
REPRESENTING AND EXPLOITING
BENCHMARKING DATA FOR OPTIMISATION

AND LEARNING

Ana Kostovska

Doctoral Dissertation
Jožef Stefan International Postgraduate School
Ljubljana, Slovenia

Supervisor: Asst. Prof. Panče Panov, Department of Knowledge Technologies, Jožef Ste-
fan Institute, Ljubljana, Slovenia
Co-Supervisor: Prof. Dr. Sašo Džeroski, Department of Knowledge Technologies, Jožef
Stefan Institute, Ljubljana, Slovenia
Co-Supervisor: Asst. Prof. Tome Eftimov, Computer Systems Department, Jožef Stefan
Institute, Ljubljana, Slovenia

Evaluation Board:
Prof. Dr. Peter Korošec, Chair, Computer Systems Department, Jožef Stefan Institute,
Ljubljana, Slovenia
Dr. Carola Doerr, Member, Sorbonne Université, CNRS, Paris, France
Prof. Dr. Larisa Soldatova, Member, Goldsmiths, University of London, The United King-
dom

Ana Kostovska

REPRESENTING AND EXPLOITING BENCHMARKING
DATA FOR OPTIMISATION AND LEARNING

Doctoral Dissertation

PREDSTAVITEV IN UPORABA PODATKOV IZ
PRIMERJALNIH ŠTUDIJ ZA OPTIMIZACIJO IN UČENJE

Doktorska disertacija

Supervisor: Asst. Prof. Panče Panov

Co-Supervisor: Prof. Dr. Sašo Džeroski

Co-Supervisor: Asst. Prof. Tome Eftimov

Ljubljana, Slovenia, December 2024

v

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors. I
am sincerely thankful to Asst. Prof. Panče Panov for his guidance throughout my PhD
journey and to Prof. Dr. Sašo Džeroski for providing me with the opportunity to embark
on this academic path. To Asst. Prof. Tome Eftimov, whose unwavering support has
been instrumental during my PhD studies, thank you for introducing me to the fascinating
world of research and for making every step of this process more enjoyable and fulfilling.
Without your mentorship and encouragement, none of this would have been possible.

I would also like to thank the members of the evaluation board – Prof. Dr. Peter Korošec,
Dr. Carola Doerr, and Prof. Dr. Larisa Soldatova – for their time, effort, and invaluable
feedback during the review of my work.

I am deeply grateful to my colleagues at the Department of Knowledge Technologies
for their support and collaboration throughout my PhD. I also extend my appreciation to
the Computer Systems Department for always making me feel welcomed and part of their
team.

My sincere thanks go to the SPECIES Society for supporting my research visit to LIP6,
which was a pivotal experience in my academic development. I am especially grateful to
the entire RO team at LIP6 for their warm welcome. In particular, I extend my deepest
gratitude to Dr. Carola Doerr for being an exceptional host and for providing me with
opportunities to broaden my scientific horizons.

Special thanks to Diederick Vermetten for his constant availability to address my ques-
tions on black-box optimization. Your support has been invaluable.

My heartfelt appreciation goes to Gordana Ispirova, Gjorgjina Cenikj, Ana Nikolikj,
and Tome Eftimov, who have been like a second family to me throughout these years,
sharing countless memorable moments along the way.

Finally, I wish to thank all my friends and family, who, though not named individually
here, have been the most important part of this journey. Their encouragement, patience,
and love have carried me through the challenges and triumphs of this PhD.

vii

Abstract

The rapid advancements in Machine Learning (ML) and Black-Box Optimisation (BBO)
have led to an increased reliance on benchmarking data for evaluating and comparing
algorithms across diverse domain tasks. However, the effective exploitation of this data
is hindered by challenges such as syntactic variability, semantic ambiguity, and lack of
standardization. In this dissertation, we address these challenges by advocating for formal
semantic representation of benchmarking data through the use of ontologies. By providing
standardized vocabularies and ontologies, we improve knowledge sharing and promote data
interoperability across studies in ML and BBO.

In the ML domain, focusing on multi-label classification (MLC), we design an ontology-
based framework for semantic annotation of benchmarking data, facilitating the creation
of MLCBench – a semantic catalog that enhances data accessibility and reusability. In the
BBO domain, we introduce the OPTION (OPTImization algorithm benchmarking ON-
tology) ontology to formally represent benchmarking data, including performance data,
algorithm metadata, and problem landscapes. This ontology enables the automatic inte-
gration and interoperability of knowledge and data from diverse benchmarking studies.

Building upon the semantically annotated benchmarking data, we conduct various
empirical studies, including tasks such as algorithm performance prediction and automated
algorithm selection (AAS). In the MLC domain, a data-driven AAS pipeline is proposed to
exploit this MLC benchmarking data. We evaluate the predictive power of dataset meta-
features for AAS and explore various ML approaches – including regression, classification,
and pairwise methods – to identify the most effective one.

In the BBO domain, we exploit benchmarking data about modular BBO algorithms to
conduct a comprehensive analysis of how individual algorithm modules influence overall
performance. We develop algorithm representations derived from performance and feature
importance values, effectively linking algorithm behavior to problem landscape features.
Using these representations, we also relate module configurations and performance, pro-
viding deeper insights into the impact of different modules on algorithm performance.

Furthermore, the semantically annotated benchmarking data on modular BBO optimi-
sation algorithms is used as a backbone for creating various knowledge graphs (KGs). The
KGs are then examined for their predictive power in algorithm performance prediction.
By applying scoring-based KG embedding methods and graph neural networks, we predict
algorithm performance in transductive and inductive setups, respectively.

Overall, the contributions of this dissertation include the development of ontology-
based frameworks for managing benchmarking data in the ML and BBO domains, the
creation of semantic data catalogs, and novel methodologies for algorithm selection and
performance prediction. By addressing challenges in representation and exploitation, this
work advances both ML and BBO. It provides tools for improved data management and
algorithm selection, as well as insights into algorithm behavior.

ix

Povzetek

Nagel razvoj strojnega učenja in optimizacije črnih skrinjic je privedel do večje odvisnosti
od primerjalnih podatkov za vrednotenje in primerjavo algoritmov na različnih področjih,
vendar pa učinkovito izkoriščanje teh podatkov otežujejo izzivi, kot so sintaktična razno-
likost, semantična dvoumnost in pomanjkanje standardizacije. Pričujoča disertacija se
ukvarja s temi izzivi in zagovarja formalno semantično predstavitev primerjalnih podatkov
z uporabo ontologij. Uporaba ontologij izboljšuje deljenje znanja in spodbuja interopera-
bilnost podatkov med raziskavami v strojnem učenju in optimizaciji črnih skrinjic.

Na področju strojnega učenja, s poudarkom na nalogi večoznačne klasifikacije, razvi-
jamo okvir, ki temelji na ontologijah za semantično označevanje primerjalnih podatkov, kar
omogoča oblikovanje MLCBench, semantičnega kataloga za izboljšanje dostopnosti in upo-
rabnosti podatkov. Na področju optimizacije črnih skrinjic uvajamo ontologijo OPTION
(OPTImization algorithm benchmarking ONtology), ki formalno predstavlja primerjalne
podatke, vključno s podatki o uspešnosti, metapodatki algoritmov in značilnostih proble-
mov. Tovrstna ontologija omogoča integracijo ter interoperabilnost znanja in podatkov iz
različnih študij. Na podlagi semantično označenih primerjalnih podatkov izvajamo raz-
lične empirične študije, vključno z nalogami, kot sta napovedovanje uspešnosti algoritmov
in samodejna izbira algoritmov.

Na področju večoznačne klasifikacije predlagamo delotok samodejne izbire algoritmov,
ki uporablja te primerjalne podatke, temelječe na večoznačni klasifikaciji. Ocenjujemo
napovedno moč metaznačilk iz podatkovnih množic za nalogo samodejne izbire algoritmov
ter raziskujemo različne pristope strojnega učenja – vključno z regresijo, klasifikacijo in
metodami parnega ujemanja –, da bi identificirali najučinkovitejši pristop.

Na področju optimizacije črnih skrinjic izkoriščamo primerjalne podatke modularnih
algoritmov za celovito analizo, kako posamezni moduli algoritmov vplivajo na skupno uspe-
šnost. Razvijamo metapredstavitve, ki temeljijo na vrednostih uspešnosti in pomenu zna-
čilnostmi, s čimer učinkovito povezujemo obnašanje algoritmov z značilnostmi problemov.
Z uporabo teh metapredstavitev prav tako napovedujemo konfiguracije modulov, kar omo-
goča globlji vpogled v vpliv posameznih modulov na uspešnost algoritmov.

Poleg tega uporabljamo semantično označene primerjalne podatke modularnih algorit-
mov, in sicer kot osnovo za ustvarjanje različnih grafov znanja, ki jih nato uporabljamo
za preučevanje njihove napovedne moči za napovedovanje uspešnosti algoritmov. S pristo-
poma vstavitve grafov znanja na osnovi točkovanja in grafovskih nevronskih mrež napove-
dujemo uspešnost algoritmov v transduktivnih in induktivnih scenarijih.

Prispevki pričujoče disertacije vključujejo razvoj ontoloških okvirov za upravljanje pri-
merjalnih podatkov na področjih strojnega učenja in optimizacije črnih skrinjic, ustvarjanje
semantičnih podatkovnih katalogov ter nove metodologije za izbiro in napovedovanje uspe-
šnosti algoritmov. Z obravnavo vidikov predstavljanja in uporabe podatkov iz primerjalnih
študij disertacija izpopolnjuje področji strojnega učenja in optimizacije črnih skrinjic ter
zagotavlja orodja, ki omogočajo boljše upravljanje podatkov, izboljšano izbiro algoritmov
in globlje razumevanje njihovega delovanja.

xi

Contents

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1
1.1 Study Domains . 1
1.2 The Role and Types of Benchmarking Data 1
1.3 Challenges in Exploiting Benchmarking Data 2
1.4 Exploiting Benchmarking Data . 2
1.5 Problem Formulation . 3
1.6 Purpose of the Dissertation . 4
1.7 Goals of the Dissertation . 4

1.7.1 Research questions . 5
1.7.2 Scientific contributions . 5

1.8 Methodology . 6
1.8.1 Representation of Benchmarking Data 6
1.8.2 Exploitation of Benchmarking Data 7

1.9 Structure of the Dissertation . 9

2 Background 13
2.1 Knowledge Representation . 13
2.2 Data Management Guiding Principles . 15
2.3 Benchmarking for Machine Learning . 16

2.3.1 The machine learning domain . 16
2.3.2 Key concepts of ML benchmarking 18
2.3.3 Meta-learning and meta-data . 18

2.4 Benchmarking for Numerical Black-Box Optimisation 19
2.4.1 The domain of black-box optimisation 20
2.4.2 Key concepts of BBO benchmarking 21
2.4.3 Modular algorithm frameworks . 23

2.5 Algorithm Selection . 23
2.6 Knowledge Graphs and Knowledge Graph Reasoning 25

2.6.1 Scoring-based KGE methods . 25
2.6.2 Graph neural networks . 26

3 Semantic Catalogue of MLC Benchmarking Data 29
3.1 Problem Definition . 29
3.2 Related Work . 30
3.3 Semantic Annotation Schemes for MLC Benchmarking Data 32

3.3.1 Semantic annotation of MLC datasets 32

xii Contents

3.3.2 Semantic annotation of MLC experiment and performance data . . . 36
3.4 MLCBench: Semantic Catalogue of MLC Benchmarking Data 39

3.4.1 Knowledge base of MLC benchmarking data 39
3.4.2 System for semantic annotation, storage and querying 40

3.5 Summary and Discussion . 44

4 Representation of BBO Benchmarking Data 47
4.1 Problem Definition . 47

4.1.1 Domain challenges for data integration and interoperability 48
4.1.2 Addressing data integration challenges with ontologies 50

4.2 Related Work . 50
4.3 The OPTION Ontology . 51

4.3.1 Ontology design and implementation 52
4.3.2 Ontology layers . 52
4.3.3 Core entities . 53
4.3.4 Representation of problem landscape entities 55
4.3.5 Use cases . 57

4.4 The OPTION System for Semantic Data Management 61
4.4.1 The OPTION KB: annotation and storage 62
4.4.2 The OPTION KB: querying semantic annotations 62
4.4.3 Integration of the OPTION knowledge base with the IOHprofiler

environment . 63
4.4.4 Extending the OPTION ontology and knowledge base 66

4.5 Summary and Discussion . 67

5 Algorithm Selection for Multi-Label Classification 69
5.1 Problem Definition . 69
5.2 Related Work . 70
5.3 ML Approaches for AS . 71

5.3.1 Regression approach . 72
5.3.2 Pairwise regression approach . 72
5.3.3 Classification approach . 73
5.3.4 Pairwise classification approach . 73

5.4 Experimental Setup . 74
5.4.1 Dataset portfolio and landscape data 74
5.4.2 Algorithm portfolio and performance data 74
5.4.3 Model training and validation . 75
5.4.4 Evaluation of MLC AS . 75

5.5 Results and Discussion . 76
5.5.1 Performance comparison of the different ML approaches for AS . . . 76
5.5.2 Discussion on explainable AS . 79

5.6 Summary . 81

6 Using ML Methods to Assess Algorithm Module Performance Contri-
bution 85
6.1 Problem Definition . 85
6.2 Related Work . 87
6.3 Methodology . 88

6.3.1 Generating meta-representations of modular algorithms 88
6.3.2 Exploratory analysis using the meta-representations 89
6.3.3 Prediction of a module’s configuration of the algorithm instances . . 90

Contents xiii

6.4 Experimental Design . 91
6.4.1 Problem instance portfolio and landscape features 91
6.4.2 Algorithm portfolio and performance data 92
6.4.3 Regression models for algorithm performance prediction 92
6.4.4 Classification models for predicting/identifying the modular config-

uration of algorithm variants . 93
6.5 Results and Discussion . 94

6.5.1 Exploratory analysis . 94
6.5.2 Predicting the modular configuration of an algorithm using its be-

havior meta-representation . 100
6.6 Summary . 104

7 Predicting Algorithm Performance in Numerical Black Box Optimisa-
tion with Knowledge Graph Reasoning 107
7.1 Problem Definition . 107
7.2 Methodology and Experimental Setup . 109

7.2.1 Knowledge graph completion for automated algorithm performance
prediction . 109

7.2.2 Construction of the knowledge graph 110
7.2.3 KG embedding-based pipeline for automated algorithm performance

prediction . 111
7.3 Results and Discussion . 113

7.3.1 Leave-random-performance-triplets-out validation 113
7.3.2 Leave-problem/algorithm-instances-out validation 114
7.3.3 Addressing the problem of imbalanced classification 116

7.4 Summary . 117

8 Graph Neural Networks for Algorithm Performance Prediction 119
8.1 Problem Definition and Related Work . 119
8.2 Methodology . 121

8.2.1 Graph representation . 121
8.2.2 Training heterogeneous GNNs . 122
8.2.3 GNN architecture design . 124

8.3 Experimental Setup . 125
8.4 Results and Discussion . 126

8.4.1 The impact of the GNN receptive field 127
8.4.2 Explaining GNN predictions . 129

8.5 Summary . 131

9 Conclusions 133
9.1 Research Outcomes and Scientific Impact 133
9.2 Final Conclusions and Future Work . 135

References 139

Bibliography 159

Biography 161

xv

List of Figures

Figure 3.1: ML-specific semantic annotation schema for MLC datasets based on the
OntoDM-core [26] and OntoDT [118] ontologies. 34

Figure 3.2: An illustrative example of semantic annotation of the Birds dataset [121].
. 37

Figure 3.3: An overview of the schema for semantic annotation of MLC experiments
and performance data. 38

Figure 3.4: A schematic representation of the system architecture for the ontology-
based catalog of MLC benchmarking data. 41

Figure 3.5: An example SPARQL query (left) for querying the MLCBench knowl-
edge base and the first 10 answers obtained (right). 42

Figure 3.6: A view of the MLCBench online catalog interface. 43
Figure 3.7: A view of the MLCBench online catalog interface. 44

Figure 4.1: The specification-implementation-execution design pattern as used in
the OPTION ontology. 53

Figure 4.2: The core entities in the OPTION ontology and their relations. 54
Figure 4.3: Representation of ELA features in the OPTION ontology. 55
Figure 4.4: The entities and relations for the representation of modular optimisation

algorithms. 56
Figure 4.5: An illustrative example of semantic annotation of COCO-BBOB per-

formance data. 59
Figure 4.6: An illustration of the modDE algorithm’s representation in the ontology

and examples of annotations. 62
Figure 4.7: The OPTION ontology and the OPTION-aligned knowledge bases. . . 63
Figure 4.8: A screenshot from the FUSEKI query endpoint, presenting an example

SPARQL query (at the top) and the first 5 answers to the query (at the
bottom). 64

Figure 4.9: The interface of the OPTION-ontology queries within IOHanalyzer (ver-
sion 1.6.3, available at https://iohanalyzer.liacs.nl/.) 65

Figure 4.10: A flowchart of the process of uploading, annotating, and querying new
data in the OPTION KB. 66

Figure 5.1: Loss comparison between static selectors and AS across eight ML ap-
proaches for various evaluation measures 77

Figure 5.2: A heatmap depicting the percentage of the VBS-SBS gap closed with
the different AS approaches across the different performance metrics. . 78

Figure 5.3: Heatmaps of MLC algorithm VBS and AS recommendations across ML
approaches and evaluation measures. 80

Figure 5.4: SHAP feature importance scores for MLC AS based on multi-output
regression. 82

https://iohanalyzer.liacs.nl/

xvi List of Figures

Figure 6.1: Distribution of the precision achieved by different variants of the CMA-
ES algorithm on 5D problem instances for different modular configura-
tions, across different function evaluation budgets. 95

Figure 6.2: Distribution of the precision achieved by different variants of the DE
algorithm on 5D problem instances for different modular configurations,
across different budgets. 96

Figure 6.3: Frequency of appearance of the ELA features as top 10 most important
features for performance prediction of two modCMA-ES modules. . . . 99

Figure 6.4: The F1 scores of the RF classifiers for predicting the modular configu-
ration of the CMA-ES algorithm variants. 101

Figure 6.5: The F1 scores of the RF classifiers for predicting the modular configu-
ration of the DE algorithm variants. 102

Figure 6.6: UMAP embeddings of the performance-based meta-representations of
the 324 CMA-ES and 576 DE algorithm variants. 104

Figure 7.1: A snippet of a knowledge graph visualizing the representation of prob-
lem instances, including their high-level and low-level feature represen-
tations, as well as the algorithm instances linked to their respective
configuration setups. 110

Figure 7.2: An illustration of the methodology for training the KG embeddings and
the inference pipeline for automated algorithm performance prediction. 112

Figure 8.1: The meta-graph for the BBO heterogeneous graph. It consists of six
node types and five edge types, representing the relationships between
different components. 122

Figure 8.2: An illustration of an instantiation of the meta-graph, showing a snap-
shot of the BBO heterogeneous graph defined for a specific combination
of problem dimensionality, runtime budget, and modular algorithm class.123

Figure 8.3: An overview of the general GNN architecture for predicting algorithm
performance using heterogeneous graphs. 125

Figure 8.4: R2 performance of GraphSAGE models with 1 to 4 layers for CMA-ES
across different dimensionalities and budgets. 128

Figure 8.5: R2 performance of GraphSAGE models with 1 to 4 layers for DE across
different dimensionalities and budgets. 128

Figure 8.6: The top 15 most important ELA features for explaining the predictions
of a performance node. 130

Figure 8.7: Aggregated edge importance scores for the different edge types in the
graph. 130

xvii

List of Tables

Table 3.1: List of competency questions guiding the development of the ontology-
based semantic annotation schema for MLC benchmarking data. 31

Table 3.2: List of requirements guiding the development of the semantic catalogue
and system for MLC benchmarking data. 31

Table 3.3: The list of Schema.org properties used for semantic annotation of MLC
datasets with provenance details. 33

Table 3.4: The list of MLC meta-features included in the MLC semantic annotation
scheme. 35

Table 3.5: Description logic axioms for extending the schema for semantic annota-
tion of MLC experiments and performance data. 39

Table 4.1: OPTION ontology competency questions. 50
Table 4.2: Requirements of the ontology-based system. 51
Table 4.3: The complete list of modCMA modules and their respective parameter

space yielding a total of 324 algorithm configurations. 60
Table 4.4: The complete list of modDE modules and their respective parameter

space yielding a total of 576 algorithm configurations. 61

Table 5.1: A list of the five performance metrics and the corresponding algorithm
portfolios. 75

Table 6.1: An illustrative example of groups of CMA-ES algorithm variants when
we investigate the impact of the elitism module on the algorithm’s per-
formance. 90

Table 6.2: Parameters of the RF approach and their corresponding values consid-
ered in the grid search. 93

Table 6.3: The R2 scores of RF and baseline models for CMA-ES and DE on BBOB
problems . 97

Table 6.4: The MSE scores of RF and baseline models for CMA-ES and DE on
BBOB problems . 97

Table 6.5: The F1 scores of the different models predicting module configurations
for CMA-ES and DE variants . 100

Table 6.6: The DSC results on the statistical difference in the performance of CMA-
ES algorithm pairs. 103

Table 6.7: The DSC results on the statistical difference in the performance of DE
algorithm pairs. 103

Table 7.1: The percentage of ‘solved’ links for the modCMA-ES and modDE algo-
rithms in the KGs composed of a) 5D and b) 30D problems across the
different budget and target precision thresholds. 114

Table 7.2: The F1 scores and improvement over baseline for modCMA-ES and
modDE classifiers using ComplEx . 115

xviii List of Tables

Table 7.3: The F1 scores and improvement over baseline for modCMA-ES triple
classifier on 5D problems and 0.1 target precision. 116

Table 7.4: The F1 scores and improvement over baseline for modDE triple classifier
on 5D problems and 0.1 target precision. 116

Table 7.5: Comparison of the two proposed pipelines for modDE performance pre-
diction on the 30D problem instances with a target precision of 0.1. . . . 117

Table 7.6: Performance of the RF classifier for modDE performance prediction on
the 30D problem instances with a target precision of 0.1. 117

Table 8.1: The R2 scores of the GraphSage, GAT and RF regression models for
predicting the performance of CMA-ES and DE algorithm variants for
the BBOB problem instances. 126

Table 8.2: The MSE scores of the GraphSage, GAT and RF regression models for
predicting the performance of CMA-ES and DE algorithm variants for
the BBOB problem instances. 127

xix

Abbreviations

AI . . . Artificial Intelligence
AAS . . . Automated Algorithm Selection
ANNs . . . Artificial Neural Networks
AS . . . Algorithm Selection
AutoML . . . Automated Machine Learning
BBO . . . Black Box Optimisation
BBOA . . . Black-Box Optimisation Algorithm
CMA-ES . . . Covariance Matrix Adaptation Evolution Strategies
DE . . . Differential Evolution
DL . . . Description Logic
DSC . . . Deep Statistical Comparison
DNNs . . . Deep Neural Networks
EC . . . Evolutionary Computation
ELA . . . Exploratory Landscape Analysis
FAIR . . . Findable, Accessible, Interoperable, Reusable
IAO . . . Information Artifact Ontology
KB . . . Knowledge Base
KGC . . . Knowledge Graph Completion
KGE . . . Knowledge Graph Embedding
KGR . . . Knowledge Graph Reasoning
KGRL . . . Knowledge Graph Representation Learning
KG . . . Knowledge Graph
KR . . . Knowledge Representation
LHS . . . Latin Hypercube Sampling
ML . . . Machine Learning
MLC . . . Multi-label Classification
MtL . . . Meta-Learning
OBI . . . Ontology of Biomedical Investigations
OntoDM-core . . . The Ontology of Core Data Mining Entities
OntoDT . . . The Generic Ontology of Datatypes
OWL . . . Web Ontology Language
RDF . . . Resource Description Framework
RDFS . . . RDF Schema
RF . . . Random Forests
RO . . . Relations Ontology
SBS . . . Single Best Solver
TRUST . . . Transparency, Responsibility, User focus, Sustainability, and Technology
VBS . . . Virtual Best Solver
W3C . . . World Wide Web Consortium

1

Chapter 1

Introduction

1.1 Study Domains

In recent years, the growing demand for effective and efficient solutions to complex prob-
lems across various domains has led to a significant increase in the use of computational
techniques. Two scientific domains that have emerged as crucial in addressing such chal-
lenges are Machine Learning (ML) and Black-Box Optimisation (BBO).

ML has revolutionized the way we analyze data and build predictive models, providing
advanced methods to uncover patterns and relationships in complex datasets. Its applica-
tions span across diverse domains such as healthcare, medical diagnostics, environmental
modeling, financial forecasting, autonomous systems, and personalized medicine [1]. On
the other hand, BBO specializes in solving optimisation problems for which the internal
workings of the objective function are unknown or cannot be explicitly modeled. This ap-
proach is particularly valuable in engineering design, hyperparameter tuning in ML models,
and operations research, where the goal is to identify the best solution based solely on the
input-output behavior of the system [2].

Both domains, despite their distinct focus, share a common objective: to leverage data
and computational strategies to tackle complex, often high-dimensional problems that are
otherwise intractable using traditional methods.

This dissertation focuses on two subfields within the broader domains of ML and BBO:

• Multi-Label Classification (MLC) in ML, a challenging predictive modeling task
where instances may have multiple labels simultaneously. This task is relevant in
applications such as text categorization, image tagging, and bioinformatics, where
outputs are inherently interdependent [3].

• Single-Objective Numerical Black-Box Optimisation in BBO, a foundational
area in optimisation that aims to minimize or maximize a single objective function
without explicit knowledge of its analytical form.

1.2 The Role and Types of Benchmarking Data

Central to the progress in both ML and BBO is the generation and use of benchmarking
data. Benchmarking data is a product of executing controlled computational experi-
ments to evaluate and compare the performance of algorithms on a variety of tasks. It
typically includes performance data, which captures quantitative measures of algorithm
effectiveness and/or efficiency; algorithm metadata, which provides information about
configurations and hyperparameter settings; and problem metadata, describing the char-
acteristics of the tasks or problems being solved. Additionally, benchmarking data often

2 Chapter 1. Introduction

includes experimental setup information, detailing the conditions under which the
experiments were conducted, and the evaluation protocols being used, as well as prove-
nance information documenting the data generation process, such as tools, platforms,
and contributors. In ML, benchmarking data is the foundation of meta-learning, where
past performance data is used to improve future learning processes – essentially, learning
how to learn [4]. In BBO, benchmarking data provides critical insights into the behav-
ior of optimisation algorithms across problem landscapes, informing algorithm design and
selection [5].

1.3 Challenges in Exploiting Benchmarking Data

Despite the importance of benchmarking data, it is often underutilized due to three signif-
icant challenges:

1. Syntactic Variability: Benchmarking data is stored in diverse formats across dif-
ferent studies and platforms. This lack of uniformity and clarity of representation
creates barriers to integration and interoperability, complicating the process of draw-
ing meaningful insights from the data.

2. Semantic Ambiguity: Inconsistent labeling, insufficient metadata, and varying
semantic interpretations of performance metrics hinder the clarity and reusability of
benchmarking data. Researchers often struggle to understand or reuse data due to
these ambiguities.

3. Lack of Standardization: The absence of standardized protocols for data repre-
sentation and evaluation metrics makes it difficult to compare algorithm performance
or replicate experiments. This fragmentation limits collaborative advancements and
inhibits the scalability of research efforts.

Addressing these challenges requires a paradigm shift in how benchmarking data is
represented, stored, and exploited. This dissertation argues that formal semantic rep-
resentation is key to unlocking the full potential for exploitation of benchmarking data.
By leveraging ontologies – semantic frameworks that formalize domain knowledge – it is
possible to standardize domain knowledge and data representation, enhance querying ca-
pabilities, and promote interoperability across studies. Ontologies are not only essential
for overcoming the intrinsic challenges of data variability and ambiguity but also criti-
cal for aligning with state-of-the-art community data management guidelines, such as the
FAIR data principles [6], which emphasize Findability, Accessibility, Interoperability, and
Reusability of data. By providing a standardized vocabulary and formal structure, on-
tologies ensure that benchmarking data is machine-readable, reusable, and interoperable
across diverse research contexts. Ontologies also facilitate the creation of knowledge graphs
(KGs), which integrate data and metadata into rich, relational structures, unlocking new
opportunities for exploration.

1.4 Exploiting Benchmarking Data

The rich benchmarking data generated in the ML and BBO domains offers significant
exploitation potential for advanced analyses. Two key tasks of exploration include:

(i) Automated Algorithm Selection (AAS) [7]: This task involves determining
the most appropriate algorithm for a given task by using benchmarking data. By uncover-
ing performance patterns and analyzing relationships between problem characteristics and
algorithm configurations, AS facilitates more informed and effective decision-making.

1.5. Problem Formulation 3

(ii) Algorithm Performance Prediction [8]: This task focuses on building models
to estimate algorithm performance for specific problems, e.g., BBO tasks or MLC datasets
based on benchmarking data. Typically, these models rely heavily on problem landscape
data, leveraging features that describe the problem to forecast outcomes, i.e., performance
figures for BBO or MLC algorithms.

However, traditional approaches to AS and performance prediction often neglect crucial
algorithm-specific details, thereby limiting their scope and potential impact. A promising
alternative lies in the use of knowledge graphs (KGs), which are uniquely suited to cap-
turing relational data between entities such as algorithms, problems, and their respective
characteristics. Unlike conventional methods, KGs seamlessly integrate algorithm-specific
details, problem landscape data, and performance data into a cohesive, interconnected
framework, offering a richer and more comprehensive representation of benchmarking data.

1.5 Problem Formulation

The overall structure of this doctoral work can be viewed along two orthogonal dimensions:
one based on the study domain (ML vs. BBO) and another based on representing vs.
exploiting benchmarking data. Within the ML domain, our focus is on predictive modeling,
specifically on the MLC task, while in BBO we focus on single-objective continuous BBO.
By studying the relevant literature and resources, we have identified several open issues to
further explore in the doctoral dissertation:

1. Lack of adequate representation of benchmarking data in the domains of
ML and BBO. Adequate formal semantic representation of benchmarking data in
both study domains are currently lacking. Although some efforts have been made
toward creating ontologies, they fall short of providing the necessary vocabularies
to encompass all aspects of benchmarking studies. As a result, the ontological for-
malization of domain knowledge in both ML and BBO domains remains incomplete.
Further work is required to fully establish a comprehensive and precise representation
of domain knowledge in these areas in order to create machine-actionable semanti-
cally rich data and metadata.

2. Exploitation of benchmarking data in the domains of ML and BBO is
limited. When it comes to the exploitation of the benchmarking data, there are
several open issues we aim to tackle in this work in both study domains:

• AAS in the realm of MLC remains largely unexplored, leaving a significant gap
in understanding what are the most suitable algorithms for MLC tasks. Fur-
thermore, there are no comprehensive guidelines regarding the effective charac-
terization and description of MLC datasets that can be used for MLC AAS. For
instance, a notable contribution by Moyano et al. [9] introduced a set of MLC
dataset metafeatures that capture the various measurable properties of MLC
tasks. These metafeatures, among others, include the number of descriptive
attributes, data instances, labels, and statistical properties of the descriptive
attributes. While these meta-representations are crucial for leveraging MLC
datasets in predictive modeling tasks, their application in AS remains unex-
plored. Additionally, AAS in machine learning can be approached using various
techniques, including regression models, classifiers, pairwise variants, and single-
or multi-output methods. However, the impact of the ML technique chosen at
the meta-level on AAS performance is not well understood.

4 Chapter 1. Introduction

• Relating algorithm behavior with algorithm and problem properties is not well
explored in a systematic way. In BBO, we focus on benchmarking data about
modular optimisation algorithms. The idea behind modular optimisation al-
gorithm frameworks is to break down the algorithm into smaller components
that can be easily modified and combined to create new algorithms. By using
a modular approach, researchers can better understand how individual compo-
nents contribute to the algorithm’s overall performance and identify areas for
improvement. Comprehensive empirical studies that thoroughly examine the
impact of different algorithm operators or algorithm modules on performance,
considering the landscape properties of the problems, are still missing. Under-
standing how different algorithm operators interact with problem characteristics
is crucial for enhancing algorithm performance.

• The predictive power of KG derived from benchmarking data as semantic rep-
resentations has not been exploited in various ML and BBO tasks. Leveraging
KGs in this context could provide valuable insights into algorithm behaviour
and improve the performance of algorithm performance predictions models.

In the proposed dissertation, we will focus on addressing the above identified open
issues. This will contribute to a more robust and comprehensive representation and ex-
ploitation of benchmarking data in both MLC and BBO domains, leading to advances in
AAS, empirical studies that analyse algorithm behaviour, and the utilization of KGs for
algorithm performance predictions.

1.6 Purpose of the Dissertation

The main purpose of this dissertation is to develop methods and resources for rep-
resenting and exploiting benchmarking data for optimisation and learning. In
terms of representation, our focus is on creating a formal ontology-based framework specif-
ically tailored for benchmarking data in these two domains. We also aim to exploit the
benchmarking data to address various learning tasks, such as algorithm performance pre-
diction and AAS.

1.7 Goals of the Dissertation

The goals of this dissertation are as follows:

G1. Design an ontology-based scheme for semantic annotation of benchmarking data in
MLC, develop data annotation pipelines, annotate benchmarking data, and develop
software for easy access, querying, and reuse of the annotated MLC benchmarking
data.

G2. Develop an ontology for formal representation of benchmarking data and knowledge
in the domain of BBO, develop data annotation pipelines, annotate benchmarking
data, and develop software for easy access, querying, and reuse of the annotated BBO
benchmarking data.

G3. Develop AAS pipelines for MLC, including training various classification and regres-
sion models, constructing the selector pipeline, and incorporating an explainability
layer to identify crucial dataset characteristics for algorithm performance prediction.

1.7. Goals of the Dissertation 5

G4. Develop ML-based pipelines for: (1) relating modular BBO algorithm components
to algorithm behavior, (2) investigation of the importance of problem landscape
characteristics in modular BBO algorithm performance prediction, and (3) prediction
of the algorithm’s modular configuration.

G5. Evaluate the predictive capabilities of KGs for modular BBO algorithm performance
prediction.

1.7.1 Research questions

Here we list the research questions we will consider in the proposed dissertation. Two
research questions (R1-R2) are related to the representation aspects of the work and three
research questions (R3-R5) are related to the exploitation aspect of the work.

R1. Can an MLC ontology-based semantic annotation scheme be designed and applied to
annotate MLC benchmarking data to enable easy data accessibility, improved query-
ing capabilities, increased reusability, and support for automated data integration
and domain knowledge sharing?

R2. Can a BBO benchmarking ontology be designed and applied to annotate BBO bench-
marking data to enhance data accessibility, querying capabilities, reusability, and
enable automated data integration and domain knowledge sharing?

R3. Does the development of a data-driven AAS pipeline for multi-label classification
(MLC) lead to better AS practices by leveraging dataset-specific characteristics, and
how does it compare to static approaches using a single algorithm across all datasets?

R4. Can a systematic empirical analysis of modular BBO algorithm behavior, combined
with algorithm and problem characterization, improve our understanding of the im-
pact of algorithm modules and problem landscape characteristics on algorithm per-
formance?

