
PROBABILISTIC GRAMMAR-BASED
EQUATION DISCOVERY

Jure Brence

Doctoral Dissertation
Jožef Stefan International Postgraduate School
Ljubljana, Slovenia

Supervisor: Prof. Sašo Džeroski, Jožef Stefan Institute, Ljubljana, Slovenia
Co-Supervisor: Prof. Ljupčo Todorovski, Faculty of Mathematics and Physics, Univer-
sity of Ljubljana, Ljubljana, Slovenia

Evaluation Board:
Prof. Bogdan Filipič, Chair, Jožef Stefan Institute, Ljubljana, Slovenia
Prof. Roger Guimerà, Member, Department of Chemical Engineering, Universitat Rovira
i Virgili, Catalonia, Spain
Dr. Jovan Tanevski, Member, Institute for Computational Biomedicine, Heidelberg Uni-
versity, Heidelberg, Germany

Jure Brence

PROBABILISTIC GRAMMAR-BASED EQUATION DIS-
COVERY

Doctoral Dissertation

ODKRIVANJE ENAČB Z VERJETNOSTNIMI GRAMATIKAMI

Doktorska disertacija

Supervisor: Prof. Sašo Džeroski

Co-Supervisor: Prof. Ljupčo Todorovski

Ljubljana, Slovenia, April 2024

v

Acknowledgments

I thank my supervisor Sašo Džeroski for accepting me into his research group and support-
ing me throughout the journey of becoming a doctor philosophiae.

My co-supervisor Ljupčo Todorovski for guiding me on the path of a researcher, for
helping me learn an entirely new field, and for our many inspiring and engaging discussions.

The members of the evaluation board: Jovan Tanevski, Bogdan Filipič and Roger
Guimerà for the effort they put into carefully reading this work and providing constructive
criticism.

My colleagues Nina Omejc, Boštjan Gec and Sebastian Mežnar for our productive
collaboration in the field of equation discovery and the work they’ve done on ProGED, as
well as all the laughter we’ve enjoyed in the office and all the gossip we’ve shared at lunch.

My colleagues Tomaž Stepišnik, Matej Petković, Blaž Škrlj and Martin Breskvar for
their loyal encouragement, their constructive criticism, and for every round of drinks.

The members of the Department of Knowledge Technologies, for helping create an
enjoyable and stimulating research environment.

My friends, with whom I regularly shared the triumphs and frustrations of my PhD
studies.

Most of all, I thank my family for all their encouragement, especially my mother Ivanka
Bračun for her unwavering support and pride in each and every one of my endeavors, my
uncle Drago Bračun for setting me on this path, and my fiancée Petra Mikolič for her love
and for our many discussions on statistics. But mostly the love, of course.

Finally, I acknowledge the financial support from the Slovenian Research and Innovation
Agency (ARIS), primarily through the research project N2-0128 and the core funding P2-
0103.

vii

Abstract

In this thesis, we introduce novel methods for equation discovery (ED), based on the use of
probabilistic grammars. ED and symbolic regression address the task of finding a symbolic
mathematical model that best describes observed data. Models can be as simple as an al-
gebraic equation or as complex as a system of differential equations. Traditionally, domain
experts derive equations based on theory and use regression methods to estimate their pa-
rameters. ED methods seek to automate the identification of equation structure as well as
its parameters. The advantage of discovering closed-form equations over black-box models,
popular in machine learning, lies in their inherent interpretability and correspondence with
domain theory.

Our methods focus on the use of probabilistic context-free grammars (PCFGs) as a tool
for generating mathematical expressions, constraining the space of expressions and encod-
ing background knowledge. We demonstrate that PCFGs parametrize the parsimony prin-
ciple inherently and intuitively. Furthermore, in addition to the hard constraints imposed
by CFG, PCFGs allow us to impose soft constraints on the search space of mathematical
expressions. To aid analysis, we introduce a novel method for visualizing the search space
of expressions, useful for any ED approach. We introduce a Monte-Carlo algorithm that
enables the use of PCFGs in ED and perform extensive computational experiments using
an established benchmark database. The results demonstrate that our approach can be
used to discover equations, but performs worse than existing methods.

To improve the performance of ED, we introduce dimensional attribute grammars, an
extension of PCFGs, that generate only dimensionally consistent mathematical expressions.
Our computational experiments demonstrate the impact of dimensional consistency in ED,
resulting in performance, comparable to state-of-the-art approaches in the field.

We further extend the ideas of attribute grammars into a general-purpose framework for
encoding background knowledge. The framework relies on probabilistic attribute grammars
to overcome the limitations of PCFGs in expressing complex types of background knowl-
edge. We demonstrate the utility of the framework by designing and analyzing grammars
that encode three different types of background knowledge: dimensional consistency, sys-
tems of differential equations for chemical kinetics, and systems of differential equations
describing electronic circuits.

Finally, we pave the way toward more intricate PCFG-based ED algorithms by devel-
oping a novel Bayesian algorithm for sampling mathematical expressions from a PCFG.
The algorithm iteratively updates grammar probabilities to improve the performance of
ED and enable the estimation of the posterior distribution. An illustrative computational
experiment shows that the algorithm works according to our expectations and improves
the performance of ED by guiding the search towards more promising areas of the space
of mathematical expressions.

ix

Povzetek

V disertaciji predstavljamo nove metode za odkrivanje enačb (ang. equation discovery,
ED), ki temeljijo na uporabi verjetnostnih gramatik. ED in simbolna regresija obravnavata
problem iskanja simbolnega matematičnega modela, ki najbolje opisuje izmerjene podatke.
Modeli so lahko različnih oblik, od preproste algebrajske enačbe do kompleksnega sistema
diferencialnih enačb. Tradicionalno znanstveniki enačbe izpeljejo na podlagi teorije, za
določanje vrednosti numeričnih parametrov pa uporabijo regresijske metode. Pristopi ED
poskušajo avtomatizirati celoten postopek identifikacije strukture enačbe in njenih para-
metrov. Prednost odkrivanja preprostih enačb v primerjavi z modeli črnih škatel, ki so
priljubljeni v strojnem učenju, leži v njihovi naravni interpretabilnosti in skladnosti z do-
mensko teorijo.

Naše metode se osredotočajo na uporabo verjetnostnih kontekstno-neodvisnih gramatik
(ang. probabilistic context-free grammar, PCFG) kot orodja za generiranje matematičnih
izrazov, omejevanje prostora izrazov in upoštevanje predznanja. Ena od prednosti verje-
tnostnih gramatik je parametrizacija načela preprostosti na naraven in intuitiven način.
Poleg strogih omejitev, ki jih določa CFG, nam PCFG omogoča uvedbo šibkih omejitev v
iskalni prostor matematičnih izrazov. Za pomoč pri analizi predstavimo novo metodo za
vizualizacijo iskalnega prostora izrazov, ki je uporabna za kateri koli ED pristop. Predsta-
vimo tudi Monte-Carlo algoritem, ki omogoča uporabo PCFG v ED in izvedemo obsežne
računske poskuse z uveljavljeno bazo podatkov. Rezultati kažejo, da naš pristop omogoča
odkrivanje enačb, vendar je manj učinkovit kot obstoječe metode.

Z namenom izboljšanja učinkovitosti ED kot razširitev PCFG uvedemo dimenzijske
atributne gramatike, ki generirajo le dimenzijsko dosledne matematične izraze. Naši ra-
čunski eksperimenti pokažejo vpliv dimenzijske doslednosti v ED, saj metoda doseže učin-
kovitost, primerljivo z najboljšimi metodami na področju ED.

Ideje atributnih gramatik razširimo v splošen okvir za kodiranje predznanja v ED. Okvir
temelji na verjetnostnih atributnih gramatikah, ki presežejo omejitve PCFG pri izražanju
kompleksnega predznanja. Uporabnost okvira pokažemo z razvojem in analizo gramatik,
ki kodirajo tri različne vrste predznanja: dimenzijsko doslednost, sisteme diferencialnih
enačb za kemijsko kinetiko in sisteme diferencialnih enačb, ki opisujejo elektronska vezja.

Nazadnje utremo pot boljšim algoritmom za ED na podlagi PCFG z razvojem novega
Bayesovskega algoritma za vzorčenje matematičnih izrazov iz PCFG. Algoritem iterativno
posodablja verjetnosti gramatike, kar izboljša učinkovitost ED in omogoči oceno poste-
riorne porazdelitve. Ilustrativni računski poskus pokaže, da algoritem deluje v skladu z
našimi pričakovanji in izboljša učinkovitost ED, tako da usmerja iskanje v obetavnejše dele
prostora matematičnih izrazov.

xi

Contents

List of Figures xv

List of Tables xxi

List of Algorithms xxiii

Abbreviations xxv

1 Introduction 1
1.1 Equation Discovery . 2

1.1.1 Types of equations . 2
1.1.2 Structure identification . 3
1.1.3 Parameter estimation . 4

1.2 Existing Work on Equation Discovery . 4
1.2.1 Knowledge-driven equation discovery 5
1.2.2 Dimensional analysis . 5
1.2.3 Genetic programming . 5
1.2.4 Sparse linear regression . 6
1.2.5 Composite approaches . 6
1.2.6 Probabilistic approaches . 6
1.2.7 Neural networks . 7
1.2.8 Reinforcement learning . 7
1.2.9 Generative approaches . 7

1.3 Challenges in Equation Discovery . 8
1.3.1 Representation of mathematical expressions 8
1.3.2 Constraining the search space . 9
1.3.3 Background knowledge representation 9
1.3.4 Interpretability of discovered equations 10

1.4 Probabilistic Grammar-Based Equation Discovery 11
1.4.1 Purpose . 11
1.4.2 Goals . 12

1.4.2.1 Design . 12
1.4.2.2 Implementation . 13
1.4.2.3 Evaluation . 13

1.4.3 Hypotheses . 14
1.4.4 Scientific contributions . 14

1.5 Organization of the Thesis . 15

2 Probabilistic Grammars for Equation Discovery 17
2.1 Context-Free Grammars . 17

2.1.1 Probabilistic context-free grammars 18
2.1.2 Grammars as generators . 19

xii Contents

2.1.3 The number of parse trees with limited height 20
2.1.4 Parse tree probabilities and grammar coverage 21

2.2 PCFGs for Mathematical Expressions . 24
2.2.1 Ambiguity . 24
2.2.2 Variables in PCFGs for mathematical expressions 24
2.2.3 Numerical constants in PCFGs for mathematical expressions 25
2.2.4 Examples of general-purpose grammars 25
2.2.5 Special functions in grammars for mathematical expressions 26

2.3 Search Space Visualization . 27
2.3.1 Aggregated expression trees . 27

2.4 Theoretical Analysis . 30
2.4.1 The Feynman symbolic regression database 30
2.4.2 Expected number of parse trees . 30
2.4.3 Probabilistic vs. deterministic grammar 31
2.4.4 Biased vs. unbiased probabilistic grammar 33

2.5 Empirical Analysis . 35
2.5.1 Monte-Carlo sampling algorithm . 35
2.5.2 Empirical setup . 36
2.5.3 Results . 37
2.5.4 Resampling . 38
2.5.5 Theoretical expectation of success rate 38
2.5.6 Analysis of the results . 40

3 Attribute Grammars for Dimensional Consistency 43
3.1 Existing Work on Dimensionally-Consistent Equation Discovery 43
3.2 Dimensions and Measurement Units . 45
3.3 Probabilistic Attribute Grammars (PAGs) 46
3.4 From PAG to PCFG . 46
3.5 The Unit Set and Auxiliary Units . 49
3.6 Effect on the Search Space Size . 52
3.7 Random Expression Generation . 52
3.8 Empirical Analysis . 53

3.8.1 Experimental setup . 53
3.8.2 Deep symbolic optimization . 54
3.8.3 Results . 54

4 Probabilistic Attribute Grammars 59
4.1 Rethinking Probabilistic Attribute Grammars 59

4.1.1 On attributes . 59
4.1.2 On attribute rules . 60

4.2 Direct Sampling Algorithm . 62
4.3 Search Space Constriction . 64
4.4 Example: Dimensionally-Consistent Expressions 65

4.4.1 Comparison to dimensionally-consistent PCFGs 69
4.5 Example: Dynamical Systems . 72

4.5.1 Coupling terms . 73
4.5.2 Chemical kinetics . 75

4.6 Example: Electronic Circuits . 79
4.6.1 RLC circuits . 79
4.6.2 Derivation example . 81
4.6.3 PAGs for RLC circuits . 82

Contents xiii

4.6.4 Discussion . 87

5 Bayesian Updating 93
5.1 m-Estimate Updating Algorithm . 93

5.1.1 m-estimate . 93
5.1.2 Production rule probability updates 94

5.2 Empirical Evaluation . 95
5.2.1 Experimental setup . 95
5.2.2 Results: The error-of-fit . 97
5.2.3 Results: Production rule probabilities 98
5.2.4 Results: Posterior probabilities . 101
5.2.5 Results: Aggregated expression trees 103

5.3 Computational Efficiency and Parallelization 105

6 Conclusions 107
6.1 Summary . 107

6.1.1 Probabilistic context-free grammars 107
6.1.2 Dimensionally-consistent equation discovery 109
6.1.3 Probabilistic attribute grammars . 110
6.1.4 Bayesian updating . 111

6.2 Discussion . 112
6.2.1 Parsimony and background knowledge 112
6.2.2 Theoretical analysis and probability theory 112
6.2.3 Accessibility of PCFGs and PAGs . 112
6.2.4 Computational efficiency . 113

6.3 Hypotheses . 114
6.3.1 Hypothesis 1 . 114
6.3.2 Hypothesis 2 . 115
6.3.3 Hypothesis 3 . 115

6.4 Scientific Contributions . 116
6.5 Further Work . 117

Appendix A Feynman Database for Symbolic Regression 119

Appendix B Detailed Experimental Results 1 125

Appendix C Detailed Experimental Results 2 131

References 137

Bibliography 143

Biography 145

xv

List of Figures

Figure 2.1: Example parse trees for expressions a) x+ y and b) x+ y + y, derived
by grammar GL from Equation (2.1). 18

Figure 2.2: Parsimony in context-free grammars: a) the coverage of the probabilis-
tic grammar for linear expressions at a given height h for different values
of p – the probability of the recursive rule E → E+V , b) the probability
of generating a parse tree with a given height h using the probabilistic
grammar with different values of p (colors) and using the deterministic
version of the grammar (black line). 23

Figure 2.3: Example of building an aggregated expression tree: a) the expression
tree of x+ y, b) the expression tree of x+ y + y, c) the aggregated ex-
pression tree. The size of nodes is inversely proportional to the height
of the node in the tree, while the transparency of nodes and edges cor-
responds to their relative frequency in the collection of expression trees
the AET was built from. Two special nodes are included in all three
trees: sys, which is the root node of any expression tree and corresponds
to a system of equations, and eq0, indicating the first equation from a
system of equations. 28

Figure 2.4: The aggregated expression trees for the linear grammar from Equa-
tion (2.28) with different values of production rule probabilities, ob-
tained by aggregating 100 randomly sampled expressions using each set
of probabilities. AETs a-c were generated by setting pvar = 0.5 and prec:
a) 0, b) 0.5, c) 0.9. Meanwhile, for AETs d-f, prec was set to 0.5 and pvar
was: d) 0, e) 0.5, f) 1. The size of nodes is inversely proportional to the
height of the node in the tree and the transparency of nodes and edges
corresponds to their frequency in the generated sample of expression
trees. 29

Figure 2.5: The number of problems from the Feynman symbolic regression database
that we can expect to reconstruct by sampling a given number of parse
trees from the universal mathematical PCFG (red line) in Equation (2.27)
and its CFG counterpart (blue line). The inset provides a zoom-in on
the range of the expected number of sampled parse trees below 1050. . 32

Figure 2.6: Aggregated expression trees for: a) the uniform universal PCFG and b)
the biased universal PCFG. The AETs were constructed by randomly
generating 1000 expressions with each grammar. The size of nodes is
inversely proportional to the height of the node in the tree, while the
transparency of nodes and edges corresponds to the relative frequency of
the nodes and edges in the collection of expression trees. Additionally,
we provide the number of nodes in each AET in its label. 34

xvi List of Figures

Figure 2.7: Reduction in the expected number of parse trees needed to reconstruct
the one hundred equations from the Feynman database, induced by
introducing bias into the probabilistic grammar for mathematical ex-
pressions. Depicted: a) histogram of the number of Feynman equa-
tions (y-axis) with a given reduction factor (x-axis), b) scatter plot of
the reduction factor (y-axis) and equation complexity (x-axis) for each
Feynman equation. E[NU] and E[NB] indicate the expected number of
sampled parse trees for the uniform and the biased universal grammar,
respectively. 35

Figure 2.8: Average rate of successful reconstruction achieved with the uniform and
biased grammar on the Feynman database. The filled regions represent
empirical results across three independent runs of Algorithm 2. The
solid lines correspond to the predicted success rates based on the anal-
ysis in Section 3.4. The dashed lines represent the predicted success
rates, corrected by taking into account the empirically estimated level
of semantic ambiguity for each grammar. 39

Figure 2.9: Scatter plots of the probability of a sampled expression against the error
of the corresponding equation for two samples taken with the uniform
universal grammar. The samples correspond to: a) a simple, success-
fully reconstructed target equation from the Feynman database, b) a
more complex equation that was not successfully reconstructed. The
dashed line represents our error threshold for considering a candidate
expression to be correct. The best sampled expressions are found in the
bottom right corner of each scatter plot – they have high probability
and the corresponding equations have low error. 40

Figure 2.10: A box plot comparison of the complexity of equations from the Feyn-
man database that were successfully reconstructed in the experiments
(solved) with the complexity of equations that the algorithm was unable
to reconstruct (unsolved). Depicted separately are experiments using
the uniform universal grammar (labelled U) and the biased universal
grammar (labelled B). The orange line indicates the median of the
distribution, while dots indicate outliers. 41

Figure 3.1: Parse tree for the equation x = a ∗ t2, derived with the attribute gram-
mar in Equation (3.1). The blue color indicates terminal symbols, while
the black color stands for nonterminal symbols. 47

Figure 3.2: Parse tree for the equation x = a ∗ t2, derived with the attribute gram-
mar in Equation (3.1). The blue color indicates terminal symbols, while
the black color stands for nonterminal symbols. The parse tree cannot
be derived by a PCFG version of the grammar using the minimal unit
set U = {m, s,ms−2}, since we cannot compose the red nonterminal
symbol M(1,−1) without the auxiliary unit ms−1 = (1,−1). 49

List of Figures xvii

Figure 3.3: Graphical representation of the main steps of expand_units (Algorithm 3.2,
demonstrated on the example problem x = at2; {ux = m = (1, 0), ua =
ms−2 = (1,−2), ut = s = (0, 1). The plots on the left-hand side are in
the space of measurement units, while the plots on the right-hand side
are in the space of solution coefficients. Square symbols correspond to
the dependent variable unit ux, full circles correspond to the units of
independent variables ua and ut and empty circles represent the auxil-
iary units added by extend_units. The dashed lines represent the box
spanned by 0 and the solution coefficients. Added units are within, or
at the border of the box. 51

Figure 3.4: Comparison of the expression complexity of problems from the Feyn-
man database, solved by the unrestricted universal grammar (uni), the
dimensionally-consistent universal grammar (dim) and the complexity
of all the problems in the database (all). The length of the string rep-
resentation of the target mathematical expression serves as a measure
of problem complexity. The median of each distribution is represented
by an orange bar. The number of examples in each group is given in
brackets before the name of the group and is proportional to the width
of each box plot. Circles represent outlier examples in a distribution. . 56

Figure 3.5: a) comparison of approximate performance curves of equation discovery
using a universal mathematical PCFG (blue) and a dimensional version
of the PCFG (orange) on the Feynman symbolic regression database.
The horizontal axis depicts the number of sampled candidate expres-
sions, while the vertical axis represents the number of reconstructed
equations (out of 100), averaged across 1000 bootstrap samples. b)
The difference between the approximate performance curves for the two
grammars. 57

Figure 4.1: Demonstration of the composition of c) an aggregated parse tree from
the individual parse trees of expressions a) x+ y and b) x+ y + y, ob-
tained using the linear grammar from Equation (2.1). Node colors cor-
respond to individual nonterminal symbols. The transparency of nodes
and edges corresponds to the normalized frequency of the respective
derivation paths in collection of parse trees that form the aggregated
parse tree. 65

Figure 4.2: a) the aggregated parse tree and b) the aggregated expression tree of a
polynomial PAG using attributes to constrain terms to even powers up
to the power of 10 (Equation (4.1)), as well as c) the aggregated parse
tree and d) the aggregated expression tree of the PCFG counterpart
to the PAG. The aggregated trees were obtained by generating 1000
expressions with each grammar. Terminal symbols have been omitted
from the APT to improve readability. The transparency of nodes and
edges corresponds to the normalized frequency of the nodes and edges
in the collections of parse trees or expression trees that form the APTs
or AETs, respectively. 66

xviii List of Figures

Figure 4.3: a) the aggregated parse tree and b) the aggregated expression tree of a
polynomial PAG for the problem of discovering x = at2, as well as c)
the aggregated parse tree and d) the aggregated expression tree of the
PCFG counterpart to the PAG. The aggregated trees were obtained by
generating 1000 expressions with each grammar. Terminal symbols have
been omitted from the APT to improve readability. The transparency
of nodes and edges corresponds to the normalized frequency of the nodes
and edges in the collections of parse trees or expression trees that form
the APTs or AETs, respectively. 70

Figure 4.4: a) the aggregated parse tree and b) the aggregated expression tree of
a universal PAG for the problem of discovering x = at2, as well as c)
the aggregated parse tree and d) the aggregated expression tree of the
PCFG counterpart to the PAG. The aggregated trees were obtained by
generating 1000 expressions with each grammar. Terminal symbols have
been omitted from the APT to improve readability. The transparency
of nodes and edges corresponds to the normalized frequency of the nodes
and edges in the collections of parse trees or expression trees that form
the APTs or AETs, respectively. 71

Figure 4.5: Example chemical reaction network involving the concentrations of four
reactants (a, b, c, d) and an enzyme (e), connected by two chemical re-
actions (A+B → C, C → D). 75

Figure 4.6: a) the aggregated parse tree and b) the aggregated expression tree of a
PAG for generating systems of ODEs that follow the domain knowledge
of chemical kinetics, as well as c) the aggregated parse tree and d) the
aggregated expression tree of the PCFG counterpart to the PAG. The
aggregated trees were obtained by generating 1000 expressions with
each grammar. Terminal symbols have been omitted from the APT to
improve readability. The transparency of nodes and edges corresponds
to the normalized frequency of the nodes and edges in the collections of
parse trees or expression trees that form the APTs or AETs, respectively. 80

Figure 4.7: The diagram of an example electronic circuit, composed of a voltage
source (uG), a resistor (R), a capacitor (C) and an inductor (L). 82

Figure 4.8: Example of a system of ODEs and the corresponding electronic circuit,
generated using generate_circuit and the presented PAG for electronic
circuits. The numbers of components were set to 2 capacitors, 2 induc-
tors, 2 resistors and 1 voltage source. Note that some of the generated
components have been removed during circuit simplification. 88

Figure 4.9: Example of a system of ODEs and the corresponding electronic circuit,
generated using generate_circuit and the presented PAG for electronic
circuits. The numbers of components were set to 2 capacitors, 3 induc-
tors, 2 resistors and 2 voltage sources. Note that some of the generated
components have been removed during circuit simplification. 88

List of Figures xix

Figure 4.10: Aggregated parse trees of PAGs for generating systems of ODEs that
describe electronic circuits: a) the PAG for circuits with four two-pin
components, b) the PAG for circuits with eight two-pin components.
The aggregated parse trees were obtained by generating 1000 systems
of ODEs with each grammar. Node colors correspond to individual
nonterminal symbols. Terminal symbols have been omitted to improve
readability. The transparency of nodes and edges corresponds to the
normalized frequency of the respective derivation paths in collection of
parse trees that form the aggregated parse tree. Since the PAGs are
composed of too many nonterminal symbols to display in a legend, the
legend has been omitted. 90

Figure 4.11: Aggregated expression trees of three grammars for electronic circuits: a)
a universal mathematical PCFG, b) a dimensionally-consistent univer-
sal PAG, c) the PAG for electronic circuits. The AETs were constructed
by sampling 1000 random systems of ODEs with each grammar. 91

Figure 5.1: Optimization curves of the Bayesian m-estimate updating algorithm
(MEU-m, indicating the value of the parameter m) and the Monte-
Carlo sampling algorithm (random) for each of the three equations: a)
y = x1 − 3x2 − x3 − x5, b) y = x51x

3
2, c) y = sinx1 + sin (x2/x

2
1).

The horizontal axis depicts the total number of evaluated expressions,
whereas the vertical axis depicts the lowest error (RMSE) achieved for
a given number of expressions, averaged across 10 runs with different
random seeds. 98

Figure 5.2: The probabilities of production rules with the nonterminal a) E, b)
F , c) T , d) V on the left-hand side, plotted at each iteration of the
Bayesian grammar updating algorithm (m = 2, run = 7) for the first
equation in the experiment. In this run, the algorithm discovered an
approximation of the target equation, which misses only the term −x5,
and achieves the error RMSE = 5.99. 99

Figure 5.3: The probabilities of production rules with the nonterminal a) E, b) F ,
c) T , d) V on the left-hand side, plotted at each iteration of the Bayesian
grammar updating algorithm (m = 2, run = 6) for the second equation
in the experiment. In this run, the algorithm was able to exactly recover
the target equation with an error of RMSE = 0. 100

Figure 5.4: The probabilities of production rules with the nonterminal a) E, b) F ,
c) T , d) V on the left-hand side, plotted at each iteration of the Bayesian
grammar updating algorithm (m = 2, run = 5) for the second equation
in the experiment. In this run, the algorithm was able to exactly recover
the target equation with an error of RMSE = 0. 101

Figure 5.5: The approximated probability of the correct expression at each iteration
of the Bayesian grammar updating algorithm (m = 2) for each of the
three equations: a) y = x1 − 3x2 − x3 − x5, b) y = x51x

3
2, c) y =

sinx1 + sin (x2/x
2
1). The black line depicts the median probability and

the blue area depicts the region between the minimum and maximum
probability among the 10 runs. 103

xx List of Figures

Figure 5.6: Aggregated parse trees, depicting the evolution of the space of expres-
sions, defined by the initial PCFG, the PCFG at an intermediate point
of the Bayesian grammar updating procedure (the most successful runs
for m = 2) and the final PCFG. Row a) corresponds to the target equa-
tion y = x1 − 3x2 − x3 − x5, row b) to the equation y = x51x

3
2 row c) to

the equation y = sin(x1) + sin
(
x2
x21

)
. 104

xxi

List of Tables

Table 2.1: Parameter values for the uniform and the biased universal grammars. . . 33

Table 2.2: Summary of experimental results on reconstructing the hundred target
equations from the Feynman database using the Monte-Carlo algorithm
for grammar-based equation discovery with the uniform and biased ver-
sions of the universal grammar for mathematical expressions. 37

Table 3.1: Number of parse trees with height up to and including h derived by
the polynomial PCFG and its dimensionally-consistent counterpart, con-
structed for the task of discovering the expression at2 (Eqs. (2.24) and (3.2)).
The lowest height possible with the unrestricted grammar is h = 3, cor-
responding to the expressions c · a and c · t. On the other hand, the
lowest height possible with the dimensional grammar is 5. The dimen-
sional grammar derives two different parse trees with height 5, both of
which correspond to the expression c · a · t · t. 52

Table 3.2: The number of successfully reconstructed equations from the Feynman
database (out of 100), comparing ProGED using the unrestricted uni-
versal grammar, ProGED using the dimensionally-consistent universal
grammar and Deep Symbolic Optimization (DSO) [14]. All three meth-
ods were limited to evaluating at most 30000 candidate equations.
aWe ran DSO with random seeds 0, 1, 2 and 3, resulting in 54, 51, 52 and
54 reconstructed equations, respectively. 54

Table 3.3: Properties of interesting categories of problems from the Feynman dataset,
grouped through manual inspection of experimental results. Columns
from left to right: 1) “yes" if the problems in the group were successfully
reconstructed using the dimensionally-consistent grammar, 2) number
of problems in the group, 3) mean number of variables among the tasks
in the group, 3) mean string length as a measure of complexity in the
group, 4) mean number of unique candidate expressions in the group.
Rows, from top to bottom: 1) problems that are easy with or without
dimensions, 2) problems that are significantly easier with dimensional
consistency, 3) problems that were solved thanks to dimensional consis-
tency, 4) problems that were too difficult for our approach, 5) problems
for which dimensional consistency introduced issues, 6) problems which
dimensional analysis cannot help solve. 55

xxii List of Tables

Table 4.1: Summary of experimental results, comparing the properties of two ap-
proaches to sampling dimensionally-consistent grammars. For each prob-
lem from the Feynman database, 105 expressions were generated using
each approach. In the first row we report the percentage of successful
samplings, averaged over the 100 problems. The second row gives the
average time required to perform a single random generation, successful
or not, on a desktop computer. In the third row, we report the number
of problems from the Feynman database, for which no expressions were
generated successfully. 69

Table 4.2: Results of the experiment investigating the sampling performance of the
PAG for RLC circuits. The values represent the approximated prob-
abilities that given a randomly generated RCL circuit, the approach
successfully derives the correct system of ODEs in 100 tries (first row),
the approach fails by recurring endlessly (second row) and the approach
fails by reaching a dead end in the derivation (third row). The prob-
abilities were approximated by randomly generating 100 RLC circuits
for each configuration of the number of each component. Four different
configurations were used for each total number of components and their
results averaged. 89

Table 5.1: The number of equation discovery successes (exactly recovered equa-
tion) among 10 runs with different random seeds for the four variants of
Bayesian m-estimate updating and the Monte-Carlo sampling algorithm
(random). 98

Table 5.2: Approximated prior and posterior probabilities of the correct expression
for each of the three equations from the experiment, obtained by parsing
the many equivalent mathematical expressions using the PCFG with the
initial and final values of production rule probabilities. 102

xxiii

List of Algorithms

Algorithm 2.1: generate_sample(G, A)
Randomly sample an expression from a probabilistic context-free
grammar. 20

Algorithm 2.2: discover_equations(G, A)
Monte-Carlo algorithm for grammar-based equation discovery. . . . 36

Algorithm 3.1: transform_grammar(G,U)
Transform a probabilistic attribute grammar to a dimensionally-
consistent PCFG. 47

Algorithm 3.2: extend_units (U,uy)
Extend the set of units with the required auxiliary units. 50

Algorithm 4.1: generate_sample_attributed(G, A)
Generate a random expression from a probabilistic attribute grammar. 63

Algorithm 4.2: generate_random_circuit(twoP in, ploop)
Generate random circuit topology from a list of components. 83

Algorithm 5.1: discover_equations_Bayesian
Bayesian updating of grammar probabilities based on the m-estimate. 96

xxv

Abbreviations

JSI . . . Jožef Stefan Institute
IPS . . . International Postgraduate School
ED . . . equation discovery
SR . . . symbolic regression
ML . . . machine learning
AI . . . artificial intelligence
CFG . . . context-free grammar
PCFG . . . probabilistic context-free grammar
PAG . . . probabilistic attribute grammar
RMSE . . . root mean squared error
ReRMSE . . . relative root mean squared error
AET . . . aggregated expression tree
APT . . . aggregated parse tree

1

Chapter 1

Introduction

Science is a systematic endeavor of building knowledge by gathering evidence and forming
explanations about the world around us. However, due to the inherent complexity of the
subject, it is often impossible to account for and understand every detail. As a result,
scientists create models – simplified abstractions that can explain observations and make
predictions under specific assumptions. Standing upon the shoulders of giants, researchers
design new models based not only on gathered observations, but on a vast foundation
of theory and existing knowledge. Theory is built over long time frames and strives for
generality in its explanations. In contrast, individual models are developed and tested
faster and are typically more specific and limited in their scope. Models are evaluated
based on the quality of their fit to the data, in other words, how well they describe collected
observations.

Models often take the form of mathematical equations, which are composed of variables
that correspond to physically observable quantities, operators and functions that define
the relationships between the variables, as well as constant parameters. Equations have
traditionally been developed by scientists based on their domain knowledge, theoretical
assumptions, and confirmed models. However, an increasingly common approach is to
start with a large amount of data and attempt to develop a model that fits it, which can
then be interpreted to provide insight into the underlying system. This process, called data-
driven modeling, historically required a lot of manual labor and guesswork from domain
experts, but data scientists have been working on automating this process to accelerate
the scientific progress.

Recently, advances in computer hardware have led to the proliferation of machine learn-
ing in various fields, including finance, industry and science. Machine learning methods
tend to produce models quite different to the types of equations, common in science – the
models are large and complex, capable of processing various types of data and predict-
ing observations incredibly well, but are much more difficult to understand and interpret.
While accurate models that cannot be interpreted are very useful tools for researchers, they
are typically not enough to validate theories and create new knowledge. As the goal of
scientific research is often driven by a desire for knowledge and understanding rather than
accurate predictions only, there is still a need for models that can produce interpretable
and meaningful results while capturing the complexity of natural systems. As such, equa-
tions remain one of the primary abstractions that provide insights into natural phenomena
in many scientific domains.

Most equations feature constant parameters. In data-driven modeling, the values of
constant parameters are typically determined by optimizing the model fit to the data in
a process called model fitting. Historically, model fitting was a time-consuming task that
required significant mathematical and statistical expertise, often performed by hand. The

2 Chapter 1. Introduction

advent of computers has made this process much more efficient, enabling automated fitting
of the values of constant parameters to data. However, today, discovering the structure of
an equation is still a significant challenge, typically addressed directly by humans.

One area of machine learning research focused on this problem is known by a variety of
names, such as equation discovery, symbolic regression, or even a machine scientist [1]. The
goal of this field is to develop algorithms that can autonomously search for mathematical
expressions that fit the data, with little to no human intervention. This approach has the
potential to uncover previously unknown relationships between variables and can provide
new insights into complex systems.

1.1 Equation Discovery

The problem of equation discovery (ED) we are studying can be formulated as follows.
What we have available is a dataset of measured numeric data in a table with the columns
representing the variables xi and the rows representing observations. In the simplest version
of the problem, we are trying to find an algebraic mathematical equation of the form

xi = f(x1, . . . , xi−1, xi+1, . . . , xn), (1.1)

that can be used to calculate the values of the i-th variable xi, based on the n−1 variables
xj , j ̸= i. When reproducing the original measurements, the output of the model should
match the data as closely as possible.

However, simply reproducing the dataset is not our goal, since with enough parameters
we can learn to approximate any function. What we actually want is for the model to
generalize well to new, unmeasured data, and have some correspondence to concepts in
already-existing knowledge. In machine learning, the generalization abilities of a model are
typically verified by testing its performance on data that was held-out during training. On
the other hand, a key idea in science is the principle of parsimony, closely related to Occam’s
razor – “among options that describe observations well, the simplest explanation is most
likely to be correct". By favoring equations with fewer degrees of freedom and mathematical
operations involved, we improve interpretability, since domain scientists are more likely to
be able to relate a simpler model to existing knowledge in their field. Furthermore, given
enough degrees of freedom, any model can perfectly fit the given data. Such a model,
however, is very unlikely to predict new, unseen data well. Therefore, a preference for
simpler equations can improve the generalization ability of discovered equations. Of course,
models that are too simple can fail to describe the complexity of real-world problems. Thus,
the task of equation discovery seeks to balance the numerical accuracy of prediction with
the simplicity of the models produced [1], [2].

1.1.1 Types of equations

The simplest form of a model is an algebraic equation, which is able to describe only a
small portion of the problems studied by scientists. The simplest extension is to systems
of equations, where the number of the dependent system variables is m. For this problem
to be fully determined, a system of m independent equations is required:

xi = fi(x1, . . . , xi−1, xi+1, . . . , xn), i = 1, ...m. (1.2)

Relations between system variables can make it impossible to express the output variables
explicitly as in the form (1.1), but may require an implicit function:

0 = f(x1, . . . , xn). (1.3)

1.1. Equation Discovery 3

Studies of dynamical systems often require modeling time series data, requiring ordinary
differential equations of the form:

dxi
dt

= f(t, x1, . . . , xn). (1.4)

Further complications might include partial differential equations or stochastic differential
equations. Most of the listed types of tasks can be combined, creating for example, systems
of implicit ordinary differential equations. Many methods of equation discovery tend to
specialize to certain types of problems that they solve exceptionally well.

Equation discovery systems can typically be separated into two distinct, but closely
coupled tasks: identifying the structure of the equation estimating the values of its numer-
ical parameters.

1.1.2 Structure identification

The first part of the equation discovery task is concerned with finding the optimal structure
of the equation, a problem typically formulated as a search or optimization in the space
of all possible equations, or more practically, a part of the space. There are a handful of
concepts to discuss when it comes to structure identification [1].

Representation of mathematical expressions. The language of mathematics is
highly complex and diverse, consisting of a wide range of symbols and operations that can
be combined in numerous ways. Generating equations or performing a search in the space
of all possible equations requires a way of encoding symbols and mathematical operations,
as well as rules on how to combine them. There are several methods for achieving this,
including enumeration [3], formal grammars [4], [5], and symbolic expression trees [6]. Each
of these approaches has its own strengths and weaknesses, and the choice of representation
can significantly affect the space of equations that we are able to explore.

Constraining the search space. The space of all possible equations is generally
infinite. Following the parsimony principle, which states that the simplest solutions are
usually the best, different approaches manage the complexity of equations in different ways.
Some classes of equation discovery approaches perform an explorative search in the entire
space of equations and rely on sparsity [6] or the minimum description length principle
[7], [8] to encourage parsimony. Other approaches seek to limit the number of candidate
equations using a variety of methods and employ an exhaustive or intensive search strategy
in a constrained search space [9].

Representation of background knowledge. In order to constrain the search space
in an informed manner, it is important to leverage background knowledge. This knowl-
edge can come in various forms, including universal principles that apply across different
domains, such as the theory of dynamical systems [10], or domain-specific beliefs and
assumptions held by experts in a particular field [11]. An important question in ED is
how to effectively express and leverage different types of background knowledge. Existing
approaches include process-entity formalisms [12], formal grammars [5], prior probabil-
ity distributions [8] and general mathematical knowledge, such as dimensional analysis,
symmetries and various heuristics [13].

Interpretability of results. Equation discovery (ED) methods typically generate
closed-form equations as their output, which makes them highly interpretable, provided
that the resulting equations are also parsimonious. As such, ensuring parsimony is a re-
quirement for many ED methods. Some approaches go beyond that and allow for higher
interpretability by providing correspondence to domain knowledge [12], a posterior dis-
tribution over the results [8] or a Pareto front of equations with varying complexity [13],
[14].

4 Chapter 1. Introduction

1.1.3 Parameter estimation

Parameter estimation is a critical component of equation discovery, as it involves identifying
the optimal values for the constant parameters of an equation. As such, it is a well-studied
problem that has been extensively researched and investigated. Typically, the task of
parameter estimation is formulated as an error minimization optimization problem, where
the objective is to minimize the difference between the predicted and observed values [1],
[15].

There are two general classes of minimization algorithms that are commonly used to
solve the parameter estimation problem: local and global methods [16]. Local methods
are typically based on local gradients and are designed to converge quickly. However,
one significant disadvantage of these methods is that they often get trapped in a local
minimum, requiring the user to restart the algorithm multiple times with different initial
values to obtain a satisfactory solution. Examples of local methods include direct-search
methods, such as Nelder-Mead [17], and gradient-based methods, such as gradient descent
and Newton’s method [18].

In contrast, global methods are slower but are capable of identifying the global mini-
mum. Popular examples of global methods include random search, evolutionary algorithms
[19] and ant colony optimization [20]. Although parameter estimation is a crucial task in
equation discovery, it is, in essence, a question of numerical optimization. In this thesis,
we focus on the task of structure identification, which involves discovering the functional
form of the equation itself.

1.2 Existing Work on Equation Discovery

The field of automated equation discovery dates back to 1981, when Langley established
the key concepts and developed a pioneering modeling system called BACON [21]. The
approach mimics that of a human scientist, where the system analyzes data to identify
patterns and regularities, forming hypotheses based on data-driven heuristics. Specifically,
BACON examines pairs of system variables to identify trends and constancies, which allows
the algorithm to create new synthetic variables treated as data, building a mathematical
description of the problem iteratively. For instance, when two quantities are found to have
an inverse mutual dependency, the algorithm creates a new variable by multiplying them.
BACON has successfully rediscovered the ideal gas law, Kepler’s third law of planetary
motion, Coulomb’s law, Ohm’s law, and Galileo’s laws for the pendulum and constant
acceleration.

BACON inspired a family of modeling systems that adopted its ideas and added their
twists and extensions, such as FAHRENHEIT by Koehn and Zytkow in 1985 [22], EF by
Zembowitz and Zytkow in 1992, E* by Schaffer in 1993 and Goldhorn by Križman in 1995.
These modeling systems were limited to algebraic equations. An interesting approach was
taken in the development of ABACUS by Faklenhainer and Milchalski in 1996 [23]. This
modeling system relies on heuristic reasoning and introduces a number of new techniques,
including proportionality graph search, suspension search, and notably, dimensional anal-
ysis, and is also capable of discovering piecewise equations through the use of clustering.
A significant contribution of ABACUS is the concept of the generate-and-test methodol-
ogy, where the search space is searched through by generating candidate equations, which
are then evaluated. This concept has become the most prominent approach in equation
discovery over time [1].

In 1995, Džeroski and Todorovski extended the equation discovery field towards dif-
ferential equations with their LAGRANGE system [24]. LAGRANGE introduced first-
order derivatives of system variables and was based on multidimensional linear regression.

1.2. Existing Work on Equation Discovery 5

The system also introduced new terms by multiplication, following ideas from inductive
logic programming and machine discovery systems. The discovery of differential equations
complicated the parameter estimation step, as a numericalintegration of the differential
equation system had to be performed for each evaluation in the process of optimizing the
parameters.

Overall, the development of these modeling systems and extensions laid the foundation
for the current state of automated equation discovery, providing a basis for future research
in the field.

1.2.1 Knowledge-driven equation discovery

The field of equation discovery has shown a clear need for collaboration between domain
experts and machine learning models, as the ability to incorporate domain knowledge can
have a significant impact on the accuracy of discovered equations. The development of
a practical framework for encoding domain knowledge is crucial in this regard. In 1993,
Lindsey and others presented the DENDRAL system, which sought to incorporate task-
specific knowledge into the equation discovery process [25]. The heuristics developed in
DENDRAL proved to be effective in constraining the search space of equations, but hard-
coding knowledge into a system can be limiting.

To address this issue, Todorovski and Džeroski reworked LAGRANGE into LAGRAMGE
in 1997 [5]. LAGRAMGE leverages the expressive power of context-free grammars to en-
code domain knowledge declaratively, thereby allowing domain experts to provide con-
straints on the space of candidate equations without resorting to hard-coding. This ap-
proach has led to more accessible and practical frameworks for encoding domain knowledge.

Process-based modeling is another promising approach that has been used to encode
domain knowledge. Introduced in 2004, in this concept, a process-entity formalism was
used to describe complex systems [12]. This approach focuses on making the encoding of
domain knowledge more efficient and accessible for non-computer scientists. ProBMoT is
a state-of-the-art tool in this family of methods [9], [26], [27].

1.2.2 Dimensional analysis

ABACUS [23], introduced in Section 1.3.1, uses dimensional analysis among a variety of
other techniques. Also referred to as unit analysis, dimensional analysis makes use of the
fact that the physical units of all terms in an equation must match. By examining the
dimensionality of system variables, one can impose constraints on the available terms and
thus reduce the search space. Dimension analysis has long been recognized as a useful
component in equation discovery. The work of Kokar in 1986, who developed a system
called COPER, relied heavily on this technique [28]. COPER makes extensive use of the
Buckingham Π theorem, a powerful formalization of dimensional analysis that allows for
the computation of sets of dimensionless parameters from given variables and provides a
path towards constructing an equation.

An extension of COPER, called SDS, was reported on by T. Washio and H. Motoda
eleven years later [29]. One limitation of COPER was the requirement that the dimension
of each system variable be known, which limited its applicability to non-physical domains.
SDS relaxes this requirement and needs to know only the scale type for each of the observ-
ables to greatly restrict the number of candidate equations.

1.2.3 Genetic programming

So far we discussed approaches that aim to reduce the search space of equations and use
different techniques to narrow down the possibilities, such as heuristics, domain knowl-

6 Chapter 1. Introduction

edge, and dimensional analysis. However, in 2009, a different approach was introduced
by Schmidt and Lipson [6] that was based on the concept of genetic programming [30].
Their method was designed to search the unconstrained space of equations, allowing for
the discovery of equations that were not necessarily limited to a pre-defined set of terms
or dimensions. This method, commonly referred to as genetic symbolic regression, treated
candidate equations as individuals in a population that were evolved using genetic opera-
tions such as mutation and crossover.

Genetic symbolic regression has been studied extensively since its inception, and many
variations of the method have been developed [31]. In 2006, Ryan proposed a different
implementation of genetic programming [32], [33] that employed a formal grammar to
define the search space and rules for constructing expressions, as opposed to working with
expression trees and applying mutations to them. This allowed for greater control over the
search space and guaranteed that generated equations were syntactically correct.

