW-MAD. For this baseline, we implemented a Pixel-Wise Morph Attack De-

tection (PW-MAD) approach described in the work of Damer et al. [5]. Our

implementation utilizes a PW MAD DenseNet architecture, which is trained to pro-

duce two outputs: a standard image-level binary classification (bona fide vs.

morph) and a pixel-wise prediction map of size 14× 14.

SPL-MAD. The Self-Paced Learning MAD (SPL-MAD) model, an unsuper-

vised approach proposed by Fang et al. [6], was included as a state-of-the-art un-

supervised benchmark. For our experiments, we utilized the official pre-trained

model weights and code publicly released by the original authors.

This method employs a Convolutional Autoencoder (CAE) to identify morphs
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as anomalies based on reconstruction error. To evaluate this model on our test

sets, each image was passed through the pre-trained CAE. The decision for each

image was based on its Mean Squared Error (MSE) between the input and the

reconstructed output, with a higher error indicating a higher likelihood of being

a morph.

MAD-DDPM. As a second state-of-the-art unsupervised baseline, we included

the MAD-DDPM model proposed by Ivanovska and Štruc [40]. This approach

leverages a Denoising Diffusion Probabilistic Model (DDPM) to learn the data

distribution of only bona fide images and detect morphs as out-of-distribution

anomalies.

For our evaluation, we used the official code and pre-trained model weights

provided by the authors. According to their paper, the model was trained on

the CASIA-WebFace dataset. We did not perform any retraining. During eval-

uation, each test image was processed by the pre-trained model to compute a

reconstruction-based anomaly score. This score was then used to classify the

image as either bona fide or a morphing attack.

4.6 Hardware Infrastructure and Computational Re-

sources

The evaluation required substantial computational resources across multiple hard-

ware configurations. This section summarizes the practical computational re-

quirements and performance characteristics encountered during the experimental

phases.

Baseline Model Training and Evaluation. Following the configuration de-

scribed in 4.5, all supervised baseline methods were trained on a single NVIDIA

RTX 4090 GPU, providing consistent computational conditions across different

architectural implementations. This setup proved adequate for the memory and

processing requirements of classical MAD approaches while maintaining reason-

able training times.
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Zero-Shot Multimodal LLM Evaluation. All experiments were conducted

on a uniform hardware platform to ensure comparability between models. The

inference environment consisted of four NVIDIA RTX 4090 GPUs, each with 24

GB of VRAM. We utilized the vLLM inference server to host the models and

efficiently manage the distributed 4-GPU setup. Due to the significant memory

requirements of the M-LLMs, we employed specific precision and quantization

strategies tailored to each model: Gemma-3, Qwen-2.5-VL, and Mistral Small

3.1 were loaded and run entirely in bfloat16 precision, while the Llama-4-Scout

model, having the largest memory footprint, was loaded using int4 quantization

to fit within the available VRAM of the 4-GPU cluster. This was a necessary

trade-off to enable its evaluation on our hardware.

Fine-Tuning Computational Requirements. The LoRA fine-tuning exper-

iments, conducted on the two-GPU NVIDIA A100 80GB configuration, repre-

sented the most computationally intensive phase of the research. The classi-

fication head approach required 100 hours of total training time (20 hours ×

5 epochs), while the generative approach demanded 300 hours (60 hours × 5

epochs). These extended training periods reflect the computational complexity

of adapting large foundation models for specialized security applications.

The substantial computational investment required for this comprehensive

evaluation underscores both the complexity of multimodal foundation model re-

search and the importance of systematic experimental design to maximize the

value of computational resources in advancing biometric security applications.
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(b) Representation at step 24,800 (inter-class distance = 104.4).

Figure 4.6: Visualization of inter-class separation growth in the feature space.

The inter-class distance increased from 17.4 at step 400 to 104.4 at step 24,800,

indicating improved class separability during training.
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5 Results

This chapter presents the comprehensive evaluation results from the experimen-

tal framework described in Chapter 3. The analysis is organized in three main

sections: first, we examine the zero-shot performance of four multimodal LLMs

(Gemma-3, Qwen2.5-VL, Llama-4-Scout, and Mistral Small 3.1 ) across diverse

morphing attack datasets, including the impact of prompt engineering strategies

on detection accuracy (Section 5.1). Second, we present the performance improve-

ments achieved through LoRA fine-tuning of Gemma-3 12B, demonstrating the

effectiveness of parameter-efficient adaptation for morphing attack detection (Sec-

tion 5.2). Finally, we provide a comparative analysis benchmarking our approach

against established supervised, unsupervised, and foundation model baselines to

contextualize the performance within the current state-of-the-art (Section 5.3).

All evaluations employ the standardized ISO/IEC 30107-3 metrics [60] defined in

Section 4.2, with particular emphasis on Equal Error Rate (EER) and operational

performance at fixed security thresholds.

5.1 Zero-Shot Results

In this section, we evaluate the zero-shot morphing attack detection capabilities

of four multimodal large language models through systematic prompt engineering

optimization. We assess Gemma-3 27B, Qwen2.5-VL 32B, Llama-4-Scout 17B,

and Mistral Small 3.1 24B.

61
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5.1.1 Model Performance Across Prompt Strategies

In this section, we evaluate three prompt engineering strategies to identify the

optimal approach for zero-shot morphing attack detection. This comparison es-

tablishes the prompting methodology used throughout our zero-shot experiments.

Following the iterative prompt development process described in Section 3.3,

we evaluated the three distinct prompting strategies that represent critical design

milestones. The complete text of all three prompts is provided in Appendices A.1–

A.3.

Structured Forensic Analysis – Semantic Guide A (Prompt 1 ). Com-

plete six-step analytical framework with simplified semantic scoring (0–10,000

scale) and basic threshold definitions. Requires structured JSON output with

individual step scores and rationales.

Extended Forensic Analysis – Semantic Guide A (Prompt 2 ). Aug-

mented version of Prompt 3 with additional sub-questions within each analytical

step and expanded contextual instructions. Provides comprehensive guidance

with structured JSON format.

Optimized Forensic Analysis – Semantic Guide B (Prompt 3 ). Final

refined prompt featuring detailed interpretative guide with specific score range

examples, streamlined step instructions focused on artifact identification, and

mandatory reasoning explanations for each component.

The performance analysis demonstrates a clear progression in prompt ef-

fectiveness across the three evaluated strategies. Prompt 1 provided the first

significant results, establishing that smaller multimodal LLMs possess inherent

capability for morphing attack detection when provided with structured scor-

ing frameworks, specific analytical steps, and appropriate forensic context. This

structured approach enabled models to detect morphs with measurable accuracy,

validating our hypothesis that systematic guidance could unlock latent detection

capabilities.

Building on Prompt 1’s success, Prompt 2 attempted to enhance performance

through increased structural complexity, incorporating additional sub-questions
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and expanded contextual instructions within each analytical step. However, this

approach yielded counterproductive results, increasing both computational over-

head and average EER by 13.15% across all models. The performance degrada-

tion suggests that excessive prompt complexity can overwhelm model processing

capabilities, leading to reduced rather than enhanced analytical precision.

Prompt 3 addressed these limitations through refined prompt engineering, im-

plementing an improved semantic scoring guide and optimized six-step analytical

framework that retained only the most effective instructional components. This

is demonstrated in Table 5.1, this optimization resulted in an average EER reduc-

tion of 18% across all evaluation datasets, establishing Prompt 3 as the optimal

prompting strategy for morphing attack detection tasks.

Table 5.1: Detailed EER (%) comparison for Gemma-3 with Prompt 1 and

Prompt 3 across multiple datasets. Improvement is ∆EER = Prompt 1 − Prompt

3 (positive indicates lower error with Prompt 3 ).

Dataset Subset P1 EER (%) P3 EER (%) ∆EER (% points)

FRLL

StyleGAN2 41.4 27.4 14.0

WebMorph 23.5 12.9 10.6

AMSL 38.7 25.1 13.6

FaceMorpher 21.7 13.1 8.6

OpenCV 19.1 13.3 5.8

MIPGAN-II 42.9 35.6 7.3

Greedy greedy dim 18.6 6.2 12.5

Average 29.4 19.1 10.3

Notes: ∆EER is computed as P1 − P3; Positive values mean P3 improves over P1;

P1=Prompt 1 ; P3=Prompt 3 ; Both prompts were employed verbatim as presented in

Appendix A.1 and A.3

For all subsequent evaluations and model comparisons, Prompt 3 was em-

ployed verbatim as presented in Appendix A.3. While initial attempts were made

to adapt the prompt wording to accommodate the specific characteristics of each

multimodal LLM, empirical testing revealed that the original formulation yielded

superior performance across all architectures. This finding suggests that the

structured analytical framework of Prompt 3 possesses sufficient generality to ef-
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fectively guide different LLMs without model-specific customization. It should be

noted that Prompt 3 was initially developed and optimized using Qwen2.5-VL,

yet demonstrated robust transferability to all evaluated architectures.

In addition to the confidence scores, all three prompts also output the reason-

ing behind their decisions. The listing 5.1 provides an example of the structured

JSON output, produced by Gemma-3 27B, for the Prompt 3, for the morphed

image presented in Figure 5.1. The JSON structure includes a final decision

block containing the aggregated confidence score provided by the LLM and a

qualitative summary of the findings. It also contains a step by step analysis

block, which details the score and textual rationale for each of the six forensic

steps. This structure allows for a more transparent and traceable assessment of

the LLMs decision-making process, linking specific visual observations to the final

determination.

Figure 5.1: Example of a morphed image from the FERET dataset used as input

for the analysis shown in Listing 5.1.

Listing 5.1: Example of a structured JSON output demonstrating format adher-

ence and analytical coherence.

1 {
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2 "image_path ": "data/FERET -Morphs/feret/morph_facemorpher

/00955 _960627_fb.png_00959_960627_fa.png.jpg",

3 "confidence_equal ": 0.709219 ,

4 "reasoning ": "‘‘‘json\n{\n \" final_decision \": {\n \"

overall_confidence_score \": 7250.872 ,\n \"

summary_of_findings \": \"The image exhibits several

artifacts indicative of a potential morphing attack ,

falling into the High Suspicion range. The most prominent

issues are inconsistencies in skin texture , particularly

around the jawline and neck , and subtle blurring around

the edges of the face. These , combined with minor

asymmetries , suggest manipulation. While not definitive ,

the cumulative evidence strongly points towards a morph

.\"\n },\n \" step_by_step_analysis \": {\n \"

step1_core_features \": {\n \" score \": 6800.231 ,\n

\" rationale \": \"The eyes appear relatively normal ,

but the lips exhibit a slight unnatural smoothness and a

subtle lack of detail in the vermillion border. The nose

appears slightly averaged , lacking the unique

irregularities typically found in natural faces. This

contributes to a high suspicion score .\"\n },\n \"

step2_facial_geometry \": {\n \"score \": 7500.555 ,\n

\" rationale \": \"There ’s a noticeable asymmetry in

the ears \u2013 the left ear appears slightly different in

shape and position compared to the right. The jawline

also seems somewhat averaged and lacks sharp definition ,

suggesting a blending of features. This asymmetry and ill -

defined jawline raise significant concerns .\"\n },\n

\" step3_skin_texture \": {\n \" score \": 7800.999 ,\n

\" rationale \": \"The skin texture is overly smooth ,

particularly around the neck and jawline. There ’s a

distinct lack of fine details like pores and micro -

wrinkles in these areas , giving the skin a ’plastic ’

appearance. This is a strong indicator of manipulation .\"\

n },\n \" step4_boundaries_and_edges \": {\n \"

score \": 6500.123 ,\n \" rationale \": \"There ’s subtle

blurring along the hairline and around the edges of the

face , particularly where the face transitions into the

background. This blurring suggests a potential seam or

blending artifact , indicating manipulation .\"\n },\n

\" step5_lighting_and_color \": {\n \" score \":

6950.789 ,\n \" rationale \": \"The lighting appears
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relatively consistent across the face , but there ’s a

slight difference in the specular highlights in the eyes.

The color tone is uniform , but the overall image lacks the

subtle variations in color that are typically present in

natural faces. This contributes to a moderate level of

suspicion .\"\n },\n \" step6_identity_coherence \": {\

n \"score \": 7000.444 ,\n \" rationale \": \"The

face feels somewhat generic and lacks a strong , unique

identity. The features seem averaged , and the overall

impression is that the face doesn ’t quite ’hold together ’

as a convincing , real person. This lack of identity

coherence adds to the suspicion .\"\n }\n }\n}\n‘‘‘",

5 "step_scores ": {

6 "step1_score ": 6800.231 ,

7 "step2_score ": 7500.555 ,

8 "step3_score ": 7800.999 ,

9 "step4_score ": 6500.123 ,

10 "step5_score ": 6950.789 ,

11 "step6_score ": 7000.444

12 }

13 }

As demonstrated in the JSON output shown in Listing 5.1, each scored step is

accompanied by a rationale field. This element serves a dual purpose: beyond

providing a human-readable justification for the assigned score, it compels the

LLM to articulate its reasoning. This process of verbalization appears to reinforce

the model’s ability to align its numerical output with the qualitative semantic

score categories defined within the prompt.

An interesting component of the framework is the identity coherence step.

This metric is not tangible in the sense that it cannot be directly measured

by analyzing discrete pixels or geometric relationships. Instead, it prompts the

model to perform a holistic evaluation, synthesizing the findings from the previous

five steps to form a judgment on whether the constituent features coalesce into

a convincing and singular identity. Interestingly, the inclusion of this abstract

query was found to enhance the model’s ability to detect concrete anomalies in

the other, more tangible analytical steps, effectively helping it to round out and

solidify its final decision. Excluding this question drops the model performance

across the board.



5.1 Zero-Shot Results 67

5.1.2 Gemma-3 27B

Next, we analyze the zero-shot morphing attack detection performance of

Gemma-3 27B across diverse datasets and morphing techniques. We examine its

effectiveness against landmark-based, GAN-based, and diffusion-based attacks to

establish baseline capabilities and identify technique-specific strengths and limi-

tations.

Based on analysis of its zero-shot performance, the Gemma-3 27B model ex-

hibits a foundational but unspecialized capability for morphing attack detection,

achieving an overall average Equal Error Rate (EER) of 32.1% (Table 5.2). Its

effectiveness varies significantly depending on the specific morphing methodology

employed.

Table 5.2: Zero-shot Equal Error Rate (%) for Gemma-3 27B across morphing

techniques using structured forensic analysis. Results show combined perfor-

mance and individual analytical step breakdowns (Step1: Core Features, Step2:

Geometry, Step3: Skin Texture, Step4: Boundaries, Step5: Lighting, Step6: Iden-

tity Coherence). Lowest EER per row highlighted in bold.

Dataset Morphing Technique Combined Step1 Step2 Step3 Step4 Step5 Step6

FERET

FaceMorpher 18.20 18.16 18.02 18.54 17.51 20.66 17.89

OpenCV 19.62 19.48 19.34 19.86 19.30 21.60 20.52

StyleGAN 40.94 39.31 39.17 36.15 41.71 39.51 41.09

FRGC

FaceMorpher 32.19 32.69 32.70 32.52 33.12 33.11 33.00

OpenCV 43.55 43.53 43.75 43.49 42.77 43.86 44.46

StyleGAN 57.06 56.25 56.46 56.47 56.78 57.39 57.43

FRLL

AMSL 25.10 24.84 25.79 27.52 26.04 27.34 30.55

FaceMorpher 13.08 12.02 11.94 12.35 13.29 15.29 14.27

OpenCV 13.33 13.33 13.29 13.95 13.54 15.13 15.50

StyleGAN 27.39 27.76 27.07 27.72 29.51 28.58 28.21

WebMorph 12.88 12.06 12.23 12.27 14.97 15.01 17.42

LMA
D 47.05 46.59 46.55 44.51 46.56 44.01 47.71

PS 43.88 45.26 45.07 44.96 45.37 43.63 43.03

MIPGAN II MIPGAN II 35.56 32.52 35.35 35.06 31.63 32.41 39.50

MorDiff MorDiff 36.13 35.43 35.43 34.05 36.07 36.71 36.04

MorGAN
MorGAN 52.58 52.50 52.43 52.60 52.30 52.28 52.01

LMA 52.87 52.89 52.77 52.57 53.22 52.67 53.17

Greedy DIM 6.15 5.92 5.92 5.92 9.28 6.88 7.67

Average – 32.09 31.70 31.85 31.70 32.39 32.56 33.30
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Table 5.3: Zero-shot Attack Presentation Classification Error Rate (%) for

Gemma-3 27B at fixed Bona Fide Presentation Classification Error Rate

(BPCER) thresholds. Lower APCER values indicate better attack detection

performance at each security threshold. Lowest APCER per row highlighted in

bold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FERET

FaceMorpher 88.37 59.80 36.15 25.11 17.13 0.00

OpenCV 88.14 60.66 34.83 26.83 20.27 0.00

StyleGAN 100.00 96.79 78.55 69.00 58.99 0.00

FRGC

FaceMorpher 95.47 76.00 62.94 56.44 42.45 0.00

OpenCV 97.10 86.41 76.21 72.19 58.31 0.00

StyleGAN 100.00 100.00 98.41 97.28 87.18 0.00

FRLL

AMSL 99.80 96.08 81.11 59.50 34.91 0.00

FaceMorpher 82.96 50.89 34.28 21.62 6.02 0.00

OpenCV 72.23 37.01 27.63 19.32 8.73 0.00

StyleGAN 99.98 96.96 87.52 71.06 35.83 0.00

WebMorph 94.13 64.68 42.58 22.76 7.17 0.00

LMA
D 99.87 95.14 88.88 83.26 73.99 0.00

PS 100.00 99.41 91.63 83.39 70.97 0.00

MIPGAN II MIPGAN II 99.77 96.72 79.29 56.07 44.05 0.00

MorDiff MorDiff 99.35 92.03 73.76 63.04 49.13 0.00

MorGAN
MorGAN 100.00 99.80 98.13 95.38 86.45 0.00

LMA 100.00 99.71 99.10 95.76 85.67 0.00

Greedy DIM 85.64 26.13 7.36 5.87 2.60 0.00

Average – 94.60 79.68 66.58 56.88 43.88 0.00

The model performs best against traditional landmark-based morphing tech-

niques, especially under controlled imaging conditions. On the FRLL dataset,

it achieved relatively low EERs of 13.1% against FaceMorpher, 13.3% against

OpenCV, and 12.9% against WebMorph. However, performance on these same

techniques degraded on more varied datasets like FERET (approx. 18–20% EER)

and FRGC (32–44% EER), indicating a sensitivity to varied conditions and back-

ground noise.