R5. Are KGs as semantic data representations effective for predicting the performance of
modular BBO algorithms?

1.7.2 Scientific contributions

The dissertation aims to make scientific contributions to the fields of ML and BBO by
addressing research gaps related to the lack of adequate representations and limited ex-
ploration of benchmarking data in these domains. The novelty and originality of this
dissertation stem from the development of ontology-based frameworks for the formal repre-
sentation of benchmarking data, an aspect that has not been adequately considered before.
Additionally, we propose novel approaches for exploiting and learning from benchmarking
data for various learning tasks, such as AAS and algorithm performance prediction.

By employing the ontology-based framework for formal data representation, our method-
ology strives to enhance data reusability and promote knowledge sharing among practi-
tioners in the field. This approach is expected to facilitate improved collaboration among
domain experts and encourage the reuse of research results, thereby paving the way for
advancements in the domains of ML and BBO.

The development of pipelines for automated algorithm performance prediction and
selection will enable industry professionals to make informed decisions, optimise resources,
and achieve improved outcomes in various sectors relying on ML and BBO (e.g., healthcare
and finance). This approach leverages benchmarking data to gain a better understanding of

6 Chapter 1. Introduction

algorithm behavior, ultimately enhancing decision-making processes and driving successful
algorithm deployment.

To summarize, the dissertation will make the following contributions to science:

C1. An ontology-based framework together with a semantic annotation schema and soft-
ware, that enables formal representation, annotation, and querying of MLC bench-
marking data.

C2. Semantically annotated MLC benchmarking data that promotes data reusability,
interoperability, and knowledge sharing enabling its further exploitation in different
learning tasks.

C3. An ontology-based framework, including an ontological conceptualization and soft-
ware, that enables formal representation, annotation, and querying of BBO bench-
marking data.

C4. Semantically annotated BBO benchmarking data that integrates data from different
benchmarking studies and promotes data reusability, interoperability, and knowledge
sharing enabling its further exploitation in different learning tasks.

C5. A novel pipeline for AAS in MLC.

C6. A novel approach and extensive empirical evaluation for understanding modular BBO
algorithm behavior.

C7. A novel KG-based approach to BBO modular algorithm performance prediction.

1.8 Methodology

To achieve the goals outlined above, we have proposed the following methodology. One
part focuses on representing benchmarking data, while the other focuses on exploiting the
benchmarking data in different predictive modeling tasks.

1.8.1 Representation of Benchmarking Data

In the representation component of this dissertation, we adopted a hybrid knowledge repre-
sentation methodology that combines both top-down and bottom-up strategies to develop
formal, semantic representations of knowledge and data in the study domains.

First, we conducted an in-depth overview of the study domains (MLC and BBO), gain-
ing familiarity with the domain knowledge and identifying the key entities and concepts
central to benchmarking data. This top-down approach involves understanding the struc-
ture and relationships inherent to the domain, allowing us to define a conceptual framework
for its representation.

Simultaneously, we took a bottom-up approach to identify the types of data that need
to be modeled and stored. This includes the identification of elements such as performance
metrics, problem landscapes, experimental setups, provenance information, and algorithm
meta-representations. By taking this hybrid approach, we ensured that the representation
of domain knowledge and data was both conceptually sound and grounded in real-world
benchmarking practices.

The next phase focused on designing and developing semantic models, including schemas
and ontologies, specifically tailored to the requirements of the study domains (ML and
BBO) identified in the previous step. During the ontology design process, we adhered to

1.8. Methodology 7

best practices in ontology engineering, such as the OBO Foundry principles [10], to en-
sure compatibility and interoperability with other external ontologies that follow the same
design principles. These semantic models form the foundation for formalizing domain
knowledge and enabling effective data representation and integration.

Once the semantic models were established, we carried out the process of semantic data
annotation. This step involves linking benchmarking data, metadata, and domain knowl-
edge to the structured entities and relationships defined in the semantic models. Through
a process of extraction, transformation, and loading (ETL), we created knowledge bases
(KB) that integrate the annotated data, ensuring that raw and heterogeneous information
is harmonized into a unified and semantically enriched format.

As a final step, we implemented the developed semantic models into practical systems
and tools. This includes creating systems for storing and querying semantic annotations.
Additionally, we developed software components, including REST APIs and graphical in-
terfaces, to make ontologies easier to use. These tools simplify interaction with the semantic
models by abstracting complex querying processes. Our aim is to make these solutions and
developed resources accessible to practitioners in the fields of ML and BBO, enabling them
to efficiently reuse and leverage benchmarking resources.

1.8.2 Exploitation of Benchmarking Data

After creating semantic benchmarking resources and developing the necessary tools, our
efforts shifted toward leveraging these resources to explore and analyze benchmarking data.
Here, we summarise the methodology employed for exploitation.

1.8.2.1 Automated algorithm selection in multi-label classification

In the MLC domain, we focused on developing a data-driven, AAS pipeline. We utilized
existing meta-representations of MLC datasets [9], available in the MLC knowledge base of
semantically annotated benchmarking data we have created. These meta-representations
capture measurable properties like the number of attributes, instances, labels, and sta-
tistical characteristics. Using these meta-features, we assessed their predictive power for
algorithm selection.

We employed several feature-based supervised ML approaches, including regression,
classification, and pairwise methods, in both single-output and multi-output configura-
tions. Regression models predicted each algorithm’s performance on a dataset, selecting
the algorithm with the best predicted outcome. Classification framed AAS as a multi-class
problem, directly predicting the best algorithm based on dataset meta-features.

Pairwise methods predicted the relative performance of algorithm pairs. Pairwise re-
gression estimated performance differences, while pairwise classification determined which
algorithm performed better in each pair. In this context, final AAS aggregated pairwise
predictions to identify the algorithm with the most “wins”.

To improve interpretability, we integrated an explainability layer using SHAP (SHapley
Additive exPlanations) values [11], enabling us to assess the importance of each meta-
feature in the models’ predictions both globally and per instance.

1.8.2.2 Analysis of modular optimisation algorithms in black-box optimisation

In the BBO domain, we developed a data-driven approach to assess how individual mod-
ules within modular optimisation algorithms influence the overall algorithm performance.
Focusing on two modular frameworks, we generated algorithm meta-representations for
each algorithm variant – specific combinations of modules – capturing their performance
profiles across various problem classes.

8 Chapter 1. Introduction

We created two types of meta-representations. The first, performance-based meta-
representations, involved summarizing each algorithm variant’s performance into a vector
that reflects its performance on different problems. The second, Shapley-based meta-
representations, was derived by training regression models to predict algorithm perfor-
mance based on problem landscape features and calculating Shapley values [11] to deter-
mine the importance of each feature in these predictions.

Using performance-based meta-representations and assessing their distributions, we
analyzed how different module configurations affect algorithm performance and identi-
fied which modules have the most significant impact. Using the Shapley-based meta-
representations, we investigated which problem landscape features are most influential in
predicting performance across different module configurations. Finally, we trained dif-
ferent feature-based classifiers to predict the module configurations of algorithm variants
based on their meta-representations, aiding in the identification of algorithms with similar
behaviors when configuration details are unknown.

1.8.2.3 Scoring-based knowledge graph embeddings for algorithm performance
prediction

While the above-mentioned approaches focused on exploiting benchmarking data repre-
sented in standard tabular format, in this dissertation we also assessed the effectiveness of
utilizing KGs derived from benchmarking data for predicting the performance of modular
algorithms in BBO.

Our methodology begins with the construction of a KG that represents entities such
as optimisation problems, algorithm configurations, and their relationships. Each problem
instance and algorithm variant is represented as a node in the KG, with edges capturing the
semantic relationships between them, including performance outcomes. Performance links,
labeled as “solved” or “not-solved”, connect algorithms and problems based on whether the
algorithm achieved the target precision within the given budget. Our goal is to deter-
mine whether these algorithms can solve specific optimisation problems within predefined
runtime budgets and solution quality thresholds.

We frame the performance prediction task as a knowledge graph completion problem,
employing scoring-based knowledge graph embedding (KGE) techniques. Using the Com-
plEx model [12], we learn vector representations of entities and relations within the KG.
During training, we use known performance links and apply negative sampling to generate
negative examples, optimising the model to assign higher scores to true triples.

In the inference phase, we predict missing performance links by calculating scores
for both “solved” and “not-solved” relations between algorithm and problem nodes. The
relation with the higher score is selected as the predicted outcome.

Our approach is evaluated across various scenarios, including different problem dimen-
sions and performance thresholds. In balanced classification settings, the model demon-
strates strong predictive performance, outperforming baseline methods. However, in imbal-
anced scenarios, the model’s performance declines due to class disproportion. To address
this, we extend our methodology by training a Random Forest classifier on top of the
learned embeddings, which was shown to improve predictive performance.

1.8.2.4 Graph neural network for algorithm performance prediction

Scoring-based KGEs inherently operate in a transductive setup, which limits their ability
to generalize to unseen data or nodes. To overcome these limitations, we explored the use
of Graph Neural Networks (GNNs) for algorithm performance prediction.

1.9. Structure of the Dissertation 9

Using the same benchmarking data on modular optimisation algorithms, we constructed
a heterogeneous graph representing the relationships among optimisation problems, algo-
rithm configurations, parameters, and performance. Nodes in the graph represented enti-
ties such as problems and algorithms, while edges captured various types of relationships,
creating a rich and complex relational structure.

We adapted message-passing GNN architectures to handle the graph’s heterogene-
ity by implementing relation-specific convolutions for each edge type. Specifically, we
experimented with two GNN models: GraphSAGE [13] and Graph Attention Networks
(GAT) [14]. Our GNN models performed node regression, predicting continuous perfor-
mance values for the performance nodes rather than treating the problem as a classification
task (e.g., solved vs. not solved). The architectures included multiple GNN layers for mes-
sage passing and relation-specific aggregation.

To enhance the interpretability of our models, we applied GNNExplainer [15], which
helped identify influential graph structures and node features affecting the predictions.

Our methodology demonstrated that GNNs can effectively predict algorithm perfor-
mance in an inductive setting, generalizing to unseen problems by leveraging both rela-
tional structures and node features.

1.9 Structure of the Dissertation

This introductory chapter provides an overview of the research domain explored in this
dissertation and outlines the motivation behind this work. It also identifies the research
gaps and limitations that this work aims to address. Furthermore, the chapter defines
the research questions formulated to overcome these challenges and highlights the main
scientific contributions. The rest of the dissertation is organized as follows.

In Chapter 2, we provide the background necessary for understanding the methods
presented in this dissertation. The chapter begins by defining key concepts in the domain of
knowledge representation and introducing state-of-the-art principles for data management.
We then delve into the domain of machine learning (ML), covering essential concepts in ML
benchmarking and introducing the domain of meta-learning. Subsequently, we explore the
field of black-box optimisation, emphasizing key benchmarking concepts and introducing
modular optimisation algorithm frameworks, which are examined in detail later in this
dissertation. The chapter also defines the task of algorithm selection and explains its
practical significance. Finally, we conclude the chapter with an overview of knowledge
graph reasoning methods, focusing on scoring-based knowledge graph embedding (KGE)
techniques and message-passing graph neural networks (GNNs).

In Chapter 3, we begin by formulating the problem addressed in this chapter and high-
lighting the importance of formal mechanisms for storing knowledge and data from the
domain of MLC benchmarking. We also emphasize the need for semantic catalogs that
facilitate the exploration of such data. Next, we review related work and outline existing
MLC repositories. We then present the core contribution of this chapter: a semantic an-
notation schema for MLC benchmarking data. This schema introduces a comprehensive
vocabulary for annotating MLC datasets, their associated metadata, MLC experiments,
and performance data. Next, we demonstrate the practical application of the proposed
schema through a proof-of-concept implementation in an online catalog for MLC bench-
marking data, named MLCBench. Finally, we conclude the chapter with a summary of
the contributions and a discussion of their implications.

In Chapter 4, we introduce the OPTION (OPTImization algorithm benchmarking ON-
tology) ontology, a semantic framework designed to address challenges in representing and
integrating BBO benchmarking data. The chapter begins by defining the problem and

10 Chapter 1. Introduction

motivating the need for formalized, interoperable data management in this domain. We
then review related work, highlighting gaps that OPTION aims to address. Next, we delve
into the design and implementation of the ontology, describing its structure, key entities,
and the semantic relationships that enable the representation of optimisation algorithms,
benchmark problems, problem landscapes, and performance data. To demonstrate its util-
ity, we provide several practical use cases, including semantic annotation of data from
prominent platforms like COCO and Nevergrad, as well as annotations for modular algo-
rithm frameworks. Finally, we present the OPTION system for the annotation, storage,
and querying of semantically enriched benchmarking data, including its integration within
the IOHprofiler environment. The chapter concludes with a discussion on the ontology’s
extensibility and its potential to advance data sharing and interoperability in the optimi-
sation community.

In Chapter 5, we explore the task of algorithm selection for multi-label classification.
We begin by defining the problem and emphasizing its relevance, followed by a review
of related work. Next, we present various machine learning approaches for AS, including
regression, classification, pairwise variants, single- versus multi-output models, and cost-
sensitive models. The chapter continues with a description of the experimental setup,
followed by a presentation of results and a discussion on the explainability of AAS models.
We conclude with a summary of our findings.

In Chapter 6, we explore the use of modular optimisation frameworks to assess the
performance contributions of individual algorithm modules. The chapter begins by intro-
ducing the problem and its relevance, followed by a review of related work on modular
frameworks, algorithm performance prediction, and explainable machine learning. Next,
we detail the methodology, outlining the construction of performance-based and Shapley-
based meta-representations for capturing algorithm behavior and linking it to problem
landscapes. This is followed by the experimental design, which includes benchmarking
algorithm variants across different problems, dimensionalities, and runtime budgets. The
results section examines the impact of specific modules on performance, the role of problem
landscape features on the prediction of algorithm performance, and the ability of classifiers
to predict module configurations based on learned meta-representations. We conclude with
a summary of our findings.

In Chapter 7, we explore the use of knowledge graphs (KGs) for predicting the per-
formance of black-box optimisation algorithms. We start by defining the problem and
discussing the suitability of KGs for representing the symbolic relationships between op-
timisation problems, algorithm configurations, and their performance. We continue by
detailing the methodology, including the construction of KGs using the OPTION ontol-
ogy and the implementation of a knowledge graph completion pipeline based on ComplEx
embeddings. Next, we present the results of our experiments, highlighting the challenges
of imbalanced classification and proposing a solution involving a Random Forest model
trained on the learned embeddings. Finally, we conclude with a summary of our findings,
a discussion of the limitations, and suggestions for future research to enhance KG-based
performance prediction and extend its applicability to broader optimisation contexts.

In Chapter 8, we investigate the use of Graph Neural Networks (GNNs) for predicting
algorithm performance in numerical black-box optimisation. We begin by framing the
problem, contrasting the limitations of transductive approaches explored in Chapter 7
and emphasizing the advantages of GNNs for inductive tasks. Next, we describe the
methodology, detailing the construction of a heterogeneous graph representation for the
BBO benchmarking data, the GNN architecture, and the training process. We then outline
the experimental setup. We next present the results, comparing GNN-based approaches
to traditional methods, such as Random Forest regressors, and discussing insights gained

1.9. Structure of the Dissertation 11

from explainability techniques like GNNExplainer. The chapter concludes by summarizing
its findings and highlighting the potential of GNNs in this domain.

Finally, Chapter 9 provides the final conclusions of the work presented, a summary of
the contributions, and a discussion of directions for future work.

13

Chapter 2

Background

In this chapter, we present the foundational concepts and background relevant to this
dissertation. We begin by exploring the field of knowledge representation, emphasizing its
role in AI and examining representational formalisms such as ontologies. Following this, we
provide an overview of benchmarking practices in the domains of machine learning (ML)
and black-box optimisation (BBO), discussing key concepts and methodologies. We then
delve into the meta-algorithmic task of algorithm selection, outlining its significance and
approaches. Finally, we conclude with an overview of key concepts on learning from graph
representations of data, highlighting the use of graph neural networks and knowledge graph
reasoning.

2.1 Knowledge Representation

Knowledge Representation (KR) is a field in Artificial Intelligence (AI) that focuses on the
design of formalisms that are computationally adequate for expressing knowledge about a
particular domain [16]. The goal of KR is to create models and structures that represent
knowledge in a way that it can be understood and processed automatically by compu-
tational systems. The effective representation of knowledge is crucial for tasks such as
knowledge reasoning [17] and decision-making [18] in various real world systems.

In the field of AI, multiple representational frameworks have been employed for knowl-
edge representation, including semantic networks, frames, rule-based systems, and ontolo-
gies. Among these, in recent times, ontologies have emerged as the predominant formalism.
Ontologies can be defined as “explicit formal specifications of the concepts and relations
among them that can exist in a given domain” [19]. The explicit semantic assumptions
used in representing domain knowledge ensure a shared understanding of the domain, and
the use of formal knowledge representation mechanisms makes it machine-processable.

Ontologies take an object-oriented view of modeling and include notions like: (1)
classes, a set of semantically defined concepts; (2) individuals, instances of classes; and
(3) properties, binary relations used to associate the classes and/or the individuals. It
is important to distinguish between two types of ontology statements: TBox and ABox.
TBox statements form the “terminology component” and describe the domain of interest by
defining the classes and properties that form the vocabulary of the ontology (analogous to
object-oriented classes). ABox statements are the “assertion component” facts associated
with the TBox (analogous to instances of object-oriented classes). By assigning semantic
meaning to knowledge facts and explicitly linking them to ontology terms, we perform the
task of semantic annotation, thus effectively creating the ABox. Finally, a Knowledge Base
(KB) integrates the TBox with the ABox, which allows for a comprehensive representation
of domain knowledge, facilitating structured reasoning and querying.

14 Chapter 2. Background

All KBs that use the same ontology are interoperable, which means that distributed,
heterogeneous systems and databases can easily interconnect and exchange information.
Using the same ontology when annotating data and creating KBs facilitates automatic
data integration, where classes and properties defined in the ontology serve as connecting
points of the KBs.

Ontologies provide the basis for an unambiguous, formal representation of domain
knowledge usually approved by experts in the domain. They provide the means for
knowledge and data representations that are semantically understandable and available
in machine-processable form. Thus, ontologies play a crucial role in sharing a common
understanding of information structure among people or software agents. Apart from
structuring domain knowledge in a principled way, ontologies improve data reusability
by providing mechanisms for explicitly specifying provenance information of different re-
sources [20]. Provenance information is the type of information that describes the origin
of a resource, such as who created the resource, when it was published, and what license
applies to its use.

Ontologies as computational artifacts are usually based on Description Logic (DL) as a
knowledge representation formalism [16]. This logical component allows knowledge to be
shared meaningfully at both machine and human levels. Also, an immediate consequence
of having formal ontologies based on Description Logic is that they can be used in a variety
of reasoning tasks and inference of new knowledge. For example, several reasoning engines
can infer new knowledge from ontologies, such as Hermit [21] and Fact++ [22].

Numerous applications from different domains that involve big data handling are based
on ontology as a data model. Such applications can be found in biomedicine [23], food
and nutrition [24], environmental studies [25], etc. Ontologies are also used to represent
computer science domains, such as the domains of data mining and machine learning [26].

Ontologies as informational artifacts have been used to develop machine-readable, se-
mantically interoperable data, which is essentially the central goal of the Semantic Web [27].
The Semantic Web has been trying to achieve this goal via semantic annotation of data
found on the web with terms defined in ontologies, intended to give data a well-defined
meaning. As a result, many technologies have been developed, including RDF, RDFS,
triplestores, SPARQL, etc. Here, we describe the Semantic Web technologies relevant to
this dissertation.

Resource Description Framework (RDF)1 is a standard data and metadata exchange
format. Its fundamental structure, the RDF triple, provides a simple and intuitive way
to express different statements in the form of subject-predicate-object (s, p, o) expressions.
Each triple encodes a single piece of information about a resource being described (the
subject) by ascribing to it a property (the predicate) and assigning it a specific value
(the object, which may be either a resource or literal value). For instance, the statement
“John knows Peter” is encapsulated within an RDF triple as (John, knows, Peter), with
“John” serving as the subject, “knows” as the predicate, and “Peter” as the object. Within
a collection of RDF triples, resources are uniquely identified and may appear as either
subjects or objects across various triples, thereby constructing an RDF graph. An RDF
graph G is composed of a collection of RDF triples, structured in the form (s, p, o). This
graph is depicted as a directed labeled graph, with edges represented as s

p−→ o, indicating
the directional relationship from subjects to objects via predicates.

RDF Schema (RDFS)2 is another semantic technology standard that is an extension
of the RDF data model and provides essential elements for describing ontologies, such as

1Resource Description Framework: https://www.w3.org/RDF/
2W3C RDF Schema 1.1: https://www.w3.org/TR/rdf-schema/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/

2.2. Data Management Guiding Principles 15

classes and properties (relations). The Web Ontology Language (OWL)3 is a collection of
representation languages for authoring ontologies with different levels of expressivity.

RDF triples are stored in triplestores, a specialized type of NoSQL database that re-
sembles graph databases, which use graph structures to represent data. Triplestores can
handle vast amounts of RDF records, often reaching trillions, making them highly suitable
for applications within the Semantic Web. Compared to relational databases, triplestores
offer several key advantages: they provide flexibility, as data can be easily altered since
there is no predefined data schema; they support a dynamic, extendable data model also
due to the Open World Assumption, which states that a lack of knowledge does not imply
falsity, allowing for new information to be included without assuming completeness; and
they facilitate efficient querying, easy import/export of triples and data sharing.

There are many implementations of triplestores, including Apache Jena TDB4,
GraphDB5, AnzoGraph 6, Stradog7 and Virtuoso [28]. SPARQL Protocol and RDF Query
Language8 is the standard language for querying and manipulating data stored within
RDF triplestores. As established by the World Wide Web Consortium (W3C), SPARQL
allows for the formulation of complex queries that can retrieve and manipulate data stored
in RDF format across various RDF databases, providing a powerful means for working
with the web of data in accordance with the principles of the Semantic Web.

2.2 Data Management Guiding Principles

In addition to knowledge representation, effective data management and stewardship are
critical for ensuring that resources can be efficiently utilized and maintained over the
long term. Data management involves the strategic and operational practices required to
oversee the data life-cycle, ensuring its quality, accessibility, security, and usability [29]. In
contrast, data stewardship focuses on the responsibility and accountability for managing
specific data assets [30].

The FAIR (Findable, Accessible, Interoperable, and Reusable) [6] and TRUST (Trans-
parency, Responsibility, User Focus, Sustainability, and Technology) [31] principles provide
comprehensive guidelines for the management of data and repositories/catalogues, ensur-
ing that they meet the needs of users while adhering to standards for sustainability and
interoperability.

The FAIR principles are a set of guidelines designed to improve the management and
stewardship of digital assets, particularly data. They are intended to ensure that data is
organized in such a way that it can be easily found, accessed, integrated, and reused by
both humans and machines.

By adhering to the FAIR principles, data becomes:

• Findable through the use of persistent identifiers and metadata, enabling both hu-
mans and machines to locate relevant datasets efficiently.

• Accessible by ensuring well-defined and clear access protocols, whether the data is
open or protected.

• Interoperable through the adoption of standardized formats and ontologies, allow-
ing datasets from different systems and sources to integrate seamlessly.

3W3C OWL2: https://www.w3.org/TR/owl2-overview/
4Apache Jena TDB: https://jena.apache.org/documentation/tdb/
5GraphDB: https://graphdb.ontotext.com/
6AnzoGraph: https://cambridgesemantics.com/anzograph/
7Stradog: https://www.stardog.com/
8W3C SPARQL 1.1: https://www.w3.org/TR/sparql11-query/

https://www.w3.org/TR/owl2-overview/
https://jena.apache.org/documentation/tdb/
https://graphdb.ontotext.com/
https://cambridgesemantics.com/anzograph/
https://www.stardog.com/
https://www.w3.org/TR/sparql11-query/

16 Chapter 2. Background

• Reusable by providing detailed documentation, licensing information, and clear
provenance, ensuring that future users can effectively apply the data in new contexts.

The TRUST principles complement the FAIR principles by ensuring that the data
repository/catalogue is:

• Transparent about its processes, offering clear documentation on how data is cu-
rated and maintained.

• Responsible, with clearly defined roles for those who manage and oversee the repos-
itory, ensuring the data’s integrity and longevity.

• User-focused, designed to meet the needs of its users by providing intuitive inter-
faces and comprehensive support for data exploration and analysis.

• Sustainable, both financially and technologically, ensuring long-term access to and
preservation of data.

• Technology-driven, utilizing reliable, scalable, and interoperable technologies that
facilitate data storage, access, and integration with other systems.

Together, these principles form a comprehensive framework for managing data reposi-
tories/catalogues in a way that promotes long-term usability, transparency, and user trust.

2.3 Benchmarking for Machine Learning

2.3.1 The machine learning domain

Machine learning is a branch of AI that involves the use of algorithms that enable machines
to emulate human intelligence by learning from data and past experiences without being
explicitly programmed to do so [32]. In recent years, the availability of vast computational
power and large datasets has significantly boosted the popularity of ML across various
fields, such as healthcare, finance, and technology.

In ML, generally, we distinguish between three main types of learning from data:

• Supervised learning uses labeled data, where each instance in the dataset is associated
with a corresponding label. This label, often referred to as the output, dependent,
or target variable, is what the model aims to predict. The independent variables, or
input data, are used to train the model. The objective is to develop models that can
accurately predict the target variable on new, unseen data. During inference, the
independent variables are provided as input to the trained model, and the output is
the model’s prediction.

• Semi-supervised learning builds on supervised learning by incorporating both labeled
and unlabeled data in the training process. While we still aim to predict a target
variable, semi-supervised learning utilizes a larger portion of unlabeled data, which
is often costly to label. This unlabeled data is leveraged to improve the model’s
accuracy by exploiting the underlying structure of the data, enhancing the predictive
power beyond what is achievable with labeled data alone.

• Unsupervised learning deals with datasets that contain only input variables without
corresponding output labels. The aim is to uncover hidden patterns or intrinsic
structures within the data, such as clustering similar instances together or reducing
dimensionality.

2.3. Benchmarking for Machine Learning 17

In (semi-)supervised learning, based on the type of target variable, ML tasks can be
categorized into primitive or structured output tasks. Primitive output prediction tasks
involve predicting a single target variable, such as in classification (predicting discrete
values) or regression (predicting continuous values). Structured output prediction tasks,
on the other hand, involve predicting multiple interrelated target variables. Examples of
such tasks are multi-target regression [33], multi-label classification [34], and hierarchical
multi-label classification [35], [36].

Typically, to train and evaluate a ML model, datasets consisting of data examples
with features (input variables) and labels (output variables) are used. Features are the
measurable properties or characteristics of the phenomenon being observed, while labels
are the target values that the model aims to predict. In classical ML, features are manually
engineered to optimise model performance. However, in deep learning [37], these features
are learned automatically by the model during the training process.

Over the years, various ML algorithms have been developed, each with its strengths
and weaknesses. Below, we provide an overview of several popular algorithms, although
many more exist beyond this selection.

Decision trees are a type of ML algorithm used for both classification and regression
tasks [38]. They work by splitting the data into subsets based on the value of input
features, creating a tree-like model of decisions. Each internal node represents a “test” on
an attribute, each branch represents the outcome of the test, and each leaf node represents
a class label (classification) or a continuous value (regression). Decision trees are easy to
understand and interpret and can handle both numerical and categorical data.

Tree ensembles combine multiple decision trees to enhance performance and robust-
ness compared to individual trees. One popular tree ensemble method is random forests
(RF) [39]. RF is a powerful ensemble learning method that combines multiple decision
trees. It uses bootstrap aggregating, or “bagging” to create multiple subsets of the original
dataset through random sampling with replacement. Each subset is then used to train a
separate decision tree. To introduce further randomness, RF select a random subset of
features at each split in the decision trees, choosing the best feature from this subset to
make the split. This process reduces the correlation between the individual trees, mak-
ing the ensemble model more robust and preventing overfitting. In the prediction phase,
random forests aggregate the results of the individual trees by taking a majority vote for
classification tasks or averaging the predictions for regression tasks.

Artificial neural networks (ANNs) are ML models inspired by the human brain, consist-
ing of interconnected units called neurons organized into layers [40]. These layers include
an input layer, one or more hidden layers, and an output layer. Each neuron in a layer
receives input, processes it using an activation function, and passes the result to the next
layer. The connections between neurons have associated weights, which are adjusted dur-
ing training to minimize error and improve the network’s performance. This adjustment
process, known as optimisation, typically involves algorithms like gradient descent to find
the optimal set of weights that best map the input data to the desired output.

ANNs with many hidden layers are called deep neural networks (DNNs) [41]. DNNs
have given rise to the “deep learning” subfield in ML, where “deep” refers to the large
number of layers in these networks. DNNs are a driving force behind modern AI systems
and have achieved remarkable success in various complex tasks due to their ability to learn
hierarchical representations of data. They are powerful for handling complex patterns and
large datasets, making them excellent for tasks such as image recognition and natural lan-
guage processing. Additionally, DNNs perform automatic feature engineering, extracting
relevant features from raw data without manual intervention. However, they often suffer
from a lack of interpretability, making it challenging to understand how they arrive at spe-

18 Chapter 2. Background

cific decisions, which can be a significant drawback in applications requiring transparency
and explainability.

2.3.2 Key concepts of ML benchmarking

In ML, benchmarking refers to the systematic evaluation and comparison of ML meth-
ods against established “benchmark” datasets that serve as standards in the field [42].
Benchmarking helps determine whether a newly developed method outperforms the cur-
rent state-of-the-art methods on a given task. Additionally, benchmarking identifies the
strengths and weaknesses of different ML methods, offering insights into their comparative
performance and suitability for various tasks. The primary goal of benchmarking is to es-
tablish a baseline or reference point, enabling the assessment of how well different models
perform relative to each other under the same conditions.

Benchmarking studies are conducted through computational experiments, which gen-
erate valuable experimental data. Benchmarking data includes all the information related
to a benchmarking study, such as ML datasets, metadata describing the properties of
these datasets, details about the ML methods and their parameters, and specifics of the
evaluation scenario. Additionally, it encompasses data measuring how different algorithms
perform across various metrics. This comprehensive collection of benchmarking data is
essential for thoroughly understanding and comparing the capabilities of different ML
methods under standardized conditions.

To further detail the ML benchmarking process, we explore two key components: bench-
mark problems and performance metrics.

2.3.2.1 ML benchmark problems

Standardized datasets, often referred to more generally as problems, are essential for bench-
marking machine learning methods. These benchmark datasets can include well-studied
real-world data from various problem domains or synthetic data that is artificially gener-
ated to contain known underlying patterns. The use of synthetic data allows for controlled
and precise evaluations.

2.3.2.2 ML performance metrics

The choice of performance metrics is a crucial element in benchmarking, as it directly
impacts the assessment of algorithm performance. Comparisons can be made across a range
of predictive performance evaluation metrics. Additionally, factors such as computational
complexity, model training time, inference speed, computational resource usage, and model
interpretability are important considerations in benchmarking studies. This comprehensive
approach to benchmarking is essential for demonstrating the capabilities of ML methods.

2.3.3 Meta-learning and meta-data

Meta-learning (MtL) is a subfield of machine learning (ML) that systematically analyzes
the performance of various ML approaches across a diverse set of learning problems. The
primary goal of meta-learning is to learn from these experiences to improve the learning
process itself, or in short, to “learning to learn” [4]. By leveraging these accumulated
experiences, often referred to as meta-data, MtL facilitates quicker and more efficient
learning on new problems. Essentially, MtL involves any type of learning that utilizes
prior experience from other problems.

2.4. Benchmarking for Numerical Black-Box Optimisation 19

Benchmarking is critical in MtL, as it provides essential meta-data through the sys-
tematic evaluation and comparison of different ML methods.

MtL typically involves training a meta-learner on a variety of learning problems, where
each problem is represented by a separate dataset with its own specific goal or learning
objective. The meta-learner extracts patterns and knowledge from these problems, which
can then be applied to optimise performance on new, unseen problems. This process
can significantly reduce the computational resources and time required to develop high-
performing models for new problems.

The challenge in MtL is to systematically learn from prior experiences in a data-driven
manner. First, through a benchmarking process, we need to collect meta-data that describe
previous learning problems. Second, we need to utilize this meta-data to extract and
transfer knowledge, guiding the search for optimal models for new problems.

The meta-data includes information such as algorithm configurations and its hyper-
parameters, model evaluations (e.g., accuracy and training time), learned model parameters
(e.g., weights of an ANN), and measurable properties of the problems themselves, known
as meta-features. Meta-features describe characteristics of the datasets and the associated
learning problems, helping to understand their complexity and nature [43]. These meta-
features are used as input features when training a meta-learner.

Meta-features can be broadly categorized into five categories [43]:

1. Simple: These measures are easily extracted from the data, commonly known, and
do not require significant computational resources. They include basic statistics such
as the number of instances and the number of features.

2. Statistical Features: These capture the statistical properties of the data, such as
mean, variance, skewness, kurtosis, and correlations.

3. Information-Theoretic Features: These features are derived from information theory
and are based on entropy. They measure the amount of information and complexity
within the dataset.

4. Model-Based Features: These features are derived from the performance of simple
models on the dataset, such as decision trees.

5. Landmarking Features: These features involve training simple and fast algorithms on
the dataset and using their performance as indicators. The algorithms should have
different biases to capture diverse aspects of the data, and they must operate with
low computational cost.

Meta-learning has shown promising results in various tasks, including algorithm per-
formance prediction [44], algorithm selection [45], and algorithm configuration [46].

2.4 Benchmarking for Numerical Black-Box Optimisation

Optimisation is the process of finding the best possible solution for a given problem by
systematically adjusting input parameters to maximize or minimize a specific objective
function [47]. It aims to achieve an optimal result according to defined criteria and con-
straints, often by balancing competing factors to find the most effective solution. Optimi-
sation methods are used across scientific and industrial fields to improve processes, design
efficient systems, and make informed decisions based on quantitative goals.

20 Chapter 2. Background

2.4.1 The domain of black-box optimisation

Black-box optimisation problems are a specific class of optimisation problems where the
structure of the objective function is unknown, unexploitable, or non-existent [48]. In such
cases, we do not have any prior knowledge about the underlying structure of the problem,
and therefore, we treat it as a “black box”.

In this dissertation, we focus on single-objective numerical or continuous optimisation,
meaning we deal with optimisation problems where there is only one objective to optimise,
and the objective function is real-valued. The term “single-objective” indicates that there is
only one criterion or goal to optimise, distinguishing it from multi-objective optimisation,
where multiple criteria are considered simultaneously.

Given the nature of these problems, applying problem-specific algorithms is not feasi-
ble. Instead, they must be addressed using black-box optimisation algorithms (BBOAs).
One class of BBOAs is iterative optimisation metaheuristics [49]. These algorithms are
particularly well-suited for black-box optimisation problems as they search for the optimal
solution by iteratively querying the objective function with different inputs (i.e., solution
candidates). They rely solely on this information to guide their search towards the most
promising regions of the search space, without leveraging any knowledge of the underlying
structure or characteristics of the problem [2].