1.2.4 Sparse linear regression

The approach taken by Brunton, Proctor and Kutz in 2016 with their program SINDy [3]
differs from other methods in the field of equation discovery. Rather than relying on heuris-
tics, domain knowledge, or genetic programming, SINDy employs the traditional machine
learning method of sparse linear regression. This approach involves generating additional
features by applying selected transformations on the system variables, and then using a
sparsity term in the loss function to favor equations with only a small number of terms.
This method is particularly well suited for discovering ordinary differential equations, since
they are often composed of a low number of terms and contain functions belonging to a
rather small set of mathematical functions.

One advantage of the SINDy approach is that it provides a clear and interpretable
model for the underlying dynamics of the system, allowing for better understanding and
prediction of its behavior. However, the method has disadvantages, particularly when
dealing with noisy or high-dimensional data. Recent research has focused on addressing
these limitations and extending the SINDy method to a wider range of systems. However,
the most important and fundamental limitation of this approach is its reliance on linear
regression, which limits the method to equations linear in parameters.

1.2.5 Composite approaches

In 2019, Udrescu and Tegmark published an intriguing work that has made significant
contributions to the field of equation discovery [13]. The modeling system, known as AI
Feynman, is a composite of various methods that are applied successively, including dimen-
sion analysis and brute force search within a highly constrained space. However, the main
novelty of their approach lies in their use of a symmetry and separability analysis, which
involves the extensive use of neural networks in order to break down complex problems
into a series of simpler ones.

1.2.6 Probabilistic approaches

While random number generation and random search are established techniques in genetic
programming, most of the methods discussed thus far have been deterministic in nature.
However, in 2020, Guimera proposed a novel probabilistic approach to equation discovery
that draws upon Bayesian statistics [8]. This approach uses transformations on expression
trees to encode the model space and create a graph of candidate equations. The resulting
Bayesian machine scientist then explores the search space using Markov chain Monte Carlo,

1.2. Existing Work on Equation Discovery 7

which allows it to sample the distribution defined by the equation graphs. The Bayes’
theorem is then used to update the posterior, which reflects the likelihood of each candidate
equation being the correct one.

One of the key benefits of this approach is that it allows domain knowledge to be
incorporated through the definition of the prior distribution. In Guimera’s work, the prior
distribution is defined by pre-training the model on a corpus of 4080 equations, which were
mined from Wikipedia articles. This enables the Bayesian machine scientist to incorporate
a broad range of knowledge, as well as to learn from the correlations and dependencies
between equations in the corpus.

1.2.7 Neural networks

Artificial neural networks (ANNs) have become a prominent family of machine learning
methods over the past decades due to their remarkable performance on a wide range of
tasks. However, their notoriously opaque and complex nature makes them challenging to
interpret, and therefore, they appear unsuitable for the task of equation discovery. Despite
this, some researchers have explored the use of ANNs in this domain. One such effort is the
development of EQL by Martius and Lampert [34]. EQL uses an ANN with a specialized
architecture designed to learn mathematical equations. The network is trained on data
samples, and it outputs an equation in symbolic form. Although the equations obtained
from EQL are often not physically meaningful or interpretable, the system has demon-
strated some promising results in discovering governing equations in various contexts.

1.2.8 Reinforcement learning

Reinforcement learning is a subset of machine learning where an agent learns to make deci-
sions by interacting with an environment. Through an iterative process of trial-and-error,
it learns to associate actions with consequences, with the aim of maximizing a reward sig-
nal. This approach leverages the concept of exploration and exploitation. Algorithms such
as Q-learning and policy gradients find applications in various domains, like autonomous
driving and game playing. In recent years, deep reinforcement learning, which uses neural
networks to approximate the decision-making functions, has become popular [35].

In 2021, Petersen developed Deep Symbolic Regression [14], which uses a recurrent
neural network to generate symbolic expressions and employs reinforcement learning to
train the network based on the degree of fit of the generated equations to the data. Im-
portantly, Petersen introduces a modification of the standard policy gradient technique,
called risk-seeking policy gradient. This technique is better suited for equation discovery,
because it computes rewards based on the best-performing candidate equation, instead of
the average average performance of all candidates. Later upgrades to the method utilize
rounds of genetic programming between reinforcement learning iterations to further im-
prove performance. In addition, the method can leverage limited background knowledge
in the form of priors and constraints, including dimensional consistency [36].

Crochepierre combined the efficiency of reinforcement learning with the ability to ex-
press domain knowledge of grammars in 2022 [37]. Their approach uses a context-free
grammar to constrain the search space and a partially-observable Markov decision process
to select production rules during the derivation of a candidate equation.

1.2.9 Generative approaches

In recent years, there has been considerable interest in the use of deep generative models
to generate mathematical expressions. In 2017, Kusner developed a variational autoen-
coder for general structured expressions that adhere to a context-free grammar [38]. A

8 Chapter 1. Introduction

grammar for mathematical expressions allows the autoencoder to be used for equation dis-
covery. However, the method struggles to exactly recover expressions, and the generated
expressions are not always syntactically valid.

These shortcomings were addressed in 2023 by Mežnar, who introduced a hierarchical
variational autoencoder that constrains the output to binary expression trees, which guar-
antees the syntactic correctness of generated expressions [39]. The method embeds the
space of possible expression trees into a real-valued low-dimensional latent space. Expres-
sions are generated by sampling or otherwise exploring the latent space and decoding the
representations into symbolic expression trees.

Transformers, a neural network architecture incorporating self-attention mechanisms
[40], have shown incredible results in recent years in natural language, audio, and other
applications of machine learning on sequences. In 2021, Valipour showed that transformers
can be used to generate candidate symbolic expression structures in the system Symbol-
icGPT [41].

Whereas the paradigm of addressing the structure identification and parameter esti-
mation separately has become the standard for modern equation discovery approaches,
Kamienny and others took a different route in 2022 [42]. Using end-to-end transformers,
the approach attempts to directly generate a symbolic expression, including the values of
numerical constants, based on the input data.

1.3 Challenges in Equation Discovery

Having reviewed the major strains of research in equation discovery, let us consider the
challenges in the field. The open issues map well to the key concepts of structure identifica-
tion we introduced in Section 1.1.2. We differentiate equation discovery approaches based
on how they represent mathematical expressions, if and how they constrain the search
space, the employed frameworks for encoding domain knowledge and the interpretability
of the results.

1.3.1 Representation of mathematical expressions

Enumeration involves explicitly listing all possible equations within a certain range of
complexity [3], [13]. Enumeration-based representations are known for their simplicity
and predictability, offering an easily controllable search space. The complexity of the
resulting equations is directly related to the number of elements combined. However, these
representations have limited expressive power, as they rely on the researcher’s inclusion
of all relevant options. Failure to include certain options may result in the model being
overlooked.

Symbolic expression trees offer another way to encode mathematical expressions [6],
[8], [14]. In this approach, the equation is represented as a tree structure, with nodes
corresponding to mathematical operations and leaves corresponding to input variables or
constants. This representation can be particularly useful for visualizing and manipulating
equations, as well as for performing symbolic simplification and differentiation. Methods
based on modifying expression trees are powerful, but also unpredictable. By mutating
these trees, researchers can generate equations in forms that were never considered before.
As a result, these trees can produce more intricate and complicated models than combining
listed elements ever could. However, this power comes at a cost. The generated models
are typically complex and contain pointless terms or nonsensical properties that human
researchers would instantly disregard.

Grammar-based approaches provide a more structured approach to equation discovery

1.3. Challenges in Equation Discovery 9

[5], [43] and lie somewhere in between enumeration and expression tree transformations
in terms of their capabilities. These approaches have a higher expressive power than
enumeration, as just a few productions can define a vast number of models. However,
the equations generated are still bound by the rules specified by the grammar. As a
result, the expressive power of grammar-based methods is lower than that of expression
tree transformations. Nevertheless, grammar-based approaches are more reliable, resulting
in fewer nonsensical equations, and the complexity of the generated equations is easier to
control. Although they may not be as intuitive as listing terms, grammar productions are
arguably easier to comprehend than transformations on expression trees.

1.3.2 Constraining the search space

Different approaches to equation discovery control the size and complexity of the search
space of equations in different ways. Some methods perform an exhaustive search across
the entire space of possible models and rely on sparsity [6], [44] or the minimum descrip-
tion length principle [7], [8] to encourage simpler, more parsimonious equations. These
approaches can be computationally intensive and may require extensive tuning of hyper-
parameters to balance the competing objectives of model accuracy and simplicity.

Other approaches seek to limit the search space of candidate equations using various
techniques. For instance, one approach might constrain the search to a specific class of
functions or impose restrictions on the types of mathematical operations allowed in the
equation [3]. Grammars and process-entity formalism allow for more complex and detailed
specifications of a search space [5]. A very constrained search space allows an equation
discovery method to employ an exhaustive or intensive search strategy [9], [11]. These
methods can reduce the computational burden of equation discovery, but may also miss
potentially useful models that fall outside of the specified search space.

The advancements in computational power and data storage have led to the widespread
use of computationally intensive techniques in machine learning. However, with greater
power come greater demands, and in practical scenarios, the available computation time
often becomes a limiting factor. The number of potential models in equation discovery
grows exponentially not only with the dimensionality of the problem but also with the
number of mathematical operations and functions we wish to allow. If we possess reliable
and valuable information about the problem, constraining the search space is a prudent
choice that significantly increases our chances of solving the problem in a reasonable amount
of time. On the other hand, if we have limited knowledge of our system, an unconstrained
search may be less likely to exclude the best models before we even start the search.

1.3.3 Background knowledge representation

The question of how heavily and in what manner to constrain the search space is closely
related to the inclusion of domain knowledge in the modeling process. A large number
of methods provide no dedicated framework for the expert to leverage their knowledge.
However, if the system expresses language through enumeration of terms, the expert has
the option of modifying the lists of terms and functions. On the other hand, process-entity
formalisms have been proposed to represent knowledge about the structure and behavior of
the system being studied [12]. Formal grammars have also been used to capture domain-
specific knowledge [5], [43], and prior probability distributions have been employed to
encode beliefs about the relationships between different variables [8]. General mathematical
knowledge, such as dimensional analysis [43], [45]–[47], symmetries [13], and heuristics [21],
has also been utilized to guide the equation discovery process. By incorporating background

10 Chapter 1. Introduction

knowledge into the search for equations, researchers can constrain the search space and
increase the likelihood of finding meaningful and interpretable models.

Automated modeling systems are primarily designed to aid researchers from different
fields. As a result, these programs must be user-friendly and easy to use, while also being
capable of accurately representing knowledge in a helpful way. When assessing knowledge
frameworks for different domains, both the formalism’s power and its accessibility to non-
experts are crucial factors to consider. Modifying lists of terms and functions ranks low in
terms of both accessibility and expressive power. While it is conceptually easy to under-
stand, it necessitates a considerable mathematical background from the user to list every
property of their problem in the form of a function or a term. The power of enumeration
is also limited.

In situations where domain experts possess knowledge about the mathematical prop-
erties of their system, methods that allow for their phenomenological incorporation can
perform exceptionally well. For example, specifying measurement units in detail, which is
typical in the physical sciences, can considerably enhance the performance of AI Feynman
[13], [48]. These frameworks’ expressive power is typically low since they rely on a limited
number of usable mathematical properties.

The process-based modeling paradigm [12], [26], [27] begins with an accessibility and in-
terpretability perspective. In many scientific fields, such as chemistry and biology, process-
entity models are the standard way of describing dynamical systems. Process-based equa-
tion discovery provides these experts with an easy way to express their domain knowledge.
The power of this framework is usually low, relying on a limited number of operations and
functions and necessitating manual entry for more complex concepts like polynomials.

In contrast, formal grammars provide significant expressive power and the ability to
describe large model subspaces with minimal input [5], [32], [33], [38]. However, grammars
are familiar to computer scientists and linguists. Domain experts with prior experience
can readily understand and interpret grammars, but those from other domains may re-
quire additional training and study. Additionally, designing or modifying an appropriate
grammar for equation discovery necessitates a strong mathematical background, ranking
the general accessibility of these approaches as low.

Probabilistic approaches offer another possibility. A domain expert can specify a prior
probability distribution over the model space to represent their expectations and knowledge
about the system. However, this option remains largely unexplored thus far [8].

The way machine learning operates involves training a model using a dataset and
subsequently using the trained model to analyze fresh data. A comparable concept can be
employed to deduce domain expertise from a set of fundamental equations that represent
the relevant scientific field. This technique has been employed as a pre-training measure
for the probabilistic Bayesian machine scientist [8], in which the prior distribution was
automatically deduced from a set of 4080 equations mined from data. Although not much
other research has been conducted in this direction thus far, it is a promising approach
that merits additional exploration.

1.3.4 Interpretability of discovered equations

The interpretability of results is a crucial aspect for practical usability of equation dis-
covery. One aspect of interpretability relates to the incorporation of domain knowledge,
where process-based modeling is the most advanced since it links the optimal equation
to the entity-process formalism that domain experts can easily understand [12]. Users of
grammar-based approaches can study the derivation trees of discovered equations, which
allow for correspondence with higher-level concepts in the domain theory [5].

1.4. Probabilistic Grammar-Based Equation Discovery 11

Another kind of interpretability is possible with a probabilistic approach, where ex-
pressing results as a posterior distribution of equations with associated uncertainties offers
additional information to researchers [8]. Certain approaches can provide scientific insights
by discovering symmetries, which go beyond just generating an equation [13].

The requirement of parsimony is crucial for meaningful and interpretable equations,
and all discussed approaches limit or penalize the complexity of candidate equations in
some way. A transparent way of addressing parsimony that is sometimes employed entails
providing the user not with a single equation, but instead generating a Pareto front of
equations. This allows the domain expert to choose the trade-off between the complexity
and the accuracy of the solutions [13], [14].

1.4 Probabilistic Grammar-Based Equation Discovery

Grammar formalisms are not new to the field of equation discovery, but so far research has
focused on deterministic context-free grammars and not their probabilistic counterparts.
The topic of this thesis is the research and development of equation discovery methods,
based on probabilistic grammars, which we use to:

1. generate candidate equations that conform to the rules of mathematics,

2. impose soft constraints on the search space by specifying rules for how equations are
derived and their corresponding probabilities,

3. natively and flexibly parametrize the parsimony principle,

4. express domain knowledge through the structure of the grammar and its parameters.

Candidate equations are generated from grammars using a random sampling algorithm,
have their parameters estimated through numerical minimization, and are then evaluated
based on their error-of-fit, potentially also taking into account their prior probability.

The novel formalism provides experts a more accessible and powerful way of leverag-
ing domain knowledge. A probabilistic grammar defines a probability distribution over
all possible equations, which can be interpreted as imposing soft constraints on the en-
tire search space, whereas existing work either searches an unconstrained model space or
imposes hard constraints on it. Soft constraints constitute a more powerful formalism for
expressing domain knowledge.

Our approach builds on a limited body of prior work, mainly related to the use con-
struction and analysis of context-free grammars for equation discovery [5], the approach
of constraining the search space through the expression of domain-specific knowledge for
modelling dynamical systems [12] and the methodology of Bayesian statistics [8].

1.4.1 Purpose

The purpose of this dissertation is to make significant contributions to the fields of equation
discovery and symbolic regression by introducing a novel approach based on probabilistic
context-free grammars. This approach is designed to address some of the limitations of
existing methods by leveraging background knowledge to improve the scope and efficiency
of equation discovery. We introduce a novel approach to equation discovery based on
probabilistic context-free grammars that overcome the limitations of existing works in the
field. This approach allows us to express complex mathematical equations using a formal
grammar and to sample from the space of possible equations using probabilistic inference.
One of the main obstacles in equation discovery is the size of the search space of equations,

12 Chapter 1. Introduction

which is generally infinite, as well as its structure, which makes it difficult to search through
efficiently. By incorporating background knowledge in the form of constraints, based on
both general modeling knowledge and domain-specific knowledge, we can focus the search
space and improve the efficiency and accuracy of the search.

In addition to improving the efficiency and accuracy of equation discovery, we also
aim to improve the interpretability of the results. Specifically, we consider the parsimony
principle, which favors simpler equations over more complex ones and introduces an impor-
tant bias that helps guide the search in the space of equations. The probabilistic nature
of the approach allows us to provide estimates of confidence in the results through the
probabilities of the generated equations. By providing interpretable equations and their
probabilities, our approach can facilitate scientific discovery and help researchers under-
stand the underlying mechanisms that govern their data.

To achieve our goals, we develop an accessible software tool in the form of an open-
source Python library for probabilistic grammar-based equation discovery. This tool allows
other researchers to apply our approach to their own data sets and explore the potential
of probabilistic context-free grammars for equation discovery.

By pursuing these points, this dissertation aims to provide valuable insights into the
potential of probabilistic context-free grammars as a tool for equation discovery and to
advance the state-of-the-art in the field of symbolic regression. Ultimately, our purpose
is to facilitate scientific discovery by providing interpretable equations that accurately
capture the underlying mechanisms of complex systems.

1.4.2 Goals

The goals of the dissertation are to design, implement and evaluate a probabilistic grammar-
based approach to equation discovery.

1.4.2.1 Design

To achieve these goals, we have identified several design objectives for our approach to
equation discovery. First, we introduce a theoretical groundwork for the use of probabilistic
context-free grammars as generators of mathematical expressions. We develop a formalism
that allows us to express mathematical equations using a grammar and derive probabilistic
inference algorithms that sample from the space of possible equations. This enables us to
generate equations that are more likely to be accurate and meaningful.

Second, we design a methodology for analyzing grammars that allows for estimations
and predictions of the suitability of specific grammars for equation discovery without re-
quiring intensive computational experiments. We investigate methods for analyzing the
structure and complexity of grammars, as well as the corresponding search space, and
evaluate their effectiveness in predicting the performance of the grammar in equation dis-
covery tasks. This allows us to design more efficient grammars, which define a space of
possible equations that is more limited and contains more promising candidate equations.

Third, we design and demonstrate “dimensionally-aware grammars” that generate ex-
pressions with correct physical units. By incorporating domain-specific knowledge about
the physical constraints of the system being modeled, we can ensure that the resulting equa-
tions are physically meaningful and interpretable. For many problems, such constraints
reduce the size of the search space dramatically and thereby improve the efficiency of the
equation discovery algorithm.

Fourth, we develop and demonstrate the use of grammars for types of domain-specific
modeling knowledge, such as epidemiological models, electronic circuits models, and cou-
pled oscillator systems. These grammars allow us to leverage domain-specific knowledge

1.4. Probabilistic Grammar-Based Equation Discovery 13

to focus the search space and improve the efficiency and accuracy of equation discovery.
Fifth, we integrate and demonstrate the parsimony principle in probabilistic context-

free grammars. We investigate methods for favoring simpler equations over more complex
ones and evaluate their effectiveness in improving the interpretability and accuracy of the
results. This ensures that the generated equations are as simple and understandable as
possible, without sacrificing accuracy.

Sixth, we investigate the feasibility of an iterative approach to equation discovery, based
on updating the candidate expression generator with the results of testing the candidate
equations. This approach allows us to refine the grammar and improve the accuracy and
efficiency of the search. By continuously updating the candidate expression generator, we
can gradually converge to the best possible solution.

Finally, we investigate the feasibility of formulating an iterative approach to equation
discovery as Bayesian optimization and/or inference. This approach allows us to optimize
the search process and efficiently explore the space of possible equations. By using Bayesian
optimization and/or inference, we can intelligently guide the search towards promising
regions of the search space.

1.4.2.2 Implementation

The Implementation section describes the specific steps and methods needed to achieve
the goals outlined in the Design section. To do so we pursue the following goals.

Firstly, we develop an algorithm for sampling mathematical expressions from probabilistic-
context free grammars. This algorithm is necessary to generate a pool of candidate ex-
pressions to be used in the equation discovery process. By sampling from the grammar, a
wide range of possible equations can be generated, which increases the chance of finding
the best-fitting equation for a given problem.

The second component we develop is an algorithm for equation discovery. This algo-
rithm consists of three main steps: generating candidate mathematical expressions, esti-
mating free parameters, and evaluating the candidates. The algorithm is the core of the
equation discovery process and serves to identify the best-fitting equation among the gen-
erated expressions. This process enables the identification of mathematical relationships
and patterns that may not be immediately apparent from the data alone.

Next, we develop frameworks that allow for the expression of various aspects of back-
ground knowledge through the design of probabilistic grammars. These frameworks enable
the incorporation of domain-specific knowledge into the equation discovery process, lead-
ing to more accurate and relevant results. For example, a framework for epidemiological
models may incorporate knowledge about the conservation of the number of individuals,
while a framework for electronic circuit models may incorporate knowledge about circuit
components and their interactions.

Finally, we develop open-source software for probabilistic grammar-based equation dis-
covery. This software provides an accessible tool for researchers and practitioners to use
in their own work and enables the wider adoption and evaluation of the proposed method-
ology. The software allows users to input their data and background knowledge, and
generate candidate equations for analysis. It also provides practical tools for evaluating
the goodness-of-fit of equations and estimating confidence in the results.

1.4.2.3 Evaluation

The evaluation of the proposed approach is an essential step in validating its usefulness and
effectiveness. This section presents the evaluation goals and the methods used to assess
the approach’s performance.

14 Chapter 1. Introduction

The first evaluation goal is to determine the ability of the approach to efficiently ex-
press various aspects of background knowledge. One of the advantages of the probabilistic
context-free grammar approach is its ability to incorporate domain-specific knowledge into
the grammar to guide the discovery of equations. To evaluate the performance of the ap-
proach in this regard, we perform case studies that test the approach’s ability to express
different types of domain-specific knowledge, such as epidemiological models, electronic
circuits models, and coupled oscillator systems. The cases are selected to cover different
types of modeling problems and are used to assess the approach’s ability to express search
spaces that match the desired properties.

The second evaluation goal is to assess the ability of the approach to discover the
correct mathematical laws, underlying the data. To this end, we use a widely adopted
database, containing a variety of equation types, including linearity and nonlinearity in
the variables, the parameters, or both. Specifically, we test the ability of the approach
to correctly discover the equation that was used to generate the data. We compare the
results obtained by the proposed approach with those obtained by established methods for
equation discovery and symbolic regression.

The third evaluation goal is to evaluate the computational efficiency of the approach
in comparison to established methods for equation discovery and symbolic regression. We
track the number of candidate equations that must be evaluated by the proposed approach
and compare it with the number required by the established methods. We use an estab-
lished benchmark to assess the scalability of the approach with respect to the size and
complexity of the input data.

Overall, the evaluation goals aim to provide a comprehensive assessment of the pro-
posed approach and its potential to advance the fields of equation discovery and symbolic
regression. The results obtained from the evaluation will inform the design of future ver-
sions of the approach and guide its application to real-world problems.

1.4.3 Hypotheses

The hypotheses, investigated in this thesis, are the following.

H1 We can design an equation discovery approach, based on probabilistic grammars
(PCFGs and PAGs), that overcomes the limitations of existing approaches in ensuring
parsimony and expressing different types of background knowledge, and providing a
probabilistic interpretation of results.

H2 We can implement the designed approach into a software tool, which enables the
discovery of algebraic equations from measured or simulated data.

H3 The developed approach can outperform existing equation discovery approaches in
performance, computational efficiency and applicability.

1.4.4 Scientific contributions

Overall, this PhD thesis advances the field of equation discovery by improving the methods
for leveraging both general and domain-specific background knowledge.

1. The initial contribution of this thesis is the innovative use of probabilistic context-free
grammars in equation discovery. Employing PCFGs to represent background knowl-
edge and generate candidate expressions yields simpler and more accurate equations
and enables the use of soft constraints, fundamentally enhancing the equation dis-
covery process.

1.5. Organization of the Thesis 15

2. The next contribution involves implementing probabilistic attribute grammars that
enable dimensionally-consistent equation discovery. This approach maintains the ex-
pressive power of PCFGs, while eliminating physically meaningless equations, which
significantly improves the performance and computational efficiency of the equation
discovery process.

3. Next, the thesis introduces a general attribute grammar methodology coupled with
a novel technique for directly sampling probabilistic attribute grammars. This novel
approach is set to capture a wide array of background knowledge, extending the reach
of domain knowledge in equation discovery beyond the expressivity of PCFGs.

4. Finally, the development of an algorithm for the iterative Bayesian updating of gram-
mar probabilities overcomes the limitations of simple random sampling and paves the
way towards computationally efficient equation discovery. An additional benefit of
the Bayesian approach is the approximation of the posterior distribution over math-
ematical expressions, which improves the interpretability of equation discovery.

1.5 Organization of the Thesis

In this chapter, we introduced the problem of equation discovery and gave an overview of
the many different existing approaches. We identified the challenges in the field, discussed
how different approaches address the challenges and what are the shortcomings of existing
work. In light of the identified challenges, we defined the purposes and goals of this work,
the hypotheses to be answered and outlined its contributions to science.

In Chapter 2, we focus on probabilistic context-free grammars as a tool for generating
mathematical expressions, constraining the space of expressions and encoding background
knowledge. We begin by studying the mathematical properties of grammars and the prob-
ability theory underlying probabilistic grammars and compare the utility of deterministic
and probabilistic grammars from a theoretical perspective. We also introduce a method
for visualizing the search space of expressions, which we use throughout the thesis. We in-
troduce a Monte-Carlo algorithm that enables the use of PCFGs in equation discovery and
conclude the chapter by performing extensive computational experiments that demonstrate
the use of PCFGs in equation discovery.

In Chapter 3, we address a particular type of background knowledge, common in phys-
ical sciences – measurement units. We introduce dimensional attribute grammars, an
extension of PCFGs, that generates only dimensionally consistent mathematical expres-
sions. We discuss various challenges of the approach and identify the solutions. Finally,
we use computational experiments to demonstrate the impact of dimensional consistency
in equation discovery.

In Chapter 4, we extend the ideas of the previous chapter into a general-purpose frame-
work for encoding background knowledge. The framework relies on probabilistic attribute
grammars to overcome the limitations of PCFGs in expressing complex types of back-
ground knowledge. We demonstrate the utility of the framework by designing and an-
alyzing grammars encoding three different types of background knowledge: dimensional
consistency, systems of differential equations for chemical kinetics, and systems of differ-
ential equations describing electronic circuits.

In Chapter 5, we focus on algorithmic improvements by developing a Bayesian al-
gorithm that iteratively updates the grammar probabilities to improve the performance
of equation discovery and enable the estimation of the posterior distribution. We first
introduce the algorithm and its theoretical basis. We then perform an illustrative compu-
tational experiment that demonstrates the use of the algorithm and enables insight into

16 Chapter 1. Introduction

its behavior.
Finally, in Chapter 6, we review and evaluate the performed work in light of the goals

and purposes we have set for the thesis. Next, we answer the hypotheses of the thesis and
detail its scientific contributions. We conclude the thesis by discussing our suggestions for
further work.

17

Chapter 2

Probabilistic Grammars for Equation
Discovery

In this chapter, we introduce the notion of grammars, which originates in computational
linguistics. A grammar is used as a formal specification of a language and uses a set of
production rules to derive valid strings from the language in question. We argue for the
use of context-free grammars [49] – a type of grammar that is powerful enough to specify
the language of mathematical expressions. Grammars are typically used to discriminate
between strings that are part of a language and strings that are not, a process known as
parsing [4]. For use in equation discovery, however, we are interested in applying grammars
as generative models. In this chapter, we first formally define context-free grammars and
their probabilistic versions, as well as study a few illustrative examples. We proceed by
defining a PCFG [50], [51] that encodes mathematical expressions and introduce the task
of (probabilistic) grammar-guided equation discovery. Throughout this thesis, whenever
the distinction between grammars and their probabilistic counterparts is important, we
refer to the former as deterministic grammars.

2.1 Context-Free Grammars

Formally, we define a context-free grammar [4] as the tuple G = (N , T ,R, S). The set of
terminal symbols T contains all symbols, appearing in strings that are part of the language.
Nonterminal symbols, contained in the set N , do not appear in the language, but are used
by the grammar to derive strings and often correspond to more abstract concepts, such as
factors or denominators in mathematical expressions. The production rules in the set R are
rewrite rules of the form A→ α, where the left-hand side is a nonterminal A ∈ N and the
right-hand side is a sequence of nonterminals and terminals, α ∈ (N ∪ T)∗. For example,
the rule F → N/D specifies that a fraction F is a sequence of N – the nonterminal symbol
for a numerator, / – the terminal symbol for division, and D – the nonterminal symbol
for a denominator. To derive a sentence, a grammar begins with a string, composed of a
single non-terminal S ∈ N , and applies production rules to recursively replace nonterminal
symbols in the current string with terminals and nonterminals. The final string contains
only terminal symbols and belongs to the language, defined by the grammar G.

Consider a simple example of a context-free grammar GL = (NL, TL,RL, SL) that
derives linear expressions of two variables x and y. The set RL includes four production

18 Chapter 2. Probabilistic Grammars for Equation Discovery

a) E

E

V

x

+ V

y

b) E

E

E

V

x

+ V

y

+ V

y

Figure 2.1: Example parse trees for expressions a) x + y and b) x + y + y, derived by
grammar GL from Equation (2.1).

rules:
E → E + V

E → V

V → x

V → y,

(2.1)

with the set of terminals TL = {x, y,+}, the set of nonterminals NL = {E, V } and the
starting symbol SL = E. The productions of the grammar can generate the sum of an
arbitrary number of terms, consisting of the variables x and y in any order. It is one of
the simplest grammars for mathematical expressions that demonstrates the concepts we
discuss.

The syntactic structure of sentences (mathematical expressions in our case) in a lan-
guage according to a context-free grammar is represented by parse trees [4]. A rooted,
labeled and ordered tree ψ is a parse tree, generated by grammar G, if the root node of
ψ is labeled S, and each node in the tree either has no children and its label is a member
of T or there is a production A → B, member of set R, where the label of the node is A
and the left-to-right sequence of labels of the node’s immediate children is B. The string
derived by ψ is the left-to-right sequence of its leaves. The set of all possible parse trees,
generated by grammar G is labeled ΨG. We provide examples of parse trees ψL1 and ψL2
for the expressions x+ y and x+ y + y, according to grammar GL, in Figure 2.1.

The height of a parse tree is defined as the number of edges on the longest path, starting
at the root node (starting symbol S) and ending at a leaf (terminal symbol). The parse
trees in Figure 2.1 have heights of a) three and b) four. Note that the same mathematical
expression derived by a different grammar will in general have a different parse tree and
consequently height. Even so, more complex expressions require higher parse trees, making
parse tree height an important measure of expression complexity.

2.1.1 Probabilistic context-free grammars

We can transform a context-free grammar into a probabilistic context-free grammar (PCFG)
if we assign a probability to each of its productions, so that for each A ∈ N :∑

(A→α)∈R

P (A→ α) = 1.

In other words, we impose a probability distribution over all production rules with the
same nonterminal symbol on the left hand side by ensuring that the probabilities of all

2.1. Context-Free Grammars 19

productions with the same nonterminal on the left-hand side sum up to one. Since a given
sequence of productions characterizes a single parse tree ψ, the probability of the parse
tree is simply the product of the probabilities of all productions that derive it [50]:

P (ψ) =
∏

(A→α)∈R

P (A→ α)f(A→α,ψ), (2.2)

where f(A→ α,ψ) is a function that counts the number of occurrences of the production
A → α in the parse tree ψ. Furthermore, all parse trees derived by a proper PCFG form
a probability distribution. In other words, the probabilities of all parse trees sum up to
one [51]: ∑

ψ∈Ψ
P (ψ) = 1. (2.3)

Let us again consider the example of the grammar for linear expressions from Equa-
tion (2.1). We can transform the CFG to a PCFG by assigning a probability to each
of the four productions. We denote the probability of each production in brackets after the
production. Note that we also achieve a more compact notation by presenting productions
with the same nonterminal on the left-hand side in a single line, separated by a vertical
line:

E → E + V [p] | V [1− p]

V → x [q] | y [1− q].
(2.4)

We introduced parameters 0 < p < 1 and 0 < q < 1 to define the probability distri-
butions over production rules for E and V . Following Equation (2.2) we can calculate
the probabilities of the two parse trees for expressions x + y and x + y + y, depicted in
Figure 2.1:

P (“x+ y”) = p(1− p)q(1− q),

P (“x+ y + y”) = p2(1− p)q(1− q)2.
(2.5)

2.1.2 Grammars as generators

Grammars were originally developed to formally describe the structure of natural-language
sentences, but computer scientists most commonly use them to encode the syntactic struc-
ture of markup and programming languages [4]. In this context, grammars enable de-
velopers to implement efficient parsers of annotated documents and source code. Given
a grammar and a string, the parsing algorithm can determine whether the grammar can
derive the string and, if so, finds the corresponding parse tree. The parse tree makes the
syntactic structure of the string explicit.

Context-free grammars have been used as generators of mathematical expressions in
equation discovery before. LAGRAMGE [5] deterministically and systematically enumer-
ates parse trees from simpler (lower) to more complex (higher) for a given grammar. To
do this, the algorithm uses a refinement operator that generates the minimum refinements
for a given parse tree by replacing the simpler production rules with more complex ones.
The expression generator requires a user-specified maximum height for the generated parse
trees. It is important to note that in this procedure, each generated parse tree is equally
likely, i.e., it is assumed to be uniformly distributed in the space of parse trees with bounded
height.

Probabilistic grammars enable a much more flexible mechanism for generating expres-
sions. Algorithm 1 describes the generate_sample procedure for randomly sampling
the space of parse trees, derived by a grammar. The function receives as input the proba-
bilistic context-free grammar G and the nonterminal root node of the parse tree A, which
forms the initial string s.

20 Chapter 2. Probabilistic Grammars for Equation Discovery

Algorithm 2.1: generate_sample(G, A)
Randomly sample an expression from a probabilistic context-free grammar.

Data: Probabilistic grammar G = (N , T ,R, S)
Result: Expression s corresponding to a randomly sampled parse tree ψ from G

with root node A, probability p of ψ

1 initialize (s, p) = ([], 1);
2 Choose a random rule (A→ α) ∈ R : α = A1A2 . . . Ak, Ai ∈ N ∪ T ;
3 for i = 1, i ≤ k do
4 if Ai ∈ T then
5 s = s.append(Ai);
6 else
7 (si, pi) = generate_sample(G, Ai);
8 s = s.append(si);
9 p = p · pi;

10 end
11 end
12 return (s, p);

By following the list of production rules, the algorithm recursively replaces nonterminal
symbols in the string s until s contains only terminal symbols. Whenever more than one
production rule applies for a nonterminal A, the function randomly samples a production
rule from the probability distribution prescribed by the grammar (line 2). The string
s is then expanded using the sequence of symbols on the right-hand side of the chosen
production rule. Terminal symbols in the right-hand side are simply appended to the
string (line 5), whereas extending nonterminals requires a recursive call (line 7). When the
function generate_sample is called with a grammar and its start symbol, the algorithm
generates a randomly sampled string from the grammar, paired with its probability of
generation.

Contrasting the deterministic algorithm for generating parse trees from CFGs, used
in LAGRAMGE, Algorithm 1 does not require the maximal tree height to be specified.
Furthermore, the distribution over the generated strings is in general not uniform, since
the probability of each parse tree is the product of the probabilities of all the production
rules used in its derivation.

2.1.3 The number of parse trees with limited height

In this section, we compare the properties of expression generators, based on deterministic
sampling of CFGs (i.e., LAGRAMGE), with those based on probabilistic sampling of
PCFGs. Given a context-free grammar G = (N , T ,R, S), we can count the number of
parse trees nG(A, h) with the root symbol A ∈ N ∪ T and a height of exactly h using the
recursive formula:

nG(A, h) =

1 if A ∈ T , h = 0

0 if A ∈ T , h > 0

0 if A ∈ N , h = 0

number of productions: A→ w, w ∈ T ∗ if A ∈ N , h = 1∑
(A→α)∈R

(
k∏
i=1

NG(Ai, h− 1)−
k∏
i=1

NG(Ai, h− 2)

)
if A ∈ N , h > 0.

(2.6)

2.1. Context-Free Grammars 21

Here, α = A1A2 . . . Ak represents a string of terminal and nonterminal symbols Ai ∈ N ∪T
and NG(A, h) is the number of parse trees of G with A as the root node and of height up
to and including h:

NG(A, h) =
h∑

hi=0

nG(A, hi). (2.7)

Using the above formula with A = S allows us to obtain the total number of parse trees
derived by grammar G. In this thesis, we use the shorthand nG(h) = nG(A = S, h)
whenever the root symbol is not explicitly specified.

Let us demonstrate the use of the above equations by finding the number of parse trees
with a given height, derived by the linear grammar in Equation (2.1):

E → E + V | V
V → x | y.

First, notice that there are only two trees with the root V and a height of one:

nGL
(V, h) =

{
nV if h = 1

0 otherwise.
(2.8)

Therefore, NGL
(V, h) = nV for all h ≥ 1. We can make use of this observation, considering

Equation (2.6) for h ≥ 2 and the root node E:

nGL
(E, h) = nV − nV + nV (NGL

(E, h− 1)−NGL
(E, h− 2)) (2.9)

nGL
(E, h) = nV (NGL

(E, h− 1)−NGL
(E, h− 2)) (2.10)

nGL
(E, h) = nV nGL

(E, h− 1). (2.11)

Recognizing this relation as the recursive formula of a geometric sequence, we can rewrite
it in the general form as

nGL
(E, h) =

{
nh−1
V if h ≥ 2

0 otherwise.
(2.12)

As per Equation (2.7), we can compute the total number of parse trees with height up to
and including h as the sum of the first h terms of the geometric series:

NGL
(E, h) =

h∑
hi=2

nGL
(E, hi) =

h∑
hi=2

nhiV =
nhv − 1

nv − 1
− 1. (2.13)

In the example in Equation (2.4) we use aGL with two variables, hence nV = 2. In this case,
the number of parse trees with height up to and including h simplifies toNGL

(E, h) = 2h−2.

2.1.4 Parse tree probabilities and grammar coverage

In Equation (2.6), we introduced a method for counting the number of parse trees with
a given height derived by a context-free grammar. Extending a context-free grammar to
a probabilistic context-free grammar does not change the number of parse trees NG(A =
S, h). In order to better characterize the properties of a PCFG, we introduce coverage,
defined as the sum of probabilities (Equation (2.2)) of all parse trees with height up to and
including h:

CovG(A, h) =
h∑

hi=0

∑
ψ∈ΨA,hi

P (ψ), (2.14)

22 Chapter 2. Probabilistic Grammars for Equation Discovery

where ΨA,hi ⊆ Ψ represents the set of all parse trees with height hi a root symbol of A.
We can now express Equation (2.3) in terms of coverage as

lim
h→∞

CovG(S, h) = 1. (2.15)

Similarly to counting the number of parse trees in Equation (2.6), we can calculate the
coverage of a probabilistic context-free grammar at height h using a set of recursive equa-
tions:

CovG(A, h) =

1 if A ∈ T , h ≥ 0

0 if A ∈ N , h = 0∑
(A→α)∈R P (A→ α)

∏k
i=1 CovG(Ai, h− 1) if A ∈ N , h > 0.

(2.16)

Here, α = A1A2 . . . Ak is the string of symbols Ai ∈ N ∪ T , appearing on the right-hand
side of the production rule A→ α.

We can use coverage to demonstrate the benefit of introducing probabilistic grammars
by reconsidering the simple linear grammarGL from Equation (2.1). The grammar contains
two probability distributions over production rules we have to specify to fully define the
PCFG. The first distribution is over the production rules with E on the left-hand side and
the second distribution is over the production rules with V on the left-hand side. Let us
assume that all variables are equally probable, which leads to a uniform distribution of
the production rules V → v. In other words, P (V → v) = 1/nV , where nV is the number
of variables. The other probability distribution we must define is over the two recursive
production rules E → E + V and E → V . If we parameterize the probability of the first
rule with p, the probability of the other rule is 1−p. In short, we are studying the following
PCFG:

E → E + V [p] | V [1− p]

V → x1 [1/pm] | . . . xm [1/pm].

Since this PCFG is very simple, we can derive its coverage with basic probability theory.
The probability of generating a parse tree with a height of exactly h is

PGL
(E, h) = ph−2(1− p).

We can easily see this by considering the Bernoulli process. Note that one of the produc-
tions with E on the left-hand side represents recursion, with an associated probability p,
and the other terminates the process of generation, with an associated probability 1 − p.
In order to produce a parse tree with height h, the generator must choose the recursive
option h − 2 times, then choose the terminal production and finally choose either of the
terminal productions for V . With this understanding, we can compute the coverage as the
sum of the probabilities of all parse trees with height of up to and including h:

CovGL
(E, h) =

h∑
hi=2

phi−2(1− p) = (1− p)
h−2∑
hi=0

phi =
1− ph−1

1− p
(1− p) = 1− ph−1.

We now demonstrate the usage of the more general Equation (2.16) by using it to reproduce
the above result. First, consider coverage for parse trees with V as their root node:

CovGL
(V, h) = 1, if h ≥ 1.

Next we derive a recursive expression for the coverage of parse trees with E as the root
node:

CovGL
(E, h) = p · CovGL

(E, h− 1) · CovGL
(V, h− 1) (2.17)

+ (1− p) · CovGL
(V, h− 1) (2.18)

CovGL
(E, h) = p · CovGL

(E, h− 1) + (1− p). (2.19)

2.1. Context-Free Grammars 23

This time guessing the general expression for the h-th term in the series is not trivial.
Instead, let us observe the first three terms:

CovGL
(E, 1) = 0, (2.20)

CovGL
(E, 2) = 1− p, (2.21)

CovGL
(E, 3) = p(1− p) + (1− p) = 1− p2. (2.22)

From this sequence we can guess the general form CovGL
(E, h) = 1− ph−1. To prove it by

induction, we assume the relation holds for h and use the recursive relation to prove it for
h+ 1:

CovGL
(E, h+ 1) = p · CovGL

(E, h) + 1− p = p(1− ph−1) + 1− p = 1− ph.

The coverage of the linear grammar is therefore:

CovGL
(E, h) = 1− ph−1, ∀h ≥ 2. (2.23)

Figure 2.2: Parsimony in context-free grammars: a) the coverage of the probabilistic gram-
mar for linear expressions at a given height h for different values of p – the probability of
the recursive rule E → E + V , b) the probability of generating a parse tree with a given
height h using the probabilistic grammar with different values of p (colors) and using the
deterministic version of the grammar (black line).

This result reveals the impact that p (the probability of the recursive production rule
E → E + V in the linear grammar GL) has on the probability of sampling a parse tree
with a given height. In the left-hand side of Figure 2.2 we depict the total probability of
all parse trees with height up to and including h (i.e., the coverage) for different values
of p. The simplest parse trees encoded by grammar GL correspond to expressions x and
y, with height 2 and a probability of 1 − p. The probability of sampling of the simplest
trees is high for small values of p. On the other hand, the likelihood of sampling higher
parse trees, corresponding to more complex expressions, increases with p. By varying p,
we can directly control the degree of complexity in generated equations, which represents
an intuitive parametrization of the parsimony principle in equation discovery. In con-
trast to regularization constants in sparse regression or genetic algorithms, which typically
have unlimited range and arbitrary meaning, the probability of recursion in PCFGs has a
straightforward probabilistic interpretation.

24 Chapter 2. Probabilistic Grammars for Equation Discovery

The parametrization of the parsimony principle when using PCFGs as generators of
expressions is also more elegant when compared to the use of deterministic grammars.
Since we assumed a uniform distribution over the production rules for V in the PCFG GL,
the probability distribution of the parse trees with a given height is also uniform. The
likelihood of sampling a parse tree with a certain height h decreases exponentially with h,
due to the fact that the number of parse trees with height h increases exponentially with
h. However, in deterministic grammars, the sampling probability is distributed uniformly
across all trees, while the number of parse trees still increases exponentially with h. Con-
sequently, the probability distribution over tree height in deterministic grammars is biased
towards more complex trees – the very opposite of the parsimony principle. In fact, to
use deterministic grammars for equations discovery we must employ external regulariza-
tion methods to express the parsimony principle [5]. We visualize this comparison in the
right-hand side of Figure 2.2, which depicts the probability of generating a tree with height
h for different values of p (the probability of the recursive production in GL). Although
equation discovery algorithms that employ deterministic grammars (i.e., LAGRAMGE) do
not use probabilistic sampling, we assume uniform sampling of parse trees up to a given
height, for illustrative purposes. We can see that the probability of sampling a tree with
height h falls exponentially for PCFGs, while rising exponentially for CFGs.

2.2 PCFGs for Mathematical Expressions

We use grammars to constrain the search space of equations in equation discovery. To that
end, we design specialized grammars for mathematical expressions that ensure correct
mathematical syntax and express the desired types of mathematical expressions through
the probability distributions of different variables, operators and functions in the produc-
tion rules of a PCFG. We discuss several concepts important to designing such grammars
before considering examples of PCFGs for mathematical expressions.

2.2.1 Ambiguity

An important concept to consider when working with grammars is ambiguity. A grammar
is formally ambiguous if sentences exist that can be described by more than one parse
tree, generated by the grammar. Grammars for mathematical expressions can express
another type of ambiguity, called semantic ambiguity. All but the simplest mathematical
expressions can be written in many mathematically equivalent, but grammatically distinct
ways. This is mainly due to the distributivity, associativity and commutativity properties
of the basic operations. For example, consider the many ways the expression x2+xy can be
written: x×x+x×y = x×y+x×x = x×(x+y) = x×(y+x) = (x+y)×x = (y+x)×x. Each
results in a distinct parse tree. It is generally useful to adopt a canonical representation
that each generated equation is converted into. This allows us to compare expressions to
each other and check whether they are mathematically equivalent in addition to comparing
their parse trees. In our work, we use the Python symbolic mathematics library SymPy
[52] to simplify expressions and convert them into a canonical form, as well as to compare
expressions symbolically.