Performance drops considerably against more advanced GAN-based attacks,

which lack the obvious pixel-level artifacts of landmark-based methods. The

model struggled to identify the subtle inconsistencies in these morphs, resulting

in high error rates across all datasets. For instance, the EER on StyleGAN
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Table 5.4: Zero-shot Bona Fide Presentation Classification Error Rate (%) for

Gemma-3 27B at fixed Attack Presentation Classification Error Rate (APCER)

thresholds. Lower BPCER values indicate better performance (fewer false alarms)

at each security threshold. Lowest BPCER per row is highlighted in bold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FERET

FaceMorpher 97.42 73.12 46.24 31.09 14.76 0.00

OpenCV 96.84 85.19 58.83 42.24 20.10 0.00

StyleGAN 99.85 98.61 93.13 84.98 66.72 0.00

FRGC

FaceMorpher 98.69 93.22 76.46 64.86 45.84 0.00

OpenCV 99.35 96.45 88.53 81.86 70.99 0.00

StyleGAN 99.90 98.95 94.82 90.98 83.61 0.00

FRLL

AMSL 100.00 83.23 73.24 69.26 44.28 0.00

FaceMorpher 80.88 53.33 22.06 14.22 11.39 0.00

OpenCV 89.28 69.20 32.34 19.39 9.66 0.00

StyleGAN 96.68 86.77 68.85 51.53 37.48 0.00

WebMorph 96.30 71.61 27.25 14.22 12.25 0.00

LMA
D 99.67 96.71 88.35 81.70 69.12 0.00

PS 99.61 97.42 83.01 75.58 61.97 0.49

MIPGAN II MIPGAN II 99.77 88.77 76.62 62.93 52.35 0.00

MorDiff MorDiff 98.87 98.36 82.45 66.42 50.48 0.00

MorGAN
MorGAN 99.26 97.77 94.75 89.85 84.07 0.00

LMA 99.93 98.39 90.96 87.29 80.45 0.00

Greedy DIM 94.61 38.24 12.99 2.45 1.47 0.00

Average – 97.05 84.74 67.27 57.27 45.39 0.03

morphs was 27.4% on FRLL, but climbed to 40.9% on FERET and 57.1%

on FRGC. Similarly, it produced high EERs on other GAN-based datasets like

MIPGAN-II (35.6%) and MorGAN (over 52%).

The model’s performance on modern diffusion-based morphs was inconsistent.

While it struggled with theMorDiff technique, recording a high EER of 36.1%, it

achieved its best overall performance against Greedy-DiM, with an exceptionally

low EER of 6.15%.

From a practical standpoint, the model is not viable for deployment in its

zero-shot state. The trade-off between security and user convenience is poor, as

shown by its performance at fixed operating points (Table 5.3 and Table 5.4). To

maintain a false rejection rate (BPCER) of 5%, the model would fail to detect



70 Results

approximately 67% of attacks (APCER). Conversely, to reliably detect 95% of

morphing attacks (APCER of 5%), the system would incorrectly reject about

67% of genuine users (BPCER). This demonstrates that while Gemma-3 can

perceive visual anomalies, it lacks the specialized calibration needed for reliable

security applications without fine-tuning.

5.1.3 Qwen2.5-VL 32B

Following, we evaluate Qwen2.5-VL’s zero-shot morphing attack detection ca-

pabilities across multiple datasets and attack types. We assess its performance

limitations and identify the factors contributing to its suboptimal detection ac-

curacy.

Table 5.5: Zero-shot Equal Error Rate (EER, in %) for Qwen2.5-VL by dataset

and morphing technique. The table includes breakdowns for each of the six

analytical steps. Lower EER values indicate better overall detection performance.

The lowest EER value in each row is highlighted in bold.

Dataset Morphing Technique Combined Step1 Step2 Step3 Step4 Step5 Step6

FERET

FaceMorpher 34.52 35.07 36.32 37.19 37.70 35.35 35.23

OpenCV 32.46 32.33 34.24 32.24 36.58 32.00 33.12

StyleGAN 34.27 33.84 38.87 35.96 36.48 34.40 34.10

FRGC

FaceMorpher 42.41 40.27 41.25 42.40 43.29 39.87 41.64

OpenCV 42.62 40.90 42.72 41.88 42.66 40.37 41.64

StyleGAN 59.81 58.93 58.74 58.40 59.25 57.96 58.20

FRLL

AMSL 44.13 45.96 48.27 53.14 44.25 45.39 45.13

FaceMorpher 43.01 43.74 44.73 42.24 39.33 42.27 40.03

OpenCV 39.51 41.09 40.53 39.84 38.08 37.22 37.59

StyleGAN 26.86 26.25 38.60 28.00 26.17 28.13 27.60

WebMorph 41.06 42.15 44.01 50.79 38.86 38.29 39.18

LMA
D 45.40 45.04 48.18 46.24 46.51 46.33 45.78

PS 47.43 46.63 47.08 46.76 46.68 46.92 48.64

MIPGAN II MIPGAN II 20.75 20.44 21.72 19.47 19.47 20.28 20.14

MorDiff MorDiff 45.91 46.55 45.68 46.48 46.56 45.68 46.68

MorGAN
MorGAN 48.63 51.14 49.17 48.28 50.11 49.85 50.63

LMA 51.67 49.25 49.77 51.58 50.64 49.76 49.45

Greedy DIM 24.55 25.35 30.11 24.85 25.09 26.38 25.82

Average – 40.28 40.27 42.22 41.43 40.43 39.80 40.03
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Table 5.6: Zero-shot Attack Presentation Classification Error Rate (APCER, in

%) for Qwen2.5-VL at fixed Bona Fide Presentation Classification Error Rate

(BPCER) thresholds. Lower APCER values indicate better attack detection

performance at each security threshold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FERET

FaceMorpher 99.98 95.09 63.33 55.87 46.57 0.00

OpenCV 99.79 96.41 55.01 46.03 39.75 0.00

StyleGAN 99.38 81.66 53.50 51.65 43.85 0.00

FRGC

FaceMorpher 99.64 96.06 92.57 85.33 73.60 0.10

OpenCV 99.02 95.67 91.77 82.83 67.63 0.10

StyleGAN 98.32 96.59 94.93 90.77 82.88 0.10

FRLL

AMSL 99.97 99.75 99.36 90.95 70.00 13.70

FaceMorpher 99.96 99.55 84.61 77.38 60.34 0.41

OpenCV 99.86 99.36 77.72 69.53 55.94 0.57

StyleGAN 98.81 88.09 54.26 47.78 30.46 0.00

WebMorph 99.97 99.72 91.73 83.97 62.75 3.03

LMA
D 99.47 97.19 87.81 83.04 70.50 0.74

PS 99.83 99.41 94.57 92.38 86.41 0.00

MIPGAN II MIPGAN II 44.20 42.53 35.85 32.02 20.94 0.00

MorDiff MorDiff 98.58 92.89 83.22 77.46 71.20 0.08

MorGAN
MorGAN 100.00 100.00 96.42 90.17 82.95 0.35

LMA 100.00 99.30 96.11 90.88 82.05 0.12

Greedy DIM 99.31 93.06 32.56 29.97 27.60 0.00

Average – 96.45 92.91 76.96 71.00 59.75 1.07

While the Qwen2.5-VL model demonstrates a basic ability to distinguish be-

tween genuine and morphed images, its performance falls significantly below the

state-of-the-art in morphing attack detection.The model consistently yields EERs

between 20% and 60%. This indicates that its detection capability is often only

marginally better than random guessing. The model’s effectiveness varies de-

pending on the morphing technique used. A detailed breakdown is shown in

Table 5.5.

A deeper look at the EER results reveals a clear pattern: the model struggles

with nearly all categories of morphing attacks. Against classical landmark-

based morphs such as OpenCV and FaceMorpher, Qwen2.5-VL performs very

poorly. For example, it achieves 39.51% EER on FRLL-OpenCV, 32.46% on

FERET-OpenCV, 42.41% on FRGC-FaceMorpher. These results indicate that
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Table 5.7: Zero-shot Bona Fide Presentation Classification Error Rate (BPCER,

in %) for Qwen2.5-VL at fixed Attack Presentation Classification Error Rate

(APCER) thresholds. Lower BPCER values indicate better performance (fewer

false alarms) at each security threshold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FERET

FaceMorpher 97.81 93.00 82.97 74.35 62.77 0.00

OpenCV 95.39 93.29 81.43 74.06 54.71 0.00

StyleGAN 99.82 97.99 93.68 88.49 63.87 0.00

FRGC

FaceMorpher 99.81 95.58 82.10 75.07 57.32 0.09

OpenCV 99.40 95.72 86.75 77.32 59.78 0.00

StyleGAN 99.81 98.55 94.47 87.88 82.76 0.00

FRLL

AMSL 100.00 100.00 100.00 100.00 94.08 0.00

FaceMorpher 100.00 98.59 95.22 89.15 75.40 0.00

OpenCV 100.00 98.67 94.61 87.06 72.24 0.00

StyleGAN 100.00 100.00 97.26 93.14 51.72 0.00

WebMorph 100.00 100.00 97.92 91.66 78.24 0.00

LMA
D 97.49 97.49 89.94 85.97 75.70 0.00

PS 99.79 99.33 90.86 87.17 75.53 0.33

MIPGAN II MIPGAN II 99.21 77.70 30.56 25.71 20.71 0.00

MorDiff MorDiff 99.19 97.24 89.96 84.15 76.86 0.00

MorGAN
MorGAN 100.00 98.07 93.48 88.46 79.27 0.00

LMA 99.92 99.09 95.25 91.47 81.84 0.00

Greedy DIM 99.51 97.25 87.12 74.02 41.54 0.00

Average – 99.29 96.53 87.98 81.95 66.91 0.02

the model is incapable of reliably identifying even the relatively well-studied ar-

tifacts of older morphing approaches, such as ghosting, blurred contours, and

unnatural skin textures.

The model is equally ineffective against GAN-based morphs such as Style-

GAN, MIPGAN, and MorGAN. Performance is inconsistent: while it achieves

its best result of 20.75% EER on the MIPGAN dataset, its detection rates col-

lapse on other benchmarks, reaching 26.86% on FRLL-StyleGAN, 34.27% on

FERET-StyleGAN, 48.63% on MorGAN, and 59.81% on FRGC-StyleGAN. This

demonstrates that Qwen2.5-VL is often completely fooled by high-fidelity GAN

morphs, which lack the obvious visual cues of older morphing methods. The

model fails to detect systemic inconsistencies of GAN synthesis such as artificial

symmetry or missing fine-grained details like skin pores.
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Finally, the model is also ineffective against modern diffusion-based

morphs. On Greedy-DiM it records a 24.55% EER, while on MorDiff it fails

with 45.91% EER. These results confirm that Qwen2.5-VL cannot cope with

next-generation morphing attacks that are specifically designed to be artifact-

free and visually seamless.

The trade-off analysis reported in Table 5.6 and Table 5.7 further il-

lustrates the model’s inability to approach state-of-the-art results. In the

APCER@BPCER analysis, when the system is tuned to maintain a low false

rejection rate (for example, fixing the BPCER at 1% or 5%), the Attack Presen-

tation Classification Error Rate (APCER) approaches 100% for most datasets.

This means that nearly all morphing attacks bypass detection, showing that the

model cannot simultaneously maintain usability and robustness. Conversely, the

BPCER@APCER analysis shows that when the system is tuned to reliably detect

morphing attacks (for example, fixing the APCER at 1% or 5%), the BPCER

rises above 90% in many cases. This implies that an unacceptably high proportion

of genuine users would be falsely classified as attackers.

In summary, the Qwen2.5-VL model falls short of state-of-the-art performance

for morphing attack detection. Its high EER values across classical, GAN-based,

and diffusion-based morphs, together with its extreme failure to balance APCER

and BPCER at practical operating points, confirm that it is not a viable candidate

for advancing morph detection performance.

5.1.4 Llama-4-Scout 17B

In this section, we examine Llama-4-Scout ’s zero-shot morphing attack detection

performance and analyze the underlying causes of its poor detection capabilities,

including issues with information synthesis and holistic reasoning.

In its zero-shot evaluation, the Llama-4-Scout model demonstrates a poor

and inconsistent capability for morphing attack detection, achieving an overall

average Equal Error Rate (EER) of 44.6% (Table 5.8). The model’s performance

reveals a flaw in its reasoning process: its holistic, combined judgment is often less

accurate than its analysis of specific, isolated visual components. This suggests
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Table 5.8: Zero-shot Equal Error Rate (EER, in %) for Llama-4-Scout by dataset

and morphing technique. The table includes breakdowns for each of the six

analytical steps. Lower EER values indicate better overall detection performance.

The lowest EER value in each row is highlighted in bold.

Dataset Morphing Technique Combined Step1 Step2 Step3 Step4 Step5 Step6

FRLL

AMSL 49.63 44.05 37.09 39.78 36.59 43.01 42.71

FaceMorpher 41.50 21.02 36.67 29.74 23.47 39.87 44.76

OpenCV 37.63 21.89 32.71 22.59 17.71 39.88 45.49

StyleGAN 47.59 55.91 55.12 70.02 56.00 48.37 50.29

WebMorph 39.22 26.84 29.81 29.02 25.20 44.39 44.51

Greedy DIM 49.93 57.05 50.86 50.99 51.00 52.94 50.47

MIPGAN II MIPGAN II 46.58 60.38 61.59 55.45 55.20 57.50 43.66

Average – 44.58 41.02 43.41 42.51 37.88 46.57 45.98

a failure in synthesizing information, where the model can identify certain low-

level artifacts but becomes confused when attempting to form a comprehensive

conclusion. This could be attributed to the quantization of the model, where the

model’s ability to analyze individual components remains intact while its holistic,

combined judgment becomes less accurate than the analysis of isolated visual or

reasoning components [87].

A detailed analysis of the multi-step evaluation framework shows that the

final “Combined” EER of 44.6% is notably worse than the performance of sev-

eral individual steps. The most effective single analytical instruction was Step 4

(Boundary and Edge Analysis), which achieved a significantly better average EER

of 37.9%. This step prompts the model to check for common blending artifacts

at the face perimeter, such as the jawline and hairline. Its relative success in-

dicates that the model is most effective when given a concrete, localized task

that directly corresponds to the known weaknesses of traditional morphing tech-

niques. The model’s limited proficiency is almost entirely concentrated on these

landmark-based morphs, where Step 4 recorded its best result of 17.7% EER on

the FRLL-OpenCV set.

However, the model’s performance collapses against modern, representation-

space attacks that do not produce such obvious edge artifacts. On GAN-based

(StyleGAN, MIPGAN-II ) and diffusion-based (Greedy-DiM ) morphs, EERs con-

sistently exceeded 45%, indicating performance close to random chance. The fail-
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Table 5.9: Zero-shot Attack Presentation Classification Error Rate (APCER, in

%) for Llama-4-Scout at fixed Bona Fide Presentation Classification Error Rate

(BPCER) thresholds. Lower APCER values indicate better attack detection

performance at each security threshold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FRLL

AMSL 99.99 99.03 98.27 96.96 96.64 0.00

FaceMorpher 98.78 91.77 86.43 84.01 83.72 0.08

OpenCV 99.78 85.55 66.37 62.15 61.67 0.00

StyleGAN 100.00 100.00 99.87 98.23 76.81 0.08

WebMorph 99.82 95.46 83.88 81.68 81.24 0.00

Greedy DIM 99.98 99.78 98.87 97.16 82.01 0.00

MIPGAN II MIPGAN II 100.00 99.86 99.77 99.01 68.29 0.00

Average – 99.76 95.92 90.49 88.46 78.63 0.02

ure of the final “Combined” score suggests that more abstract or holistic prompts,

such as Step 5 (Lighting Consistency) and Step 6 (Identity Coherence), introduce

noise and detract from the more reliable signals found in Step 4. This indicates

that Llama-4-Scout struggles to weigh and integrate different pieces of visual

evidence, leading to a flawed final judgment.