Iterative optimisation heuristics generally work as follows:

1. Initialization: The algorithm begins by selecting an initial set of candidate solutions,
often referred to as the initial population.

2. Evaluation: Each candidate solution is evaluated using the objective function, and
its quality is assessed.

3. Selection: Based on the quality assessments, a new set of candidate solutions is
selected. This selection process often involves mechanisms inspired by natural pro-
cesses, such as survival of the fittest in evolutionary algorithms.

4. Generation of New Solutions: New candidate solutions are generated from the se-
lected ones through various operators like mutation, crossover, or other problem-
specific methods.

5. Iteration: Steps 2 through 4 are repeated iteratively. With each iteration, the algo-
rithm gathers more information about the problem, allowing it to focus on the most
promising regions of the solution space.

6. Termination: The process continues until a termination criterion is met. This can
occur when there has been no improvement in the population for a specified num-
ber of iterations, indicating stagnation. Alternatively, the process may terminate
upon reaching an absolute number of generations of candidate solutions, thereby ex-
hausting the function evaluation budget. The algorithm can also terminate when the
objective function value achieves a pre-defined target, signifying that an optimal or
satisfactory solution has been found.

Some commonly used iterative optimisation heuristics include genetic algorithms [50],
particle swarm optimisation [51], and ant colony optimisation [52], among many others.
These algorithms are inspired by natural processes such as evolution and swarm intelli-
gence, and they fall under the broader umbrella of Evolutionary Computation (EC) [53].

2.4. Benchmarking for Numerical Black-Box Optimisation 21

2.4.2 Key concepts of BBO benchmarking

Benchmarking in BBO, much like in the domain of ML, is crucial for evaluating and
comparing the performance of different algorithms under standardized conditions [5]. Key
components of BBO benchmarking include benchmark problems, performance metrics,
and problem landscape analysis, each playing a distinct role in creating comprehensive
assessments of algorithm capabilities.

2.4.2.1 BBO benchmark problems

To reliably estimate the performance of various optimisation algorithms, they need to be
tested on a diverse set of problem instances across different problem classes.

To facilitate the benchmarking of BBO algorithms, researchers have developed com-
prehensive test suites of benchmark problems. These suites include a variety of functions
designed to assess different aspects of optimisation algorithms.

Notable benchmark suites include the BBOB (Black-Box Optimisation Benchmarking)
suite [54], the CEC (Congress on Evolutionary Computation) competitions, MA-BBOB
(Many-Affine Combinations of BBOB Functions) [55], and Nevergrad’s suite [56] of bench-
mark functions, among others.

In this dissertation, we utilize the BBOB test suite available on the COCO (COm-
paring Continuous Optimizers) platform [57]. This suite includes 24 noiseless, single-
objective test functions that are to be minimized. The functions can be tested across
various dimensionalities, representing the number of variables in the problem, specifically
D ∈ {2, 3, 5, 10, 20, 40}, and are defined within a search space ranging from [−5, 5]D. The
24 functions are grouped into five distinct categories based on the properties they exhibit.

The five categories of the BBOB functions are as follows:

1. Separable Functions (F1–F5): These functions allow the optimisation of variables
independently, making them simpler and less computationally intensive.

2. Functions with Low Conditioning (F6–F9): These functions have a well-behaved
landscape with moderate difficulty, suitable for evaluating algorithms’ performance
in less complex scenarios.

3. Unimodal Functions with High Conditioning (F10–F14): These functions have a sin-
gle global optimum but are challenging due to their steep slopes and narrow valleys.

4. Multimodal Functions with Adequate Global Structure (F15–F19): These functions
feature multiple local optima with a clear global structure, testing the algorithm’s
ability to escape local optima and find the global solution.

5. Multimodal Functions with Weak Global Structure (F20–F24): These functions are
highly challenging due to their many local optima and weak or deceptive global
structure.

To generate multiple instances of each of the 24 problem classes, various transforma-
tions are applied to the functions. These transformations include scaling, which involves
multiplying the input variables by a scaling factor, and translation, which shifts the func-
tion’s position within the search space by adding a constant vector to the input variables.
The transformations ensure that the optimal solution is not always located at the same
point. By applying these transformations, each function can exhibit a wide range of char-
acteristics, making the benchmark suite more robust and comprehensive.

22 Chapter 2. Background

2.4.2.2 BBO performance metrics

In BBO, we lack an explicit formulation of the objective function. Therefore, we must
evaluate the function using candidate solutions, often making this the most computation-
ally expensive aspect of the optimisation process. This is particularly true when function
evaluations are time-consuming or resource-intensive, such as in simulations of complex
physical systems or expensive experimental setups. Therefore, it is beneficial to use the
number of function evaluations as a measure of BBOAs running time.

For measuring the performance of an optimisation algorithm, a key metric is the target
precision, which measures how close the algorithm’s solution is to the known optimal
solution of the benchmark problem. This is often expressed as the difference between the
objective function value of the best-found solution and the objective function value of the
optimum. In real-world problems, where the true optimum is often unknown, performance
might be measured relative to the best-known solution or an estimated optimum based on
expert knowledge or extensive computational effort.

There are two common approaches in evaluation of BBOAs: fixed-target and fixed-
budget. In fixed-target evaluation, the goal is to reach a predefined target value of the ob-
jective function. The performance of the algorithm is measured by the number of function
evaluations required to reach this target, providing insights into the algorithm’s efficiency
in approaching near-optimal solutions.

In fixed-budget evaluation, the algorithm is allowed to run for a predetermined number
of function evaluations, which constitutes the budget. The performance is then measured
by the best objective function value obtained within this budget. Fixed-budget evaluation
is particularly relevant in real-world scenarios where computational resources are limited,
and it is essential to understand the quality of solutions that can be obtained within those
constraints.

2.4.2.3 Problem landscape analysis

To effectively characterize and utilize benchmarking problem instances in ML pipelines,
detailed representations of these problems are essential. One such representation method
is Exploratory Landscape Analysis (ELA) [58], which employs mathematical and statisti-
cal methods to derive features that describe the problem landscape. ELA is specifically
designed to support the design of black-box optimisation algorithms by providing a com-
prehensive set of features. These features can serve as inputs to ML models, which can
then be used, for example, to recommend algorithms that best fit the problem at hand.

Since we are dealing with black-box optimisation, these features must be derived from
a set of samples from the problem instance. ELA features are calculated from a sample
of points in the problem’s search space. The calculation process involves several steps.
First, a set of points is sampled from the search space of the problem instance. The sample
size and sampling technique significantly impact the quality of the ELA features [59].
The sample size needs to be sufficiently large to capture the landscape’s characteristics
but small enough to keep computational costs manageable. Typically, random sampling
or Latin Hypercube Sampling (LHS) [60] is used to ensure a diverse and representative
sample of the search space.

Once the sampling is completed, the sampled points are evaluated using the objective
function, and various statistical and mathematical methods are applied to compute the
ELA features. These features include basic metrics such as the mean, variance, skewness,
and kurtosis of the objective function values at the sampled points. Additionally, disper-
sion measures describe the spread and distribution of the objective function values, while
level set features provide insights into the topology of level sets within the landscape by

2.5. Algorithm Selection 23

measuring the proportion of points below a certain objective function threshold. Meta-
model features are derived from fitting a simple model, like a linear or quadratic model, to
the sampled data and analyzing the model’s properties. Local search features are obtained
from performing local searches starting from the sampled points and analyzing the results.

The R-package flacco [61] facilitates the computation of 343 Exploratory Landscape
Analysis (ELA) features, grouped into 17 feature sets [45].More recently, a Python ver-
sion, known as the pflacco library [62], has also been developed. In this study, we uti-
lize a dataset [63] containing pre-calculated ELA features for various COCO benchmark
problems, generated using the flacco library. These features have been applied and have
demonstrated promising results in several automated tasks, such as predicting algorithm
performance [64], [65], selecting appropriate algorithms [45], [66], and configuring algo-
rithms automatically [67].

While ELA features are the most commonly used for analyzing problem instance land-
scapes, other approaches also exist [68]. Examples include topological landscape anal-
ysis [69], which characterizes problems using topological data analysis techniques [70],
and deep learning-based approaches, which extract low-level features using various types
of deep neural networks. These methods include features learned through convolutional
neural networks [71], [72], transformer-based architectures like TransOpt [73] and Deep-
ELA [74], and autoencoders such as DoE2Vec [75].

2.4.3 Modular algorithm frameworks

Benchmarking in black-box optimisation provides a structured way to evaluate algorithms,
but comparing variations within algorithms presents its own challenges. In evolutionary
computation, new algorithms are often developed iteratively. Instead of introducing novel
algorithmic ideas in isolation, they are typically presented as extensions to preexisting algo-
rithms. Two prominent families of evolutionary optimisation algorithms, Differential Evo-
lution (DE)[76] and Covariance Matrix Adaptation Evolution Strategies (CMA-ES)[77],
have been developed in an iterative manner. Since these two algorithms have been well-
researched for over a decade, many variations and modifications have been proposed. Some
of these modifications may be relatively minor, such as proposing an alternative initial-
ization of the population. Larger changes may affect the structure of the algorithm by
introducing restart mechanisms or new adaptation schemes for internal parameters.

Since most of these changes are proposed in isolation, it is often difficult to under-
stand how these variations interact. All of this has led to the development of modular
algorithms frameworks. In this dissertation, we focus on studying two such frameworks,
modCMA-ES [78] and modDE [79], specifically designed for the CMA-ES and DE algo-
rithms, respectively, although other frameworks also exist [80]–[83]. These frameworks
combine large sets of variations into a single code base, where arbitrary combinations of
variations can be combined into a variety of possible algorithm configurations. This not
only allows a fair comparison between two different variations of the algorithm but also a
more robust analysis of the potential interplay between algorithm components.

2.5 Algorithm Selection

Algorithm selection (AS), often referred to as per-instance algorithm selection, is a meta-
algorithmic approach that selects the optimal algorithm (in terms of performance or run-
time) from a portfolio of complementary algorithms for a specific problem instance [84].
AS is a general approach that can be applied across a variety of computer science do-
mains, including optimisation and machine learning, to improve performance by tailoring

24 Chapter 2. Background

the choice of algorithm to the problem’s characteristics.
Let A be the set of all available algorithms in the portfolio, I the set of all problem

instances and c(a, i) the cost associated with running algorithm a on instance i. The
goal is to learn a mapping s : I → A that assigns an algorithm to each instance so
that the total cost

∑
i∈I c(s(i), i) summed over all instances is optimised (minimized or

maximized). Some problems may require minimization (e.g., minimizing the runtime or
error), while others might need maximization (e.g., maximizing accuracy or efficiency) of
the cost function.

AS has been investigated across multiple domains, including BBO [85], [86] and auto-
mated machine learning (AutoML) [87]. Specifically within AutoML, AS is often considered
as a meta-learning task [4]. In this context, the portfolio comprises a set of ML algorithms
and the problem instances are datasets. The cost is typically a metric that measures the
efficiency or effectiveness of the algorithm on that dataset. For instance, in a classification
scenario, the cost metric might be accuracy, which we aim to maximize as a higher value
indicates better performance. Alternatively, in a regression context, the focus might be on
minimizing the error rate. These are just examples; the cost metric can vary depending
on the specific requirements and objectives of the problem at hand. Consequently, the
primary objective of AS is to accurately predict which machine learning algorithm will
yield the best performance for each dataset, based on the chosen metric.

In BBO, the AS problem is approached similarly to ML, but instead of datasets, we
typically have optimisation problems where the objective function is not explicitly defined.
Typically, the concepts and methodologies applied to AS in ML are equally applicable to
AS in BBO.

There are different strategies for building an algorithm selector (e.g., parallel algo-
rithm portfolios, algorithm schedules, or ML-based algorithm selection). The integration
of ML techniques with AS has led to the development of Automated Algorithm Selec-
tion (AAS) [7]. In AAS, information about the problem instance is used as input, and
ML techniques are applied to predict which algorithm will perform best on that specific
instance. This method reduces the need for manual intervention and extensive human ex-
pertise. Problem instances in AAS are usually characterized by numerical features, which
can range from basic statistics such as the number of variables or data examples to more
sophisticated landmark features. These landmark features might involve training a simple
ML model to extract deeper insights from the data, enhancing the predictive power of the
algorithm selection process.

There are various machine learning approaches to solving the AAS problem. For exam-
ple, the problem can be addressed through multi-class classification [88], where each class
represents a different algorithm, and the model predicts the most suitable algorithm for a
given instance. Alternatively, regression models can be used where the output predicts a
performance metric of the algorithms [89]. The decision on which algorithm to select is
then made by comparing these predicted metrics and choosing the algorithm that scores
best according to the desired performance criteria.

Other machine learning approaches to AAS include clustering [90] and pairwise meth-
ods [91], [92]. Clustering groups similar problem instances together and identifies algo-
rithms that consistently perform well within these groups. Pairwise approaches, whether
classification or regression, involve comparing two algorithms at a time to determine which
is more likely to yield better performance on a specific instance. The effectiveness of
these approaches can vary significantly across different domains, and determining the most
suitable method for a particular setting remains a topic of active research.

Most of the discussed approaches often rely on feature-based or tabular data and de-
pend heavily on problem representation features. Recently, feature-free approaches utiliz-

2.6. Knowledge Graphs and Knowledge Graph Reasoning 25

ing deep neural networks (DNNs) have also begun to emerge [93]. However, an intriguing
direction in this context is the use of graph representations of all data for algorithm selec-
tion. By representing problem instances, algorithms, and their interactions as graphs, and
employing graph representation techniques, it is possible to capture complex dependencies
and relationships.

2.6 Knowledge Graphs and Knowledge Graph Reasoning

A Knowledge Graph (KG) is a structured representation of knowledge consisting of entities
and the relationships between them. It is typically visualized as a semantic network or a
directed graph structure, where nodes represent entities and edges represent the connec-
tions or relationships between these entities in a symbolic form. KGs store knowledge in
units of facts, often in the form of triples (subject-predicate-object), where the subject and
object are the nodes and the predicate is the edge. Ontology knowledge bases (KBs) can
also be considered KGs due to their graph-based structure.

KGs play an important role in a variety of downstream applications, such as semantic
search, recommendation systems, and question answering [94]. However, most of the real-
world KGs are often incomplete and fail to include all relevant facts. Therefore, KG
reasoning (KGR), also known as KG completion (KGC) is essential for the application of
KGs. KGC improves the completeness of KG by inferring new knowledge and insights from
existing knowledge graphs. For example, KGC can predict a missing relationship between
two entities or identify missing head (subject) or tail (object) entities in a triple.

Knowledge graph embedding (KGE), also known as knowledge graph representation
learning (KGRL), is a prominent research direction within Knowledge Graph Completion
(KGC) that has rapidly gained significant attention [95]. KGEs are models that transform
entities and relationships into low-dimensional vector representations that are designed to
preserve the inherent relationships and structures within the knowledge graph. By enabling
various downstream tasks such as link prediction, entity resolution, and clustering, KGEs
significantly enhance the utility and performance of knowledge graphs in practical applica-
tions, such as news recommendation [96], e-commerce [97], medical recommendations [98],
and remote sensing imagery classification [99]..

The following subsections provide an overview of two central approaches to KGR:
scoring-based KGE methods, which use scoring functions to evaluate the plausibility of
relationships, and graph neural networks (GNNs), which leverage the graph structure of
KGs to capture complex patterns and interactions.

2.6.1 Scoring-based KGE methods

One popular approach to generating KGEs is through the use of scoring-based models.
These models assign a score to triples based on their correctness. The goal is to generate
KGEs that produce high scores for likely correct triples and low scores for less likely ones.
During training, both positive and negative triples are used. Positive triples are the actual
triples present in the KG, while negative sampling generates invalid triples by corrupting
a valid triple, either by replacing the head or the tail entity with a random entity from the
graph.

The embeddings are learned by minimizing a loss function that penalizes incorrect
prediction. The optimisation is performed using gradient-based methods like stochastic
gradient descent or its variants. By iteratively updating the embeddings, the model learns
to assign higher scores to valid triples and lower scores to invalid ones, thereby effectively
capturing the underlying relationships in the knowledge graph.

26 Chapter 2. Background

Over the years, various scoring functions have been proposed, each with its own strengths
and weaknesses. For example, many scoring models can only model certain types of rela-
tionships, such as symmetry, antisymmetry, composition, one-to-many, and many-to-one
relationships.

In this dissertation 7, we will be applying the ComplEx scoring function [12] for training
KGEs. ComplEx is an extension of the DistMult model [100], designed to address some of
its limitations.

DistMult is a knowledge graph embedding model that represents entities and relation-
ships as vectors in a high-dimensional space. It scores the likelihood of a relationship
between entities by computing a weighted dot product, effectively capturing symmetrical
relationships but struggling with asymmetrical ones due to its symmetric nature. Com-
plEx extends DistMult by using complex-valued embeddings, allowing it to handle both
symmetrical and asymmetrical relationships. This is achieved by leveraging the properties
of complex numbers, which enhance the model’s expressiveness and ability to capture a
broader range of relational patterns in the knowledge graph.

2.6.2 Graph neural networks

Graph Neural Networks (GNNs) [101] are a class of neural networks specifically designed to
operate on graph-structured data. Unlike traditional neural networks that work on regular
grids like images (2D grids) or sequences (1D grids), GNNs are tailored to capture the
underlying relationships and patterns in data that is represented as a graph, where entities
(or nodes) are connected by relationships (or edges). This capability makes GNNs highly
effective for tasks such as node classification, link prediction, and graph classification,
particularly in domains where the data is inherently relational.

In a typical GNN, the input is a graph G = (V,E), where V is the set of nodes and
E is the set of edges connecting pairs of nodes. Each node v ∈ V may have associated
features, often represented as a feature vector. GNNs operate by iteratively updating the
node representations by aggregating information from neighboring nodes, allowing each
node to capture local and global information from the graph structure.

The core of a GNN lies in its message-passing mechanism, where each node gathers
and aggregates messages from its neighbors. This process is repeated across several lay-
ers, allowing information to flow and propagate throughout the graph, enabling nodes to
capture and learn complex relationships. Each GNN layer typically operates in two key
steps:

1. Message: Each node computes a message to send to its neighbors. The message
is derived from the node’s current feature representation, which comes from the
previous layer (or the input features in the first layer). Formally:

m(l)
u = MESSAGE(l)

(
h(l−1)
u

)
, u ∈ N (v)

Here, u represents a neighboring node of v, and N (v) is the set of neighbors of node
v. The term h

(l−1)
u refers to the hidden feature vector of node u from the previous

layer (layer l−1), while l represents the current layer. The message m
(l)
u is the result

of applying a message function (such as a linear transformation) to the feature vector
h
(l−1)
u .

2. Aggregation: Once a node receives messages from its neighbors, it aggregates them
to update its own hidden representation. This involves applying an aggregation

2.6. Knowledge Graphs and Knowledge Graph Reasoning 27

function to combine the messages from the neighbors as well as the information from
itself :

h(l)v = AGGREGATE(l)
(
{m(l)

u : u ∈ N (v)},m(l)
v

)
Nonlinearity (e.g., Rectified Linear Unit (ReLU), Sigmoid) is often applied during the

Message and/or Aggregation step to increase the expressiveness of the model, enabling
it to capture more complex patterns in the data.

At each layer, the hidden representation of a node is updated by combining its own
features with those of its neighbors. This iterative message-passing process allows the GNN
to learn richer and more complex relationships as the number of layers increases, enabling
nodes to capture dependencies spanning multiple hops across the graph..

Many variants of GNNs have been proposed, each using different aggregation and up-
date mechanisms to capture different graph structures and relationships. For example:

• Graph Convolutional Networks (GCNs): The original GCNs, introduced by
Kipf et al. [102], extended neural network convolution operations to graph-structured
data, allowing information to propagate between neighboring nodes through graph
convolution layers. This approach generates node embeddings based on the features
of each node’s neighborhood. Initially, GCNs were designed for transductive tasks,
requiring access to the entire graph during training and limiting their ability to
generalize to unseen nodes.

• GraphSAGE: GraphSAGE [13] extends the GCN framework by introducing a more
scalable approach to learning node representations. Instead of aggregating informa-
tion from all neighbors, as in traditional GCNs, GraphSAGE samples a fixed-size
set of neighbors. This sampling method allows for efficient training on large graphs.
The key idea behind GraphSAGE is learning how to aggregate feature information
from a node’s local neighborhood. By doing so, the model can generalize to unseen
nodes, as it learns transferable patterns from the sampled neighborhoods rather than
relying on the full graph structure.

• Graph Attention Networks (GATs): GATs [14] incorporate the attention mech-
anism into GNNs, enabling nodes to assign different importance scores to their neigh-
bors. This selective focus enhances the model’s ability to capture relevant informa-
tion during message passing, which is particularly beneficial in heterogeneous graphs
where node and edge types can differ widely. Unlike GCNs, which treat all neighbors
equally, GATs utilize self-attention layers to compute weights for each neighboring
node. These weights are based on the similarity between the feature vectors of the
source node and its neighbors, allowing the network to prioritize more informative
connections.

The key difference between scoring-based KGE models like DistMult and ComplEx
and GNNs lies in how they learn the embeddings. Scoring-based KGE models, such as
DistMult, focus on learning embeddings for entities and relations by optimising a scoring
function that predicts the likelihood of a triple (head, relation, tail) being true. In con-
trast, GNNs like GraphSAGE and GAT do not train a separate embedding for each node.
Instead, they learn a function that generates node embeddings by aggregating and trans-
forming information from neighboring nodes and edges. This approach allows the model
to dynamically generate embeddings based on the local graph structure, enabling better
generalization to unseen nodes. GNNs are more flexible in handling various graph types
and incorporate both structural and feature information from the graph.

29

Chapter 3

Semantic Catalogue of MLC
Benchmarking Data

In this chapter, we detail the development of an ontology-based schema specifically designed
for the semantic annotation of multi-label classification (MLC) benchmarking data. This
schema is instrumental in constructing a semantic catalogue dedicated to organizing and
facilitating access to MLC benchmarking data.

The chapter starts by defining the specific challenges that necessitate the creation of an
ontology-based catalogue for MLC benchmarking data. This section outlines the problems
associated with managing complex MLC data and the benefits an organized catalogue
brings in terms of data discoverability, accessibility, interoperability, and reusability in
accordance with FAIR principles [6]. Following the problem definition, we detail the MLC
semantic annotation schemas we have designed. We then describe the development of
a system for automatic data annotation, storage, and querying. Finally, we present the
creation of an online version of the catalogue to enhance accessibility to MLC benchmarking
data.

This chapter is based on the article “A Catalogue with Semantic Annotations Makes
Multilabel Datasets FAIR” [103], published in Scientific Reports by Nature Publishing
Group. The chapter builds upon the work presented in the paper by expanding the cata-
logue to include not only datasets but also other benchmarking data, such as experimental
results and trained models.

All data, code, and resources developed for this chapter are publicly available on GitHub
at: https://github.com/KostovskaAna/MLC-Schema.

3.1 Problem Definition

In the era of Big Data, the ability to efficiently manage, search, and analyze vast amounts of
data becomes paramount. This holds particularly true for the field of MLC, which has seen
growing interest due to its wide applicability in real-world problems that require the ability
to assign multiple labels to a single instance. This capability, a defining feature of MLC,
is crucial in domains such as text categorization, image and video annotation, genomics
and bioinformatics, and semantic scene classification. The popularity of MLC is also
attributed to the advancements of deep learning and other advanced ML techniques that
have significantly improved the performance of MLC algorithms. As a result, a large volume
of benchmarking data is being produced, facilitating the comparison of MLC algorithms’
performance. Properly managing and providing easy access to this wealth of benchmarking
data, including datasets, algorithms, and computational experiments, among others, is
crucial for the progress of research and development of practical applications in MLC.

https://github.com/KostovskaAna/MLC-Schema

30 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

Data catalogues have emerged as fundamental components for the effective manage-
ment of large volumes of data, serving as organized inventories of data assets. They provide
metadata, which includes descriptions about the data stored in data lakes or other data
storage solutions. However, creating data catalogues does not immediately solve all data
management challenges. Specifically, issues of data findability, accessibility, interoperabil-
ity, and re-use – the four principles of FAIR data [6] – remain unresolved.

To facilitate the principles of FAIR data, it is crucial to enhance data catalogues with
a semantic layer. The semantic layer, usually in the form of an ontology, provides a
rich, meaningful description of the data, covering aspects such as content of the data,
data provenance, and access rights. These semantic descriptors, referred to as semantic
annotations in the text and often structured as RDF graphs, support both FAIR and
TRUST principles, two key benchmarks for effective data management and stewardship.

Semantic annotations allow for the contextual understanding of data. This means that
data is linked based on its meaning and relationships, rather than just its format or source.
Such an approach significantly enhances the findability and accessibility of data, enabling
researchers to discover and integrate relevant data. Interoperability and reusability are
enhanced through standardized formats and shared ontologies, promoting data exchange
and reuse. Moreover, ontology-based catalogues embody the TRUST principles by fostering
transparency in data management, ensuring responsible data stewardship.

Despite the growing significance of MLC in various domains, we still lack semantic cat-
alogues of MLC benchmarking data. While there exist several repositories and catalogues
of MLC datasets [104]–[108], these resources fall short in several key areas. They provide
only a limited selection of benchmark MLC datasets and lack the capability to store ex-
perimental data for the comparison of MLC algorithms. Furthermore, these sources do
not offer performance metrics specifically tailored for MLC, nor do they provide detailed
information on dataset features or support the comparison of MLC landscape properties.
Additionally, none of these resources incorporate a semantic layer to adhere to the FAIR
data principles.

This gap highlights the need for dedicated semantic resources that can support the
specific demands of MLC research and application. Creating an ontology-based catalogue
for MLC benchmarking data is an initiative aimed at addressing this need. This resource
would serve as a comprehensive hub for MLC datasets, experiments, and algorithms, fa-
cilitating in-depth analysis and comparison of MLC algorithms.

Objective: In this dissertation, our objective is to develop MLCBench, a semantic
catalogue of MLC benchmarking data. We achieve this by designing an ontology-based
semantic schema specifically tailored for MLC benchmarking data. Furthermore, we con-
struct a knowledge base that forms the semantic layer of our MLCBench catalogue. We
then develop a prototype web application that integrates the semantic schema and knowl-
edge base. This tool is crafted to enable semantic data search and retrieval, along with
interactive exploratory data analysis, streamlining the exploration and utilization of MLC
benchmarking data. The MLC semantic annotation schema developed in this work is de-
signed to address the competency questions outlined in Table 3.1. The creation of the
MLCBench catalogue is guided by a set of specific requirements, as detailed in Table 3.2.
These requirements form the foundation for the catalogue’s design and functionality, en-
suring it meets the needs of the MLC research community.

3.2 Related Work

Over the years, verious MLC data repositories and catalogues have been developed. For
instance, the Cometa repository [105], comprises 74 MLC datasets, characterizing them

3.2. Related Work 31

Table 3.1: List of competency questions guiding the development of the ontology-based
semantic annotation schema for MLC benchmarking data.

N0Competency question
1 What is the provenance data available for a specific MLC dataset?
2 What are the values of the MLC meta-features that depict the landscape of the MLC

datasets?
3 Which datasets and algorithm were used in a specific experiment, and what was the

experiment workflow?
4 How does a predictive model perform according to a chosen metric?
5 Which sampling technique was employed to create different splits of the dataset?
6 What hyperparameters were used for training the predictive model in a given exper-

iment, and which algorithm was used?

with 12 meta-features. It also provides list of the descriptive features, target labels, and
citations to their original publication. The KDIS repository [106] offers a slightly larger
collection with 78 datasets, providing dataset domain categorization, 9 meta-features, and
textual dataset descriptions. It stands out for the variety of data splits it provides such as
random train-test, stratified train-test, random 5-fold CV, stratified 5-fold CV, stratified
10-fold CV. With a collection of 26 MLC datasets, Mulan [107] provides dataset domain
categorization and 7 meta-features for characterizing the datasets. alongside download
links to the data. However, these repositories are solely focused on datasets and do not
include links to experiments conducted with these datasets or the resulting performance
benchmarking data.

Table 3.2: List of requirements guiding the development of the semantic catalogue and
system for MLC benchmarking data.

N0Requirement
1 The system should support the semantic annotation of MLC benchmarking data, in-

cluding datasets, algorithms, experiments, and experiment results, using the defined
annotation schema.

2 The system should integrate and process data from multiple sources, ensuring inter-
operability across various MLC benchmarking datasets and related metadata.

3 Semantic annotations should be stored in a dedicated semantic data store to enable
efficient querying and management.

4 The catalogue should provide an intuitive user interface that enables easy search,
retrieval, and analysis of MLC benchmarking data.

5 The catalogue should offer advanced search capabilities that leverage semantic an-
notations for precise data retrieval.

6 The system should include interactive data visualization tools to facilitate dynamic
exploration and cross-comparison of meta-features that describe the landscape of
MLC datasets.

7 The system should provide visualization tools for exploring experiment outcomes
across various MLC algorithms and performance metrics.

8 The system should be designed to be scalable, accommodating the increasing volume
of MLC benchmarking data over time.

The Extreme Classification repository [108] stands apart by offering benchmark results

32 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

for 6 performance metrics, however, these are only accessible within GitHub reposito-
ries, which hinders data accessibility. The Extreme Classification repository describes the
datasets with 6 meta-features and facilitates data access through download links. Nonethe-
less, all four repositories lack a semantic layer, which is crucial for enabling semantic
searches, data understanding, and automated integration, thus presenting limitations in
adherence to the FAIR principles of data management.

In the broader field of ML, there are several platforms have been developed to facilitate
the sharing of ML datasets [42], [109], [110]. Among these, the OpenML platform [110]
distinguishes itself as a comprehensive open-source project that enables researchers to share
not only datasets, but also algorithms, and experiments. Despite its robust framework,
OpenML’s primary limitation is its broad focus. While it comprehensively supports tasks
like regression, binary classification, and multi-class classification, it lacks features and
tools tailored to MLC.

Although semantic catalogues have yet to be adopted in MLC and ML, their success
in other fields highlights their potential for improved data management. Research indi-
cates that incorporating semantic layers into data catalogues significantly enhances data
discovery, integration, and use [111].

One notable implementation of semantic technologies is PubChem, an open-access
chemistry database managed by the National Institutes of Health (NIH) [112]. PubChem
has established itself as an indispensable resource for scientists, educators, and the public,
serving millions of users globally each month. The database’s adoption of PubChemRDF
and SPARQL endpoints for querying demonstrates the practical application and benefits
of semantic web technologies in facilitating accessible, machine-readable data. Similarly,
Robert Bosch GmbH’s introduction of the DCPAC Ontology within their data lake archi-
tecture exemplifies corporate adoption of semantic technologies [113]. Further illustrating
the versatility of semantic technologies, the application of semantic technologies in a data
lake designed for managing datasets from sensors or simulation programs in the manu-
facturing sector highlights the adaptability of these technologies [114]. These examples
represent just a snapshot of the numerous platforms utilizing semantic data management
technologies. Their effective application across various domains emphasizes the potential
advantages of developing semantic catalogues in the MLC domain.

3.3 Semantic Annotation Schemes for MLC Benchmarking
Data

In this section, we present semantic annotation schemes designed for MLC benchmark-
ing data. Our focus is on the comprehensive annotation of MLC datasets and MLC ex-
periments, which includes the performance data generated from these experiments. The
MLC schema is publicly accessible at its persistent URL: http://purl.archive.org/
mlc-schema.

3.3.1 Semantic annotation of MLC datasets

For semantic annotation of datasets, we have designed an ontology-based schema that
enables the description of multiple aspects of MLC datasets. The schema is an adaptation
of a more general annotation schema that covers a broader range of machine learning tasks
presented in [115]. We can broadly categorize the semantic annotations into two groups:
(1) Annotations of datasets with provenance information and (2) Annotations that capture
relevant machine learning characteristics of the datasets.

http://purl.archive.org/mlc-schema
http://purl.archive.org/mlc-schema

3.3. Semantic Annotation Schemes for MLC Benchmarking Data 33

Table 3.3: The list of Schema.org properties used for semantic annotation of MLC datasets
with provenance details.

Property Expected Type Description
name Text A descriptive name of the dataset.
description Text A short summary of the dataset.
sameAs URL URL of a reference Web page that provides addi-

tional information about the dataset, which is usu-
ally stored in a different repository.

identifier Property Value/ Text/URL Identifier of the dataset such as Digital Object Iden-
tifier (DOI) or Compact Identifier. A dataset can
have more than one identifier.

keywords Text Keywords or tags used to describe the dataset.
creator Organization/ Person/Text The creator of the dataset.
license CreativeWork/ URL Identifies a license document under which the

dataset is distributed.
variableMeasured Text The variableMeasured property (referred to as unit

of measurement later in the text) can indicate the
variables that are measured in some dataset.

genre Text Genre (referred to as dataset domain later in the
text) of the creative work (i.e., the dataset).

distribution DataDownload A downloadable form of this dataset, at a specific
location, in a specific format. This property can be
repeated if different variations are available.

Provenance information refers to the kind of information that describes the origin of a
resource, which in our context is MLC dataset. It encompasses details such as the creator
of the resource, when was it published, and what is its usage license, to name a few. For se-
mantic description of provenance information, we have chosen the Schema.org vocabulary1,
a collection of schemas widely used for providing structured data on the Web. Schema.org
is a collaborative, community activity with a mission to create, maintain, and promote
schemas for structured data on the Web. Its widespread acceptance and implementa-
tion across various platforms make it a reliable choice for enhancing the discoverability
and interoperability of web-based resources, such as our web-based MLC benchmarking
data catalogue. Specifically, for the annotation of MLC datasets, we employ the Dataset
schema [116] from Schema.org [117]. This schema is particularly suitable for our purposes
as it is designed to structure data about datasets, making information like the dataset’s
name, description, identifier, and license readily accessible. The full list of properties we
use for annotation of MLC datasets is presented in Table 3.3.

From an ML perspective, various types of annotations are considered relevant, including
dataset specification, learning task, datatypes, and meta-features. To this end, to enable
annotation of ML-specific information, we have integrated ontological concepts from two
external ontologies, i.e., the ontology of core data mining entities (OntoDM-core) [26],
and the generic ontology of datatypes (OntoDT) [118]. This integration has led to the
development of a semantic annotation schema specifically designed for MLC datasets.
Additionally, we have extended the OntoDM-core ontology and added concepts relevant to
our domain, such as concepts that semantically define the MLC meta-features.

Our proposed schema is designed for tabular MLC data, often referred to as feature-
based data. While MLC tasks are also prevalent in other areas, such as computer vision
– where the goal is to label images with various objects – our current focus is on feature-
based data. This schema is adaptable, and can be easily expanded support applications in
computer vision and similar fields.