2.2.2 Variables in PCFGs for mathematical expressions

When addressing an equation discovery task, we compose candidate expressions using a set
of variables that is part of the definition of the problem. In a grammar, variables are part
of the set of terminal symbols. The simplest way to define them is through a dedicated
production rule, such as V in grammar GL in Equation (2.4), which imposes a uniform

2.2. PCFGs for Mathematical Expressions 25

distribution over the variables. However, when we have significant background knowledge
to leverage, we can use arbitrary probability distributions over variables, or even place
variable-generating productions in different places in the structure of the grammar. In this
work, we use the simpler option of a single production with a uniform distribution over
variables.

2.2.3 Numerical constants in PCFGs for mathematical expressions

We represent numerical constants in a PCFG with a single terminal symbol, typically c.
After generating an expression string, we simplify and enumerate all numerical constants
that appear in it. For instance, if the grammar generates the string c ∗ c ∗ x + c, we
transform it into c1 ∗x+ c2. We estimate the optimal values of numerical constants during
the parameter estimation step of equation discovery. Since too many constants slows down
computation and can lead to overfitting, and too few constants can preclude the success
of equation discovery, it is important to pay attention to the probability of generating
constants when designing grammars for mathematical expressions.

2.2.4 Examples of general-purpose grammars

So far we considered one of the simplest examples of grammars for mathematical expres-
sions, the linear grammar GL, which generates sums of two variables. Due to its simplic-
ity, the linear grammar is convenient to demonstrate certain mathematical properties of
PCFGs, however, it is not a useful grammar in practice. In this section, we introduce three
grammars for mathematical expressions with increasing degrees of complexity that can be
used in practice for equation discovery. The three grammars are general-purpose gram-
mars, since the only background knowledge they encode lies in the type of expression they
can generate. For brevity, we present the grammars as CFGs, with the understanding that
we can easily turn them into PCFGs by equipping their production rules with probabilities.
The first of these is the polynomial grammar GP , which generates polynomials:

Polynomial grammar GP :

P → P + c ∗M | c ∗M | c
M →M ∗ V | V
V → x1 | x2 | . . . | xm.

(2.24)

Examples of generated expressions

c1x
2

c1x
3 + c2

c1x
5 + c2x

4 + c3x
2 + c4x

In this grammar, the nonterminal P represents the concept of a polynomial (e.g., x3 −
x2 + 3) and the nonterminal M represents monomials (e.g., 2x3). It is easy to extend
the polynomial grammar into the rational grammar GR, which can generate any rational
function:

Rational grammar GR:

R→ (P) / (P)

P → P + c ∗M | c ∗M | c
M →M ∗ V | V
V → x1 | x2 | . . . | xm.

(2.25)

Examples of generated expressions

c1x2
x21

x3
c1x1 + c2x22 + c3x1x3
x2 + c1

c2x21 + c3x1

26 Chapter 2. Probabilistic Grammars for Equation Discovery

This grammar constructs a rational function by simply dividing two polynomials. Fi-
nally, we take a look at the universal mathematical grammar GU , which can generate any
mathematical expression, composed of the four basic operations:

Universal mathematical grammar Gu:

E → E + F | E − F | F
F → F ∗ T | F / T | T
T → (E) | V | c
V → x1 | x2 | . . . | xm.

(2.26)

Examples of generated expressions

x3 − x1

x1 −
c1x2
x1

c1x1

(
−x1x2

x3
+ x3

)
In the universal grammar GU , the nonterminal E represents an expression in the form

of a sum or difference of two factors, F is a factor obtained by multiplying or dividing two
terms and T is a term, which can be either a variable, a numerical constant or another
expression.

2.2.5 Special functions in grammars for mathematical expressions

The three grammars above are limited to expressions, composed using the operations
+,−, ∗, /. We can include other mathematical functions by explicitly including them in
the grammar. Such functions can be:

• power x2, x3, . . . ,

• roots √, 3
√, . . . ,

• the exponential function and the logarithm exp, log,

• trigonometric functions sin, cos, tan,

• inverse trigonometric functions arcsin, arccos, arctan,

• hyperbolic functions sinh, cosh, tanh,

• etc.

Note that some of these functions can be generated by the grammar using other operations,
i.e., x3 = x ∗ x ∗ x and tanx = sinx

cosx . The selection of special functions to include in a
grammar depends on the equation discovery task and is another way to express background
knowledge. Since every additional function increases the search space, it is important to
include only the functions we really deem necessary. Equation (2.27) below presents the
universal mathematical grammar, extended with a set of special functions and equipped
with probabilities. In the remainder of this work, this grammar will be our go-to general-
purpose grammar for equation discovery, when the background knowledge is insufficient to
construct a more specialized grammar.

2.3. Search Space Visualization 27

Universal grammar GU :

E → E + F [psum] | E − F [psub] | F [1− psum − psub]

F → F ∗ T [pmul] | F / T [pdiv] | T [1− pmul − pdiv]

T → V [pvar] | c [pcon] | R [1− pvar − pcon]

R→ (E) [prec] | f1(E) [pf1] | . . . | fk[pf1]
V → x1 [px1] | x2 [px2] | . . . | xm [pxm],

wherefi ∈ F = {√, exp, log, sin, cos, tan, sinh, cos, tanh, arcsin, arccos, arctan},

pfi =
1− prec

|F|
,

xi ∈ V; pxi =
1

|V|

(2.27)

2.3 Search Space Visualization

In the context of equation discovery, we use grammars to encode background knowledge
and to define the search space of mathematical expressions. In this chapter, we introduce
several ways of studying and analyzing PCFGs, which can aid in grammar design. Here,
we introduce a novel way of visualizing the space mathematical expressions, defined by a
grammar or any other generator of mathematical expressions. Visualizing, analyzing and
comparing the search spaces of different grammars can allow us to better understand their
properties and help us design the best expression generator for our task.

2.3.1 Aggregated expression trees

Any mathematical expression can be represented as an expression tree, with mathematical
operations and symbols as nodes. For instance, the expression x + y has a node “Add”,
representing addition, with two children: x and y. We make use of this representation
by introducing a novel concept, aggregated expression trees (AETs). AETs are trees,
constructed by aggregating a large, hopefully representative, sample of expression trees
generated by a grammar or another type of expression generator.

An AET is an expression tree with a special label in each node and edge which counts
the number of occurrences of that node or edge among the expressions, aggregated into the
AET. We initialize an AET as an empty expression tree, then add the individual expression
trees to it one by one. Before adding an expression tree to the AET, we modify the labels
of its nodes recursively, starting at the root node and proceeding towards the leaves of the
expression tree. We relabel each node v, so that it contains the information on every node
along the path from the root node to node v. For example, the node x in the expression tree
of x+ y is labeled Add_x, whereas the z in the expression x+ y ∗ z is labeled Add_Mul_z.
Finally, we add the renamed expression tree to the AET by modifying the counters in the
nodes and edges of the AET accordingly: when a node label is not yet included in the
AET, we add it to the AET, along with the edge to its parent, and initialize their counters
to one. When a node identifier is already present in the AET, we increase its counter by
one.

In this way, an aggregated expression tree encompasses all subtrees present in the
collection of expression trees, while keeping track how many times each node and edge
appears in the collection. Consider the example in Figure 2.3. The first image depicts the
expression tree for x+ y. For the purpose of generality, every expression tree has the root
node sys, corresponding to the most general class of models we want to handle: systems
of equations. Accordingly, the next node in the tree is eq0, corresponding to the first (and

28 Chapter 2. Probabilistic Grammars for Equation Discovery

only) equation in the system, followed by the familiar Add, x and y. The expression tree
for x + y + y is similar, featuring an additional branch. The AET, composed of the two
expression trees, features four nodes in full opacity, which are shared by the two expression
trees: sys, eq0, Add and x. The rest of the AET is semi-transparent, as the nodes and
branches appear in only one out of the two expression trees in the collection.

Figure 2.3: Example of building an aggregated expression tree: a) the expression tree of
x + y, b) the expression tree of x + y + y, c) the aggregated expression tree. The size of
nodes is inversely proportional to the height of the node in the tree, while the transparency
of nodes and edges corresponds to their relative frequency in the collection of expression
trees the AET was built from. Two special nodes are included in all three trees: sys, which
is the root node of any expression tree and corresponds to a system of equations, and eq0,
indicating the first equation from a system of equations.

As the next example, we can once again consider the linear grammar:

E → E + V [prec] | V [1− prec]

V → x [pvar] | y [1− pvar].
(2.28)

The grammar is parametrized by two probabilities: prec, the probability of recursion, and
pvar, the probability of the variable x, with the default values prec = 0.5 and pvar = 0.5.
By varying the values of these probabilities, we obtain versions of the linear grammar
that generally define the same space of all mathematical expressions, but impose different
probabilities, i.e., soft constraints, on the space. We can gain insight into the properties
of these spaces through their aggregated expression trees, constructed by generating many
random expressions using each version of the grammar and aggregating them.

In Figure 2.4, we present six AETs, obtained by randomly sampling 100 expressions
using each version of the linear PCFG. The first row shows how the space of expressions
changes as we vary the probability of recursion from 0 to 0.9, while keeping pvar at 0.5.
When prec is zero, the grammar can generate only the expressions x and y and the corre-
sponding AET is simple. For prec = 0.9, the grammar generates expressions of the form
nx+my for many different values of the integers n and m. For prec = 0.5, the number of
unique integer values is lower, as choosing the recursive production is less likely. These ob-
servations are in close agreement with the effects of varying the probability of the recursive
production we observed in Figure 2.2. This set of three AETs is another way of demon-
strating and visualizing how the parsimony principle is parametrized by the probability of
recursion.

2.3. Search Space Visualization 29

Figure 2.4: The aggregated expression trees for the linear grammar from Equation (2.28)
with different values of production rule probabilities, obtained by aggregating 100 randomly
sampled expressions using each set of probabilities. AETs a-c were generated by setting
pvar = 0.5 and prec: a) 0, b) 0.5, c) 0.9. Meanwhile, for AETs d-f, prec was set to 0.5 and
pvar was: d) 0, e) 0.5, f) 1. The size of nodes is inversely proportional to the height of the
node in the tree and the transparency of nodes and edges corresponds to their frequency
in the generated sample of expression trees.

To obtain the second row of AETs in Figure 2.4 we vary the distribution of variables,
while keeping the probability of recursion at 0.5. Here, the visual differences between
AETs are not as obvious. For pvar = 0 and pvar = 1, the grammar generates expressions
of the form nx or ny, with the only two nodes in each AET that represent variables
being exclusively x or y, respectively. In the AET of a grammar with a uniform variable
distribution (pvar = 0.5), nodes of both variables appear in a tree, and the AET is more
complex. This set of three AETs demonstrates how more other production rule probabilities
affect parsimony and the shape of the space of expressions. More balanced distributions
of production rules tend to generate a larger space of expressions than extremely biased
distributions.

We will use the methodology of aggregated expression trees, introduced in this sub-
section, throughout the rest of this thesis to help us visualize spaces of mathematical
expressions and understand the properties of different grammars.

30 Chapter 2. Probabilistic Grammars for Equation Discovery

2.4 Theoretical Analysis

So far, we introduced probabilistic context-free grammars for mathematical expressions and
demonstrated how they inherently and intuitively parametrize the parsimony principle on
the simple example of a linear grammar. In order to analyze the properties of practical
grammars for mathematical expressions in the context of equation discovery, we will study
the number of parse trees we have to sample from a given grammar in order to reconstruct a
specific equation. We first investigate the differences between deterministic grammars and
their probabilistic counterparts and then look into the impact that varying the production
rule probabilities of a grammar can have on the performance of the equation discovery
algorithm.

2.4.1 The Feynman symbolic regression database

We analyze and evaluate probabilistic grammar-based equation discovery using a publicly
available benchmark – the Feynman database for symbolic regression [13]. The database
consists of 100 equations from the three-volume course Feynman’s Lectures on Physics,
which cover classical mechanics, electromagnetism, quantum mechanics and other core
topics from physics. The collection of equations prioritizes the most complex algebraic
equations, i.e., those that do not involve derivatives or integrals. Each problem has between
1 and 9 variables and can contain the elementary operations +,−, ∗, /, as well as any of
the special functions sqrt, exp, log, sin, cos, arcsin and tanh. The numerical constants
that appear in the equations belong to the set of rational numbers, with the exception of
e and π. The data was generated by numerically simulating the equations. The metadata
available for each problem consists of the variable symbols and their corresponding physical
units, which can be composed with 5 basic units: meter m, second s, kilogram kg, Kelvin
K, and Volt V. To illustrate the types of problems, represented in the database, we present
a few included equations. One of the simplest examples is the equation for the force of
friction F :

F = µN,

where µ is the friction coefficient and N the normal force. As an example of a more complex
equation, consider the relativistic momentum p of a particle:

p =
mv√
1− v2

c2

,

where m is the particles mass, v its velocity and c the speed of light in a vacuum. Finally
one of the most complex equations in the database:

P =
2πEfpdt

h

sin2
(
t(ω−ω0)

2

)
(
t(ω−ω0)

2

)2 ,

where P represents the probability of a state transition in an ammonium molecule, Ef is
the electric field, pd is the electric dipole, t is the time interval, h is the Planck constant, ω
is the frequency and ω0 the resonant frequency. The full collection of equations is provided
in Appendix A.

2.4.2 Expected number of parse trees

The metric we use to analyze grammars in this section is the expected number of parse trees
that we need to sample from a given grammar, so that the sample includes a parse tree,

2.4. Theoretical Analysis 31

corresponding to the mathematical expression we seek. The expected number depends on
both the target expression and the grammar. We model the number of sampled parse trees
as a random variable N and compute its expected value E[N]. The computation differs
for probabilistic and deterministic grammars.

We can model the sampling of parse trees from a PCFG as consecutive trials in a
Bernoulli process. In each trial, we sample a parse tree from the PCFG and check whether
it matches the target expression (or by optimizing its parameter values and computing the
error-of-fit on the data in a realistic scenario). We denote the probability of the parse tree
corresponding to the target equation with p. N , the number of parse trees sampled before
finding the desired one, follows the geometric distribution:

P (N = n) = (1− p)n−1p. (2.29)

In other words, the Bernoulli process consists of a sequence of n − 1 unsuccessful trials,
where the sampled parse tree does not correspond to the target (hence, the probability of
each trial outcome is 1− p), followed by a single successful trial with the probability of p.
The expected number of trials until (and including) the first success is

EPCFG[N] =
1

p
, (2.30)

which corresponds to the intuition that the more probable the target equation, the fewer
samples are needed to reconstruct it.

The simplest deterministic approach using context-free grammars for the task of equa-
tion discovery tests expressions defined by the grammar systematically, until it finds the
correct one. To ensure parsimony, the algorithm starts with the parse trees with the lowest
height and progressively moves towards higher trees only once it has tried all the expres-
sions of a given height. In other words, if we denote the height of the correct parse tree with
h, the algorithm generates all parse trees with heights at most h−1. Since the distribution
of parse trees with a given height in a CFG is uniform, the algorithm will on average also
consider half of the parse trees with height exactly h. The expected number of parse trees
considered by a deterministic grammar G is therefore

ECFG[N] = NG(h− 1) +
1

2
nG(h), (2.31)

where nG(h) is the number of parse trees with height exactly h (Equation (2.6) with
A = S) and NG(h− 1) is the number of parse trees with height up to and including h− 1
(Equation (2.7) with A = S).

We find the probability p and the height h for a given target expression by parsing
with the grammar of interest. We make use of the inside chart parser, a type of bottom-up
algorithm, which recognizes lower-level elements before higher-level structures, as imple-
mented in the Python package NLTK. If the given expression is derived by a given CFG,
the parser finds the parse tree(s). In the case of PCFGs, the parser also computes the
probability of the parse tree.

2.4.3 Probabilistic vs. deterministic grammar

Using the formulas in Equations (2.30) and (2.31), we calculate the expected number of
sampled parse trees necessary to reconstruct each of the one hundred equations from the
Feynman database. For different values of N , we are interested in how many of the target
equations from the Feynman database we can expect to reconstruct by generating at most

N sample parse trees from a given grammar. We can write this as 1
100

100∑
i
I(n ≥ E[Ni]),

32 Chapter 2. Probabilistic Grammars for Equation Discovery

where N denotes the number of sampled parse trees, E[Ni] is the expected number of
sampled trees necessary to reconstruct the i-th equation from the Feynman database, and
I(b) is a function indicating the truthfulness of the Boolean expression b, having the value
of 1, if b is true, and 0 otherwise.

Figure 2.5: The number of problems from the Feynman symbolic regression database that
we can expect to reconstruct by sampling a given number of parse trees from the universal
mathematical PCFG (red line) in Equation (2.27) and its CFG counterpart (blue line).
The inset provides a zoom-in on the range of the expected number of sampled parse trees
below 1050.

We compare the expected number of expressions to sample for the universal mathe-
matical PCFG in Equation (2.27) and its CFG counterpart. The comparison, depicted
in Figure 2.5, demonstrates that the expected number of samples for the deterministic
grammar is many orders of magnitude higher than the expected number of samples for the
probabilistic grammar. More specifically, we need to sample over 104000 parse trees from
the deterministic grammar in order to reconstruct all the equations from the Feynman
database. In contrast, the probabilistic grammar requires, on average, less than 1050 sam-
ples. Half of the problems from the Feynman database can be successfully reconstructed
when sampling around 1010 parse trees from the probabilistic grammar, while roughly 1060

samples are required for the same result using the deterministic version of the grammar.
The number of unique parse trees for a context-free grammar undergoes a super-

exponential increase as the height of the parse tree increases. This holds true for both
probabilistic and deterministic grammars. Despite this, the expected number of sampled
expressions can vary greatly, spanning tens or even hundreds of orders of magnitude. The
reason for this is that the probability distribution over parse trees produced by a deter-
ministic grammar is uniform, whereas probabilistic grammars introduce a preference for
simpler parse trees, as detailed in Section 2. The findings depicted in Figure 2.5 reveal that
the bias introduced by probabilistic grammars closely aligns with the equations featured
in the Feynman database, which signifies a connection between the bias and equations
commonly used in science. In the subsequent section, we will demonstrate how a precise
adjustment of the probabilities assigned to individual production rules in the grammar can
shift the bias towards equations in the Feynman database even further.

2.4. Theoretical Analysis 33

2.4.4 Biased vs. unbiased probabilistic grammar

In the remainder of this work, we focus our attention on probabilistic grammars. In this
subsection, we investigate the effect that modifying the prior distribution over parse trees
by adjusting the probabilities of production rules has on the expected number of sampled
trees. As seen in Figure 2.2, reducing the probabilities of recursive production rules leads
to a preference for simpler equations. To extend this analysis, we examine the impact of
varying the probabilities of the other production rules on the expected number of sampled
trees. In order to maintain a straightforward and clear comparative analysis, we vary the
following four parameters:

1. the ratio between the probabilities of summation and subtraction:

rsum = P (E→E+F)
P (E→E−F) ,

2. the ratio between the probabilities of multiplication and division:

rmul =
P (F→F∗T)
P (F→F/T) ,

3. the ratio between the probabilities of a constant and a variable:

rconst =
P (F→V)
P (F→c) ,

4. the ratio of the total probability of the set of special functions and no special function:

rfunct =
∑

k P (R→fk(E))
P (R→(E)) .

In our analysis, we begin with a grammar that sets all of the ratios to one, which
we term the uniform grammar. This grammar does not favor any particular operator,
function, or type of atomic term (variable or constant) in an equation, and therefore is
devoid of any inherent biases. On the other hand, the biased grammar introduces intuitive
preferences that are frequently used by scientists and engineers.

The precise parameter settings for both grammars are listed in Table 2.1.

Table 2.1: Parameter values for the uniform and the biased universal grammars.

rsum rmul rconst rfunct
Uniform 1 1 1 1
Biased 0.4 1.5 0.25 0.67

First, we can visualize the space of expressions, spanned by the uniform and biased
universal grammars by sampling 1000 random expressions from each and constructing
aggregated expression trees in Figure 2.6. Visually, we can see that the AET of the
biased grammar is smaller, indicating a more constrained space of expressions. We can
quantify the difference by considering the number of nodes in each AET: 5724 for the
universal grammar and 5278 for the biased grammar. The difference is small, but not
insignificant. Next, we focus on the expected number of parse trees needed for successful
equation discovery, obtained by parsing the expressions from the Feynman database. The
outcomes of the comparison are displayed in Figure 2.7. The left-hand histogram exhibits
that incorporating the bias into the probabilistic grammar leads to a significant decline
in the expected number of samples, although it is not as substantial as the one witnessed
when comparing the probabilistic and deterministic grammars. In fact, the biased grammar
lowers the anticipated number of samples for 86 out of the one hundred Feynman equations,
with only ten equations showing an increase (while the expected number of samples for four

34 Chapter 2. Probabilistic Grammars for Equation Discovery

Figure 2.6: Aggregated expression trees for: a) the uniform universal PCFG and b) the
biased universal PCFG. The AETs were constructed by randomly generating 1000 expres-
sions with each grammar. The size of nodes is inversely proportional to the height of the
node in the tree, while the transparency of nodes and edges corresponds to the relative
frequency of the nodes and edges in the collection of expression trees. Additionally, we
provide the number of nodes in each AET in its label.

equations remains the same for both grammars). Among the 86 cases with a reduction in
the expected number of samples, 58 fall within the range of a 25% decrease in the expected
number of parse trees at most, and a 90% decrease at best. For 28 target equations, the
anticipated number of models is lowered by more than one order of magnitude, with the
largest decrease reaching seven orders of magnitude.

The biased grammar appears to utilize the fundamental principle of parsimony in a
more sophisticated manner. One might assume that the biased grammar would lead to a
more significant reduction in the expected number of samples for simpler target equations.
However, the scatter plot on the right-hand side of Figure 2.7 indicates the opposite trend:
the reduction generally increases as the equation complexity grows, with the Spearman
correlation coefficient between the reduction rate and complexity being 0.5. In this plot,
we measured the equation complexity as the length (i.e., the number of alphanumerical
characters) of its textual representation.

To conclude, our comparison between a uniform and a biased universal grammar shows
that manipulating the production probabilities of a probabilistic grammar can reduce the
expected number of samples by more than one order of magnitude, particularly for complex
equations. This highlights the potential of probabilistic context-free grammars as a flexible
means of encoding prior knowledge and domain expertise in equation discovery. In the next
section, we present empirical evidence to support this assertion.

2.5. Empirical Analysis 35

Figure 2.7: Reduction in the expected number of parse trees needed to reconstruct the
one hundred equations from the Feynman database, induced by introducing bias into the
probabilistic grammar for mathematical expressions. Depicted: a) histogram of the number
of Feynman equations (y-axis) with a given reduction factor (x-axis), b) scatter plot of the
reduction factor (y-axis) and equation complexity (x-axis) for each Feynman equation.
E[NU] and E[NB] indicate the expected number of sampled parse trees for the uniform
and the biased universal grammar, respectively.

2.5 Empirical Analysis

To complement our theoretical analysis, we have created a straightforward algorithm using
probabilistic context-free grammars in Python for discovering equations. Our algorithm
leverages a Monte-Carlo method to sample from the probability distribution of all possi-
ble equations. Each equation discovery task comprises variable names and simulated or
measured data. For each task, we provide the correct equation to compare with the re-
sults of the algorithm, which include the discovered equations. In our investigation of the
algorithm’s performance, we evaluate its output against the correct equation for each task.

To tackle each equation discovery task, we generate a universal mathematical prob-
abilistic context-free grammar (PCFG) that encompasses the measured variables and a
constant symbol as terminal symbols. We then randomly sample a large pool of candi-
date equation structures from the PCFG and assess their validity against the data in the
Feynman database. This process requires choosing suitable values for the constants in the
equation to optimize the fit to the data. The most appropriate equation that matches the
data is identified and returned as the output. Alternatively, one could continue sampling
candidate equation structures until finding a suitable equation that fits the data well, with
the degree of satisfaction specified beforehand.

2.5.1 Monte-Carlo sampling algorithm

The Monte-Carlo approach to grammar-guided equation discovery is outlined in Algo-
rithm 2.2. To generate candidate expressions for the equations’ right-hand side, we use
the procedure generate_sample from Algorithm 1, which samples them independently.
Our implementation of the algorithm in Python leverages the Natural Language Toolkit
(NLTK) [53] to work with grammars. We then process each sampled expression e using
SymPy [52], a Python library for symbolic mathematics, to obtain its canonical form ec
and determine the list of constant parameters it contains. To estimate the constant pa-

36 Chapter 2. Probabilistic Grammars for Equation Discovery

Algorithm 2.2: discover_equations(G, A)
Monte-Carlo algorithm for grammar-based equation discovery.

Data: Probabilistic grammar G = (N , T ,R, S) generating mathematical
expressions, number of samples N , data set D, target variable v

Result: List of equations eqns, sorted according to increasing error on D

1 initialize eqns = [];
2 for i = 1, i ≤ N do
3 (e, p) = generate_sample(G, S);
4 ec = canonical_form(e);
5 eqn = fit_parameters(ec, v, D);
6 error = ReRMSE(eqn, D);
7 eqns.append(eqn, p, error);
8 end
9 return eqns.sort(key=error, order=increasing);

rameter values, we minimize the root mean squared error (RMSE) of the equation v = ec
on the dataset D:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (2.32)

where n is the number of samples in the data, yi is the i-th value of the independent
variable in the data, and ŷi is the value, predicted by our equation. As the minimization
algorithm we use differential evolution (DE) [54], an efficient and widely-used method for
global optimization, with DE parameters set similar to those reported by Lukšič [55]. To
facilitate comparisons between different equation discovery problems, we use as the final
score the relative root mean squared error ReRMSE, which is RMSE, normalized by the
standard devation of the data:

ReRMSE =

√√√√√√√
n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
, (2.33)

where ȳ is the mean value of y in the data. The algorithm reports the sampled equations
sorted by increasing ReRMSE.

2.5.2 Empirical setup

To verify our theoretical analysis experimentally, we utilized the Monte-Carlo algorithm
for equation discovery on the Feynman database, which contains one hundred equations
from physics. We evaluated the performance of the uniform and biased versions of the
universal mathematical grammar described in Equation (2.27) with production probability
distributions that are parametrized as shown in Table 2.1. For each Feynman equation, we
generated 105 candidate expressions using Algorithm 1 with each of the studied grammars.
Since we had practical constraints and time limitations, we only performed parameter
estimation for equations that had at most five constant parameters. Equations with more
than five constant parameters were deemed inadmissible.

We improved the computational efficiency of the equation discovery process by identify-
ing and removing duplicate expressions. Specifically, we checked the generated expressions

2.5. Empirical Analysis 37

Table 2.2: Summary of experimental results on reconstructing the hundred target equations
from the Feynman database using the Monte-Carlo algorithm for grammar-based equation
discovery with the uniform and biased versions of the universal grammar for mathematical
expressions.

Experiment N unique [·103] Coverage Reconstructed equations
uniform 1 31± 4 0.36± 0.04 36
uniform 2 31± 4 0.36± 0.04 38
uniform 3 28± 7 0.32± 0.08 35
biased 1 31± 4 0.51± 0.04 37
biased 2 30± 5 0.49± 0.07 37
biased 3 28± 7 0.46± 0.10 36

for duplicates, i.e., expressions with identical canonical forms, and estimated the parame-
ters for all expressions sharing the same canonical form only once. Additionally, since the
Feynman database contains noise-free data, correct equations tend to have low error. In
our experiments, we used a threshold value of 10−9 for the relative root mean squared error
(ReRMSE) to determine whether a candidate equation is a correct reconstruction of the
target equation in the Feynman database. A target equation from the Feynman database
is considered successfully reconstructed with a given grammar if the corresponding sample
contains at least one matching candidate equation. To account for the stochastic nature
of the algorithm, we performed three independent runs of the Monte-Carlo sampling for
each grammar.

2.5.3 Results

The empirical results are summarized in Table 2.2, with detailed results for each Feyn-
man equation reported in Appendix B. The first column of the table shows the average
number of unique expressions sampled per target equation across all the problems in the
Feynman database. Due to the semantic ambiguity of the grammars for mathematical
expressions, the reported numbers are much lower than the total number of sampled ex-
pressions. Specifically, only around 30% of the samples correspond to unique canonical
expressions for both the uniform and biased grammar.

The second column of Table 2.2 reports the coverage achieved by the Monte-Carlo algo-
rithm in terms of the total probability of the sampled expressions, which is the sum of the
probabilities of their corresponding parse trees. We observe that sampling with the biased
grammar covers about half of the space of candidate equations in terms of total proba-
bility, while the uniform universal grammar achieves a coverage of only about 0.35. This
difference can be attributed to changes in the structure of the search space brought about
by the different probability distributions of production rules. The probability distributions
for the biased grammar are generally more varied, with some rules having higher probabil-
ities than others, in contrast to the uniform grammar that assigns equal probabilities to
all rules. This effect is also reflected in the probability distributions over parse trees, with
a few parse trees contributing most of the total covered probability, while the majority of
parse trees making only a minuscule contribution. Additionally, parse trees with a higher
contribution to coverage are more likely to be sampled, suggesting that coverage can be
interpreted as a measure of inequality among parse trees, which is related to the amount of
information in the prior distribution. These observations align with the concept of uniform
priors being the least informative ones, a concept widely used in Bayesian statistics [56].

38 Chapter 2. Probabilistic Grammars for Equation Discovery

The third column in our results table indicates the number of successfully reconstructed
target equations from the Feynman database. Both grammars were able to reconstruct
roughly 36 of the 100 equations after generating 105 samples. While both grammars
demonstrated comparable levels of performance in terms of successful reconstructions, our
theoretical analysis suggested that the biased grammar would perform better.

To contextualize our results, we can compare them to those reported by Udrescu [48].
Specifically, the AI Feynman approach was able to discover all 100 equations from the
Feynman database, while the symbolic regression method Eureqa [6] was able to reconstruct
71% of the equations. In contrast, our probabilistic grammar-based approach reconstructed
37% of the equations in our experiments. It should be noted, however, that this lower
performance was expected, given that the approach we presented was mainly intended for
illustrative purposes and relied on a very simple algorithm. We will revisit this comparison
in our analysis of the results.

2.5.4 Resampling

The results presented in Table 2.2 cannot be directly compared with the theoretical results
because they only summarize performance at a fixed number of sampled expressions. A
more general presentation of the results would show a performance curve, in other words,
performance vs. sample size. The easiest way would be to simply take a sliding minimum
across the error of the sampled expressions in the order they were sampled. However, the
order is arbitrary - if we repeat the experiment, we would get the sampled expressions in
an entirely different order (based on their probabilities) and a different performance curve.
To alleviate the stochasticity of the algorithm, we employ resampling on the sample of
expressions. The measure of success we are working with is the success ratio, which we
define as the portion of successfully reconstructed equations from the Feynman dataset. We
treat the sample of approx. 30000 unique canonical expressions with their corresponding
probabilities as a probability distribution. From this distribution we then sample 30000
expressions, without replacement. In other words, we randomly reorder the set of sampled
expressions, while taking into account the probability of each expressions. By repeating
this many times (100 in our case), we can average the success ratio at each sample size.
This value is the average success rate, depicted in Figure 2.8. It can be interpreted as
the expected success rate at a given sample size. In other words, if the Monte-Carlo
algorithm were repeatedly run many times, each time sampling N canonical expressions
for each problem from the Feynman database, computing the average of the portion of
solved problems would give a value close to the average success rate we report.

In our experiment, we perform three independent Monte-Carlo samplings for each of
the two grammars, resulting in six sets of sampled expressions. The resampling procedure
is performed separately for each of the six sample sets. Figure 2.8 depicts the minimum
and maximum of the average success rate across the three samplings at each sample size
for each of the two grammars.

2.5.5 Theoretical expectation of success rate

In the theoretical analysis in Section 3, we use an inside chart parser algorithm [57] to
parse the target expression of each problem from the Feynman database, using either the
universal or the biased universal grammar. We take the parsed tree probabilities as an
approximation for the probability that a randomly sampled expression corresponds to the
correct solution for a given problem. We can use the probabilities to calculate a theoretical
expectation of the success rate (dependent on the sample size) for each grammar. The
probability of finding the correct solution of a problem with index i in a sample of N

2.5. Empirical Analysis 39

expression, generated with grammar G, is

PG,i(N) = 1− (1− pG,i)
N ≈ 1− (1− p̃G,i)

N ,

where pG,i is the probability of randomly generating the correct solution to problem i
using grammar G. We approximate this probability with the parsed probability of a single
parse tree pG,i ≈ p̃G,i. Finally we consider the complete Feynman dataset of one hundred
equations to arrive at the expected success rate

E[success rate](N) =
1

100

100∑
i=1

PG,i(N) ≈ 1− 1

100

100∑
i=1

(1− p̃G,i)
N .

Once we perform our sampling experiment, we can directly compare the empirical success
rate with its theoretical expectation, which is depicted as the pair of full lines in Figure 2.8.

Figure 2.8: Average rate of successful reconstruction achieved with the uniform and biased
grammar on the Feynman database. The filled regions represent empirical results across
three independent runs of Algorithm 2. The solid lines correspond to the predicted suc-
cess rates based on the analysis in Section 3.4. The dashed lines represent the predicted
success rates, corrected by taking into account the empirically estimated level of semantic
ambiguity for each grammar.

However, it should be noted that these theoretical success rates are much lower than
the success rates obtained empirically. The reason for this discrepancy is the semantic
ambiguity present in the universal grammar. While we know that the grammars generate
many expressions that are mathematically identical, we approximate the sum of their
probabilities by considering only a single parse tree. We estimate the ratio between these
two values from our experiments as the ratio between the number of unique expressions in
the sample and the full sample size (105), averaged over the three independent samplings.

• uniform: Nunique
N = 0.299,

• biased: Nunique
N = 0.297.

40 Chapter 2. Probabilistic Grammars for Equation Discovery

We apply these ratios to adjust the probability estimates for generating a parse tree that
simplifies to a canonical expression representing the solution to the problem under study.
This adjustment results in a decrease in the expected number of necessary samples for
each grammar, as reflected by the dashed lines in Figure 2.8. The corrected theoretical
predictions for the expected number of samples and success rates for each grammar closely
match the empirical curves obtained by resampling the empirical results. The corrected
predictions offer strong support for our theoretical analysis.

2.5.6 Analysis of the results

Figure 2.9: Scatter plots of the probability of a sampled expression against the error of the
corresponding equation for two samples taken with the uniform universal grammar. The
samples correspond to: a) a simple, successfully reconstructed target equation from the
Feynman database, b) a more complex equation that was not successfully reconstructed.
The dashed line represents our error threshold for considering a candidate expression to be
correct. The best sampled expressions are found in the bottom right corner of each scatter
plot – they have high probability and the corresponding equations have low error.

Overall, the performance of the Monte Carlo algorithm for grammar-based equation
discovery is subpar. In our experiments, the method was able to solve only about 37% of
the equation discovery tasks from the Feynman dataset. To better understand this limited
performance, we need to examine the results for some specific tasks.

In Figure 2.9, we analyze one successfully solved equation discovery task and one un-
successful one. We visualize the probability distribution of expressions and their errors as
a scatter plot on a logarithmic scale. For both equation discovery tasks, the majority of
sampled expressions are found in a cluster with moderate probability and high error. For
the solved problem, several points are scattered across more than 15 orders of magnitude
in error, with many of them falling below the error threshold for a correct expression. In
the case of the unsolved problem, there are no points below the main cluster. The informa-
tion in Appendix B (equations 20 and 39) indicates that the solved problem represents an
easier task than the unsolved one. Equation #39 is less complex than #20 in all measures
except the number of parameters. With an estimated generation probability of 3 ·10−4, we
can expect at least a few correct solutions for task #39 in a sample of 105 expressions, on

2.5. Empirical Analysis 41

average. In contrast, the estimated probability of 9 · 10−15 for equation #20 means that
we would need to be extremely lucky to find the correct solution in our samplings.

Figure 2.10: A box plot comparison of the complexity of equations from the Feynman
database that were successfully reconstructed in the experiments (solved) with the com-
plexity of equations that the algorithm was unable to reconstruct (unsolved). Depicted
separately are experiments using the uniform universal grammar (labelled U) and the
biased universal grammar (labelled B). The orange line indicates the median of the dis-
tribution, while dots indicate outliers.

Another high-level view of the results is presented in Figure 2.10, which compares the
distributions of target expression complexity for the sets of solved and unsolved problems
from the Feynman database. We observe that the majority of problems that the Monte-
Carlo algorithm was unable to solve are more complex than the majority of solved problems;
however, there is some overlap in the tails of the distributions.

We demonstrated how the nature of sampling a probabilistic grammar, along with our
chosen prior distributions, biases the search towards simpler expressions. This bias allows
the procedure to successfully discover solutions for the majority of less complex prob-
lems from the Feynman database. During the sampling procedure, however, we ignore all
information on previously generated expressions’ errors. To discover complex equations, in-
telligent and adaptive data-driven sampling algorithms must be developed for probabilistic
grammar-based methods.

Finally, it should be noted that the complexity of a parse tree used to derive a particu-
lar mathematical expression is not directly related to the complexity of the expression, as
demonstrated. The complexity of the parse tree is dependent on the grammar employed for
equation discovery. For example, one grammar may be able to derive the expression using a
parse tree with a height of only three, while another may require a parse tree with a height
of ten. In this chapter, we exclusively use the universal grammar for mathematical ex-
pressions, given in Equation (2.27). However, utilizing alternative probabilistic grammars,
such as those derived from deterministic grammars considered by Todorovski and Džeroski
[5] that employ domain-specific or cross-domain knowledge about mathematical modeling
to restrict the set of candidate equations, could greatly improve the efficiency of recon-
structing the target equations from the Feynman database. Such alternative grammars
may be able to derive the target equations with smaller parse trees, ultimately decreasing
the number of samples required for successful reconstruction.

43

Chapter 3

Attribute Grammars for Dimensional
Consistency

Equation discovery methods often face the challenge of working within an infinite space
of possible equations. To address this, various methods have been employed to constrain
the search space, such as limiting equations to linear expressions in their parameters [3],
imposing complexity constraints, and constructing equations from limited sets of permis-
sible terms [12]. Effective and meaningful constraints can be derived by leveraging domain
knowledge, such as prior information regarding a dynamical system expressed through a
process-entity formalism.

In many physical sciences, measurement units are a form of background knowledge
that is readily available. Units impose strict constraints on the structure of equations,
for example, variables can only be added or subtracted if their units are identical, and
both sides of an equation must have the same units. Scientists have traditionally employed
dimensional analysis as a tool for verifying the plausibility of equations and to help derive
new equations.

The Buckingham Π theorem [45] offers a technique for transforming an equation into
one that contains a reduced number of dimensionless combinations of variables. In the
fields of system identification and signal processing, various methods rely on Buckingham’s
dimensionless Π groups to discover equations from data. However, methods based solely
on dimensionless products are restricted in the types of expressions they can generate,
and therefore need to be combined with other approaches to leverage additional forms of
domain knowledge.

3.1 Existing Work on Dimensionally-Consistent Equation Dis-
covery

The roots of dimensional analysis can be traced back to the concepts of similar systems
developed by Newton, Galileo, and Fourier. In 1914, Edgar Buckingham synthesized these
ideas into the concept of physically-similar systems [45], [58]. This concept formalized
the notion that physical laws are independent of units of measurement and provided a
means of reducing physical equations to their most general, dimensionless form. Since
then, dimensional analysis (and the related scaling theory [59]) has played a crucial role in
discovering physical laws across various fields, such as fluid dynamics [60], radiation [61],
chemical reactions [62], biophysics [63], economics [64], astrophysics [65], among others.

Equation discovery and symbolic regression comprise a broad research area with various
approaches. Some methods, such as genetic programming, do not utilize any background

44 Chapter 3. Attribute Grammars for Dimensional Consistency

knowledge but instead rely on powerful search algorithms to explore the vast space of all
possible equations. Genetic programming represents mathematical expressions as expres-
sion trees and conducts an evolutionary search by applying mutations and recombinations
to these trees [6]. Recently, deep learning-based approaches have shown potential in this
area [41], [66]; however, these methods typically do not incorporate background knowledge.

In contrast to the previously discussed methods, some symbolic regression approaches
focus on utilizing domain-specific knowledge to constrain the search space of equations [11].
SINDy [3] is a popular equation discovery tool that represents observed data as a linear
combination of product terms and optimizes the associated numerical coefficients using
sparse linear regression. The model is constructed using a pre-defined library of allowable
data transformations, which is a limited way to incorporate background knowledge. ProB-
MoT [12] employs process-based modeling as a powerful framework for expressing domain
knowledge and defining the search space.

Several methods leverage dimensional analysis to either solve the equation discovery
problem or to reduce the search space and enhance their performance. COPER [67] uses
dimensional analysis and the Buckingham Π theorem to examine a data set of observations,
assess the variables and their measurement units for any extraneous or absent variables,
and discover a restricted set of dimensionally-consistent equations by exploring the space
of polynomial functions. ABACUS [23] employs the heuristic strategies of BACON [21],
proportionality graphs, and suspension search to gradually build dimensionally-consistent
equations. This method is useful when dimension-related information is not readily avail-
able, particularly in non-physical domains. SDS [68] overcomes this constraint by focusing
on scale-types, whereby each variable is characterized as one of three types, imposing ro-
bust restrictions on the search space of equation discovery. Dimensional function synthesis
is an approach that targets resource-efficient equation discovery for low-latency applica-
tions in embedded systems and data streams [47]. The method uses the Buckingham Π
theorem to identify all dimensionless Π groups and merges them to form the final equation.
One drawback of this method is that it can only generate a limited range of expression
structures.

Dimensionally-aware genetic programming methods have been shown to improve the
efficiency of genetic programming by introducing evolutionary pressure on dimensional
incorrectness [46]. In this form of soft constraint in equation discovery, dimensional con-
sistency is enforced during the search process. Alternatively, a different approach [43]
employs context-free grammars to constrain the search space to dimensionally-consistent
expressions, with hard constraints ensuring dimensional consistency of generated expres-
sions through mutations and recombinations on derivation trees instead of expression trees.
A recent study [69] analyzed the fitness landscape of dimensionally-aware genetic program-
ming search spaces using a subset of equations from the Feynman symbolic regression
database. The study showed that adding information about the variable dimensionality
efficiently guides the search algorithm.

In the field of equation discovery research, it is widely recognized that utilizing domain-
specific knowledge and dimensional analysis can greatly enhance the efficiency and elegance
of approaches. However, effectively integrating dimensional consistency with other forms
of background knowledge remains a challenging task for most methods. To address this
issue, a recent work by Bakarji et al. [70] introduces a novel extension to the sparse re-
gression package SINDy, which incorporates measurement units into the discovery process.
By leveraging the Buckingham Π theorem, the approach identifies dimensionless groups,
enabling sparse regression to discover dimensionless equations with fewer variables while
preserving the expressivity of its library of data transformations.

In contrast to the aforementioned work, AI Feynman [13] takes a physics-inspired ap-

3.2. Dimensions and Measurement Units 45

proach to equation discovery, which involves a series of modules that iteratively reduce
the complexity of the problem until a polynomial fit or brute force search can be used to
discover the equation. The first module focuses on dimensional analysis, which replaces the
set of variables with a smaller set of dimensionless quantities. Other modules incorporate
different types of cross-domain knowledge, such as symmetry and separability, but do not
rely on domain-specific background knowledge.

A recent study by Crochepierre et al. [71] proposes an innovative approach to equation
discovery using reinforcement learning. The method samples from a context-free grammar
that encodes dimensionally-consistent mathematical expressions and other forms of domain
knowledge. While the approach appears promising, it is currently unclear whether it
provides any advantage over random sampling. Furthermore, the study’s primary focus
is on intelligent sampling, rather than on the representation of domain knowledge using
grammars.

Deep Symbolic Optimization (DSO) is a state-of-the-art method for generating sym-
bolic expressions using reinforcement learning, as proposed by [14]. DSO employs a re-
cursive neural network trained with a novel risk-seeking policy gradient, which rewards
best-case performance rather than expected performance. The method also utilizes ge-
netic programming between RNN iterations to further improve performance. In addition,
DSO can leverage limited background knowledge in the form of priors and constraints, in-
cluding dimensional consistency, by directly adjusting the logits produced during sampling,
as described in [36].

3.2 Dimensions and Measurement Units

Units and dimensions are important pieces of background knowledge that are commonly
utilized by human scientists, but can be difficult to express using context-free grammars. In
this context, we define Q as the set of symbols in an equation that correspond to quantities
in the physical system being studied. Each quantity is associated with a specific dimension,
such as length, time, or charge. Units of measurement, on the other hand, are realizations
of dimensions and may not be uniquely defined, but rather chosen based on convention or
utility.