From a practical deployment standpoint, the model is entirely unsuitable. The

trade-off analysis at fixed operating points (Table 5.9 and Table 5.10) confirms

this deficiency. To limit the rejection of genuine users to 5% (BPCER), the sys-

tem would fail to detect over 90% of morphing attacks (APCER). Conversely, to

reliably detect 95% of attacks, it would incorrectly reject nearly 90% of legiti-

mate users. This demonstrates that Llama-4-Scout, in its zero-shot state, cannot

perform the complex forensic reasoning required for this task.

5.1.5 Mistral Small 3.1 24B

In this section, we evaluate Mistral Small 3.1 ’s zero-shot morphing attack detec-

tion performance across multiple datasets and morphing techniques. We analyze

its systematic bias toward classifying morphed images as authentic and examine

why it achieves near-random detection capability.
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Table 5.10: Zero-shot Bona Fide Presentation Classification Error Rate (BPCER,

in %) for Llama-4-Scout at fixed Attack Presentation Classification Error Rate

(APCER) thresholds. Lower BPCER values indicate better performance (fewer

false alarms) at each security threshold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FRLL

AMSL 100.00 100.00 88.24 86.42 72.45 0.00

FaceMorpher 100.00 100.00 88.24 77.92 55.88 0.00

OpenCV 100.00 100.00 88.24 75.18 53.01 0.00

StyleGAN 100.00 100.00 95.10 92.04 87.51 0.00

WebMorph 94.34 88.24 80.39 72.88 53.43 0.00

Greedy DIM 99.89 98.92 94.61 88.36 82.83 0.00

MIPGAN II MIPGAN II 99.53 98.11 94.79 93.55 88.56 0.00

Average – 99.11 97.90 89.94 83.76 70.52 0.00

In a zero-shot evaluation, the Mistral Small 3.1 24B model proves to be en-

tirely ineffective for morphing attack detection, with its performance consistently

approaching that of random chance. The model’s overall average Equal Error

Rate (EER) of 48.4% (Table 5.11) underscores a near-complete inability to dis-

tinguish between genuine and morphed images. This comprehensive failure stems

from the model’s strong tendency to confidently misclassify manipulated images

as authentic. In its responses, the model frequently assigned suspicion scores

near 1,000, a range that, according to the provided analytical framework, signi-

fies a high likelihood of the image being a “bona fide” picture with no morphing

artifacts.

This inherent bias towards a “genuine” classification holds true across all

morphing techniques. The model failed to detect even the more overt artifacts of

traditional landmark-based methods, yielding poor EERs ranging from 37.3% to

as high as 53.3%. Its performance degraded even further against advanced GAN-

based attacks, which lack obvious pixel-level seams; it recorded a 52.1% EER

against StyleGAN and its worst result of 55.6% against MorGAN. Similarly,

Mistral was completely confounded by modern, high-realism diffusion morphs,

registering a 50.5% EER on the challenging Greedy-DiM dataset.

From a practical standpoint, the model is entirely non-viable for security ap-

plications. Analysis at fixed operating points (Table 5.12 and Table 5.13) reveals
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Table 5.11: Zero-shot Equal Error Rate (EER, in %) for Mistral Small 3.1 by

dataset and morphing technique. The table includes breakdowns for each of the

six analytical steps. Lower EER values indicate better overall detection perfor-

mance. The lowest EER value in each row is highlighted in bold.

Dataset Morphing Technique Combined Step1 Step2 Step3 Step4 Step5 Step6

FERET

FaceMorpher 53.07 57.15 49.84 50.87 50.02 44.94 58.33

OpenCV 53.26 55.26 47.73 51.32 47.19 45.79 58.14

StyleGAN 48.57 48.07 47.25 55.07 49.36 51.89 49.16

FRGC

FaceMorpher 49.20 53.45 48.12 49.74 48.34 51.43 52.90

OpenCV 52.82 50.76 51.96 47.72 46.79 52.85 57.77

StyleGAN 50.45 53.87 41.93 54.20 52.44 54.66 49.93

FRLL

AMSL 42.13 51.24 43.60 49.88 48.72 46.83 50.49

FaceMorpher 37.29 48.99 38.80 53.56 45.57 43.13 46.61

OpenCV 40.24 51.97 39.55 55.46 44.35 46.10 47.44

StyleGAN 52.06 55.40 41.55 53.37 57.29 51.29 52.11

WebMorph 40.78 50.33 41.02 49.97 47.18 44.30 49.41

LMA
D 49.01 50.29 47.09 44.10 48.34 49.82 49.99

PS 51.50 52.66 51.68 50.50 48.91 46.39 52.08

MIPGAN II MIPGAN II 50.24 52.93 40.68 47.03 55.40 52.03 56.84

MorDiff MorDiff 47.77 49.22 46.98 48.60 47.01 45.70 46.76

MorGAN
MorGAN 55.60 53.51 54.71 55.60 52.91 54.46 55.65

LMA 46.88 46.99 46.78 47.18 48.21 47.03 47.14

Greedy DIM 50.49 50.47 47.81 51.17 52.47 51.84 50.23

Average – 48.41 51.81 45.95 50.85 49.47 48.92 51.72

an unusable trade-off; to limit false rejections of genuine users to a reasonable

5%, the system would consequently fail to detect 95% of morphing attacks. This

demonstrates that in its unadapted state, Mistral lacks the specialized foren-

sic judgment for this task, defaulting to an incorrect assessment of authenticity

regardless of the visual evidence.

5.1.6 Comparative Zero-Shot Performance Analysis

In this section, we compare zero-shot performance across Gemma-3, Qwen2.5-VL,

Mistral Small 3.1, and Llama-4-Scout. Table 5.14 reports combined Equal Error

Rates (EER) averaged within each dataset group. Tables 5.15 and 5.16 summarize

operating-point behavior at standardized thresholds, i.e., APCER@BPCER =

1%, 5% andBPCER@APCER = 1%, 5%, respectively. Missing entries (“–”)
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Table 5.12: Zero-shot Attack Presentation Classification Error Rate (APCER,

in %) for Mistral Small 3.1 at fixed Bona Fide Presentation Classification Error

Rate (BPCER) thresholds. Lower APCER values indicate better attack detection

performance at each security threshold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FERET

FaceMorpher 99.87 99.27 96.03 92.11 81.48 0.00

OpenCV 99.73 98.46 91.30 85.84 76.66 0.00

StyleGAN 99.60 98.96 97.16 93.97 81.04 0.00

FRGC

FaceMorpher 99.97 99.45 97.57 92.16 79.40 0.00

OpenCV 100.00 99.48 97.50 94.38 86.20 0.00

StyleGAN 100.00 99.92 99.27 96.12 83.19 0.00

FRLL

AMSL 99.93 99.31 95.08 83.96 67.31 0.05

FaceMorpher 99.81 98.10 90.56 77.67 59.31 0.00

OpenCV 99.83 98.30 94.19 81.05 62.36 0.00

StyleGAN 99.99 99.93 99.13 90.82 80.77 0.49

WebMorph 99.83 98.30 90.53 78.37 60.29 0.00

LMA
D 100.00 99.77 92.43 82.17 73.48 0.00

PS 100.00 99.23 96.18 91.54 77.89 0.00

MIPGAN II MIPGAN II 99.93 99.24 90.92 84.72 74.66 0.00

MorDiff MorDiff 99.51 98.42 93.05 84.51 72.00 0.00

MorGAN
MorGAN 100.00 99.75 96.71 92.64 86.06 0.00

LMA 100.00 99.50 96.58 90.99 79.05 0.00

Greedy DIM 99.80 98.99 96.49 93.36 84.80 0.00

Average – 99.88 99.13 95.04 88.13 75.89 0.03

indicate that no results were available for that (model, dataset) pair.

A comparative analysis of the zero-shot performance of the four multimodal

large language models (MLLMs) reveals a distinct hierarchy of capability, with

Gemma-3 27B emerging as the clear frontrunner, while other models exhibit

significant limitations. As shown in Table 5.14, Gemma-3 achieved the best

overall performance with an average Equal Error Rate (EER) of 32.09%, followed

by Qwen2.5-VL at 40.28%. Llama-4-Scout and Mistral Small 3.1 were largely

ineffective, with average EERs of 44.58% and 48.41%, respectively, indicating

performance often at or near random chance.

Gemma-3’s superior performance is primarily driven by its unique ability to

handle both traditional and modern morphing attacks. It demonstrated strong
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Table 5.13: Zero-shot Bona Fide Presentation Classification Error Rate (BPCER,

in %) for Mistral Small 3.1 at fixed Attack Presentation Classification Error Rate

(APCER) thresholds. Lower BPCER values indicate better performance (fewer

false alarms) at each security threshold.

Dataset Morphing Technique @0.1% @1% @5% @10% @20% @100%

FERET

FaceMorpher 99.96 99.43 97.03 94.27 89.73 0.00

OpenCV 99.78 99.43 97.13 94.36 88.06 0.00

StyleGAN 100.00 99.25 91.48 88.05 80.11 0.00

FRGC

FaceMorpher 98.90 97.83 94.32 89.09 80.57 0.00

OpenCV 99.63 98.35 95.89 92.09 84.43 0.00

StyleGAN 99.85 99.42 91.15 87.72 84.00 0.00

FRLL

AMSL 99.81 98.53 89.95 81.37 62.80 0.00

FaceMorpher 99.89 97.11 88.06 79.46 58.69 0.00

OpenCV 99.89 97.51 88.12 81.37 64.85 0.00

StyleGAN 100.00 100.00 94.61 91.10 85.22 0.00

WebMorph 99.51 98.26 94.58 82.35 64.24 0.00

LMA
D 99.85 99.24 96.98 92.03 82.01 0.00

PS 99.97 99.14 95.62 91.97 83.38 0.49

MIPGAN II MIPGAN II 99.29 99.29 91.45 85.39 74.63 0.00

MorDiff MorDiff 99.51 99.25 93.21 85.28 73.19 0.00

MorGAN
MorGAN 99.80 99.00 95.92 92.53 86.79 0.00

LMA 99.26 98.17 91.41 83.33 73.09 0.00

Greedy DIM 100.00 98.53 94.61 90.39 80.73 0.00

Average – 99.72 98.76 93.42 87.90 77.58 0.03

proficiency in detecting landmark-based morphs, achieving EERs around 13%

on the FRLL dataset’s FaceMorpher, OpenCV, and WebMorph subsets. Most

notably, it was the only model to effectively identify the sophisticated diffusion-

based Greedy-DiM attacks, achieving an exceptionally low EER of 6.15% (Ta-

ble 5.14). This suggests that Gemma-3 ’s visual reasoning is capable of identi-

fying the subtle, consistent artifacts present in both simple and highly realistic

manipulations, although it still struggled with certain GAN-based morphs such

as FRGC-StyleGAN (57.1% EER).

Qwen2.5-VL positioned itself as a distant second. While generally outper-

formed by Gemma-3, it showed surprising strength against specific GAN-based

attacks, achieving the best EER on the challengingMIPGAN II dataset (20.75%)

(Table 5.14) and on several StyleGAN subsets. This suggests that its architec-
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Table 5.14: Zero-shot Equal Error Rate (EER, in %) by dataset and morphing

technique, compared across all models. Lower values indicate better performance.

The best-performing model for each technique is highlighted in bold.

Dataset Technique Gemma-3 27B Qwen2.5-VL 32B Llama-4-Scout 17B Mistral Small 3.1 24B

FERET

FaceMorpher 18.20 34.52 — 53.07

OpenCV 19.62 32.46 — 53.26

StyleGAN 40.94 34.27 — 48.57

FRGC

FaceMorpher 32.19 42.41 — 49.20

OpenCV 43.55 42.62 — 52.82

StyleGAN 57.06 59.81 — 50.45

FRLL

AMSL 25.10 44.13 49.63 42.13

FaceMorpher 13.08 43.01 41.50 37.29

OpenCV 13.33 39.51 37.63 40.24

StyleGAN 27.39 26.86 47.59 52.06

WebMorph 12.88 41.06 39.22 40.78

LMA
D 47.05 45.40 — 49.01

PS 43.88 47.43 — 51.50

MIPGAN II MIPGAN II 35.56 20.75 46.58 50.24

MorDiff MorDiff 36.13 45.91 — 47.77

MorGAN
MorGAN 52.58 48.63 — 55.60

LMA 52.87 51.67 — 46.88

Greedy DIM 6.15 24.55 49.93 50.49

Average – 32.09 40.28 44.58 48.41

tural design may possess a different inductive bias that is more attuned to certain

types of synthetic image generation, even if its overall forensic capability is lower.

In contrast, Llama-4-Scout and Mistral Small 3.1 proved unsuitable for the

task. Llama-4-Scout ’s poor performance appears linked to a failure in synthe-

sizing information from its analytical steps, while Mistral consistently defaulted

to a “bona fide” classification, rendering it unable to detect nearly all forms of

manipulation.

Despite Gemma-3 ’s relative success, the analysis of performance at fixed op-

erating points (Tables 5.15 and 5.16) confirms that none of the models are viable

for practical deployment in a zero-shot configuration. Even Gemma-3 exhibits

an unacceptable trade-off between security and usability; at a 5% BPCER (a

threshold for low user friction), it would still allow approximately 67% of attacks

to pass undetected (APCER). The other models perform far worse, with their

APCER values at the same BPCER threshold exceeding 71% for Qwen2.5-VL

and 90% for Llama and Mistral.
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Table 5.15: Zero-shot Attack Presentation Classification Error Rate (APCER,

in %) at fixed 1% and 5% Bona Fide Presentation Classification Error Rate

(BPCER) thresholds, compared across all models. Lower values indicate better

attack detection performance. The best-performing model for each operating

point and technique is highlighted in bold.

Dataset Technique
Gemma-3 27B Qwen2.5-VL 32B Llama-4-Scout 17B Mistral Small 3.1 24B

1% 5% 1% 5% 1% 5% 1% 5%

FERET

FaceMorpher 59.80 36.15 95.09 63.33 — — 99.27 96.03

OpenCV 60.66 34.83 96.41 55.01 — — 98.46 91.30

StyleGAN 96.79 78.55 81.66 53.50 — — 98.96 97.16

FRGC

FaceMorpher 76.00 62.94 96.06 92.57 — — 99.45 97.57

OpenCV 86.41 76.21 95.67 91.77 — — 99.48 97.50

StyleGAN 100.00 98.41 96.59 94.93 — — 99.92 99.27

FRLL

AMSL 96.08 81.11 99.75 99.36 99.03 98.27 99.31 95.08

FaceMorpher 50.89 34.28 99.55 84.61 91.77 86.43 98.10 90.56

OpenCV 37.01 27.63 99.36 77.72 85.55 66.37 98.30 94.19

StyleGAN 96.96 87.52 88.09 54.26 100.00 99.87 99.93 99.13

WebMorph 64.68 42.58 99.72 91.73 95.46 83.88 98.30 90.53

LMA
D 95.14 88.88 97.19 87.81 — — 99.77 92.43

PS 99.41 91.63 99.41 94.57 — — 99.23 96.18

MIPGAN II MIPGAN II 96.72 79.29 42.53 35.85 99.86 99.77 99.24 90.92

MorDiff MorDiff 92.03 73.76 92.89 83.22 — — 98.42 93.05

MorGAN
MorGAN 99.80 98.13 100.00 96.42 — — 99.75 96.71

LMA 99.71 99.10 99.30 96.11 — — 99.50 96.58

Greedy DIM 26.13 7.36 93.06 32.56 99.78 98.87 98.99 96.49

Average – 79.68 66.58 92.91 76.96 95.92 90.49 99.13 95.04

The zero-shot evaluation results indicate that while performance is not com-

petitive with state-of-the-art detectors [1], multimodal large language models

(MLLMs) possess an inherent capability for morphing attack detection without

task-specific training. Given the substantial computational and time require-

ments for LoRA fine-tuning of multimodal large language models, we focused

our adaptation efforts on a single architecture. The clearly superior performance

of Gemma-3 compared to other evaluated models (32.09% vs. 40.28% average

EER) made it the obvious choice for specialized training. These findings suggest

that, while the choice of model architecture is a significant factor in establish-

ing baseline performance, substantial domain-specific adaptation is required to

achieve the detection accuracy necessary to rival the current state-of-the-art MAD

models.
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Table 5.16: Zero-shot Bona Fide Presentation Classification Error Rate (BPCER,

in %) at fixed 1% and 5% Attack Presentation Classification Error Rate (APCER)

thresholds, compared across all models. Lower values indicate better performance

(fewer false alarms). The best-performing model for each operating point and

technique is highlighted in bold.