1Schema.org vocabulary: https://schema.org/

https://schema.org/name
https://schema.org/Text
https://schema.org/description
https://schema.org/Text
https://schema.org/sameAs
https://schema.org/URL
https://schema.org/identifier
https://schema.org/PropertyValue
https://schema.org/Text
https://schema.org/URL
https://schema.org/keywords
https://schema.org/Text
https://schema.org/creator
https://schema.org/Organization
https://schema.org/Person
https://schema.org/license
https://schema.org/CreativeWork
https://schema.org/URL
https://schema.org/variableMeasured
https://schema.org/genre
https://schema.org/distribution
https://schema.org/DataDownload

34 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

is about

has_quality

has_partMLC
dataset

has_field
component

feature-based completely
labeled data with missing

values and with set of
discrete output

feature-based completely
labeled data without

missing values and with
set of discrete output

has_field
component

is_datatype
role_of

completely labeled
target set of discrete

field component

set of discrete
datatype

data mining
task

has member

supervised
MLC task

DM-dataset

is_datatype
role_of

has_field
component

record of
primitives
datatype

is_datatype_role_of

primitive
field

component

primitive
datatype

real
datatype

discrete
datatype

is-about

has_value

calculation_time

DMOP:data
characteristic

atribute-specific
meta-feature

dataset-specific
meta-feature

boolean
datatype

information
theoretic

meta-feature

statistical
meta-feature

Legend

OntoDM-
core

is-a

OntoDT

descriptive record of
primitives without

missing values field
component

SWO:software

xsd:string

xsd:positiveInteger

Figure 3.1: ML-specific semantic annotation schema for MLC datasets based on the
OntoDM-core [26] and OntoDT [118] ontologies. The schema allows annotation of the
different datatypes appearing in the datasets, specification of the data mining task, and
representing MLC-specific meta-features as data characteristics.

Figure 3.1 depicts the high-level view of the proposed annotation schema. First, the
MLC datasets are represented as instances of the MLC dataset class, which in OntoDM-
core is modeled as a dataset specification of feature-based data [26]. In order to explicitly
encode the learning task, which in our case is MLC, the MLC dataset class is connected
with the supervised MLC task via the has-part relation.

To represent the datatypes, we reuse classes from the OntoDT ontology. For example,
in the case when the data examples do not contain missing values for the descriptive
features, we reuse the feature-based completely labeled dataset without missing values and
with a set of discrete output class. Each data example is composed of two components, i.e.,
a descriptive component that contains the descriptive features and a target component for
the target labels. For each of the components, there is a corresponding datatype. Then,
the datatypes are refined until a primitive (boolean, discrete, real) datatype is reached. A
more detailed description of the taxonomy of datatypes, their use in the context of machine
learning, and their representation can be found in Panov et al. [118].

To annotate the meta-features of MLC datasets, we introduce ontology classes into the
MLC semantic annotation schema and directly align them with the OntoDM-core ontol-
ogy. In line with the OBO Foundry’s guidelines for ontology development, we prioritized
reusing classes from existing ontologies. We model meta-features as inherent qualities of a
dataset, employing the data characteristic class from the DMOP ontology [119] to facilitate
this representation. By employing the is about property from the Information Artifact
Ontology (IAO), we link these data characteristics (i.e., meta-features) to the software
libraries that implement them.

3.3. Semantic Annotation Schemes for MLC Benchmarking Data 35

Table 3.4: The list of MLC meta-features included in the MLC semantic annotation scheme.

MetaFeature isSubClassOf Library
1 Default accuracy

data characteristic MULAN [120]

2 Ratio test to power
3 Ratio total to power
4 Ratio train to power
5 Ratio unseen to test
6 Total distinct classes
7 UnseenInTrain
8 Attributes

data characteristic/
dataset-specific meta-feature MLDA [9]

9 Distinct labelsets
10 Instances
11 Labels
12 LxIxF
13 Number of binary attributes
14 Number of nominal attributes
15 Number of numeric attributes
16 Proportion of binary attributes
17 Proportion of maxim label combination (PMax)
18 Proportion of nominal attributes
19 Proportion of numeric attributes
20 Proportion of numeric attributes with outliers
21 Proportion of unique label combination (PUniq)
22 Ratio of number of instances to the number of

attributes
23 Cardinality

data characteristic/
label-specific meta-feature/
label distribution meta-feature/
general meta-feature for labels distribution

MLDA [9]

24 Density
25 Kurtosis cardinality
26 Maximal entropy of labels
27 Mean of entropies of labels
28 Minimal entropy of labels
29 Skewness cardinality
30 Standard deviation of label cardinality
31 CVIR inter class data characteristic/label-specific meta-feature/

label distribution meta-feature/label imbalance
meta-feature/inter class

MLDA32 Max IR inter class
33 Mean of IR inter class
34 Max IR intra class

data characteristic/label-specific meta-feature/
label distribution meta-feature/label imbalance
meta-feature/intra class

MLDA [9]
35 Max IR per labelset
36 Mean of IR intra class
37 Mean of IR per labelset
38 Mean of standard deviation of IR intra class
39 Average examples per labelset

data characteristic/
label-specific meta-feature/
labels relation meta-feature

MLDA [9]

40 Bound
41 Diversity
42 Mean examples per labelset
43 Number of labelsets up to 10 examples
44 Number of labelsets up to 2 examples
45 Number of labelsets up to 5 examples
46 Number of labelsets up to 50 examples
47 Number of unconditionally dependent label pairs

by chi-square test
48 Number of unique labelsets
49 Proportion of distinct labelsets
50 Ratio of number of labelsets up to 10 examples
51 Ratio of number of labelsets up to 2 examples
52 Ratio of number of labelsets up to 5 examples
53 Ratio of number of labelsets up to 50 examples
54 Ratio of unconditionally dependent label pairs by

chi-square test
55 SCUMBLE
56 Standard deviation of examples per labelset
57 Average gain ratio data characteristic/attribute-specific meta-

feature/information theoretic meta-feature MLDA [9]58 Mean of entropies of nominal attributes
59 Average absolute correlation of numeric attributes

data characteristic/attribute-specific
meta-feature/statistical meta-feature MLDA [9]

60 Mean of kurtosis
61 Mean of mean of numeric attributes
62 Mean of skewness of numeric attributes
63 Mean of standard deviation of numeric attributes

36 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

In this work, we consider a total of 63 MLC meta-features, with 56 implemented in the
MLDA library [9] and seven in MULAN library [120]. For the meta-features derived from
MULAN, we build a taxonomy as proposed in Bogatinovski et al. [44]. The remaining
seven meta-features are categorized directly as subclasses of the DMOP:data characteristic
class. The full list of the MLC meta-features and the taxonomy is shown in Table 3.4. For
further information on the meta-features, we direct the reader to the respective libraries.

Finally, each meta-feature can be associated with its specific value and the computation
time, measured in milliseconds.

In Figure 3.2, we showcase a semantic annotation example of the Birds dataset [121].
The figure illustrates the procedure by which the tabular Birds dataset, along with its
metadata files, is processed and annotated using our proposed MLC semantic annotation
schema. The outcome, an RDF graph, is displayed at the bottom of Figure 3.2 in the
RDF/XML serialization format.

3.3.2 Semantic annotation of MLC experiment and performance data

For semantic annotation of MLC experiment data, we adopt the OntoExp schema for
semantic annotation of predictive modeling experiments proposed by Tolovski et al. [122].
The schema covers two DM experiment execution workflows: the classical train-test split
experiment execution workflow and the N-fold cross validation (CV) workflow. This schema
is aligned with the OntoDM-core ontology, which simplifies the integration with our schema
for annotation of MLC datasets outlined in Section 3.3.1, as both are based on the OntoDM-
core ontology.

To describe the workflows, OntoExp incorporates essential components of DM exper-
iments (see Figure 3.3), such as DM datasets, which assume different roles (i.e., train or
test) depending on their usage, and data folds, which denote the data split in folds in the
CV evaluation. These folds originate from the DM dataset used to divide the data into
separate splits for the CV process.

Additionally, OntoExp describes the predictive model train test evaluation workflow
execution as composed of three parts of processes: the execution of a predictive modeling
algorithm (resulting in a trained model), the application of this model to a test dataset
(producing predictions and assigning them a dataset with predicted set role), and the
calculation of evaluation metrics (in both train-test and N-fold CV workflows) that serve
as performance indicators of the trained predictive model.

Building on OntoExp as a foundation, we adapt and expand upon it to develop an
ontology-based schema, as illustrated in Figure 3.3, specifically designed for our use case of
annotating MLC experiments. The schema ensures that each stage of the MLC experiment,
from data preparation through to model evaluation, is semantically annotated, allowing
for detailed representation and analysis of the experimental processes and outcomes.

In Table 3.5, we outline the description logic axioms of our OntoExp extension (also
highlighted in Figure 3.3). First, we introduce the Sampling technique class to annotate
details about the process of DM dataset sampling. We model the Sampling technique class
as a subclass of Scientific technique (DL1). The DM dataset sampling process takes as
input a DM dataset and outputs a sampled data also represented as an instance of the DM
dataset class. The input and output relations are modeled with the has_specified_input
and has_specified_output object properties, respectively, as defined in the OBI ontol-
ogy [123] (DL2). As the sampling process can produce various versions of a dataset, dis-
tinguished by different data splits, we track the connection to the original dataset through
the originated_from object property. This property is applied to the DM dataset class in
a recursive manner, ensuring that each sampled dataset is linked to a single source dataset
by enforcing a cardinality constraint of one (DL3).

3.3. Semantic Annotation Schemes for MLC Benchmarking Data 37

has_qualityMLC dataset

rdf:type

has_quality

name

description

has_part Birds_dataset

DMOP:data
characteristic

is-a

dataset-specific
meta-feature

is-a

Instances

rdf:type

has-valueBirds_Instances 290

Birds

Birds is a dataset
representing....

rdf:type

has_field_component

Birds_feature-based
completely labeled data

without missing values and
with set of discrete output

feature-based completely
labeled data without

missing values and with set
of discrete output

is_datatype
role_of

rdf:type

Birds_descriptive record of
primitives without missing

values component

has_field
component

rdf:type

Birds_record of
primitives datatype

rdf:type

audio-ssd1
real datatypeis_datatype_role_of

rdf:type

audio-ssd1
primitive field
component

is_datatype
role_of

descriptive record of
primitives without missing

values component

has_field
component

record of primitives
datatype real datatypeis_datatype_role_ofprimitive field

component

classes

instances

classes

M
LC

 d
at

a
vi

su
al

 re
pr

es
en

ta
tio

n
of

 th
e

R
D

F
se

m
an

tic
 a

nn
ot

at
io

ns

sn
ip

pe
t o

f t
he

 s
em

an
tic

an
no

ta
tio

ns
 in

 th
e

R
D

F/
XM

L
fo

rm
at

Figure 3.2: An illustrative example of semantic annotation of the Birds dataset [121].

We further introduce the CV train test dataset assignment, which is used to represent
the process of assigning the train and test data in each CV iteration based on the set of
fold. The outcomes of this process are DM datasets, each assigned a specific role as either
training or testing data. Subsequently, the workflow continues to training and testing the
model on these assigned datasets within the respective CV iteration (DL4).

Furthermore, to represent details about the predictive models, including model hy-
perparameter - value pairs, we link the Predictive model class with the denoted_by data

38 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

h_s_output

h_s_inputh_s_output

procedesTrain test dataset
assignment

Predictive model train
test evaluation

workflow execution

has role

h_s_input

originates
from

DM dataset

Test set role

Train set role

has part

N fold CV evaluation
workflow executionh_s_output

h_s_input

N fold CV sampling
process

has part

Set of folds

originates from

Fold

has part

Per fold evaluation
workflow execution

h_s_output

precedes

CV train test dataset
assignment

has part

is about

Sampling
technique

DM dataset
sampling

denoted by Predictive model h_s_output

precedes

Predictive modelling
algorithm execution

h_s_output

h_s_input

precedes

Predictive model
execution on test set

Predicted
set role

h_s_input

has part

Predicted model test
set evaluation

calculation

realizes

Evaluation measure
calculation

is concretization of
Predictive modelling

evaluation calculation
implementation

has value

h_s_input Evaluation measure

xsd: string

xsd: string

has role DM dataset

xsd:decimal

h_s_output

N fold CV evaluation
calculation

has value

N fold CV evaluation
measure

xsd:decimal

is realized by

has part

algorithm_name

Figure 3.3: An overview of the schema for semantic annotation of MLC experiments and
performance data. The novel components in the schema, introduced in this dissertation,
are highlighted in dark blue. The properties labeled as ‘h_s_output’ and ‘h_s_input’
denote ‘has_specified_output’ and ‘has_specified_input’ object properties, respectively.

property which has string as a range and a cardinality one. Additionally, we utilize the
algorithm_name data property, also with a cardinality of one and a string range, to easily
access the name of the algorithm used for training the model (DL5).

The Evaluation measure and N fold CV evaluation measure classes are both modeled as
sub-classes of the data item class with instances of these classes required to have exactly one
decimal value (DL6, DL7). N fold CV evaluation measure is an new class we introduce,
designed to encapsulate an aggregated evaluation measure derived from multiple folds.
To facilitate the annotation of the process for calculating the mean aggregated evaluation
measure across multiple folds, we use the N fold CV evaluation calculation class. This class
is structured to accept evaluation measures as input and produce N fold CV evaluation
measure as its output (DL8).

3.4. MLCBench: Semantic Catalogue of MLC Benchmarking Data 39

Table 3.5: Description logic axioms for extending the schema for semantic annotation of
MLC experiments and performance data. The special characters used are: ⊑ denotes ‘sub-
class of’, ⊓ represents ‘intersection’ or logical AND, ∃ indicates ‘there exists’ (existential
quantifier), ∀ represents ‘for all’ (universal quantifier), and =N specifies a ‘cardinality con-
straint’ where exactly N relationship must exist.

Class Description Logic

(DL1) Sampling technique Sampling_technique ⊑ Scientific_technique ⊓
∃ is_about.DM_dataset_sampling

(DL2) DM dataset sampling DM_dataset_sampling ⊑ ∃ has_specified_input.DM_dataset ⊓
∃ has_specified_output.DM_dataset

(DL3) DM dataset DM_dataset ⊑ =1 originates_from.DM_dataset

(DL4)
CV_train_test_dataset_assignment ⊑

CV train test ∃ has_specified_output.DM_dataset ⊓
dataset assignment ∃ precedes.Predictive model train test evaluation workflow execution

(DL5) Predictive model Predictive_model ⊑ =1 denoted_by.xsd:string ⊓
=1 algorithm_name.xsd:string

(DL6) Evaluation measure Evaluation_measure ⊑ data_item ⊓ =1 has_value.xsd:decimal

(DL7) N fold CV evaluation N_fold_CV_evaluation_measure ⊑ data_item ⊓
measure =1 has_value.xsd:decimal

(DL8)

N_fold_CV_evaluation_calculation ⊑
∃ has_specified_input.Evaluation_measure ⊓

N fold CV evaluation ∀ has_specified_input.Evaluation_measure ⊓
calculation ∃ has_specified_output.N_fold_CV_evaluation_measure ⊓

∀ has_specified_output.N_fold_CV_evaluation_measure

3.4 MLCBench: Semantic Catalogue of MLC Benchmarking
Data

The ontology-based semantic schema for MLC benchmarking data that we have proposed
facilitates the creation of semantic MLC catalogue – MLCBench, which makes MLC bench-
marking data easier to access and reuse. In this section, we showcase the extensive knowl-
edge base of semantic annotations that forms the foundation of the MLCBench catalogue.
Additionally, we present the resources we have developed for semantic annotation and
storage of the data, as well as tools for online data access and querying and interactive
visualizations.

3.4.1 Knowledge base of MLC benchmarking data

Our MLC benchmarking data knowledge base contains semantic annotations for 89 MLC
datasets from different application domains, including medicine, bioinformatics, multime-
dia, and chemistry. For every dataset, we create a dedicated meta-dataset with semantic
annotations. These meta-datasets contain provenance details for the corresponding MLC
dataset, incorporating terms from the Schema.org Dataset vocabulary [116] and additional
ML-specific annotations as outlined in our semantic annotation schema for MLC datasets.
They also include information about 63 MLC meta-features, as specified in Table 3.4. The
computation of these meta-features is performed using two Java libraries: MLDA [9] and
MULAN [120].

In addition to the datasets, the knowledge base includes annotations about experiments
conducted on a subset of the 89 MLC datasets. Specifically, we annotate experiment
data about 42 different MLC datasets derived from a comprehensive comparative MLC

40 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

experimental study [124]. The study evaluates the performance of 26 MLC methods across
these datasets. Each dataset comes with predefined train-test splits. Performance insights
are provided at two levels: firstly, from a 3-fold cross-validation phase done on a subset of
the training data used to find the best hyper-parameters for the algorithms, and secondly,
from the subsequent results that are calculated the predefined train-test data splits using
the best performing models as identified in the 3-fold cross validation phase.

This performance evaluation encompasses 18 predictive and two efficiency metrics. The
predictive metrics are divided into: six example-based (including hamming loss, accuracy,
precision, recall, F1 score, and subset accuracy), eight label-based (such as macro precision,
macro recall, macro F1, micro precision, micro recall, micro F1, AUROC, and AUPRC),
and four ranking-based measures (one error, coverage, ranking loss, and average precision).
Efficiency metrics cover training and testing times. This set of evaluation metrics offers a
comprehensive view of each MLC method’s effectiveness and efficiency.

3.4.2 System for semantic annotation, storage and querying

The MLC catalogue of bookmarking data is supported by a system that automatically gen-
erates and stores semantic annotations and facilitates the execution of semantic queries.
The system, powered by the extensive use of Semantic Web technologies has the following
key functionalities: (i) a semantic annotation pipeline for MLC benchmarking data, which
includes annotation of datasets, experiment workflows and performance data, (ii) a solu-
tion for storing these annotations in a RDF triplestore; (iii) a REST API that facilitates
querying the annotations via SPARQL; and (iv) an online access point to the catalog for
MLC benchmarking data, designed to simplify data access, enable effective querying, and
support interactive analysis and visualization.

3.4.2.1 System overview

Figure 3.4 provides an overview of the system architecture supporting the MLCBench
catalogue. The system is designed to process different MLC data input files, including the
MLC datasets in the Weka’s ARFF format [125], dataset-specific metadata in JSON format
detailing provenance information and calculated MLC meta-features, and performance
data in tabular (CSV) format. Additionally, the system processes the files that define the
semantics, including ontologies, semantic schemas and vocabularies.

The processed data goes through an RDF triplification process, a method for gener-
ating semantic annotations that converts the processed input files into a series of RDF
triples (comprising subject, predicate, and object components). These RDF triples form a
connected RDF graph, containing the input data enriched with semantics. For RDF tripli-
fication, we employ the Apache Jena RDF API [126] from the Apache Jena library[127].
Apache Jena is a powerful, open-source Java library for building Semantic Web and Linked
Data applications. It has a comprehensive API for handling RDF data, provides robust
querying capabilities with SPARQL, and its support for reasoning over data.

The RDF triples thus created are then stored in a triplestore. Our architecture incor-
porates two different triplestores: Apache Jena Fuseki [128], used for storing RDF triples
related to MLC datasets, and Virtuoso [28], used for RDF triples related to MLC ex-
periments and performance data. We chose the Apache Jena triplestore due to its ease
of use and compatibility with the Apache Jena framework. However, the RDF graph
containing our semantic annotations for experiments is significantly larger than that for
datasets, encompassing a total of 22,908,626 highly interconnected triples. This size differ-
ence resulted in slower query execution times with Fuseki, prompting us to explore other

3.4. MLCBench: Semantic Catalogue of MLC Benchmarking Data 41

Web access to MLC
 semantic data

Data visualization

RDF Triples

Ontologies

RD
F

Tr
ip

lif
icatio

n

Dockerized
database

environment

Semantic annotations MLCBench KB

Accessible via:

REST

MLCBench Repository

UPLOAD DATA QUERY RDF
DATA

Semantic
schemas

Performance
data

Metadata Datasets

ARFF

FTP file server

G
E

T
FI

LE
 D

A
TA

Figure 3.4: A schematic representation of the system architecture for the ontology-based
catalog of MLC benchmarking data showcasing functionalities such as semantic annotation
processing of MLC benchmarking data, RDF triple storage, REST API for SPARQL query
access, and an interactive online catalog for user-friendly data exploration and visualiza-
tion.

triplestores designed to efficiently handle large datasets and complex queries. We chose
Virtuoso as our triplestore due to its high performance, scalability, and robust support
for SPARQL querying. Virtuoso excels in handling large volumes of RDF data and of-
fers efficient query execution. All data within this triplestore constitute the MLCBench
knowledge base. Alongside the RDF annotations, in both triplestores we store the inferred
versions of ontologies to speed up the execution of the queries that require reasoning. The
inference is made using the OWL Micro reasoner [129]. It’s important to note that having
two separate triplestores does not hinder data interoperability. Given that both adhere to
the same semantic model, federated SPARQL queries enable seamless simultaneous access
to data across these distinct endpoints. This ensures that data can be integrated and
queried together, despite being stored in separate storage systems.

To ensure ease of deployment and scalability, the entire semantic annotation storage
and querying environment is containerized using Docker. This approach offers several ad-
vantages, including simplified configuration, environment consistency, portable workloads
and ability to scale the system as needed.

Access to the knowledge base is made easy through a REST API, enabling users to
directly submit SPARQL queries. Additionally, we have created a website for the ML-
CBench catalog, which lets researchers in the MLC field easily find the data they need and
explore it in different ways.

Finally, MLC datasets in the ARFF format, which have licenses permitting redistribu-
tion, are stored on a file server and can be accessed upon request via the FTP protocol.
The calculated MLC meta-features, while included in the semantic annotations, are also
downloadable in JSON format. Additionally, we provide a dump of all RDF annotations on
the FTP file server. We make all semantic annotations openly accessible, published under
the https://creativecommons.org/licenses/by/4.0/ license.

https://creativecommons.org/licenses/by/4.0/

42 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

3.4.2.2 Querying the knowledge base

To facilitate queries to the knowledge base, we have established a REST API (query end-
point). For example, to query data related to MLC datasets using SPARQL, the following
endpoint should be utilized:

http://semantichub.ijs.si/fuseki/MLC-datasets/query?[insert query]

In Figure 3.5, we present the SPARQL query for the following query expressed in
natural language: “List all dataset that have Cardinality greater than 2 ”. Additionally,
Figure 3.5 displays the results of executing this query. Cardinality, an MLC meta-feature,
represents the average number of labels per data instance. Analysis reveals that, among
the 89 MLC datasets cataloged in the knowledge base, 36 have cardinality greater 2.

Figure 3.5: An example SPARQL query (left) for querying the MLCBench knowledge base
and the first 10 answers obtained (right).

Additionally, data related to the benchmarking study is stored on a Virtu-
oso server. These datasets can be queried via the following SPARQL endpoint:
http://mlcbenchmark.ijs.si:8890/sparql/.

3.4.2.3 Online catalogue of MLC benchmarking data

Querying the MLCBench catalogue requires familiarity with SPARQL and the underlying
semantic model of the knowledge base, presenting a challenge for those less experienced
with the Semantic Web technologies. To address this, we have developed a web-based
platform (available at http://semantichub.ijs.si/MLCBench/) with a simple user inter-
face that simplifies access and interaction with our catalogue of MLC benchmarking data.
This online resource effectively abstracts the complexities of ontology-based annotations,
enabling query operations within the knowledge base without the need for SPARQL query
expertise.

The online catalogue offers several key functionalities. It supports querying based on
user-defined parameters like domain, unit of analysis, and metadata text searches (see
Figure 3.6). Users can also filter datasets by the value ranges of the MLC meta-feature,
by number of descriptive and target features or by the presence of missing values. It also
includes a visualization feature that allows users to dynamically explore MLC meta-features
and conduct comparisons across various datasets.

Additionally, the MLCBench catalog facilitates in-depth exploration of individual MLC
datasets. For example, Figure 3.6 showcases the proteins_virus dataset on the left-hand

http://semantichub.ijs.si/MLCBench/

3.4. MLCBench: Semantic Catalogue of MLC Benchmarking Data 43

Figure 3.6: A view of the MLCBench online catalog interface. The left side showcases the
browsing and querying features for MLC datasets, together with an interactive tool for
comparing MLC meta-features across different datasets. The right side presents a detailed
page for individual MLC datasets, including visualizations of descriptive features and target
label distributions, alongside provenance information and a summary of calculated MLC
meta-features.

side. It presents the available provenance information and enables the downloading of MLC
meta-features, RDF annotations, and datasets as dump files. Visualizations offer insights
into label distributions, descriptive feature distributions, and a detailed listing of all MLC
meta-features with their calculated values for each dataset, providing a comprehensive
understanding of the data.

Furthermore, the catalogue supports browsing and querying of MLC experiments (see
Figure 3.7). Queries can be tailored using various criteria, including the evaluation type
(train/test or cross-validation), MLC datasets, MLC methods, and specific ranges for se-
lected evaluation measures.

Moreover, the catalog enables interactive analysis of experiment performance data, as
depicted in Figure 3.7. The visualization tools we have created facilitate two forms of anal-
ysis: a comparative study of MLC method performance across all accessible MLC datasets,
and a detailed comparison of MLC method results on an individually chosen dataset. In
both scenarios, users can conduct their analysis based on a performance evaluation measure
of their choice.

The MLCBench online catalog presents a list of all MLC methods, including their
provenance information and links to their original publications. Additionally, it details the

44 Chapter 3. Semantic Catalogue of MLC Benchmarking Data

Figure 3.7: A view of the MLCBench online catalog interface. The left side showcases the
browsing and querying features for MLC experiments. The right side presents an overview
of the interactive visualization tool for analysis of MLC performance data.

available MLC meta-features, providing both descriptions and mathematical definitions for
each.

It is important to highlight that MLCBench exclusively utilizes RDF semantic anno-
tations available in the MLCBench knowledge base for its content; thus, all information
displayed is directly retrieved through querying this knowledge base with automatically
constructed SPARQL queries.

3.5 Summary and Discussion

We have developed an ontology-based schema for semantic annotation of MLC data and
an online catalogue that makes the benchmarking data FAIR. Our catalogue introduces
a key novelty: all data descriptions are enhanced with semantic annotations (metadata)
based on terms from ontologies and controlled vocabularies.

The catalogue provides comprehensive descriptions of 89 MLC datasets from multiple
application domains, making it, to the best of our knowledge, the most comprehensive
repository of publicly accessible MLC benchmark datasets to date. Each dataset in our
catalogue is characterized by a set of 63 MLC meta-features, capturing a wide range of
measurable properties relevant to the MLC learning tasks within these datasets. Having all
the calculated meta-features in one place allows the experts to jointly observe the properties
of the learning task across different datasets. The detailed descriptions of the datasets,
including their provenance information, enhance the reusability of the data and improve

3.5. Summary and Discussion 45

the overall data understanding.
We also provide the links to the train and test splits of the datasets as used in a compre-

hensive study of MLC methods [124]. Providing information about the train/test splits is
especially important for benchmarking and reproducibility of computational experiments.

Another significant contribution of this work is incorporating experiment workflows
into our knowledge base and semantic catalogue. Each experiment is described in de-
tail, covering aspects crucial for reproducibility such as data sampling techniques, data
splits used, algorithms applied, specific hyperparameter sets, and experiment outcomes,
including performance across 20 different measures. This level of detail not only enhances
the reproducibility of experiments, allowing researchers to accurately replicate studies and
verify findings, but also facilitates comparative analysis by providing a basis for directly
comparing the effectiveness of different MLC methods under consistent conditions. Fur-
thermore, the semantic annotation of experiments and experiment outcomes promotes
methodological transparency. The inclusion of detailed experiment workflows in our se-
mantic catalogue embodies the principles of open science, making MLC research more
accessible and collaborative.

Another feature of our catalogue as compared to other MLC repositories, is the in-
teractive nature of the catalogue supported by the underlying web-based system. More
specifically, the web-based system allows users to interactively inspect all of the available
benchmarking data based on the provided semantic annotations including visual inspection
the MLC datasets, their meta-features, descriptive and target data distributions and algo-
rithm performance. This interactivity allows for a deeper and more intuitive understanding
of the data.

To conclude, the main contribution of our catalogue is the use of a semantic layer for
representing standardized, formal descriptions of MLC benchmarking data through the
application of formal ontologies. The rich semantic annotations provide the catalogue with
advanced querying capabilities that employ the reasoning power of ontologies. Further-
more, the explicit inclusion of semantics further broadens the range of applications of the
available data, as this helps practitioners better understand, reuse and augment the data
automatically. Finally, the uniqueness we provide along various dimensions makes our
catalogue the go-to source for future benchmarking and evaluation of MLC methods.

47

Chapter 4

Representation of BBO
Benchmarking Data

In this chapter, we introduce OPTION (OPTImization algorithm benchmarking ONtol-
ogy), an ontology specifically developed for the semantic representation of BBO bench-
marking data. We start the chapter with the problem definition and motivation for doing
this study. This is followed by an overview of related work in the field. Next, we focus
on the ontology itself, detailing its design and implementation, as well as the core entities
that make up the ontology. We also provide several use cases to illustrate how the ontol-
ogy can be utilized for the annotation of BBO benchmarking data. Finally, we present
the OPTION system, which is designed for annotating, storing, and querying data. This
includes a discussion on the integration of the OPTION Knowledge Base (KB) within the
IOHprofiler environment as well as a discussion on the future extension of the ontology
and its knowledge base.

This chapter is based on the article “OPTION: OPTImization Algorithm Benchmarking
ONtology” [130], [131], published in IEEE Transactions on Evolutionary Computation and
at the Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
Companion, 2021.

All data, code, and resources developed for this chapter are publicly available on GitHub
at: https://github.com/KostovskaAna/OPTION-Ontology.

4.1 Problem Definition

Evolutionary computation (EC) and black-box optimisation (BBO) in general are fast-
growing fields that have made tremendous progress recently. Due to the numerous ap-
plications in engineering, artificial intelligence, and beyond, new optimisation algorithms
are constantly being developed, making it impossible for researchers and practitioners in
the field to keep up with all the new developments. On the other hand, data sharing has
gained significant acceptance in recent years. Nowadays, it is de facto standard to publish
research results and data on publicly accessible data repositories, whenever possible, to
promote their reusability. However, while data sharing undoubtedly helps to achieve this
aim, there are unfortunately no common standards for which data to record, nor how to
store it. Consequently, the storage, sharing, and reusability of benchmark optimisation
data is challenging because different data formats are only partially compatible. In the
context of numerical optimisation, for example, there are several important benchmarking
tools, each with its way of storing performance data, such as COCO [57], Nevergrad [56],
and SOS platform [132] . While each of these individual data formats is internally con-

https://github.com/KostovskaAna/OPTION-Ontology

48 Chapter 4. Representation of BBO Benchmarking Data

sistent, they handle the details of data storage differently. Interoperability of data from
different sources is therefore limited unless explicit conversions are made. Management of
benchmarking data is even more challenging if we consider the “Reproducibility guidelines
for AI research” [133], [134], where various ACM reproducibility concepts are presented:
i) repeatability (same team, same experimental design), ii) reproducibility (different team,
same experimental design), and iii) replicability (different team, different experimental
design). These guidelines are also discussed in the context of EC [135].

While performance data is often made available (with limited interoperability) via
benchmarking platforms, detailed information about the algorithms generating this data
is usually lacking. This is in part due to the complexities inherent in describing optimisa-
tion heuristics. Even within a single family of algorithms, differences in operator choices,
parameter adjustment strategies, and hyper-parameter settings can result in very different
algorithm behavior. If these design decisions can be stored in combination with the cor-
responding performance data, this would open the door to extracting knowledge from the
vast amount of data generated every day.

Besides performance data and algorithm descriptors, data on the problem landscape are
crucial in benchmark studies. Yet, the computation of landscape features often demands
significant computational resources. To prevent the need for repeated computation, it is
important to ensure that this data is both reusable and interoperable.

In summary, we see an increasing amount of data that could be used to select or
even design algorithms in an informed way. However, we also see increasing complexity in
identifying and processing relevant data. This is largely due to various challenges in the EC
domain for data integration and interoperability and it often leads to biased comparisons
and reduced transferability of knowledge.

4.1.1 Domain challenges for data integration and interoperability

There exist many different benchmarking platforms for optimisation, each with their own
way of storing performance and algorithm data. Three main approaches to the storage of
performance data are described below:

• Csv-based: The data is stored as a single file per experiment in a csv-based format,
where each column represents a performance measure or other meta-information. An
example is the format used in Nevergrad [56]. This allows for storing data on many
different functions/problems into a single file, with the drawback that the granularity
of the data is often limited.

• Textfile-based: The data is separated into a single file per function/problem, where
the meta-information is delimited in some way, followed by the performance infor-
mation. This format is easily extendable and human-readable, but it can be hard to
work with when files become large. An example of this format is used by the SOS
platform [132].

• COCO/IOH-like: The data is separated into multiple files and folders: generally,
folder structure splits along algorithms and functions/problems. Each folder then
contains a file with meta-information about the runs, with links to the files where
the raw performance data is stored. This structure makes it easy to find the data
sought, but the different links to the files can be an obstacle for practitioners who
are not used to this format. Variants of this data format are used by COCO [57] and
IOHprofiler [136].

As mentioned, each of these data formats has its advantages and disadvantages. While
there are some commonalities between different methods, the particularities in handling

4.1. Problem Definition 49

meta-data make interoperability of the data from different sources challenging. Further-
more, these differences lead to more limited post-processing functionalities available to the
users of these platforms since they are only compatible with those tools that support their
particular data format. While these tools are slowly becoming more interoperable, this
process requires significant effort from the developers of the individual tools to make sure
all data formats are fully supported. A common data structure would be useful to the
benchmarking community to avoid each developer having to do this individually.

Additional source of complexity in recording performance data from black-box opti-
misation is that we typically do not use a single performance measure. Instead, we are
interested in analyzing algorithm performance from different perspectives: small vs. large
budgets, the time needed to identify solutions that meet specific quality criteria, the ro-
bustness of the algorithm in search and performance space, etc. [5].

To enable such detailed analyses, researchers often record performance data in a multi-
dimensional fashion, spanning at least the time elapsed (measured in terms of CPU time
and/or function evaluations), solution quality, and robustness. We may also be interested
in how dynamic parameters evolve during the optimisation process, in which case we
record their values along with the performance data. Both requirements add another level
of complexity to the data formats and may explain why they differ so much in practice.

Several other factors further contribute to the complexities surrounding the interoper-
ability and re-usability of publicly available performance data from different benchmarking
experiments. We discuss these in the remainder of this section.

Most black-box optimisation algorithms are, in fact, families of various algorithm in-
stances. They can be selected by specifying the (hyper-)parameters of the algorithm and/or
the operators (e.g., one may speak of Bayesian optimisation regardless of the internal op-
timisation algorithm that is used to search the surrogate model, or one may use different
acquisition functions, different techniques to build the surrogate, etc.). Different configu-
rations can lead to drastically different search behaviors (and hence performance), and it
is crucial to associate the recorded data with the appropriate algorithm instance, not just
the algorithm family. However, this is not an easy task, as it can happen that essentially
the same algorithm is published under different names. The reader can consult [137], [138]
for recent examples and a discussion, respectively.

A similar issue can appear on the problem side. Different instances of the same problem
can be of different complexity, and it is not always clear which problem instances were used
within a given benchmark study. In addition, some benchmarking suites automatically
rotate, shift, permute, or translate the problem instances, to test problem characteristics
dependent on those transformations and the generalizability of the algorithms. Other suites
do not do this (e.g., because the variable order or absolute values carry some meaning) but
still refer to problems of different complexity under the same name. As for the algorithms,
we can also have the same problem appear under different, possibly multiple, names. The
OneMax problem, for example, is sometimes called CountingOnes, OnesMax, the
Hamming distance problem, or Mastermind with 2 colors. All these names refer to the
same problem.