To represent physical units, we can use vectors with integer elements, relative to a base
that defines the fundamental units needed to describe the system of interest. For instance,
consider the equation for accelerated motion, x = 1

2at
2, where Q = x, t, a correspond to the

dimensions of distance, time, and acceleration, respectively, with corresponding physical
units U = m, s,ms−2. Using a unit base U′ = m, s, we can represent the physical units
as vectors in Z2: ux = (1, 0), ut = (0, 1), ua = (1,−2). A quantity with a unit of 1 in a
given basis is called a dimensionless quantity, which we denote as uQ = 0 = (0, 0, . . . , 0).
Quantities that are not dimensionless are referred to as dimensioned quantities.

When constructing mathematical expressions, the presence of dimensions and physical
units can introduce constraints on their structure. Specifically, when adding or subtract-
ing terms, the units of each term must be identical, denoted as uQ1±Q2 = uQ1 = uQ2 .
Conversely, when multiplying or dividing terms, the resulting units are given by the sum
or difference of the units of the terms, respectively, denoted as uQ1·Q2 = uQ1 + uQ2 and
uQ1/Q2

= uQ1 − uQ2 .
We say that an algebraic expression is dimensionally-consistent if it adheres to these

rules of unit arithmetic. For instance, the expression vt + x0, where uv = ms−1, ut = s,
and ux0 = m, is dimensionally-consistent, whereas the expression vt+v0, where uv = uv0 =
ms−1 and ut = s, is not, because the units of the terms in the sum are not equal. Similarly,
we say that an equation is dimensionally-consistent if the expressions on either side of the

46 Chapter 3. Attribute Grammars for Dimensional Consistency

equality are dimensionally-consistent and have identical units. For example, the equation
x = vt, where ux = m, uv = ms−1, and ut = s, is dimensionally-consistent, whereas the
equation a = vt, where ua = ms−2, uv = ms−1, and ut = s, is not dimensionally-consistent.

3.3 Probabilistic Attribute Grammars (PAGs)

We utilize probabilistic attribute grammars (PAGs), which are an extension of probabilistic
context-free grammars that allow for the specification of attributes for each (nonterminal
or terminal) symbol in the grammar. Attribute values can be defined through attribute
rules associated with the production rules of the grammar, and can be used to express
relationships between attributes of different symbols, as well as constraints on attribute
values [72].

In our specific application, we assign a single attribute to each grammar symbol, which
corresponds to the vector representation of the physical unit of the symbol. The attribute
rules associated with each production rule express the arithmetic rules for dimensioned
quantities, specifically the requirement that the units of terms in addition or subtraction
must be identical. For example, by extending the polynomial probabilistic context-free
grammar (PCFG) in Equation (2.24) with attributes and attribute rules, we arrive at the
following dimensional attribute grammar:

P → P + c ∗M [pP] {P1.u = P2.u =M.u} | c ∗M [1− pP] {P.u =M.u}
M → M ∗ V [pM] {M1.u =M2.u+ V.u} | V [1− pM] {M.u = V.u}
V → a [pa] {V.u = a.u} | t [1− pa] {V.u = t.u}.

(3.1)
We present the attribute rules for each production rule within curly braces. When a

nonterminal symbol appears multiple times in a production rule, we differentiate between
its instances in the associated attribute rules by enumerating them. For instance, in the
attribute rule of the first production rule in Equation (3.1), P1 refers to the first occurrence
of P (the symbol on the left-hand side of the production rule) and P2 refers to the second
occurrence (the P in the right-hand side).

Using the grammar presented in Equation (3.1), we can derive the expression for ac-
celerated motion, c ∗ a ∗ t ∗ t, as shown in the parse tree depicted in Figure 3.1. The
measurement unit (attribute value) of each nonterminal symbol is indicated in subscript.

Probabilistic context-free grammars (PCFGs) that encode dimensional consistency di-
rectly exist but tend to become unwieldy and large, making it challenging to incorporate
other domain-specific knowledge into the production rules of the grammar. By instead
encoding the rules for dimensionally-consistent arithmetic in attribute rules, we preserve
the elegance and interpretability of CFGs. This allows us to easily combine dimensional
consistency, captured in attribute rules, with other types of domain knowledge expressed
in production rules.

3.4 From PAG to PCFG

We utilize grammars as a means of generating candidate expressions for equation discov-
ery. Although attribute grammars provide an elegant and concise representation of the
search space for expressions, there is no straightforward method for randomly sampling
expressions from an attribute grammar. However, it is feasible to convert a dimensional
attribute grammar into a context-free grammar by creating new nonterminal symbols that

3.4. From PAG to PCFG 47

P(1,0)

c *

M(1,−1)

M(1,−2)

V(1,−2)

a

* V(0,1)

t

* V(0,1)

t

Figure 3.1: Parse tree for the equation x = a ∗ t2, derived with the attribute grammar in
Equation (3.1). The blue color indicates terminal symbols, while the black color stands for
nonterminal symbols.

Algorithm 3.1: transform_grammar(G,U)
Transform a probabilistic attribute grammar to a dimensionally-consistent PCFG.

Data: attribute dimensional grammar: T , N , R, U , S ∈ N
Result: dimensionally-consistent PCFG: T , N ′, R′, S′ ∈ N ′

1 initialize R′ = {}, N ′ = {}, T ′ = T ;
2 for production rule r ∈ R, r = A0 → A1A2 . . . An[p]{κ} do
3 initialize R′

r = {} ;
4 for each s = (⟨A0, u0⟩ , ⟨A1, u1⟩ , . . . , ⟨An, un⟩) ∈ (N × U)∗ do
5 if check(κ, s) then
6 N ′ = N ′ ∪ {⟨A, u⟩ ∈ s} ;
7 R′

r = R′
r ∪ {⟨A0, u0⟩ → ⟨A1, u1⟩ . . . ⟨An, un⟩ [p]} ;

8 end
9 end

10 for each r′ = ⟨A0, u0⟩ → ⟨A1, u1⟩ . . . ⟨An, un⟩ [p], r′ ∈ R′
r do

11 p(r′) = p(r) / |{⟨A0, u0⟩ → α ∈ R′
r}| ;

12 end
13 R′ = R′ ∪R′

r ;
14 end

enumerate all possible attribute values and then expanding the set of production rules
while adhering to the constraints specified by attribute rules.

The procedure for converting a dimensional attribute grammar to a probabilistic context-
free grammar is outlined in Algorithm 3.1. This approach involves constraining the possi-
ble attribute values to a finite set of units denoted by U . Consider the attribute grammar
given in Equation (3.1), with the starting symbol S = P, P.u = (1, 0), and the unit set
U = m, s,ms−1,ms−2.

To transform this attribute grammar, we first initialize the sets of nonterminal symbols
N ′ and production rules R′ of the PCFG to empty sets. For each production rule r = A0 →
A1A2 . . . An [p]κ in the attribute grammar, where p is the probability and κ represents the
attribute rules, we create a temporary set of production rules denoted by R′

r.

48 Chapter 3. Attribute Grammars for Dimensional Consistency

Next, we iterate through all possible combinations of attribute value assignments to
nonterminal symbols in production rule r. Specifically, we iterate through all possible se-
quences of nonterminal symbol-physical unit pairs s = (⟨A0, u0⟩ ⟨A1, u1⟩ . . . ⟨An, un⟩); ui ∈
U . For instance, for the production rule M → M ∗ V [pM]M1.u =M2.u+ V.u in our ex-
ample, we iterate through the sequences:

(⟨M, (1, 0)⟩ , ⟨M, (1, 0)⟩ , ⟨V, (1, 0)⟩)
(⟨M, (1, 0)⟩ , ⟨M, (1, 0)⟩ , ⟨V, (0, 1)⟩)
(⟨M, (1, 0)⟩ , ⟨M, (1, 0)⟩ , ⟨V, (1,−1)⟩)
. . .

(⟨M, (1,−2)⟩ , ⟨M, (1,−2)⟩ , ⟨V, (1,−2)⟩) .

check(κ, s) is a function that evaluates whether the sequence s fulfills all the constraints
defined in the attribute rule κ, which belong to production rule r. For example:

check (M1.u ==M2.u+ V.u, (⟨M, (1, 0)⟩ , ⟨M, (1,−1)⟩ , ⟨V, (0, 1)⟩)
= ((1, 0) == (1,−1) + (0, 1))

= ✓.

For a dimensional grammar, the implementation of check(κ, s) is a straightforward process
since attribute rules solely involve physical units that are represented as vectors. Once the
check function has been performed, we proceed to construct new nonterminal symbols
from the symbol-unit pairings ⟨An, un⟩ ∈ s of each sequence that has passed the check(κ,
s) test, and then add them to the set of PCFG nonterminals N ′. Similarly, we construct
new production rules ⟨A0, u0⟩ → ⟨A1, u1⟩ . . . ⟨An, un⟩ and add them to R′

r. For the sake of
simplicity and readability, we denote the pair ⟨A, u⟩ as Au.

In our example, the aforementioned sequence successfully passes the check, and we
consequently update N ′ and R′.

N ′ = N ′ ∪ {M(1,0),M(1,−1), V(0,1)}
R′
r = R′

r ∪ {M(1,0) →M(1,−1) ∗ V(0,1) [pM]}.

After completing production rule r, we must normalize the probabilities of the newly
created productions to ensure proper distributions. To achieve this, we iterate through the
new production rules in the set R′

r, and for each one, we assign it the probability of rule r,
divided by the number of production rules in R′

r that share the same nonterminal on the
left-hand side as the production rule in question. For the production rule r′ = M(1,0) →
M(1,−1) ∗ V(0,1) in our example:

{M(1,0) → α ∈ R′
M→M∗V } =

{
M(1,0) →M(1,−1) ∗ V(0,1),
M(1,0) →M(0,1) ∗ V(1,−1)

}
p(r′) = p(r) / |{M(1,0) → α ∈ R′

M→M∗V }| = pM / 2.

Finally, we add the set R′
r to the set R′ and then proceed to the next production rule r in

R. Equation (3.2) contains the entire output of Algorithm 3.1 for the example grammar
in Equation (3.1) with the unit set U = {m, s,ms−1,ms−2} and starting symbol S =

3.5. The Unit Set and Auxiliary Units 49

P(1,0)

c *

M(1,−1)

M(1,−2)

V(1,−2)

a

* V(0,1)

t

* V(0,1)

t

Figure 3.2: Parse tree for the equation x = a ∗ t2, derived with the attribute grammar in
Equation (3.1). The blue color indicates terminal symbols, while the black color stands
for nonterminal symbols. The parse tree cannot be derived by a PCFG version of the
grammar using the minimal unit set U = {m, s,ms−2}, since we cannot compose the red
nonterminal symbol M(1,−1) without the auxiliary unit ms−1 = (1,−1).

P, P.u = (1, 0):

P(1,0) → P(1,0) + c ∗M(1,0) [pP] | c ∗M(1,0) [1− pP]

M(1,0) →M(1,−1) ∗ V(0,1) [pM/2] | M(0,1) ∗ V(1,−1) [pM/2] | V(1,0) [1− pM]

M(1,−1) →M(1,−2) ∗ V(0,1) [pM/2] | M(0,1) ∗ V(1,−2) [pM/2] | V(1,−1) [1− pM]

M(1,−2) → V(1,−2) [1.0]

M(0,1) → V(0,1) [1.0]

V(1,−2) → a [1.0]

V(0,1) → t [1.0].
(3.2)

3.5 The Unit Set and Auxiliary Units

The choice of the unit set U plays a crucial role in transforming an attribute grammar
into a context-free grammar. The most straightforward and economical option for U is
to use the set of units of measured quantities relevant to the problem at hand. However,
note that the unit set utilized in the example presented in Equation (3.2) includes the
unit of velocity, (1,−1), which is not among the units of measured quantities. This unit is
necessary to derive the expression c∗a∗t∗t, as can be observed from the parse tree depicted
in Figure 3.2. Since a PCFG instance of the attribute grammar in Equation (3.1) can only
generate sums and differences of pairs of units from the finite set U , it is impossible to
derive the unit (1,−2) without an intermediate step of either (1,−1) or (0, 2).

We call units such as (1,−1) in the accelerated motion example auxiliary units, as they
facilitate the derivation of expressions but do not have any corresponding terminal symbols.
Deciding whether or not to include such auxiliary units in U , and which to include, poses
a nontrivial problem. In the case of x = 1

2at
2, which deals with the kinetics problem, it is

reasonable to assume that velocity is an essential quantity, in addition to acceleration and
time. However, in some cases, relevant background knowledge may not be available.

50 Chapter 3. Attribute Grammars for Dimensional Consistency

Algorithm 3.2: extend_units (U,uy)
Extend the set of units with the required auxiliary units.

Data: unit matrix U , target variable unit: uy
Result: extended unit matrix U ′

1 k = solve_diophantine_equation(uy = U · k) ;
2 define Z(n) = {i · sgn(n) : 0 ≤ i ≤ |n|} ;
3 set of expanded coefficients H = Z(k1) × Z(k2) × · · · × Z(kd) ;
4 matrix of extended coefficients H =

[
hT1 hT2 . . .

]
: hi ∈ H ;

5 extended unit matrix U ′ = U ·H ;

A possible universal approach to selecting auxiliary units would be to systematically
enumerate all the units up to a certain maximum exponent (e.g., (-2,0), (-1,-1), (-1,0),
(-1,1), (0,-2), (0,-1), (0,0), (0,1), (0,2), (1,-1), (1,0), (1,1), (2,0) for our example). However,
this idea suffers from combinatorial explosion, where the number of added units increases
steeply with the maximum order, as well as with the number of base units required. As a
result, this approach leads to a large number of production rules and impairs the efficiency
of the grammar.

Our heuristic procedure for extending the unit set of a mathematical grammar with
auxiliary units is summarized in Algorithm 3.2. This method is applicable to any grammar
that modifies units exclusively through multiplication and division of up to two quantities
at a time. By using this procedure, we can introduce a sufficient set of units for a function-
ing PCFG while minimizing the number of auxiliary units needed, compared to the naive
approach.

The first step of our procedure involves formulating and solving the diophantine equa-
tion uy = U · k, where uy is the target variable unit, U is a matrix with units of observed
quantities as columns, and k is a vector of integer coefficients that solve the equation.
Next, we construct the coefficient matrix H, which includes all integer vectors that lie
within or at the edge of the box spanned by k and the zero vector. Finally, we obtain the
extended unit matrix U ′ by transforming the coefficient set H back into the unit space
using U ′ = U · H. To illustrate the procedure, we demonstrate its application using the
well-known example of accelerated motion. The unit matrix is

U =

[
1 0
−2 1

]
,

with the first column corresponding to acceleration (ms−2) and the second to time (s). To
obtain a dimensionally consistent equation with (1, 0) on the left-hand side, we must solve
the diophantine equation [

1 0
]
= U · k → k =

[
1 2

]
.

Here, the left-hand side of the diophantine equation represents the target unit, which is
the unit of the dependent variable x that we want to obtain. The solution k = (1, 2)
demonstrates that the linear transformation 1 · (1,−2) + 2 · (0, 1) of the units of the vari-
ables on the right-hand side leads to the unit (1, 0) that we need on the left-hand side.
However, since the multiplication operator only allows for simple addition of units and not
their multiplication by an integer constant, we must introduce all the intermediate linear
combinations a ·(−1, 2)+b ·(0, 1), where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 2, to allow for step-by-step

3.5. The Unit Set and Auxiliary Units 51

Figure 3.3: Graphical representation of the main steps of expand_units (Algorithm 3.2,
demonstrated on the example problem x = at2; {ux = m = (1, 0), ua = ms−2 =
(1,−2), ut = s = (0, 1). The plots on the left-hand side are in the space of measure-
ment units, while the plots on the right-hand side are in the space of solution coefficients.
Square symbols correspond to the dependent variable unit ux, full circles correspond to the
units of independent variables ua and ut and empty circles represent the auxiliary units
added by extend_units. The dashed lines represent the box spanned by 0 and the solution
coefficients. Added units are within, or at the border of the box.

derivation of the goal unit (1, 0). Using the solution k we construct the matrix H as

H = Z(k1) × Z(k2) = {0, 1} × {0, 1, 2} → H =

[
0 0 0 1 1 1
0 1 2 0 1 2

]
.

Finally, we obtain the extended unit matrix:

U ′ = U ·H =

[
0 0 0 1 1 1
0 1 2 −2 −1 0

]
.

We observe that the extend_units procedure has successfully extended the unit set with
the auxiliary units (1,−1) and (0, 2) (in addition to the always-included dimensionless (0, 0)
unit). As mentioned earlier, the addition of either of these units is sufficient to enable the
grammar to generate the correct solution. Among the two auxiliary units, only (1,−1)
has physical significance as the unit of velocity, whereas the unit (0, 2) is unnecessary.
Nonetheless, the overall number of auxiliary units added with the extend_units method
remains acceptably low. For a visual representation of this example, please refer to Figure
3.3.

52 Chapter 3. Attribute Grammars for Dimensional Consistency

Table 3.1: Number of parse trees with height up to and including h derived by the poly-
nomial PCFG and its dimensionally-consistent counterpart, constructed for the task of
discovering the expression at2 (Eqs. (2.24) and (3.2)). The lowest height possible with the
unrestricted grammar is h = 3, corresponding to the expressions c · a and c · t. On the
other hand, the lowest height possible with the dimensional grammar is 5. The dimensional
grammar derives two different parse trees with height 5, both of which correspond to the
expression c · a · t · t.

grammar / h 3 4 5 6 7 8 9 10
unrestricted 2 18 266 8 · 103 4 · 105 6 · 107 1 · 1010 8 · 1012
dimensional 0 0 2 6 14 30 62 126

3.6 Effect on the Search Space Size

The main goal of ensuring dimensional consistency in equation discovery is to decrease
the size of the search space, which enables us to examine a smaller number of candi-
date expressions. To demonstrate the significant impact that dimensional consistency can
have, we can compare the number of parse trees generated by an unconstrained gram-
mar and its dimensionally-consistent version [73]. In Table 3.1, we present a comparison
between the number of parse trees with a maximum height of h, generated by the poly-
nomial grammar defined in Equation (2.24), and the number of parse trees generated by
its dimensionally-consistent counterpart. When considering the dimensionally-consistent
grammar, the number of parse trees increases much less drastically as the parse tree height
increases.

3.7 Random Expression Generation

We employ probabilistic context-free grammars (PCFGs) as generators of random math-
ematical expressions, which serve as candidate models in the equation discovery process.
The sampling process [73] initiates with the starting nonterminal symbol. It is worth noting
that in the process of transforming the attribute grammar into a PCFG, each nonterminal
symbol is merged with a physical unit. The starting symbol is joined to the target variable
unit. The procedure proceeds recursively, replacing nonterminal symbols in the current
string with combinations of nonterminal and terminal symbols by following the production
rules, until only terminal symbols remain. At each step, the procedure selects a produc-
tion rule at random from all the rules that have the selected nonterminal symbol on the
left-hand side.

The presence of dead ends – nonterminal symbols without corresponding production
rules – is a complication introduced by dimensionally-aware PCFGs in the sampling pro-
cess. We tackle the issue of dead ends by employing a form of acceptance-rejection sam-
pling. Whenever the sampling process encounters a dead end, we simply restart the entire
process with a different random seed. The number of auxiliary units in a grammar deter-
mines the number of dead ends and, therefore, the number of restarts during sampling.

This solution can considerably increase the time required to generate a batch of can-
didate expressions. However, the primary bottleneck in generate-and-test approaches to
equation discovery is parameter estimation. As long as the number of dead ends in a
grammar is not excessive, the time taken to generate a candidate expression is negligible
compared to the time required to evaluate it.

3.8. Empirical Analysis 53

3.8 Empirical Analysis

To showcase the effectiveness of our dimensional grammar approach and assess its per-
formance, we return to the Feynman database for symbolic regression we introduced in
Section 2.4.1. This time, we compare the performance of an unrestricted universal gram-
mar with its dimensionally-consistent counterpart.

3.8.1 Experimental setup

For each problem from the Feynman database, we construct a dimensionally-consistent
universal mathematical grammar:

E → E + F [0.2] {E1.u = E2.u = F.u}
→ E − F [0.2] {E1.u = E2.u = F.u}
→ F [0.6] {E.u = F.u}

F → F ∗ T [0.2] {F1.u = F2.u+ T.u}
→ F / T [0.2] {F1.u = F2.u− T.u}
→ T [0.6] {F.u = T.u}

T → (E) [0.12] {T.u = E.u}
→ F (E) [0.08] {T.u = E.u, T.u = (0, 0, 0, 0, 0)}
→ V [0.4] {T.u = V.u}
→ c [0.4] {T.u = (0, 0, 0, 0, 0)}

F → f1 [1/11] {} | . . . | f11 [1/11] {}
V → q1 [1/m] {V.u = q1.u} | . . . | qm [1/m] {V.u = qm.u},

(3.3)

By utilizing the universal grammar, it is possible to generate any mathematical expression
that is constructed using the four fundamental operations (+,-,*,/) along with a selection
of transcendental functions and the square root operation. To achieve this, we make use of
Algorithm 3.1 to convert the attribute grammar into a Probabilistic Context-Free Grammar
(PCFG), while Algorithm 3.2 is employed to guarantee an adequate set of units.

For each problem in the Feynman database, we generate 3 · 104 distinct candidate
expressions randomly using two approaches: the dimensionally-consistent universal math-
ematical PCFG and the unrestricted version of the universal mathematical PCFG (i.e., the
grammar in (3.3) without attribute rules). It is worth noting that for certain problems,
the space of candidate equations is restricted to such an extent by dimensional consistency
that generating 3·104 unique expressions is impossible. This is, in fact, a desirable outcome
since the estimation of candidate expression parameters consumes a significant amount of
the computational resources utilized by ProGED.

To further minimize the computational time, we exclude expressions that contain more
than five numerical constants. We fit the parameters of each candidate expression to the
data and estimate its goodness-of-fit by calculating the relative root mean squared error
(ReMSE). We then rank the expressions based on their ReMSE values. When evaluating
our approach, our main concern is whether it can successfully solve a given problem, as
well as the amount of computational resources required to solve it, on average. We consider
a problem to be solved successfully if the error of the best candidate equation is below a
specified threshold. As the data is devoid of noise, we impose a strict threshold of ReMSE
< 10−9. Additionally, we manually examine the expressions that surpass the threshold and
ensure that they match the ground truth, which is the original equation from the Feynman
database.

54 Chapter 3. Attribute Grammars for Dimensional Consistency

Table 3.2: The number of successfully reconstructed equations from the Feynman database
(out of 100), comparing ProGED using the unrestricted universal grammar, ProGED using
the dimensionally-consistent universal grammar and Deep Symbolic Optimization (DSO)
[14]. All three methods were limited to evaluating at most 30000 candidate equations.
aWe ran DSO with random seeds 0, 1, 2 and 3, resulting in 54, 51, 52 and 54 reconstructed
equations, respectively.

method # reconstructed eqns
ProGED – unrestricted grammar 36
ProGED – dimensional grammar 58
Deep Symbolic Optimization 51− 54a

3.8.2 Deep symbolic optimization

To evaluate the performance of our approach in comparison to other methods in the field,
we conduct a comparison with DSO (Deep Symbolic Optimization) [14], using the im-
plementation provided in its public repository. In order to ensure a fair comparison, we
constrain DSO to the same number of samples (parameter estimations) as ProGED, which
is 3 · 104, and allow it to perform parameter estimation. We set the minimum number
of tokens to 3 and the maximum to 128, limit the number of numerical constants to five
(same as ProGED), and include the transcendental functions required for the problems
in the Feynman database. We utilize all implemented background knowledge priors with
default settings. Although the literature mentions dimensional constraints [36], they do
not seem to be integrated into the public repository. Consequently, we were unable to
include a dimensionally-consistent version of DSO in our comparison. We conduct four
DSO runs, each with a different random seed (0-3).

3.8.3 Results

The results of our empirical analysis are summarized in Table 3.2 and detailed in Ap-
pendix C. Our use of a dimensionally-consistent universal grammar allowed for the suc-
cessful reconstruction of 58 out of 100 equations from the Feynman database, which is a
significant improvement over the 36 equations that were reconstructed using our previous
approach that relied on an unrestricted universal grammar.

When allowed the same number of samples as ProGED, DSO was able to reconstruct
between 51 and 54 equations from the Feynman database. For completeness, we also tested
DSO with the default 2 · 106 samples, both with and without numerical constants (which
was computationally very demanding). In the former case, DSO solved 39 problems from
the Feynman database, and in the latter case, it solved 83.

These results demonstrate that dimensional consistency has a significant impact on the
performance of ProGED, making it comparable to DSO, a powerful deep learning method.
However, it is worth noting that DSO was able to discover up to 54 equations without
relying on knowledge of physical units, which highlights the strength of the reinforcement
learning approach. It is reasonable to assume that the performance of DSO would be even
further improved by incorporating dimensional consistency.

In the rest of this chapter, we delve deeper into the analysis of ProGED’s results.
By examining both successful and unsuccessful reconstruction attempts, we can identify
several interesting groups of problems from the Feynman dataset, which are summarized
in Table 3.3.

Out of the 58 problems that were solved using the dimensionally-consistent grammar,

3.8. Empirical Analysis 55

Table 3.3: Properties of interesting categories of problems from the Feynman dataset,
grouped through manual inspection of experimental results. Columns from left to right: 1)
“yes" if the problems in the group were successfully reconstructed using the dimensionally-
consistent grammar, 2) number of problems in the group, 3) mean number of variables
among the tasks in the group, 3) mean string length as a measure of complexity in the
group, 4) mean number of unique candidate expressions in the group. Rows, from top
to bottom: 1) problems that are easy with or without dimensions, 2) problems that are
significantly easier with dimensional consistency, 3) problems that were solved thanks to
dimensional consistency, 4) problems that were too difficult for our approach, 5) problems
for which dimensional consistency introduced issues, 6) problems which dimensional anal-
ysis cannot help solve.

Group / property suc. #prob. #var. compl. #unique
easy yes 14 2.7 12 21k
easier w/ dim. yes 20 2.8 13 500
possible due to dim. yes 24 3.6 23 16k
dim. issues no 5 3.2 26 12k
dim. can’t help no 6 2.8 35 20k
too complex no 32 4.8 35 15k

34 were also solved using the unconstrained grammar. These problems were generally
easier, with lower mean expression complexity and a smaller mean number of variables
than the other groups. Fourteen of these problems represented a similar level of challenge
for both grammars and involved equations such as

F = µN ; uF = uN = kgms−2, uµ = 1.

The other 20 problems formed the second group and were more challenging for the
dimensionally-consistent grammar, resulting in significantly fewer unique candidate expres-
sions being generated, on average 500 compared to 21,000 in the first group. Generating
fewer candidate expressions means less computational effort is required for the testing step
of equation discovery, which is the most computationally expensive step. These differences
between the two groups demonstrate the efficiency improvements achieved by constraining
the search space using dimensionally-consistent grammars. An example equation from this
group is

L = mrv sin θ; uL = kgm2s−1, um = kg, ur = m,uv = ms−1, uθ = 1.

It is important to note that despite the improvements achieved by using dimensional
analysis, there were still equations that could not be reconstructed using our approach.
Four of the equations were impossible to express using a grammar that only allows dimen-
sionless arguments to special functions, as they featured a square root of a dimensioned
term, for example:

c =
√
γp/ρ; {uc = ms−1, uγ = 1, up = kgms−1, uρ = kgm−3}.

Two of the problematic equations were solved by the unconstrained grammar, indicat-
ing that there are cases where an unrestricted grammar can be more effective than a
dimensionally-aware one. Six of the problematic equations featured only dimensionless
quantities, meaning that the dimensionally-aware grammar and the unrestricted grammar
are equivalent in these cases. One such example is

f = e−(θ/σ)2/2/
√
2πσ; {uf = uθ = uσ = 1}.

56 Chapter 3. Attribute Grammars for Dimensional Consistency

Figure 3.4: Comparison of the expression complexity of problems from the Feynman
database, solved by the unrestricted universal grammar (uni), the dimensionally-consistent
universal grammar (dim) and the complexity of all the problems in the database (all). The
length of the string representation of the target mathematical expression serves as a mea-
sure of problem complexity. The median of each distribution is represented by an orange
bar. The number of examples in each group is given in brackets before the name of the
group and is proportional to the width of each box plot. Circles represent outlier examples
in a distribution.

For such problems, dimensional analysis is not a useful tool, and using a dimensionally-
aware grammar offers no improvement. The remaining 32 problematic equations were
simply too complex to discover in the allotted computation time using our approach, such
as

L = h/(2π)ω3/(π2c2(e(h/(2π))ω/(kBT) − 1));

{uL = kgs−2, uh = kgm2s−1, uc = ms−1, uω = s−1, ukB = kgm2s−2K−1, uT = K}.

These equations had the highest mean number of variables and mean expression complexity
among all groups, highlighting the limitations of the equation discovery approach based
on Monte-Carlo sampling. Overall, the success of our approach in reconstructing equa-
tions from the Feynman database demonstrates the power of combining machine learning
with dimensional analysis. However, there is still room for improvement, and more so-
phisticated solutions are needed to tackle complex problems that cannot be solved using
current methods. The expression complexity distributions of problems reconstructed us-
ing the dimensionally-consistent grammar and the unrestricted grammar, as well as the
distribution of expression complexity across the entire Feynman database, are shown in
Figure 3.4. Our analysis reveals that the dimensionally-consistent grammar was capable
of reconstructing more complex expressions than the unrestricted grammar, covering a
significant portion of the complexity-space of the database. However, the tails of the dis-
tribution of expression complexity of all problems in the Feynman database remain beyond
the reach of our methods.

Dimensionally-consistent grammars offer a means of constraining the search space for
mathematical expressions, enabling the discovery of equations that would otherwise be too
complex to reconstruct. Moreover, searching within the constrained space is more efficient,
as it requires generating and evaluating fewer candidate expressions. To investigate the
efficiency gains further, we perform bootstrapped resampling for each problem from the
Feynman database and approximate a performance curve using the resulting data.

After running the equation discovery algorithm, we obtain a list of N candidate equa-

3.8. Empirical Analysis 57

Figure 3.5: a) comparison of approximate performance curves of equation discovery using
a universal mathematical PCFG (blue) and a dimensional version of the PCFG (orange)
on the Feynman symbolic regression database. The horizontal axis depicts the number
of sampled candidate expressions, while the vertical axis represents the number of recon-
structed equations (out of 100), averaged across 1000 bootstrap samples. b) The difference
between the approximate performance curves for the two grammars.

tions, each accompanied by an error-of-fit value and a probability of the right-hand side
expression derived from the grammar. We then randomly sample a sequence of N models
from this list, selecting each without repetition and weighting them by their respective
probabilities. Using this sequence, we calculate the cumulative minimum of the error-of-fit
values and generate a single performance curve. This process is repeated 1000 times with
different random seeds, and the resulting learning curves are averaged. The resulting curve
provides an estimate of the expected best error-of-fit that the algorithm would achieve for
a given number of models sampled, simulating the equation discovery experiment multiple
times.

The left-hand side of Figure 3.5 displays the approximate performance curves for the
dimensionally-consistent universal grammar and the unrestricted universal grammar. Our
analysis shows that the dimensionally-consistent grammar is capable of reconstructing over
40 equations from the Feynman dataset while requiring less than 1000 candidate expres-
sions for each problem. This indicates that the dimensionally-consistent grammar is able
to discover more equations while generating fewer expressions from the grammar, high-
lighting its significantly higher efficiency compared to the unrestricted grammar. On the
right-hand side of Figure 3.5, we show the curve obtained by subtracting the approximate
performance curve of the unrestricted grammar from that of the dimensionally-consistent
grammar. The difference is most pronounced for small numbers of sampled expressions and
decreases as more expressions are sampled, ultimately leading to the convergence of the two
curves. This suggests that dimensional consistency offers the most significant benefits for
resource-limited scenarios, which are the most common in practical use cases. These find-
ings are promising and have important implications for the use of dimensionally-consistent
grammars in real-world applications.

59

Chapter 4

Probabilistic Attribute Grammars

So far we have laid the groundwork for equation discovery using probabilistic context-free
grammars and introduced the concept of probabilistic attribute grammars for ensuring
dimensional consistency in generated equations. However, the approach in Chapter 3
relies on transforming a PAG into a PCFG by enumerating attribute values. Since a
PCFG is limited to a finite (and relatively small) number of nonterminal symbols, this
transformation is viable only for limited types of attributes and their associated rules.
Furthermore, the question of which attribute values to include is nontrivial, as evident
from our efforts to identify the required auxiliary units in Chapter 3.

In many instances of scientific and engineering applications, there is a wealth of context-
specific knowledge available. This knowledge, however, often cannot be conveniently en-
coded in a context-free grammar. In order to be able to express the various types of more
complex background knowledge, available for equation discovery, an algorithm for generat-
ing random expressions from a PAG is required that does not rely upon the transformation
to a PCFG and can handle the expressive power and flexibility of probabilistic attribute
grammars.

In this chapter, we develop a general purpose direct sampling algorithm for PAGs.
As a demonstration of its utility, we present three specific examples, each illustrating
the algorithm’s applicability in generating equations with differing sets of attributes. The
examples demonstrate the use of measurement units to ensure dimensional consistency, the
encoding of particular properties of coupling terms in dynamical systems and an expression
of Kirchoff’s laws to guide the generation of equations governing electronic circuits.

4.1 Rethinking Probabilistic Attribute Grammars

In Chapter 3, we defined (loosely following [72]) an attribute grammar as an extension
of probabilistic context-free grammars that allows for the specification of attributes for
each (nonterminal or terminal) symbol in the grammar. Attribute values can be defined
through attribute rules associated with the production rules of the grammar, and can be
used to express relationships between attributes of different symbols, as well as constraints
on attribute values.

4.1.1 On attributes

We distinguish between two types of attributes based on how attribute values are propa-
gated through the derivation (parse) tree.

• The values of the synthesized attributes are propagated bottom-up. The value of the
synthesized attribute of the nonterminal A on the left-hand side of the production

60 Chapter 4. Probabilistic Attribute Grammars

rule A → α is calculated from the values of the attributes of the symbols on the
right-hand side α.

• The values of the inherited attributes are propagated top-down. The value of the
inherited attribute of a symbol X on the right-hand side α of the production rule
A→ α is calculated from the values of the attributes of A and the attributes of the
other symbols in α.

Recall the grammars in Equations (3.1) and (3.3) from Chapter 3. There, the dimensional
unit u is a synthesized attribute: its values are propagated through the derivation tree
from Figure 3.1 from the leaves (variables with known units) to the start symbol in the
root, representing the derived expression’s unit. The two grammars do not use any other
attributes.

4.1.2 On attribute rules

Attribute rules are statements associated with each production rule in the grammar and
enable the calculation and verification of attribute values. We categorize the attribute
rules according to two classification schemes. The first scheme introduces two groups of
rules based on when they are being applied in the derivation process:

• Pre-selection rules are applied before selecting a particular production rule. In this
way, we can choose production rules to be used in the derivation based on the values
of the attributes computed by these attribute rules.

• Post-selection rules are applied after choosing a particular production rule.

The second scheme clusters attribute rules with respect to their role in the derivation:

• Assignments calculate the values of attributes.

• Conditions are logical statements involving the values of attributes. They can be
used to constrain the selection of a production rule or to check the validity of the
derivation.

The product of these two classification schemes is a set of four types of attribute rules. We
present the attribute rules for each production rule within curly braces in the following
order: pre-selection assignment-type rule, pre-selection condition-type rule, post-selection
assignment-type rule and post-selection condition-type rule. Similarly to the convention
introduced in Chapter 3, when a nonterminal symbol appears multiple times in a pro-
duction rule, we differentiate between its instances in the associated attribute rules by
enumerating them.

In terms of implementation details, an attribute can be any Python object, and an
attribute rule is a string containing Python code. Assignment-type rules are computed
using Python’s exec function, whereas condition-type rules are evaluated using the function
eval. Assignment-type rules can be composed of any number of individual statements,
separated by semicolons. Condition-type rules can be composed of any number of logical
statements, joined by logical operators. The example below uses inherited attributes in a
polynomial grammar to ensure only even powers up to 10:

P → P + c ∗M [pP] {"M1.d = 1", , , }
P → c ∗M [1− pP] {"M1.d = 1", , , }
M → M ∗ x [pM] {"M2.d = M1.d + 1", "M1.d < 10", , }
M → x [1− pM] {, "M1.u % 2 == 0", , }.

(4.1)

4.1. Rethinking Probabilistic Attribute Grammars 61

In this example, only pre-selection attribute rules are used. Assignment-type rules are
highlighted in blue and condition-type rules in olive color. The lone attribute is d – an
inherited attribute that acts as a counter for recursion and represents the degree of the
monomial. The two condition-type rules for the nonterminal M impose constraints on the
two possible production rules for M – the first production (which recursively increases the
power) can be chosen only while d is less than 11, and the second production (which ends
the recursion) can be chosen only for even values of d. In this grammar, information only
flows down the parse tree from the root node to the leaf nodes, where it is used to constrain
the selection of production rules.

The next example uses synthesized attributes in a polynomial grammar to ensure that
each expression contains the same number of appearances of the variables x and y:

S → P [1.0] {, , , "P1.x == P1.y"}
P → P + c ∗M [pP] {, , "P1.x = P2.x+M1.x; P1.y = P2.y+M1.y", }
P → c ∗M [1− pP] {, , "P1.x = M1.x; P1.y = M1.y", }
M → M ∗ V [pM] {, , "M1.x = M2.x+V1.x; M1.y = M2.y+V1.y", }
M → V [1− pM] {, , "M1.x = V1.x; M1.y = V1.y", }
V → ′x′ [px] {, , "V1.x = 0; V1.y = 1", }
V → ′y′ [1− px] {, , "V1.x = 1; V1.y = 0", }.

(4.2)

Here, only post-selection attribute rules are used. Assignment-type rules are highlighted
in teal and condition-type rules in red. The synthesized attributes x and y act as counters
for their respective variables. The production rule for the starting symbol S contains a
condition that compares the values of the counter. If they do not match, the derivation is
rejected and we repeat the random sampling. In this example, information only flows from
leaf nodes of the parse tree up to the root node, where it is used to verify the derivation.

Our formulation of PAGs deviates from the established formulation by allowing for
global attributes. For example, complex rules can be defined in external functions, which
are added to the grammar’s isolated namespace. A limited number of global structures is
constructed by default: one for each nonterminal symbol in the grammar. These represent
the nonterminal symbols in an abstract sense (and are unique), whereas local instances
of nonterminals are created by each application of a production rule (and may create
several copies of a given nonterminal). In production rules, local instances are enumerated,
whereas their global counterparts are not. Among other benefits, global properties allow
us to shorthand the passing of information upward. For instance, in the previous example,
we could assign the attributes x and y to the global S and spare ourselves writing out all
the assignment rules that merely pass information:

S → P [1.0] {"S.x=0; S.y=0", , , "S.x == S.y"}
P → P + c ∗M [pP] {, , , }
P → c ∗M [1− pP] {, , , }
M → M ∗ V [pM] {, , , }
M → V [1− pM] {, , , }
V → x [px] {, "S.x <= S.y", "S.x += 1", }
V → y [1− px] {, "S.x <= S.y", "S.y += 1", }.

(4.3)

Besides demonstrating the use of the global S to shorthand the passing of information
upwards, we have also improved the grammar in this example by adding a pre-selection
condition to each production rule for V , resulting in fewer derivation rejections. Inter-
estingly, in this version of the grammar, px has no influence on the derivation process

62 Chapter 4. Probabilistic Attribute Grammars

anymore, since the attribute rules for V ensure an equal number of both variables in the
derivation.

It must be noted that in our formulation, production rules are immutable. This means
that attribute rules cannot directly affect the expression that is being derived, nor the pro-
duction probabilities. Their influence on the derivation is limited to pre-selection condition
rules constraining the selection of production rules and to post-selection condition rules
accepting or rejecting the entire derivation. While this limits the power of attribute rules,
it ensures that any expression generated by a PAG could also be generated by the PCFG
obtained by stripping the PAG of attribute rules. Such a PCFG can also be used to parse
any expression generated by the PAG.

4.2 Direct Sampling Algorithm

Having redefined our conceptualization of PAGs, we can introduce the direct sampling algo-
rithm for PAGs. As an extension of Algorithm 1, it follows the same basic procedure. The
algorithm begins with the starting symbol and recursively replaces nonterminal symbols
with terminal and nonterminal symbols, until only terminal symbols remain. Whenever
more than one production rule applies, one is chosen randomly according to their respective
probabilities.

The chief novelty in the PAG version is that instead of randomly sampling from all
production rules with the appropriate symbol on the left-hand side, the method first checks
which production rules pass the pre-selection attribute rules. This consists of first executing
assignment rules, then evaluating condition rules. The result is a subset of applicable
production rules. The algorithm then chooses a production rule from this subset according
to their (renormalized) probabilities.

After recursively expanding each nonterminal symbol on the right-hand side (just like
in Algorithm 1), the method checks the post-selection attribute rules. The algorithm
first executes the assignment rules, then evaluates condition rules. If the post-selection
condition result is negative, the derivation is rejected. We present the entire procedure in
Algorithm 4.1.

The generation of a single random expression can fail in two ways, each corresponding
to one type of condition-type attribute rule. The first scenario (line 14 of Algorithm 4.1)
represents the situation where none of the production rules with the appropriate symbol
on the left-hand side passes the pre-selection condition attribute rule. Since there are no
applicable production rules to sample from, we abort the derivation. The second scenario
(line 37 of Algorithm 4.1 is a negative result of evaluating the post-selection condition-type
attribute rule, in which case we also abort the derivation. Similarly to the procedure in
Chapter 3, we repeat the random sampling until we successfully produce an expression.
This can be considered a form of acceptance-rejection sampling [74].

The direct sampling algorithm also features a pair of default attributes, frozen and
subtree, with behavior that deviates from the formulation in the previous section, since
they directly affect the sampling procedure. The two attributes can be assigned to global
nonterminals and enable the freezing of a particular nonterminal derivation. A nonterminal
can be “frozen" by setting its frozen attribute to true in any assignment-type attribute
rule. The first time this happens, the subtree it derives is stored in its subtree attribute.
Henceforth, whenever this nonterminal is encountered in this sampling, the stored subtree
is returned (line 3 of Algorithm 4.1) instead of the usual random sampling procedure. This
functionality allows a grammar to generate a random term or sub-expression and then
reuse it in its exact form elsewhere in the expression. For instance, this is important for
generating coupling terms in dynamical systems – terms that appear in several coupled

4.2. Direct Sampling Algorithm 63

Algorithm 4.1: generate_sample_attributed(G, A)
Generate a random expression from a probabilistic attribute grammar.

Data: start symbol: A ∈ N ; attribute dimensional grammar:
T , N , R, U , S ∈ N

Result: expression, corresponding to randomly sampled parse tree, following the
attribute rules

1 if this nonterminal has been frozen already, simply return its subtree;
2 if A.frozen then
3 return A.subtree;
4 end
5 check which production rules pass the pre-selection condition attribute rules;
6 initialize valid_production_rules = [];
7 for production_rule in production_rules do
8 execute(production_rule.pre_selection_assignment_rules);
9 if check(production_rule.pre_selection_condition_rules) then

10 valid_production_rules.append(production_rule);
11 end
12 end
13 if length(valid_production_rules) == 0 then
14 raise DeadEndError;
15 end
16 Choose a random rule among valid_production_rules

(A→ α) ∈ R : α = A1A2 . . . Ak, Ai ∈ N ∪ T ;
17 go through the symbols on the left-hand side one by one, starting recursive calls for

nonterminals;
18 initialize (s, p) = ([], 1);
19 for i = 1, i ≤ k do
20 if Ai ∈ T then
21 s = s.append(Ai);
22 else
23 (si, pi) = generate_sample_attributed(G, Ai);
24 s = s.append(si);
25 p = p · pi;
26 end
27 end
28 evaluate the post-selection attribute rules: if negative, reject this derivation;
29 execute(production_rule.post_recursion_assignment_rules);
30 if check(production_rule.post_recursion_condition_rules,) then
31 if the nonterminal has been frozen in this call, store its subtree;
32 if A.frozen then
33 A.subtree = (s, p);
34 end
35 return (s, p);
36 else
37 raise ConditionError;
38 end

64 Chapter 4. Probabilistic Attribute Grammars

equations.
The direct sampling algorithm enables the use of probabilistic attribute grammars as a

powerful, general purpose framework for expressing and combining various types of back-
ground knowledge in equation discovery. In the remainder of this chapter we demonstrate
its usage and flexibility by developing PAGs for different types of background knowledge
in three domains.

4.3 Search Space Constriction

The main advantage PAGs have over PCFGs in equation discovery is a more constrained
space of equations that needs to be searched. In order to get a better understanding of
this difference, we developed a method for visualizing the many derivations, possible in a
grammar, called aggregated parse trees (APTs).

To construct an APT, we first generate a large number of random expressions using a
grammar and initialize a directed graph, then process the parse tree of each expression with
the following recursive procedure. The root node in the graph corresponds to the starting
symbol of the parse tree. For each non-terminal child, we create a unique identifier – the
sequence of nonterminals defining the path from the starting symbol to the current symbol.
If no edge exists between the parent and the new child node, we add one. Importantly,
we keep count of how often each node and edge appears in the parse trees. The function
operates recursively, running itself on each non-terminal child with that child becoming
the new parent. The process continues until all paths in the parse tree have been explored
and all non-terminal nodes and edges added to the graph.