Dataset Technique
Gemma-3 27B Qwen2.5-VL Llama-4-Scout 17B Mistral Small 3.1 24B

1% 5% 1% 5% 1% 5% 1% 5%

FERET

FaceMorpher 73.12 46.24 93.00 82.97 — — 99.43 97.03

OpenCV 85.19 58.83 93.29 81.43 — — 99.43 97.13

StyleGAN 98.61 93.13 97.99 93.68 — — 99.25 91.48

FRGC

FaceMorpher 93.22 76.46 95.58 82.10 — — 97.83 94.32

OpenCV 96.45 88.53 95.72 86.75 — — 98.35 95.89

StyleGAN 98.95 94.82 98.55 94.47 — — 99.42 91.15

FRLL

AMSL 83.23 73.24 100.00 100.00 100.00 88.24 98.53 89.95

FaceMorpher 53.33 22.06 98.59 95.22 100.00 88.24 97.11 88.06

OpenCV 69.20 32.34 98.67 94.61 100.00 88.24 97.51 88.12

StyleGAN 86.77 68.85 100.00 97.26 100.00 95.10 100.00 94.61

WebMorph 71.61 27.25 100.00 97.92 88.24 80.39 98.26 94.58

LMA
D 96.71 88.35 97.49 89.94 — — 99.24 96.98

PS 97.42 83.01 99.33 90.86 — — 99.14 95.62

MIPGAN II MIPGAN II 88.77 76.62 77.70 30.56 98.11 94.79 99.29 91.45

MorDiff MorDiff 98.36 82.45 97.24 89.96 — — 99.25 93.21

MorGAN
MorGAN 97.77 94.75 98.07 93.48 — — 99.00 95.92

LMA 98.39 90.96 99.09 95.25 — — 98.17 91.41

Greedy DIM 38.24 12.99 97.25 87.12 98.92 94.61 98.53 94.61

Average 84.74 67.27 96.53 87.98 97.90 89.94 98.76 93.42

5.2 LoRA Fine-Tuned Gemma-3 12B resutls

In this section, we evaluate the performance improvements achieved through

LoRA fine-tuning of Gemma-3 12B for morphing attack detection. We com-

pare the fine-tuned model against our zero-shot experiments and a classification

head-only baseline to demonstrate the effectiveness of parameter-efficient adap-

tation.

The evaluation results demonstrate the effectiveness of LoRA fine-tuning in

enhancing morphing attack detection while validating that the base model retains

inherent discriminative ability without adaptation. Table 5.17 presents a com-

prehensive comparison between three configurations: zero-shot evaluation of the

Gemma-3 27B model, classification head-only baseline using the frozen Gemma-3

12B model, and LoRA fine-tuning of the Gemma-3 12B model.
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Table 5.17: Equal Error Rate (EER) comparison of Gemma-3 models: Zero-

Shot (Combined), Classification Head only fine-tuning, and LoRA fine-tuning.

All values are reported in percentages with two decimal precision. The final

column (∆) shows the difference in EER between LoRA and ClassHead Only

(LoRA − HeadOnly). Negative ∆ indicates that LoRA achieved a lower error

rate (improvement), while positive ∆ indicates worse performance. Best per row

is highlighted in bold.

Dataset Technique Zero-Shot ClassHead Only LoRA Fine-Tuned ∆ (LoRA − HeadOnly)

FERET

FaceMorpher 18.20 13.80 9.30 -4.50

OpenCV 19.62 11.73 7.40 -4.33

StyleGAN 40.94 27.40 34.97 +7.57

FRGC

FaceMorpher 32.19 24.48 4.98 -19.50

OpenCV 43.55 29.72 9.23 -20.49

StyleGAN 57.06 40.82 17.32 -23.50

FRLL

AMSL 25.10 48.62 12.74 -35.88

FaceMorpher 13.08 18.15 0.49 -17.66

OpenCV 13.33 6.38 1.47 -4.91

StyleGAN 27.39 16.72 6.83 -9.89

WebMorph 12.88 21.47 2.37 -19.10

LMA
D 47.05 31.56 18.90 -12.66

PS 43.88 39.74 28.28 -11.46

MIPGAN II MIPGAN II 35.56 31.67 17.92 -13.75

MorDiff MorDiff 36.13 24.88 17.33 -7.55

MorGAN
MorGAN 52.58 46.69 45.26 -1.43

LMA 52.87 50.00 23.06 -26.94

Greedy DIM 6.15 11.24 11.78 +0.54

Average 32.09 27.50 14.98 -12.52

The classification head-only baseline serves a critical methodological purpose

by isolating the pre-trained model’s inherent capability to distinguish morphs

from bona fide images without any parameter updates. This configuration

achieved an average Equal Error Rate (EER) of 27.50%, demonstrating that

the frozen Gemma-3 12B model possesses substantial discriminative knowledge

despite being 15 billion parameters smaller than the zero-shot variant. Unlike

zero-shot evaluation, where text generation can influence absolute performance

metrics, the classification head directly leverages representations from the final

language model layer, providing a cleaner assessment of the model’s latent foren-

sic capabilities.

LoRA fine-tuning reduced the average EER to 14.98%, representing a 45.5%

relative improvement over the frozen baseline. This substantial gain, achieved
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Table 5.18: Attack Presentation Classification Error Rate (APCER) at

fixedBona Fide Presentation Classification Error Rate (BPCER) thresh-

olds for Gemma-3 model variants. Comparison includes Zero-Shot (27B), Clas-

sification Head-Only baseline (12B frozen), and LoRA fine-tuned (12B) configu-

rations across five operating points (0.1%, 1%, 5%, 10%, 20% BPCER). Lower

APCER values indicate better attack detection at each security threshold.

Best results per operating point are highlighted in bold.

Dataset Technique
@0.1% @1% @5% @10% @20%

ZS HO LoRA ZS HO LoRA ZS HO LoRA ZS HO LoRA ZS HO LoRA

FERET

FaceMorpher 88.37 61.49 50.37 59.80 31.02 27.17 36.15 18.15 14.18 25.11 15.69 7.94 17.13 11.53 4.91

OpenCV 88.14 65.30 53.17 60.66 33.27 24.85 34.83 17.58 10.02 26.83 12.48 6.43 20.27 7.37 3.21

StyleGAN 100.00 99.81 98.79 96.79 95.27 92.29 78.55 74.18 73.16 69.00 56.33 58.03 58.99 35.92 48.02

FRGC

FaceMorpher 95.47 65.56 48.10 76.00 51.49 19.82 62.94 39.80 4.98 56.44 34.75 2.70 42.45 28.92 1.14

OpenCV 97.10 81.02 72.93 86.41 66.01 37.43 76.21 52.56 14.11 72.19 46.37 8.40 58.31 39.32 3.53

StyleGAN 100.00 100.00 99.02 100.00 99.59 82.89 98.41 91.98 47.62 97.28 81.62 33.34 87.18 61.62 15.25

FRLL

AMSL 99.80 99.96 87.73 96.08 99.46 62.78 81.11 95.99 24.94 59.50 87.91 15.58 34.91 77.94 5.24

FaceMorpher 82.96 56.95 4.89 50.89 35.15 0.48 34.28 25.99 0.16 21.62 21.34 0.16 6.02 17.61 0.08

OpenCV 72.23 28.75 16.79 37.01 12.68 3.21 27.63 7.06 0.31 19.32 5.29 0.25 8.73 3.96 0.16

StyleGAN 99.98 100.00 89.05 96.96 79.88 55.06 87.52 44.37 11.01 71.06 22.59 5.60 35.83 11.44 1.18

WebMorph 94.13 88.81 21.04 64.68 62.22 6.94 42.58 44.62 0.57 22.76 32.22 0.33 7.17 22.29 0.16

LMA-DRD
D 99.87 98.81 93.18 95.14 90.48 75.42 88.88 67.90 57.39 83.26 59.86 40.87 73.99 40.94 17.10

PS 100.00 100.00 99.22 99.41 99.91 92.15 91.63 85.33 66.59 83.39 79.02 52.74 70.97 63.37 37.07

MIPGAN II MIPGAN II 99.77 98.60 97.45 96.72 93.25 80.01 79.29 68.06 43.47 56.07 54.10 34.60 44.05 48.09 17.53

MorDiff MorDiff 99.35 94.31 95.04 92.03 79.06 69.31 73.76 67.15 47.84 63.04 45.77 29.73 49.13 28.92 14.08

MorGAN
MorGAN 100.00 99.25 100.00 99.80 97.80 100.00 98.13 89.16 99.10 95.38 83.63 95.13 86.45 74.34 83.22

LMA 100.00 99.85 99.75 99.71 99.50 94.06 99.10 95.52 68.86 95.76 89.99 49.46 85.67 79.99 27.60

Greedy DIM 85.64 94.66 89.18 26.13 69.50 49.10 7.36 20.12 21.84 5.87 13.44 14.56 2.60 6.00 3.00

Average – 94.60 85.17 73.09 79.68 71.97 54.05 66.58 55.86 33.67 56.88 46.8 25.32 43.88 36.64 15.69

ZS = Zero-Shot ; HO = Classification Head-Only baseline; LoRA = Low-Rank Adaptation

fine-tuned

without catastrophic forgetting, validates that parameter-efficient adaptation suc-

cessfully specialized the model for morphing detection while preserving its foun-

dational knowledge. The consistent improvements across diverse morphing tech-

niques demonstrate that LoRA fine-tuning enhances rather than disrupts the

model’s pre-existing capabilities.

Beyond detection accuracy improvements, the fine-tuned model delivers sub-

stantial practical advantages in computational efficiency. The adapted Gemma-

3 12B achieves a 30× inference speedup compared to zero-shot evaluation,

reducing processing time from 30 seconds to under 1 second per image. This

dramatic optimization stems from three factors: the smaller model size (12B ver-

sus 27B parameters), simplified prompting that eliminates complex multi-step

reasoning, and critically, the shift from generative text production to direct clas-

sification.
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Table 5.19: Bona Fide Presentation Classification Error Rate (BPCER)

at fixed Attack Presentation Classification Error Rate (APCER) thresh-

olds for Gemma-3 model variants. Comparison includes Zero-Shot (27B), Clas-

sification Head-Only baseline (12B frozen), and LoRA fine-tuned (12B) configu-

rations across five operating points (0.1%, 1%, 5%, 10%, 20% APCER). Lower

BPCER values indicate fewer false rejections of genuine users at each

attack detection level. Best results per operating point are highlighted in bold.

Dataset Technique
@0.1% @1% @5% @10% @20%

ZS HO LoRA ZS HO LoRA ZS HO LoRA ZS HO LoRA ZS HO LoRA

FERET

FaceMorpher 97.42 99.19 83.53 73.12 91.85 47.59 46.24 59.25 19.58 31.09 24.69 8.06 14.76 3.75 1.84

OpenCV 96.84 97.29 79.66 85.19 72.92 38.23 58.83 33.51 12.75 42.24 13.48 4.97 20.10 3.96 1.20

StyleGAN 99.85 99.42 99.06 98.61 94.21 86.18 93.13 71.03 71.23 84.98 50.18 61.56 66.72 34.49 48.21

FRGC

FaceMorpher 98.69 99.72 74.76 93.22 97.23 21.89 76.46 86.14 4.91 64.86 72.29 2.15 45.84 44.58 0.98

OpenCV 99.35 99.80 63.83 96.45 97.96 32.82 88.53 89.81 14.11 81.86 79.62 8.31 70.99 59.24 3.07

StyleGAN 99.90 99.87 74.02 98.95 98.70 54.60 94.82 93.51 34.35 90.98 87.01 25.21 83.61 74.03 15.26

FRLL

AMSL 100.00 99.90 69.03 83.23 98.96 42.52 73.24 94.81 20.71 69.26 89.62 14.22 44.28 79.24 6.37

FaceMorpher 80.88 99.53 31.38 53.33 95.34 0.49 22.06 76.70 0.00 14.22 53.41 0.00 11.39 15.49 0.00

OpenCV 89.28 97.95 22.01 69.20 79.52 2.25 32.34 14.17 0.49 19.39 0.98 0.00 9.66 0.49 0.00

StyleGAN 96.68 99.15 36.98 86.77 91.46 22.06 68.85 57.29 10.29 51.53 22.55 5.39 37.48 13.24 3.43

WebMorph 96.30 99.61 36.51 71.61 96.09 3.82 27.25 80.47 1.47 14.22 60.94 0.49 12.25 23.53 0.49

LMA
D 99.67 99.79 95.75 96.71 97.86 72.49 88.35 89.32 48.63 81.70 78.65 33.02 69.12 57.29 17.80

PS 99.61 97.52 96.97 97.42 81.57 82.53 83.01 74.11 63.59 75.58 65.39 46.25 61.97 56.48 35.33

MIPGAN II MIPGAN II 99.77 99.83 62.18 88.77 98.31 55.00 76.62 91.56 35.86 62.93 83.13 23.57 52.35 66.25 15.29

MorDiff MorDiff 98.87 99.58 63.81 98.36 95.84 48.68 82.45 79.19 32.08 66.42 58.39 26.04 50.48 35.09 15.85

MorGAN
MorGAN 99.26 99.89 99.84 97.77 98.92 98.36 94.75 94.62 88.81 89.85 89.23 82.29 84.07 78.46 69.05

LMA 99.93 99.90 89.29 98.39 99.00 74.56 90.96 95.00 55.09 87.29 90.00 39.69 80.45 80.00 24.72

Greedy DIM 94.61 80.39 71.57 38.24 47.06 41.18 12.99 22.55 13.73 2.45 11.76 11.76 1.47 4.90 6.37

Average – 97.05 97.69 69.45 84.74 90.71 45.85 67.27 72.39 29.32 57.27 57.30 21.83 45.39 40.58 14.74

ZS = Zero-Shot ; HO = Classification Head-Only baseline; LoRA = Low-Rank Adaptation

fine-tuned

Performance by Morphing Technique Category. Analysis by morph-

ing generation method reveals distinct patterns. For landmark-based morphs

(OpenCV, FaceMorpher, WebMorph, AMSL, LMA), LoRA fine-tuning achieved

exceptional results. FRLL-FaceMorpher dropped from 18.15% (baseline) to

0.49% EER, FRLL-OpenCV from 6.38% to 1.47%, and FRLL-WebMorph from

21.47% to 2.37%. These dramatic improvements indicate that fine-tuning enables

the model to reliably detect the geometric inconsistencies and blending artifacts

characteristic of landmark-based methods.

GAN-based morphs (StyleGAN, MIPGAN-II, MorGAN ) showed more vari-

able responses to fine-tuning. While FRGC-StyleGAN improved substantially

from 40.82% to 17.32% EER, and MIPGAN-II from 31.67% to 17.92%, the Mor-

GAN dataset remained challenging with only modest gains (46.69% to 45.26%).

This suggests that certain GAN morphs that closely approximate genuine facial
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distributions remain inherently difficult to detect even with domain adaptation.

Diffusion-based morphs (Greedy-DiM, MorDiff ) exhibited mixed results.

MorDiff benefited from fine-tuning (24.88% to 17.33% EER), while Greedy-DiM

showed slight degradation (11.24% to 11.78%). Notably, the frozen baseline per-

formed surprisingly well on Greedy-DiM, suggesting the pre-trained model already

possesses knowledge relevant to detecting diffusion artifacts.

Operating Point Analysis. Tables 5.18 and 5.19 reveal the practical impli-

cations of these improvements. At a security-critical 1% BPCER threshold, the

frozen baseline achieved 71.97% average APCER, while LoRA reduced this to

54.05%. This 17.92 percentage point improvement.

The biggest improvements occur for landmark-based morphs at moderate

security levels. At 5% BPCER, FRLL-FaceMorpher APCER decreased from

25.99% (baseline) to 0.16% (LoRA), effectively achieving near-perfect detection.

Similar patterns appear across FRLL-OpenCV (7.06% → 0.31%) and FRGC-

FaceMorpher (39.80% → 4.98%), demonstrating that fine-tuning particularly

enhances detection of traditional morphing artifacts.

The reciprocal analysis (Table 5.19) confirms operational improvements. To

achieve 95% attack detection (5% APCER), the frozen baseline would reject

72.39% of legitimate users on average, while LoRA reduces this to 29.32%. At bal-

anced operating points (10% APCER), LoRA achieves 21.83% average BPCER

compared to 57.30% for the baseline.

Feature Space Analysis . To validate the quantitative results, we exam-

ine t-SNE visualizations of the learned feature representations, which reveal the

model’s ability to separate genuine and morphed samples in the high-dimensional

embedding space.

StyleGAN Morphs: The comparison between FERET-StyleGAN (34.97%

EER) and FRLL-StyleGAN (6.83% EER) presents a performance-feature mis-

match. Figure 5.2a shows that FERET-StyleGAN exhibits excellent cluster sep-

aration with distinct boundaries between genuine (blue) and attack (red) samples,
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Figure 5.2: t-SNE visualization of feature representations for different morphing

techniques. Each plot shows the two-dimensional projection of high-dimensional

feature embeddings, where axes represent t-SNE Component 1 (horizontal) and t-

SNE Component 2 (vertical). Blue points indicate genuine samples, red points in-

dicate attack samples. The degree of cluster separation demonstrates the model’s

ability to distinguish between genuine and morphed images for each attack type.
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while FRLL-StyleGAN in Figure 5.2b, despite superior EER performance, shows

comparable but not dramatically better separability. This discrepancy suggests a

classification head calibration issue where the learned features achieve good sepa-

ration, but the final classification layer fails to properly leverage this separability

for the FERET dataset. The classification head, may be poorly calibrated for the

specific feature distributions of FERET images, leading to suboptimal decision

boundaries despite good representational quality.