Identifying such issues cannot (as of yet) be done automatically but requires human
expertise to annotate the data correctly. While this requires a significant amount of effort
for the large amounts of currently available benchmarking data, we aim for the procedure
to convert from different data formats to be automated where possible (e.g., by involving
the authors of the different benchmarking platforms) and clearly structured where not.
In the future, this would then become second nature when introducing a new algorithm
/ problem / experimental setup, allowing the data ontology to grow organically. The
creation of reproducible and readily available data will eventually benefit the optimisation

50 Chapter 4. Representation of BBO Benchmarking Data

Table 4.1: OPTION ontology competency questions.

N0 Competency question
1 Which problem instances belong to a given benchmark problem?
2 What is the provenance data related to a given benchmark study?
3 Which algorithms are benchmarked in a given study?
3 Which specific operators or hyperparameters are used in a given algorithm,

and how are they configured?
4 What are the values of ELA features of a given problem instance calculated

on a sample obtained by using a given sampling technique?
5 What was the fitness achieved for a given benchmark problem after a fixed

amount of function evaluations?
6 How many function evaluations were needed to reach a given fitness target?
7 Which algorithm(s) achieve the best performance given a fixed number of

function evaluations?

community as a whole, so the efforts invested to achieve this goal would be very much
worthwhile.

4.1.2 Addressing data integration challenges with ontologies

To develop ontology-based solutions for the integration of benchmarking performance and
problem landscape data from different data sources, we need an ontology that formalizes the
knowledge in the domain of interest. The ontology should cover the competency questions
presented in Table 4.1.

Once the ontology is defined, it can be used by different ontology-based systems and/or
benchmark platforms as a common vocabulary for semantic annotation of the data. Bench-
mark platforms can keep their proprietary data format. As long as they annotate the data
with semantic metadata and store the annotations in a semantic data store compliant with
the proposed ontology, the data would be automatically interoperable with other knowledge
bases and platforms that follow the same protocol for data management.

One of the goals of this dissertation is to design an ontology for semantic annotation
of benchmark performance and problem landscape data as well as to design a prototype
data management system that enables data integration and reusability with the use of the
ontology as a common vocabulary. This goal is operationalized as a set of requirements
that an ontology-based system for data integration should fulfill. The requirements are
presented in Table 4.2.

To achieve our goal, as outlined by the competency questions in Table 4.1, we have
developed the OPTION ontology. Its utility is showcased in an ontology-based data man-
agement system in Section 4.4, which aligns with the requirements specified in Table 4.2.

4.2 Related Work

Several efforts have been made to conceptualize different aspects of domain knowledge
about EC. The Evolutionary Computation Ontology has been developed to model the re-
lations between algorithm settings (i.e., solution encoding, operators, selection, and fitness
evaluation) and different types of problems [139]. It is focused on describing the properties
of algorithms, which can be especially helpful for teaching EA-related topics. In the do-
main of multi-objective optimisation, the Diversity-Oriented Optimization Ontology has

4.3. The OPTION Ontology 51

Table 4.2: Requirements of the ontology-based system.

N0 Requirement
1 Semantically annotate benchmarking performance data, problem landscape

data, and algorithm configuration details from different benchmark plat-
forms and different problem test suites with ontology-defined terms.

2 Store semantic annotations in a specialized semantic data store.
3 Load and query benchmark performance data from experiments performed

using the same or a different system/platform.
4 Load and query problem landscape data for benchmark problems defined

in the same or different test suite.
5 Load and query provenance information associated with the benchmark

studies.
6 Allow members of the community to extend the ontological conceptual

model to cover parts of the domain knowledge missing in the latest ac-
tive version of the ontology.

7 Allow members of the community to upload their performance data and
problem landscape data to extend the system’s knowledge base.

been developed, including a taxonomy of algorithms concerning the diversity concept in
different search operators [140]. Complementary to the diversity concept, the Preference-
based Multi-Objective Ontology has also been proposed to model the knowledge about
preference-based multi-objective evolutionary algorithms [141].

The above ontologies have a strong focus on specifics, resulting in classifications of
algorithms that allow users to ask only about high-level relations. For example, finding
algorithms that use a specific type of operator, finding algorithms that can solve problems
from a particular class, and finding algorithms that have been applied to a specific engineer-
ing problem. What is missing are ontologies that add semantics to available benchmarking
data, so that high-level relations and conclusions can be drawn from the ontologies.

4.3 The OPTION Ontology

We developed the OPTION ontology with the primary goal of formalizing knowledge about
benchmarking optimisation algorithms, emphasizing the formal representation of data from
the performance and problem landscape space.

Additionally, we aimed to formally represent details about the optimisation algorithms,
including aspects like such operators and hyperparameters. Given the variety of optimisa-
tion algorithms available, our effort in this formalization process is concentrated specifically
on modular optimisation algorithms. In this context, we demonstrated a proof-of-concept
by representing two modular frameworks. While our ontology is easily adaptable for repre-
senting various other modular algorithms, it’s important to acknowledge that all existing
algorithms proposed outside of modular frameworks is a time-consuming and challenging
task. This requires the participation of the entire community to reach a consensus on
the standard unified representation of black-box optimisation algorithms. Addressing this
comprehensive task is beyond the scope of the dissertation.

Thus, OPTION offers a comprehensive description of the domain covering the bench-
marking process and the core entities involved in the process, such as optimisation algo-
rithms, benchmark problems, problem landscape properties, and performance evaluation
measures. The ontology currently covers the domain of continuous optimisation, but the

52 Chapter 4. Representation of BBO Benchmarking Data

classes are defined in a way to be easily extended in the future.

4.3.1 Ontology design and implementation

The design of the ontology was governed by the competency questions listed in Table 4.1.
In the ontology design phase, we followed best practices of ontology engineering, i.e., the
OBO Foundry principles [10], which ensure interoperability with other external ontologies
that follow the same design principles. Our proposed ontology adheres to the single inher-
itance principle, does not contain any orphan classes, and heavily reuses formally defined
relations from the Relations Ontology (RO) [142]. Furthermore, we aligned OPTION with
Basic Formal Ontology (BFO) [143], a widely-used upper-level ontology, which served as
a template to organize the class hierarchy. The ontology is also aligned with mid-level
ontologies, such as the Information Artifact Ontology (IAO)1 and Ontology of Biomedical
Investigations (OBI) [123]. Finally, we reused classes from external ontologies, such as the
Generic ontology of datatypes (OntoDT) [118], and Semanticscience Integrated Ontology
(SIO) [144].

The OPTION ontology consists of 403 classes and 4130 axioms, including 591 sub-
ClassOf axioms. We used the rdfs:label annotation property to provide human-readable
English labels. The ontology is implemented as an OWL 2 DL ontology with a SROIQ(D)
level of expressiveness.

SROIQ(D) builds upon ALC, which is the foundational description logic that sup-
ports basic class definitions, conjunctions, and negations. In SROIQ(D) expressiveness,
S is abbreviation for ALC, while R extends it with role chains, including transitivity and
role hierarchies. I introduces inverse roles, enabling relationships to be defined in both
directions. O refers to nominals, which allow for the representation of specific individu-
als and their equality or inequality. Q includes qualified cardinality restrictions, and D
supports datatype properties.

For the development, we used Protégé [145], an open-source ontology-development and
knowledge-acquisition environment. The ontology is publicly accessible via the permanent
identifier http://purl.archive.org/option-benchmarking-ontology and is also avail-
able on BioPortal2 [146], the largest public repository of ontologies.

4.3.2 Ontology layers

As mentioned above, the domain classes from the OPTION ontology are aligned with
middle- (IAO and OBI) and upper-level (BFO) ontologies. Orthogonally to that, at each
level (domain, middle, and upper), where appropriate, we implement the specification-
implementation-execution ontology design pattern [147]. This pattern helps us describe
the different aspects of one concept: For an optimisation algorithm, we define three con-
ceptually different classes, i.e., optimization algorithm; optimization algorithm implemen-
tation; and optimization algorithm execution to represent general information about the
algorithm; characteristics of its implementation; and information about the process of its
execution, respectively (see Figure 4.1). Similarly, the optimization algorithm benchmark
study design execution and optimization algorithm execution classes are modelled using the
same design pattern (see Figure 4.1). This representation enables flexibility and contextual
relevance, as in some cases, we focus on a specific perspective (e.g., implementation) of the
modeled concept, while the rest can be irrelevant.

1IAO ontology: https://github.com/information-artifact-ontology/IAO/
2OPTION at BioPortal: https://bioportal.bioontology.org/ontologies/OPTION-ONTOLOGY

http://purl.archive.org/option-benchmarking-ontology
https://github.com/information-artifact-ontology/IAO/
https://bioportal.bioontology.org/ontologies/OPTION-ONTOLOGY

4.3. The OPTION Ontology 53

ex
ec

ut
io

n
la

ye
r

im
pl

em
en

ta
tio

n
la

ye
r

sp
ec

ifi
ca

tio
n

la
ye

r

realizes

has
part

optimization
algorithm

benchmark
execution

is_concretized_as

optimization
algorithm

benchmark
implementation

optimization
algorithm

benchmark

realizes

optimization
algorithm
execution

is_concretized_as

optimization
algorithm

implementation

optimization
algorithm

has
part

optimization
algorithm

benchmark study
design execution

optimization
benchmark

study
implementation

optimization
benchmark

study design

realizes

is_concretized_as

Figure 4.1: The specification-implementation-execution design pattern as used in the OP-
TION ontology.

4.3.3 Core entities

In this section, we introduce the core entities that make up the foundation of the OPTION
ontology and present how they are semantically represented within the ontology.

4.3.3.1 Specification, implementation and execution layers

The OPTION ontology is structured around several objects (i.e., continuants): benchmark
problem3, optimization algorithm, function evaluation, solution, performance evaluation
measure and others, as well as processes (i.e., occurents) in which these entities participate
such as optimization algorithm benchmark study design, optimization algorithm benchmark
execution, experiment run, and function evaluation run. The notion of continuants and
occurents comes from the BFO top-level ontology. More specifically, BFO divides all
classes/entities into those two disjoint categories. Subclasses of the continuant class are
objects (including information artifacts), while subclasses of the occurent class are processes
as they can be extended through time.

4.3.3.2 Semantic representation of core entities

We will briefly describe how optimisation entities are semantically defined within the OP-
TION ontology.

For a visual exploration of the ontology classes, we refer the reader to:
https://service.tib.eu/webvowl/#iri=https://raw.githubusercontent.com/
KostovskaAna/OPTION-Ontology/main/OntoOpt.owl. However, to explore the ontology
fully (not just classes but also axioms), we advise the reader to load the OPTION ontology

3In the remainder of this paper, we will refer to the ontology classes in OPTION in italic font, while
the relations between the classes will be written in typewriter font.

https://service.tib.eu/webvowl/#iri=https://raw.githubusercontent.com/KostovskaAna/OPTION-Ontology/main/OntoOpt.owl
https://service.tib.eu/webvowl/#iri=https://raw.githubusercontent.com/KostovskaAna/OPTION-Ontology/main/OntoOpt.owl

54 Chapter 4. Representation of BBO Benchmarking Data

Figure 4.2: The core entities in the OPTION ontology and their relations.

(the .owl file) in Protégé [148]. The structure of the OPTION core entities in the ontology
and their relations are presented in Figure 4.2.

The benchmark problem class is part of a test suite and it can undergo a process of
benchmark problem transformation (e.g., shift and scale). The transformed benchmark
problem inherits all the properties of a benchmark problem. Thus, it is represented as its
subclass in the ontology via the is-a property. For each benchmark problem at instance
level we can define data properties such as dimensionality, number-of-objectives,
number-of-constraints, and noise level. For the representation of datatypes on the
decision and objective space, we imported the record with two components class from On-
toDT. The first component is associated with datatypes in the decision space and the
second with datatypes in the objective space. Since different test suites can have different
benchmark problems or variations of the same, we use the benchmark problem class as a
root class to build the taxonomy of benchmark problems for each test suite separately. For
example, 24 benchmark problems constitute the taxonomy of BBOB benchmark problems.

To represent the study design and study design execution concepts in the context
of benchmarking optimisation algorithms, we defined the optimization algorithm bench-
mark study design and optimization algorithm benchmark study design execution classes as
specializations of classes already defined in the OBI ontology. Since keeping track of the
provenance information related to each study is a very important aspect in the context of re-
producibility and provenance of experiments, we imported a number of properties from the
well-known Dublin Core [149] vocabulary and metadata schema, such as dc:identifier,
dc:title, dc:date, and dc:creator, to name a few.

In one study, we can benchmark a set of optimisation algorithms. This relation is
captured with the has-part transitive object property between the optimization algorithm
benchmark study design execution and optimization algorithm benchmark execution, which
represents the execution of each individual algorithm (see Figure 4.2).

The optimization algorithm benchmark execution class includes the specification of the
input(s) (i.e., the benchmark problem) and its sub-processes. The execution process is

4.3. The OPTION Ontology 55

composed of two sub-processes: optimization algorithm execution and experiment run.
Here, we also specify details about the execution, such as the execution time and the
number of workers (when parallelization is allowed).

The definition of the experiment run class includes specifics about the input(s) of the
process (i.e., the benchmark problems) and output(s) (i.e., performance evaluation mea-
sure) of the execution process. In the ontology, various performance evaluation measures
have been represented. These include the measured fitness, the best-measured fitness, and
the noise-free fitness measure. In addition, the ontology also supports the representation
of performance data at the level of function evaluations. For that purpose, we use the
same performance evaluation measure as presented above. Note that we associate infor-
mation about the function evaluation runs where applicable, as not all benchmarking data
is given at this level of granularity. Finally, performance can be measured in a fixed-target
or fixed-budget scenario.

Moreover, we also define a solution as an output of each function evaluation run process.
Each solution is broken down into multiple parts, and for each solution part, we represent
its location via the has-coordinate-value data property. The number of solution parts
depends on the dimensionality of the problem.

4.3.4 Representation of problem landscape entities

The problem landscape space is represented with ELA features. ELA features in the
OPTION ontology are defined as data items (see Figure 4.3). They are linked with the
corresponding benchmark problem via the is-about relation. The benchmark problem class
in Figure 4.2 is the same one as in Figure 4.3 and it connects the two figures. Since the
ELA feature value depends on the sampling technique and the sample size, this information
is also included in the ontology. We have already included five sampling techniques that
are most common in the literature. However, the list can be extended with other sampling
techniques on-demand.

benchmark
problem

calculated
on sample

size
has_value

is-a

is
about

value
calculated

 using
ELA feature

xsd:integerxsd:double

data item

is-a

sampling
technique

data collection
technique

LHS sampling technique

iLHS sampling technique

Random sampling
technique

type

Randu sampling technique

Sobol sampling technique

Legend

 continuant

 individual

 object property

 data property

Figure 4.3: Representation of ELA features in the OPTION ontology.

56 Chapter 4. Representation of BBO Benchmarking Data

is-a

optimization
algorithm

initialization

mutation

evaluation

selection

recombination

parameter
update

is-a

algorithm

plan
specification

boundary
correction

is-a

modular
optimization

algorithm

is_concretization_of

optimization
algorithm

implementation

realizes

has-part

has-parameter

modular
optimization

algorithm
execution

has-parameter
modular

optimization
algorithm

execution part

is-a

has-datatype

parameter

is-a

algorithm
module

parameter

information
content entity

quality

datatype

has-member

is-a

termination

precedes

is
_c

on
cr

et
iz

at
io

n_
of

Figure 4.4: The entities and relations for the representation of modular optimisation algo-
rithms.

4.3.4.1 Representation of algorithm entities

For the formal representation of modular optimisation algorithms, we consider two different
families of evolutionary algorithms: Differential Evolution (DE) [76] and Covariance Matrix
Adaptation Evolution Strategies (CMA-ES) [77]. Since these two algorithms have been
well-researched for over a decade, many variations and modifications have been proposed,
resulting in the development of modular frameworks specifically tailored for them.

For the CMA-ES, we use the modCMA framework [78], which contains many variants
of the core algorithm. This ranges from modifications of the sampling distributions (in-
cluding mirrored or orthogonal sampling) to different weighting schemes for recombination
to different restart strategies.

For DE, we use the modDE package [79] available at https://github.com/
Dvermetten/ModDE. This framework provides a wide range of mutation mechanisms, with
different modules for selecting the base component, the number of differences included, and
the use of an archive for some of the difference components. In addition, the usual crossover
mechanisms can be enabled, as well as update mechanisms for internal parameters based
on several state-of-the-art DE versions.

For the formal representation of modular optimisation algorithms, we have created a
separate ontology module within the OPTION framework, that seamlessly integrates with
the rest of the OPTION ontology. This ontology module allows us to specify the different
steps in the optimisation process and link them to the corresponding module parameters
(see Figure 4.4). For this purpose, we introduced the modular optimization algorithm class
as a subclass of the optimization algorithm class, which is already defined in OPTION. For
modular algorithms, we have also defined a specialized class modular optimization algorithm
execution. Optimization algorithm execution can be a composition of several subprocesses
(e.g., initialization, mutation, and recombination). To model this in the ontology, we have
defined the modular optimization algorithm execution part class and linked it to the modular
optimization algorithm execution class via the has-part relation. The algorithm execution

https://github.com/Dvermetten/ModDE
https://github.com/Dvermetten/ModDE

4.3. The OPTION Ontology 57

flow is represented with the precedes relation. Algorithm module parameters are linked
to both modular optimization algorithm execution and modular algorithm execution part
through the has-parameter relation.

4.3.5 Use cases

To demonstrate the benefits of using a common ontology for semantic annotation of data
and to address some of the domain challenges for data integration, we consider four different
use cases or data sources. The BBOB and Nevergrad benchmark suites are two use cases
for the annotation of performance data, a large set of publicly available ELA data is a use
case for the annotation of problem landscape data. Finally, we show example annotations
of modular optimisation algorithms.

4.3.5.1 BBOB

Since 2009, annual workshops have been organized around the benchmarking of derivative-
free black-box optimisation algorithms with the COCO environment [57]. We consider the
BBOB single-objective benchmark suite [150], which consists of 24 single-objective bench-
mark functions. Some of the data generated during these workshops is freely available [151].
It covers results for the problems of different dimensions D ∈ {2, 3, 5, 10, 20, 40}.

We use the BBOB data that includes the algorithms from the 2009-2020 workshops in
this use case. The data includes 226 algorithms, which we semantically annotate using the
OPTION ontology. For each of the 226 algorithms, semantic annotations in the form of
RDF graphs were generated and uploaded to a semantic data store.

A brief overview of the structure of the BBOB benchmarking data format was presented
in Section 4.1.1. However, to properly annotate the performance data, we need to look at
the specifics of the corresponding file formats (see the illustration of raw COCO-BBOB
data in Figure 4.5). First, the performance data is indexed by a function evaluation: for
each evaluation that improves the objective function, a line gets written in the results file,
containing the evaluation number, the raw objective value, and the transformed objective
value (i.e., the value that is returned to the algorithm during the optimisation process).

The raw objective values are needed to allow for a fair comparison between different
instances of the same function, while the transformed values are helpful when trying to
reconstruct the input which was given to the optimiser.

In addition to these two values, their best-so-far equivalents are also stored. When
dealing with noiseless optimisation and only writing data on function improvement, these
values are redundant, but they can be helpful in other cases such as noisy optimisation.

Not all considered algorithms have data available on the same func-
tion/dimension/instance combination. This is partly caused by the shifting requirements
of the BBOB workshops; i.e., the set of recommended instances and the number of
repetitions per instance have not been identical throughout the years. In addition, some
algorithms have been run only on a subset of the available BBOB collection, e.g., because
of limited computational resources available. Since most of the algorithms benchmarked
on BBOB are stochastic, there is a certain degree of variance between the runs.

The data in the ontology provides the terms/classes needed for annotation on the used
problem/dimension/instance/algorithm in the corresponding benchmark analysis. In addi-
tion, data provenance information has been manually collected, linked to the performance
data to trace its origin, and uploaded in the OPTION KB. The stored data provenance
information includes the digital object identifier (DOI) of the paper where the experiments
have been presented, the paper’s title, the authors’ name, and the year of publication. It
is therefore possible to filter the data with respect to these criteria.

58 Chapter 4. Representation of BBO Benchmarking Data

4.3.5.2 Example annotations of COCO-BBOB performance data

In Figure 4.5, we provide an example of a semantic annotation of performance data for
the MLSL algorithm, which was benchmarked on the BBOB test suite using the COCO
platform. We illustrate the process of creating OPTION-based semantic annotations in
the RDF format.

As previously described, COCO separates performance data into multiple files and
folders. More specifically, for each benchmark problem, there is a separate .info text
file, which includes meta-information about the runs, and .dat files containing the raw
performance data for these runs.

We created a parser for COCO-formatted files and merged the information from the
different files into a single table (see the processed raw data table in Figure 4.5).

The processed performance data is then passed to the semantic annotation pipeline,
that generates instances (also called individuals) of the OPTION classes. The semantic
annotations are saved in the RDF format (which has a graph-like structure), where each
fact is expressed in the form of subject - predicate - object triple. The subject and object
are represented as nodes in the graph, with the predicate forming an edge between them.
For instance, f1_i1_dim2 - rdf:type - f1 is an RDF triple denoting the fact that the problem
instance labeled as f1_i1_dim2 is of type f1, where f1 is a class in the OPTION ontology
representing the first benchmark problem from the BBOB test suite.

At the bottom of Figure 4.5, a portion of the RDF annotations expressed in the
RDF/XML syntax is displayed. Finally, the RDF/XML files are uploaded to a seman-
tic data store (or a triplestore) where they can be queried.

4.3.5.3 Example annotations of Nevergrad performance data

The second use case covers semantic annotation of benchmarking data obtained from Nev-
ergrad - an open-source platform for black-box optimisation [56]. Nevergrad provides differ-
ent test suites to benchmark the optimisation algorithms. In the OPTION KB, we included
annotations of 32 optimisation algorithms benchmarked on the ten test suites YABBOB,
YABIGBBOB, YACONSTRAINEDBBOB, YAHDBBOB, YAHDNOISYBBOB, YAHD-
SPLITBBOB, YANOISYBBOB, YAPARABBOB, YASMALLBBOB, and YASPLITBBOB.
YABBOB [152] is a benchmark suite for black-box optimisation problems inspired by the
COCO-BBOB test suite. Moreover, in Nevergrad, there are different counterparts of YAB-
BOB. For example, the YANOISYBBOB, YAHDBBOB, YAPARABBOB, YABIGBBOB
variants of YABBOB contain problems with noise, high-dimensional, parallel, and big com-
putational resources, respectively. Each of the test suites consists of 21 benchmark prob-
lems. The data is publicly available at https://dl.fbaipublicfiles.com/nevergrad/
allxpsnew/list.html.

There are several differences between the Nevergrad and COCO-BBOB benchmark-
ing data. First, the data obtained from the Nevergrad platform is stored at a coarser
granularity level. Essentially, only the quality of the final solution is recorded, along with
the experimental setup (budget of function evaluations, properties of the problem, etc.),
and it is not recorded at the level of each function evaluation as is the case with COCO-
BBOB. Also, no provenance data is available for the Nevergrad performance data. On
the other hand, Nevergrad records offer other information that is lacking in COCO-BBOB
(e.g., number of workers when running function evaluation in parallel and noise level of
the function).

The differences in the performance data are inevitable as different benchmark platforms
have different data formats. However, it is essential to note that the OPTION ontology
was developed with special care not to be biased towards specific benchmark platforms.

https://dl.fbaipublicfiles.com/nevergrad/allxpsnew/list.html
https://dl.fbaipublicfiles.com/nevergrad/allxpsnew/list.html

4.3. The OPTION Ontology 59

funcId = 1, DIM = 2, Precision = 1.000e-08, algId = 'MLSL'
data_f1\bbobexp_f1_DIM2.dat, 1:28|-1.0e-08, 2:31|-1.0e-08,
3:31|-1.0e-08, 4:33|-1.0e-08, 5:28|-1.0e-08

funcId = 1, DIM = 3, Precision = 1.000e-08, algId = 'MLSL'
data_f1\bbobexp_f1_DIM3.dat, 1:37|-1.0e-08, 2:45|-1.0e-08,
3:80|-1.0e-08, 4:48|-1.0e-08, 5:49|-1.0e-08

...
bbobexp_f1.info

bbobexp_f1.info

bbobexp_f2.info

bbobexp_f24.info

...

data_f1

data_f2

...

data_f24

bbobexp_f1_DIM2.dat

bbobexp_f1_DIM3.dat
...

% function evaluation | noise-free fitness - Fopt | best noise-free fitness - Fopt | measured fitness | best
measured fitness | x1 | x2...
1 +1.402094080e+00 +1.402094080e+00 +8.088209408e+01 +8.088209408e+01 +0.0000e+00 +0.0000e+00
7 +1.410129148e-05 +1.410129148e-05 +7.948001410e+01 +7.948001410e+01 +2.5143e-01 -1.1603e+00
10 +4.267692617e-06 +4.267692617e-06 +7.948000427e+01 +7.948000427e+01 +2.5481e-01 -1.1563e+00
% function evaluation | noise-free fitness - Fopt (3.944800000000e+02) | best noise-free fitness - Fopt |
measured fitness | best measured fitness | x1 | x2...
1 +2.355193472e+01 +2.355193472e+01 +4.180319347e+02 +4.180319347e+02 +0.0000e+00 +0.0000e+00
4 +1.881329434e+00 +1.881329434e+00 +3.963613294e+02 +3.963613294e+02 -4.9750e+00 -3.7403e+00
7 +5.786037759e-01 +5.786037759e-01 +3.950586038e+02 +3.950586038e+02 -4.6380e+00 -2.7127e+00

...

bbobexp_f1_DIM2.dat

FID IID DIM

f1 1 2

f1 1 2

experiment
run

function
evaluation precision

1 1 1.000e-08

1 7 1.000e-08

noise-free
fitness -

Fopt

noise-free
fitness -

Fopt

best noise-
free fitness

- Fopt

+1.40209
4080e+00

+1.40209
4080e+00

+8.08820
9408e+01

+1.41012
9148e-05

+1.41012
9148e-05

+7.94800
1410e+01

measured
fitness x_location

+8.08820
9408e+01

+0.0000e+00
+0.0000e+00

 +7.94800
1410e+01

+2.5143e-01
-1.1603e+00

...

has
dimensionality

rdf:type

f1_i1_dim2

has-part

has-specified-input

MLSL_algorithm
benchmark_execution

2

rdfs:subClassOf

f1

benchmark problem

has part

rdfs:subClassOf

COCO_BBOB

has part test suite

has-part

has-specified-input

MLSL_experiment
run_1

has-specified-input

has-specified
output

has-specified
output

MLSL_experiment
run_1_fun_eval_1 has-value

MLSL_experiment
run_1_fun_eval_1
measured_fitness

+8.08820
9408e+01

has-part

rdf:type

MLSL_experiment
run_1_fun_eval_1

solution

has-coordinate
value

dimension-number

rdf:type

MLSL_experiment
run_1_fun_eval_1

solution_1
has-coordinate

value
dimension-number

MLSL_experiment
run_1_fun_eval_1

solution_2

+0.0000e+00

+0.0000e+00

1

2

solution solution part

has-part

optimization
algorithm

benchmark execution

has-part

experiment run has-specified
optput

function evaluation
run rdfs:subClassOfmeasured fitness performance

evaluation measure

individuals

ontology classes

ontology classes

ra
w

 d
at

a
pr

oc
es

se
d

ra
w

 d
at

a
vi

su
al

 re
pr

es
en

ta
tio

n
of

 th
e

R
D

F
se

m
an

tic
 a

nn
ot

at
io

n

sn
ip

pe
t o

f t
he

 s
em

an
tic

an
no

ta
tio

ns
 in

 th
e

R
D

F/
XM

L
fo

rm
at

Figure 4.5: An illustrative example of semantic annotation of COCO-BBOB performance
data.

The annotation schema we propose is flexible enough to be used for semantic annotation of

60 Chapter 4. Representation of BBO Benchmarking Data

benchmarking data from various platforms. Indeed, while there may be some information in
other platforms that has not been considered while designing the ontology, the annotation
schema can be easily extended to cover those aspects without affecting previously annotated
data.

4.3.5.4 Example annotations of problem landscape data

In the third use case, we demonstrate the use of the OPTION ontology for the annotation
of problem landscape data. For that purpose, we use a publicly available dataset [63] that
contains the ELA features calculated for the first five instances of the 24 BBOB noiseless
functions from the COCO environment in dimensions D ∈ {5, 10, 15, 20, 25, 30}. The 46
ELA features come from six feature groups (dispersion, y-distribution, meta-model, infor-
mation content, nearest better clustering, and principal component analysis). Since ELA
features are not absolute and depend on the sampling strategy and the sample size [153],
this information is also added to the knowledge base. In our knowledge base, we include
ELA features calculated with five different sampling strategies (i.e., LHS, iLHS, Random,
Sobol, Randu) with 30D, 50D, 100D, 250D, 650D, 800D, 1000D sample sizes on a total of
100 independent repetitions. In addition, we store the median ELA feature value across
these 100 repetitions.

The computation of ELA features is computationally intensive. Having calculated
features in a format that automatically links them to the corresponding problems and
enables easy access and querying is a large step towards more reusable research.

4.3.5.5 Example annotations of modular algorithms

For the forth use case, we semantically annotate data about modCMA and modDE al-
gorithms. Due to the computational infeasibility of collecting data for all possible com-
binations of modCMA and modDE algorithms, we opted to use a subset of, specifically
324 algorithm variants for modCMA and 576 variants for modDE. We show the modules
and parameter spaces used for CMA-ES and DE in Table 4.3 and Table 4.4, respectively.
To obtain the algorithm variants, we created a Cartesian product of the modules and the
selected module parameter spaces.

Table 4.3: The complete list of modCMA modules and their respective parameter space
yielding a total of 324 algorithm configurations.

Module Parameter space
Elitist True, False
Mirrored_sampling None, mirrored, mirrored pairwise
base_sampler gaussian, Sobol’, halton
weights_option default, equal, (1/2)ˆλ
local_restart None, IPOP, BIPOP
step_size_adaptation csa, psr

In Figure 4.6 we have illustrated the ontological representation of the modDE algorithm.
In the ontology, we create specialized subclasses of the general classes corresponding to
the modDE versions. For example, the modDE execution class is a subclass of modular
optimization algorithm execution. It inherits all the properties of its superclass but also
contains definitions that are unique to the modDE algorithm, such as the different execution
parts, their execution order, and links to the modDE module parameters. We note here that
in Figure 4.6 only the execution parts such as initialization, mutation, and recombination
are shown, while the others (i.e., boundary correction, evaluation, selection, parameter

4.4. The OPTION System for Semantic Data Management 61

Table 4.4: The complete list of modDE modules and their respective parameter space
yielding a total of 576 algorithm configurations.

Module Parameter space
mutation_base rand, best, target
mutation_reference None, pbest, best, rand
mutation_n_comps 1, 2
use_archive True, False
crossover bin, exp
adaptation_method None, shade, jDE
lpsr True, False

update, and termination check) have been omitted due to space constraints. Finally, in
Figure 4.6, we present two modDE configurations (as instances of the modDE class) that
differ by the crossover type, which is a parameter that affects the recombination part of
the optimisation process. The modeling of the modCMA algorithm is done similarly.

Finally, each of these algorithm variants is linked to performance data. Unlike in
the previous use cases where we reuse publically available data, here we generate new
performance data. For running the algorithms, we make use of the IOHexperimenter
module [154] of the IOHprofiler benchmarking environment [136].

The problem instance portfolio consists of the 24 single-objective black-box optimisa-
tion problems sourced from the BBOB benchmark suite of the COCO benchmark envi-
ronment. We consider the first 5 instances of each of the 24 BBOB functions, both with
dimensions D = 5 and D = 30. This results in two separate problem instance portfolios,
one for each dimension, with each portfolio containing a total of 120 problem instances.

To evaluate the performance of each algorithm variant, 10 independent runs have been
conducted and the median objective function value has been recorded for each problem
instance. Our objective function measures the precision of the algorithm’s solution, i.e.,
the distance to the optimum, within a fixed-budget of function evaluations. We considered
six different budget values, B ∈ {50D, 100D, 300D, 500D, 1 000D, 1 500D}, where D is the
problem dimensionality. We store the best precision achieved by each algorithm variant
at the different cut-off budgets for the 5D and 30D problem instance portfolios. The
population size for both CMA-ES and DE is set to 4 + ⌊3 log(D)⌋.

Since the problem portfolio consists of BBOB problem instances, this performance data
is semantically annotated as described in Section 4.3.5.2.

4.4 The OPTION System for Semantic Data Management

In this section, we describe the OPTION ontology-based system we developed for semantic
data management and integration in order to provide means for semantic annotation,
storage, and querying of BBO benchmarking data.

The design of the system is governed by the goal and requirements presented in Sec-
tion 4.1.2. It currently supports the following four components: (i) pipeline for seman-
tic annotation of COCO-BBOB performance and landscape data, Nevergrad performance
data; modular algorithm descriptions and performance data (ii) storage of the annotations
in a RDF triplestore; (iii) REST API for querying the annotations and integrated query
component in the IOHprofiler environment; (iv) web-interface for enabling users to con-
tribute to OPTION and to the OPTION KB and to upload their own COCO-BBOB and
Nevergrad data that will be semantically annotated.

62 Chapter 4. Representation of BBO Benchmarking Data

is-a

modDE

is_concretization_of

is-a

modDE
implementation

realizes

has-part

is-a

modDE
excution

precedes

h/pmodDE
initialization

precedes

h/pmodDE
mutation

h/pmodDE
recombination

mutation base
vector strategy

mutation reference
vector strategy

number of
difference vectors

 crossover_type

eigenvalue
crossover

initialization type

rdf:type

bin

rdf:type

modDE_conf_1

rdf:type

modDE
implementation

rdf:type

modDE
execution

conf_1

rdf:type

modDE
recombination

conf_1

modDE_conf_2

modular
optimization

algorithm
execution

optimization
algorithm

implementation

modular
optimization

algorithm

modDE
execution

conf_2

modDE
recombination

conf_2
exp

Figure 4.6: An illustration of the representation of the modDE algorithm in the ontology
and two examples of annotation of modDE configurations. Rectangular boxes correspond
to the ontology classes. Dashed rectangular boxes correspond to the class instances.

4.4.1 The OPTION KB: annotation and storage

The OPTION ontology contains the semantic model, represented in a formal and stan-
dardized way. The OPTION KB, on the other hand, leverages the power of the ontology
and holds the actual data that has been semantically annotated using the vocabulary of
the OPTION ontology. In Section 4.3.5, we discuss four use-cases of OPTION for integra-
tion of COCO-BBOB performance, Nevergrad performance, and COCO-BBOB landscape
data. For that purpose, we have created three separate KB instances, OPT_BBOB_KB,
OPT_Nevergrad_KB, and OPT_ModularAlgo_KB, that comprise the OPTION KB (see
Figure 4.7) and store the respective semantically annotated data.