When the function is applied to all parse trees generated from a certain grammar,
the output graph is an aggregated parse tree containing all possible derivation paths from
the set of parse trees. In the visualization, we depict each nonterminal in its own color.
Furthermore, we visualize the frequency of each node and edge in the collection of parse
trees using the transparency in the graph plot.

APTs are similar to aggregated expression trees (AETs), but have a different interpre-
tation. Instead of aggregating expressions trees, APTs aggregate parse trees. This makes
an APT specific to a grammar, unlike AETs, which can generalize any type of expressions
generator. As such, directly comparing APTs of different grammars does not make sense.
The nodes in an APT correspond to terminal and nonterminal symbols of the grammar
and the edges correspond to production rules. Where an AET depicts the search space
of mathematical expressions, an APT depicts the most likely pathways, taken during the
random generation of samples from a grammar. We use APTs in this chapter, as they are
very handy for visualizing constraints that attribute rules impose on derivations. Since a
PAG and the PCFG obtained by stripping it of its attribute rules share the same symbols
and production rules, their APTs can be directly compared. To make it easier to visually
distinguish between plots of AETs and APTs, we plot AETs in a circular layout and APTs
in a top-down layout.

Figure 4.1 demonstrates the composing of an aggregated parse tree visualization on
the simple example of the linear grammar and the parse trees for expressions x + y and
x+y+y from Chapter 2. The first and second image depict the parse trees for each of two
expressions. The third image shows the aggregated parse tree, obtained by performing the
above procedure on the two parse trees. The nodes and edges that appear in both parse
trees are solid, whereas the nodes and edges that appear in only one of the two parse trees
have their transparency halved.

To visualize the constriction of the search space, imposed by attribute rules, we prepare
a PAG and its PCFG counterpart by stripping the PAG of attribute rules. We then

4.4. Example: Dimensionally-Consistent Expressions 65

Figure 4.1: Demonstration of the composition of c) an aggregated parse tree from the
individual parse trees of expressions a) x + y and b) x + y + y, obtained using the linear
grammar from Equation (2.1). Node colors correspond to individual nonterminal symbols.
The transparency of nodes and edges corresponds to the normalized frequency of the
respective derivation paths in collection of parse trees that form the aggregated parse
tree.

generate N expressions using Algorithm 4.1 and Algorithm 1, respectively. Finally, we use
the sampled expressions to compose an aggregated parse tree for each of the two grammars.
Figure 4.2 demonstrates this comparison on the example grammar from Equation (4.1) – a
polynomial grammar using attributes to generate only even powers up to the power of 10 –
together with the corresponding AETs. The aggregated parse trees depicted in Figure 4.2
do not depict terminal symbols to improve readability. Comparing the two aggregated
parse trees reveals the effect that the attribute rules have on the size of the search space.
We obtained the aggregated parse trees by generating 1000 random expressions using
each grammar. Note that the collection of expressions obtained this way contains many
duplicates. In this case, 555 unique expressions were generated using the PCFG and only 33
using the PAG. Each of these expressions may be represented by a number of different parse
trees, which are addressed individually. However, due to the existence of duplicates among
the parse trees, the collections still contain fewer than 1000 parse trees. Nevertheless, the
visualization can provide valuable insight into the structure and size of the search spaces
of different PAGs.

4.4 Example: Dimensionally-Consistent Expressions

For the first example, we return to the now familiar problem of equipping arbitrary PCFGs
with attribute rules that ensure dimensional consistency. We introduce only a single,
inherited, attribute – the measurement unit in a vector form. Since we are working only
with inherited attributes, dimensionally-consistent grammars require only pre-selection
attribute rules. We begin with a simple example that demonstrates the key concepts – a
grammar that generates dimensionally-consistent polynomials for the familiar problem of
discovering x = at2:

66 Chapter 4. Probabilistic Attribute Grammars

Figure 4.2: a) the aggregated parse tree and b) the aggregated expression tree of a poly-
nomial PAG using attributes to constrain terms to even powers up to the power of 10
(Equation (4.1)), as well as c) the aggregated parse tree and d) the aggregated expression
tree of the PCFG counterpart to the PAG. The aggregated trees were obtained by gen-
erating 1000 expressions with each grammar. Terminal symbols have been omitted from
the APT to improve readability. The transparency of nodes and edges corresponds to the
normalized frequency of the nodes and edges in the collections of parse trees or expression
trees that form the APTs or AETs, respectively.

4.4. Example: Dimensionally-Consistent Expressions 67

P → P + c ∗M [pP] {"P2.u = P1.u; M1.u = P1.u", , , }
P → c ∗M [1− pP] {"M1.u = P1.u", , , }
M → M ∗ V [pM] {"V1.u = gen_u(); M2.u = M1.u - V1.u", , , }
M → V [1− pM] {"V1.u = M1.u", , , }
V → a [0.5] {, "V1.u == array([1,-2])", , }
V → t [0.5] {, "V1.u == array(0,1])", , }.

, (4.4)

As in Section 1, the blue color highlights assignment-type pre-selection rules and the olive
color the condition-type pre-selection rules. For this grammar, we define one global, the
function gen_u, which randomly selects one of the two two unit vectors [0, 1] and [1,−2].
We set the starting symbol to P and its attribute u to the unit vector of the variable on
the left-hand side of the equation we wish to discover: P.u = array([1, 0]).

The first production rule for M (multiplication) is particularly interesting. In Chap-
ter 3, this production rule caused a lot of trouble during the transformation to a PCFG
due to missing intermediate units, which required the introduction of auxiliary units. The
direct sampling algorithm avoids this issue entirely. Since the algorithm does not rely
on enumerating a finite selection of possible attribute values, the algorithm can handle
attributes with arbitrary values. However, sampling such a grammar still fails often for
certain problems. For example, any random derivation for at2 will be rejected, if the pro-
duction M → M ∗ V is not chosen exactly once. Nonetheless, the failures should be less
frequent than when transforming a PAG into a PCFG.

During the generation of a random expression with this grammar, any term with two
variables (a derivation path in which M → M ∗ V is chosen exactly once for each P) will
successfully generate some permutation of a ∗ t ∗ t, regardless of which of the two units is
generated by gen_u. Failures will occur only when terms with exactly one variable or more
than two variables are generated. However, it must be noted that it is critical to assign the
randomly chosen unit to the nonterminal V and the unit computed as M1.u−V 1.u to the
nonterminal M . This order guarantees that the unit of V is an element of units, whereas
the computed unit can be expanded into other units later in the generation process. The
opposite assignment would guarantee a generation failure for this problem, unless auxiliary
units were added. This generalizes as a rule of thumb for designing dimensionally-consistent
PAGs. We can now consider a more complex dimensionally-consistent grammar – the

68 Chapter 4. Probabilistic Attribute Grammars

universal grammar for mathematical expressions:

E → E + F [psum] {"E2.u = E1.u; F1.u = E1.u", , , }
E → E − F [pdif] {"E2.u = E1.u; F1.u = E1.u", , , }
E → F [1− psum − pdif] {"F1.u = E1.u", , , }
F → F ∗ T [pmul] {"T1.u = gen_u(); F2.u = F1.u - T1.u", , , }
F → F/T [p/] {"T1.u = gen_u(); F2.u = F1.u + T1.u", , , }
F → T [1− p∗ − p/] {"T1.u = F1.u", , , }
T → V [pV] {"V1.u = T1.u", , , }
T → C [pC] {, "all(T1.u == zero)", , }
T → R [1− pV − pC] {"R1.u = T1.u", , , }
R → (E) [pfE] {"E1.u = R1.u", , , }
R → sqrt(E) [pfs] {"E1.u = 2*R1.u", , , }
R → f1(E) [pf1] {"E1.u = R1.u", "all(R1.u == zero)", , }
. . .

R → fnf
(E) [pnf

] {"E1.u = R1.u", "all(R1.u == zero)", , }
V → v1 [p0] {, "V1.u == units[0]", , }
. . .

V → vm [pm] {, "V1.u == units[m-1]", , }.

, (4.5)

Where m is the number of variables and
m∑
i=1

pi = 1, and f1 . . . fnf
is the chosen set of

special functions, such as the exponential function and trigonometric functions. The globals
required are

1. units: list of numpy arrays, representing measurement units,

2. gen_u: function that returns random unit vector from units,

3. zero: numpy array, composed of a number of zeros equal to the number of basic
units.

The function all, used in many attribute rules, is a numpy function that returns true if all
values in an array are true. This grammar has the same production rules as the universal
PCFG, introduced in Equation (2.26), and uses similar attribute rules as the polynomial
PAG in Equation (4.4). There are several new patterns worth looking at in more detail.
Firstly, this grammar explicitly allows only dimensionless numerical constants in the second
production rule for T . However, this is not a limitation of the formalism. When addressing
a more specific equation discovery problem, domain knowledge might call for the use of
a finite set of dimensioned constants. For example, in the case of accelerated motion, we
might wish to include constants with units of position and velocity, which could improve
the chances of discovering an equation incorporating initial position and velocity, such as
x = x0 + v0t + 0.5at2. A production rule for the positional constant would follow the
pattern:

T → Cv [pCv] {, "T.u == array([1,0])", , , }. (4.6)

Secondly, the new PAG formalism does not limit us to dimensionless arguments of special
functions. The second production rule for R encodes the square root, which can take an
expression with any unit as the argument. The assignment-type attribute rule E.u = 2∗R.u

4.4. Example: Dimensionally-Consistent Expressions 69

Table 4.1: Summary of experimental results, comparing the properties of two approaches
to sampling dimensionally-consistent grammars. For each problem from the Feynman
database, 105 expressions were generated using each approach. In the first row we report
the percentage of successful samplings, averaged over the 100 problems. The second row
gives the average time required to perform a single random generation, successful or not,
on a desktop computer. In the third row, we report the number of problems from the
Feynman database, for which no expressions were generated successfully.

grammar PAG PCFG
mean success rate 17.8% 17.2%
mean time (ms) 3.0 0.22
of unsuccessful samplings 12 18

ensures that the output of the square root will have a unit that is half of the input’s unit.
We could write similar rules to explicitly include higher-order roots or power functions. On
the other hand, in the grammar above, we keep the arguments of other special functions
dimensionless through the condition-type attribute rule all(E.u == zero).

We compare the APTs and AETs of the polynomial and the universal PAG with their
PCFG counterparts for the problem of discovering x = at2 in Figures 4.3 and 4.4. The plots
reveal that dimensionally-consistent PAGs explore a significantly simpler search space than
PCFGs. This difference is particularly prominent for dimensionally consistent grammars,
since the attribute rules for measurement units predominantly affect the structure of the
derivation and allow for a much smaller number of valid parse trees than the unrestricted
PCFGs.

4.4.1 Comparison to dimensionally-consistent PCFGs

We have demonstrated how we can use the new PAG formalism, coupled with the novel
direct sampling method for PAGs, to implement dimensionally consistent PAGs and sam-
ple them directly. In this way, we can generate dimensionally-consistent expressions di-
rectly, without enumerating attribute values and transforming the PAG into a PCFG.
However, the sampling process still fails often for many problems. We perform a computa-
tional experiment to investigate the differences between the two approaches to generating
dimensionally-consistent expressions:

1. directly sampling a universal mathematical PAG using Algorithm 4.1,

2. introducing auxiliary units using Algorithm 3.2, transforming the universal math-
ematical PAG into a PCFG using Algorithm 3.1 and sampling the PCFG using
Algorithm 1.

For each problem from the Feynman database, we perform 105 random generations of
dimensionally-consistent expressions using each of the two approaches. We study the prob-
ability of successfully generating a random expression, called success rate, across the 100
Feynman equations, as well as the time required to perform a single generation, successful
or not. We summarize the results in Table 4.1. The mean success rate is very similar for
both approaches. Since the main advantage of direct sampling over the transformation to
a PCFG is the absence of issues with missing units, these results confirm that the heuristic
procedure for introducing auxiliary units in Algorithm 3.2 addresses the issues well. In
terms of computation time, it takes around ten times as long to directly sample the PAG
than to sample the transformed PCFG. The difference is due to the additional computa-
tional effort required to execute and evaluate the attribute rules of every production rule

70 Chapter 4. Probabilistic Attribute Grammars

Figure 4.3: a) the aggregated parse tree and b) the aggregated expression tree of a poly-
nomial PAG for the problem of discovering x = at2, as well as c) the aggregated parse tree
and d) the aggregated expression tree of the PCFG counterpart to the PAG. The aggre-
gated trees were obtained by generating 1000 expressions with each grammar. Terminal
symbols have been omitted from the APT to improve readability. The transparency of
nodes and edges corresponds to the normalized frequency of the nodes and edges in the
collections of parse trees or expression trees that form the APTs or AETs, respectively.

4.4. Example: Dimensionally-Consistent Expressions 71

Figure 4.4: a) the aggregated parse tree and b) the aggregated expression tree of a univer-
sal PAG for the problem of discovering x = at2, as well as c) the aggregated parse tree and
d) the aggregated expression tree of the PCFG counterpart to the PAG. The aggregated
trees were obtained by generating 1000 expressions with each grammar. Terminal symbols
have been omitted from the APT to improve readability. The transparency of nodes and
edges corresponds to the normalized frequency of the nodes and edges in the collections of
parse trees or expression trees that form the APTs or AETs, respectively.

72 Chapter 4. Probabilistic Attribute Grammars

at every recursive step of the generation. On the other hand, for N = 105 we were unable
to successfully generate any expressions for 12 problems by directly sampling the PAG,
compared to the 18 unsuccessful samplings for the PCFG. The most likely explanation is
that Algorithm 3.2 does not work for the six problems where the PAG succeeds and the
PCFG does not. However, the difference could also be statistically insignificant, since the
number of expressions generated with the PAG was very low for these problems.

Overall, the two approaches perform similarly on the Feynman dataset, although the
direct PAG sampling method is significantly slower. However, since the time required
to generate random expressions is generally very small compared to the time required
to estimate their parameters, the difference in speed is not concerning. The procedures
introduced in Algorithm 3.1 and Algorithm 3.2 are specific to PAG for dimensionally-
consistent equations. Our main purpose in developing a novel direct PAG sampling method
is to enable the use of PAG for expressing various types of background knowledge, including,
but not limited to, dimensional consistency. In this section, we have demonstrated how
the new PAG formalism, coupled with Algorithm 4.1, addresses dimensional consistency.

4.5 Example: Dynamical Systems

Dynamical systems theory is a broad and important area within mathematics, concerned
with the study of systems that evolve over time according to a set of rules, typically rep-
resented by differential equations. The primary aim is to understand and describe the
behavior of these systems based on their initial states and governing equations. The math-
ematical concept of a dynamical system provides an abstract framework to model and
analyze physical, biological, or even economical systems undergoing change. Common ex-
amples include the study of planetary motion in celestial mechanics, population dynamics
in ecology, or stock market fluctuations in economics. At the core of dynamical systems
theory is the representation of a studied system as a system of ordinary or partial dif-
ferential equations (ODEs or PDEs). These equations govern the temporal evolution of
system variables, which can depend on factors such as time, space, or other system vari-
ables. Solutions to these equations offer a time-series output of the system’s behavior and
can depict fixed points, periodic oscillations, or chaotic trajectories. Equation discovery
in the context of dynamical systems involves identifying these governing equations from
observational data, which can lead to a deeper understanding of the system’s inherent dy-
namics, potentially enabling improved predictions of system behavior and even scientific
discoveries.

Dynamical systems require a minor extension of the equation discovery framework we
have been using so far, since they are represented not by a single equation, but rather a sys-
tem of equations. The simplest solution is to use a grammar for mathematical expressions
to randomly generate one expression for each of the equations in the system. However,
this approach is naive, since the structures of the equations forming a system of ODEs are
rarely independent from each other. Rather, the system tends to have an overall structure
and often features terms that appear in several equations. To address this, we can design
grammars that generate the entire system of equations as a tuple of expressions. We can
easily implement this by using a production for the starting symbol, following the pattern:

S → E, . . . , E[1.0],

where S is the starting symbol and E is a symbol that the grammar expands into a
mathematical expression. The production features a number of symbols E, equal to the
number of equations in the system of ODEs.

4.5. Example: Dynamical Systems 73

4.5.1 Coupling terms

In systems of ordinary differential equations (ODEs) describing dynamical systems, cou-
pling terms play a crucial role. These terms essentially represent interactions between
different components or variables of the system. Consider the following examples of dy-
namical systems featuring coupling terms.

1. Lotka-Volterra equations (ecology). In the predator-prey model described by the
Lotka-Volterra equations, the term involving the product of the two populations xy
is a nonlinear coupling term. It represents the rate at which predators y eat prey x.

ẋ = ax− bxy,

ẏ = −cy + dxy.
(4.7)

2. Brusselator model (chemical kinetics). The Brusselator is a theoretical model for a
type of autocatalytic reaction. The equations contain the same nonlinear coupling
term xy2 in both equations:

ẋ = A+ x2y −Bx− x,

ẏ = Bx− x2y.
(4.8)

Coupling terms often, but not always, appear in the same form in several equations in
a system of ODEs. This represents a problem when using PCFGs as generators of ex-
pressions. Although we can write a PCFG that generates an entire system of ODEs and
include productions that specifically derive coupling terms, we have no way of ensuring
that a term, generated for one equation, is reused in the other equation.

We can, however, impose this restriction using attribute grammars by introducing two
new attributes frozen(boolean) and subtree(string). These two attributes are attached
to each nonterminal symbol in our PAG formulation and have a special function in the
direct sampling algorithm (Algorithm 4.1). When beginning the derivation of a given
nonterminal symbol, the procedure first checks whether it is frozen. If yes, the method
simply returns the stored subtree of the nonterminal symbol, instead of performing the
random generation. By default, no nonterminal symbol is frozen. We can freeze it by
setting frozen to true in an appropriate post-selection assignment-type attribute rule. In
the case of dynamical systems, we can randomly generate the structure of a coupling term,
freeze the corresponding nonterminal symbol, and simply reuse the generated structure
later, when we derive the expressions of other equations in the system. To demonstrate this
use case, we design a PAG for dynamical systems with two state variables that generates
systems of ODEs with the following structure:

ẋ = P1(x) +M(x, y),

ẏ = P2(y) +M(x, y),
(4.9)

where P1 and P2 are polynomials and M is a monomial. Equation (4.10) presents a PAG,
implementing the two main restrictions: 1) each equation should be composed of a poly-
nomial of the corresponding variable and a monomial of both variables, 2) the monomial

74 Chapter 4. Probabilistic Attribute Grammars

should take the same form in both equations.

S → P, P [1.0] {"P1.v = ’x’; P2.v = ’y’", , , }
P → P + c ∗M [pP] {"P2.v = P1.v; M1.v = P1.v", , , }
P → c ∗M + c ∗ C [1− pP] {"M1.v = P1.v", , , }
M → M ∗ V [pM] {"M2.v = M1.m; V1.v = M1.v", , , }
M → V [1− pM] {"V1.v = M1.v", , , }
V → x [0.5] {, "V1.v == ’x’", , }
V → y [0.5] {, "V1.v == ’y’", , }
C → Mc [1.0] {, , "C.frozen = True", }

Mc → Mc ∗ V c [pC] {, , , }
Mc → V c ∗ V c [1− pC] {, , , }
V c → x [px] {, , , }
V c → y [1− px] {, , , }.

. (4.10)

The first production rule generates a tuple of expressions. The pre-selection assignment-
type statements introduce an attribute v, which we will use to track whether we are deriving
ẋ or ẏ. The next six production rules (for nonterminals P , M and V) are essentially a poly-
nomial grammar with two modifications. The first difference is that we use pre-selection
assignment-type rules to pass the attribute v down the parse tree to the nonterminal V . In
the production rules for V , we use the information in the attribute v in the pre-selection
condition-type rules to allow the selection of only the variable, relevant to the equation
we are deriving. The second addition to the polynomial grammar is the term c ∗ C in the
second production rule for P , which will derive the coupling term. The placement of c ∗C
ensures that each equation has only one coupling term.

The production rule for C is simple – it merely replaces the nonterminal C with the
nonterminal Mc. However, the post-selection assignment-type rule is crucial, since it per-
forms the function of freezing the nonterminal C, after the expression for the nonterminal
has been derived. The rest of the grammar is dedicated to generating the structure of the
coupling term as a monomial of at least second order, without using any further attribute
rules. Note that although the introduction of the intermediary nonterminal C may seem
redundant, it is necessary for freezing to work correctly. If we placed Mc.frozen = True
into the post-selection assignment-type rules of Mc, we would run into an issue – since
the production rule is recursive, there would be multiple instances of Mc, all trying to
define the subtree of the global Mc, resulting in conflicts. Freezing nonterminals therefore
typically requires intermediary nonterminal symbols and corresponding non-recursive pro-
duction rules. Below are some examples of dynamical systems, generated by this grammar:

1)
ẋ = c0x

5 + c1x
3 + c2xy + c3x

ẏ = c4xy + c5y

2)
ẋ = c0x

2y3 + c1x

ẏ = c2x
2y3 + c3y

3)
ẋ = c0x

2 + c1x+ c2y
2

ẏ = c3y
2 + c4y

4)
ẋ = c0x

4 + c1x+ c2xy
2

ẏ = c3xy
2

Note that the third example features a “coupling” term y2. In this example, our gram-
mar derived a coupling term of second order, but chose y for both factors in the monomial.
We could improve the PAG by introducing further attributes and attribute rules in the

4.5. Example: Dynamical Systems 75

Figure 4.5: Example chemical reaction network involving the concentrations of four reac-
tants (a, b, c, d) and an enzyme (e), connected by two chemical reactions (A + B → C,
C → D).

last four production rules that ensure both variables appear in the coupling term. This
grammar has a further weakness in that it cannot generate coupling terms like x − y or
sin (x− y). We could fix this by expanding the production rules for the coupling term to
allow for more types of expressions.

4.5.2 Chemical kinetics

Chemical kinetics is a specialized subfield of physical chemistry, primarily concerned with
the detailed study of reaction rates and the factors influencing them. It focuses on the
temporal behaviors of chemical reactions, which entails the quantification of reaction rates
and the examination of how different variables, such as temperature, pressure, and the
concentration of participating substances, affect these rates. A key aspect of chemical
kinetics involves the mechanistic dissection of reactions, where the stepwise sequence of
elementary reactions leading to the overall reaction is analyzed. This examination aids in
the derivation of the rate law for the reaction, an equation that directly links the rate of
reaction to the concentrations of the reactants. The theoretical underpinnings of chemical
kinetics rely heavily on a system of first-order ordinary differential equations (ODEs).
These equations manifest as rate laws, describing the relationship between the change
in concentration of reactants and products over time and the rate constants. The latter
are empirically determined constants that indicate the speed of a specific reaction under
certain conditions. The discovery and subsequent understanding of these equations play a
pivotal role in chemical kinetics. Figure 4.5 is a schematic, depicting an example chemical
reaction network involving the concentrations of four reactants (a, b, c, d) and an enzyme
(e), connected by two chemical reactions (A+ B → C, C → D). The reaction network is
described by the following system of differential equations:

ȧ = C1 · e · aγ1a · bγ1b

ḃ = C2 · e · aγ1a · bγ1b

ċ = C3 · e · aγ1a · bγ1b + C4 · cγ2c

ḋ = C5 · cγ2c .

(4.11)

Here, γ1a, γ1b, γ2c, as well as k1, . . . , k5 are numerical constants. Taking into account the
reaction directions, we know that C1, C2.C4 < 0 and C3, C5 > 0. We can now identify the
following domain knowledge that can be used in equation discovery.

1. The reaction network is described by system of differential equations, one for each
variable.

76 Chapter 4. Probabilistic Attribute Grammars

2. Each equation’s right-hand side is a linear combination of terms.

3. Each term has the form
k∏
j=0

v
γivj
j , where vj refers to the k-th state variable.

4. If a term contains variable vj , the equation for v̇j must contain this term.

5. Consequently, each term appears in at least k equations.

6. Each instance of a term in the system has its own numerical constant C, but shares
the exponents γivj with the other instances of the same term.

We can encode this domain knowledge using probabilistic attribute grammars. In a general
equation discovery application in chemical kinetics, we assume we know the number of
reactants and enzymes involved. Furthermore, in this PAG, we limit the maximum number
of possible chemical reactions. To demonstrate the grammar, we decide on the same
parameters as in Figure 4.5: four reactants and at most two chemical reactions. The
resulting PAG is relatively complicated, so we examine it step by step. The grammar
begins with the production rule for the starting symbol S, which generates a system of
four equations. We represent it as a tuple of four expressions, separated by commas:

S → E1, E2, E3, E4 [1.0] {"S.ET = [[],[],[],[]]; S.TV = [[],[]]", , , "verify(S.ET, S.TV)"}.

To express the constraints, imposed by the domain knowledge in fourth item above,
we initiate two attributes to the global S in the pre-selection assignment-type attribute
rule. The first, S.ET, will contain an array for each equation in the system. Each of the
arrays will be composed of indices, identifying the terms that appear in that equation.
The second attribute, S.TV will contain an array for each of the generated terms. Each of
the arrays will be composed of indices, identifying the variables that appear in that term.
Finally, in the post-selection condition-type attribute rule, we call verify – a global function
that returns true only if for each reactant in each generated term, the term appears in the
expression for the time derivative of the reactant concentration. Since this attribute rule is
placed in the post-selection step of the first production, its evaluation will be the very last
step in the generation of a random system of equations. At that point, all expressions and
terms will have been generated and the information about the structure of the generated
system will be summarized in S.ET and S.TV and subsequently used by verify. The next
couple of production rules are fairly simple:

E1 → E [1.0] {"E1.eqi = 0", , , }
. . .

E4 → E [1.0] {"E1.eqi = 3", , , }
E → E + T [pE] {"E2.eqi=E1.eqi; T1.eqi = E1.eqi", , , }
E → T [1− pE] {"T1.eqi=E1.eqi", , , }.

Here, the attribute eqi represents the integer index of the equation. The rules for E1, E2, E3
and E4 could have been included in the production rule for S. We split it into separate pro-
duction rules to improve the readability of the grammar and to enable a more interesting
visualization of the grammars aggregated parse tree later. The pre-selection assignment-
type attribute rules pass the information on which equation from the system of ODEs we
are deriving down the parse tree, using the attribute eqi. Meanwhile, the two production
rules for E determine the number of terms in an expression, parameterized by the proba-
bility of recursion pE , as well as pass the attribute eqi further down the parse tree. Next,

4.5. Example: Dynamical Systems 77

we introduce three pairs of production rules that manage the generation of terms. The
first pair:

T → T1 [0.5] {, , "S.ET[T1.eqi] += [0]", }
T → T2 [0.5] {, , "S.ET[T1.eqi] += [1]", }

decides (randomly) which of the two possible terms will be added to the current expression.
The post-selection assignment-type attribute rules append the index of the chosen term to
the array in S.ET at index eqi (which corresponds to the current equation). This way, we
keep track of which term is included in each of the equations. It is important to execute
this assignment in the post-selection attribute rule. Had we included it in the pre-selection
attribute rules, it would be executed twice – once for T1 and once for T2, the pre-selection
rules are executed and evaluated for all applicable production rules, before selecting the
production rule to be included in the derivation. The final pair of production rules that
manages the terms is

T1 → M [1.0] {"M1.i = 0", , "T1.frozen = True", }
T2 → M [1.0] {"M1.i = 1", , "T2.frozen = True", }.

Note that we have started with one nonterminal (T), split off into two nonterminals (T1
and T2) and now merge back into one nonterminal (M). The grammar must be structured
this way to enable us to freeze a term after it is derived for the first time. The attribute i
tracks the integer index of the term. The pre-selection assignment-type attribute rules pass
the information on which of the two terms we are deriving down the parse tree. The post-
selection assignment-type is executed after the term has been derived and freezes the term.
This means that henceforth, whenever the frozen term is generated during the derivation
of this system of ODEs, the algorithm will simply reuse the subtree of the frozen term.
This concludes the set of production rules, concerned with the management of terms. It is
time to generate the structure of each term, using the familiar recursive production rules
for generating monomials:

M → M ∗ F [pM] {"M2.i = M1.i; F1.i = M1.i", , , }
M → C ∗ z ∗ F [1− pZ] {"F1.i = M1.i", , , },
M → C ∗ F [1− pM − 1− pZ] {"F1.i = M1.i", , , },

which determine the number of factors in the term (and consequently the number of re-
actants in the reaction), as well as generate enzyme factors in the term. The distribution
is parameterized by the probability of recursion pM and the enzyme probability pe. We
again employ pre-selection assignment-type attribute rules to pass the index of the term
we are deriving down the parse tree. If we had more than one possible enzyme to include,
we could replace e above with a nonterminal that randomly chooses the specific enzyme
for this factor. The next production rule could have been embedded into the production
rule for M , but we separate it for better readability:

F → pow(V, γ Ki Kv) [1.0] {"V1.i = F1.i; Ki1.i = F1.i; Kv1.V = V1", , , },

where pow, (,) and γ are terminal symbols. This production rule derives a factor in
the term as one of the variables to the power of the corresponding numerical constant. We
compose the symbol for the numerical constant using two nonterminals: Ki is related to
the index of the term we are deriving and Kv to the variable that will be chosen with the
nonterminal V . Besides passing the index of the term forward, we employ a new trick in

78 Chapter 4. Probabilistic Attribute Grammars

the pre-selection assignment-type rule: we pass a reference to the nonterminal V 1 to the
nonterminal Kv1 as the attribute V. Next, we generate the variable for this factor:

V → a [0.25] {, "0 not in S.TV[V1.i]", "S.TV[V1.i] += [0]", }
. . .

V → d [0.25] {, "3 not in S.TV[V1.i]", "S.TV[V1.i] += [3]", }.

These four production rules randomly choose one of the reactants as the variable. However,
we make use of a pre-selection condition-type attribute rule to constrain the selection
somewhat. We avoid duplicating variables in terms by checking whether the index of each
variable is already included in the last array in S.TV , which corresponds to the term we
are deriving. Then, the post-selection assignment-type attribute rule appends the index
of the selected variable to the same array. Finally, we generate the numerical constant for
the exponent of the variable, which we earlier decomposed into γKiKv:

Ki → 1 [0.5] {, "Ki1.i == 0", , }
Ki → 2 [0.5] {, "Ki1.i == 1", , }
Kv → a [0.25] {, "’a’ in Kv1.V.subtree", , }
. . .

Kv → d [0.25] {, "’d’ in Kv1.V.subtree", , }.

Here, the two production rules for Ki use the index of the term we have been passing down
the parse tree to effectively transform the index from an attribute value to a terminal sym-
bol. There are four production rules required to generate Kv, one for each reactant. Once
again, the selection is in fact not random, since the pre-selection condition-type attribute
rule checks the subtree of V 1 (accessed through the reference stored in its attribute V)
and allows only the production rule for the variable we have generated in V 1. Two ex-
ample systems of ODEs, generated using this grammar with two maximum reactions and
pE = 0.5, pM = 0.5, pZ = 0.1, are shown below:

ȧ = C0b
γ1bdγ1d + C1c

γ2c

ḃ = C2b
γ1bdγ1d

ċ = C3c
γ2c

ḋ = C4b
γ1bdγ1d + C5c

γ2c

ȧ = C0a
γ2abγ2b

ḃ = C1a
γ2abγ2b + C2b

γ1bdγ1dz

ċ = C3a
γ2abγ2b + C4b

γ1bdγ1dz

ḋ = C5b
γ1bdγ1dz.

By increasing the maximum number of reactions to three, we generate systems such as
the following:

ȧ = C0a
K1acK1c

ḃ = C1b
K3b

ċ = C2a
K1acK1c + C3b

K3b + C4d
K2dz

ḋ = C5a
K1acK1c + C6b

K3b + C7d
K2dz

ȧ = C0a
K1abK1bcK1cz + C1b

K2bdK2d

ḃ = C2a
K1abK1bcK1cz + C3b

K2bdK2d + C4d
K3d

ċ = C5a
K1abK1bcK1cz

ḋ = C6b
K2bdK2d + C7d

K3d.

We can see that the generated systems of ODEs follow all the points of domain knowl-
edge we have identified. In an actual equation discovery problem, this would result in a
more constricted search space, requiring fewer evaluations of candidate systems, thereby
improving the chance of success and improving the computational efficiency of equation
discovery. Figure 4.6 compares the APTs and AETs of the presented PAG for chemical
kinetics with its PCFG counterpart. In this case, the visual difference is not as obvious as

4.6. Example: Electronic Circuits 79

in the dimensional consistency example. This is because the main differences are in the
selection of the generated terminals, which would be difficult to discern in the visualiza-
tion. Nevertheless, the aggregated parse tree for the PAG is noticeably more ordered and
structured than the aggregated parse tree for the PCFG, and the AET for the PAG is
notably more constrained than the AET for the PCFG.

4.6 Example: Electronic Circuits

The field of electronics represents a vital aspect of modern engineering and technology.
Research and development in electronics often involves the study, modeling, design and
even identification of electric circuits. An electric circuit is an interconnection of electrical
elements such as resistors, capacitors, amplifiers, transistors, etc. The ability to model
these circuits accurately is crucial to designing and optimizing electronic devices for ef-
ficiency, reliability, and performance. Circuit modeling involves deriving mathematical
representations of circuit behavior, often expressed as a system of differential equations.
Circuit identification, on the other hand, typically involves the empirical determination of
circuit’s parameters, such as resistance, capacitance, or inductance values, typically based
on measured responses to known inputs. Modern system identification approaches, such as
equation discovery, however, allow us to go beyond the determination of parameters and
enable the discovery of the structure and topology of a circuit.

Identifying electronic circuits represents a considerable challenge for equation discovery,
in part due to the wide variety of relevant physical quantities and the relations between
them, and more importantly, due to the variety and complexity of the topology that
the structure of a circuit can exhibit. Due to these difficulties, electronic circuits are a
prime candidate for demonstrating the use of PAGs to express complex types of domain
knowledge.

4.6.1 RLC circuits

For our example, we will limit ourselves to so-called RLC circuits, which consist of voltage
or current sources, resistors (R), inductors (L) and capacitors (C) in various configurations.
Their properties render RLC circuits instrumental in a variety of applications, including
tuning in radio devices, filtering signals and managing energy in power systems. Note that
there is a number of relevant system identification problems we could address, involving
RLC circuits. We choose to focus on one of them, with the chief purpose of demonstrating
the use of PAGs in a complex manner. We model the RCL circuit as a dynamical system,
described by a set of state variables, composed of the voltage across each capacitor and the
current through each inductor. The current iC through a capacitor is directly proportional
to the time derivative of its voltage uC :

iC(t) = Cu̇C , (4.12)

where C is a numerical constant – the capacitance of the capacitor. Similarly, the voltage
uL across an inductor can be calculated as the time derivative of its current iL:

uL(t) = L ˙iL, (4.13)

where L is the inductivity of the inductor. Because these relations involve time derivatives,
the dynamics of a RLC circuit are governed by a system of 1st order ODEs. Besides
capacitors and inductors, RLC circuits contain any number of resistors, which do not
introduce state variables and follow Ohm’s law:

uR = RiR, (4.14)

80 Chapter 4. Probabilistic Attribute Grammars

Figure 4.6: a) the aggregated parse tree and b) the aggregated expression tree of a PAG
for generating systems of ODEs that follow the domain knowledge of chemical kinetics, as
well as c) the aggregated parse tree and d) the aggregated expression tree of the PCFG
counterpart to the PAG. The aggregated trees were obtained by generating 1000 expressions
with each grammar. Terminal symbols have been omitted from the APT to improve
readability. The transparency of nodes and edges corresponds to the normalized frequency
of the nodes and edges in the collections of parse trees or expression trees that form the
APTs or AETs, respectively.

4.6. Example: Electronic Circuits 81

where uR is the voltage across the resistor, iR is the current through the resistor and
R is a numerical constant – the resistance of the resistor. The final element to include
is a voltage source. A voltage source is an idealized approximation of a power source
(such as a battery) that generates a constant voltage uG, but an undefined current. It
has a counterpart, called a current source, which generates a constant current, but has an
undefined voltage. More realistic approximations are obtained by coupling a voltage or
current source with a resistor. In our example, we limit ourselves to voltage sources. The
main mathematical tool used to derive the system of ODEs for complex circuits are the
two Kirchoff’s laws:

• Kirchoff’s current law states that the sum of all currents flowing in or out of a

junction must be zero:
n∑
k=1

ik(t) = 0,

• Kirchoff’s voltage law states the the sum of all voltages in any closed loop in the

circuit must be zero
n∑
k=1

uk(t) = 0.

4.6.2 Derivation example

As an example, consider the circuit in Figure 4.6.2. We apply Kirchoff’s voltage law on two
different loops. The first loop starts at the voltage source and passes through the resistor
and capacitor before connecting back to the voltage source. This gives us the equation:

uG −RiR − uc = 0, (4.15)

where uG is the voltage of the source, R is the resistance, iR is the current through the
resistor (which is the same as the current through the source) and uc is the voltage on the
capacitor. Note that the sign of each term is based on the direction we pass a component
in. The details of how to choose the signs are beyond the scope of this work, but a general
rule of thumb is that any convention will yield the correct results, as long as we apply it
consistently. The second loop, which contains the capacitor and the inductor, gives the
following equation:

uC = Li̇L, (4.16)

where L is the inductivity and iL the current through the inductor. This equation readily
provides one of the two differential equations we are deriving: i̇L = 1

LuC . Next, we apply
Kirchoff’s current law to any of the two junctions:

−iR + Cu̇C + iL = 0. (4.17)

Similar as before, we obtained the signs by choosing the directions of all the currents in
the circuit, making sure the flow is consistent, then applying a negative sign to currents
that flow out of the junction and a positive sign to currents that flow into the junction. We
can now combine Equations (4.15) and (4.17) to eliminate iR and obtain the differential
equation for u̇C . The system of ODEs, describing the circuit, is:

u̇C =
1

RC
(uG − uC)−

1

C
iL

i̇L =
1

L
uC .

(4.18)

82 Chapter 4. Probabilistic Attribute Grammars

+
−uG

R
C L

Figure 4.7: The diagram of an example electronic circuit, composed of a voltage source
(uG), a resistor (R), a capacitor (C) and an inductor (L).

4.6.3 PAGs for RLC circuits

Our goal in this section is to design a PAG that generates systems of ODEs, following the
domain knowledge of RLC circuits. First, consider the different approaches to discovering
such a system, ordered by the increasing level of complexity and amount of encoded domain
knowledge.

1. Sparse linear regression. RLC circuits are described by linear systems of ODEs.
This means that equation discovery methods based on L1 regularization, such as
SINDy [3], are well suited for the problem. However, the results of this approach are
not very interpretable, since they 1) do not reveal the topology of the circuit and
2) combine the original parameters of the circuit into generic numerical constants
(i.e., instead of the symbolic expressions in Equation (4.18), we would obtain u̇C =
c1uG + c2uC + c3iL and i̇L = c4uC).

2. Dimensionally-consistent expressions. All the different quantities and constants
involved in RLC circuits have unique, nontrivial measurement units. Dimensionally-
consistent grammars are therefore a good candidate for this problem. Several aspects
of the domain knowledge can readily be encoded by this approach. The linearity of
the equations can be expressed in the structure of the grammar, instead of using
generic numerical constants, a unique dimensioned constant can be added to the
grammar for each generated component, while the physics is partially expressed by
dimensional consistency.

3. Grammars based on Kirchoff’s laws. The physics that electronic circuits obey
is fully captured by the two Kirchoff’s laws (at least in the approximation we are
working with). Therefore, a grammar that ensures generated systems of ODEs follow
Kirchoff’s laws will generate only physically-correct candidates. In fact, for any given
circuit (and a given set of state variables), such a grammar will be able to generate
only a single system of ODEs – the correct one. System identification can then be
performed by generating random circuits and their corresponding systems of ODEs,
and evaluating their degree of fit on the observed data.

To test the limits of PAGs for expressing background knowledge, we design a system
identification approach for RLC circuits, following the third approach. We assume that
the measurements of all the state variables (or at least most state variables, since we can
handle partially observed scenarios) are available. Consequently, we also know how many
capacitors and inductors the circuit is composed of. The same goes for voltage sources.
On the other hand, the circuit can contain any number of resistors.

The topology of the circuit is encoded in the attributes. Each component is represented
by a global nonterminal, with the attribute pins – a list containing references to the global
nonterminals it is directly connected to. We Resistors, capacitors, inductors and voltage
sources have two pins. The first element of pins represents the positive (or input) pin

4.6. Example: Electronic Circuits 83

and the second element the negative (or output) pin. Besides the two-pin components, a
circuit can contain any number of junctions. The pins attribute of a junction can have any
number of elements. Junctions serve only as connections between other components and
enable complicated circuit topologies. We generate a random circuit topology following
Algorithm 4.2.

Algorithm 4.2: generate_random_circuit(twoP in, ploop)
Generate random circuit topology from a list of components.

Data: List of 2-pin components twoP in, probability ploop
Result: A random circuit graph with connections in twoP in and junctions

1 initialize junctions = [];
2 create two new junctions;
3 create the first loop by connecting: twoPin[0] → junctions[0] → twopin[1] →

junctions[1] → twopin[0];
4 for i = 2; i < length(twoPin) do
5 randomly decide whether to start a new loop or add to an existing one;
6 if random() < p then
7 choose two random junctions jun1, jun2 from junctions;
8 create two new junctions new_jun1, new_jun2;
9 add new loop by connecting: jun1 → new_jun1 → twoPin[i] → new_jun2

→ jun2;
10 else
11 choose random component comp from twoPin;
12 next_comp = comp.pins[1];
13 disconnect(comp, next_comp);
14 connect(comp, twoPin[i]);
15 connect(twoPin[i], next_comp);
16 end
17 end

The circuits generated by Algorithm 4.2 can feature redundant complexity in the form
of repeated components of the same type, connected in series. For example, consider a
circuit with a single loop, containing a voltage source, two resistors and two inductors.
Such a circuit can be simplified by removing one resistor and one inductor. We implement
a simple procedure for simplifying circuits, which recursively traverses the circuit, detects
repeated components in series and merges them. The complete procedure for generating a
random candidate system of ODEs (and its associated circuit topology) has the following
steps:

1. initialize a list of components twoPin, based on the fixed numbers of voltage sources,
capacitors, inductors and resistors,

2. generate a random circuit by calling generate_circuit(twoPin, ploop) with the desired
probability ploop,

3. simplify the generated circuit by removing repeated components, connected in series,

4. use the PAG to generate a system of ODEs, based on the circuit, encoded in the
attributes.

Note that the PAG is fixed and can be reused for any circuit generated using a given
combination of the numbers of voltage sources, capacitors, inductors and resistors. For
simplicity, we present a PAG for circuits, composed of one capacitor, one inductor and one

84 Chapter 4. Probabilistic Attribute Grammars

resistor. It extends trivially to circuits with more components. The globals used by the
grammar are:

• the global version of each nonterminal (required to freeze nonterminals),

• a “nonterminal" representing each capacitor (Cap1, Cap2, . . .), inductor (Ind1, Ind2,
. . .), resistor (Res1, Res2, . . .), voltage source (Gen1, Gen2, . . .) and junction
(Jun1, Jun2, . . .),

• a list of references to each two-pin component, called twoPin and a list of references
to each junction, called junctions.

The grammar begins with the production rule for the starting symbol, which derives the
system of ODEs:

S → duC1 , diL1 [1.0] {, , , },

where duC1 and diL1 are nonterminals representing the time derivatives of the voltage
across the capacitor and the current through the inductor, respectively. Next is a set of
production rules that derive the expressions of all the unknowns: the time derivatives of
each state variable, as well as the voltage and current of each resistor and the current
through each voltage source. Note that only the time derivatives follow directly from S.
The other unknowns are derived “on demand" as the grammar generates the corresponding
nonterminals.

duC1 → 1/C1 ∗ (I) [1.0] {"I1.x = [Cap1]", , "duC1.frozen = True", }
diL1 → 1/L1 ∗ (U) [1.0] {"U1.x = [Cap1]", , "diL1.frozen = True", }
IR1 → I [1.0] {"I1.x = [Res1]", , "IR1.frozen = True", }
UR1 → U [1.0] {"I1.x = [Res1]", , "UR1.frozen = True", }
IG1 → I [1.0] {"I1.x = [Gen1]", , "IG1.frozen = True", }.

Here, the right-hand side of each production rule contains a single nonterminal – either
the general voltage U or current I, which will be derived in later productions. The pre-
selection assignment-type rules of each production rule initialize an attribute x, which
will be used to track the path of derivation through the circuit, and passes it down the
parse tree. The post-selection assignment-type rule freezes the nonterminal once it has
been derived. Note that for resistors, both voltage and current are unknown and must be
derived, whereas for the other components, either the voltage or current is measured and
the other is unknown. To expand the grammar for more components, we would add the
appropriate production rules here. Next, we define the production rules that derive the
voltage or current of any component required by the grammar. We find the voltage of the
i-th component in a closed loop by rearranging Kirchoff’s voltage law: Ui = −

∑
j ̸= iUj .