Diffusion-Based Morphs: BothMorDiff (17.33% EER ) in Figure 5.2c and

Greedy-DiM (11.78% EER) in Figure 5.2d exhibit a characteristic pattern where

genuine samples form tight, well-defined clusters while attack samples are more

dispersed throughout the feature space. This scattered distribution of diffusion-

generated morphs reflects their sophisticated nature, these attacks span a broader

range of the learned manifold, making classification more challenging. The rel-

atively moderate EER values, despite this dispersion in attack samples, demon-

strate the model’s ability to maintain reliable genuine sample clustering, which

provides a stable reference for detection decisions.

Challenging Datasets: MorGAN-GAN (45.26% EER) in Figure 5.2e and

MorGAN-LMA (23.% EER) in Figure 5.2f show fundamentally different feature

distributions, with both genuine and attack samples scattered across the em-

bedding space in patterns resembling the untrained representations from Fig-

ure 4.6a. This contrasts sharply with other morphing techniques: StyleGAN

variants demonstrate clear GAN-type clustering with coherent attack distribu-

tions, while genuine samples across all other datasets (FERET, FRLL, MorDiff,

Greedy-DiM ) form tight, well-defined clusters regardless of the attack type.

The poor separability in both MorGAN-GAN (GAN-based) and MorGAN-

LMA (landmark-based) datasets is particularly notable given that other GAN

attacks (StyleGAN ) and landmark attacks show distinct clustering patterns. This

suggests the issue transcends morphing methodology. Both datasets use 64×64

pixel images, significantly smaller than the model’s expected input resolution.

This resolution mismatch prevents extraction of discriminative features, as fine-

grained artifacts necessary for morphing detection are lost during downsampling.

The scattered bona fide representations, unlike the tight genuine clusters in all

other datasets, indicate the model cannot establish reliable reference points for
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these low-resolution inputs, explaining the consistently high error rates across

both attack types.

Key Findings. The evaluation establishes four critical insights.

First, the frozen Gemma-3 12B model demonstrates substantial inherent

capability for morphing detection, validating that foundation models possess

relevant forensic knowledge without task-specific training.

Second, LoRA fine-tuning consistently enhances this capability, with aver-

age improvements of 12.52 percentage points over the baseline.

Third, the effectiveness of adaptation varies by morphing technique, with

landmark-based methods showing exceptional responsiveness while so-

phisticated GAN morphs remain challenging.

These results demonstrate that parameter-efficient fine-tuning successfully

transforms a general-purpose multimodal LLM into a competitive morphing at-

tack detector, with performance approaching specialized systems for certain at-

tack types while maintaining the model’s foundational capabilities.

Fourth, visual feature analysis reveals that input resolution critically impacts

detection capability regardless of morphing technique, both GAN-based (Mor-

GAN ) and landmark-based (LMA-PS ) attacks at 64×64 resolution show scat-

tered feature distributions and poor genuine sample clustering, contrasting with

tight clustering patterns observed across all higher-resolution datasets, demon-

strating that there is a lower limit to input resolution for effective morphing

detection.

5.3 Comparative Analysis with SOTA Models and MAD

Baselines

In this section, we evaluate the performance of our fine-tuned Gemma-3 model

against established morphing attack detection (MAD) methods to contextualize
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its capabilities within the current state-of-the-art. We compare against three cat-

egories of baselines: supervised deep learning methods (MixFaceNet-MAD, PW-

MAD, Inception-MAD), unsupervised approaches (SPL-MAD, MAD-DDPM ),

and other foundation model adaptations for MAD (MADation).

This comprehensive benchmarking across diverse architectural paradigms and

training methodologies provides critical insights into the relative strengths and

limitations of multimodal LLM-based detection compared to both purpose-built

MAD systems and alternative foundation model approaches.

5.3.1 Supervised Deep Learning Baseline Comparison

In this section, we evaluate our fine-tuned Gemma-3 12B-MAD model against

established supervised deep learning baselines including MixFaceNet-MAD, PW-

MAD, and Inception-MAD. We assess cross-dataset generalization by comparing

performance across multiple training and evaluation configurations following the

SPL-MAD framework [6].

Table 5.20: Equal Error Rate (EER, %) comparison of supervised MAD base-

lines trained on different datasets (columns) and evaluated on multiple test

sets (rows), following the structure of SPL-MAD Table 2. Asterisks (∗) denote

intra-dataset evaluation as in the source. The rightmost column reports our

Gemma3-12B-MAD (LoRA) results for the corresponding test sets.

Test data MixFaceNet-MAD [21] PW-MAD [5] Inception-MAD [5] Gemma3-12B-MAD

D PS -LMA -GAN SMDD D PS -LMA -GAN SMDD D PS -LMA -GAN SMDD EER

LMAD-DRD
D 15.68∗ 18.03 17.06 25.01 19.42 20.80∗ 25.10 22.34 40.21 17.06 7.64∗ 17.06 15.68 50.77 15.11 18.90

PS 21.77 18.44∗ 27.05 27.05 23.72 26.48 23.72∗ 29.41 44.11 20.39 11.37 12.75∗ 22.34 38.42 19.01 28.28

MorGAN
LMA 39.42 22.89 10.61∗ 46.42 30.12 34.20 34.14 9.71∗ 34.37 27.31 38.55 31.73 8.43∗ 40.16 28.51 23.06

GAN 53.01 50.44 42.57 24.90∗ 42.64 52.04 46.59 42.80 8.84∗ 43.78 50.84 38.79 27.41 0.40∗ 44.34 45.26

FRLL-Morphs

OpenCV 8.82 13.22 8.91 17.66 4.39 17.33 15.69 13.96 45.59 2.42 13.72 10.76 6.86 55.89 5.38 1.47

FaceMorpher 7.80 10.97 7.34 15.65 3.87 13.88 15.14 10.92 44.57 2.20 16.62 15.81 6.32 66.14 3.17 0.49

StyleGAN2 20.07 15.29 13.41 23.51 8.89 29.97 27.64 18.11 48.53 16.64 37.24 19.58 20.56 55.03 11.37 6.83

WebMorph 25.97 29.04 20.61 30.39 12.35 33.78 28.51 35.75 52.43 16.65 57.38 58.32 30.88 77.42 9.86 2.37

AMSL 24.53 27.59 19.24 30.03 15.18 36.25 32.95 34.38 48.52 15.18 49.02 61.44 9.80 86.49 10.79 12.74

FERET-Morphs

OpenCV 28.12 32.19 31.57 33.86 31.74 37.27 45.29 34.27 43.11 39.93 6.39 7.23 42.12 13.62 59.32 7.40

FaceMorpher 22.57 29.48 27.90 31.81 23.69 35.16 44.30 28.24 40.40 29.41 5.17 6.91 36.53 18.36 46.94 9.30

StyleGAN2 29.57 29.02 35.46 39.41 39.85 44.25 45.30 29.70 42.47 47.20 9.03 7.12 35.29 15.09 60.05 34.97

FRGC-Morphs

OpenCV 23.81 25.04 31.62 21.11 20.67 57.06 48.60 29.74 53.55 26.45 34.32 13.65 36.17 59.66 19.63 9.23

FaceMorpher 22.83 23.54 29.38 19.98 18.10 56.00 50.70 30.49 51.61 23.40 34.96 19.71 35.10 56.91 16.06 4.98

StyleGAN2 32.71 28.68 21.70 21.95 11.62 37.38 38.42 16.43 26.62 14.32 41.14 25.85 36.19 47.03 15.26 17.32

Greedy-DiM Diffusion 45.10 41.67 40.69 48.04 39.71 17.16 33.82 17.16 15.20 42.16 31.86 51.96 25.98 29.90 56.86 11.78

MorDiff Diffusion 21.30 23.70 28.83 30.19 20.40 3.21 0.98 11.60 16.00 13.80 21.08 21.78 19.41 56.09 15.23 17.33

Average performance† 26.71 26.30 25.21 28.88 21.55 33.21 33.32 25.33 40.46 23.43 28.67 25.48 25.42 47.94 25.70 14.81

∗Intra-dataset evaluation as reported in the source. †Averages for baselines from SPL-MAD

Table 2 [6] (excluding intra-dataset). Greedy-DiM baseline values from SelfMAD Table [1].

MorDiff baseline values from our implementations.
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Table 5.21: BPCER (%) at fixed APCER = 5% and 10% for supervised MAD

baselines trained on LMA-DRD-D (Digital) dataset and evaluated on multiple

test sets. Lower is better.

Test Data
MixFaceNet-MAD [21] PW-MAD [5] Inception-MAD [5] Gemma3-12B-MAD

5% 10% 5% 10% 5% 10% 5% 10%

FRGC

FaceMorpher 85.89 73.44 95.12 86.00 96.89 90.15 4.91 2.15

OpenCV 51.97 37.03 91.29 83.51 93.57 80.29 14.11 8.31

StyleGAN2 64.63 41.91 97.82 93.67 89.00 78.11 34.35 25.21

FERET

FaceMorpher 69.38 57.09 47.26 25.33 31.57 21.55 19.58 8.06

OpenCV 79.40 68.43 21.55 13.99 32.33 20.98 12.75 4.97

StyleGAN2 91.87 81.10 95.84 88.09 21.93 13.04 71.23 61.56

FRLL

AMSL 71.40 61.47 87.08 71.95 99.26 98.48 20.71 14.22

FaceMorpher 23.71 13.66 69.85 33.51 81.36 70.45 0.00 0.00

OpenCV 39.97 18.02 22.19 12.04 69.45 57.82 0.49 0.00

StyleGAN2 54.58 39.20 93.94 80.61 67.59 57.77 10.29 5.39

WebMorph 85.26 71.01 90.09 75.68 99.92 99.75 1.47 0.49

Greedy-DiM Diffusion 93.40 85.60 64.20 36.60 85.40 77.40 13.73 11.76

MorDiff Diffusion 50.98 42.16 1.96 0.49 50.98 37.74 32.08 26.04

Average 66.34 53.09 67.55 53.96 70.71 61.81 18.13 12.94

Table 5.20 presents a comprehensive comparison between our fine-tuned

Gemma-3 12B-MAD model and three established supervised deep learning base-

lines following the evaluation framework of SPL-MAD [6]. Each baseline method

was trained independently on five distinct datasets: LMA-DRD Digital (D),

LMA-DRD Print-Scan (PS), MorGAN-LMA, MorGAN-GAN, and SMDD, re-

sulting in 15 model variants evaluated across diverse morphing attack types.

Overall Performance Comparison. The Gemma-3 12B-MAD model

achieves an average Equal Error Rate (EER) of 14.81%, substantially outper-

forming all supervised baseline configurations. Among the traditional methods,

models trained on SMDD demonstrated the best average performance across ar-

chitectures: MixFaceNet-MAD (21.55%), PW-MAD (23.48%), and Inception-

MAD (25.70%). This 6.74 percentage point improvement over the best baseline

average underscores the advantage of combining foundation model knowledge

with domain-specific fine-tuning.

The performance gap widens dramatically at operational thresholds. Ta-

ble 5.25 reveals that at a security-critical 5% APCER, Gemma-3 achieves an
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Table 5.22: BPCER (%) at fixed APCER = 5% and 10% for supervised MAD

baselines trained on LMA-DRD-PS (Print-Scan) dataset and evaluated on

multiple test sets. Lower is better.

Test Data
MixFaceNet-MAD [21] PW-MAD [5] Inception-MAD [5] Gemma3-12B-MAD

5% 10% 5% 10% 5% 10% 5% 10%

FRGC

FaceMorpher 75.31 55.19 94.92 89.52 93.36 85.89 4.91 2.15

OpenCV 79.25 64.83 98.86 97.20 53.11 37.34 14.11 8.31

StyleGAN2 46.89 33.82 66.29 59.13 47.10 38.28 34.35 25.21

FERET

FaceMorpher 82.61 73.53 52.93 32.70 69.57 57.84 19.58 8.06

OpenCV 77.13 66.16 17.39 12.29 64.84 53.69 12.75 4.97

StyleGAN2 83.93 68.43 97.16 93.95 31.38 22.12 71.23 61.56

FRLL

AMSL 56.55 45.06 53.75 46.85 99.49 98.16 20.71 14.22

FaceMorpher 15.38 8.33 34.28 22.42 78.95 68.99 0.00 0.00

OpenCV 28.26 14.00 12.29 6.72 92.79 88.94 0.49 0.00

StyleGAN2 28.07 17.76 78.15 67.02 75.04 68.33 10.29 5.39

WebMorph 76.82 65.36 66.67 48.81 93.28 87.96 1.47 0.49

Greedy-DiM Diffusion 89.00 78.80 83.40 70.00 95.20 92.20 13.73 11.76

MorDiff Diffusion 57.28 42.46 0.49 0.49 53.92 41.18 32.08 26.04

Average 61.27 48.75 58.20 49.78 72.93 64.69 18.13 12.94

average BPCER of 18.13%, compared to 39.85% for the best-performing PW-

MAD trained on SMDD. This represents a 54.5% reduction in false rejections

while maintaining equivalent attack detection rates, transforming the system from

marginally viable to operationally practical.

Performance by Morphing Technique. Analysis by morphing generation

method reveals distinct patterns in model capabilities. For landmark-based

morphs (OpenCV, FaceMorpher, WebMorph, AMSL), Gemma-3 demonstrates

exceptional performance, achieving near-perfect detection on FRLL datasets:

OpenCV (1.47%), FaceMorpher (0.49%), and WebMorph (2.37%). In contrast,

the best supervised baseline (MixFaceNet-MAD trained on SMDD) achieves

4.39%,3.87%, and 12.35% respectively on these same attacks. This superior-

ity extends to operational metrics, where Gemma-3 maintains near-zero BPCER

at both 5% and 10% APCER for FRLL landmark morphs.

GAN-based morphs present a more nuanced picture. While Gemma-

3 achieves competitive results on FRLL-StyleGAN2 (6.83% vs. 8.89% for

MixFaceNet-SMDD), it struggles with MorGAN-GAN attacks (45.26%), perform-
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Table 5.23: BPCER (%) at fixed APCER = 5% and 10% for supervised MAD

baselines trained on MorGAN–LMA dataset and evaluated on multiple test

sets. Lower is better.

Test Data
MixFaceNet-MAD [21] PW-MAD [5] Inception-MAD [5] Gemma3-12B-MAD

5% 10% 5% 10% 5% 10% 5% 10%

FRGC

FaceMorpher 85.58 76.35 93.67 66.29 79.46 60.48 4.91 2.15

OpenCV 85.06 72.93 48.86 20.12 89.00 76.04 14.11 8.31

StyleGAN2 49.38 30.81 61.00 39.21 91.70 84.34 34.35 25.21

FERET

FaceMorpher 84.12 76.75 75.99 48.58 70.32 57.47 19.58 8.06

OpenCV 89.41 78.45 75.99 65.97 86.77 73.72 12.75 4.97

StyleGAN2 76.37 61.63 77.69 60.87 81.85 68.81 71.23 61.56

FRLL

AMSL 84.64 74.53 47.49 33.47 35.26 20.37 20.71 14.22

FaceMorpher 69.93 49.05 26.72 12.54 20.10 5.76 0.00 0.00

OpenCV 44.64 27.27 27.35 19.66 63.47 41.52 0.49 0.00

StyleGAN2 83.39 71.11 42.39 30.20 66.94 48.61 10.29 5.39

WebMorph 94.35 90.01 92.22 83.70 72.73 64.13 1.47 0.49

Greedy-DiM Diffusion 93.40 88.00 40.80 28.60 66.00 46.00 13.73 11.76

MorDiff Diffusion 51.96 45.56 27.45 17.65 55.39 37.75 32.08 26.04

Average 76.32 64.81 56.74 40.53 67.61 52.69 18.13 12.94

ing comparably to baseline methods. However, even on these challenging morphs,

Gemma-3 maintains better operational characteristics, with substantially lower

BPCER at fixed APCER thresholds.

Diffusion-based morphs reveal interesting generalization patterns. On Greedy-

DiM, Gemma-3 (11.78%) outperforms most baseline configurations, with only

PW-MAD trained on MorGAN-LMA achieving comparable results (17.16%). For

MorDiff, PW-MAD trained on D and PS datasets achieves exceptional perfor-

mance (0.98% EER), suggesting that specific training data distributions can op-

timize detection for particular diffusion techniques.

Cross-Dataset Generalization. The supervised baselines exhibit significant

performance degradation in cross-dataset evaluation. Models trained on LMA-

DRD Digital achieve strong intra-dataset performance (7.64% for Inception-

MAD) but struggle when evaluated on morphs from different sources, with EERs

exceeding 50% on StyleGAN morphs from FRLL and FRGC datasets. This pat-

tern repeats across all baseline architectures and training configurations, high-

lighting the overfitting endemic to supervised MAD approaches.



94 Results

Table 5.24: BPCER (%) at fixed APCER = 5% and 10% for supervised MAD

baselines trained on MorGAN–GAN dataset and evaluated on multiple test

sets. Lower is better.