For semantic annotation of the raw data, we developed pipelines to parse the data, and
created the semantic annotations using the Apache Jena RDF API4. Once the annotation
process is completed, the produced RDF annotations are uploaded to the Apache Jena
TDB2 triplestore.

The BBOB, Nevergrad, and ModularAlgo KB instances are deployed on the same data
server. However, that does not prevent other practitioners in the field of EC from creating
new KBs hosted on other servers. If they use the same vocabulary, the interoperability
between the KBs is assured, meaning that they can be queried simultaneously if the data
from multiple KBs is merged.

4.4.2 The OPTION KB: querying semantic annotations

For querying the OPTION KB, we can use the SPARQL query language [155]. We have
set up an Apache Jena Fuseki2 server that connects to the Apache Jena TDB2 triplestore
and implemented two services to enable this functionality. The query service provides

4Apache Jena RDF API: https://jena.apache.org/documentation/rdf/index.html

https://jena.apache.org/documentation/rdf/index.html

4.4. The OPTION System for Semantic Data Management 63

OPTION

ontology layer

OPTION KB

X

knowledge base layer

OPT_
COCO_KB

OPT_
Nevergrad

_KB

OPT_
Modular
Algo_KB

Figure 4.7: The OPTION ontology and the OPTION-aligned knowledge bases. Solid
arrows signify the knowledge bases’ explicit alignment with the ontology, which is ac-
complished through semantic annotation of the data. The interoperability of the various
knowledge bases is denoted by dashed arrows, which is a direct result of the use of OP-
TION as a common vocabulary for the annotation of heterogeneous, distributed data.

an endpoint for handling SPARQL queries in a RESTful manner [156], while the upload
service enables the upload of RDF data into the triplestore.

In Figure 4.8, we present the listing of the SPARQL query for the following query
expressed in natural language:

For all algorithms included in the study with DOI 10.1145/2739482.2768467
and for a fixed-budget scenario with 1000-2000 function evaluations, return the
noise-free fitness - Fopt performance evaluation measure calculated on the first
five instances of the f1 and f7 benchmark problems from the BBOB benchmark
suite.

In addition, the bottom part of Figure 4.8 shows the first five matches/answers for the
same query.

The query service supports all OPTION competency questions (and their combina-
tions), as presented in Table 4.1.

4.4.3 Integration of the OPTION knowledge base with the IOHprofiler
environment

As we can observe, SPARQL queries can become very complex and sometimes are seen
as a bottleneck to the broader acceptance of Semantic Web technologies. We recognize
that SPARQL query construction is an error-prone and time-consuming task that requires
expert knowledge of the whole stack of semantic technologies. Even experts find it some-
times challenging to query semantic data since they first must get familiar with the data
annotation schemes or the structure of the knowledge base.

To facilitate the use of the OPTION ontology, we provide a simple GUI that can be used
to gain access to performance data without needing to write SPARQL queries. Currently,

64 Chapter 4. Representation of BBO Benchmarking Data

Figure 4.8: A screenshot from the FUSEKI query endpoint, presenting an example
SPARQL query (at the top) and the first 5 answers to the query (at the bottom).

4.4. The OPTION System for Semantic Data Management 65

Figure 4.9: The interface of the OPTION-ontology queries within IOHanalyzer (version
1.6.3, available at https://iohanalyzer.liacs.nl/.)

the GUI has direct access to the BBOB and Nevergrad KBs, while the modular algorithm
data is only accessible via the SPARQL endpoint. This interface is connected directly
to IOHanalyzer [157], which enables the loaded data to be used directly in performance
analysis and visualization, and even be compared to data that might not yet be included
in OPTION or to user-submitter performance data. Furthermore, the GUI provides access
to a parameterized search process, which can be used without any underlying knowledge
about the used semantic data model. Users can express their query by selecting from
several drop-down options, which specify the required information, such as suite, function,
algorithm, etc., and load the corresponding performance data to analyze. This interface is
shown in Figure 4.9. While this interface is static, it illustrates the power of integrating
the ontology into IOHanalyzer: users without any background knowledge can use it to gain
insight into the performance of the selected algorithms/functions.

Additionally, this interface can be easily expanded based on the community’s wishes.
To illustrate this potential, we created another entry point into OPTION, which can be
used to load all performance data that originated in a specified paper. To this end, the user
selects a paper by its title, which then populates the relevant information about the used
algorithms and functions in that study. By loading this pre-selected data, the user has
full access to the performance data of the selected study, which they can then investigate
in more detail by making use of the visualizations within IOHanalyzer. This type of
interactive analysis then allows the user to look at the data from different perspectives and
to compare it to other algorithms.

https://iohanalyzer.liacs.nl/

66 Chapter 4. Representation of BBO Benchmarking Data

4.4.4 Extending the OPTION ontology and knowledge base

So far, the OPTION ontology has been successfully applied for data integration and man-
agement tasks from the COCO and Nevergrad benchmark platforms and two modular
frameworks. Data that was previously stored in different data formats and that could not
be queried, is now integrated and can be queried simultaneously.

However, extending the ontology is not a trivial task, as it requires its contributors to
have a good understanding of the semantic model. Also, the process of annotating perfor-
mance data from an arbitrary platform, hence populating the knowledge base, currently
cannot be fully automated.

To facilitate the uploading of new data to the OPTION KB, we have developed a web
interface available at: http://semantichub.ijs.si/OPTION/. Currently, the web inter-
face supports the uploading of COCO-BBOB and Nevergrad performance and landscape
data from published studies. Figure 4.10 depicts the process of submitting new data, se-
mantically annotating it, integrating the annotations with the OPTION KB, and querying
it. Via the web interface, end users can first upload the raw data, details about the study,
and related provenance information.

The uploaded data is stored on a Firebase server. Then, periodically, we retrieve the
newly uploaded data and semantically annotate it in order to ensure the high quality of
the OPTION KB, we include a curator in the loop who prior to executing the semantic
annotation pipeline, verifies that the data format conforms to the COCO/Nevergrad data
format and verifies the study-related provenance metadata provided by the user.

Finally, requests for extending the OPTION ontology and knowledge base can be made
directly via the web interface or via the GitHub repository5, after which we can establish
a collaboration and help guide the whole extension process. We encourage researchers and
especially developers of benchmark platforms to adopt the use of the OPTION ontology,
to annotate their benchmark and problem landscape data based on the OPTION ontol-
ogy, and maintain their own OPTION-aligned knowledge bases, as depicted in Figure 4.7.
Distributed knowledge bases based on same ontological vocabulary can be easily queried
using federated querying strategies6.

Fueseki Server

FirebaseEnd User

upload performance /
landscape data

query semantically
annotated data via

IOHanalyzer

generating semantic annotations
in RDF format

RDF triples

fetch new data

Curator verifies
the new data

IOHanalyzer

OPTION GUI

Figure 4.10: A flowchart of the process of uploading, annotating, and querying new data
in the OPTION KB.

5OPTION at GIT: https://github.com/KostovskaAna/OPTION-Ontology
6SPARQL 1.1 Federated Query: https://www.w3.org/TR/sparql11-federated-query/

http://semantichub.ijs.si/OPTION/
https://github.com/KostovskaAna/OPTION-Ontology
https://www.w3.org/TR/sparql11-federated-query/

4.5. Summary and Discussion 67

4.5 Summary and Discussion

In this chapter, we presented the development of the OPTION ontology, which is specifi-
cally designed to address the challenges in managing and integrating BBO benchmarking
data. OPTION provides a formal structure for the semantic annotation of BBO perfor-
mance data, problem landscapes, and algorithm configurations, facilitating data integration
across multiple platforms like COCO and Nevergrad.

We demonstrated the effectiveness of OPTION through several use cases: semantic
annotation of performance data from the BBOB and Nevergrad test suites, landscape data
annotation using Exploratory Landscape Analysis (ELA) features, and the annotation of
modular optimisation algorithms. Additionally, we introduced the OPTION system, which
supports the annotation, storage, and querying of semantically enriched data. This system
allows users to query the annotated data without needing to write complex SPARQL
queries, thus making the data more accessible.

The current version of the OPTION ontology has been developed from a performance
and problem-centered perspective. This perspective allows it to handle the most common
types of queries related to benchmarking data analysis. Additionally, it covers the repre-
sentation of modular optimisation algorithms. However, this also means that information
about the algorithms that are not part of modular frameworks is somewhat limited. The
lack of information about algorithms is partly due to the inaccessibility of this type of
meta-information: common benchmarking setups only store high-level features about al-
gorithm settings. To further extend the ontology presented in this dissertation, we aim to
expand the knowledge base for these algorithm-specific details. Moreover, a more detailed
semantic representation of the algorithm space should be included to describe the algo-
rithm family, operators, hyperparameters, etc. Recently, several studies have attempted
to unify taxonomies over the algorithm space [158]–[160], but further work is needed to
develop a general structure that can be incorporated into OPTION.

The development of the OPTION ontology is a step forward in improving the reusability
and interoperability of performance and problem landscape data. By annotating a large
subset of BBOB, Nevergrad, and ELA data, we have demonstrated the potential of the
ontology to support data integration while providing powerful query capabilities for direct
analysis of the required datasets. This significantly reduces the time required to collect
data across many functions and algorithms, while providing flexibility in managing the
performance perspective (i.e., fixed-budget and fixed-target).

69

Chapter 5

Algorithm Selection for Multi-Label
Classification

This chapter explores the relatively unexplored area of algorithm selection (AS) for multi-
label classification (MLC), a significant task in ML that remains largely unexplored in
selecting the most effective algorithms for a given MLC problem.. While the preceding two
chapters focus on the representation aspects of benchmarking data, this chapter marks the
transition toward addressing its exploitation, showcasing practical approaches to leverage
benchmarking data for informed decision-making.

The chapter begins by outlining the unique challenges and opportunities associated
with applying AS principles to MLC. A review of the relevant literature across various
domains provides a foundation for understanding the current landscape of AS research.
Subsequently, we elaborate on the ML techniques assessed in this study to tackle AS
for MLC. The chapter proceeds with a detailed description of our experimental setup
designed to evaluate these techniques. In the results section, we analyze and discuss the
performance of each ML approach for AS, emphasizing the explainability of the trained ML
models through feature importance analysis. The chapter concludes with a comprehensive
summary of our findings and discusses the implications for future research in AS for MLC.

This chapter is based on and extends the paper “Explainable Model-specific Algorithm
Selection for Multi-Label Classification”, which appeared in the Proceedings of the IEEE
Symposium Series on Computational Intelligence (SSCI), 2022.

All data and code related to this chapter are publicly available on GitHub at: https:
//github.com/KostovskaAna/MLC-AS.

5.1 Problem Definition

In Chapter 3, we have examined the growing availability of MLC algorithms, datasets, and
benchmarking data pertinent to MLC tasks and proposed a methodology for improved
data management, data interoperability and reusability. However, the large number of
MLC algorithms available to tackle MLC problems underscores the important task of AS.
AS is driven by the observation that different algorithms exhibit varying performance
characteristics across different practical problems. Specifically, an algorithm that excels in
certain scenarios may underperform in others. Empirical studies have consistently shown
that no single algorithm outperforms others across all datasets in any given ML task [161].
Consequently, the diversity of MLC algorithms introduces a meta-optimisation challenge:
selecting the optimal algorithm for a new dataset to optimise the performance metric under
consideration.

https://github.com/KostovskaAna/MLC-AS
https://github.com/KostovskaAna/MLC-AS

70 Chapter 5. Algorithm Selection for Multi-Label Classification

The task of AS is typically addressed using machine learning techniques, which auto-
mate the selection process. Automated AS (AAS) methods can replace the tedious and
labor-intensive task of manual selection and have already demonstrated promising results
in various domains [162]–[165]. A prevalent approach within AAS is the feature-based
approach. In the context of MLC, this involves describing each MLC dataset with fea-
tures that represent the landscape characteristics of the dataset. Using these descriptive
features, a supervised machine learning model can be trained to predict the most suitable
algorithm for a given dataset.

As discussed in Chapter 3, meta-features tailored to MLC that describe dataset char-
acteristics have been proposed in the literature [9], [120]. In a recent study, Bogatinovski
et al. [44] used these meta-features to construct regression models (i.e., multi-target pre-
dictive clustering trees) for predicting the performance of three MLC algorithms across five
predictive performance metrics. This work not only explored the predictive capabilities but
also assessed the meta-features’ importance in an unsupervised manner. However, these
meta-features have not yet been evaluated in AAS scenarios, revealing a promising area
for future research. Additionally, the utilization of AAS in the context of MLC remains
largely unexplored. This motivated our study to advance beyond merely predicting algo-
rithm performance. Instead, by training various ML models, we aim to perform AS for
MLC, selecting the best-performing algorithm for each dataset individually.

Building on this foundation, our study advances the use of meta-features to predict
the best-suited algorithm for individual datasets and introduces an essential element of
explainability into the algorithm selection process. Model-specific explanations that clarify
decision-making at an instance level are essential, particularly in complex models where
understanding the rationale for each decision can significantly enhance trust and usability.

One effective method for achieving this level of explainability is through the use of
Shapley values. These values offer detailed local explanations by quantifying the contribu-
tion of each meta-feature to the decision-making process for each dataset instance [166].
Shapley values have been widely used as an explainability technique in ML [167], [168].
Unlike classical ML feature importance approaches that provide global importances at the
model level, Shapley offers feature importances locally for each prediction. This local in-
terpretability aspect provides valuable insights into the model’s decision-making process,
enhancing its explainability and potential practical use.

Another prominent open question in AAS pertains to the choice of machine learning
approach; it is not clear which approach is best suited for applications in the context of
MLC, and whether there is a big difference between the approaches at all. Specifically, the
effectiveness of different approaches, such as regression, classification, and pairwise models,
in AAS remains underexplored.

In this dissertation, we aim to train ML models to identify the best-performing MLC
algorithm for individual datasets. We compare several feature-based supervised ML ap-
proaches to AAS and provide an explainability layer that helps us understand how each
prediction is made in terms of the importance of different meta-features. In Kostovska et
at. [169], we investigated the influence of ML approaches on BBO AS. In this chapter, we
extend this methodology to the MLC domain.

5.2 Related Work

Recent advancements in AS include the introduction of general frameworks that employ
meta-learning and ensemble learning techniques, as demonstrated by Tornede et al. [170].
Additionally, Pulatov et al. [92] have adopted a novel, general approach by analyzing source
code features of algorithms. This method provides machine learning-based recommenda-

5.3. ML Approaches for AS 71

tions for optimal algorithm selection and is versatile enough to be applied across various
algorithm types, as long as their source code is available.

In the realm of machine learning, AS has been explored in various contexts. Shawkat
and Smith [171] investigated AS in a classification learning scenario involving eight different
classifiers and 100 benchmark datasets, while Pise et al. [172] using statistical data descrip-
tors, employed the K-nearest neighbor algorithm to recommend suitable classifiers from
a set of thirty-eight benchmark datasets from the UCI repository. Additionally, Cohen-
Shapira and Rokach [173] introduced a novel approach for AS in clustering by utilizing
supervised graph embeddings.

Within the broader spectrum of ML, various supervised approaches have been used
for AS. Predominantly, regression and classification have been foundational in predicting
the most suitable algorithms for specific problem instances. For example, regression tech-
niques have been utilized to predict performance metrics directly, as explored by Jankovic
et al. [89], while classification methods that directly probide the label of the best algo-
rithm have been detailed by Vškvorc et al. [88]. Additionally, pairwise approaches of
regression/classification have also been investigated [91], [92].

Supervised approaches such as regression and classification have been pivotal for AS.
Regression methods are used to predict performance metrics, as detailed by Jankovic et
al. [89], while classification approaches identify the optimal algorithm, as explored by
Vškvorc et al. [88]. Additionally, pairwise regression/classification methods have been
investigated to refine AS further, as seen in studies by Van Rijn et al. [91] and Pulatov et
al. [92].

Despite the progress in other areas, AS for MLC remains largely unexplored. To the
best of our knowledge there are no work that targets directly AS for MLC. This domain
presents unique challenges and opportunities for leveraging AS to enhance performance.
Accordingly, we aim to develop a landscape-aware AS framework for MLC, employing
various supervised ML techniques that utilize meta-features characterizing the distinct
datasets and learn to predict the most suited algorithm on a dataset instance level.

5.3 ML Approaches for AS

In this dissertation, we explore several feature-based ML approaches to address the AS
problem for MLC. Each approach utilizes a vector of meta-features to describe the charac-
teristics of the MLC datasets. These meta-features serve as inputs to the ML models, and
the outputs are the performances or the rankings of the algorithms when applied to these
datasets. By employing feature-based ML techniques, we aim to learn a mapping from the
input meta-features to the outputs, effectively predicting the most suitable algorithms for
a given MLC dataset.

A feature-based ML approach for MLC AS is formally defined as follows: Let X be a
matrix with dimensions D×M , where D represents the number of datasets and M denotes
the number of meta-features. Each row xi of X is the meta-feature vector characterizing
the i-th dataset. The objective is to train an ML model to learn a mapping function f ,
which processes the meta-feature vector xi and produces an output yi = f(xi). The output
yi represents the prediction for the i-th dataset and could be a continuous value, a class
label, or a tuple of continuous values or labels, depending on the ML approach employed.

The following subsections outline the ML approaches investigated in this dissertation.

72 Chapter 5. Algorithm Selection for Multi-Label Classification

5.3.1 Regression approach

5.3.1.1 Single-output regression

In the single-output regression approach, we train a separate predictive model fa for each
of the A algorithms in the portfolio, where a ∈ A. These models, trained independently,
predict the performance of their respective algorithms. For the i-th dataset from the
dataset portfolio described by its meta-feature vector xi, the model fa(xi) produces a
continuous value prediction yi,a representing the estimated performance (such as accuracy,
error rate, or loss) for algorithm a when applied to that dataset.

Once the A models are trained, the performance predictions for each dataset i are com-
piled into a tuple (yi,1, yi,2, . . . , yi,A). The algorithm associated with the optimal predicted
performance for dataset i is selected based on:

s(i) =

{
argmaxa∈A yia when the goal is to maximize a performance metric,
argmina∈A yia when the goal is to minimize a performance metric.

5.3.1.2 Multi-output regression

We also explore a variant known as multi-output regression, where a single model f is
trained to simultaneously predict the performance for a ∈ A algorithms using the same
meta-feature vector xi. The output yi = f(xi) directly yields a tuple containing the
performance predictions for all algorithms in the portfolio. This approach captures po-
tential correlations between the performances of different algorithms on the same dataset.
The selection of the optimal algorithm follows the same criterion as in the single-output
scenario.

5.3.2 Pairwise regression approach

The pairwise regression approach extends the basic regression approach by predicting the
performance difference between pairs of algorithms for each dataset. This approach can
be implemented as either single-output or multi-output regression.

5.3.2.1 Single-output pairwise regression

In the single-output pairwise regression, we train a model fa,b for each pair of algorithms
a and b, where a, b ∈ A and A is the algorithm set. The model fa,b predicts the perfor-
mance difference dia,b = fa,b(xi) between algorithms a and b when applied to the dataset
described by the meta-feature vector xi. For a set of A algorithms, there are

(
A
2

)
= A(A−1)

2
such pairwise combinations attempted, leading to a comprehensive assessment of relative
algorithm performances.

Once the models are trained, for each dataset i, we record a “win” for algorithm a over
b based on the following criteria: If the goal is to maximize a performance metric, a win is
recorded if dia,b > 0; conversely, if the goal is to minimize a performance metric, a win is
recorded if dia,b < 0. We sum the “wins” for each algorithm across all pairs. The algorithm
that accumulates the highest number of “wins” across all comparisons is selected as the
optimal choice for that dataset.

5.3.2.2 Multi-output pairwise regression

Alternatively, the multi-output pairwise regression trains a single model f that outputs a
performance difference prediction for all pairs of algorithms simultaneously. This method
leverages potential correlations among the performance differences to enhance prediction

5.3. ML Approaches for AS 73

accuracy. Following the single-output method, we determine the optimal algorithm for each
dataset by counting the number of “wins” each algorithm accumulates over all others in
the pairwise comparisons, and use a majority vote to select the best-performing algorithm
based on the predicted differences.

5.3.3 Classification approach

The classification approach frames the AS problem as a multi-class classification task,
where each class uniquely corresponds to one of the algorithms in the algorithm portfolio
A. In this approach, a single classifier is trained to determine the optimal algorithm
from the set A. Here, the output yi is a class label corresponding to the name of the
optimal algorithm for dataset i characterized by the feature vector xi. This direct mapping
simplifies the process of selecting the most appropriate algorithm for each dataset.

5.3.4 Pairwise classification approach

Pairwise classification transforms the multi-class AS problem into a sequence of binary
classification tasks, employing a class binarization strategy. This method decomposes the
selection process into multiple two-class problems, where each problem involves making a
direct comparison between two algorithms.

5.3.4.1 Single-output pairwise classification

In single-output pairwise classification, the objective is to determine the superior algorithm
between each pair from the set A for a specific dataset. For each pair of algorithms
(a, b), a binary classifier fa,b is trained. This classifier processes the meta-feature vector xi

associated with the i − th dataset to predict which algorithm, a or b, is likely to perform
better. The output di,a,b is a binary label, where the value is 1 if algorithm a is predicted
to outperform algorithm b, and 0 otherwise.

Similarly to the pairwise regression approach, this methodology involves training
(
A
2

)
binary classifiers, corresponding to all possible pairs of the A algorithms in the portfolio.
The outcomes of these pairwise predictions are then aggregated to determine the most
suitable algorithm for each dataset, effectively establishing a “winner” based on the pairwise
comparisons.

5.3.4.2 Multi-output pairwise classification

In the multi-output pairwise classification scenario, a single model is utilized to address
all pairwise binary classification tasks simultaneously. This model takes a dataset’s meta-
feature vector xi and outputs a tuple yi containing

(
A
2

)
binary predictions, each corre-

sponding to a different pair of algorithms. These predictions are then aggregated in the
same way as in the single-output approach, where the algorithm accumulating the high-
est number of favorable outcomes across all pairs is selected as the most optimal for that
particular dataset.

5.3.4.3 Cost-sensitive single-output pairwise classification

This approach extends the single-output pairwise classification by introducing a weighting
mechanism for the training instances that utilizes the performance differences between
each pair of algorithms. The weights are determined by the magnitude of these differences,
which is interpreted as the cost associated with the prediction error [174].

74 Chapter 5. Algorithm Selection for Multi-Label Classification

The rationale behind this strategy is the prioritization of predictive performance in
cases where the performance differences are significant, as these are more impactful on
the overall decision-making process. Conversely, a smaller weight is assigned where the
performance difference is minimal, thus reducing the penalty for any incorrect predictions
in these cases. Therefore, each training instance i comparing algorithms a and b is assigned
a weight proportional to the absolute difference in their performances: |pia − pib |, where pia
and pib denote the measured performances of algorithms a and b on dataset i, respectively.

5.4 Experimental Setup

This section details the experimental setup, encompassing the dataset portfolio, associated
landscape data, the MLC algorithm portfolio, and corresponding performance data. We
also describe the process of training the ML models that underpin the algorithm selector
and describe the evaluation of the algorithm selector.

5.4.1 Dataset portfolio and landscape data

The dataset portfolio comprises 40 MLC datasets previously utilized in a benchmarking
studies [124]. The datasets come from five different application domains, including text,
multimedia, bioinformatics, medical, and chemistry. These datasets exhibit considerable
diversity, with label counts ranging from four to 274, data instance numbers from 139 to
17,190, and descriptive features from 33 to 49,060.

For building the algorithm selector, our ML pipeline relies on meta-descriptors (or
meta-features) of these MLC datasets that depict the landscape characteristics of the
datasets. We utilize the set of 63 MLC meta-features available in our MLCBench catalogue
(see Table 3.4). We refine this initial set by applying Spearman correlation analysis,
removing one feature from each pair having a correlation higher than 0.9. All datasets and
their corresponding meta-features can be accessed and downloaded through our publicly
available MLCBench catalogue as detailed in Chapter 3.

5.4.2 Algorithm portfolio and performance data

We utilize performance data from execution of 26 MLC algorithms corresponding to our
dataset of 40 MLC datasets. This data is available through the MLCBench catalogue
and originates from a comprehensive comparative study of MLC algorithms [124]. This
extensive study evaluates the algorithms using a total of 20 performance metrics, which
include 18 predictive performance metrics and two efficiency metrics. In this dissertation,
we concentrate solely on the predictive aspects of performance, thereby excluding the two
efficiency-related metrics from our analysis. Among the 18 predictive performance metrics
available, we select five performance metrics that are also used in a related study [44],
which examines the data for predicting algorithm performance.

The only prerequisite for applying AS techniques is that there exists (or that there
can be constructed) a set of complementary algorithms [175]. Complementary algorithms
are those that demonstrate diverse performance across a range of problems, ensuring that
the algorithm portfolio effectively addresses varied problem characteristics. Therefore, to
assemble a portfolio of MLC algorithms that demonstrates complementary performance
across the datasets, we analyze how often each algorithm ranks as the best performer. We
then select the top five algorithms for each performance metric to include in our algorithm
portfolio. The composition of this final portfolio for each performance metric is detailed
in Table 5.1. For more details on the performance metrics and the MLC algorithms, we
refer the reader to [124].

5.4. Experimental Setup 75

Table 5.1: A list of the five performance metrics and the corresponding algorithm portfolios.

Performance Metric Algorithm Portfolio
Hamming loss DEEP4 [176], RFPCT [33], CC [177],
example-based AdaBoost.MH [178], TREMLC [179]
F1 macro CLR [180], [181], AdaBoost.MH [178], RFDTBR [182],

CC [177], RSMLCC
F1 micro RFDTBR [182], RFPCT [33], AdaBoost.MH [178],

CLR [180], [181], PSt [183]
AUROC micro RFPCT [33], PSt [183], RFDTBR [182],

EBRJ48 [184], TREMLC [179]
F1 example-based RFPCT [33], RFDTBR [182], RSLP,

PSt [183], AdaBoost.MH [178]

5.4.3 Model training and validation

All ML models are built using the Random Forest (RF) algorithm as implemented in the
Python package scikit-learn [185]. Depending on the ML approach, we employ different
variants: an RF classifier for the classification and pairwise classification approaches, and
an RF regressor for the regression and pairwise regression approaches. Additionally, the
multi-output variant of RF is used for multi-output methodologies.

The ML models are evaluated using a leave-one-instance-out strategy, where an instance
corresponds to one MLC dataset. Given our portfolio of 40 MLC datasets, this involves
training the models 40 times, each time withholding one dataset for testing and using
the remaining 39 for training. The evaluation metrics used are mean squared error for
regression models and accuracy for classification models, with results averaged across all
test instances. We use the default configuration of the RF algorithm without performing
hyperparameter tuning.

After training, the raw predictions on the test instances are used to select the best-
performing algorithm, as detailed in Section 5.3.

5.4.4 Evaluation of MLC AS

The quality of the AS is assessed by comparing it against two established baselines. The
first is the Virtual Best Solver (VBS), or “oracle selector”, which represents a theoreti-
cally perfect selector that always chooses the best performing algorithm for each dataset
instance. This baseline serves as an upper limit on the performance of any realistically
achievable AS. The second baseline, the Single Best Solver (SBS), is the algorithm that
exhibits the best average performance across the entire portfolio of datasets, serving as a
lower bound for the AS. Note that here, the term “solver” refers to the MLC algorithms
being evaluated.

To evaluate the performance of the algorithm selector, we compute the absolute differ-
ence between the performance of the selected algorithm A and the best algorithm A∗ for
a given dataset. The performance, denoted by p(A) for the selected algorithm and p(A∗)
for the best algorithm, is measured with respect to a given performance metric. More
precisely, this difference is defined as:

L(A,A∗) = |p(A)− p(A∗)|

This calculation provides a performance measure of the AS for each dataset, allowing us
to analyze the distribution of these “losses” across all datasets.

To evaluate the overall performance of our MLC AS, we compute the total loss across
all datasets. The total loss is defined as the sum of losses between the algorithm predicted

76 Chapter 5. Algorithm Selection for Multi-Label Classification

by the AS to be the best and the VBS for each dataset. This is mathematically expressed
as:

Total LossAS =

D∑
i=1

L(AASi , AVBSi)

where AASi represents the algorithm predicted by the AS for the i-th dataset, and
AVBSi the VBS for the same dataset and D is the total number of datasets. This total loss
metric quantifies the effectiveness of the AS relative to the performance of the VBS across
all datasets.

Similarly, the total loss for the SBS is calculated as the sum of losses between the SBS
and the VBS across all datasets:

Total LossSBS =
D∑
i=1

L(ASBSi , AVBSi)

where ASBSi represents the algorithm predicted by the SBS for the i-th dataset, and
AVBSi the VBS for the same dataset and D is the total number of datasets.

Note that in the case of pairwise models, it is possible for multiple algorithms to achieve
the same number of wins on a given dataset. In these cases, to calculate the p(AASi), we
use the average value of the measured performance for the set of predicted algorithms.

Finally, the “% of closed VBS-SBS gap” quantifies the percentage reduction in total
loss achieved by the AS compared to the SBS. This metric is calculated as:

% of VBS-SBS gap closed =

(
1− Total LossAS

Total LossSBS

)
× 100%

This measures how much closer the performance of the AS approaches the ideal scenario
represented by the VBS, relative to the SBS. A value of 100% indicates that the AS has
reached the highest possible performance, matching the performance of the VBS. A value
of 0% signifies no improvement over the SBS, while negative values indicate that the AS
performs worse than the SBS.

5.5 Results and Discussion

This section presents the experimental results for various ML-based algorithm selectors
and includes a discussion on explainability of ML models in the context of AS.

5.5.1 Performance comparison of the different ML approaches for AS

Following the experimental setup described in Section 5.4, we affirm that the AS leads to
performance gains compared to any standalone solver (i.e., MLC algorithm).

Figure 5.1 shows the loss (computed as described in Section 5.4.4), across all 40 datasets
for the five MLC algorithms when each is statically selected as the best and the eight
ML approaches for AS shown on the x-axis, evaluated using the five selected performance
metrics. The results show that the loss for the algorithm selectors built using ML techniques
is consistently smaller compared to the loss for the five algorithms when each is statically
selected as the best algorithm, demonstrating that the ML-based algorithm selectors can
adapt to different performance evaluation criteria.

Additionally, the Figure 5.1 illustrates that the results are highly dependent on the
performance metric used. This variation is expected because for each performance metric
we have a different algorithm portfolio (see Table 5.1).

5.5. Results and Discussion 77

DE
EP

4

RF
PC

T CC

Ad
aB

oo
st

.M
H

TR
EM

LC

AS
-R

-M
O

AS
-R

-S
O

AS
-P

R-
M

O

AS
-P

R-
SO

AS
-C

-S
O

AS
-P

C-
M

O

AS
-P

C-
SO

AS
-C

S-
PC

-S
O

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Lo
ss

(a) Hamming loss example-based

CL
R

Ad
aB

oo
st

.M
H

RF
DT

BR CC

RS
LP

AS
-R

-M
O

AS
-R

-S
O

AS
-P

R-
M

O

AS
-P

R-
SO

AS
-C

-S
O

AS
-P

C-
M

O

AS
-P

C-
SO

AS
-C

S-
PC

-S
O

0.00

0.05

0.10

0.15

0.20

Lo
ss

(b) F1 macro

RF
DT

BR

RF
PC

T

Ad
aB

oo
st

.M
H

CL
R

PS
t

AS
-R

-M
O

AS
-R

-S
O

AS
-P

R-
M

O

AS
-P

R-
SO

AS
-C

-S
O

AS
-P

C-
M

O

AS
-P

C-
SO

AS
-C

S-
PC

-S
O

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

(c) F1 micro

RF
PC

T

PS
t

RF
DT

BR

EB
RJ

48

TR
EM

LC

AS
-R

-M
O

AS
-R

-S
O

AS
-P

R-
M

O

AS
-P

R-
SO

AS
-C

-S
O

AS
-P

C-
M

O

AS
-P

C-
SO

AS
-C

S-
PC

-S
O

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

(d) AUROC micro

RF
PC

T

RF
DT

BR

RS
LP PS

t

Ad
aB

oo
st

.M
H

AS
-R

-M
O

AS
-R

-S
O

AS
-P

R-
M

O

AS
-P

R-
SO

AS
-C

-S
O

AS
-P

C-
M

O

AS
-P

C-
SO

AS
-C

S-
PC

-S
O

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

Lo
ss

(e) F1 example-based

Figure 5.1: The loss (measured as the absolute difference of the performance of the VBS
and the performance of the predicted best algorithm) of the static selectors (in red) and
of the AS (in blue) across the eight different ML approaches (i.e., R-MO = multi-output
regression, R-SO = single-output regression, PR-MO = multi-output pairwise regression,
PR-SO = single-output pairwise regression, C-SO = single-output classification, PC-MO
= multi-output pairwise classification, PC-SO = single-output pairwise classification, CS-
PC-SO = cost-sensitive single-output pairwise classification) for evaluation measures a)
Hamming loss example-based, b) F1 macro, c) F1 micro, d) AUROC micro, e) F1 example-
based.

78 Chapter 5. Algorithm Selection for Multi-Label Classification

58.65 47.23 47.93 54.13 4.46 12.79 22.12 11.87

43.85 21.52 31.5 25.65 40.29 50.67 47.65 44.92

56.72 40.46 52.87 50.5 37.13 44.16 42.24 46.78

55.85 44.1 68.17 64.17 52.14 66.73 52.39 59.27

49.03 39.21 65.44 53.86 59.05 62 52.84 52.36

52.82 38.51 53.18 49.66 38.61 47.27 43.45 43.04

AS-R-MO

AS-R-SO

AS-PR-MO

AS-PR-SO

AS-C-SO

AS-PC-MO

AS-PC-SO

AS-CS-PC-SO

Mean

F1 example-based

AUROC micro

F1 micro

F1 macro

Hamming loss example-based

Figure 5.2: A heatmap depicting the percentage of the VBS-SBS gap closed with the
different AS approaches across the five different performance metrics. The final row in the
heatmap represents the mean percentage of gap closed across all performance metrics.

We also observe differences in the loss distribution among the AS built with the various
ML approaches. This indicates that depending on the experimental setup (i.e., performance
metric, algorithm portfolio), different ML approaches may perform best.

To better quantify the performance differences of the various algorithm selectors, we
calculate the percentage of the VBS-SBS gap closed (as described in Section 5.4.4) by each
ML approach across different performance metrics. Figure 5.2 illustrates these percentages.
It is important to note that the SBS is the MLC algorithm that performs the best on the
largest number of datasets for a given performance metric. For each performance metric,
a different MLC algorithm may be chosen as the SBS based on the number of datasets
where it achieves the best performance.

The percentage of the VBS-SBS gap closed, averaged over the performance metrics,
ranges between 38.51% and 53.18% across the different ML approaches. The highest per-
centage of the VBS-SBS gap closed is achieved with the multi-output pairwise regression
model at 53.18%, followed closely by the multi-output regression model, which achieves
52.82%. An interesting pattern we observe is that the multi-output models generally
perform better compared to their single-output counterparts: 52.82% versus 38.51% for
multi-output and single-output regression; 53.18% versus 49.66% for multi-output and
single-output pairwise regression; and 47.27% versus 43.45% for multi-output and single-
output pairwise classification. This better performance of the multi-output models can
be explained by the fact that considering multiple targets can lead to less overfitting to
individual targets, and can also exploit the correlations between targets, resulting in more
robust and generalized models.