Thus, whenever we need to derive an unknown voltage, we begin a random walk in the
circuit, which terminates successfully when it closes, or unsuccessfully when it runs into a

4.6. Example: Electronic Circuits 85

dead end. This functionality is performed by the following set of production rules:

U → PMu uC1 U [1/Nc] {"U2.x = U1.x + [Cap1]; PM1.x=U2.x",
"Cap1 not in U1.x and Cap1 in U1.x[-1].pins", , }

U → PMu L1 ∗ (diL1) U [1/Nc] {"U2.x = U1.x + [Ind1]; PM1.x=U2.x",
"Ind1 not in U1.x and Ind1 in U1.x[-1].pins", , }

U → PMu R1 ∗ (IR1) U [1/Nc] {"U2.x = U1.x + [Res1]; PM1.x=U2.x",
"Res1 not in U1.x and Res1 in U1.x[-1].pins", , }

U → PMu uG1 U [1/Nc] {"U2.x = U1.x + [Gen1]; PM1.x=U2.x",
"Gen1 not in U1.x and Gen1 in U1.x[-1].pins", , }

U → PMu U [1/Nc] {"U2.x = U1.x + [Jun1]; PM1.x=U2.x",
"Jun1 not in U1.x and Jun1 in U1.x[-1].pins", , }

. . .

U → PMu U [1/Nc] {"U2.x = U1.x + [JunNJ]; PM1.x=U2.x",
"JunNJ not in U1.x and JunNJ in U1.x[-1].pins", , }

U → [1.0] {, "U1.x[0] in U1.x[-1].pins and valid_closing(U1.x)", , },

where Nc is the total number of components and NJ is the number of junctions. The
right-hand side of these production rules, except the last one, has a similar structure:
“symbols U". The derivation of voltage for a given component entails recursively applying
productions for the nonterminal U , until the final production rule above can be chosen,
which closes the loop. The pre-selection assignment-type attribute rules of each production
rule append the corresponding component to the path in x and pass it down the parse
tree. The pre-selection condition-type rules check whether the corresponding component
has been visited already this loop and whether it is connected to the previous component
in the path – these rules are the crucial part of the grammar that takes into account the
topology of the circuit. The grammar handles junctions naturally – the production rule of
a junction adds nothing to the expression, it simply allows the algorithm to proceed to the
next U , while appending the junction to the path. On the other hand, the final production
rule in this set, which closes the loop, requires elaboration. Its right-hand side is empty,
since the production rule serves only to end a loop. Its pre-selection condition allows it to
be chosen only under strict circumstances – the current component must be connected to
the component we started the loop with. Furthermore, to prevent trivial loops, the path
must contain more than one two-pin component, and the current component must connect
to the starting component using a different pin than we started the loop from. These
conditions are implemented in the function valid_closing(path) for brevity. Finally, note
that the right-hand side of some production rules in this set contains another nonterminal
besides U , such as diL1 in the second production rule. Choosing such a production rule
begins a new derivation of an unknown quantity, unless it has been frozen already. Lastly,
each production rule in this set, except the last one, contains the nonterminal PMu (“plus-

86 Chapter 4. Probabilistic Attribute Grammars

minus"). This nonterminal is governed by the following production rules:

PMu → + [0.25] {, "PMu1.x[-1].pins.index(PMu1.x[-2]) == 0
"and PMu1.x[0].pins.index(PMu1.x[1]) == 0", , }

PMu → − [0.25] {, "PMu1.x[-1].pins.index(PMu1.x[-2]) == 1
"and PMu1.x[0].pins.index(PMu1.x[1]) == 0", , }

PMu → − [0.25] {, "PMu1.x[-1].pins.index(PMu1.x[-2]) == 0
"and PMu1.x[0].pins.index(PMu1.x[1]) == 1", , }

PMu → + [0.25] {, "PMu1.x[-1].pins.index(PMu1.x[-2]) == 1
"and PMu1.x[0].pins.index(PMu1.x[1]) == 1", , }.

This set of production rules consistently implements a convention for setting the signs of
terms in Kirchoff’s voltage law. This convention sets the sign to plus if we connected to the
current component through the first (negative) pin, and minus if we connected through
the second (positive) pin. Furthermore, the sign is flipped if the loop started through
the second (positive) pin of the starting component. The grammar we have shown so far
can derive voltages by performing closed loops through the circuit, following the topology
encoded in the pin attributes.

To derive the current of any component, the grammar performs a two-step procedure.
First, it steps to a random neighbor of the component of interest and checks its current. If it
is not a junction and its current is known, the job is done – the two currents are identical.
If the current is not known, this procedure begins anew starting from that component.
However, if the neighboring component is a junction, we apply a rearranged Kirchoff’s
current law for that junction: Ii =

∑
j ̸=i

Ij . In other words, we repeat this procedure for each

other current flowing through the junction. This first part of this procedure is performed
through the following set of production rules:

I → + C1 ∗ (duC1) [1/Nc] {, "Cap1 in I1.x[-1].pins", , }
I → + iL1 [1/Nc] {, "Ind1 in I1.x[-1].pins"„}
I → + (IR1) [1/Nc] {, "Res1 in I1.x[-1].pins"„}
I → + (IG1) [1/Nc] {, "Gen1 in I1.x[-1].pins"„}
I → IJ [1/Nc] {"IJ1.x = I1 + [Jun1]; IJ1.i=0", "Jun1 in I1.x[-1].pins"„}
. . .

I → IJ [1/Nc] {"IJ1.x = I1 + [JunNJ]; IJ1.i=0", "JunNJ in I1.x[-1].pins"„}.

These production rules have either no nonterminal (if the current is known) or one nonter-
minal (if the current is unknown) on the right-hand side. All but the junction production
rules have only a single attribute rule that checks whether the corresponding component
is connected to the previous component. The attribute x is expanded only when encoun-
tering a junction, in which case a new attribute is initialized as well – i will keep track of
the wires as the next set of production rules iterates through the pins of the junction (note

4.6. Example: Electronic Circuits 87

that a junction can have any number of pins):

IJ → IJ IJi [0.5] {"IJ2.x=IJ1.x; IJ2.i=IJ1.i+1; IJi1.x=IJ1.x; IJi1.i=IJ1.i",
"IJ1.i < len(IJ1.x[-1].pins)-1", , }

IJ → IJi [0.5] {"IJi1.x=IJ1.x; IJi1.i=IJ1.i",
"IJ1.i >= len(IJ1.x[-1].pins)-1", , }

IJi → PMj Ij [0.5] {"Ij1.next=IJi1.x[-1].pins[IJi1.i];
Ij1.x=[IJi1.x[-1]]; PMj.x=IJi1.x+[IJj1.next]",
"not IJi1.i == IJi1.x[-1].pins.index(IJi1.x[-2])", , }

IJi → [0.5] {, "IJi1.i == IJi1.x[-1].pins.index(IJi1.x[-2])", , }.

This set of production rules may seem complicated, but performs a rather simple function.
The production rules for IJ generate one IJi for each pin in the junction, using the
attributes x and i to keep track of the pins. The first production rule for IJi is chosen
for all the pins except the one we accessed the junction with and generates the sign of the
current and a new nonterminal Ij that derives the current flowing into (or out of) the pin.
The assignment-type attribute rule stores the information on which pins current Ij should
derive into the attribute next. The second production rule for IJi has an empty right-hand
side and is used only for the pin we used to access the junction. In summary, this set of
production rules expresses the reformulated Kirchoff’s current law. The nonterminal PMj
derives the sign of term, following a similar logic as PMu.

The final set of production rules needed for the grammar are those with Ij on the left-
hand side. These are a copy of the production rules for I, with one difference. Instead of
choosing any of the components connected to the starting component (in this case always a
junction), they must choose the component specified in the attribute next. In other words,
the condition rule "Cap1 in I1.x[-1].pins" is replaced by Cap1 == Ij1.next", and similarly
for all other components.

To summarize, to randomly generate a physically-consistent system of ODEs, we first
generate a random electronic circuit topology, encoded in the attributes of global nonter-
minals that correspond to circuit components. The PAG derives the differential equation
for each state variable by recursively applying both Kirchoff’s laws on unknown quantities.
The generation process completes when all unknown quantities have been derived. We
present two examples of generated systems of ODEs and the corresponding circuits below.

4.6.4 Discussion

The presented PAG for electronic circuits does not work perfectly. On the one hand, the
PAG generates only a single expression for a given circuit – the correct one. However, for
many generated topologies, the grammar is incapable of deriving any expressions. There
are two ways Algorithm 4.1 using the PAG for electronic circuits can fail.

The first is encountering a dead-end during the derivation. This occurs because we
apply Kirchoff’s voltage law by performing a random walk through the circuit, hoping to
eventually close the loop. Since we disallow returning to nodes that are already part of
the loop, it is often possible to take a random path that cannot be closed under these
restrictions. For more complicated topologies, the probability of successfully finishing a
closed loop can be very small.

The second fail-state entails endless recursion, or more practically, encountering the
recursion limit of the implementation. This occurs because the grammar effectively begins
a new derivation of voltage or current whenever it encounters an unknown, even if it is

88 Chapter 4. Probabilistic Attribute Grammars

u̇C1 =
1

C1
(iL2 − iL1),

u̇C2 =
1

C2
iL1,

i̇L1 =
R1

L1
(iL2 − iL1) +

1

L1
(uG − uC1 − uC2),

i̇L2 =
R1

L2
(iL1 − iL2) +

1

L2
uG.

+
− uG

L1

R1

C1

C2

L2

Figure 4.8: Example of a system of ODEs and the corresponding electronic circuit, gener-
ated using generate_circuit and the presented PAG for electronic circuits. The numbers
of components were set to 2 capacitors, 2 inductors, 2 resistors and 1 voltage source. Note
that some of the generated components have been removed during circuit simplification.

u̇C1 =
1

C1
iL2,

u̇L1 =
R1

L1
(iL1 − iL2 − iL3)−

1

L1
uG2,

i̇L2 = −R1

L2
(iL1 − iL2 − iL3) +

1

L2
(uC1 + uG2)

i̇L3 =
R1

L2
(iL1 − iL2 − iL3)−

1

L3
(uG1 + uG2).

L1

+ −

uG1

L3

L2
C1

+ −

uG2

R1

Figure 4.9: Example of a system of ODEs and the corresponding electronic circuit, gener-
ated using generate_circuit and the presented PAG for electronic circuits. The numbers of
components were set to 2 capacitors, 3 inductors, 2 resistors and 2 voltage sources. Note
that some of the generated components have been removed during circuit simplification.

4.6. Example: Electronic Circuits 89

Table 4.2: Results of the experiment investigating the sampling performance of the PAG for
RLC circuits. The values represent the approximated probabilities that given a randomly
generated RCL circuit, the approach successfully derives the correct system of ODEs in
100 tries (first row), the approach fails by recurring endlessly (second row) and the ap-
proach fails by reaching a dead end in the derivation (third row). The probabilities were
approximated by randomly generating 100 RLC circuits for each configuration of the num-
ber of each component. Four different configurations were used for each total number of
components and their results averaged.

of components 3 4 5 6 7 8 9
successful generation 61% 55% 36% 19% 10% 9% 8%
endless recursion 13% 7% 3% 1% 2% 3% 1%
reached dead end 26% 38% 61% 80% 88% 88% 91%

already in the process of deriving that very unknown. For example, this often occurs when
capacitors are wired in parallel without any other components in-between. The derivation
of the first capacitors current will require the current through the neighboring junction,
which requires the current through the second capacitor. Following the same process, the
current through the second capacitor will require the current though the first capacitor.
This phenomenon is a fundamental weakness of the presented approach, which relies only
on directly deriving each unknown with Kirchoff’s laws.

To investigate the usefulness of the presented PAG, we perform an experiment, reported
in Table 4.2. We generate 100 random circuits for different configurations of the number
of each component. For each of the generated circuits, we give the algorithm 100 attempts
to derive its system of ODEs. If any of the 100 attempts is successful, we consider this
a successful generation – the grammar is capable of deriving the system of ODEs for
that circuit. If none of the attempts are successful, we check whether the algorithm failed
more often due to a dead end due to endless recursion. In other words, we classify each
generated circuit into a success, a failure due to endless recursion or a failure due to a
dead end, based on the results of 100 repeated attempts. We perform the experiment on
28 different configurations of the number of each component, four for each number of total
components. For instance, for circuits with three components, we test the configurations
(nC , nL, nR, nG) ∈ {(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}, where nC , nL, nR and nG
are the number of capacitors, inductors, resistors and voltage sources, respectively. In
Table 4.2, we report the proportion of each category (success, two types of failures) among
the 100 randomly generated circuits, averaged across the four configurations with the same
number of total components.

We can see that the proportion of circuits the PAG can successfully derive falls with the
increasing number of components. This is expected, because more components means more
unknowns, which increases the complexity of the derivation and the probability of failure.
The probability of success ranges between 61% for the simplest circuits and 8% for the
most complex ones. Unfortunately, this result is not promising, since these probabilities
are quite low.

Surprisingly however, endless recursion accounts for only a very small proportion of the
failures. Only between 1% and 13% of derivations terminate due to endless recursion. Fur-
thermore, this number falls with the increasing number of components. This observation
is promising, since issues with endless recursion are an inherent downside of the presented
approach. In contrast, the dead end failures occur due to the simplistic and naive way
we apply Kirchoff’s voltage law. This type of error can be alleviated or even eliminated
completely by improving the consideration of closed loops in the grammar. For instance,

90 Chapter 4. Probabilistic Attribute Grammars

Figure 4.10: Aggregated parse trees of PAGs for generating systems of ODEs that describe
electronic circuits: a) the PAG for circuits with four two-pin components, b) the PAG
for circuits with eight two-pin components. The aggregated parse trees were obtained by
generating 1000 systems of ODEs with each grammar. Node colors correspond to individual
nonterminal symbols. Terminal symbols have been omitted to improve readability. The
transparency of nodes and edges corresponds to the normalized frequency of the respective
derivation paths in collection of parse trees that form the aggregated parse tree. Since the
PAGs are composed of too many nonterminal symbols to display in a legend, the legend
has been omitted.

by finding all possible closed loops after the circuit topology is generated, the derivation
can simply choose and follow one of the predetermined loops whenever the derivation of
unknown voltage is required, instead of walking randomly and hoping to be able to close
the loop eventually.

Finally, we visualize the space of the derivations, performed by two different PAGs
for electronic circuits, in Figure 4.10. The aggregated parse tree on the left-hand side
corresponds to a PAG for circuits with four components, and the tree on the right-hand
side to a PAG for circuits with eight components. We can see that both aggregated parse
trees are substantially more complex than the various aggregated parse trees for PAGs
we have seen so far. This reflects the wide variety of the generated circuit topologies,
which require different derivations paths through the PAGs. The aggregated parse tree
for the 8-component PAG exhibits several extremely long branches. These appear due to
long sequences of repeat recursion between two or more unknowns that can lead to endless
recursion errors. The recurred sequences can terminate successfully if the derivation of one
of the unknowns eventually leads to a known quantity.

The PAG for electronic circuits is not the only option for discovering systems of ODEs
that describe electronic circuits. A universal PCFG for mathematical expressions is tech-
nically able to generate the equations of electronic circuits. Furthermore, the variables in
electronics have distinct dimensions, allowing dimensionally-consistent grammars to im-
pose powerful constraints on the search space. We visualize the search spaces of the three
possibilities as AETs in Figure 4.11, addressing a circuit with two capacitors, two induc-
tors and one resistor, which is described by a system of four ODEs. As expected, the

4.6. Example: Electronic Circuits 91

Figure 4.11: Aggregated expression trees of three grammars for electronic circuits: a) a
universal mathematical PCFG, b) a dimensionally-consistent universal PAG, c) the PAG
for electronic circuits. The AETs were constructed by sampling 1000 random systems of
ODEs with each grammar.

universal PCFG encodes a very large space of expressions. The AET of the PAG for elec-
tronic circuits reveals a very constrained space, whereas the dimensional PAG still heavily
constrains the space, but its AET is substantially larger than the AET of the PAG for
electronic circuits. A reasonable approach might make use of both – try to use the PAG
for electronic circuits and if it fails, resort to the dimensionally-consistent universal PAG.

The derivations of ODEs for electronic circuits present a serious challenge for most
domain knowledge frameworks in equation discovery. We demonstrated one possible way
the PAG formalism can encode and apply Kirchoff’s laws to generate correct systems of
ODEs for a given circuit. Coupled with an algorithm for generating random circuits,
such as generate_circuit, this approach can be used to identify unknown RLC circuits.
However, issues with dead ends in Kirchoff’s closed loops prevent the approach from being
able to derive (and consequently discover) the equations of many RLC circuits. As such,
without substantial improvements to the PAG that address the use of closed loops, the use
of dimensionally consistent PAGs for electronic circuits would likely prove a better choice
for the problem of identifying electronic circuits. Nevertheless, even the PAG for electronic
circuits in its present form showcases the power and flexibility of the PAG formalism for
expressing complex types of background knowledge.

93

Chapter 5

Bayesian Updating

In the preceding chapters, we developed grammar-based frameworks that focus on con-
straining the search space and expressing background knowledge for equation discovery.
We demonstrated the power of the frameworks in expressing various types of domain
knowledge, as well as in enabling a flexible and intuitive parametrization of the parsimony
principle. However, as evident from our computational experiments, a significant limitation
of the approach is the computationally expensive evaluation of many randomly sampled
candidate expressions. The probability of randomly sampling the correct mathematical
expression for complex problems is too low for many practical applications of equation
discovery, even when leveraging background knowledge. To enable the discovery of more
complex equations, an improvement of the algorithm is necessary.

To improve the computational efficiency of probabilistic grammar-based equation dis-
covery, we introduce an algorithm that iteratively updates the probabilities of production
rules to guide the search towards more promising areas in the space of mathematical ex-
pressions. Production probabilities impose soft constraints on the space of expressions and
can be used as parameters of the grammar that the algorithm optimizes. Furthermore,
since a PCFG defines a probability distribution over the space of mathematical expres-
sions, this procedure has a Bayesian interpretation in that the resulting distribution is an
approximation of the posterior distribution.

In this chapter, we first introduce the algorithm for the iterative updating of grammar
probabilities. Then, we demonstrate its behavior on a small, illustrative set of synthetic
equation discovery problems.

5.1 m-Estimate Updating Algorithm

We introduce the Bayesian algorithm for updating grammar probabilities by first discussing
the estimation of the posterior distribution, which is the core of the method. We start with
the simplest approaches for estimating posterior distributions and progressively improve
the approximations until we arrive at m-estimate. Next, we apply the m-estimate within
the context of updating probabilities of grammar productions. Finally, we present the
algorithm as a whole.

5.1.1 m-estimate

Consider a problem with repeated trials, each of which has k possible outcomes. Given
evidence with n observations of outcome c in a sample of N trials, we wish to estimate the
probability of class c in the next trial. The simplest estimation is relative frequency:

p(c) =
n

N
. (5.1)

94 Chapter 5. Bayesian Updating

Relative frequency is a frequently used approximation that estimates the posterior proba-
bility based only on the evidence and does not take into account any prior knowledge. A
simple way to include prior knowledge into the estimation is Laplace’s law of succession.
The law assumes that the prior probability of all outcomes is equation – the prior distri-
bution is therefore uniform. Laplace’s law of succession [75] estimates the probability of
class c as

p(c) =
n+ 1

N + k
. (5.2)

A more general Bayesian method for estimating probabilities allows for more flexibility by
using the Beta distribution, parameterized by a and b, as the prior distribution, which
estimates the probability of a success in the next trial as [76]

q(n,N) =
n+ a

N + a+ b
. (5.3)

It can be shown that this approximation satisfies the requirements of our problem with k
possible outcomes given an appropriate selection of a and b, resulting in the m-estimate
[77]:

p(c) =
n+ pa(c)m

N +m
, (5.4)

where pa(c) is the prior probability of outcome c and m = a + b is a parameter of the
method.

The parameter m acts as a weight that balances the evidence with the prior probability.
For instance, m = 0 discards the prior and approximates the posterior as the relative
frequency of class c: p(c) = n

N . For values of m, much larger than the number of trials
N , the evidence is disregarded in favor of the prior: p(c) = pa(c). By setting m to the
number of outcomes (m = k) and assuming a uniform prior p(c)a = 1/k, the m-estimate
in Equation (5.4) reduces to Laplace’s law of succession in Equation (5.2).

The different methods for estimating conditional probabilities have intuitive interpre-
tations. In a problem with two outcomes, such as the problem of determining whether
a coin is balanced, Laplace’s rule of succession effectively adds two “default” observations
to the evidence: one heads and one tails (which follows the uniform prior distribution for
two outcomes). This is particularly relevant when the number of trials N is low and the
evidence is less reliable.

For integer values of m, the m-estimate generalizes this Laplace’s rule of succession
by effectively adding m “default” observations that follow the prior distribution to the
evidence. This interpretation of the estimation method is useful when choosing the value
of m – as the number of “default” observations it can be directly compared to the number
of trials in the experiment. Nevertheless, the choice of m is somewhat arbitrary and has
to be tuned to the characteristics of a given problem, such as the level of noise in the data
[78], [79].

5.1.2 Production rule probability updates

In the context of iterative equation discovery, a trial tests whether a given production rule
was used in the derivation of a given expression tree. There are two possible outcomes
(k = 2) – either the production rule was used or it was not. We compute the posterior by
applying the m-estimate to the probability of each production rule in the PCFG.

In order to guide the search towards more promising areas of the search space, we
calculate the posterior probability on a subsample of all sampled expressions in an iteration
– those with a low error. To that end, we keep track of the lowest error found so far using
the algorithm (best_error) and select expressions whose error is lower or within a relative

5.2. Empirical Evaluation 95

tolerance ϵ of best_error. In other words, an expression is selected if its error fulfills the
inequality:

error − best_error < ϵ · best_error. (5.5)

Alternative selection criteria might consider an absolute tolerance, select a fixed number
of expressions with the lowest error, etc. In any case, the selected expressions are consid-
ered good examples and are used to estimate the posterior probability of each production
rule. By estimating the posterior on a subset of expressions, the estimated posterior is
conditioned on the low error of the expressions. Once we have obtained an estimate of the
posterior, we update the grammar with the new probabilities. This procedure repeats in
each iteration of the Bayesian algorithm.

Algorithm 5.1 details the algorithm for the iterative updating of PCFG probabilities
in pseudocode. The procedure is performed in Niter iterations. In each iteration, Nsample
random expressions are sampled using from the PCFG using Algorithm 1. Each expression
is fitted to the data and its error of fit evaluated. Then, following the selection criterion
in Equation (5.5), a number of expressions from this iteration are selected, favoring those
with low error. Next, the algorithm counts how often each production rule of the gram-
mar appears among the parse trees corresponding to the selected expressions. Then, the
procedure updates the probability of each production rule r using the m-estimate from
Equation (5.4):

p(r) =
nprod(r) +m · p(r)∑

r′=A→α′
nprod(r′) +m

,

where nprod is the number of occurrences of r in the parse trees of the selected expres-
sions, m is a parameter of m-estimate, p(r) is the current (prior) probability of r and∑
r′=A→α′

nprod(r
′) is the total number of occurrences of each production rule with the same

left-hand side as r in the selected parse trees.
Once the probabilities of all production rules are updated, the algorithm proceeds to

the next iteration. The result of the procedure are the final probabilities of production
rules, as well as a list of mathematical expressions, each with its corresponding error-of-fit.
Finally, an approximation of the posterior probability of each expression may be obtained
by parsing the expression using the PCFG with the final values of its probabilities.

5.2 Empirical Evaluation

We study the performance of the proposed Bayesian grammar updating algorithm with a
small, demonstrative empirical experiment.

5.2.1 Experimental setup

The experiment tests the ability of the algorithm to discover the following three equations:

y = x1 − 3x2 − x3 − x5, (5.6)

y = x51x
3
2, (5.7)

y = sin (x1) + sin

(
x2
x21

)
. (5.8)

96 Chapter 5. Bayesian Updating

Algorithm 5.1: discover_equations_Bayesian
Bayesian updating of grammar probabilities based on the m-estimate.

Data: Probabilistic grammar G = (N , T ,R, S) generating mathematical
expressions, data set D, target variable v, number of iterations Niter,
number of samples per iteration Nsample, m-estimate parameter m, error
tolerance ϵ.

Result: Equation with lowest error, list of all evaluated equations eqns.

1 initialize evaluated_eqns = [];
2 initialize best_error = inf;
3 for n = 1, n ≤ max_iter do
4 randomly sample Nsample expressions and evaluate them;
5 initialize eqns = [];
6 for i = 1, i ≤ Nsample do
7 (e, p) = generate_sample(G, S);
8 ec = canonical_form(e);
9 eqn = fit_parameters(ec, v, D);

10 error = RMSE(eqn, D);
11 if error < best_error then
12 best_error = error ;
13 best_eqn = eqn;
14 end
15 eqns.append((eqn, error));
16 end
17 count the occurences of each production rule in each selected parse tree;
18 initialize nprod;
19 for (eqn, error) in eqns do
20 if error − best_error < ϵ · best_error then
21 nprod.update(eqn)
22 end
23 end
24 update grammar probabilities using m-estimate;
25 for production rule r = A→ α ∈ R do
26 pnew(r) =

nprod(r)+m·p(r)∑
r′=A→α′

nprod(r′)+m

27 end
28 end
29 return the expression with the lowest error, as well as all the evaluated expressions

return (best_error, best_eqn, evaluated_eqns);

For each of the three equations, we generate 100 data points by uniformly sampling
the variables in the (−10, 10) interval. We use a variant of the universal grammar for
mathematical expressions with the following initial production rule probabilities:

E → E + F [0.2] | E − F [0.2] | F [0.6]

F → F ∗ T [0.2] | F / T [0.2] | T [0.6]

T → (E) [0.2] | sin (E) [0.2] | V [0.6]

V → x1 [1/nv] | x2 [1/nv] | . . . | xnv [1/nv],

(5.9)

5.2. Empirical Evaluation 97

where nv is the number of variables. For simplicity, the grammar does not generate nu-
merical parameters and the three equations do not feature real constants.

Each of the three equations presents a challenge for most equation discovery approaches,
but particularly for Monte-Carlo sampling of PCFGs. The dataset for the first equation
features five variables, whereas the equation itself uses only four of the variables. Dis-
covering an expression of five variables is very difficult by randomly sampling a PCFG.
Furthermore, the grammar does not include numerical constants, requiring repeated addi-
tion or subtraction to generate the integer constants in the expression. As such, although
the expression is simple, featuring only addition and subtraction, its probability of gener-
ation with the PCFG is incredibly low.

The second equation focuses on multiplication. It is composed of only two variables,
but with relatively high exponents. Since we are using a grammar that does not explicitly
include the power function, the algorithm must rely on repeated multiplication to generate
the expression. Due to the high values of the exponents, this expression is also highly
unlikely to be generated using the grammar.

Both the first and the second expression are designed to encourage a clear optimiza-
tion path for the grammar probabilities: for the first equation, by favoring addition and
subtraction and ignoring the missing variable, and for the second equation, by ignoring all
operations except for multiplication. In contrast, the third equation provides no obvious
optimization path. It uses almost all of the mathematical operations in the grammar, in-
cluding division, and further complicates the task through a trigonometric function. This
equation is included in the set to test how the algorithm performs in a clearly disadvanta-
geous scenario.

In the experiment, we compare four versions of the Bayesian algorithm based on m-
estimate updates (MEU) with varying values of m: 1, 2, 5, 10, and the baseline Monte-Carlo
algorithm from Chapter 2, where we keep production probabilities constant.

We give each tested method a budget of 100000 expressions to evaluate for each of the
three problems. In the case of the Monte-Carlo algorithm, this simply means sampling
100000 random expressions with the grammar and computing their errors. We run all four
versions of MAE in 2000 iterations, sampling 50 random expressions in each iteration. If
no expression in an iteration passes the relative threshold selection criterion, we do not
update probabilities and move to the next iteration. In the experiment, we use ϵ = 0.1 as
the relative threshold. This selects expressions with an error lower than the lowest error
so far, or within 10% of the lowest error. To account for the randomness involved in the
algorithms, we run each of the five evaluated algorithms 10 times with different random
seeds.

5.2.2 Results: The error-of-fit

We summarize the results in Table 5.1 by considering how often each equation was dis-
covered exactly among 10 runs of each compared method. The first equation proved the
most difficult, as it was discovered only in a single run of the Bayesian updating for m = 1.
The contrast between the Bayesian updating and the Monte-Carlo algorithms was most
prominent for the second equation – the Bayesian algorithm was able to discover it in
all but one run, while Monte-Carlo discovered it only in one out of ten runs. The third
equation also proved troublesome for most algorithms.

To further compare the different methods, we calculate and plot optimization curves
by finding the mean value of the lowest RMSE error across the ten runs at each iteration
of the procedure. We compare the optimization curves of the four Bayesian methods and
the Monte-Carlo approach for each of the three equations in Figure 5.1. The plots mirror
the findings from Table 5.1, with the mean error of Bayesian approaches dropping to

98 Chapter 5. Bayesian Updating

Table 5.1: The number of equation discovery successes (exactly recovered equation) among
10 runs with different random seeds for the four variants of Bayesian m-estimate updating
and the Monte-Carlo sampling algorithm (random).

m = 1 m = 2 m = 5 m = 10 random
y = x1 − 3x2 − x3 − x5 1 0 0 0 0

y = x51x
3
2 10 10 10 9 1

y = sin (x1) + sin
(
x2
x21

)
0 1 0 3 1

Figure 5.1: Optimization curves of the Bayesian m-estimate updating algorithm (MEU-
m, indicating the value of the parameter m) and the Monte-Carlo sampling algorithm
(random) for each of the three equations: a) y = x1 − 3x2 − x3 − x5, b) y = x51x

3
2,

c) y = sinx1 + sin (x2/x
2
1). The horizontal axis depicts the total number of evaluated

expressions, whereas the vertical axis depicts the lowest error (RMSE) achieved for a given
number of expressions, averaged across 10 runs with different random seeds.

zero quickly for the second equation and remaining relatively high for the first and third
equation. The most important observation to make, however, is that the mean error of
Bayesian approaches is lower than the mean error of the Monte-Carlo approach for almost
the entire length of the optimization procedure for all three equations. In other words, the
Bayesian approach clearly outperformed random sampling in this experiment. The choice
of m did not prove to have a notable impact on the performance of the Bayesian updating
algorithm, with the optimization curves for all four options being relatively close. We chose
m = 2 for further analysis as the option with the most consistent results across the three
equations in the experiment.

5.2.3 Results: Production rule probabilities

We can further investigate the behavior of the Bayesian grammar updating algorithm by
studying how the probabilities of production rules evolve throughout the optimization
procedure. For each of the three equations in the experiment, we choose one of the m = 2
runs with the lowest error for analysis. Figure 5.2 depicts the probabilities of production
rules at each iteration for the first equation. The first of the four plots compares the
probabilities of production rules with the nonterminal E on the left-hand side. We can see

5.2. Empirical Evaluation 99

Figure 5.2: The probabilities of production rules with the nonterminal a) E, b) F , c) T ,
d) V on the left-hand side, plotted at each iteration of the Bayesian grammar updating
algorithm (m = 2, run = 7) for the first equation in the experiment. In this run, the
algorithm discovered an approximation of the target equation, which misses only the term
−x5, and achieves the error RMSE = 5.99.

that the algorithm very quickly learned a strong preference for subtraction over addition.
This is expected since generating the target equation requires five instances of subtraction
and only one instance of addition (since there are no numerical constants in the grammar,
the simplest way to generate −3x2 is as −x2−x2−x2). In the second plot in the first row,
we observe that the algorithm quickly learned to completely ignore both multiplication
and division, which also follows our expectation. Next, the first plot in the second row
indicates a reasonable disregard for the sine function. Interestingly, the probability of
the complicated recursion (E) also tends towards zero. Although this production rule is
not as obviously counterproductive as the sine function or multiplication and division, it
significantly increases the complexity of generated equations, which is not needed for the
target equation. The final plot reveals that the algorithm learned to prefer the variable
x1 over all other variables. This is the first observation that does not conform to our
expectations. Due to the absence of numerical constant, we would expect a preference for
x2, since it must be generated three times, compared to only once for each other variable.
As the data was sampled from identical distributions for all five variables, the effect can also
not be attributed to a higher importance of x1 in the data. We therefore conclude that the
algorithm followed a sub-optimal optimization path in the distribution of variables, which
may have contributed to its failure in exactly recovering the target equation.

Figure 5.3 depicts the evolution of production rules throughout the updating procedure
for the second equation in the experiment. This equation features no addition, subtraction,

100 Chapter 5. Bayesian Updating

Figure 5.3: The probabilities of production rules with the nonterminal a) E, b) F , c) T ,
d) V on the left-hand side, plotted at each iteration of the Bayesian grammar updating
algorithm (m = 2, run = 6) for the second equation in the experiment. In this run, the
algorithm was able to exactly recover the target equation with an error of RMSE = 0.

division or special functions, but requires a lot of multiplication. We also expect x1 to be
preferred over x2. The first plot reveals that, contrary to our expectations, the algorithm
did not learn to ignore addition and subtraction, but even increased their probability
slightly. On the other hand, our expectations were met in the second set of production rules,
where the probability of multiplication rises over 0.8 and division is suppressed entirely.
Very similarly to the behavior for the first equation, the probability of (E) and sine dropped
to zero. Finally, the algorithm once again failed to learn any variable preferences. However,
note that the optimization procedure for the second equation terminated extremely early,
as an equation with RMSE = 0 was discovered in the 19th iteration. As such, it is
likely that not all probability distributions have not had time to converge. All in all,
the behavior of the algorithm when discovering the second equation makes sense, as it
successfully learned the crucial importance of multiplication.

We expected the third equation in the experiment to be the most difficult, as it fea-
tures complicated nested functions and a trigonometric function with a varying frequency.
Nonetheless, the Bayesian algorithm with m = 1 was able to discover it exactly in one of
the runs, depicted in Figure 5.4. In the first plot we observe a clear preference of addition
over subtraction, which is expected, since the equation features addition once and does
not feature subtraction. Very similarly, the algorithm successfully learned it does not need
multiplication, but that division is important. The third plot is highly interesting, as it
shows the same behavior as for the first two equations – dropping the probability of (E)

5.2. Empirical Evaluation 101

Figure 5.4: The probabilities of production rules with the nonterminal a) E, b) F , c) T ,
d) V on the left-hand side, plotted at each iteration of the Bayesian grammar updating
algorithm (m = 2, run = 5) for the second equation in the experiment. In this run, the
algorithm was able to exactly recover the target equation with an error of RMSE = 0.

and sine. This is surprising, because these two production rules are crucial for deriving the
third equation. In contrast to the probabilities for the first two equations, here, the prob-
abilities do not drop to zero, but stay at approximately 0.1. This may indicate that the
initial grammar probabilities generated too complex expressions and more parsimony was
required. In the fourth plot, we finally observe a case where the algorithm learned a prefer-
ence of variables. This preference, however, is extreme, with p(x1) > 0.9 and p(x2) < 0.1,
where we would expect this ratio to be around 3:1 in favor of x1. Nevertheless, the overall
behavior of the algorithm in the case of the third equation is well in line with our intuition.

5.2.4 Results: Posterior probabilities

One of the advantages of the Bayesian grammar updating algorithm is that it approx-
imates the posterior distribution over the space of mathematical expressions. Once we
have completed the optimization of grammar probabilities, we can calculate the poste-
rior probability of individual expressions by parsing them using the PCFG with updated
probabilities. Note, however, that because each mathematical expression can be derived
by the grammar in a number of different ways, the probability obtained this way is only
an approximation of the true probability. On the other hand, this is not an issue when
comparing expression probabilities, obtained by parsing the expression in the same way
using the same grammar, with different values of production rule probabilities, such as
when comparing the prior and posterior expression probabilities. To further understand

102 Chapter 5. Bayesian Updating

the behavior of the Bayesian grammar updating algorithm, we compute the probability of
the correct expression at various points in the procedure, including the initial and final
iteration. To obtain more accurate approximations of the probability, we rewrite the first
equation from the experiment following the commutativity of summation by generating
every possible ordering of the terms:

y = x1− 3x2−x3−x5 = x1−x2−x2−x2−x3−x5 = −x2+x1−x2−x2−x3−x5 = . . .

In total, we generate 120 different expressions, parse each using the initial PCFG and
the final PCFG to obtain its prior and posterior probabilities, respectively, and sum the
individual probabilities to obtain an approximation of the prior and posterior probabilities
of the correct expression. We treat the second equation from the experiment in a similar
way, generating 56 orderings of the factors:

y = x51x
3
2 = x1 ∗ x1 ∗ x1 ∗ x1 ∗ x1 ∗ x2 ∗ x2 ∗ x2 = x2 ∗ x1 ∗ x1 ∗ x1 ∗ x1 ∗ x1 ∗ x2 ∗ x2 = . . .

Finally, the third equation has only four simple ways of rewriting it for the grammar we
used in the experiment:

y = sin(x1) + sin

(
x2
x21

)
= sin(x1) + sin (x2/(x1 ∗ x1)) = sin (x2/(x1 ∗ x1)) + sin(x1) =

= sin(x1) + sin (x2/x1/x1) = sin (x2/x1/x1) + sin(x1).
(5.10)

In Table 5.2, we summarize the prior and posterior probabilities for each of the three
equations using the final PCFGs from Figures 5.2-5.4.

Table 5.2: Approximated prior and posterior probabilities of the correct expression for
each of the three equations from the experiment, obtained by parsing the many equivalent
mathematical expressions using the PCFG with the initial and final values of production
rule probabilities.

Equation 1 Equation 2 Equation 3
Prior probab. 5.3 · 10−10 1.7 · 10−8 1.6 · 10−7

Posterior probab. 1.7 · 10−7 1.3 · 10−3 4.8 · 10−7

The posterior probability of the correct expression is higher than the prior probability
for all three equations, proving that the Bayesian algorithm indeed leads the distribution
towards the correct expression. The improvement is the lowest for the third equation,
with the posterior being three times the prior, and the highest for the second equation,
improving the probability by 5 orders of magnitude.

Note that we performed this analysis on the most successful runs in the experiment.
In order for the Bayesian algorithm to be really useful, the posterior probability should be
improved even in cases when it does not succeed in discovering the correct expression. To
test this property, we perform the above analysis for every run from the experiment, using
PCFGs throughout the optimization procedure. We plot the evolution of the minimum,
median and maximum probability across the ten runs in Figure 5.5. We see that in the
median probability of the correct expression does indeed increase for all three equations,
although it experiences rather erratic jumps during the optimization process. The lowest
final probability for the first equation is still an order of magnitude higher than the initial.
For the second equation, the lowest final probability is the same as the initial probability,
and lower than the initial probability for the third equation. We can therefore conclude that

5.2. Empirical Evaluation 103

Figure 5.5: The approximated probability of the correct expression at each iteration of
the Bayesian grammar updating algorithm (m = 2) for each of the three equations: a)
y = x1 − 3x2 − x3 − x5, b) y = x51x

3
2, c) y = sinx1 + sin (x2/x

2
1). The black line depicts

the median probability and the blue area depicts the region between the minimum and
maximum probability among the 10 runs.

in an average run of this experiment, the Bayesian algorithm will result in an increased
probability of the correct expression. Runs in which the Bayesian algorithm achieves a
counterproductive effect, although unlikely, are a very real possibility.

5.2.5 Results: Aggregated expression trees

Throughout the thesis, we have been studying the space of mathematical expressions, de-
fined by a grammar, with the help of the visualizations of aggregated parse trees. We again
make use of them to visualize how the space of expressions evolves during the grammar
updating procedure in Figure 5.6.

For all three equations, the space of expressions shrinks visibly, which is further con-
firmed by the number of nodes in each aggregated parse tree. The reduction in the size
of the space is the most significant for the first equation, with the number of nodes in the
final AETs dropping to a tenth of the number in the initial AET. For the second and third
equation, the number of nodes drops to about a third of the number in the initial AETs.
This confirms that the Bayesian algorithm guides the search from a highly uninformative
prior, encoding a very unconstrained space of expressions, towards a biased posterior, en-
coding a progressively more constrained space of expressions. This finding corresponds
with the observation of the increasing posterior probability of the correct expression.

In summary, the performance of the Bayesian grammar updating algorithm in exactly
reconstructing the target equations in our limited experiment is not impressive, since it
was able to discover the first and third equation in only a small number of runs. On the
other hand, it was very successful in discovering the second equation. Furthermore, the
optimization curves reveal that on average, the Bayesian algorithm clearly outperforms the
previous Monte-Carlo sampling approach. Most importantly, the analysis of the evolution
of production rule probabilities and the posterior probability of the correct expressions
shows that the algorithm is indeed able to guide the search from highly uninformative
prior distributions towards biased distributions that exhibit the expected properties of
target equations.

104 Chapter 5. Bayesian Updating

Figure 5.6: Aggregated parse trees, depicting the evolution of the space of expressions,
defined by the initial PCFG, the PCFG at an intermediate point of the Bayesian grammar
updating procedure (the most successful runs for m = 2) and the final PCFG. Row a)
corresponds to the target equation y = x1−3x2−x3−x5, row b) to the equation y = x51x

3
2

row c) to the equation y = sin(x1) + sin
(
x2
x21

)
.

5.3. Computational Efficiency and Parallelization 105

5.3 Computational Efficiency and Parallelization

Our primary purpose in developing the new Bayesian updating method is to improve the
performance and computational efficiency of equation discovery by reducing the number of
candidate expressions that need to be evaluated. In that respect, the new algorithm shows
promise, since it on average achieves a lower error with the same number of evaluated
expressions than the Monte-Carlo algorithm (as shown in Figure 5.1). The overhead, in-
troduced by counting production rules and updating probabilities is insignificant compared
to the effort of evaluating candidate expressions, particularly when parameter estimation
is required.

However, the Bayesian algorithm is not without downsides, the most concerning of
which is its difficulty of parallelization. Heavy parallelization of the expression evaluation
step is the key to achieving reasonable computation times for the Monte-Carlo method. In
fact, parallelizing the Monte-Carlo method is very simple, since expressions are sampled
completely independently from each other. In our computational experiments in Chapters 2
and 3 we generated a large number of candidate expressions locally, which was a very fast
process. We then made use of supercomputing clusters to perform the parameter estimation
and evaluation of as many as 1000 generated expressions in parallel.

In contrast, the Bayesian grammar updating algorithm proceeds in iterations and each
iteration depends on the results of the previous iteration. This means that it is much more
difficult to evaluate the generated expressions in parallel. Parallelization is possible in two
levels: either by executing several runs (i.e., using different random seeds) of the algorithm
in parallel, or by evaluating the limited number of candidate expressions within an iteration
in parallel. The latter option requires a complicated parallelization scheme, where a main
thread must wait for all the parallel evaluation threads to finish, compile their results and
update the probabilities, generate the candidates for the next iteration, before starting a
new parallelized evaluation step for the next iteration. This scheme is possible and would
still bring significant performance increases, but it is more difficult to implement and brings
limited benefit compared to the full parallelization of the Monte-Carlo approach. Due to
the efficiency of Monte-Carlo algorithm parallelization, when powerful HPC resources are
available, iterative grammar sampling approaches must achieve a significant performance
advantage to outperform Monte-Carlo sampling in practical settings.

The development of a more sophisticated and efficient algorithm for generating ex-
pressions from grammars is crucial for the practical applicability of the grammar-based
approaches introduced in this thesis. In this chapter, we introduced one possible way to
address this problem, based on an iterative, Bayesian updating of PCFG probabilities. The
results demonstrate that the method works and outperforms the previous Monte-Carlo ap-
proach when comparing the number of evaluated candidate equations. The probabilities
of the grammar mostly evolve in an expected way and guide the search towards areas of
the expression space that exhibit the properties of the target equations. An additional
benefit of the method is that it approximates the posterior distribution to the Bayesian
probabilistic nature of the approach, which is beneficial to the interpretability of equation
discovery.

On the other hand, the method leaves a lot of room for improvement. In a minor, but
non-negligible number of runs, the method was not only unable to discover the correct
equation, but also resulted in a PCFG with a lower probability of the correct equation
than the initial PCFG, meaning that the algorithm guided the search in the wrong direc-
tion. Furthermore, the iterative nature of the algorithm makes the approach difficult to
parallelize, which can outweigh any gains in computational efficiency when considerable
computational resources are available.

107

Chapter 6

Conclusions

In the introduction to this thesis, we outlined its purposes, broke down the steps required
to fulfill the purposes, and most importantly, we defined the research hypotheses to be
answered. In this final chapter, we review the accomplishments in this work, evaluate its
contributions and answer the scientific questions raised in the introduction.

6.1 Summary

In this thesis, we address various challenges in the field of equation discovery through
the use of probabilistic grammars. Before evaluating our accomplishments, we review the
presented work.

6.1.1 Probabilistic context-free grammars

In the second chapter of this thesis, we introduced a method for equation discovery, based
on randomly sampling probabilistic context-free grammars. We constructed a theoretical
framework for the use of PCFGs as generators of mathematical expressions. The first com-
ponent of the framework consists of an algorithm for counting the number of parse trees
up to a given height in a context-free grammar and an algorithm for computing the total
probability of generating a parse tree up to a given height using a PCFG. We employed this
component to demonstrate how PCFGs naturally encode and parametrize the parsimony
principle. The second component leverages the functionality of parsing, enabled by the use
of PCFGs, to compare and estimate the performance of different grammars in the task of
equation discovery. We demonstrated this by comparing the expected number of expres-
sions required to solve each problem from the Feynman database using a deterministic and
a probabilistic universal grammar for mathematical expressions, as well as a uniform and
a biased version of the universal PCFG for mathematical expressions.