Test Data
MixFaceNet-MAD [21] PW-MAD [5] Inception-MAD [5] Gemma3-12B-MAD

5% 10% 5% 10% 5% 10% 5% 10%

FRGC

FaceMorpher 76.45 60.89 99.79 98.76 99.69 98.65 4.91 2.15

OpenCV 80.71 68.78 99.07 97.72 98.76 96.58 14.11 8.31

StyleGAN2 89.94 79.36 100.00 100.00 95.23 89.83 34.35 25.21

FERET

FaceMorpher 95.46 90.74 31.95 16.82 95.65 92.25 19.58 8.06

OpenCV 90.55 83.55 70.51 54.63 98.11 96.98 12.75 4.97

StyleGAN2 94.90 88.66 88.66 80.15 82.99 72.40 71.23 61.56

FRLL

AMSL 95.45 88.83 92.41 88.00 100.00 100.00 20.71 14.22

FaceMorpher 97.08 92.35 66.07 48.80 99.31 98.71 0.00 0.00

OpenCV 96.56 93.94 97.22 83.21 98.94 96.97 0.49 0.00

StyleGAN2 85.76 78.97 97.46 90.59 98.53 97.55 10.29 5.39

WebMorph 95.25 92.55 93.61 89.76 99.84 99.43 1.47 0.49

Greedy-DiM Diffusion 97.00 93.40 39.60 22.20 86.60 73.00 13.73 11.76

MorDiff Diffusion 51.96 44.12 39.71 27.10 96.95 93.89 32.08 26.04

Average 88.23 81.24 78.16 69.06 96.02 92.79 18.13 12.94

In contrast, Gemma-3 ’s consistent performance across diverse test sets demon-

strates superior generalization. The model maintains reliable detection across dif-

ferent imaging conditions (FRLL vs. FRGC vs. FERET), morphing techniques,

and post-processing scenarios (digital vs. print-scan), suggesting that founda-

tion model pre-training provides robust feature representations that transcend

dataset-specific artifacts.

Key Findings. The evaluation establishes three critical insights.

First, LLM fine-tuning achieves superior average performance (14.81%

EER) compared to purpose-built supervised detectors (21.55% best av-

erage), with the advantage most pronounced at operational thresholds.

Second, Gemma-3 demonstrates exceptional capability on landmark-

based morphs while maintaining competitive performance on GAN and dif-

fusion attacks, whereas supervised baselines typically excel in narrow domains

corresponding to their training data.
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Table 5.25: BPCER (%) at fixed APCER = 5% and 10% for supervised MAD

baselines trained on SMDD dataset and evaluated on multiple test sets. Lower

is better.

Test Data
MixFaceNet-MAD [21] PW-MAD [5] Inception-MAD [5] Gemma3-12B-MAD

5% 10% 5% 10% 5% 10% 5% 10%

FRGC

FaceMorpher 33.40 20.95 51.76 29.25 54.15 35.68 4.91 2.15

OpenCV 35.27 20.95 56.85 38.90 67.12 47.61 14.11 8.31

StyleGAN2 26.97 15.87 35.68 21.06 99.90 97.20 34.35 25.21

FERET

FaceMorpher 53.69 34.97 42.34 5.10 69.57 46.12 19.58 8.06

OpenCV 53.88 39.51 74.48 35.92 100.00 99.43 12.75 4.97

StyleGAN2 87.33 75.24 81.47 53.31 99.43 93.76 71.23 61.56

FRLL

AMSL 65.56 60.00 4.64 2.21 11.03 7.17 20.71 14.22

FaceMorpher 11.51 8.16 1.72 1.29 2.66 2.23 0.00 0.00

OpenCV 15.89 10.07 1.80 0.90 37.59 22.60 0.49 0.00

StyleGAN2 84.94 76.27 34.62 26.43 45.58 35.84 10.29 5.39

WebMorph 78.38 67.16 12.29 9.75 18.18 12.69 1.47 0.49

Greedy-DiM Diffusion 90.20 86.20 95.40 86.80 100.00 99.80 13.73 11.76

MorDiff Diffusion 68.87 40.69 25.00 20.59 42.65 23.04 32.08 26.04

Average 54.30 42.77 39.85 25.50 57.53 47.94 18.13 12.94

Third, the substantial reduction in BPCER at fixed APCER thresholds

(18.13% vs. 39.85% at 5% APCER) represents a 54.5% decrease in false

rejections, demonstrating that LLM adaptation achieves superior operational

metrics that fundamentally improve the balance between detection accuracy and

user convenience compared to traditional supervised approaches.

5.3.2 Unsupervised and Self-Supervised Baseline Comparison

In this section, we evaluate Gemma-3 12B-MAD against state-of-the-art unsuper-

vised and self-supervised morphing attack detection methods including SelfMAD,

SPL-MAD, MAD-DDPM, and quality-based approaches. We assess performance

across diverse morphing techniques to establish our method’s position within the

current unsupervised detection paradigm.

Table 5.26 presents a comprehensive evaluation comparing Gemma-3 12B-

MAD against state-of-the-art unsupervised and self-supervised morphing at-

tack detection methods following the protocol established by SelfMAD. The

comparison includes quality-based approaches (FIQA-MagFace, CNNIQA), self-
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Table 5.26: Equal Error Rate (EER %) comparison of Gemma3-12B-MAD with

SOTA unsupervised models using the protocol from SelfMAD [1]. Lower is better.

Test Data FIQA-MagFace CNNIQA SPL-MAD MAD-DDPM SBI SelfMAD Gemma3-12B-MAD
[51] [51] [6] [40] [88] [1]

FRGC-M

FM 33.82 42.84 16.91 25.62 16.68 5.59 4.98

OCV 33.30 43.15 20.75 28.22 15.32 2.59 9.23

SG 14.21 36.51 16.80 9.02 52.90 15.84 17.32

FERET-M

FM 25.14 13.23 20.42 27.98 26.47 3.19 9.30

OCV 26.14 20.45 25.71 31.38 28.73 1.13 7.40

SG 12.67 33.84 25.33 32.14 41.83 18.14 34.97

FRLL-M

AMSL 30.94 21.61 3.26 27.13 11.76 0.99 12.74

FM 27.99 19.97 1.03 10.40 13.73 0.00 0.49

OCV 24.73 7.53 1.88 13.76 12.25 0.00 1.47

SG 7.53 35.92 14.65 14.32 44.61 10.34 6.83

WM 27.19 21.54 6.39 30.30 39.22 3.45 2.37

Greedy DiM 47.00 49.40 37.72 36.10 33.82 7.60 11.78

Average 25.89 28.83 15.90 23.86 28.11 5.74 9.91

Results taken from SelfMAD paper [1]. ∗FM: FaceMorpher, OCV: OpenCV, SG: StyleGAN2,

WM: Webmorph, BE@AE: BPCER@APCER

supervised methods (SPL-MAD, MAD-DDPM, SBI ), and the current state-of-

the-art self-supervised approach SelfMAD.

Overall Performance Comparison. SelfMAD establishes the current state-

of-the-art with an average Equal Error Rate (EER) of 5.74%, demonstrat-

ing the effectiveness of self-supervised learning with synthetic morphing arti-

facts. Gemma-3 12B-MAD achieves an average EER of 9.91%, placing it as

the second-best performer, substantially outperforming now traditional unsuper-

vised methods including SPL-MAD (15.90%), FIQA-MagFace (25.89%), MAD-

DDPM (23.86%), and CNNIQA (28.83%). While not surpassing SelfMAD in

average EER, Gemma-3 12B-MAD exhibits competitive performance at opera-

tional thresholds, achieving comparable BPCER values at fixed APCER points.

Performance by Morphing Technique Category. Analysis reveals distinct

performance patterns across morphing generation methods. For landmark-based

morphs, SelfMAD demonstrates exceptional capability, achieving near-perfect de-

tection on FRLL datasets: OpenCV (0.00% EER), FaceMorpher (0.00% EER),

and remarkably low rates on AMSL (0.99%) and WebMorph (3.45%). Gemma-3

12B-MAD, while not matching these exceptional results, still achieves strong per-
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Table 5.27: BPCER (%) at fixed APCER = 5% and 10% for Gemma3-12B-MAD

compared with SOTA unsupervised models using the protocol from SelfMAD [1].

Lower is better.

Test Data

FIQA-MagFace CNNIQA SPL-MAD MAD-DDPM SBI SelfMAD Gemma3-12B-MAD

[51] [51] [6] [40] [88] [1]

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

FRGC-M

FM 73.79 62.84 75.94 66.86 25.39 21.47 95.12 90.15 38.07 26.14 6.43 2.80 4.91 2.15

OCV 74.71 62.52 74.64 66.35 32.50 25.42 95.12 90.15 36.31 25.10 1.14 0.41 14.11 8.31

SG 26.46 17.60 70.34 57.93 26.13 21.09 95.12 90.15 97.10 94.40 45.23 25.52 34.35 25.21

FERET-M

FM 61.22 44.44 35.17 19.32 40.85 27.09 95.27 90.17 60.87 52.36 1.70 0.38 19.50 8.04

OCV 61.50 43.95 58.60 37.23 57.45 45.60 95.27 90.17 70.08 60.61 0.57 0.38 12.75 4.97

SG 24.63 15.71 79.55 66.17 62.06 49.72 95.27 90.17 90.55 82.42 46.12 32.33 71.23 61.56

FRLL-M

AMSL 77.94 66.18 60.29 39.22 0.50 0.50 94.94 90.02 24.23 16.78 0.05 0.05 20.71 14.22

FM 73.04 57.35 57.84 36.76 0.99 0.99 95.19 90.38 36.99 26.10 0.26 0.17 0.00 0.00

OCV 66.18 53.43 11.76 4.41 0.50 0.50 95.17 90.01 27.85 18.84 0.00 0.00 0.49 0.00

SG 8.82 5.39 75.49 68.14 32.18 24.75 95.17 90.18 94.68 90.92 24.22 12.52 10.29 5.39

WM 68.14 55.39 46.57 33.33 11.39 3.47 95.09 90.34 89.93 83.37 1.64 0.41 1.47 0.49

Greedy DiM 94.61 85.78 96.08 93.14 80.69 71.78 95.20 89.70 90.60 81.60 37.60 27.80 13.73 11.76

Average 59.25 47.55 61.86 49.07 30.89 24.36 95.16 90.13 63.11 54.89 13.75 8.56 16.96 11.84

Results taken from SelfMAD paper [1]. ∗FM: FaceMorpher, OCV: OpenCV, SG: StyleGAN2,

WM: Webmorph, BE@AE: BPCER@APCER

formance with 1.47%, 0.49%, 12.74%, and 2.37% EER respectively, significantly

outperforming all other baselines.

On GAN-based morphs (StyleGAN2), Gemma-3 12B-MAD demonstrates

competitive or superior performance compared to SelfMAD. For FRLL-

StyleGAN2, Gemma-3 12B-MAD achieves 6.83% EER versus SelfMAD ’s 10.34%,

and maintains better operational metrics with 10.29% BPCER at 5% APCER

compared to SelfMAD ’s 24.22%. This pattern suggests that foundation model

pre-training provides robust features for detecting certain sophisticated GAN ar-

tifacts that challenge even specialized self-supervised approaches.

The most significant performance differential appears on diffusion-based

morphs (Greedy-DiM). SelfMAD achieves 7.60% EER, demonstrating its strong

generalization to novel morphing techniques. Gemma-3 12B-MAD records

11.78% EER but excels at operational thresholds, achieving 13.73% BPCER at

5% APCER compared to SelfMAD ’s 37.60%, indicating better calibration for

practical deployment despite higher overall error rates.

Comparison with Traditional Unsupervised Methods. Quality-based ap-

proaches (FIQA-MagFace, CNNIQA) show inconsistent performance across mor-
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phing types. While CNNIQA achieves reasonable detection on certain landmark

morphs (7.53% EER on FRLL-OpenCV), both methods fail considerably on oth-

ers, with average EERs exceeding 25%. Their operational metrics are particularly

poor, with BPCER values often exceeding 60% at 5% APCER, rendering them

unsuitable for practical deployment.

SPL-MAD, despite being an early self-supervised approach, demonstrates

competitive performance on FRLL landmark morphs (1–7% EER) but strug-

gles with GAN and diffusion attacks. MAD-DDPM shows more consistent but

moderate performance across all morphing types, with EERs ranging from 9–37%.

Operational Threshold Analysis. At security-critical operating points,

Gemma-3 12B-MAD demonstrates strong practical viability. At 5% APCER,

it achieves an average BPCER of 16.96%, compared to SelfMAD ’s 13.75%. This

3.21 percentage point difference is smaller than the 4.17 point gap in average EER,

indicating that Gemma-3 12B-MAD provides more suitable scores for threshold-

based deployment.

Key Findings. The evaluation establishes that while SelfMAD remains the

state-of-the-art with its 5.74% average EER, Gemma-3 12B-MAD repre-

sents a compelling alternative approach that achieves the second-best overall

performance (9.91% EER) through foundation model adaptation. The com-

parison reveals complementary strengths: SelfMAD excels at landmark-based

morphs, while in comparison Gemma-3 12B-MAD demonstrates superior or com-

petitive performance on GAN-based attacks and maintains better operational

characteristics on certain challenging datasets. Both approaches substantially

outperform traditional unsupervised methods, with average perfor-

mance improvements exceeding 5–15 percentage points, establishing a

new performance tier for morphing attack detection without explicit supervision

on real morphing attacks.



5.3 Comparative Analysis with SOTA Models and MAD Baselines 99

5.3.3 Gemma-3 12B-MAD vs. MADation and GPT4-Turbo

In this section, we evaluate Gemma-3 12B-MAD against MADation foundation

model variants and GPT-4 Turbo to compare different foundation model adapta-

tion strategies. We assess performance across FRLL-based morphing techniques

and advanced GAN/diffusion datasets to establish our approach’s position among

state-of-the-art foundation model-based detection methods.

Table 5.28: Equal Error Rate and operational performance compar-

ison between MADation foundation model variants and Gemma-3

12B-MAD. Evaluation includes FRLL morphing techniques, MIPGAN II, and

MorDIFF datasets. BPCER values reported at fixed APCER thresholds of 1%,

10%, and 20%. Best results per metric highlighted in bold.

Dataset Subset
MADation ViT-B MADation ViT-L Gemma3-12B-MAD (LoRA)

EER BPCER@APCER EER BPCER@APCER EER BPCER@APCER

(%) 1% 10% 20% (%) 1% 10% 20% (%) 1% 10% 20%

FRLL

StyleGAN2 17.21 54.85 26.69 13.10 24.96 94.17 49.03 22.33 6.83 22.06 5.39 3.43

WebMorph 3.42 5.88 0.49 0.00 4.07 6.86 1.47 1.47 2.37 3.82 0.49 0.49

OpenCV 2.97 4.41 0.49 0.49 0.99 0.98 0.00 0.00 1.47 2.25 0.00 0.00

AMSL 3.85 12.07 2.89 2.41 7.26 21.26 10.63 5.80 12.74 42.52 14.22 6.37

FaceMorpher 1.35 1.47 0.00 0.00 0.74 0.98 0.98 0.98 0.49 0.49 0.00 0.00

MIPGAN II – 22.21 84.80 47.55 26.47 9.06 100 5.39 0.98 17.92 55.00 23.57 15.29

MorDIFF – 1.10 1.94 0.00 0.00 20.40 82.35 37.25 13.24 17.33 48.68 26.04 15.85

Average 7.44 23.63 11.16 6.07 9.64 43.80 14.96 6.40 8.45 24.97 9.96 5.92

Table 5.29: Performance comparison on MIPGAN II dataset across mul-

timodal large language models. Results include GPT-4 Turbo (proprietary,

zero-shot), Gemma-3 27B (open-source, zero-shot), and Gemma-3 12B variants

with progressive adaptation strategies. Lower EER indicates better performance.

Model MIPGAN II (EER %)

GPT4-Turbo [10] 37.0

Gemma3-27B Zero-Shot 35.56

Gemma3-12B Classification Head-Only 31.67

Gemma3-12B LoRA Fine-Tuned 17.92
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Table 5.28 presents a direct comparison between Gemma-3 12B-MAD and

MADation, the first vision-language foundation model adaptation for morph-

ing attack detection. MADation employs CLIP’s visual encoders (ViT-B and

ViT-L) with lightweight LoRA fine-tuning, representing the most closely related

approach to our methodology. Additionally, Table 5.29 compares our model vari-

ants against GPT-4 Turbo, providing context for multimodal LLM performance

on challenging GAN-based morphs.

Foundation Model Architecture Comparison. MADation ViT-B achieves

the lowest average EER at 7.44%, followed by Gemma-3 12B-MAD at 8.45% and

MADation ViT-L at 9.64%. This ordering suggests that model scale does not di-

rectly correlate with detection performance; instead, the effectiveness depends on

the interplay between architecture, pre-training, and adaptation strategy. MADa-

tion ViT-B ’s superior average performance demonstrates that specialized vision-

language models can be highly effective when properly adapted for morphing

detection.