It should be noted that even though, on average (averaged over the five performance
metrics), the multi-output models outperform the single-output models, in the case of the
Hamming loss example-based performance metric, the opposite is true for the pairwise
regression and pairwise classification models. This could be due to the fact that the
Hamming loss metric is particularly sensitive to specific types of errors that single-output
models handle more effectively in certain scenarios.

5.5. Results and Discussion 79

Another interesting observation is that the cost-sensitive single-output pairwise classifi-
cation model does not outperform the single-output pairwise classification model in 3 out of
5 cases and, on average, has very similar performance: 43.45% for the cost-sensitive single-
output pairwise classification versus 43.04% for the single-output pairwise classification.
Typically, one might expect the cost-sensitive model to exhibit better performance because
it specifically emphasizes data instances where the performance discrepancy between two
algorithms is significant, thereby prioritizing areas of larger error. However, a possible
explanation for the similar performance levels is that the meta-features in our models may
not adequately capture the complexity needed to effectively leverage the cost-sensitive ad-
justments. Moreover, the model’s focus on data examples with larger weights might result
in overfitting these particular points, which compromises its ability to generalize effectively
to new, unseen data.

To intuitively quantify the performance (and thus reliability) of all considered ap-
proaches, for the different ML approaches, we measure the ratio at which each MLC al-
gorithm from the portfolio is identified as the VBS compared to how often it is selected
by the algorithm selector across different ML approaches. It’s important to note that in
some instances, especially due to ties in performance or within pairwise models where ties
are possible, multiple algorithms may be designated as the VBS or be recommended as
the best. Consequently, the sum of ratios in each column might not add up to one. Our
observations reveal that all AS approaches generally align with the overall distribution of
VBSs, as depicted in Figure 5.3. Across all ML approaches, we note that the AS tends
to select more frequently the MLC algorithm that is the best performer in the majority
of cases. Conversely, MLC algorithms that are infrequently the VBS are seldom chosen.
For example, when assessing MLC algorithm performance using the F1 micro metric, all
ML approaches for AS predominantly favor the RFPCT and RFDTBR algorithms, which
frequently emerge as VBS, while the CLR algorithm, which seldom is the VBS, is rarely
selected.

5.5.2 Discussion on explainable AS

Explainability in algorithm selection (AS) is essential as it ensures that the decision-making
process of the ML models that select the best performing algorithm is transparent, com-
prehensible, and trustworthy. By providing insights into how the models make decisions,
we can better understand and effectively use them in various real-world applications.

In this dissertation, all of the ML models for MLC AS that we consider are based
on tree ensembles. While tree ensembles are known for their strong performance, they
inherently have limited explainability due to their complex structure. To enhance the
explainability of these models, we can employ the SHapley Additive exPlanations (SHAP)
values technique [11].

SHAP provides a way to understand the contribution of each feature to the model’s
predictions, offering a clearer picture of how decisions are made. SHAP can explain the
model’s predictions on a local level, i.e., explaining individual predictions. By aggregat-
ing these local explanations, it is also possible to derive global explanations, offering a
comprehensive understanding of the overall model behavior.

When using SHAP for MLC AS, we need to consider the specific ML approach employed
for AS. The simplest approach is classification, where we have a single target that directly
predicts the best performing algorithm. In this case, SHAP values are calculated using
the classification model with respect to this single target. This provides insight into which
features are most influential in making the classification decision.

A more complex scenario arises when using regression models for AS. Given an algo-
rithm portfolio of size N, we predict the performance of N output variables, each corre-

80 Chapter 5. Algorithm Selection for Multi-Label Classification

0.175 0.25 0.275 0.2 0.2 0.175 0.125 0.1 0.2

0.175 0.2 0.3 0.175 0.375 0.075 0.175 0.15 0.15

0.3 0.25 0.275 0.325 0.225 0.3 0.4 0.325 0.25

0.2 0.025 0 0 0.075 0.175 0.175 0.175 0.175

0.2 0.275 0.15 0.3 0.3 0.275 0.3 0.325 0.325

VBS

AS-R-MO

AS-R-SO

AS-PR-MO

AS-PR-SO

AS-C-SO

AS-PC-MO

AS-PC-SO

AS-CS-PC-SO

CC

DEEP4

TREMLC

AdaBoost.MH

RFPCT

(a) Hamming loss example-based

0.125 0.2 0.15 0.225 0.2 0.125 0.125 0.175 0.175

0.225 0.1 0.15 0.1 0.2 0.15 0.15 0.175 0.15

0.175 0.05 0.225 0.125 0.2 0.1 0.15 0.25 0.225

0.325 0.6 0.35 0.5 0.475 0.55 0.55 0.475 0.45

0.15 0.05 0.125 0.05 0.05 0.075 0.1 0.125 0.1

VBS

AS-R-MO

AS-R-SO

AS-PR-MO

AS-PR-SO

AS-C-SO

AS-PC-MO

AS-PC-SO

AS-CS-PC-SO

CC

CLR

RFDTBR

AdaBoost.MH

RSLP

(b) F1 macro

0.25 0.425 0.225 0.325 0.275 0.2 0.325 0.3 0.35

0.15 0.1 0.225 0.175 0.15 0.125 0.1 0.125 0.15

0.125 0.075 0.1 0.1 0.175 0.175 0.2 0.275 0.275

0.375 0.4 0.45 0.4 0.5 0.475 0.425 0.5 0.45

0.1 0 0 0 0 0.025 0 0 0

VBS

AS-R-MO

AS-R-SO

AS-PR-MO

AS-PR-SO

AS-C-SO

AS-PC-MO

AS-PC-SO

AS-CS-PC-SO

CLR

RFDTBR

PSt

AdaBoost.MH

RFPCT

(c) F1 micro

0.3 0.6 0.225 0.45 0.325 0.35 0.475 0.475 0.45

0.15 0.075 0.125 0.15 0.15 0.125 0.175 0.15 0.15

0.2 0.05 0.15 0.075 0.225 0.15 0.025 0.125 0.15

0.2 0.225 0.2 0.175 0.25 0.25 0.275 0.175 0.225

0.15 0.05 0.3 0.15 0.2 0.125 0.1 0.175 0.15

VBS

AS-R-MO

AS-R-SO

AS-PR-MO

AS-PR-SO

AS-C-SO

AS-PC-MO

AS-PC-SO

AS-CS-PC-SO

EBRJ48

RFDTBR

PSt

TREMLC

RFPCT

(d) AUROC micro

0.2 0.3 0.3 0.3 0.375 0.2 0.15 0.225 0.225

0.25 0.25 0.225 0.175 0.25 0.2 0.45 0.35 0.375

0.1 0 0.1 0 0 0 0 0.075 0.075

0.25 0.15 0.1 0.175 0.175 0.35 0.225 0.25 0.175

0.2 0.3 0.275 0.35 0.35 0.25 0.325 0.4 0.325

VBS

AS-R-MO

AS-R-SO

AS-PR-MO

AS-PR-SO

AS-C-SO

AS-PC-MO

AS-PC-SO

AS-CS-PC-SO

RFDTBR

PSt

AdaBoost.MH

RFPCT

RSLP

(e) F1 example-based

Figure 5.3: Heatmaps showing the percentage of datasets where each MLC algorithm is
the VBS (column 1) vs. the percentage of datasets where the algorithm is recommended
by the AS across the eight different ML approaches (i.e., R-MO = multi-output regression,
R-SO = single-output regression, PR-MO = multi-output pairwise regression, PR-SO =
single-output pairwise regression, C-SO = single-output classification, PC-MO = multi-
output pairwise classification, PC-SO = single-output pairwise classification, CS-PC-SO
= cost-sensitive single-output pairwise classification) for evaluation measures a) Hamming
loss example-based, b) F1 macro, c) F1 micro, d) AUROC micro, e) F1 example-based.

5.6. Summary 81

sponding to an algorithm in the portfolio. These predictions can be made using either
single-output or multi-output models. For both types of regression models, SHAP values
are calculated separately for each output.

To obtain these SHAP values for the algorithm selector, we first identify the algorithm
predicted to perform the best, considering the predictions of all regression models. Then,
we retrieve the SHAP values for the specific prediction from the regression model trained
for the selected algorithm. This approach clarifies why a particular algorithm was chosen
by highlighting the features that significantly contributed to its predicted performance.

Figure 5.4 illustrates the SHAP values for the multi-output regression case for each
MLC dataset separately. In this figure, we group the MLC datasets according to the
application domains (Text, Bioinformatics, Multimedia, Medical, and Chemistry). We
can observe the negative and positive marginal contributions of each MLC meta-feature.
Features such as TotalDistinctClasses, Labels, Max IR inter class, Max IR intra class, Pro-
portion of unique label combination (PUniq), and Ratio of unconditionally dependent label
pairs by chi-square test appear to be more important. Patterns across different application
domains are also evident. For example, the TotalDistinctClasses and Labels meta-features
predominantly have negative marginal contributions in the Text domain, while they have
positive contributions in the Bioinformatics domain.

Among the ML approaches we consider, pairwise models are also included. Here, we
discuss how SHAP values can be applied in this scenario.

When using pairwise models for AS, calculating SHAP values becomes more complex
due to the nature of the comparisons. Pairwise models compare pairs of algorithms to
determine which one performs better. To calculate SHAP values for the selected/predicted
algorithm, we must consider each pairwise model where the selected/predicted algorithm
is one of the two being compared, and the model predicted it as the better performing
algorithm.

Since each pairwise model has a different target (the relative performance between two
specific algorithms), direct aggregation of SHAP values across these different models is not
feasible. This complexity reduces the interpretability of the models, making it challenging
to combine insights from multiple targets.

One approach to address this is to rank the features based on their absolute SHAP
values for each pairwise model. By doing so, we would be able to identify the most impor-
tant features across all comparisons. After ranking the features for each pairwise model,
we can calculate the average ranks to get an overall sense of feature importance. However,
this method loses the information about whether a feature’s contribution is positive or
negative, as it only considers the magnitude of importance.

Another approach is to examine each individual pairwise model separately. This retains
the information about positive and negative contributions, providing a detailed understand-
ing of feature importance in the context of each specific pairwise comparison. Although
this method preserves more detailed information, it requires a more nuanced analysis to
interpret the results across multiple pairwise models.

5.6 Summary

In this chapter, we have investigated the potential of automated algorithm selection for
the MLC learning task. We have compared various ML approaches, including regres-
sion, classification, pairwise regression, pairwise classification, and cost-sensitive pairwise
classification models, to determine their effectiveness in predicting the best-performing
algorithms for diverse MLC datasets. Additionally, we examined the difference between
single- and multi-output models for the AS ML approaches where this is applicable.

82 Chapter 5. Algorithm Selection for Multi-Label Classification

ARABIC200
BIBTEX

DELICIOUS
ENRON

FOODTRUCK
LANGLOG
MEDICAL

NG20
OHSUMED

REUTERSK500
SCENE

SLASHDOT
STACKEX_CHESS

STACKEX_CS
STACKEX_PHILOSOPHY

TMC2007_500
YELP

GENBASE
GNEGATIVEGO

GNEGATIVEPSEACC
GPOSITIVEGO

GPOSITIVEPSEAAC
HUMANGO

HUMANPSEAAC
PLANTGO

PLANTPSEAAC
PROTEINS_HUMAN
PROTEINS_PLANT
PROTEINS_VIRUS

VIRUSGO
VIRUS_PSEAAC

YEAST

BIRDS
CAL500

COREL5K
EMOTIONS

FLAGS

ABPM
CHD_49

TotalD
istinctC

lasses

U
nseenInTrain

A
ttributes

Instances

Labels

LxIxF

R
atio of num

ber of instances to the num
ber of attributes

C
ardinality

D
ensity

M
axim

al entropy of labels

M
inim

al entropy of labels

S
tandard deviation of label cardinality

C
V
IR

 inter class

K
urtosis cardinality

M
ax IR

 inter class

M
ax IR

 intra class

M
ax IR

 per labelset

Proportion of unique label com
bination (PU

niq)

S
kew

ness cardinality

A
verage exam

ples per labelset

B
ound

D
iversity

R
atio of unconditionally dependent label pairs by chi-square test

N
um

ber of binary attributes

M
ean of entropies of nom

inal attributes

M
ean of kurtosis

M
ean of m

ean of num
eric attributes

M
ean of standard deviation of num

eric attributes

N
um

ber of num
eric attributes

Proportion of num
eric attributes

WATER_QUALITY

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Text

Bioinformatics

Multimedia

Medical

Chemistry

Figure 5.4: SHAP feature importance scores for MLC AS based on multi-output regression.
The feature importances for each MLC dataset are grouped by application domain and
obtained on the test set using leave-instance-out validation.

5.6. Summary 83

We evaluated five performance metrics across 40 MLC datasets. The results demon-
strated that all ML approaches for AS yielded performance gains over the scenario where a
single MLC algorithm is used (the one that, on average, performs best across all datasets),
regardless of the evaluation measure. However, the results highly depend on the MLC
performance metric.

Notably, multi-output models generally outperformed their single-output counterparts.
This suggests that considering multiple targets simultaneously can enhance the robustness
and generalization of the AS models by leveraging correlations between targets.

Despite the overall superior performance of multi-output models, some performance
metrics, such as Hamming loss example-based, showed that single-output models may be
more effective in specific scenarios. This indicates that the choice of ML approach may
need to be tailored to the specific performance metric.

The cost-sensitive single-output pairwise classification model did not significantly out-
perform the standard single-output pairwise classification model. This suggests that the
meta-features used may not adequately capture the complexity required to leverage cost-
sensitive adjustments effectively.

The discussion about SHAP feature importance highlighted the varying complexity of
calculating SHAP scores across different ML approaches. Classification is the simplest,
followed by regression, while pairwise models are the most complex due to the different
pairwise targets, making explainability significantly more challenging.

85

Chapter 6

Using Machine Learning Methods to
Assess Module Performance
Contribution in Modular
Optimisation Frameworks

In this chapter, we show how benchmarking data from the OPTION KB can be exploited
to assess modular optimisation algorithms. We propose a data-driven methodology to
evaluate the performance contribution of individual modules within two modular optimi-
sation frameworks: modCMA-ES [78] and modDE [79]. By training algorithm performance
models and using Shapley values to explain their predictions, the methodology links the
landscape characteristics of BBOB problems with the performance of various algorithm
variants (created by combining different modules). This approach provides insights into
which landscape characteristics most significantly impact performance predictions.

The chapter is structured as follows. In Section 6.2, we review related work on em-
pirical performance analysis of modular optimisation algorithms, automated algorithm
performance prediction, and explainable ML. Section 6.3 presents our methodology for ob-
taining algorithm meta-representations and using them to predict the algorithm’s modular
configuration. We describe our experimental design in Section 6.4. In Section 6.5, we dis-
cuss the key findings and results of our experiments. Finally, in Section 6.6, we summarize
our contributions and outline several directions for future work.

This chapter is based on the article “Using Machine Learning Methods to Assess Mod-
ule Performance Contribution in Modular Optimization Frameworks ” [186], published in
Evolutionary Computation Journal, MIT Press, 2024 and on the paper “The importance of
landscape features for performance prediction of modular CMA-ES variants” [187], which
appeared in the Proceedings of the the Genetic and Evolutionary Computation Conference
(GECCO), 2022.

All data and code related to this chapter are publicly available on GitHub at: https:
//github.com/KostovskaAna/AssessingModuleContribution.

6.1 Problem Definition

Many state-of-the-art black-box optimisation algorithms are claimed to have been origi-
nally inspired by natural processes such as evolution and swarm intelligence [188]. Driven
by the varying performance of algorithms across different problem types, researchers con-
tinue to seek inspiration from nature and employ diverse metaphors to develop and refine

https://github.com/KostovskaAna/AssessingModuleContribution
https://github.com/KostovskaAna/AssessingModuleContribution

86 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

these techniques. However, a recent call for action by the evolutionary computation scien-
tific community has highlighted three major concerns about metaphor-based metaheuris-
tics [189]. Firstly, the usefulness of metaphors in metaheuristics is questionable, as many
“novel” algorithms inspired by metaphors often lack scientific justification and oversimplify
or modify the metaphor to resemble an optimisation process, making them differ greatly
from their original inspiration. Secondly, there is a lack of originality, with researchers
often rediscovering concepts that have already been published in earlier studies (under
different names). Finally, the experimental validation and comparisons of these algorithms
are often biased, with improper comparisons made between novel and non-state-of-the-art
algorithms on benchmark problem instances that are under-representative of the diversity
in the problem space.

These issues underscore the need for novel approaches to better understand the behav-
ior of metaphor-based metaheuristics (and metaheuristics in general) in order to identify
genuine contributions to the field.

A commonly used method to understand the behavior of algorithms is the assessment of
their performance through benchmarking and statistical analyses. Typically, this involves
reporting the average performance across a selected set of benchmark problems [57], [190].
However, this approach has faced criticism for its limitations in accurately interpreting
algorithm behavior and its inability to generalize to new problems [191]–[193]. Further-
more, in these statistical analysis approaches, algorithms are treated as black-boxes much
like optimisation problems, hence, it is challenging to draw any conclusions about the
characteristics of the algorithms that contribute most to their performance.

Another approach to understanding metaheuristics is the development of classification
systems and taxonomies that try to categorize these algorithms based on their underly-
ing mechanisms, search strategies, and other relevant factors [159], [194], [195]. Unlike
statistical approaches that treat algorithms as black boxes, these classification systems
aim to provide a structured way of describing metaheuristics and help researchers identify
similarities and differences between different algorithms. However, one limitation of these
classification systems is the lack of connection between the algorithms and the optimisa-
tion problems they are designed to solve, as well as the performance they exhibit on these
optimisation problems. Without this connection, it can be challenging to understand the
performance of the algorithms on specific problem instances.

To overcome these limitations, new methods for assessing algorithm behavior are needed.
These methods should consider the characteristics of the algorithm, the landscape charac-
teristics of the problems, and the interaction between the two in terms of their influence
on performance behavior. By understanding these factors, we can develop more effective
algorithms that perform well on a range of problem instances.

One promising approach for improving the assessment of algorithm behavior is to use
modular optimisation algorithm frameworks [78], [81], [83], [196], which we have introduced
in Chapter 2. These frameworks provide a flexible and modular way to design and evaluate
metaheuristic algorithms. In these frameworks, ‘modules’ essentially represent the opera-
tors in optimisation algorithms. For clarity and consistency throughout this dissertation,
we use the term ‘module’ instead of ‘operator’ in the context of modular frameworks. Mod-
ular optimisation algorithm frameworks can also provide a way to bridge the gap between
algorithm behavior and the optimisation problems they are designed to solve. By design-
ing algorithms as collections of interchangeable components, researchers can test different
combinations of components on a variety of problem instances.

In this dissertation, we use modular optimisation algorithm frameworks to assess the
different algorithmic ideas that were proposed in the literature. Our analysis is focused
on examining each module individually, reflecting the common practice of proposing al-

6.2. Related Work 87

gorithmic ideas in isolation. Exploring the interactions between these modules and their
collective impact on performance is an interesting aspect recently examined in Nikolikj et
al. [197], but it remains outside the scope of this dissertation.

We focus on the analysis Differential Evolution (DE) [76] and Covariance Matrix Adap-
tation Evolution Strategies (CMA-ES) [77]. We use their decomposed versions on basic
components/modules that are available in the modCMA-ES [78] and modDE [79] modular
frameworks, respectively.

In this chapter, our main goal is to show development of an empirical workflow for
understanding the impact of modules on the performance of DE and CMA-ES algorithm.
We will analyze 324 modCMA-ES and 576 modDE algorithm variants across 24 BBOB
problems to: (i) Evaluate the effect of individual modules on overall algorithm performance
through analysis of performance data; (ii) Train ML regression models to predict algorithm
performance, with a focus on understanding how problem landscape features impact these
predictions. This approach provides an explainable ML model, linking feature importance
directly to the model outcomes; and (iii) Train classifiers that use performance and land-
scape feature importance data to predict algorithm module configurations. Obtaining high
prediction accuracy signals variability in the performance data w.r.t. to the modules, sug-
gesting that higher accuracy reflects greater variability or a stronger impact of the module
on performance. Conversely, having lower accuracy suggests a module’s configuration has
a minimal impact on overall performance.

6.2 Related Work

Diverse research has investigated the modular CMA-ES and DE algorithm families in var-
ious single-objective learning scenarios. This includes conducting empirical performance
analysis of CMA-ES [198] and DE [199], predicting CMA-ES [200] and DE [201] algorithm
performance, automated algorithm selection [202], and automated algorithm configura-
tion [67], [203].

The empirical performance analysis [198], [199] has focused on providing empirical
results through descriptive statistics of the performance achieved on a particular bench-
mark suite. Another way to compare algorithms’ behavior using information from the
performance space is to use performance2vec meta-representations [204]. Here, the results
obtained by multiple runs of an algorithm instance on a particular problem are averaged
and stored as a vector representation that consists of the results for all benchmark prob-
lems. Further, the similarity between algorithm instances is assessed as the similarity
between the vector representations obtained by using performance2vec.

The studies performed in automated algorithm performance prediction allow us to de-
velop an explainable ML predictive model. For this purpose, landscape properties [205]
of the problem instances are used as input features to train an ML predictive model
that links them to the performance of the algorithm achieved after some function eval-
uations. Further, by applying post-hoc explainable techniques, the contribution of each
landscape feature to the accuracy of performance prediction can be analyzed. Recently,
the SHAP [206] feature ranking method has been explored for such analyses, since it pro-
vides explanations both at a global level (i.e., all benchmark problem instances) and at
a local level (i.e., per problem instance). The SHAP explanations can be used for algo-
rithm behavior meta-representation that facilitates the capture of the interactions between
the problem landscape properties and the performance of the algorithm instance. These
meta-representations have been used with unsupervised techniques to find similar groups
of algorithm behavior of CMA-ES [200] and DE [201] configurations.

The mentioned studies integrate into a broader range of research that aims to under-

88 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

stand the behavior of modular CMA-ES and modular DE. However, despite significant
efforts in this direction, most of the studies that focus on automated algorithm perfor-
mance prediction and selection treat the CMA-ES or DE configurations as black boxes,
without exploring the impact of the individual modules on the final performance of a con-
figuration. While some studies have used time-series features calculated from the global
state variables to classify isolated CMA-ES modules [207], there is no information on how
these features are linked to each module separately. Another study [203] has investigated a
problem instance-based configuration model that selects optimal CMA-ES modules using
landscape features of problem instances but does not provide any insight into the impor-
tance of the landscape features.

Modular algorithm components have also been investigated in multi-objective optimisa-
tion. Bezerra et al. [208] focus on the automatic design of novel multi-objective evolution-
ary algorithms (MOEAs) through the utilization of a conceptual framework encompassing
various MOEA components. However, the study does not investigate the impact of each
of those modules on the overall performance of the algorithm, nor does it provide insight
into the importance of problem landscape features.

A purely performance-oriented view on the modular algorithm framework was taken by
Aziz-Alaoui et al. [209], where a modular suite of pseudo-Boolean optimisation algorithms
is implemented within the ParadisEO framework [80] and tuned on a collection of W-model
problem instances [210], [211] using the irace algorithm configurator [212]. Here, the goal
is to identify module combinations that work well together, rather than to explore their
complementarity.

6.3 Methodology

Our methodology comprises three main components: (i) generating meta-representations of
the modular algorithms (described in Section 6.3.1); (ii) exploratory analysis, investigating
the impact of the modules on the performance and investigating the importance of the
landscape features for algorithm performance prediction (Section 6.3.2); and (iii) using
the learned meta-representations in a supervised classification task to predict the modular
configuration of different algorithm instances (Section 6.3.3).

6.3.1 Generating meta-representations of modular algorithms

Algorithm meta-representations are structured representations designed to encapsulate the
key characteristics of algorithms, making them well-suited for downstream analysis and
predictive tasks. In this chapter, we focus on meta-representations expressed as vector
representations, where each algorithm instance is mapped to a fixed-length numerical vec-
tor. These vectors encode varying types of information—such as an algorithm’s behavior,
configuration, and interaction with problem instances—depending on the specific type of
meta-representation. This approach provides a standardized framework for comparison
and analysis across different algorithm instances. We investigate two types of algorithm
meta-representations, performance-based and Shapley-based.

6.3.1.1 Performance-based meta-representations

Performance-based meta-representations [204] rely solely on performance data, enabling us
to develop an understanding of how the different modules contribute to the performance
of the algorithm variant. To obtain this data, we execute each modular algorithm variant
(i.e., algorithm instance) on a range of problem instances from diverse classes.

6.3. Methodology 89

Considering the stochastic nature of the algorithms, to obtain reliable estimates of the
performance of each variant on each problem instance, we conduct r independent runs of
the algorithm variant. In each run, we measure the precision, i.e., the absolute difference
f(xbest) − f∗, between the best solution xbest found by the algorithm in the considered
run and the global optimum f∗ := infx f(x). The solution quality (or performance) for
instance j in class i, referred to as qij , is determined as the median of these precision values.

To summarize the algorithm variant’s performance on a problem class level, we calculate
the mean pi =

1
m

∑m
j=1 qij of the solution qualities qij across the m instances in class i.

Finally, the overall performance of an algorithm instance across n classes is summarized
in an n-dimensional vector P = (p1, p2, ..., pn).

6.3.1.2 Shapley-based meta-representations

Shapley-based meta-representations consist of problem landscape feature importance scores
derived from regression models that predict algorithm performance. Details on the Shapley
scores are provided in Section 5.5.2.

To construct these meta-representations, we first train regression models for perfor-
mance prediction for each variant of the modular algorithms, separately. We consider a
portfolio of problem classes with size n and m instances of each problem class, resulting in
a total of n×m problem instances. Each problem instance is represented as a vector of ℓ
problem landscape features, (x1, x2, ..., xℓ), which serve as input for training the regression
models. The target output y that we aim to predict is the algorithm’s performance within
a fixed budget of function evaluations, as detailed in Section 6.3.1.1.

After training the regression model for performance prediction, we calculate the Shapley
values of the landscape features. Applying the Shapley value calculation on the regression
models that predict the performance of each algorithm instance separately gives us the
Shapley-based meta-representations as an ℓ-dimensional vector, (s1, s2, ..., sℓ). We need to
point out here that the Shapley meta-representations are model-specific and depend on
the ML algorithm used for learning the predictive model.

6.3.2 Exploratory analysis using the meta-representations

We use the learned algorithm meta-representations in two types of exploratory analysis: (i)
to investigate the impact of a module’s configuration on the algorithm’s performance and
(ii) to investigate the importance of the landscape features when predicting the algorithm’s
performance across the different module configurations.

6.3.2.1 The impact of module configuration on algorithm performance

Here, we make use of the performance-based meta-representations discussed in 6.3.1.1.
First, to investigate the impact of module configuration on algorithm performance, from
a selected set of algorithm modules and their configurations, we generate all possible con-
figurations of the algorithm variants that we will further investigate. Then, the different
algorithm variants are grouped with respect to a given module to observe whether there
are some differences in the performance when we change the module configuration and
introduce some specific structural changes to the algorithm.

Consider as an example the modular CMA-ES algorithm [78]. This algorithm has
multiple configurable modules, but in this illustrative example, for simplicity, we focus
on three: elitism (which can take values of either true or false), the base sampler (which
offers different sampling techniques such as Gaussian, Sobol’, and Halton), and the step
size adaptation mechanism (which includes CSA and Step Size Adaptation with PSR).

90 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

Table 6.1: An illustrative example of groups of CMA-ES algorithm variants when we
investigate the impact of the elitism module on the algorithm’s performance.

Elitism Base sampler Step-size
adaptation

1 True Gaussian CSA
2 True Gaussian PSR
3 True Sobol’ CSA
4 True Sobol’ PSR
5 True Halton CSA
6 True Halton PSR

(a) Algorithm variants with elitism

Elitism Base sampler Step-size
adaptation

7 False Gaussian CSA
8 False Gaussian PSR
9 False Sobol’ CSA
10 False Sobol’ PSR
11 False Halton CSA
12 False Halton PSR

(b) Algorithm variants without elitism

By combining the settings of these three modules, we can create a total of 12 different
algorithm variants as shown in Table 6.1. To assess the impact of elitism, we divide the
configurations into two distinct groups: one with elitism activated (elitism = True) and
another without it (elitism = False). This division allows us to analyze and compare the
performance of the algorithm variants under different settings, e.g., for elitism.

For each group, we visualize the distribution of the achieved performance on all problem
instances and problem classes. Differences in these distributions would indicate that certain
modular configurations perform better/worse on the overall problem instance portfolio.
We repeat this process for the remaining modules. Additionally, the same analysis can be
performed at problem class level to investigate whether there are differences in performance
in the different problem classes.

6.3.2.2 The importance of the landscape features in algorithm performance
prediction for the different module configurations

Compared to the performance-based meta-representations, the Shapley-based ones (dis-
cussed in 6.3.1.2) come with the benefit that they can be employed in an exploratory
analysis pipeline where we can investigate the importance of the landscape features across
the different modules and across the different configurations of a given module. To this
end, we perform the same process of grouping the algorithm variants as described in Sec-
tion 6.3.2.1. We then calculate the importance of the landscape features for each group
separately and average them across all problem instances. We repeat this process for the
remaining modules. This approach facilitates the exploratory analysis of the effect each
of the modules has on the final performance of the algorithm. Furthermore, trends in the
landscape space can be observed. More specifically, some problem landscape features can
be found to hold more predictive value than the rest by observing the SHAP values across
the different problems (in multiple dimensionalities) for different budgets.

6.3.3 Prediction of a module’s configuration of the algorithm instances

The meta-representations (both performance- and Shapley-based) of the modular algo-
rithms variants can be assigned labels that indicate their modular configuration. This
labeled data serves as input to train ML classifiers, which predict the configuration of the
algorithm’s modules. These classifiers are beneficial, for example, in cases where we have
the performance data of an algorithm that is achieved after some function evaluations on
a particular benchmark suite, but we don’t have information about the configuration of
the algorithm. By using its meta-representation we may be able to identify a modular

6.4. Experimental Design 91

configuration with similar performance behavior. This could help us in a lot of studies
for which the performance data is publicly available, but details about the tested config-
urations are missing. For example, if we have CMA-ES performance data, by using the
learned classifiers we can identify a modular CMA-ES configuration with similar behavior.

To test the power of the classifiers, we use the meta-representations of each modular
configuration, and we use the classifiers to predict the modules that are activated with
their values. Further, we report the F1 score (macro F1 score in the case of multi-class
classification) of the predictions across all modules, problem dimensions, and different
function evaluation budgets. However, the classifiers may make wrong predictions for the
configuration, and the prediction may differ from the true configuration in one or several
modules. The wrong predictions affect the performance of the classifier, but the predicted
configuration and the true one may still have similar behavior.

To evaluate this, we perform a statistical analysis based on hypothesis testing including
the raw performance data for the true and the predicted modular configuration. For this
purpose, we use the Deep Statistical Comparison (DSC) approach [190] that ranks the true
and the predicted configuration for each problem instance separately, by comparing the
distribution of their raw performance data (for each problem instance separately). The
ranked data obtained for the true and the predicted configuration across all benchmark
problem instances is further analyzed by the Wilcoxon signed-ranks test [213] to find if
there is a statistically significant difference in the performance of the true and predicted
configuration on the selected benchmark suite.

6.4 Experimental Design

In this section, we provide details on the experimental setup, which consists of several com-
ponents. We describe our problem portfolio, problem landscape data, algorithm portfolio,
and algorithm performance data. Additionally, we provide information on the regression
models for algorithm performance prediction and the classifiers for the prediction of the
modular configuration of each algorithm instance.

6.4.1 Problem instance portfolio and landscape features

The problem instance portfolio consists of the 24 single-objective, noiseless black-box opti-
misation problems sourced from the BBOB benchmark suite [54] of the COCO benchmark
environment [57]. More specifically, we consider the first five instances of each of the 24
BBOB functions, both with dimension D = 5 and D = 30. This results in two separate
problem instance portfolios, one for each dimension, with each portfolio containing a total
of 120 problem instances.

To represent the landscape of the problem instances, we utilize 46 “cheap” Exploratory
Landscape Analysis (ELA) features implemented in the R package flacco[214]. These ELA
features are readily available via the OPTION KB (for more details, see Section 4.3.5.4).

In the OPTION KB, ELA features calculated using different sampling techniques and
sample sizes are available. For this part of the dissertation, we use ELA features derived
from the Sobol’ sampling strategy with a sample size of 100D across 100 independent
repetitions. To represent the landscape of each problem instance, we use the median value
for each feature over these 100 repetitions.

We deliberately chose a substantial sample size for ELA computation to mitigate the
effects of noisy feature evaluations. Although feature selection has been shown to improve
results in performance prediction tasks [215], we did not perform feature selection. We
expect our findings to be robust for other types of features as well, based on previous

92 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

work [89], [216].

6.4.2 Algorithm portfolio and performance data

We examine two black-box optimisation algorithms that have modular implementations
available, namely CMA-ES and DE. For CMA-ES, we utilize the modCMA-ES frame-
work [78], which encompasses various versions of the core algorithm. These modifications
include changes in the sampling distribution (such as mirrored or orthogonal sampling),
weighting schemes for recombination, and restart strategies, to name a few. This modular
structure allows for the creation of at least 36 288 configurations of CMA-ES, and addi-
tionally provides access to a large set of control parameters (population size, update rates,
etc.).

We utilized the modDE [79] package for DE. This package provides a diverse array
of mutation mechanisms and modules for selecting the base component, the number of
differences included, and the use of an archive for some of the difference components.
Additionally, the package enables the usual crossover mechanisms and incorporates update
mechanisms for internal parameters based on several state-of-the-art DE versions. In total,
this package allows for the creation of at least 1 474 560 configurations of DE.

In this dissertation, we undertake a comprehensive analysis of performance data en-
compassing 324 algorithm variants for modular CMA-ES and 576 variants for modular
DE across the 120 problem instances in 5 and 30 dimensionality. Our objective func-
tion measures the precision of the algorithm’s solution, i.e., the distance to the optimum,
within a fixed budget of function evaluations. We considered six different budget values,
B ∈ {50D, 100D, 300D, 500D, 1 000D, 1 500D}, where D is the problem dimensionality.

For further insights into the modules under examination, as well as the parameter
spaces utilized for CMA-ES and DE, alongside a detailed description of the process of
generating the performance data, readers are directed to Section 4.3.5.5. All performance
data, as well as the detailed representations of the algorithm variants are available in the
OPTION KB.

6.4.3 Regression models for algorithm performance prediction

In this study, we train regression models for algorithm performance prediction as part of
the pipeline of obtaining Shapley-based algorithm meta-representations. Previous studies
have investigated the use of ML in algorithm performance prediction, including the use of
Random Forest (RF) regression models [217]–[220]. RF, an ensemble-based decision tree
method, is thoroughly described in the seminal work by Breiman et al. [39]. In our work,
we employ the RF approach to learn performance prediction regression models, as they
have been shown to provide promising results in this context [200], [221] and we tune their
hyperparameters. For training the models we use the RF algorithm as implemented in the
Python package scikit-learn [185].