To enable probabilistic grammar-based equation discovery, we developed a simple al-
gorithm (Algorithm 1) that randomly generates mathematical expressions from a PCFG.
Besides its direct application in equation discovery, the algorithm enabled the development
of an empirical framework for analyzing PCFGs in the context of equation discovery, which
complements the theoretical framework. Using a large sample of randomly generated ex-
pressions, the first component of the empirical framework allows us to visualize the search
space, defined by a PCFG, using an aggregated expression tree. More complex metrics,
computed on the aggregated expression tree, summarize high-level properties of the gram-
mar, such as the level of bias, i.e., the balance of exploration and exploitation, exhibited
by the grammar. After fitting the parameters of each generated expression and computing
its error-of-fit, the second component of the empirical framework enables the estimation

108 Chapter 6. Conclusions

of a learning curve, obtained by repeated bootstrap resampling of the sampled expressions
and their respective errors. This learning curve provides us with an estimate of perfor-
mance (i.e., the probability of successfully discovering an equation) for any given number
of randomly sampled expressions, up to the sample size used in the actual sampling.

The theoretical and empirical analyses reveal that the use of PCFGs offers a versatile
and potent framework for defining the inductive bias in the context of equation discovery
and symbolic regression. Specifically, probabilistic grammars enable a concise definition
of the prior distribution across the pool of candidate equations. This is accomplished
by assigning probability distributions to the production rules associated with each non-
terminal symbol within the grammar. For instance, this grants the user of the equation
discovery algorithm intuitive and transparent control over the principle of parsimony by
stipulating the probabilities of recursive production rules that govern the generation of
mathematical expressions. Reducing the probability of these recursion rules increases the
likelihood of simpler equations.

This outcome holds significant importance, given that the parsimony principle, which
aligns with Occam’s razor by favoring simpler explanations over complex ones, plays a piv-
otal role in algorithms designed for equation discovery and symbolic regression [13]. Histor-
ically, addressing this principle has entailed a variety of techniques, such as the minimum-
description-length formalism [7], [8], [13], [48], Akaike and Bayesian information criteria [8],
regularization methods applied to sparse regression [3], and the inclusion of complexity-
related penalty terms in the fitness functions used in evolutionary approaches [6]. These
approaches to encoding the parsimony principle often necessitate the careful tuning of
a regularization parameter, which determines the trade-off between equation error and
complexity. Discovering the optimal parameter configuration can involve computationally
intensive trial-and-error experiments. In contrast, the framework outlined here establishes
a foundation for analytically determining the probabilities of recursive rules based on the
probabilities associated with simpler expressions, corresponding to shallower parse trees.

Incorporating domain-specific background knowledge into the equation discovery pro-
cess bears a strong connection to the communicability of the resulting equations to experts
from the relevant fields. Equations and mathematical models aligned with the domain’s
existing knowledge enable humans to interpret them as explanations for observed phenom-
ena [12]. Deterministic grammars, along with other constraint types, as outlined in [11],
serve as mechanisms for knowledge integration, but in doing so, exclude entire regions from
the pool of candidate equations. While these exclusions enhance computational efficiency,
they also introduce the risk of discarding potentially valid models. Probabilistic gram-
mars, on the other hand, offer a more flexible approach through soft constraints, thereby
mitigating this risk by specifying a probability distribution across the space of candidate
equations. Simultaneously, probabilistic grammars can enhance the computational effi-
ciency of the equation discovery process and yield models that are easily communicable.
The parse trees generated by the grammar, along with their internal nodes, correspond
to non-terminals and potentially explanatory higher-order expressions, much like the pro-
cesses found in explanatory process-based models [26].

We evaluated the performance and the computational efficiency of the approach, based
on randomly sampling a universal PCFG for mathematical expressions, through an ex-
tensive computational experiment using the Feynman database for symbolic regression,
composed of a selection of one hundred of the most important equations from physics.
Our PCFG-based approach was able to discover 36 – significantly fewer than competing
methods, such as AI Feynman [13]. In particular, our method was able to discover sim-
pler equations, while failing to discover more complex ones. This result is not surprising,
since we employed a very simple equation discovery algorithm that relied on randomly

6.1. Summary 109

sampling mathematical expressions from a PCFG. Furthermore, we used a universal gram-
mar for mathematical expressions for our experiments, which implies the absence of any
background knowledge. Since the strength of grammars lies in their ability to efficiently
express background knowledge, the use of problem-specific knowledge, coupled with a more
powerful search algorithm, is required to achieve a competitive performance of equation
discovery.

6.1.2 Dimensionally-consistent equation discovery

In the next chapter of this work, we focused on a particular type of background knowledge
– dimensional analysis. Measurement units of relevant variables are frequently known in
physical and engineering problems. Methods of dimensional analysis, formalized in the
Buckingham Π theorem [45], can often significantly simplify a problem and sometimes
outright solve it. In our work, we leveraged the knowledge of measurement units to gener-
ate only dimensionally-consistent mathematical expressions, potentially significantly con-
straining the search space. To that end, we introduced attribute grammars as a framework
that combines the ability of context-free grammars to express different types of domain
knowledge with dimensional analysis, a more restrictive form of background knowledge.

In attribute grammars for dimensionally-consistent expressions, each nonterminal sym-
bol has an attribute representing its measurement unit. Production rules are equipped
with attribute rules that encode the rules for measurement unit arithmetic and constrain
the selection of variables based on measurement units. In this way, dimensional consistency
is guaranteed entirely by attributes and attribute rules, keeping the production rules of the
grammar simple and available for the encoding of other background knowledge available
in a given problem.

In this first formulation of attribute grammars for equation discovery, specialized for
dimensional analysis, we relied on transforming the attribute grammar to a PCFG, which
allowed us to use the existing algorithm for sampling PCFGs to generate dimensionally-
consistent expressions. The algorithm for transforming an attribute grammar to a PCFG
involves enumerating the possible values of attributes (measurement units) and introducing
new nonterminal symbols for each relevant combination of the nonterminal symbol and
attribute value (measurement unit).

We found two issues with this approach. Firstly, the PCFGs obtained this way are
large, composed of many nonterminals and production rules, which makes them difficult
to understand and interpret through manual inspection. Secondly, for many problems,
it is difficult to select an appropriate set of measurement units to include. Since the
grammar derives mathematical expressions step by step, the generation process can fail if
an intermediate measurement unit, required for the derivation of a unit on the left-hand side
of the equation, is missing from the selected set of units. We were able to solve this issue
by developing a heuristic algorithm that identifies a set of measurement units that works,
but is not necessarily minimal. A downside of the solution is that the sampling algorithm
can frequently encounter dead ends in the derivation, which requires many repetitions of
the sampling process.

Finally, we evaluated the performance of using grammars as generators of dimensionally-
consistent expressions in equation discovery through a computational experiment using
the Feynman database. We found that ensuring dimensional consistency significantly im-
proves the performance of ProGED on the benchmark database, increasing the number
of successfully discovered equations from 36 to 58. Furthermore, dimensional consistency
significantly improves the computational efficiency of equation discovery by reducing the
number of physically impossible mathematical expressions, thereby allowing the algorithm
to find a solution faster.

110 Chapter 6. Conclusions

6.1.3 Probabilistic attribute grammars

Transforming a probabilistic attribute grammar into a PCFG is possible only for problems
with a small number of attributes, which have a limited number of possible attribute
values. To enable more universal applications of PAGs in equation discovery, we designed
a new framework for expressing background knowledge with PAGs, coupled with a direct
sampling algorithm for PAGs.

In the new framework, attribute rules are expressed as Python code and attributes
are arbitrary Python objects. Attribute rules serve to propagate attributes upward or
downwards in a parse tree, to restrict the selection of production rules based on attribute
values, and to impose conditions on the attribute values of nonterminals, derived in diverg-
ing branches of a parse tree. In other words, attributes and attribute rules enable a limited
form of context sensitivity in probabilistic grammars, thereby allowing the framework to
express many types of background knowledge that were difficult or impossible to express
using PCFGs only.

We demonstrate the use and utility of the PAG framework by designing PAGs for
three different types of background knowledge. First, we return to the problem of dimen-
sional consistency, addressed in Chapter 3, and solve it using the new framework. The
direct sampling algorithm simplifies the design and use of dimensionally-consistent gram-
mars. On the other hand, the sampling process is significantly slower for PAGs than for
dimensionally-consistent PCFGs, due to the cost of executing and evaluating the attribute
rules of each production rule.

The second type of background knowledge we address are dynamical systems. The
primary challenges with dynamical systems are related to the fact that dynamical sys-
tems are often represented by a system of ordinary differential equations. A context-free
grammar can generate a system of equations by including a separator, such as a colon,
among its terminal symbols and processing the generated string accordingly. However,
domain knowledge associated with systems of coupled equations can be complicated and
impossible to express without context sensitivity. For instance, many dynamical systems
feature so-called coupling terms that appear in several equations in the system as the same
structure. Using our framework, we design a grammar for dynamical systems that can
ensure the identity of coupling terms in a system of ODEs.

Next, we focus on a particular type of dynamical systems that frequently appears in the
field of chemical kinetics. As a type of population model that describes the time evolution
of the concentrations of chemical reactants and products, the governing system of ODEs
is highly restricted. To demonstrate the use of our PAG framework, we explicitly identify
the rules that constrain the mathematical expressions composing a system of ODEs for
chemical kinetics. We then design a PAG that generates only systems of ODEs following
the restrictions of chemical kinetics.

As the final domain knowledge example, we tackle the problem of modeling electronic
circuits. These also represent a type of dynamical systems, but the associated background
knowledge is remarkably complex. We focus on so-called RLC circuits – analog electronic
circuits, composed of resistors, inductors and capacitors, as well as voltage sources. Each
component is connected to two other components by wire. A wire can also split into
any number of wires through a junction, but the entire circuit must not have any open
connections. As such, the topology of a circuit is as important to its function as its
electronic components. If the components and topology of a circuit are known (i.e., we can
draw a circuit diagram), the governing system of ODEs can be derived by the application
of Kirchoff’s laws.

Designing an equation discovery tool that expresses this domain knowledge and can
generate physically-correct systems of ODEs is a very difficult task, beyond the reach of

6.1. Summary 111

context-free grammars and even process-based models. As a final test of the expressive
power of our attribute grammar framework, we develop a PAG that generates systems
of ODEs that obey the physics of RLC circuits. The PAG uses attributes to embed the
topology of a circuit, as well as to help control the flow of the derivation. We developed
a separate algorithm that generates a random circuit topology, i.e., it randomly connects
a given list of electronic components into a valid circuit. Sampling the PAG results in a
single valid system of ODEs – the correct one. The production rules of the PAG express
both Kirchoff’s laws and allow for the recursive derivation of each unknown quantity.

The PAG for electronic circuits is an attempt to push the expressive power of the PAG
framework to its limits. It demonstrates how PAGs can be used to encode a famously
troublesome type of domain knowledge and identify unknown circuits from data. However,
this attempt is only partially successful. Namely, the derivation of the system of ODEs
fails for many given random circuits due to dead ends during the traversal of closed loops
and due to endless recursion that results from the direct application of Kirchoff’s laws. To
make things worse, the fail rate increases with increasing circuit complexity. On the other
hand, there is a clear path for improvement in a smarter approach to traversing closed
loops. Another issue is that the PAG for electronic circuits is large, complicated and
difficult to understand. It is also computationally demanding to sample, since it requires
many repeated sampling attempts. Nevertheless, the electronic circuits and the respective
systems of ODEs that the PAG does manage to generate are guaranteed to be physically
correct. Our attempt at automated modeling of electronic circuits demonstrates how to
use the PAG framework to express highly complex types of background knowledge.

6.1.4 Bayesian updating

In Chapter 2, we introduced a simple Monte-Carlo algorithm for sampling PCFGs that
enables the use of probabilistic grammars in equation discovery. In Chapter 3 and Chap-
ter 4, we extended the framework of PCFGs with attributes to enable the encoding of more
complex types of background knowledge, while still relying on randomly sampling expres-
sions from grammars. In Chapter 5, we addressed the issue of algorithmic improvement by
developing a Bayesian algorithm that iteratively updates the probabilities of production
rule in a PCFG and guides the search towards more promising areas of the search space.

In the new algorithm, we begin with a PCFG with initial probabilities of production
rules. Equation discovery proceeds in iterations, during which a number of random expres-
sion are sampled from the PCFG and evaluated. Based on the parse trees and errors-of-fit
of the expressions we calculate new probabilities of production rules to be used in the next
iteration.

We calculate new probabilities using the m-estimate, an estimate of the posterior proba-
bility that balances the evidence with the prior probability. By including only an expression
with a low error in the calculation, we condition the posterior probability on expressions
that fit the data well. In this way, the probability of successfully discovering the under-
lying equation increases with each iteration. The probability distribution defined by the
PCFG with the optimized production probabilities can be interpreted as the posterior
probability distribution over the space of expressions, combining prior beliefs (initial prob-
abilities) and evidence (the data). An estimation of the posterior distribution improves
the interpretability of equation discovery.

To test the Bayesian updating algorithm and analyze its behavior, we perform a small,
illustrative computational experiment, involving the discovery of three hand-crafted equa-
tions that challenge the algorithm in various ways. The Bayesian algorithm outperforms
Monte-Carlo sampling for all three equations by achieving a lower error with the same
number of evaluated expressions. The production rule probabilities mostly evolve accord-

112 Chapter 6. Conclusions

ing to our expectations, indicating that the proposed approach to updating probabilities
indeed works.

On the other hand, due to its iterative nature, the Bayesian algorithm does not paral-
lelize as well as Monte-Carlo sampling. As such, the Bayesian algorithm takes significantly
longer to discover equations than random sampling when significant computational re-
sources are available.

6.2 Discussion

The purpose of this work is to advance the field of equation discovery by enabling direct and
intuitive control over the parsimony of generated mathematical expressions, introducing
the various benefits of using a probabilistic framework and enabling the encoding of more
complex types of background knowledge, which can significantly reduce the difficulty of
discovering the governing equations for a given problem.

6.2.1 Parsimony and background knowledge

The PCFG framework for equation discovery handles parsimony elegantly and enables
explicit control over it. As demonstrated by the theoretical analysis in Chapter 2, PCFGs
prove themselves a powerful tool for expressing prior knowledge and impose both hard and
soft constraints on the space of equations. However, the expressivity of PCFGs is limited
by their lack of context awareness. This limitation is particularly evident when addressing
systems of equations, such as in the domain of dynamical systems, since coupling between
different equations necessitates some form of context awareness. For such problems, PCFGs
as a framework for expressing background knowledge are inferior to frameworks such as
process-based modelling.

The extension of PCFGs with attributes and attribute rules greatly increases the ex-
pressive power of the framework. PAGs enable the encoding of various types of background
knowledge that are impossible to encode using PCFGs, as demonstrated by the examples in
Chapter 4. Leveraging additional background knowledge, such as dimensional consistency,
constrains the space of possible equations and improves the performance and computational
efficiency of equation discovery.

6.2.2 Theoretical analysis and probability theory

An advantage of the relative simplicity of PCFGs lies in the potential for theoretical anal-
ysis and the direct application of probability theory, as demonstrated in the first sections
of Chapter 2. Analyzing the properties of a PCFG enables us to predict the performance
of equation discovery before committing to expensive computational experiments, there-
fore allowing us to tune the structure and/or parameters of the grammar to maximize the
expected performance. Such analysis is much more difficult to perform for PAGs, since
attribute rules introduce a lot of complexity to the sampling process and the theory of
attribute grammars is a relatively unexplored topic. As such, analyzing the properties
of PAGs for equation discovery currently requires empirical experiments, relying on the
statistical analysis of a large sample of random expressions from a PAG.

6.2.3 Accessibility of PCFGs and PAGs

In realistic equation discovery use cases, frameworks for expressing prior knowledge are
supposed to be used by domain experts and enable them to leverage their domain knowledge
as efficiently as possible. To that end, an important quality of such frameworks is their

6.2. Discussion 113

accessibility to experts from other domains. This represents an important weakness of the
work, presented in this thesis.

To encode prior knowledge using the PCFG framework, a user has to write their own
grammar, or modify an existing template. This is a nontrivial task to ask of users, since
formal grammars are part of the curriculum only for computer scientists and some mathe-
maticians. Granted, context-free grammars are built on rather simple concepts. Neverthe-
less, writing a well-functioning grammar for equation discovery requires some experience
and practice, avoiding pitfalls such as endless recursion and grammars with incorrect math-
ematical syntax, as well as the ability to translate concepts from domain knowledge into
production rules and symbols. This process includes both writing the structure of the gram-
mar, as well as determining reasonable values of production rule probabilities. A possible
solution lies in automated methods for learning PCFGs from collections of mathematical
expressions [80].

These challenges are substantially bigger when writing a PAG. To fully leverage the
expressive power of the PAG framework, a user must understand the basics of the sampling
algorithm and the role of different types of attribute rules. In the current implementation
of the framework, attribute rules are expressed as Python code. Therefore, the user must
also know Python. On a conceptual level, the accessibility of the framework varies for
different types of domain knowledge one wishes to express. For instance, measurement
units and dimensional analysis are expressed very intuitively, since measurement units are
encoded as attributes and are propagated using widely-understood mathematical rules.
In contrast, the chemical kinetics example requires some attributes that do not directly
represent concepts from domain knowledge, but are needed to control the flow of the
generation algorithm. Writing a PAG for this example is conceptually not far from a
software engineering task.

As such, it is not reasonable to expect domain experts to independently use the PAG
framework. In its current state, a real-world use case for the PAG framework would require
close collaboration between domain scientists and equation discovery experts (or at least
computer scientists) in an interdisciplinary setting. On the other hand, we can view the
presented framework as the first prototype of an expression-generating engine. Accessibility
to experts from other domains can be improved by building interfaces that make use of
the framework and provide a more intuitive front to users.

6.2.4 Computational efficiency

Many equation discovery approaches can discover the governing equations for a problem
given infinite time and resources. For practical applicability of such systems, computa-
tional efficiency is critical. In this respect, the approaches presented in this thesis fall
somewhat short. The Monte-Carlo sampling approach often requires testing a large num-
ber of candidate expressions, even when searching a constrained search space. This is
not a serious issue for problems without numerical parameters. However, if a problem
requires the estimation of parameter values, often computation on supercomputer clusters
is required. For very complex problems, the probability of discovery in a reasonable time
frame is infinitesimal.

Part of the reason for the lack of computational efficiency is unoptimized code. All
algorithms and frameworks in this thesis are implemented in the publicly-accessible Python
package ProGED. The program is written entirely in Python – a scripting language, which
is famously slow for computationally demanding tasks. A ten-fold or even hundred-fold
speedup could be achieved by optimizing the implementation in programming languages
more suited to computation, such as C++ [81] or Rust [82], or by making use of tools such
as Cython or Numba.

114 Chapter 6. Conclusions

Another reason for long computation times is the simplicity of the naive Monte-Carlo
algorithm. A better algorithm for searching the constrained space of equations is critical
for improving the practical usefulness of the proposed approaches. The Bayesian updating
algorithm, presented in Chapter 5, demonstrates a potential direction for further develop-
ment. The algorithm clearly outperforms random sampling in most experiments. However,
the Bayesian algorithm comes with a significant trade-off. Since the algorithm generates
and tests candidate equations sequentially, it is much less open to parallel computation
strategies. For instance, using the independent Monte-Carlo sampling, the parameter
estimation of 100 to 1000 candidate equations can be performed in parallel on a super-
computing cluster. In this comparison, a sequential search algorithm must be 100 to 1000
times more efficient to find the solution faster. Even though the total processor time (and
electric bill) is longer for Monte-Carlo sampling, the time-to-solution can be much lower
than for smarter algorithms if powerful computational infrastructure is available.

6.3 Hypotheses

After summarizing and reviewing the contents of this thesis, we can now examine and
answer the hypotheses set at the beginning of this work.

6.3.1 Hypothesis 1

We can design an equation discovery approach, based on probabilistic grammars (PCFGs
and PAGs), that overcomes the limitations of existing approaches in ensuring parsimony,
expressing different types of domain knowledge, and providing a probabilistic interpretation
of results.

Confirmed. We designed two frameworks for equation discovery, one based on PCFGs
and one based on PAGs. Both frameworks enable the encoding of various types of back-
ground knowledge and leverage it to constrain the space of possible equations. We demon-
strated how probabilistic grammars inherently follow the parsimony principle and parametrize
it intuitively through the probabilities of recursive production rules.

PCFGs are a powerful mathematical construct that already enables the encoding of
many types of background knowledge. Their probabilistic interpretation and properties
allow for fine control over the probability distribution, defined by the grammar, imposing
soft constraints on the space of equations.

PAGs extend PCFGs with attributes and attributes rules, enhancing them with a
limited form of context-sensitivity. This addresses the shortcomings of the expressive
power of PCFGs, enabling users to express more complex types of background knowledge,
such as measurement units and coupling terms in systems of equations.

Existing approaches to equation discovery typically enforce parsimony through regu-
larization terms, which are unintuitive and difficult to interpret, or by imposing filtering
and selection procedures on results, which can be difficult to justify in practical use cases.
Many contemporary approaches are fully data-driven and do not attempt to leverage prior
knowledge at all (deep learning). Those that do attempt to use prior knowledge, often
do so only in a limited fashion, relying on simple libraries of terms and functions (sparse
regression) or by setting weights for operators and variables (genetic programming, rein-
forcement learning). A number of approaches are based entirely on dimensional analysis,
eschewing all other types of background knowledge. Finally, most existing approaches do
not have a useful probabilistic interpretation. Existing Bayesian approaches provide robust
estimates of posterior distributions, but fall short on the front of expressing background
knowledge.

6.3. Hypotheses 115

The approaches, introduced in this thesis, successfully address the parsimony principle,
the expression of different types of background knowledge, and provide a robust proba-
bilistic interpretation.

6.3.2 Hypothesis 2

We can implement the designed approach into a software tool, which enables the discovery
of algebraic equations from data.

Confirmed. We successfully implemented all equation discovery approaches and al-
gorithms introduced in this thesis in an open-source Python library called ProGED. The
theoretical analysis and empirical experiments in Chapter 2 demonstrate that using PCFGs
to encode background knowledge and define the search space of expressions, using a Monte-
Carlo sampling algorithm to generate candidate expressions, and selecting the final equa-
tion based on error-of-fit, is an approach capable of discovering equations from data. The
empirical experiments in Chapter 3 demonstrate that encoding dimensional-consistency
in attributes, using an algorithm to transform the attribute grammar into a PCFG, and
sampling it with the Monte-Carlo algorithm, enables the discovery of equations from data.
In Chapter 4, we present PAGs for three different domains with examples of equations
they generate. Coupled with the demonstrations of the methodology in Chapters 2 and
3, this shows that the direct sampling algorithm for PAGs is also capable of discovering
equations from data. Finally, the experiment involving three target equations in Chap-
ter 5 demonstrates the ability of the Bayesian grammar updating algorithm to discover
equations.

6.3.3 Hypothesis 3

The developed approach can outperform existing equation discovery approaches in perfor-
mance, computational efficiency and applicability.

Partially confirmed. Many existing approaches are applicable only to a certain class
of equation discovery problems, i.e., problems, linear in parameters, algebraic equations,
etc. In contrast, the probabilistic grammar-based approaches, introduced in this thesis, are
widely applicable to all types of problems in equation discovery. They can discover equa-
tions of any mathematical form, nonlinear in parameters, and are applicable to algebraic
equations, differential equations and systems of ODEs. The expressive power of PCFGs
and especially PAGs empowers users to leverage various types of background knowledge
to constrain the search space and thereby improve the performance and computational
efficiency of equation discovery.

On the other hand, our computational experiments in Chapter 2 demonstrate that in
the absence of useful background knowledge, the approach discovers fewer equations than
competing algorithms, while requiring more computational power. Nevertheless, when
useful background knowledge is leveraged, such as when encoding dimensional-consistency
with PAGs, the approach performs competitively with state-of-the-art approaches in the
field. In the course of this work, we have not performed the comparative computational
experiments using the PAG framework from Chapter 4 necessary to test the algorithm’s
performance and computational efficiency in settings, where extensive domain knowledge
can be leveraged (i.e., the dynamical systems and electronic circuits examples in Chapter 4).

To conclude, we can confirm that the introduced approaches outperform existing meth-
ods in applicability. However, the available evidence from computational experiments is
insufficient to confirm or reject the hypothesis when it comes to equation discovery perfor-
mance and computational efficiency.

116 Chapter 6. Conclusions

6.4 Scientific Contributions

Overall, this PhD thesis advances the field of equation discovery by improving the methods
for leveraging both general and domain-specific background knowledge.

1. The initial contribution of this thesis is the innovative use of probabilistic
context-free grammars in equation discovery. Employing PCFGs to rep-
resent background knowledge and generate candidate expressions yields
simpler and more accurate equations and enables the use of soft con-
straints, fundamentally enhancing the equation discovery process. The in-
troduction of PCFGs brings several important improvements to equation discovery.
Firstly, PCFGs exhibit inherent parsimony since the probability of an expression falls
with expression complexity. This allows for the discovery of less complex equations,
increasing the likelihood of scientifically relevant discoveries. Secondly, the probabil-
ities of production rules enable a high degree of control over the derived expressions.
This introduces soft constraints to equation discovery, which allow domain experts
to not only specify which parts of the search space to include and which not to, but
to finely control the probabilities of different parts of the search space. By increasing
the flexibility and options available to experts when expressing domain knowledge,
soft constraints will improve the performance of equation discovery. Lastly, a PCFG
defines a probability distribution over the expressions it derives. This is a highly
useful property that opens the door to other probabilistic approaches, such as those
based on Bayesian statistics. The introduction of PCFGs for equation discovery can
thus inspire novel probabilistic approaches that make use of PCFGs as the base of a
probabilistic framework.

2. The next contribution involves implementing probabilistic attribute gram-
mars that enable dimensionally-consistent equation discovery. This ap-
proach maintains the expressive power of PCFGs, while eliminating physi-
cally meaningless equations, which significantly improves the performance
and computational efficiency of the equation discovery process. Dimensional
analysis has a long tradition in physics, engineering and other domains and has been
used in equation discovery before, both as the basis of ED algorithms, and as an up-
grade to existing algorithms. However, combining dimensional consistency with other
types of background knowledge has proven to be a challenge for background knowl-
edge frameworks. In this thesis we introduce probabilistic attribute grammars that
efficiently encode dimensional consistency through attributes and attribute rules,
while leaving the structure and probabilities of the underlying PCFG free for ex-
pressing other background knowledge. Using extensive computational experiments
we show that dimensional consistency significantly improves the performance of equa-
tion discovery on a database of equations from physics. Further improvements can
be expected for use cases, where other types of background knowledge are encoded
in the grammar in tandem with dimensional consistency.

3. Next, the thesis introduces a general attribute grammar methodology cou-
pled with a novel technique for directly sampling probabilistic attribute
grammars. This novel approach can encode many complex types of back-
ground knowledge, extending the reach of domain knowledge in equation
discovery. PCFGs are a powerful framework for expressing background knowledge,
but they have important limitations. For instance, it is impossible to guarantee
the identity of two or more terms generated in an equation or system of equations
without at least limited context information. We address this shortcoming by in-

6.5. Further Work 117

troducing a general framework for using probabilistic attribute grammars to express
background knowledge. We significantly improve the applicability of the approach,
used in Contribution 2, which relies on transforming an attribute grammar into a
context-free grammar, by developing an algorithm for the direct sampling of prob-
abilistic attribute grammars. We demonstrate how to use the new framework in
different domains using three concrete and detailed examples. The first of these is
dimensional consistency, where we show how the new framework solves the problem
from Contribution 2 in a more elegant way. The second example entails the genera-
tion of coupling terms in dynamical systems and more specifically, the complicated
restrictions required in equations from chemical kinetics – both of which represent
relevant and important problems. Finally, the third example is the identification
of electronic circuits. Here, the example demonstrates the applicability of the new
approach to domain knowledge that is notoriously complex and difficult to express.

4. Finally, the development of an algorithm for the iterative Bayesian updat-
ing of grammar probabilities overcomes the limitations of simple random
sampling and paves the way towards computationally efficient equation
discovery. An additional benefit of the Bayesian approach is the approxi-
mation of the posterior distribution over mathematical expressions, which
improves the interpretability of equation discovery. Monte-Carlo sampling
is the simplest method for generating candidate expressions from a probabilistic
grammar, but it is computationally inefficient. To enable computationally efficient
grammar-based equation discovery, more sophisticated algorithms are needed that
require the evaluation of fewer candidate expressions. To that end, we develop a
Bayesian algorithm that iteratively updates the probabilities of production rules in
a PCFG using the m-estimate to guide the search towards more promising areas of
the search space. We perform a small empirical experiment, demonstrating that the
Bayesian algorithm outperforms Monte-Carlo sampling on average. Furthermore, we
show that taking into account the results of previous iterations results in a grammar,
whose distributions of production rules exhibit the properties of the target equation.
Finally, we show that the Bayesian algorithm results in a posterior probability of the
target equation, significantly greater than its prior probability, demonstrating that
the method works as intended.

6.5 Further Work

The work presented in this thesis introduces novel approaches to equation discovery, with
a focus on expressing and leveraging different types of background knowledge. We showed
that the methods can successfully discover equations in different settings and can compete
with existing methods when useful background knowledge is available. The open source
implementation ProGED allows experts from other fields to use the developed methods
to facilitate scientific discovery in their own work. Furthermore, the introduction of new
paradigms opens a number of avenues for exciting further research.

To further investigate and validate the practical usefulness of the proposed approaches,
a study of the effects of noise on the performance and efficiency of equation discovery
is needed. Related work [83] has demonstrated the inherent limits of model selection in
equation discovery in noisy settings. We expect the Monte-Carlo approach for generating
candidate equations to be highly robust to noise and approach the theoretical limita-
tions only in the model selection step. In contrast, Bayesian iterative updating can be
much more vulnerable to disruptions due to local minima and noise. A detailed study

118 Chapter 6. Conclusions

of these phenomena cannot only test and verify the usefulness of probabilistic grammar-
based approaches, but potentially also give new insights into the behavior and limitations
of equation discovery methods in noisy settings.

Testing and evaluating methods that leverage background knowledge is exceptionally
difficult while relying on synthetic benchmark data, where background knowledge is absent
or artificial. As such, real-world applicability can only be fairly evaluated through practical
applications, preferably through interdisciplinary collaboration with domain experts. The
performance and general usefulness of the proposed approaches depends on how much
useful data is available, how much background knowledge is available, as well as how much
of the background knowledge we can express and leverage using our framework. Therefore,
practical applications of the probabilistic grammar-based approach to equation discovery
are an important step in further research.

As evident from the computation experiments in Chapter 2 and Chapter 3, the main
shortcoming of the approach is the inefficiency of the Monte-Carlo sampling algorithm.
The work on a Bayesian updating algorithm in Chapter 5 shows a promising direction for
algorithmic improvements. The empirical results show the first version of the m-estimate
algorithm generally outperforms random sampling, but faces significant challenges. Firstly,
the algorithm can get stuck in local minima, which can be alleviated by techniques for bal-
ancing exploration and exploitation. Secondly, a sequential updating algorithm is difficult
to parallelize and therefore fully utilize available supercomputing resources. Techniques
for sampling and evaluating equations in larger batches could help address this challenge.
Finally, the algorithm relies on manipulating the probabilities of a grammar. In compact
and elegantly-structured grammars, there are often only several such values to manipu-
late. It is an open question whether such low-dimensional parametrization is sufficient for
the algorithm to fully express the bias learned by evaluating generated expressions and
whether increasing the number of grammar parameters could improve algorithm perfor-
mance. Further investigating and improving the grammar updating algorithm is therefore
an important research direction to pursue. Besides further development to the proposed
updating algorithm, alternatives can be considered, such as employing reinforcement learn-
ing to select production rules and guide the generation process.

The PAG framework, introduced in Chapter 4, is a promising and powerful framework
for expressing background knowledge in equation discovery. Due to the relatively small
existing body of research on attributed grammars, the details of its properties and be-
havior are not well understood. A theoretical consideration of the PAG framework and
the properties of the probability distributions PAGs define would facilitate the adoption
and usefulness of PAGs in equation discovery. Furthermore, the demonstrations of the
framework in this work are only a few illustrative examples of its application. To better
understand the power of PAGs for expressing background knowledge in equation discovery,
a thorough examination of different types of background knowledge, and their encoding
using PAGs, is required.

Finally, one of the barriers in the way of wider adoption of PCFGs and PAGs by
domain experts is the difficulty of designing well-behaved grammars that express the desired
aspects of background knowledge. To alleviate this, the development of higher-level, user-
friendly interfaces should be considered. Alternatively, algorithms can be developed that
automate the building of PCFGs or PAGs based on background knowledge encoded in
existing systems for knowledge representation, such as knowledge graphs, ontologies or
process-based models, which are more widely understood and adopted in the scientific
community.

119

Appendix A

Feynman Database for Symbolic
Regression

The Feynman database was constructed by Udrescu and Tegmark [13] to facilitate the
development and testing of algorithms for symbolic regression. The database is composed
of one hundred important equations from physics and acts as a good playground and
benchmark dataset for equation discovery. The following table presents the one hundred
equations from the Feynman database, along with their file name in the database, which
is available at https://space.mit.edu/home/tegmark/aifeynman.html.

https://space.mit.edu/home/tegmark/aifeynman.html

120
A

ppendix
A

.Feynm
an

D
atabase

for
Sym

bolic
R

egression

Filename Formula
0 I.6.2a exp(-theta**2/2)/sqrt(2*pi)
1 I.6.2 exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma)
2 I.6.2b exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma)
3 I.8.14 sqrt((x2-x1)**2+(y2-y1)**2)
4 I.9.18 G*m1*m2/((x2-x1)**2+(y2-y1)**2+(z2-z1)**2)
5 I.10.7 m_0/sqrt(1-v**2/c**2)
6 I.11.19 x1*y1+x2*y2+x3*y3
7 I.12.1 mu*Nn
8 I.12.2 q1*q2*r/(4*pi*epsilon*r**3)
9 I.12.4 q1*r/(4*pi*epsilon*r**3)
10 I.12.5 q2*Ef
11 I.12.11 q*(Ef+B*v*sin(theta))
12 I.13.4 1/2*m*(v**2+u**2+w**2)
13 I.13.12 G*m1*m2*(1/r2-1/r1)
14 I.14.3 m*g*z
15 I.14.4 1/2*k_spring*x**2
16 I.15.3x (x-u*t)/sqrt(1-u**2/c**2)
17 I.15.3t (t-u*x/c**2)/sqrt(1-u**2/c**2)
18 I.15.1 m_0*v/sqrt(1-v**2/c**2)
19 I.16.6 (u+v)/(1+u*v/c**2)
20 I.18.4 (m1*r1+m2*r2)/(m1+m2)
21 I.18.12 r*F*sin(theta)
22 I.18.14 m*r*v*sin(theta)
23 I.24.6 1/2*m*(omega**2+omega_0**2)*1/2*x**2
24 I.25.13 q/C
25 I.26.2 arcsin(n*sin(theta2))
26 I.27.6 1/(1/d1+n/d2)
27 I.29.4 omega/c
28 I.29.16 sqrt(x1**2+x2**2-2*x1*x2*cos(theta1-theta2))

Continued on next page

121

Filename Formula
29 I.30.3 Int_0*sin(n*theta/2)**2/sin(theta/2)**2
30 I.30.5 arcsin(lambd/(n*d))
31 I.32.5 q**2*a**2/(6*pi*epsilon*c**3)
32 I.32.17 (1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2)
33 I.34.8 q*v*B/p
34 I.34.1 omega_0/(1-v/c)
35 I.34.14 (1+v/c)/sqrt(1-v**2/c**2)*omega_0
36 I.34.27 (h/(2*pi))*omega
37 I.37.4 I1+I2+2*sqrt(I1*I2)*cos(delta)
38 I.38.12 4*pi*epsilon*(h/(2*pi))**2/(m*q**2)
39 I.39.1 3/2*pr*V
40 I.39.11 1/(gamm-1)*pr*V
41 I.39.22 n*kb*T/V
42 I.40.1 n_0*exp(-m*g*x/(kb*T))
43 I.41.16 h/(2*pi)*omega**3/(pi**2*c**2*(exp((h/(2*pi))*omega/(kb*T))-1))
44 I.43.16 mu_drift*q*Volt/d
45 I.43.31 mob*kb*T
46 I.43.43 1/(gamm-1)*kb*v/A
47 I.44.4 n*kb*T*ln(V2/V1)
48 I.47.23 sqrt(gamm*pr/rho)
49 I.48.2 m*c**2/sqrt(1-v**2/c**2)
50 I.50.26 x1*(cos(omega*t)+alpha*cos(omega*t)**2)
51 II.2.42 kappa*(T2-T1)*A/d
52 II.3.24 Pwr/(4*pi*r**2)
53 II.4.23 q/(4*pi*epsilon*r)
54 II.6.11 1/(4*pi*epsilon)*p_d*cos(theta)/r**2
55 II.6.15a p_d/(4*pi*epsilon)*3*z/r**5*sqrt(x**2+y**2)
56 II.6.15b p_d/(4*pi*epsilon)*3*cos(theta)*sin(theta)/r**3
57 II.8.7 3/5*q**2/(4*pi*epsilon*d)

Continued on next page

122
A

ppendix
A

.Feynm
an

D
atabase

for
Sym

bolic
R

egression

Filename Formula
58 II.8.31 epsilon*Ef**2/2
59 II.10.9 sigma_den/epsilon*1/(1+chi)
60 II.11.3 q*Ef/(m*(omega_0**2-omega**2))
61 II.11.17 n_0*(1+p_d*Ef*cos(theta)/(kb*T))
62 II.11.20 n_rho*p_d**2*Ef/(3*kb*T)
63 II.11.27 n*alpha/(1-(n*alpha/3))*epsilon*Ef
64 II.11.28 1+n*alpha/(1-(n*alpha/3))
65 II.13.17 1/(4*pi*epsilon*c**2)*2*I/r
66 II.13.23 rho_c_0/sqrt(1-v**2/c**2)
67 II.13.34 rho_c_0*v/sqrt(1-v**2/c**2)
68 II.15.4 -mom*B*cos(theta)
69 II.15.5 -p_d*Ef*cos(theta)
70 II.21.32 q/(4*pi*epsilon*r*(1-v/c))
71 II.24.17 sqrt(omega**2/c**2-pi**2/d**2)
72 II.27.16 epsilon*c*Ef**2
73 II.27.18 epsilon*Ef**2
74 II.34.2a q*v/(2*pi*r)
75 II.34.2 q*v*r/2
76 II.34.11 g_*q*B/(2*m)
77 II.34.29a q*h/(4*pi*m)
78 II.34.29b g_*mom*B*Jz/(h/(2*pi))
79 II.35.18 n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T)))
80 II.35.21 n_rho*mom*tanh(mom*B/(kb*T))
81 II.36.38 mom*H/(kb*T)+(mom*alpha)/(epsilon*c**2*kb*T)*M
82 II.37.1 mom*(1+chi)*B
83 II.38.3 Y*A*x/d
84 II.38.14 Y/(2*(1+sigma))
85 III.4.32 1/(exp((h/(2*pi))*omega/(kb*T))-1)
86 III.4.33 (h/(2*pi))*omega/(exp((h/(2*pi))*omega/(kb*T))-1)

Continued on next page

123

Filename Formula
87 III.7.38 2*mom*B/(h/(2*pi))
88 III.8.54 sin(E_n*t/(h/(2*pi)))**2
89 III.9.52 (p_d*Ef*t/(h/(2*pi)))*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2
90 III.10.19 mom*sqrt(Bx**2+By**2+Bz**2)
91 III.12.43 n*(h/(2*pi))
92 III.13.18 2*E_n*d**2*k/(h/(2*pi))
93 III.14.14 I_0*(exp(q*Volt/(kb*T))-1)
94 III.15.12 2*U*(1-cos(k*d))
95 III.15.14 (h/(2*pi))**2/(2*E_n*d**2)
96 III.15.27 2*pi*alpha/(n*d)
97 III.17.37 bet*(1+alpha*cos(theta))
98 III.19.51 -m*q**4/(2*(4*pi*epsilon)**2*(h/(2*pi))**2)*(1/n**2)
99 III.21.20 -rho_c_0*q*A_vec/m

125

Appendix B

Detailed Experimental Results 1

The table provided in this section presents detailed results of the experiment described
in Chapter 2. Each row corresponds to an equation discovery task from the Feynman
database. For each problem, we performed six independent samplings of 105 candidate
equations. Three of these were based on the uniform universal grammar (labelled U) and
three were based on the biased universal grammar (labelled B). The columns of the table,
from left to right, are as follows;

• Index of the problem from the Feynman dataset.

• #v. Number of variables in the target expression.

• #p. Number of constant parameters in the target expression.

• #o. Number of mathematical operations or special function in the target expression.

• #c. Number of characters in the string representation of the target expression.

• pU . The probability of generating the target expression, using the uniform universal
grammar. Approximated by the probability of a single parse tree. In other words,
the approximation ignores the semantic ambiguity of the grammar.

• pB. Same as pU , but using the biased universal grammar.

• #SU . Number of successes in three independent samplings, using the uniform
universal grammar. A sampling is successful if it finds at least one model with
RRMSE < 10−9.

• #SB. Same as #SU , but using the biased universal grammar.

• #NU . Number of unique expressions in the canonical form, generated using the
uniform universal grammar. Formatted as a triplet of values, each corresponding to
one of three independent samplings. Expressed in the units of thousands.

• #NB. Same as #NU , but using the biased universal grammar.

• covU . Sum of probabilities (coverage) of all unique expressions, sampling using the
uniform universal grammar. Formatted as a triplet of values, each corresponding to
one of three independent samplings.

• covB. Same as covU , but using the biased universal grammar.