However, analysis at operational thresholds reveals a different picture. At

10% APCER, Gemma-3 12B-MAD achieves an average BPCER of 9.96%, out-

performing both MADation ViT-B (11.16%) and ViT-L (14.96%). This superior

operational performance extends to the 20% APCER threshold, where Gemma-

3 maintains the lowest average BPCER at 5.92%. These results indicate that

while MADation may achieve better threshold-independent metrics, Gemma-3

provides more reliable detection at security-critical operating points.

Performance by Morphing Technique. The models exhibit complemen-

tary strengths across different morphing types. For landmark-based morphs, all

three approaches achieve exceptional performance, with sub-1% EER on FRLL-

FaceMorpher and FRLL-OpenCV. MADation ViT-L achieves perfect detection

(0.00% BPCER) on OpenCV morphs at 10% and 20% APCER, while Gemma-3

demonstrates superior performance on FaceMorpher with 0.49% EER compared

to ViT-B’s 1.35% and ViT-L’s 0.74%.

On StyleGAN2 morphs, Gemma-3 12B-MAD significantly outperforms both
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MADation variants, achieving 6.83% EER versus 17.21% (ViT-B) and 24.96%

(ViT-L). This advantage is particularly pronounced at operational thresholds,

where Gemma-3 maintains 5.39% BPCER at 10% APCER compared to 26.69%

and 49.03% forMADation variants. This suggests that multimodal LLM architec-

tures may possess superior capability for detecting sophisticated GAN artifacts.

The models show divergent performance on specialized datasets. MADation

ViT-B excels on MorDIFF (1.10% EER), while ViT-L performs best on MIPGAN

II (9.06% EER). Gemma-3 achieves moderate performance on both (17.33% and

17.92% respectively), indicating that specific architectural choices within founda-

tion models can optimize detection for particular morphing techniques.

Multimodal LLM Comparison. Table 5.29 provides crucial context by com-

paring Gemma-3 variants against GPT-4 Turbo on the challenging MIPGAN II

dataset. GPT-4 Turbo, despite being a significantly larger proprietary model,

achieves only 37.0% EER in zero-shot evaluation. Our Gemma-3 27B zero-shot

configuration slightly outperforms it at 35.56%, while the classification head-only

baseline further improves to 31.67%. Most notably, LoRA fine-tuning reduces the

EER to 17.92%, representing a 52% improvement over GPT-4 Turbo.

This dramatic performance gap demonstrates that model scale alone is insuf-

ficient for morphing detection; domain-specific adaptation is essential. The pro-

gression from zero-shot (35.56%) through classification head (31.67%) to LoRA

fine-tuning (17.92%) illustrates how targeted adaptation progressively enhances

detection capabilities, ultimately achieving performance competitive with spe-

cialized foundation models.

Adaptation Strategy Impact. Both Gemma-3 12B-MAD and MADation

employ LoRA for parameter-efficient fine-tuning, but their base architectures

and training strategies differ significantly. MADation adapts a pure vision model

(CLIP) for classification, while Gemma-3 leverages a multimodal LLM’s com-

bined vision-language understanding. The comparable performance between

these approaches (7.44% vs. 8.45% average EER) validates that multiple foun-

dation model architectures can be successfully adapted for morphing detection,
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with each offering distinct advantages.

Key Findings. The evaluation establishes two critical insights.

First, foundation model adaptations (both MADation and Gemma-3 ) dra-

matically outperform larger models in zero-shot configuration, with our LoRA-

tuned Gemma-3 achieving a 19-point EER improvement over GPT-4

Turbo on MIPGAN II.

Second, while MADation ViT-B achieves the best average EER (7.44%),

Gemma-3 12B-MAD demonstrates superior operational performance

with lower BPCER at fixed APCER thresholds, suggesting better calibration for

practical deployment.

5.3.4 Evaluation Summary

In this section, we summarize the comparative results from supervised, unsu-

pervised, and foundation model baselines to provide an overall assessment of

Gemma-3 12B-MAD ’s performance position within the current state-of-the-art

morphing attack detection landscape.

The comparative results position Gemma-3 12B-MAD (LoRA) as a consis-

tently strong foundation-model approach that surpasses classical supervised de-

tectors and competes closely with the best unsupervised/self-supervised and al-

ternative foundation-model baselines. Against supervised deep networks trained

under the SPL-MAD protocol, Gemma-3 achieves the lowest average EER

(14.81%), outperforming the best supervised average (MixFaceNet-MAD on

SMDD, 21.55%). The gap widens at operational points: at 5% APCER, Gemma-

3 ’s average BPCER is 18.13% versus 39.85% for the strongest supervised base-

line, indicating materially better error trade-offs under security-relevant thresh-

olds. Per-technique analysis shows especially large margins on landmark-based

attacks (e.g., FRLL-OpenCV, FRLL-FaceMorpher, FRLL-WebMorph), while

GAN-heavy sets such as MorGAN remain challenging for all supervised base-

lines and for Gemma-3 alike.
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When compared to unsupervised and self-supervised methods, SelfMAD re-

mains the SOTA in average EER (5.74%), with Gemma-3 ranking second

(9.91%). However, the operational picture is more balanced. On several sub-

sets, most notably FRLL-StyleGAN2, Gemma-3 attains lower BPCER at fixed

APCER than SelfMAD (e.g., at 10% APCER), indicating better calibration

under deployment-like thresholds despite a higher threshold-independent error.

Quality-heuristic baselines (FIQA-MagFace, CNNIQA) and earlier anomaly/self-

paced models (MAD-DDPM, SPL-MAD) trail substantially on both averages

and operating-point metrics, underscoring the advantage of either self-supervision

with targeted artifacts (SelfMAD) on foundation-model adaptation (Gemma-3 ).

Among foundation-model adaptations, MADation (CLIP ViT-B/ViT-L)

achieves the best average EER (7.44% for ViT-B), with Gemma-3 close be-

hind (8.45%) and ahead of MADation ViT-L (9.64%). Yet at fixed operating

points, Gemma-3 attains the lowest average BPCER at 10% and 20% APCER

(9.96% and 5.92%, respectively), indicating superior operating-point efficiency.

The methods exhibit complementary strengths: Gemma-3 is dominant on FRLL-

StyleGAN2 (6.83% EER vs. 17.21%/24.96% for MADation ViT-B/ViT-L), while

MADation leads on AMSL and MorDIFF, and ViT-L is strongest on MIPGAN

II. Finally, against a large multimodal LLM baseline, GPT-4 Turbo (zero-shot)

records 37.0% EER on MIPGAN II; Gemma-3 improves stepwise from 27B zero-

shot (35.56%) to 12B head-only (31.67%), and to 12B LoRA (17.92%), demon-

strating that task-specific adaptation, not model scale, is the key driver of per-

formance.

Overall, the cross-baseline evidence shows: (i) clear wins over supervised MAD

both on averages and at security-critical thresholds; (ii) near-SOTA standing vs.

SelfMAD, with Gemma-3 frequently superior at fixed APCER despite a higher

average EER; and (iii) competitive parity with MADation on averages and ad-

vantages at operating points, particularly on StyleGAN-type attacks. Taken

together, these results prove that a fine-tuned Gemma-3 12B is a highly ca-

pable morphing-attack detector, delivering competitive averages and superior

operating-point behavior across several key benchmarks; this places Gemma-3

12B-MAD at the forefront of MAD, alongside SelfMAD and MADation.
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6 Conclusion

This thesis presented a comprehensive investigation into the application of mul-

timodal large language models for face morphing attack detection, establishing

a new paradigm that leverages large language model capabilities for biometric

security applications. Through systematic evaluation of open-source multimodal

LLMs, development of sophisticated prompt engineering strategies, and imple-

mentation of parameter-efficient fine-tuning techniques, we demonstrated that

general-purpose vision-language models can be successfully adapted to achieve

competitive performance in morphing attack detection.

Our experimental results validate the core hypothesis that multimodal LLMs

possess inherent forensic analysis capabilities that can be unlocked through ap-

propriate instruction and adaptation. The zero-shot evaluation of four state-of-

the-art models revealed that Gemma-3 27B achieved the best performance with

an average EER of 32.09%, demonstrating measurable morphing detection ability

without any task-specific training. This finding is significant as it establishes that

foundation models trained on diverse internet-scale data implicitly learn visual

patterns relevant to detecting facial manipulations.

The development of our structured forensic analysis framework represents

a methodological contribution beyond simple prompt optimization. By guid-

ing models through systematic six-step analytical procedures with fine-grained

confidence scoring (0–10,000 scale), we achieved a 18% average EER reduction

compared to basic prompting strategies. This framework not only improved de-

tection accuracy but also provided interpretable, structured outputs that explain

the reasoning behind each decision, a critical requirement for high-stakes security

applications where transparency is essential.

105
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The most substantial performance gains emerged from parameter-efficient

fine-tuning using LoRA adaptation. Our fine-tuned Gemma-3 12B model

achieved an average EER of 14.98%, representing a 53.3% improvement over

zero-shot performance while requiring only 0.61% of trainable parameters. This

approach successfully bridged the gap between general-purpose LLMs and special-

ized detection systems, achieving superior performance compared to supervised

deep learning baselines (14.81% vs. 21.55% for the best baseline) and establishing

the second-best results among all evaluated methods, surpassed only by the state-

of-the-art SelfMAD approach (5.74% EER). Additionally, feature space analysis

revealed that classification head calibration can become a bottleneck even when

representational learning succeeds, as evidenced by FERET-StyleGAN ’s excel-

lent cluster separation yet poor EER performance. Furthermore, input resolution

emerged as a critical factor transcending morphing methodology, as both GAN-

based (MorGAN-GAN ) and landmark-based (MorGAN-LMA) attacks at 64×64

resolution showed scattered feature distributions and failed genuine sample clus-

tering, unlike the tight clustering patterns observed across all higher-resolution

datasets.

Comparative analysis against existing methods revealed distinct advantages

of the multimodal LLM approach. While SelfMAD remains superior in aver-

age performance, Gemma-3 12B-MAD demonstrated complementary strengths,

particularly on specific GAN-based morphs where it outperformed SelfMAD on

FRLL-StyleGAN2 (6.83% vs. 10.34% EER). Against other foundation model

adaptations, our approach achieved comparable average performance to MADa-

tion (8.45% vs. 7.44% EER) while demonstrating superior operational charac-

teristics at security-critical thresholds. Most notably, the 52% improvement over

GPT-4 Turbo on MIPGAN II datasets conclusively demonstrates that targeted

adaptation, rather than model scale alone, determines detection effectiveness.

From a practical deployment perspective, the fine-tuned Gemma-3 12B model

offers compelling advantages. The 30× inference speedup compared to zero-shot

evaluation (from 30 seconds to under 1 second per image) and the ability to

deploy on a single GPU make it viable for real-world security systems.
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6.1 Limitations

Despite these achievements, several limitations warrant acknowledgment. The

performance gap with SelfMAD indicates that specialized self-supervised ap-

proaches remain superior for certain morphing types, particularly landmark-based

attacks where SelfMAD achieves near-perfect detection. Our approach struggles

with sophisticated GAN morphs like MorGAN, where EERs remain above 45%,

suggesting that certain synthetic faces that closely approximate genuine distri-

butions challenge even adapted foundation models. Additionally, the reliance

on proprietary model architectures and substantial computational resources for

training may limit accessibility for some research groups.

Feature analysis revealed classification head calibration issues where training

data created decision boundaries poorly suited for certain real-world datasets,

despite successful feature separation. Additionally, input resolution critically im-

pacts detection capability regardless of morphing technique, as low-resolution

datasets (64×64 pixels) prevented the model from establishing reliable feature

representations for both genuine samples and attacks, leading to scattered em-

beddings resembling untrained states.

6.2 Future Directions

This research opens the door for future LLM adaptation and implementation for

the MAD task. Different fine-tuning approaches could be explored, particularly

those that explicitly teach the model to provide detailed reasoning behind its

decisions, potentially resolving the critical issue of explainability in morphing

attack detection. Rather than training solely on classification objectives, future

work could leverage the generative capabilities of LLMs to produce comprehensive

forensic reports that detail specific artifacts and their locations, enhancing both

detection accuracy and interpretability.

Investigating improved domain adaptation strategies could address classifi-

cation calibration issues, particularly developing training protocols that ensure

decision boundaries generalize across diverse imaging conditions and dataset char-
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acteristics. Additionally, establishing minimum resolution requirements for effec-

tive morphing detection could guide preprocessing standards and dataset creation

protocols for future LLM-MAD research.

Additionally, the adaptation of smaller multimodal LLMs could reveal the

minimum model capacity required for effective morphing detection, potentially

enabling deployment on resource-constrained devices. Conversely, exploring

larger LLMs with enhanced reasoning capabilities could determine whether supe-

rior reasoning abilities translate to improved detection performance, particularly

for sophisticated attacks that current models struggle to identify. The relation-

ship between model scale, reasoning capability, and morphing detection accuracy

remains an open question with significant implications for practical deployment

strategies.

6.3 Final Remarks

This thesis demonstrates that multimodal large language models represent a vi-

able and promising approach for morphing attack detection, achieving compet-

itive performance with established methods while offering unique advantages in

interpretability, deployment efficiency, and generalization capability. By estab-

lishing that general-purpose large language models can be successfully adapted

for specialized security tasks, this work contributes to the broader understanding

of how large-scale pre-training can benefit domain-specific applications. As mor-

phing techniques continue to evolve and new attack vectors emerge, the flexibility

and adaptability of foundation model approaches position them as valuable tools

in the ongoing effort to secure biometric systems against sophisticated presenta-

tion attacks.
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T. Matejovicova, A. Ramé, M. Rivière et al., “Gemma 3 technical report,”

arXiv preprint arXiv:2503.19786, 2025.

[55] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang,

S. Wang, J. Tang et al., “Qwen2. 5-vl technical report,” arXiv preprint

arXiv:2502.13923, 2025.

[56] Mistral AI, “Mistral small 3.1 (mistral-small-2503) instruct,” https://

mistral.ai/news/mistral-small-3-1, 2025, released March 17 2025 under

Apache 2.0, 24B parameters, 128k context window, multimodal (text vi-

sion); accessed August 4 2025.

[57] H. Zhao, Z. Cai, S. Si, X. Ma, K. An, L. Chen, Z. Liu, S. Wang, W. Han, and

B. Chang, “Mmicl: Empowering vision-language model with multi-modal in-

context learning,” in International Conference on Learning Representations

(ICLR), 2024.

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/bme2.12094
https://mistral.ai/news/mistral-small-3-1
https://mistral.ai/news/mistral-small-3-1


116 Bibliography

[58] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,

D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large lan-

guage models,” Advances in neural information processing systems, vol. 35,

pp. 24 824–24 837, 2022.

[59] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, and Y. Zhang, “An empirical

study of catastrophic forgetting in large language models during continual

fine-tuning,” arXiv preprint arXiv:2308.08747, 2023.

[60] Information technology — Biometric presentation attack detection — Part

3: Testing and reporting, International Organization for Standardization

Std. ISO/IEC 30 107-3:2023, 2023. [Online]. Available: https://www.iso.

org/standard/79520.html

[61] E. Sarkar, P. Korshunov, L. Colbois, and S. Marcel, “Vulnerability

analysis of face morphing attacks from landmarks and generative

adversarial networks,” arXiv preprint, Oct. 2020. [Online]. Available:

https://arxiv.org/abs/2012.05344

[62] ——, “Are gan-based morphs threatening face recognition?” in ICASSP

2022 - 2022 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2022, pp. 2959–2963. [Online]. Available:

https://doi.org/10.1109/ICASSP43922.2022.9746477

[63] L. DeBruine, “webmorph,” 2018. [Online]. Available: https://github.com/

debruine/webmorph

[64] T. Neubert, A. Makrushin, M. Hildebrandt, C. Kraetzer, and J. Dittmann,

“Extended stirtrace benchmarking of biometric and forensic qualities of

morphed face images,” IET Biometrics, vol. 7, no. 4, pp. 325–332, 2018.

[Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.

1049/iet-bmt.2017.0147

[65] M. Ivanovska, A. Kronovšek, P. Peer, V. Štruc, and B. Batagelj, “Face mor-
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A.1 Prompt 1: Structured Forensic Analysis – Semantic

Guide A

Listing A.1: Prompt 1: Structured Forensic Analysis – Semantic Guide A

1 ["""# Multimodal Morphing Attack Detection Prompt

2

3 ## Task

4 You are a multimodal AI system with both ** vision and

language understanding **. You are given an image of a

face and your task is to determine whether it is a **

bona fide (authentic)** face or a ** morphing attack ** (a

digitally blended face of two people).

5

6 After each step of your analysis , you must provide a **

confidence score ** on a strict scale from **0.000 to

10000.000** , where:

7

8 - ‘0.000‘ means ** definitely bona fide**

9 - ‘10000.000 ‘ means ** definitely morph**

10 - Values in between reflect **fine -grained probability ** of

a morphing attack

11 - 0 -1000: Strong evidence of authentic face

12 - 1000 -3000: Likely authentic with minor irregularities

13 - 3000 -7000: Uncertain , requires careful analysis

14 - 7000 -9000: Likely morphed with moderate evidence

15 - 9000 -10000: Strong evidence of morphing attack

123
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16

17 > ** Important :** Avoid rounded or generic values like

‘1000‘, ‘5000‘, ‘8000‘. Your score must be ** precise**,

with at least **three decimal places **. This is

essential for biometric performance analysis and

threshold calibration.