126
A

ppendix
B

.D
etailed

E
xperim

entalR
esults

1

#v #p #o #c pU pB #SU #SB NU [103] NB[103] covU covB
0 1 2 6 27 1.1·10−6 2.1·10−7 3 2 (30, 30, 30) (14, 24, 3) (0.38, 0.38, 0.38) (0.21, 0.54, 0.29)
1 2 2 8 43 1.7·10−11 7·10−12 0 0 (35, 35, 25) (30, 30, 20) (0.38, 0.38, 0.31) (0.54, 0.54, 0.34)
2 3 2 9 52 1.2·10−19 1.5·10−18 0 0 (38, 38, 38) (34, 25, 35) (0.37, 0.37, 0.37) (0.52, 0.47, 0.52)
3 4 0 4 27 2.2·10−24 7.7·10−21 0 0 (40, 41, 30) (38, 37, 28) (0.36, 0.36, 0.3) (0.51, 0.51, 0.45)
4 9 0 8 42 6.6·10−46 2.5·10−39 0 0 (46, 46, 46) (46, 46, 46) (0.33, 0.33, 0.33) (0.47, 0.47, 0.47)
5 3 1 4 21 1.7·10−11 3.8·10−11 0 0 (38, 38, 38) (34, 34, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
6 6 0 5 17 3.6·10−12 3.8·10−11 0 0 (44, 44, 44) (42, 42, 42) (0.35, 0.35, 0.35) (0.49, 0.49, 0.49)
7 2 0 1 5 2.9·10−3 8.8·10−3 3 3 (35, 35, 35) (30, 31, 30) (0.37, 0.37, 0.37) (0.54, 0.54, 0.53)
8 4 1 6 27 2.7·10−15 1.7·10−13 0 1 (40, 40, 41) (37, 38, 28) (0.36, 0.36, 0.36) (0.51, 0.51, 0.43)
9 3 1 5 24 7.5·10−13 2.5·10−11 1 3 (38, 38, 38) (34, 35, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
10 2 0 1 5 2.9·10−3 8.8·10−3 3 3 (35, 35, 30) (30, 30, 10) (0.38, 0.37, 0.36) (0.53, 0.53, 0.07)
11 5 0 5 21 2.3·10−13 4·10−12 0 0 (42, 42, 30) (40, 30, 30) (0.35, 0.35, 0.24) (0.5, 0.38, 0.39)
12 4 1 5 22 9.6·10−16 2.3·10−14 0 0 (40, 40, 40) (38, 38, 27) (0.36, 0.36, 0.36) (0.51, 0.51, 0.31)
13 5 2 6 19 10−13 6.8·10−13 0 0 (43, 42, 32) (40, 40, 40) (0.35, 0.35, 0.26) (0.5, 0.5, 0.5)
14 3 0 2 5 3.4·10−5 2·10−4 3 3 (38, 38, 28) (34, 25, 34) (0.37, 0.37, 0.27) (0.52, 0.45, 0.52)
15 2 1 3 17 1.3·10−7 9.4·10−7 3 3 (35, 35, 25) (30, 31, 30) (0.37, 0.37, 0.25) (0.54, 0.54, 0.53)
16 4 1 6 25 1.4·10−17 3.3·10−16 0 0 (40, 41, 31) (38, 38, 37) (0.36, 0.36, 0.23) (0.51, 0.51, 0.51)
17 4 1 7 30 5.5·10−21 2.2·10−19 0 0 (41, 41, 31) (38, 27, 18) (0.36, 0.36, 0.3) (0.51, 0.33, 0.26)
18 3 1 5 23 4.5·10−13 1.9·10−12 0 0 (38, 38, 8) (35, 35, 24) (0.37, 0.37, 0.03) (0.52, 0.52, 0.37)
19 3 1 5 18 3.9·10−15 3.6·10−14 0 0 (38, 28, 30) (35, 34, 24) (0.37, 0.29, 0.26) (0.52, 0.52, 0.38)
20 4 0 5 21 8.6·10−15 3.7·10−13 0 0 (40, 41, 20) (37, 37, 10) (0.36, 0.36, 0.18) (0.51, 0.51, 0.13)
21 3 0 3 14 4.9·10−7 1.8·10−6 3 3 (38, 38, 28) (34, 35, 34) (0.37, 0.37, 0.25) (0.52, 0.52, 0.52)
22 4 0 4 16 4.1·10−9 2.9·10−8 1 2 (40, 41, 20) (38, 37, 10) (0.36, 0.36, 0.22) (0.51, 0.51, 0.21)
23 4 1 7 36 1.6·10−15 7.7·10−14 0 0 (41, 41, 31) (38, 37, 28) (0.36, 0.36, 0.18) (0.51, 0.51, 0.37)
24 2 1 1 3 2.9·10−3 5.9·10−3 3 3 (35, 25, 30) (30, 31, 30) (0.38, 0.32, 0.36) (0.54, 0.54, 0.54)
25 2 0 4 21 0 0 0 0 (35, 35, 35) (30, 21, 30) (0.38, 0.37, 0.37) (0.53, 0.19, 0.53)
26 3 2 4 13 1.9·10−9 9.5·10−10 1 0 (38, 38, 38) (34, 34, 24) (0.37, 0.37, 0.37) (0.52, 0.52, 0.36)
27 2 0 1 7 2.9·10−3 5.9·10−3 3 3 (35, 35, 25) (30, 30, 30) (0.37, 0.37, 0.33) (0.53, 0.53, 0.53)
28 4 1 8 44 1.7·10−19 3.2·10−18 0 0 (40, 31, 40) (38, 38, 28) (0.36, 0.24, 0.36) (0.51, 0.51, 0.39)

Continued on next page

127

#v #p #o #c pU pB #SU #SB NU [103] NB[103] covU covB
29 3 4 7 39 3·10−23 1.7·10−24 0 0 (38, 38, 28) (34, 34, 24) (0.37, 0.37, 0.3) (0.52, 0.52, 0.46)
30 3 0 4 19 0 0 0 0 (38, 38, 20) (35, 35, 35) (0.37, 0.37, 0.22) (0.52, 0.52, 0.52)
31 4 1 5 29 5.3·10−17 6.5·10−15 0 0 (41, 41, 20) (38, 37, 38) (0.36, 0.36, 0.22) (0.51, 0.51, 0.51)
32 6 1 11 71 1.9·10−39 3.6·10−34 0 0 (43, 44, 44) (42, 42, 32) (0.35, 0.35, 0.35) (0.49, 0.49, 0.35)
33 4 0 3 7 2.9·10−7 2.2·10−6 3 3 (41, 40, 21) (37, 30, 37) (0.36, 0.36, 0.22) (0.51, 0.39, 0.51)
34 3 1 3 15 2.4·10−8 8.7·10−8 0 0 (38, 38, 28) (35, 24, 35) (0.37, 0.37, 0.15) (0.52, 0.46, 0.52)
35 3 2 7 33 8.2·10−18 2.7·10−17 0 0 (38, 39, 10) (34, 34, 35) (0.37, 0.37, 0.09) (0.52, 0.52, 0.52)
36 2 1 3 16 2.3·10−4 2.3·10−4 3 3 (35, 35, 25) (30, 30, 30) (0.38, 0.37, 0.23) (0.54, 0.54, 0.53)
37 3 1 7 30 1.4·10−13 1.5·10−13 0 0 (38, 38, 30) (34, 35, 20) (0.37, 0.37, 0.26) (0.52, 0.52, 0.23)
38 4 1 7 35 9.2·10−12 5.5·10−11 0 0 (40, 40, 30) (38, 38, 28) (0.36, 0.36, 0.25) (0.51, 0.51, 0.39)
39 2 1 3 8 2.3·10−4 3.4·10−4 3 3 (35, 35, 35) (30, 30, 10) (0.38, 0.38, 0.38) (0.54, 0.53, 0.1)
40 3 2 4 15 1.9·10−9 5·10−9 2 1 (38, 38, 38) (34, 34, 24) (0.37, 0.37, 0.37) (0.52, 0.52, 0.27)
41 4 0 3 8 2.9·10−7 2.2·10−6 3 3 (40, 40, 41) (38, 38, 27) (0.36, 0.36, 0.36) (0.51, 0.51, 0.46)
42 6 1 7 22 1.2·10−14 6.5·10−14 0 0 (43, 43, 44) (42, 42, 32) (0.35, 0.35, 0.35) (0.49, 0.49, 0.36)
43 5 3 13 63 1.3·10−25 1.3·10−24 0 0 (42, 42, 32) (40, 30, 30) (0.35, 0.35, 0.26) (0.5, 0.29, 0.33)
44 4 0 3 17 2.9·10−7 2.2·10−6 3 3 (41, 41, 41) (37, 38, 37) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
45 3 0 2 8 3.4·10−5 2·10−4 3 3 (38, 28, 38) (34, 34, 35) (0.37, 0.27, 0.37) (0.52, 0.52, 0.52)
46 4 2 5 17 1.6·10−11 5.4·10−11 0 0 (41, 40, 20) (38, 27, 38) (0.36, 0.36, 0.15) (0.51, 0.35, 0.51)
47 5 0 4 16 0 0 0 0 (42, 42, 32) (40, 40, 40) (0.35, 0.35, 0.27) (0.5, 0.5, 0.5)
48 3 0 3 17 4.9·10−7 1.2·10−6 3 2 (38, 38, 20) (35, 34, 35) (0.37, 0.37, 0.18) (0.52, 0.52, 0.52)
49 3 1 5 24 1.2·10−14 9.9·10−14 0 0 (38, 38, 38) (35, 35, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
50 4 0 7 39 8.3·10−20 6.2·10−18 0 0 (41, 31, 41) (37, 38, 38) (0.36, 0.31, 0.36) (0.51, 0.51, 0.51)
51 5 0 4 17 1.6·10−11 6.9·10−10 0 0 (42, 42, 42) (40, 30, 40) (0.35, 0.35, 0.35) (0.5, 0.4, 0.5)
52 2 1 3 15 9.2·10−6 7.7·10−6 3 3 (35, 35, 35) (30, 30, 30) (0.37, 0.37, 0.38) (0.53, 0.53, 0.53)
53 3 1 4 18 3.9·10−8 1.9·10−7 3 3 (38, 38, 38) (35, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
54 4 1 7 36 6.6·10−12 1.3·10−11 0 0 (41, 41, 40) (37, 38, 37) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
55 6 1 9 43 3.9·10−26 1.1·10−24 0 0 (43, 43, 40) (42, 42, 42) (0.35, 0.35, 0.33) (0.49, 0.49, 0.49)
56 4 1 9 47 3.8·10−17 1.1·10−16 0 0 (40, 30, 40) (38, 37, 38) (0.36, 0.3, 0.36) (0.51, 0.51, 0.51)
57 3 1 6 25 7.3·10−8 1.8·10−7 3 3 (38, 30, 38) (34, 34, 35) (0.37, 0.28, 0.37) (0.52, 0.52, 0.52)

Continued on next page

128
A

ppendix
B

.D
etailed

E
xperim

entalR
esults

1

#v #p #o #c pU pB #SU #SB NU [103] NB[103] covU covB
58 2 1 2 15 9.2·10−6 1.7·10−5 3 3 (35, 35, 35) (31, 30, 30) (0.37, 0.37, 0.38) (0.54, 0.54, 0.54)
59 3 1 4 27 2.4·10−8 3.7·10−8 1 2 (38, 38, 38) (35, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
60 5 0 4 30 4.2·10−15 4.3·10−13 0 0 (42, 42, 42) (40, 40, 40) (0.35, 0.35, 0.35) (0.5, 0.5, 0.5)
61 6 1 7 32 10−16 7·10−16 0 0 (44, 44, 44) (42, 42, 42) (0.35, 0.35, 0.35) (0.49, 0.49, 0.49)
62 5 1 5 24 2.4·10−12 1.4·10−11 0 0 (42, 42, 32) (40, 40, 40) (0.35, 0.35, 0.23) (0.5, 0.5, 0.5)
63 4 2 7 34 6.4·10−15 7.9·10−14 0 0 (41, 41, 40) (37, 37, 38) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
64 2 3 6 25 1.2·10−11 9.9·10−12 0 0 (35, 35, 35) (30, 30, 30) (0.37, 0.38, 0.38) (0.53, 0.53, 0.53)
65 4 1 7 27 6.6·10−12 7.7·10−11 0 0 (38, 38, 38) (36, 36, 36) (0.26, 0.26, 0.26) (0.35, 0.35, 0.35)
66 3 1 4 25 1.7·10−11 3.8·10−11 0 0 (38, 38, 38) (35, 34, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
67 3 1 5 27 4.5·10−13 1.9·10−12 0 0 (38, 38, 38) (34, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
68 3 1 4 17 3.9·10−8 7·10−8 3 2 (38, 38, 38) (35, 34, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
69 3 1 4 18 3.9·10−8 7·10−8 3 2 (38, 38, 38) (34, 34, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
70 5 2 7 26 1.5·10−15 2.4·10−14 0 0 (43, 42, 42) (40, 40, 40) (0.35, 0.35, 0.35) (0.5, 0.5, 0.5)
71 3 1 4 30 4.5·10−13 1.3·10−12 0 0 (38, 38, 38) (34, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
72 3 0 2 15 9.1·10−7 10−5 3 3 (38, 38, 30) (35, 35, 25) (0.37, 0.37, 0.22) (0.52, 0.52, 0.27)
73 2 0 1 13 1.2·10−4 6.8·10−4 3 3 (35, 35, 35) (30, 30, 30) (0.38, 0.37, 0.38) (0.54, 0.53, 0.54)
74 3 1 4 12 2.7·10−6 5.2·10−6 3 3 (38, 38, 38) (34, 34, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
75 3 1 3 7 2.7·10−6 5.2·10−6 3 3 (38, 38, 38) (34, 24, 35) (0.37, 0.37, 0.37) (0.52, 0.28, 0.52)
76 4 1 4 12 2.3·10−8 5.6·10−8 3 3 (40, 41, 40) (38, 28, 28) (0.36, 0.36, 0.36) (0.51, 0.26, 0.4)
77 3 1 4 12 2.7·10−6 3.4·10−6 3 3 (38, 38, 38) (35, 35, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
78 5 1 6 22 1.5·10−10 1.1·10−9 0 1 (42, 42, 42) (40, 40, 40) (0.35, 0.35, 0.35) (0.5, 0.5, 0.5)
79 5 1 11 42 1.8·10−23 1.6·10−22 0 0 (42, 42, 42) (40, 40, 40) (0.35, 0.35, 0.35) (0.5, 0.5, 0.5)
80 5 0 5 28 0 0 0 0 (42, 42, 42) (40, 40, 40) (0.35, 0.35, 0.35) (0.5, 0.5, 0.5)
81 8 0 10 46 1.6·10−26 1.2·10−23 0 0 (45, 46, 46) (44, 45, 45) (0.34, 0.34, 0.34) (0.47, 0.47, 0.47)
82 3 1 3 13 2.4·10−8 8.3·10−8 3 3 (38, 38, 38) (34, 25, 35) (0.37, 0.37, 0.37) (0.52, 0.37, 0.52)
83 4 0 3 7 2.9·10−7 2.2·10−6 2 3 (41, 40, 41) (38, 38, 38) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
84 2 2 3 15 1.6·10−7 6.3·10−8 3 3 (35, 35, 20) (30, 30, 30) (0.37, 0.37, 0.14) (0.54, 0.54, 0.53)
85 4 3 8 34 1.8·10−14 8.3·10−15 0 0 (41, 41, 41) (38, 38, 38) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
86 4 3 11 49 7.3·10−18 8.1·10−18 0 0 (40, 40, 40) (38, 38, 38) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)

Continued on next page

129

#v #p #o #c pU pB #SU #SB NU [103] NB[103] covU covB
87 3 1 5 18 2.7·10−6 5.2·10−6 3 3 (38, 38, 38) (34, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
88 3 2 5 24 8.6·10−16 1.4·10−15 0 0 (38, 38, 38) (35, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
89 6 5 14 74 1.4·10−51 1.1·10−47 0 0 (44, 43, 43) (42, 42, 42) (0.35, 0.35, 0.35) (0.49, 0.49, 0.49)
90 4 0 4 27 1.2·10−14 1.5·10−13 0 0 (40, 40, 40) (38, 37, 38) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
91 2 1 3 12 2.3·10−4 2.3·10−4 3 3 (35, 35, 35) (31, 30, 30) (0.37, 0.37, 0.37) (0.53, 0.53, 0.53)
92 4 1 6 23 4.6·10−10 3.2·10−9 0 0 (40, 41, 41) (38, 38, 38) (0.36, 0.36, 0.36) (0.51, 0.51, 0.51)
93 5 1 6 26 1.9·10−14 1.6·10−13 0 0 (42, 42, 32) (39, 40, 40) (0.35, 0.35, 0.22) (0.5, 0.5, 0.5)
94 3 2 5 16 2.7·10−11 6.7·10−11 0 0 (38, 38, 38) (35, 25, 35) (0.37, 0.37, 0.37) (0.52, 0.26, 0.52)
95 3 1 5 26 1.9·10−9 6·10−9 2 2 (38, 38, 38) (35, 35, 34) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
96 3 1 4 16 2.7·10−6 3.4·10−6 3 3 (38, 38, 38) (35, 34, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
97 3 1 4 24 3.4·10−10 7.5·10−10 2 0 (38, 38, 38) (34, 34, 35) (0.37, 0.37, 0.37) (0.52, 0.52, 0.52)
98 5 1 11 52 2.5·10−21 1.7·10−19 0 0 (42, 42, 42) (40, 40, 40) (0.35, 0.35, 0.35) (0.5, 0.5, 0.5)
99 4 1 4 18 2.3·10−8 8.3·10−8 1 3 (30, 41, 41) (37, 37, 37) (0.32, 0.36, 0.36) (0.51, 0.51, 0.51)

131

Appendix C

Detailed Experimental Results 2

In Chapter 3, we report on computational experiments that compare the performance
of ProGED using a universal arithmetic PCFG and its dimensionally-consistent version,
as well as DSO, a state-of-the-art deep learning method. The following table gives the
expression with the lowest error, generated by the dimensionally-consistent grammar, for
each problem from the Feynman database, as well as its ReRMSE. We rounded the values
of the error and the numerical parameters to three decimals for easier reading.

132
A

ppendix
C

.D
etailed

E
xperim

entalR
esults

2

filename error expression
0 I.6.2a 6.17E-15 0.399*exp(-0.5*theta**2)
1 I.6.2 4.95E-03 -0.171/theta - 1.058/(sigma*(0.133 - exp(theta/sigma)))
2 I.6.2b 2.61E-02 0.416 - 0.291*(sigma + sin(0.282*sigma/theta1 + theta + theta1**2 - 7.2*theta1 + 161.576 - 8.2/theta1)/sigma)/sigma
3 I.8.14 6.25E-01 -2.164*x1*(tanh(0.286*exp(1.784*x2/x1)) - 1.094 - 0.022*y1/x2) - x1 + x2
4 I.9.18 6.49E-02 1.026*G*m1*m2/(x1*z1)
5 I.10.7 0.00E+00 m_0/(1 - v**2/c**2)**0.5
6 I.11.19 2.21E+00 x1*y1 + 1.008*x2*y3 + 0.963*x3*y2
7 I.12.1 0.00E+00 Nn*mu
8 I.12.2 3.50E-17 0.08*q1*q2/(epsilon*r**2)
9 I.12.4 1.08E-17 0.08*q1/(epsilon*r**2)
10 I.12.5 9.63E-12 Ef*q2
11 I.12.11 9.11E-16 q*(B*v*sin(theta) + Ef)
12 I.13.4 4.56E+00 0.344*m*(2*u + 1.091*w)*(v + 0.548*w)
13 I.13.12 6.78E+00 -0.842*G*m1*m2/(r1 - 5.406*r2)
14 I.14.3 0.00E+00 1.0*g*m*z
15 I.14.4 0.00E+00 0.5*k_spring*x**2
16 I.15.3x 4.80E-03 1.001*(-t*u + x)/cos(u/c)
17 I.15.3t 1.96E-03 0.998*t + u*(t - 1.844*x/u)/(c*(2.037*c/u - 0.907))
18 I.15.1 7.88E-13 m_0*v/cos(asin(v/c) - 25.133)
19 I.16.6 7.46E-02 c + 0.672*(1.018*c - v)*cos(0.556*c/u + 13.602)
20 I.18.4 2.22E-08 r2 + (r1 - 1.0*r2)/(1.0 + 1.0*m2/m1)
21 I.18.12 2.32E-16 1.0*F*r*sin(theta)
22 I.18.14 9.11E-16 m*r*v*sin(1.0*theta)
23 I.24.6 3.77E+00 0.532*m*omega*omega_0*x**2
24 I.25.13 0.00E+00 1.0*q/cp
25 I.26.2 6.82E-03 1.064*tan(0.908*n*sin(theta2))

133

filename error expression
26 I.27.6 7.98E-17 d2/(n + 1.0*d2/d1)
27 I.29.4 0.00E+00 1.0*omega/c
28 I.29.16 9.29E-01 x1*cos(0.703*theta1 - 0.734*theta2 + 3.232) + 0.739*x1 + x2
29 I.30.3 1.12E+00 -0.802*Int_0*cos(n*theta) + 0.597*Int_0 + 0.597*Int_0/theta
30 I.30.5 6.19E-04 sinh(0.123 + 0.971*lambd/(d*n)) - 0.122
31 I.32.5 none
32 I.32.17 3.77E+00 0.198*Ef**2*c*epsilon*r**2
33 I.34.8 1.52E-15 B*q*v/p
34 I.34.1 0.00E+00 omega_0/(1 - v/c)
35 I.34.14 4.48E-15 omega_0*(1.0 + v/c)/(1 - v**2/c**2)**0.5
36 I.34.27 1.29E-16 0.5*h*omega/pi
37 I.37.4 2.64E-01 -(1.756*I1 + 1.737*I2)*sin(0.027*delta**3 - delta + sin(0.189*delta) - 13.931)
38 I.38.12 6.28E-15 0.318*epsilon*h**2/(m*q**2)
39 I.39.1 1.07E-15 V*(0.416*pr + pr*sinh(1)**0.5)
40 I.39.11 4.90E-16 V*pr/(gamm - 1)
41 I.39.22 1.03E-15 T*kb*n/V
42 I.40.1 4.73E-01 -0.012*n_0*(5.783*g - 28.716) + 0.052
43 I.41.16 2.73E+01 T*kb*omega**2/c**2
44 I.43.16 1.39E-15 Volt*mu_drift*q/d
45 I.43.31 2.66E-15 1.0*T*kb*mob
46 I.43.43 2.75E-16 1.0*kb*v/(A*(gamm - 1))
47 I.44.4 1.71E+00 -8.269*T*kb*n/(7.82*V2/(0.042*V1*n + 0.835*V1 - V2) + n)
48 I.47.23 none
49 I.48.2 2.76E-03 c**2*m/(atan(1.662*cos(v/c) - 0.84) + 0.312)

134
A

ppendix
C

.D
etailed

E
xperim

entalR
esults

2

filename error expression
50 I.50.26 2.06E+00 1.435*x1/(-alpha + 4.227 + 2.905*cos(omega*t + 28.269)/alpha)
51 II.2.42 7.99E-16 1.0*A*kappa*(-T1 + T2)/d
52 II.3.24 2.30E-17 0.08*Pwr/r**2
53 II.4.23 1.79E-17 0.08*q/(epsilon*r)
54 II.6.11 6.71E-16 0.08*p_d*cos(theta)/(epsilon*r**2)
55 II.6.15a 2.87E-01 p_d/(epsilon*r**3)
56 II.6.15b 2.71E-02 -0.108*p_d*(theta - 1.62)/(epsilon*r**3)
57 II.8.7 1.44E-17 0.048*q**2/(d*epsilon)
58 II.8.31 0.00E+00 0.5*Ef**2*epsilon
59 II.10.9 3.49E-17 sigma_den/(epsilon*(chi + 1.0))
60 II.11.3 2.46E-02 1.239*Ef*q/(m*omega_0**2)
61 II.11.17 1.82E+00 0.318*n_0*(-theta - 0.005*tan(16.492*n_0) + 6.942/theta)
62 II.11.20 none
63 II.11.27 2.85E-14 Ef*alpha*epsilon*n/(-0.333*alpha*n + 1)
64 II.11.28 1.94E-08 -3.0*n/(n - 3.0/alpha) + 1.0
65 II.13.17 8.53E-03 0.464/(c**2*epsilon*r)
66 II.13.23 0.00E+00 rho_c_0/(1 - v**2/c**2)**0.5
67 II.13.34 5.38E-06 1.0*rho_c_0*v/sin(asin(1.0*v/c) - 10.996)
68 II.15.4 3.10E-16 -B*mom*cos(theta)
69 II.15.5 3.51E-16 -Ef*p_d*cos(theta)
70 II.21.32 9.39E-17 q/(epsilon*r*(12.566 - 12.566*v/c))
71 II.24.17 1.17E-04 omega*cos(1.28*tan(2.434*c/(d*omega)) + 0.002)/c
72 II.27.16 1.05E-14 1.0*Ef**2*c*epsilon
73 II.27.18 0.00E+00 1.0*Ef**2*epsilon
74 II.34.2a 3.12E-16 q*v/(r*cos(1) + 5.743*r)
75 II.34.2 1.43E-15 0.5*q*r*v
76 II.34.11 6.13E-16 0.5*B*g_*q/m

135

filename error expression
77 II.34.29a 1.29E-16 0.08*h*q/m
78 II.34.29b 1.06E-13 6.283*B*Jz*g_*mom/h
79 II.35.18 3.85E-01 -0.217*mom - 0.124*n_0**2 + 0.786*n_0
80 II.35.21 1.68E+00 0.73*mom*n_rho*atan(0.585*B + 0.212)
81 II.36.38 1.72E+00 alpha*(-0.463*T - 0.837) + 2*alpha + 1.217
82 II.37.1 3.38E-15 B*(mom*(chi - 1.0) + 2*mom)
83 II.38.3 0.00E+00 A*Y*x/d
84 II.38.14 0.00E+00 Y/(2*sigma + 2.0)
85 III.4.32 none
86 III.4.33 2.94E-03 -0.944*T*kb - 1.944*kb*(-T + T/(24.065*T*kb/(h*omega) + 0.834))
87 III.7.38 1.18E-14 -4.498*B*mom/(-h + h/tan(1))
88 III.8.54 none
89 III.9.52 1.16E+01 -tan(0.688*omega_0/(-omega - 0.979*omega_0**2/omega) - 20.04) - 2.719
90 III.10.19 4.43E-01 mom*(0.59*Bx - 8.83*By/(-9.9 - 14.313*Bz/By) + 0.819*Bz)
91 III.12.43 3.05E-16 0.051*pi*h*n
92 III.13.18 5.05E-13 12.566*E_n*d**2*k/h
93 III.14.14 6.22E+00 I_0*(1.211*exp(tan(1.998*q)) + 1.044)
94 III.15.12 3.16E-16 2.0*U*(1 - cos(d*k))
95 III.15.14 3.32E-17 0.013*h**2/(E_n*d**2)
96 III.15.27 7.50E-16 6.283*alpha/(d*n)
97 III.17.37 2.86E-01 -0.848*alpha*bet*cos(1.135*theta + 21.559) + 0.252 + 1.021*bet/alpha
98 III.19.51 none
99 III.21.20 1.23E-15 -1.0*A_vec*q*rho_c_0/m

137

References

[1] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning and Data Mining.
Springer, 2017.

[2] S. Džeroski, P. Langley, and L. Todorovski, “Computational discovery of scientific
knowledge,” in Computational Discovery of Scientific Knowledge, Springer, 2007,
pp. 1–14.

[3] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the
National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[4] A. P. Parkes, A Concise Introduction to Languages and Machines. Springer, 2008.

[5] L. Todorovski and S. Džeroski, “Declarative bias in equation discovery,” in Pro-
ceedings of the Fourteenth International Conference on Machine Learning, ICML,
Morgan Kaufmann, 1997, pp. 376–384.

[6] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” Science, vol. 324, no. 5923, pp. 81–85, 2009.

[7] P. D. Grünwald, The Minimum Description Length Principle. MIT press, 2007.

[8] R. Guimerà, I. Reichardt, A. Aguilar-Mogas, et al., “A Bayesian machine scientist
to aid in the solution of challenging scientific problems,” Science Advances, vol. 6,
no. 5, eaav6971, 2020.

[9] J. Tanevski, L. Todorovski, and S. Džeroski, “Combinatorial search for selecting
the structure of models of dynamical systems with equation discovery,” Engineering
Applications of Artificial Intelligence, vol. 89, p. 103 423, 2020.

[10] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Sys-
tems. Cambridge University Press, 1995.

[11] W. Bridewell and P. Langley, “Two kinds of knowledge in scientific discovery,” Topics
in Cognitive Science, vol. 2, no. 1, pp. 36–52, 2010.

[12] W. Bridewell, P. Langley, L. Todorovski, and S. Džeroski, “Inductive process model-
ing,” Machine Learning, vol. 71, pp. 1–32, 2008.

[13] S.-M. Udrescu and M. Tegmark, “AI Feynman: A physics-inspired method for sym-
bolic regression,” Science Advances, vol. 6, no. 16, 2020.

[14] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T.
Kim, “Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients,” arXiv:1912.04871, 2019.

[15] K. Tashkova, “Parameter identification in nonlinear dynamic systems with meta-
heuristic approaches,” PhD thesis, Jožef Stefan International Postgraduate School,
Ljubljana, 2012.

[16] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.

138 References

[17] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[18] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. SIAM, 2019.

[19] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine In-
telligence. John Wiley & Sons, 2006.

[20] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Compu-
tational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[21] P. Langley, “Data-driven discovery of physical laws,” Cognitive Science, vol. 5, no. 1,
pp. 31–54, 1981.

[22] B. W. Koehn and J. M. Zytkow, “Experimenting and theorizing in theory formation,”
in Proceedings of the ACM SIGART International Symposium on Methodologies for
Intelligent Systems, 1986, pp. 296–307.

[23] B. C. Falkenhainer and R. S. Michalski, “Integrating quantitative and qualitative
discovery: The abacus system,” Machine Learning, vol. 1, no. 4, pp. 367–401, 1986.

[24] S. Dzeroski and L. Todorovski, “Discovering dynamics: From inductive logic pro-
gramming to machine discovery,” Journal of Intelligent Information Systems, vol. 4,
no. 1, pp. 89–108, 1995.

[25] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg, “Dendral: A
case study of the first expert system for scientific hypothesis formation,” Artificial
Intelligence, vol. 61, no. 2, pp. 209–261, 1993.

[26] D. Čerepnalkoski, “Process-based models of dynamical systems: Representation and
induction,” PhD thesis, Jožef Stefan International Postgraduate School, Ljubljana,
2013.

[27] J. Tanevski, N. Simidjievski, L. Todorovski, and S. Džeroski, “Process-based mod-
eling and design of dynamical systems,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2017, pp. 378–382.

[28] M. M. Kokar, “Determining arguments of invariant functional descriptions,” Machine
Learning, vol. 1, no. 4, pp. 403–422, 1986.

[29] T. Washio and H. Motoda, “Discovery of first-principle equations based on scale-
type-based and data-driven reasoning,” Knowledge-Based Systems, vol. 10, no. 7,
pp. 403–411, 1998.

[30] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992, vol. 1.

[31] S. Sun, R. Ouyang, B. Zhang, and T.-Y. Zhang, “Data-driven discovery of formulas
by symbolic regression,” MRS Bulletin, vol. 44, no. 7, pp. 559–564, 2019.

[32] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill, “Grammar-
based genetic programming: A survey,” Genetic Programming and Evolvable Ma-
chines, vol. 11, no. 3-4, pp. 365–396, 2010.

[33] C. Ryan, J. J. Collins, and M. O. Neill, “Grammatical evolution: Evolving pro-
grams for an arbitrary language,” in European Conference on Genetic Programming,
Springer, 1998, pp. 83–96.

[34] G. Martius and C. H. Lampert, “Extrapolation and learning equations,” arXiv preprint
arXiv:1610.02995, 2016.

[35] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A sur-
vey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

References 139

[36] B. K. Petersen, C. P. Santiago, and M. Landajuela, “Incorporating domain knowledge
into neural-guided search via in situ priors and constraints,” Lawrence Livermore
National Lab. Livermore, CA (United States), Tech. Rep., 2021.

[37] L. Crochepierre, L. Boudjeloud-Assala, and V. Barbesant, “A reinforcement learning
approach to domain-knowledge inclusion using grammar guided symbolic regression,”
arXiv preprint arXiv:2202.04367, 2022.

[38] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational autoen-
coder,” in International Conference on Machine Learning, 2017, pp. 1945–1954.

[39] S. Mežnar, S. Džeroski, and L. Todorovski, “Efficient generator of mathematical
expressions for symbolic regression,” Machine Learning, vol. 112, pp. 4563–4596, 4
2023.

[40] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, pp. 5998–6008, 2017.

[41] M. Valipour, B. You, M. Panju, and A. Ghodsi, “SymbolicGPT: A generative trans-
former model for symbolic regression,” arXiv:2106.14131, 2021.

[42] P.-A. Kamienny, S. d’Ascoli, G. Lample, and F. Charton, “End-to-end symbolic
regression with transformers,” Advances in Neural Information Processing Systems,
vol. 35, pp. 10 269–10 281, 2022.

[43] A. Ratle and M. Sebag, “Grammar-guided genetic programming and dimensional
consistency: Application to non-parametric identification in mechanics,” Applied Soft
Computing, vol. 1, no. 1, pp. 105–118, 2001.

[44] F. O. de França, “A greedy search tree heuristic for symbolic regression,” Information
Sciences, vol. 442, pp. 18–32, 2018.

[45] E. Buckingham, “On physically similar systems,” Physical Review, vol. 4, no. 4, p. 345,
1914.

[46] M. Keijzer and V. Babovic, “Dimensionally aware genetic programming,” in 1st An-
nual Conference on Genetic and Evolutionary Computation, vol. 2, 1999, pp. 1069–
1076.

[47] V. Tsoutsouras, S. Willis, and P. Stanley-Marbell, “Deriving equations from sensor
data using dimensional function synthesis,” Communications of the ACM, vol. 64,
no. 7, pp. 91–99, 2021.

[48] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark, “AI Feynman
2.0: Pareto-optimal symbolic regression exploiting graph modularity,” Advances in
Neural Information Processing Systems, vol. 33, pp. 4860–4871, 2020.

[49] M. Sipser, “Introduction to the theory of computation,” ACM SIGACT News, vol. 27,
no. 1, pp. 27–29, 1996.

[50] S. Geman and M. Johnson, “Probabilistic grammars and their applications,” Interna-
tional Encyclopedia of the Social & Behavioral Sciences, vol. 2002, pp. 12 075–12 082,
2002.

[51] Z. Chi, “Statistical properties of probabilistic context-free grammars,” Computational
Linguistics, vol. 25, no. 1, pp. 131–160, 1999.

[52] A. Meurer, C. P. Smith, M. Paprocki, et al., “Sympy: Symbolic computing in Python,”
PeerJ Computer Science, vol. 3, 2017.

[53] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing
text with the natural language toolkit. " O’Reilly Media", 2009.

140 References

[54] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global Optimization, vol. 11,
pp. 341–359, 1997.

[55] Ž. Lukšič, J. Tanevski, S. Džeroski, and L. Todorovski, “Meta-model framework for
surrogate-based parameter estimation in dynamical systems,” IEEE Access, vol. 7,
pp. 181 829–181 841, 2019.

[56] P. Lee, Bayesian Statistics: An Introduction, 4th Edition. John Wiley & Sons, 2012.

[57] C. Manning and H. Schutze, Foundations of Statistical Natural Language Processing.
MIT Press, 1999.

[58] S. G. Sterrett, “Physically similar systems – a history of the concept,” in Springer
Handbook of Model-based Science, Springer, 2017, pp. 377–411.

[59] G. I. Barenblatt, Scaling. Cambridge University Press, 2003.

[60] X. Shi, M. P. Brenner, and S. R. Nagel, “A cascade of structure in a drop falling
from a faucet,” Science, vol. 265, no. 5169, pp. 219–222, 1994.

[61] M. F. Modest and S. Mazumder, Radiative Heat Transfer. Academic Press, 1993.

[62] W. R. Stahl, “Dimensional analysis in mathematical biology,” The Bulletin of Math-
ematical Biophysics, vol. 24, no. 1, pp. 81–108, 1962.

[63] A. Seminara, T. E. Angelini, J. N. Wilking, et al., “Osmotic spreading of Bacil-
lus subtilis biofilms driven by an extracellular matrix,” Proceedings of the National
Academy of Sciences, vol. 109, no. 4, pp. 1116–1121, 2012.

[64] M. Pohl, A. Ristig, W. Schachermayer, and L. Tangpi, “The amazing power of dimen-
sional analysis: Quantifying market impact,” Market Microstructure and Liquidity,
vol. 3, p. 1 850 004, 2017.

[65] R. Kurth, Dimensional Analysis and Group Theory in Astrophysics. Elsevier, 2013.

[66] P.-A. Kamienny, S. d’Ascoli, G. Lample, and F. Charton, “End-to-end symbolic
regression with transformers,” arXiv:2204.10532, 2022.

[67] M. M. Kokar, “Determining arguments of invariant functional descriptions,” Machine
Learning, vol. 1, no. 4, pp. 403–422, 1986.

[68] T. Washio and H. Motoda, “Discovery of first-principle equations based on scale-
type-based and data-driven reasoning,” Knowledge-Based Systems, vol. 10, no. 7,
pp. 403–411, 1998.

[69] M. Durasevic, D. Jakobovic, M. Scoczynski Ribeiro Martins, S. Picek, and M. Wag-
ner, “Fitness landscape analysis of dimensionally-aware genetic programming fea-
turing Feynman equations,” in Proceedings of the 16th International Conference on
Parallel Problem Solving from Nature, Springer, 2020, pp. 111–124.

[70] J. Bakarji, J. Callaham, S. L. Brunton, and J. N. Kutz, “Dimensionally consistent
learning with Buckingham Pi,” arXiv:2202.04643, 2022.

[71] L. Crochepierre, L. Boudjeloud-Assala, and V. Barbesant, “A reinforcement learning
approach to domain-knowledge inclusion using grammar guided symbolic regression,”
arXiv:2202.04367, 2022.

[72] P. Deransart and M. Jourdan, “Attribute grammars and their applications,” in Pro-
ceedings of the International Conference WAGA, vol. 461, Springer, 1990.

[73] J. Brence, L. Todorovski, and S. Džeroski, “Probabilistic grammars for equation
discovery,” Knowledge-Based Systems, vol. 224, p. 107 077, 2021.

References 141

[74] J. Vonn Neumann, “Various techniques used in connection with random digits,” Na-
tional Bureau Standards, vol. 12, pp. 36–38, 1951.

[75] I. J. Good, Probability and the weighing of evidence. Charles Griffing, 1950.

[76] I. J. Good, The Estimation of Probabilities. MIT Press, 1965.

[77] B. Cestnik, “Estimating probabilities: A crucial task in machine learning,” in Proc-
ceedings of the 9th European Conference on Artificial Intelligence, 1990, pp. 147–
149.

[78] B. Cestnik and I. Bratko, “On estimating probabilities in tree pruning,” in Proceedings
of Machine Learning – European Working Session on Learning 91, Springer, 1991.

[79] S. Džeroski, B. Cestnik, and I. Petrovski, “Using the m-estimate in rule induction,”
Journal of Computing and Information Technology, vol. 1, no. 1, pp. 37–46, 1993.

[80] M. Chaushevska, L. Todorovski, J. Brence, and S. Džeroski, “Learning the probabili-
ties in probabilistic context-free grammars for arithmetical expressions from equation
corpora,” in Proceedings of the 25th International Multiconference Information Soci-
ety, Jožef Stefan Institute, Ljubljana, Slovenia, vol. A, 2022, pp. 11–14.

[81] T. S. C. Foundation. “ISO International Standard ISO/IEC 14882:2020(E) – Pro-
gramming Language C++.” (2020), [Online]. Available: https://isocpp.org/std/
the-standard.

[82] R. Team. “Rust programming language.” (2024), [Online]. Available: https://www.
rust-lang.org/.

[83] O. Fajardo-Fontiveros, I. Reichardt, H. R. De Los Rios, J. Duch, M. Sales-Pardo,
and R. Guimerà, “Fundamental limits to learning closed-form mathematical models
from data,” Nature Communications, vol. 14, no. 1, p. 1043, 2023.

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://www.rust-lang.org/
https://www.rust-lang.org/

143

Bibliography

Publications Related to the Thesis

Journal Articles

J. Brence, L. Todorovski, and S. Džeroski, “Probabilistic grammars for equation discovery,”
Knowledge-Based Systems, vol. 224, p. 107 077, 2021.

J. Brence, S. Džeroski, and L. Todorovski, “Dimensionally-consistent equation discovery
through probabilistic attribute grammars,” Information Sciences, vol. 632, pp. 742–756,
2023.

Conference Paper

B. Gec, N. Omejc, J. Brence, S. Džeroski, and L. Todorovski, “Discovery of differential
equations using probabilistic grammars,” in Proceedings of the 25th International Con-
ference on Discovery Science, Springer, 2022, pp. 22–31.

M. Chaushevska, L. Todorovski, J. Brence, and S. Džeroski, “Learning the probabilities
in probabilistic context-free grammars for arithmetical expressions from equation cor-
pora,” in Proceedings of the 25th International Multiconference Information Society,
Jožef Stefan Institute, Ljubljana, Slovenia, vol. A, 2022, pp. 11–14.

Other Publications

Journal Articles

J. Brence, L. Cmok, N. Sebastián, A. Mertelj, D. Lisjak, and I. Drevenšek-Olenik, “Optical
second harmonic generation in a ferromagnetic liquid crystal,” Soft Matter, vol. 15,
no. 43, pp. 8758–8765, 2019.

J. Brence, J. Tanevski, J. Adams, E. Malina, and S. Džeroski, “Surrogate models of ra-
diative transfer codes for atmospheric trace gas retrievals from satellite observations,”
Machine Learning, vol. 112, no. 4, pp. 1337–1363, 2023.

J. Brence, D. Mihailović, V. V. Kabanov, L. Todorovski, S. Džeroski, and J. Vodeb, “Boost-
ing the performance of quantum annealers using machine learning,” Quantum Machine
Intelligence, vol. 5, no. 1, p. 4, 2023.

145

Biography

Jure Brence was born on 25. October 1993 in Ljubljana. He finished his primary edu-
cation at “II. OŠ Rogaška Slatina” and his secondary education at “Šolski center Rogaška
Slatina”, program “Splošna gimnazija”. He was awarded the golden award for his results
at the national exam (matura) in 2012 and began his study of Physics at the Faculty of
Mathematics and Physics (FMF), University of Ljubljana, in the same year.

During his second year of bachelor’s studies, he was involved in research at the Jožef
Stefan Institute (JSI) as a student at the Department of Intelligent Systems under the
supervision of Prof. Dr. Matjaž Gams. During his third and the additional fourth year,
he was closely involved in research work at the ultracold atoms laboratory, Department of
Condensed Matter Physics (JSI) under the supervision of Dr. Peter Jeglič.

After completing his bachelor’s degree in 2016, he continued his studies of Technical
Physics and Photonics (FMF) at the master’s level. He took part in an Erasmus student
exchange in Vienna, Austria. During the second and the additional third year of studies,
he was intensively involved in research work in the optics group at the Department of
Complex Matter (JSI) under the supervision of Prof. Dr. Irena Drevenšek. The research
culminated with the defense of his Master’s thesis, titled “Second harmonic generation in
feromagnetic liquid crystals”. The thesis was awarded the faculty Prešeren prize.

In 2019, he enrolled in the PhD study program Information and Communication Tech-
nologies at the Jožef Stefan International Postgraduate School and started working as a
research assistant at the Department of Knowledge Technologies (JSI) under the supervi-
sion of Prof. Dr. Sašo Džeroski and Prof. Dr. Ljupčo Todorovski.

His research interests lie in the area of machine learning, especially its use in physics and
other natural sciences, with a focus on methods of equation discovery. He has published
several scientific papers, presented his work at international conferences and taken part in
summer and winter schools on related topics.

	Title
	Acknowledgments
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Equation Discovery
	1.1.1 Types of equations
	1.1.2 Structure identification
	1.1.3 Parameter estimation

	1.2 Existing Work on Equation Discovery
	1.2.1 Knowledge-driven equation discovery
	1.2.2 Dimensional analysis
	1.2.3 Genetic programming
	1.2.4 Sparse linear regression
	1.2.5 Composite approaches
	1.2.6 Probabilistic approaches
	1.2.7 Neural networks
	1.2.8 Reinforcement learning
	1.2.9 Generative approaches

	1.3 Challenges in Equation Discovery
	1.3.1 Representation of mathematical expressions
	1.3.2 Constraining the search space
	1.3.3 Background knowledge representation
	1.3.4 Interpretability of discovered equations

	1.4 Probabilistic Grammar-Based Equation Discovery
	1.4.1 Purpose
	1.4.2 Goals
	1.4.2.1 Design
	1.4.2.2 Implementation
	1.4.2.3 Evaluation

	1.4.3 Hypotheses
	1.4.4 Scientific contributions

	1.5 Organization of the Thesis

	2 Probabilistic Grammars for Equation Discovery
	2.1 Context-Free Grammars
	2.1.1 Probabilistic context-free grammars
	2.1.2 Grammars as generators
	2.1.3 The number of parse trees with limited height
	2.1.4 Parse tree probabilities and grammar coverage

	2.2 PCFGs for Mathematical Expressions
	2.2.1 Ambiguity
	2.2.2 Variables in PCFGs for mathematical expressions
	2.2.3 Numerical constants in PCFGs for mathematical expressions
	2.2.4 Examples of general-purpose grammars
	2.2.5 Special functions in grammars for mathematical expressions

	2.3 Search Space Visualization
	2.3.1 Aggregated expression trees

	2.4 Theoretical Analysis
	2.4.1 The Feynman symbolic regression database
	2.4.2 Expected number of parse trees
	2.4.3 Probabilistic vs. deterministic grammar
	2.4.4 Biased vs. unbiased probabilistic grammar

	2.5 Empirical Analysis
	2.5.1 Monte-Carlo sampling algorithm
	2.5.2 Empirical setup
	2.5.3 Results
	2.5.4 Resampling
	2.5.5 Theoretical expectation of success rate
	2.5.6 Analysis of the results

	3 Attribute Grammars for Dimensional Consistency
	3.1 Existing Work on Dimensionally-Consistent Equation Discovery
	3.2 Dimensions and Measurement Units
	3.3 Probabilistic Attribute Grammars (PAGs)
	3.4 From PAG to PCFG
	3.5 The Unit Set and Auxiliary Units
	3.6 Effect on the Search Space Size
	3.7 Random Expression Generation
	3.8 Empirical Analysis
	3.8.1 Experimental setup
	3.8.2 Deep symbolic optimization
	3.8.3 Results

	4 Probabilistic Attribute Grammars
	4.1 Rethinking Probabilistic Attribute Grammars
	4.1.1 On attributes
	4.1.2 On attribute rules

	4.2 Direct Sampling Algorithm
	4.3 Search Space Constriction
	4.4 Example: Dimensionally-Consistent Expressions
	4.4.1 Comparison to dimensionally-consistent PCFGs

	4.5 Example: Dynamical Systems
	4.5.1 Coupling terms
	4.5.2 Chemical kinetics

	4.6 Example: Electronic Circuits
	4.6.1 RLC circuits
	4.6.2 Derivation example
	4.6.3 PAGs for RLC circuits
	4.6.4 Discussion

	5 Bayesian Updating
	5.1 m-Estimate Updating Algorithm
	5.1.1 m-estimate
	5.1.2 Production rule probability updates

	5.2 Empirical Evaluation
	5.2.1 Experimental setup
	5.2.2 Results: The error-of-fit
	5.2.3 Results: Production rule probabilities
	5.2.4 Results: Posterior probabilities
	5.2.5 Results: Aggregated expression trees

	5.3 Computational Efficiency and Parallelization

	6 Conclusions
	6.1 Summary
	6.1.1 Probabilistic context-free grammars
	6.1.2 Dimensionally-consistent equation discovery
	6.1.3 Probabilistic attribute grammars
	6.1.4 Bayesian updating

	6.2 Discussion
	6.2.1 Parsimony and background knowledge
	6.2.2 Theoretical analysis and probability theory
	6.2.3 Accessibility of PCFGs and PAGs
	6.2.4 Computational efficiency

	6.3 Hypotheses
	6.3.1 Hypothesis 1
	6.3.2 Hypothesis 2
	6.3.3 Hypothesis 3

	6.4 Scientific Contributions
	6.5 Further Work

	Appendix A Feynman Database for Symbolic Regression
	Appendix B Detailed Experimental Results 1
	Appendix C Detailed Experimental Results 2
	References
	Bibliography
	Biography