18

19 Use the **step -by -step visual analysis ** outlined below.

After each step , provide a confidence score in the

specified format , based on your observations and the

responses to the guiding questions.

20

21 ## Visual Analysis Steps

22

23 ### Step 1: Core Facial Features

24 - Focus on the **eyes , nose , lips , and eyebrows **.

25 - Look for signs of ** ghosting**, ** faint duplicates **, or

misaligned or unnatural elements.

26 - Check if eye contours or lip lines appear duplicated or

semi -transparent.

27

28 **Ask **: "Do facial features have any doubled contours or

blended boundaries ?"

29 **Ask **: "Do the eyes appear blurred or duplicated ?"

30 **Ask **: "Do the lips show any visual artifacts , or are the

lip lines irregular ?"

31

32 After this step , provide a confidence score for Step 1 in

this format:

33 ‘‘‘json

34 {" step1_score ": [0 to 10000]}

35 ‘‘‘

36

37 ### Step 2: Facial Geometry and Symmetry

38 - Visually compare the **left and right halves ** of the

face.



A.1 Prompt 1: Structured Forensic Analysis – Semantic Guide A 125

39 - Detect any asymmetry in shape , spacing , or size of eyes ,

irises , ears , and jawline.

40 - Assess if the overall geometry seems subtly misaligned or

"averaged ."

41

42 **Ask **: "Do the facial proportions look unnaturally

blended or off -balance ?"

43

44 After this step , provide a confidence score for Step 2 in

this format:

45 ‘‘‘json

46 {" step2_score ": [0 to 10000]}

47 ‘‘‘

48

49 ### Step 3: Skin Texture and Detail

50 - Inspect the **skin surface ** for fine detail.

51 - Detect over -smoothness , uniform skin tone , or "plastic -

like" appearance.

52 - Check if pores , wrinkles , or blemishes are abnormally

absent or symmetric.

53

54 **Ask **: "Does the skin look too perfect , synthetic , or

even -textured ?"

55 **Ask **: "Are pores , wrinkles , or blemishes abnormally

absent or symmetric ?"

56

57 After this step , provide a confidence score for Step 3 in

this format:

58 ‘‘‘json

59 {" step3_score ": [0 to 10000]}

60 ‘‘‘

61

62 ### Step 4: Image Boundary and Hairline

63 - Look at the **face boundary**, including **ears , hairline

, and background **.

64 - Detect any blurred transitions , blending seams , or edge

mismatches.
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65 - Check for faded or semi -transparent features outside the

main face.

66

67 **Ask **: "Do any facial borders blend unnaturally into the

background ?"

68 **Ask **: "Are there any faded or semi -transparent elements

present in the image?"

69 **Ask **: "Do ears , hairline , and background have any faded

or semi -transparent artifacts ?"

70

71 After this step , provide a confidence score for Step 4 in

this format:

72 ‘‘‘json

73 {" step4_score ": [0 to 10000]}

74 ‘‘‘

75

76 ### Step 5: Lighting and Color Consistency

77 - Examine ** lighting direction , reflections , and shadows **.

78 - Identify ** saturation anomalies ** (e.g., bright red

patches) or abnormal gradients.

79 - Compare lighting consistency across both sides of the

face.

80

81 **Ask **: "Are there unnatural color shifts or inconsistent

lighting effects ?"

82

83 After this step , provide a confidence score for Step 5 in

this format:

84 ‘‘‘json

85 {" step5_score ": [0 to 10000]}

86 ‘‘‘

87

88 ### Step 6: Identity Coherence

89 - Assess whether all facial features belong to the **same

plausible identity **.

90 - Detect any mismatch (e.g., eyes that don ’t match the rest

of the face).
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91 - Evaluate whether the face looks ** overly generic or

statistically averaged **.

92

93 **Ask **: "Does the face appear to be a convincing real

person , or a blend of two?"

94

95 After this step , provide a confidence score for Step 6 in

this format:

96 ‘‘‘json

97 {" step6_score ": [0 to 10000]}

98 ‘‘‘

99

100 ## Final Analysis Summary

101

102 After completing all steps , summarize your overall findings

and indicate which steps showed the strongest evidence

of a potential morphing attack , if any.

103 """

104 ]

A.2 Prompt 2: Extended Forensic Analysis – Semantic

Guide A

Listing A.2: Prompt 2: Extended Forensic Analysis – Semantic Guide A

1 ["""# Multimodal Morphing Attack Detection Prompt

2

3 ## Task

4 You are a multimodal AI system with both ** vision and

language understanding **. You are given an image of a

face and your task is to determine whether it is a **

bona fide (authentic)** face or a ** morphing attack ** (a

digitally blended face of two people).

5 Use your visual understanding capabilities to examine the

image carefully.
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6 Take time to analyze each aspect before providing your

confidence score.

7

8 After each step of your analysis , you must provide a **

confidence score ** on a strict scale from **0.000 to

10000.000** , where:

9

10 - ‘0.000‘ means ** definitely bona fide**

11 - ‘10000.000 ‘ means ** definitely morph**

12 - Values in between reflect **fine -grained probability ** of

a morphing attack

13 - 0 -1000: Strong evidence of authentic face

14 - 1000 -3000: Likely authentic with minor irregularities

15 - 3000 -7000: Uncertain , requires careful analysis

16 - 7000 -9000: Likely morphed with moderate evidence

17 - 9000 -10000: Strong evidence of morphing attack

18

19

20 > ** Scoring Guidelines :**

21 > - Consider the severity and frequency of artifacts

22 > - Multiple minor issues may accumulate to higher scores

23 > - A single clear morphing artifact should result in a

high score (7000+)

24 > - When in doubt , err on the side of caution but justify

your reasoning

25

26 > ** Important :** Avoid rounded or generic values like

‘1000‘, ‘5000‘, ‘8000‘. Your score must be ** precise**,

with at least **three decimal places **. This is

essential for biometric performance analysis and

threshold calibration.

27

28 Use the **step -by -step visual analysis ** outlined below.

After each step , provide a confidence score in the

specified format , based on your observations and the

responses to the guiding questions.

29
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30 ## Confidence Calibration

31 Before providing each score , consider:

32 - How certain are you about this assessment?

33 - Have you seen similar patterns in legitimate faces?

34 - Would a human expert notice these artifacts?

35

36 ## Visual Analysis Steps

37

38 ### Step 1: Core Facial Features

39 - Focus on the **eyes , nose , lips , and eyebrows **.

40 - Look for signs of ** ghosting**, ** faint duplicates **, or

misaligned or unnatural elements.

41 - Check if eye contours or lip lines appear duplicated or

semi -transparent.

42

43 **Ask **: "Do facial features have any doubled contours or

blended boundaries ?"

44 **Ask **: "Do the eyes appear blurred or duplicated ?"

45 **Ask **: "Do the lips show any visual artifacts , or are the

lip lines irregular ?"

46

47 After this step , provide a confidence score for Step 1 in

this format:

48 ‘‘‘json

49 {" step1_score ": [0 to 10000]}

50 ‘‘‘

51

52 ### Step 2: Facial Geometry and Symmetry

53 - Visually compare the **left and right halves ** of the

face.

54 - Detect any asymmetry in shape , spacing , or size of eyes ,

irises , ears , and jawline.

55 - Assess if the overall geometry seems subtly misaligned or

"averaged ."

56

57 **Ask **: "Do the facial proportions look unnaturally

blended or off -balance ?"
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58 **Ask **: "Is there any asymmetry in shape , spacing , or size

of eyes , irises , ears , and jawline ?"

59 **Ask **: "Does the overall facial geometry appear

artificially averaged or unnaturally symmetric ?"

60

61 After this step , provide a confidence score for Step 2 in

this format:

62 ‘‘‘json

63 {" step2_score ": [0 to 10000]}

64 ‘‘‘

65

66 ### Step 3: Skin Texture and Detail

67 - Inspect the **skin surface ** for fine detail.

68 - Detect over -smoothness , uniform skin tone , or "plastic -

like" appearance.

69 - Check if pores , wrinkles , or blemishes are abnormally

absent or symmetric.

70

71 **Ask **: "Does the skin look too perfect , synthetic , or

even -textured ?"

72 **Ask **: "Are pores , wrinkles , or blemishes abnormally

absent or symmetric ?"

73

74 After this step , provide a confidence score for Step 3 in

this format:

75 ‘‘‘json

76 {" step3_score ": [0 to 10000]}

77 ‘‘‘

78

79 ### Step 4: Image Boundary and Hairline

80 - Look at the **face boundary**, including **ears , hairline

, and background **.

81 - Detect any blurred transitions , blending seams , or edge

mismatches.

82 - Check for faded or semi -transparent features outside the

main face.

83
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84 **Ask **: "Do any facial borders blend unnaturally into the

background ?"

85 **Ask **: "Are there any faded or semi -transparent elements

present in the image?"

86 **Ask **: "Do ears , hairline , and background have any faded

or semi -transparent artifacts ?"

87

88 After this step , provide a confidence score for Step 4 in

this format:

89 ‘‘‘json

90 {" step4_score ": [0 to 10000]}

91 ‘‘‘

92

93 ### Step 5: Lighting and Color Consistency

94 - Examine ** lighting direction , reflections , and shadows **.

95 - Identify ** saturation anomalies ** (e.g., bright red

patches) or abnormal gradients.

96 - Compare lighting consistency across both sides of the

face.

97

98 **Ask **: "Are there unnatural color shifts or inconsistent

lighting effects ?"

99 **Ask **: "Are there any saturation anomalies ?"

100 **Ask **: "Is lighting consistent across both sides of the

face?"

101

102 After this step , provide a confidence score for Step 5 in

this format:

103 ‘‘‘json

104 {" step5_score ": [0 to 10000]}

105 ‘‘‘

106

107 ### Step 6: Identity Coherence

108 - Assess whether all facial features belong to the **same

plausible identity **.

109 - Look for inconsistencies that suggest multiple source

faces



132 Complete Prompt Texts

110 - Evaluate whether the face appears artificially averaged

or generic

111 - Check if features match in terms of age , ethnicity , and

style

112

113 **Ask **: "Do all facial features appear to belong to the

same person ?"

114 **Ask **: "Does the face look artificially perfect or overly

averaged ?"

115 **Ask **: "Are there any inconsistencies in age , ethnicity ,

or style between features ?"

116

117 After this step , provide a confidence score for Step 6 in

this format:

118 ‘‘‘json

119 {" step6_score ": [0 to 10000]}

120 ‘‘‘

121

122 ## Final Analysis Summary

123

124 After completing all steps , summarize your overall findings

and indicate which steps showed the strongest evidence

of a potential morphing attack , if any.

125 """]

A.3 Prompt 3: Optimized Forensic Analysis – Semantic

Guide B

Listing A.3: Prompt 3: Optimized Forensic Analysis – Semantic Guide B

1 ["""

2 ** Objective :**

3 Act as a forensic image analysis expert. Your primary task

is to ** quantify the level of suspicion ** that a given

facial image is a ** morphing attack **. You will analyze

the image for subtle artifacts and indicators , assigning
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a precise score that reflects your level of confidence.

4

5 > ** Guiding Principle: From Deterministic to Probabilistic

Analysis **

6 > Your goal is **not** to simply classify the image as "

bona fide" or "morph." Instead , you must analyze the

visual evidence and quantify your suspicion on a fine -

grained spectrum. Acknowledge ambiguity. A lack of

obvious artifacts does not automatically mean a score of

0, nor does a single minor anomaly warrant a score of

10000. Your analysis must produce scores that utilize

the **full range** of the scale , reflecting the subtle

nature of morphing attacks.

7

8 ** Scoring Mandate & Semantic Guide :**

9 You MUST use the entire **0.000 to 10000.000** scale.

Scores must have **three decimal places **. Use the

following guide to map your findings to a score:

10

11 - ** ‘0.000 - 1000.000 ‘ (Very Low Suspicion):** Image

appears clean , coherent , and authentic. No significant

artifacts detected. Corresponds to high confidence in

authenticity.

12 - ** ‘1000.001 - 4000.000 ‘ (Low to Moderate Suspicion):**

One or two minor , inconclusive artifacts are present (e.

g., slight unnatural smoothness , minor asymmetry). These

could potentially be explained by compression , lighting

, or natural features , but warrant a degree of suspicion

.

13 - ** ‘4000.001 - 6000.000 ‘ (Ambiguous / Moderate Suspicion

):** There are noticeable artifacts that are suspicious ,

but no single piece of evidence is conclusive. The

image feels "off." This is the zone of highest

uncertainty.

14 - ** ‘6000.001 - 9000.000 ‘ (High Suspicion):** Multiple ,

distinct artifacts are present across different areas of

the face (e.g., ghosting on eyes , edge blurring , and
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inconsistent lighting). A morph is highly probable.

15 - ** ‘9000.001 - 10000.000 ‘ (Very High / Near Certainty)

:** Overwhelming and clear evidence of morphing.

Multiple , strong artifacts are easily identifiable and

create an incoherent image.

16

17 ---

18

19 ### Forensic Analysis Steps

20

21 **Step 1: Core Facial Feature Analysis **

22 - **Area of Focus :** Eyes , nose , lips , and eyebrows.

23 - ** Artifacts to Detect :** Ghosting , faint duplicates ,

misaligned elements , doubled contours , unnaturally

blurred eye contours , or irregular/asymmetric lip lines.

24

25 **Step 2: Facial Geometry and Symmetry Analysis **

26 - **Area of Focus :** Overall facial structure , comparing

the left and right halves.

27 - ** Artifacts to Detect :** Unnatural asymmetry in the

size or spacing of eyes , irises , or ears. A jawline that

appears averaged or ill -defined. Proportions that seem

subtly misaligned or blended.

28

29 **Step 3: Skin Texture and Detail Analysis **

30 - **Area of Focus :** Skin surface across the entire face

(cheeks , forehead , chin).

31 - ** Artifacts to Detect :** Overly smooth , "plastic -like ,"

or synthetic skin texture. An abnormal lack of fine

details like pores , micro -wrinkles , or minor blemishes.

Unnatural patterns or symmetry in skin details.

32

33 **Step 4: Boundary and Edge Analysis **

34 - **Area of Focus :** The outer perimeter of the face ,

including the hairline , ears , and jawline transitioning

into the background.
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35 - ** Artifacts to Detect :** Blurring , smudging , or seam -

like artifacts at the edge of the face. Faded or semi -

transparent features , especially around the ears or hair

. Inconsistencies between the focus/sharpness of the

face and the background.

36

37 **Step 5: Lighting and Color Consistency Analysis **

38 - **Area of Focus :** The entire image , paying attention

to light , shadow , and color.

39 - ** Artifacts to Detect :** Inconsistent lighting

direction , unnatural color shifts , mismatched lighting

on different parts of the face , or inconsistent specular

highlights in the eyes.

40

41 **Step 6: Identity Coherence Analysis **

42 - **Area of Focus :** The holistic impression of the face

as a single , plausible identity.

43 - ** Artifacts to Detect :** Features that appear to belong

to different people , an "overly generic" or

statistically averaged appearance , or a general feeling

that the face is not a convincing , real person.

44

45 ---

46

47 ### Final Output Requirement

48

49 After completing your six -step analysis , present your

complete findings in a single JSON object. Do not

provide any text or explanation outside of this JSON

block.

50

51 **JSON Format :**

52 ‘‘‘json

53 {

54 "final_decision ": {

55 "overall_confidence_score ": [Value between 0.000 and

10000.000] ,
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56 "summary_of_findings ": "A brief summary justifying the

overall score , referencing the Semantic Scoring

Guide and highlighting the key evidence (or lack

thereof)."

57 },

58 "step_by_step_analysis ": {

59 "step1_core_features ": {

60 "score ": [Value between 0.000 and 10000.000] ,

61 "rationale ": "Describe observed artifacts and explain

why the score reflects a specific level of

suspicion (e.g., ’Faint asymmetry noted in lip

corners , leading to a low -suspicion score of

1850.455 ’) ."

62 },

63 "step2_facial_geometry ": {

64 "score ": [Value between 0.000 and 10000.000] ,

65 "rationale ": "Describe observed artifacts and explain

why the score reflects a specific level of

suspicion ."

66 },

67 "step3_skin_texture ": {

68 "score ": [Value between 0.000 and 10000.000] ,

69 "rationale ": "Describe observed artifacts and explain

why the score reflects a specific level of

suspicion ."

70 },

71 "step4_boundaries_and_edges ": {

72 "score ": [Value between 0.000 and 10000.000] ,

73 "rationale ": "Describe observed artifacts and explain

why the score reflects a specific level of

suspicion ."

74 },

75 "step5_lighting_and_color ": {

76 "score ": [Value between 0.000 and 10000.000] ,

77 "rationale ": "Describe observed artifacts and explain

why the score reflects a specific level of

suspicion ."
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78 },

79 "step6_identity_coherence ": {

80 "score ": [Value between 0.000 and 10000.000] ,

81 "rationale ": "Describe observed artifacts and explain

why the score reflects a specific level of

suspicion ."

82 }

83 }

84 }

85 ‘‘‘

86 """]
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