To ensure optimal results, we trained separate regression models (single-output mod-
els) for each modular variant. This decision was based on findings by Trajanov et al. [200],
which showed that multi-output models (models that predict the output for several al-
gorithm instances simultaneously) did not demonstrate performance gains compared to
single-output models.

For learning the performance prediction models, a vector of 46 ELA features is used to
describe each problem instance. Our objective is to predict the precision, i.e., the distance
to the optimum that each algorithm in the portfolio will attain on a problem instance,
given a fixed budget of function evaluations and problem dimensionality. In this study,
we log10-transform the target variable (the median of the 10 independent runs) as it has

6.4. Experimental Design 93

Table 6.2: Parameters of the RF approach and their corresponding values considered in
the grid search.

Hyperparameter Search space
n_estimators [10, 50, 100, 500]
max_features [auto, sqrt, log2]
max_depth [4, 8, 15, None]

min_samples_split [2, 5, 10]

been shown to improve the performance of the learned predictive models when the target
variable is the distance to the optimum [202]. We also cap the target variable to 10−8 prior
to performing the logarithmic transformation.

Hyperparameter tuning and model evaluation. To assess the learned ML models’
performance, we use a nested cross-validation (CV) technique that involves two stages.
In the outer loop, we partition the data into training and testing sets, while the inner
loop determines the optimal parameters of the ML method. This evaluation approach
may require significant computational resources, but yields more reliable estimates of the
model’s generalization ability as compared to traditional train/val/test data splitting or
standard CV [222], [223].

To implement the outer loop, we apply a leave-one-group-out CV, which segments
the data into groups/folds based on the unique ID of each problem instance. Since our
study involves the first 5 instances of each of the 24 BBOB problems, we create 5 folds
by assigning 4 for training and 1 for testing. We repeat this process five times, each time
selecting a different fold for testing while using the remaining four for training.

The inner loop adopts a grid search approach to tune the parameters and selects the
optimal ones based on the average performance of the inner CV’s holdout folds. A leave-
one-group-out CV is applied to the training data (i.e., the four folds) obtained from the
outer loop. The R2 score is used as a performance metric. The parameters chosen for
tuning and their corresponding search spaces can be found in Table 6.2.

After the optimal parameters have been determined, the model is trained on the entire
training data, and its performance is assessed using the test set from the outer loop.

6.4.4 Classification models for predicting/identifying the modular con-
figuration of algorithm variants

To train classifiers that predict the modular configuration of an algorithm variant, we use
the algorithm meta-representation as input data and apply the RF classifiers implemented
in the Python package scikit-learn [185]. We consider two scenarios: (1) Single-output
classifiers – we train a classifier for each module separately. Depending on the number of
possible configurations for each module, we perform binary classification (when there are
two possible configurations of the given module, leading to a binary output/target variable)
or multi-class classification (when there are more than two possible configurations of the
given module, resulting in a discrete datatype for the output/target variable), and (2)
Multi-output classifiers – we train a single classifier to predict the configuration of all
modules simultaneously. Here, the output/target variable is a record of discrete values.

We evaluate both types of classifiers as they have not been studied in this context
before. Note that for different problem dimensionalities and function evaluation budgets,
we train separate classifiers.

94 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

In addition, we assess the performance of TabPFN, a pre-trained Transformer model
that approximates probabilistic inference for a novel prior in a single forward pass. TabPFN
was shown to have fast training time and competitive performance on tabular prediction
tasks by [224] and we use their implementation.

All classifiers are trained using default (hyper-)parameter values. To evaluate the
performance of the learned models, we partition the data into training and testing sets
using leave-one-group-out cross-validation, which segments the data into train/test folds
based on the unique ID of each benchmark problem instance. As a performance indicator,
we report the F1 scores of the classifiers.

6.5 Results and Discussion

Following the methodology described in Section 6.3 and the experimental protocol given
in Section 6.4, we first perform an exploratory analysis using the algorithm meta-
representations (Section 6.5.1). We then present results on the task of predicting the mod-
ular configuration of the algorithm variants from algorithm behavior meta-representations
in Section 6.5.2.

6.5.1 Exploratory analysis

6.5.1.1 The impact of the modules on the performance of the algorithms

We investigated how different configurations of modules impact the performance of the
CMA-ES and DE algorithms, using performance-based meta-representations in a log-10
scale. The distribution of the precision achieved by different variants of the CMA-ES
algorithm on 5D problem instances is presented in Figure 6.1. We tested six different
modules (elitist, mirrored, base sampler, weights option, local restart, and step size adap-
tation) across the six function evaluation budgets. Each violin plot in the figure shows
the precision across all CMA-ES algorithm variants that have the same value for a given
module.

For instance, there were 324 algorithm variants selected as the Cartesian product of
the six modules, and 162 algorithm variants had the elitism module activated, while 162
did not. Therefore, the violin plot for “elitism = true” is based on the precision values of
162 algorithm variants, where the precision value of an algorithm variant is the mean value
of the performance-based meta-representations (i.e., the mean value of a numerical vector
representation of size 24) in a log-10 scale as detailed in Section 3. The precision values
are inversely proportional to algorithm performance, with smaller values indicating better
performance.

We analyzed the results displayed in Figure 6.1 and made the following observations:

• The activation of elitism in the algorithms leads to improved performance for smaller
evaluation budgets. As the budget increases, this trend reverses and elitist configu-
rations are overtaken by their non-elitist counterparts;

• Algorithm variants that have activated mirrored orthogonal sampling with pairwise
selection (mirrored pairwise) demonstrate a longer tail towards poorer performance
than those that use mirrored sampling without pairwise selection and those that do
not use mirrored sampling at all, although on average they perform similarly;

• At the lower budget cut-offs, the Halton sampling showed the best performance,
Sobol’ sampling came second, and Gaussian sampling demonstrated the worst per-
formance out of the three. As the budget increases, the differences are less evident;

6.5. Results and Discussion 95

0
0.5

1
1.5

−1

0

1

−4

−2

0

−4
−2

0

−6
−4
−2

0

False
True

−6
−4
−2

0

None
mirrored

mirrored pairwise

gaussian

halton
sobol

1/2^lambda

default

equal
BIPOP

IPOP
None

csa psr

50
D

10
0D

30
0D

50
0D

10
00
D

15
00
D

elitist mirrored base_sampler weights_option local_restart step_size_adaptation

Figure 6.1: Distribution of the precision achieved by different variants of the CMA-ES
algorithm on 5D problem instances for different modular configurations, across different
function evaluation budgets. The precision values are inversely proportional to algorithm
performance, with smaller values indicating better performance.

• Algorithms with recombination weights set to (1/2)ˆλ and default weights have sim-
ilar distributions. Also, all three configuration setups have similar average perfor-
mance;

• For the lower budgets, we observe that the local restart module achieves comparable
performance for the three modular configurations (BIPOP, IPOP, and no restart)
across the different budgets. This makes intuitive sense, as at low budgets the al-
gorithm will not have had a chance to trigger any of the restart criteria. As the
budget increases, IPOP and BIPOP local restart techniques show slightly better
performance compared to algorithm variants without a restart mechanism, which
matches observations made in previous work [225]; and

• In the case of step size adaptation, for smaller budgets, cumulative step size adapta-
tion (CSA) exhibits better performance than step size adaptation using the popula-
tion success rule (PSR).

For the DE configurations, we show the same type of visualization in Figure 6.2. From
this figure, we can see that the overall performance differences between DE module options
are much smaller than those seen for CMA-ES. The clear exception is the LSPR module
that, if enabled, results in much worse performance for smaller budgets. This matches

96 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

our intuition since LPSR changes the initial population size to 20D at the beginning of
the search. This much larger initial population size leads to a slower convergence at the
beginning of the search. The difference to no-LPSR slowly decreases over time, but it does
not manage to overtake it within our maximum budget of 1 500D function evaluations.
This observation also seems to suggest that the population size is a critical parameter of
DE, which matches previous observations [226]. For the other modules, we observe that
the mutation base and reference settings, which are more elitist (best and pbest) show
improved performance for low budgets, matching the observations for CMA-ES.

0.5
1

1.5
2

0

1

2

−2
−1
0
1
2

−2

0

2

−4
−2
0
2

None
best

pbest
rand

−6
−4
−2
0
2

best
rand

target
1 2 False

True
bin exp

None
jDE shade

False
True

50
D

10
0D

30
0D

50
0D

10
00
D

15
00
D

mutation_reference mutation_base mutation_n_comps use_archive crossover adaptation_method lpsr

Figure 6.2: Distribution of the precision achieved by different variants of the DE algorithm
on 5D problem instances for different modular configurations, across different budgets. The
precision values are inversely proportional to algorithm performance, with smaller values
indicating better performance.

We have also conducted the same empirical analysis for the 30D problem instances,
and the results are available in our Zenodo repository [227]. Similar observations can be
made for the 30D problem instances as in the case of using the 5D problem instances.

6.5.1.2 The importance of the ELA features for different modular setups

Following our experimental design, to obtain the Shapley-based meta-representations (i.e.,
landscape feature importance scores), we first trained separate regression models for each
algorithm variant. Table 6.3 presents the average R2 scores of the RF and baseline regres-
sion models for the CMA-ES and DE algorithm variants, for both 5D and 30D problems
and the six different function evaluation budgets. Additionally, Table 6.4 summarizes the
MSE scores for these models. As a baseline, we employ a model that consistently predicts
the overall mean algorithm performance. One interesting pattern that can be observed is

6.5. Results and Discussion 97

that the models perform better for the 30D problems. This improved performance may be
due to variations in the distributions of the target variable across different combinations
of budget and dimensionality. The different distribution characteristics, such as skewness,
can impact the performance of the RF model. Additionally, in a higher-dimensional space,
where the points are spread out, certain ELA features might converge to specific values
which can make the data simpler and easier for models to learn from.

Subsequently, we have utilized the SHAP algorithm to determine the feature impor-
tance of each of the 46 ELA features at the problem instance level. In the outer loop of
the nested cross-validation, we have employed a leave-one-group-out CV validation with
five groups (four for training and one for testing). However, we specifically focused on the
Shapley values of the training folds, as this data is used to learn the predictive models and
provides insight into the algorithms’ workings.

Table 6.3: The R2 scores of the RF regression models / R2 scores of the baseline re-
gression models averaged over the CMA-ES and DE algorithm variants for the BBOB
problem instances in 5 and 30 dimensions where the target precision is measured at
B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D} function evaluations.

Budget CMA-ES DE
5D 30D 5D 30D

50D 0.7577/-0.0072 0.9400/-0.0005 0.8788/-0.0019 0.9403/-0.0009
100D 0.7689/-0.0069 0.9179/-0.0008 0.8783/-0.0017 0.9433/-0.0008
300D 0.6146/-0.0072 0.8457/-0.0031 0.8587/-0.0016 0.9362/-0.0013
500D 0.7045/-0.0055 0.8322/-0.003 0.8368/-0.0024 0.9361/-0.0015
1000D 0.7272/-0.0046 0.8072/-0.0029 0.7795/-0.0043 0.9242/-0.002
1500D 0.7288/-0.0048 0.8391/-0.0023 0.7508/-0.0051 0.9191/-0.0023

Table 6.4: The MSE scores of the RF regression models / MSE scores of the baseline
regression models averaged over the CMA-ES and DE algorithm variants for the BBOB
problem instances in 5 and 30 dimensions where the target precision is measured at B ∈
{50D, 100D, 300D, 500D, 1000D, 1500D} function evaluations.

Budget CMA-ES DE
5D 30D 5D 30D

50D 0.7829/4.0248 0.1482/2.461 0.3716/3.383 0.2642/3.7964
100D 1.2195/5.1834 0.2692/3.2073 0.4326/3.9106 0.2458/4.225
300D 3.9828/8.9112 1.0303/5.8091 0.809/5.6781 0.3055/4.9577
500D 4.8498/13.9604 1.2684/6.6078 1.0403/6.1126 0.3803/6.1386
1000D 5.2191/15.2566 1.7192/7.9612 1.9462/6.8843 0.5378/7.0673
1500D 5.1945/15.198 1.8771/10.9973 2.3355/7.4111 0.634/7.6636

98 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

To generate a Shapley value for each ELA feature and problem instance, we calculated
the value four times (due to each problem instance appearing four times in the training
data and once in the testing data) and then took the mean of the four values. Lastly,
we averaged the Shapley values for each ELA feature across all problem instances, which
gave us a single vector for each algorithm instance. For this purpose, we have leveraged
TreeSHAP. TreeSHAP is tailored for tree-based models such as decision trees, random
forests, and boosting machines. It is designed to be computationally efficient by exploiting
the tree structure for faster calculations, which enables it to manage more complex scenarios
effectively. One of the key advantages of TreeSHAP is its consistency property: if a
model relies more on a particular feature, the attributed importance of that feature will
not decrease, ensuring reliable feature attribution. Alternatively, KernelSHAP can be
used for interpreting the impact of features in any model, as it employs a model-agnostic
approach. While KernelSHAP offers flexibility across various model types, it comes at the
cost of computational efficiency. This makes KernelSHAP less suitable for complex, high-
dimensional situations or applications requiring real-time explanations. Given that we are
working with tree-based predictive models, TreeSHAP was the appropriate choice for our
study. It provided the necessary computational efficiency. The calculation of TreeSHAP
is detailed in [11], where it is demonstrated that Shapley values can be used to interpret
model performance regardless of whether the model performs well or poorly.

To investigate the importance of the ELA features, we conduct exploratory analysis by
selecting the top K most important features, where K is chosen from the set {10, 15, 20}.
Next, we tally the frequency of appearance for each feature in the top K across all algorithm
variants within the same group of modular algorithm variants. This is done by calculating
the number of times a feature appears in the top K as indicated by their Shapley values.
The resulting value ranges between 0 and the total number of algorithm variants in the
group.

Analyzing the results in Figure 6.3 and through our analysis of feature importance
in various other scenarios, we have observed that a similar set of ELA features are the
most important predictors of performance, regardless of the algorithm, modular configu-
ration, problem dimensionality, or function evaluation budget. This suggests that we can
perform feature selection for all algorithms simultaneously, irrespective of their configu-
rations. However, we recommend training separate regression models for each algorithm
configuration to obtain the most accurate predictions.

6.5. Results and Discussion 99

1 7 2 3 1 65 80 75 135 2 2 37 6 0 6 8 21 97 9 31 56 19 108114112 161 54 101 94 15 21 35 5 36 8 3 0 1 9 0 0 1 79 0 0 0

2 8 5 0 11 53 76 83 128 2 0 96 8 1 15 21 51 72 8 36 72 6 69 91 127 152 64 49 47 18 31 40 11 42 10 4 2 2 6 0 6 7 88 0 0 0

0 3 0 3 2 74 80 82 133 3 1 33 3 0 16 9 19 82 8 29 60 18 104119 95 162 72 89 101 8 16 37 6 49 9 5 1 0 8 2 1 1 77 0 0 0

3 14 4 4 7 55 69 78 122 0 0 96 14 3 10 24 46 57 11 32 77 10 86 95 110 152 92 46 42 21 15 49 14 52 18 9 4 2 14 4 2 4 53 0 0 0

2 13 1 2 2 38 67 57 127 2 3 37 13 0 22 15 21 82 14 27 74 5 115115 55 149120 50 71 53 15 98 6 82 27 7 1 1 4 5 6 3 13 0 0 0

5 22 11 4 5 71 61 95 72 5 3 56 26 2 13 23 36 53 14 40 87 12 84 110 79 132116 33 39 41 13 84 14 64 25 12 7 2 18 4 5 6 16 0 0 0

9 12 12 11 2 75 47 62 74 8 12 17 10 19 87 20 26 89 20 61 59 11 60 74 76 87 84 58 36 45 22 56 54 73 40 9 9 11 11 14 14 6 38 0 0 0

4 37 32 24 12 83 53 95 58 7 2 22 23 12 44 22 17 15 15 63 83 18 54 48 44 68 70 78 47 43 4 41 79 78 46 24 25 24 24 28 21 11 22 0 0 0

3 10 19 2 4 23 126 117108 14 11 25 18 2 43 33 30 21 18 92 40 30 59 59 100 115115 43 29 15 3 103 27 115 15 5 8 0 5 2 4 0 9 0 0 0

6 25 28 5 13 28 122 130 78 5 2 63 51 0 29 55 61 8 22 82 63 39 67 90 67 39 104 26 18 29 1 70 29 66 18 22 4 7 12 5 1 4 26 0 0 0

6 4 4 1 0 37 154 98 130 3 3 27 6 0 12 13 46 16 5 91 88 25 91 74 105 98 85 63 30 24 4 108 15 89 11 6 0 1 3 3 4 2 35 0 0 0

7 22 44 0 5 57 131 107 88 5 6 44 28 0 1 39 67 59 49 29 85 2 98 95 37 39 59 59 44 30 12 53 25 46 34 26 6 2 25 14 2 13 26 0 0 0

True-1500d

False-1500d

True-1000d

False-1000d

True-500d

False-500d

True-300d

False-300d

True-100d

False-100d

True-50d

False-50d

101 27 8 3 59 25 104 71 78 1 2 32 50 5 20 64 48 12 48 37 51 29 51 36 30 19 44 37 11 41 70 123 18 111 4 8 10 48 17 8 9 25 25 0 0 0

16 17 11 10 22 26 139 111 91 4 5 26 36 3 13 31 41 26 37 17 87 41 129112 38 55 46 27 25 53 52 45 21 72 5 6 13 7 27 6 13 17 41 0 0 0

71 47 20 6 64 25 48 46 97 3 3 48 69 5 17 74 39 7 30 35 40 77 30 49 38 16 25 18 3 58 91 74 19 149 4 10 12 74 33 4 1 25 16 0 0 0

28 40 29 6 14 31 111 75 88 2 8 20 25 1 10 11 38 26 42 17 85 53 129121 36 33 38 38 30 46 45 60 33 90 8 6 27 17 30 9 13 13 38 0 0 0

6 3 4 1 0 7 98 94 109 3 4 55 45 4 60 79 41 39 48 67 102 114 61 74 61 62 36 10 3 3 59 96 15 136 0 3 4 0 4 3 0 0 7 0 0 0

26 7 3 6 7 29 138 92 104 1 7 36 43 0 17 16 42 27 34 20 125 106115115 58 50 29 63 16 20 28 42 23 115 1 1 8 7 3 5 9 3 23 0 0 0

4 1 1 0 0 6 128 99 96 3 3 58 73 0 66 69 46 19 50 86 111 125 65 87 72 75 14 13 8 11 19 67 4 132 0 0 0 0 0 0 0 2 7 0 0 0

17 4 1 5 5 16 129 142 69 1 6 39 66 1 35 24 41 21 35 19 145 105115124 61 68 15 57 16 17 18 11 18 126 7 1 1 0 7 0 6 4 22 0 0 0

0 3 0 0 5 13 146 146 73 0 0 59 70 2 16 71 53 10 8 24 161 140150148 13 103 37 32 22 7 0 2 43 55 2 0 1 0 3 0 0 0 2 0 0 0

18 5 1 6 12 27 137 143 97 0 4 46 69 0 11 46 63 16 22 24 152 120113115 15 63 26 80 32 2 21 4 27 50 5 1 0 5 3 0 11 2 26 0 0 0

0 15 0 0 0 7 138 136 53 0 1 87 86 0 0 102 89 33 70 3 160 48 162146 13 108 14 35 0 4 23 3 14 37 0 0 0 0 8 9 0 0 16 0 0 0

1 28 0 6 0 5 141 113 54 7 4 112106 3 0 127 137 24 92 0 155 19 155 97 3 61 5 4 0 0 36 0 0 25 0 0 0 0 6 0 15 0 79 0 0 0

True-1500d

False-1500d

True-1000d

False-1000d

True-500d

False-500d

True-300d

False-300d

True-100d

False-100d

True-50d

False-50d

0 2 5 0 6 41 62 66 86 2 1 35 6 0 7 11 23 54 7 22 44 13 69 68 69 98 40 50 42 9 14 27 8 25 6 3 1 2 5 0 1 3 47 0 0 0
0 7 2 2 2 40 53 42 86 1 1 58 2 0 6 6 32 56 4 16 42 5 52 67 83 107 39 47 56 11 22 22 7 27 5 2 0 0 6 0 2 4 58 0 0 0
3 6 0 1 4 37 41 50 91 1 0 40 6 1 8 12 17 59 6 29 42 7 56 70 87 108 39 53 43 13 16 26 1 26 7 2 1 1 4 0 3 1 62 0 0 0
2 1 1 1 5 39 58 62 78 0 0 40 10 0 11 10 20 45 4 22 52 12 62 74 54 99 58 47 48 7 11 39 8 42 6 2 1 1 7 2 1 0 38 0 0 0
0 9 2 4 3 52 47 57 89 2 1 50 3 2 5 13 27 40 7 19 37 5 53 69 75 107 59 47 48 12 9 20 7 26 8 5 2 1 10 3 1 3 41 0 0 0
1 7 1 2 1 38 44 41 88 1 0 39 4 1 10 10 18 54 8 20 48 11 75 71 76 108 47 41 47 10 11 27 5 33 13 7 2 0 5 1 1 2 51 0 0 0
2 12 6 0 2 39 48 57 58 3 2 27 9 0 11 14 20 40 8 24 50 6 64 74 49 99 72 32 41 27 8 65 7 42 14 9 2 0 8 3 6 2 18 0 0 0
4 12 4 3 1 42 39 52 65 2 4 33 14 1 14 15 22 42 10 24 54 8 64 76 46 90 80 20 43 30 10 56 10 45 14 3 4 2 6 4 4 3 5 0 0 0
1 11 2 3 4 28 41 43 76 2 0 33 16 1 10 9 15 53 10 19 57 3 71 75 39 92 84 31 26 37 10 61 3 59 24 7 2 1 8 2 1 4 6 0 0 0
5 14 13 13 4 49 40 55 48 4 4 12 18 12 43 19 13 34 11 39 52 9 41 37 41 52 50 36 28 30 8 27 38 57 25 16 12 14 13 11 9 3 21 0 0 0
6 20 15 10 8 45 32 50 39 5 3 16 11 12 43 11 14 32 12 40 45 8 37 43 40 49 53 45 18 25 5 28 56 46 36 13 13 18 12 19 13 11 23 0 0 0
2 15 16 12 2 64 28 52 45 6 7 11 4 7 45 12 16 38 12 45 45 12 36 42 39 54 51 55 37 33 13 42 39 48 25 4 9 3 10 12 13 3 16 0 0 0
5 6 16 1 5 15 88 75 56 7 5 25 28 0 23 35 31 11 12 58 33 16 52 63 53 47 71 28 9 13 2 54 23 66 13 10 7 0 5 2 0 1 10 0 0 0
1 13 16 5 8 19 88 90 67 5 4 31 25 0 23 34 34 5 11 59 34 28 29 38 56 51 72 18 15 14 1 61 23 57 7 9 2 5 7 3 0 1 11 0 0 0
3 16 15 1 4 17 72 82 63 7 4 32 16 2 26 19 26 13 17 57 36 25 45 48 58 56 76 23 23 17 1 58 10 58 13 8 3 2 5 2 5 2 14 0 0 0
7 14 12 0 1 33 97 62 74 3 0 18 7 0 3 11 35 13 12 39 63 10 62 61 51 51 44 51 28 20 4 60 11 51 14 5 0 2 10 8 1 5 27 0 0 0
3 6 21 0 4 27 97 68 77 5 3 29 17 0 10 21 36 32 18 43 50 13 63 60 45 40 54 29 27 15 6 47 10 34 14 16 2 1 8 4 0 4 21 0 0 0
3 6 15 1 0 34 91 75 67 0 6 24 10 0 0 20 42 30 24 38 60 4 64 48 46 46 46 42 19 19 6 54 19 50 17 11 4 0 10 5 5 6 13 0 0 0

mirrored pairwise-1500d
mirrored-1500d

None-1500d
mirrored pairwise-1000d

mirrored-1000d
None-1000d

mirrored pairwise-500d
mirrored-500d

None-500d
mirrored pairwise-300d

mirrored-300d
None-300d

mirrored pairwise-100d
mirrored-100d

None-100d
mirrored pairwise-50d

mirrored-50d
None-50d

39 14 4 3 28 19 84 59 54 2 2 20 28 1 17 35 28 8 33 19 44 29 51 42 22 17 30 23 13 32 45 62 13 67 0 3 9 24 9 6 3 11 28 0 0 0
41 15 11 6 24 15 82 52 57 3 3 16 29 3 4 34 25 15 22 18 43 17 59 56 29 29 25 23 13 31 37 65 14 57 5 8 6 18 16 5 11 16 22 0 0 0
37 15 4 4 29 17 77 71 58 0 2 22 29 4 12 26 36 15 30 17 51 24 70 50 17 28 35 18 10 31 40 41 12 59 4 3 8 13 19 3 8 15 16 0 0 0
40 27 15 3 30 17 43 34 65 1 1 26 33 4 10 30 33 7 24 16 32 53 44 51 21 19 20 20 15 34 52 42 18 81 5 4 16 36 18 1 4 18 17 0 0 0
32 29 17 4 24 21 47 43 61 4 5 20 33 1 13 27 18 12 23 15 46 39 57 66 27 12 21 15 12 33 37 44 21 77 5 6 15 29 25 10 6 12 16 0 0 0
27 31 17 5 24 18 69 44 59 0 5 22 28 1 4 28 26 14 25 21 47 38 58 53 26 18 22 21 6 37 47 48 13 81 2 6 8 26 20 2 4 8 21 0 0 0
12 1 1 3 1 8 73 59 69 1 1 38 28 2 29 34 36 20 34 31 81 71 48 62 36 39 22 33 9 8 24 48 15 77 0 1 5 2 3 3 3 0 9 0 0 0
9 3 3 1 4 19 79 68 73 2 7 28 34 2 20 31 27 27 27 28 72 73 56 63 41 35 21 20 6 9 28 41 15 86 1 2 5 2 1 0 0 1 10 0 0 0
11 6 3 3 2 9 84 59 71 1 3 25 26 0 28 30 20 19 21 28 74 76 72 64 42 38 22 20 4 6 35 49 8 88 0 1 2 3 3 5 6 2 11 0 0 0
7 2 1 2 0 11 81 78 58 2 1 26 44 0 30 34 35 17 35 32 85 70 51 71 41 59 6 26 9 13 10 25 10 83 6 1 0 0 3 0 1 3 11 0 0 0
7 0 1 0 2 6 87 78 55 2 5 41 55 0 33 30 24 9 26 36 84 78 61 72 45 51 14 19 6 8 12 27 8 83 1 0 1 0 1 0 2 2 8 0 0 0
7 3 0 3 3 5 89 85 52 0 3 30 40 1 38 29 28 14 24 37 87 82 68 68 47 33 9 25 9 7 15 26 4 92 0 0 0 0 3 0 3 1 10 0 0 0
6 1 0 3 7 6 97 93 66 0 0 42 46 2 6 40 42 17 9 14 102 87 89 90 11 62 22 30 14 3 8 1 16 24 1 1 1 2 3 0 4 0 12 0 0 0
6 6 0 0 4 10 90 96 52 0 1 37 53 0 15 43 36 3 9 17 107 87 88 84 9 46 17 42 21 1 9 1 27 41 5 0 0 3 2 0 3 1 8 0 0 0
6 1 1 3 6 24 96 100 52 0 3 26 40 0 6 34 38 6 12 17 104 86 86 89 8 58 24 40 19 5 4 4 27 40 1 0 0 0 1 0 4 1 8 0 0 0
0 18 0 3 0 2 93 75 33 1 4 62 63 1 0 74 76 15 59 0 107 23 105 82 4 55 4 10 0 0 22 3 5 24 0 0 0 0 7 6 6 0 38 0 0 0
1 16 0 3 0 4 86 87 40 4 1 76 68 2 0 88 82 22 42 0 107 25 106 83 4 49 3 7 0 1 21 0 2 11 0 0 0 0 3 3 3 0 30 0 0 0
0 9 0 0 0 6 100 87 34 2 0 61 61 0 0 67 68 20 61 3 101 19 106 78 8 65 12 22 0 3 16 0 7 27 0 0 0 0 4 0 6 0 27 0 0 0

mirrored pairwise-1500d
mirrored-1500d

None-1500d
mirrored pairwise-1000d

mirrored-1000d
None-1000d

mirrored pairwise-500d
mirrored-500d

None-500d
mirrored pairwise-300d

mirrored-300d
None-300d

mirrored pairwise-100d
mirrored-100d

None-100d
mirrored pairwise-50d

mirrored-50d
None-50d

9 19 13 7 4 112131 101104 3 0 10 8 3 10 17 9 35 26 70 62 39 140 63 81 165 44 95 56 87 10 99 41 78 23 17 12 3 14 12 8 3 77 0 0 0
4 21 11 24 4 102146 65 113 2 2 11 6 2 8 6 22 13 24 75 25 28 136 59 81 173 46 100 75 112 4 109 20 92 23 21 20 7 14 7 17 13 77 0 0 0
4 26 6 16 2 95 139 102103 8 2 9 12 4 3 13 27 23 37 61 42 43 120 62 87 146 61 80 55 85 11 121 45 106 21 19 22 4 13 12 8 17 48 0 0 0
2 21 14 7 4 102153 96 113 4 2 16 7 3 12 16 17 33 22 88 72 32 142 75 91 163 40 85 40 53 11 102 37 75 34 9 12 1 20 16 7 5 66 0 0 0
2 21 7 23 4 92 151 96 113 6 3 12 9 1 7 15 18 14 33 75 65 23 139 57 83 166 33 82 66 80 8 122 25 87 28 19 22 2 22 13 16 15 45 0 0 0
7 25 13 17 5 102143 94 117 6 1 11 11 2 1 10 28 15 25 83 51 25 132 38 87 152 57 91 61 86 11 116 27 104 14 17 17 4 15 9 11 9 70 0 0 0
6 29 20 7 3 108147 101110 4 2 19 12 3 16 22 23 19 34 81 84 24 121100 96 124 46 53 47 55 13 95 43 80 32 13 19 8 26 11 7 9 48 0 0 0
4 16 29 7 3 98 151 137116 4 3 7 9 0 8 18 21 17 37 97 104 32 109 87 123 99 79 41 39 31 22 111 50 98 25 6 8 8 21 7 3 7 28 0 0 0
1 16 16 3 5 79 149 128113 5 0 7 9 1 0 11 13 19 36 81 100 20 139 96 109 123 64 85 48 49 12 121 62 107 18 3 8 2 17 3 4 6 32 0 0 0
3 19 31 4 5 104146 134120 3 2 15 20 1 9 27 20 19 50 90 87 32 123 89 113 88 61 55 44 37 7 96 46 114 25 6 5 4 15 9 6 9 27 0 0 0
2 14 19 4 0 102166 150146 1 1 10 14 1 2 21 12 32 53 68 96 30 119104127 66 108 32 49 27 4 120 40 93 21 7 1 2 10 3 2 4 37 0 0 0
1 12 13 3 3 97 172 150142 1 0 5 25 1 4 12 22 20 45 70 98 19 106 99 119 106 91 39 40 41 7 126 37 128 17 4 3 1 9 2 3 5 22 0 0 0
4 2 3 1 1 125185 144 96 1 2 55 46 0 0 70 59 8 31 48 102 3 176 83 55 69 31 91 53 38 1 65 25 109 16 3 2 2 10 2 2 2 99 0 0 0
4 3 8 1 5 118177 159112 0 0 26 36 0 1 37 20 7 40 60 116 1 178 86 63 83 25 98 81 42 4 69 33 103 7 3 4 4 10 4 3 9 80 0 0 0
2 11 23 3 4 112178 144139 0 0 29 26 0 1 23 25 11 24 89 116 1 146 76 95 93 51 71 58 41 6 87 21 95 13 1 2 3 12 5 1 6 76 0 0 0
2 2 7 3 2 154170 159 79 0 0 98 33 0 0 88 90 15 25 55 137 0 170119 43 50 30 46 46 20 5 40 35 68 3 0 1 2 8 3 1 2 109 0 0 0
3 6 11 1 0 156170 151115 0 0 76 14 0 0 70 72 6 26 57 134 2 163122 53 53 46 51 30 29 9 42 17 71 14 3 1 1 6 0 2 0 137 0 0 0
5 5 17 6 10 131178 145115 2 0 21 15 1 1 15 26 11 35 70 144 3 163132 68 69 39 63 49 35 3 50 43 101 14 0 5 1 10 3 2 7 107 0 0 0

diff_m
ean_02

diff_m
ean_05

diff_m
ean_10

diff_m
ean_25

diff_m
edian_02

diff_m
edian_05

diff_m
edian_10

diff_m
edian_25

dist_ratio.coeff_var

eps.m
ax

eps.ratio

eps.s

expl_var.cor_init

expl_var.cor_x

expl_var.cov_init

expl_var.cov_x

expl_var_PC
1.cor_init

expl_var_PC
1.cor_x

expl_var_PC
1.cov_init

expl_var_PC
1.cov_x

h.m
ax

kurtosis

lin_sim
ple.adj_r2

lin_sim
ple.coef.m

ax

lin_sim
ple.coef.m

ax_by_m
in

lin_sim
ple.coef.m

in

lin_sim
ple.intercept

lin_w
_interact.adj_r2

m
0

nb_fitness.cor

nn_nb.cor

nn_nb.m
ean_ratio

nn_nb.sd_ratio

num
ber_of_peaks

quad_sim
ple.adj_r2

quad_sim
ple.cond

quad_w
_interact.adj_r2

ratio_m
ean_02

ratio_m
ean_05

ratio_m
ean_10

ratio_m
ean_25

ratio_m
edian_02

ratio_m
edian_05

ratio_m
edian_10

ratio_m
edian_25

skew
ness

target-1500d
rand-1500d
best-1500d

target-1000d
rand-1000d
best-1000d
target-500d

rand-500d
best-500d

target-300d
rand-300d
best-300d

target-100d
rand-100d
best-100d
target-50d

rand-50d
best-50d

El
it
is

t,
 5

D
,

To
p

10
El

it
is

t,
 3

0D
,

To
p

10

M
ir
ro

re
d,

 5
D

,
To

p
10

M
ir
ro

re
d,

 3
0D

,
To

p
10

M
ut

at
io

n
ba

se
,

5D
,

To
p

10

Figure 6.3: Frequency of appearance of the ELA features as top 10 most important features
for performance prediction of two modCMA-ES modules (elitist and mirrored; first four
groups) on the 24 BBOB functions in both 5 and 30 dimensions and for six different eval-
uation budgets B ∈ {50D, 100D, 300D, 500D, 1 000D, 1 500D}. The fifth group provides
the same data for one DE module (mutation base).

100 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

6.5.2 Predicting the modular configuration of an algorithm using its
behavior meta-representation

After exploring the performance and ELA data on which the meta-representations are built,
we now analyze whether these meta-representations are powerful enough to predict/identify
the corresponding algorithm variant.

First, we compare the single- and multi-output approaches for training classifiers using
the RF method. The F1 scores for the classifiers obtained on the test data aggregated
across the 2 problem dimensionalities, 5 budgets, and algorithm modules, are listed in
Table 6.5. We have observed that comparable results can be obtained when employing
single-output and multi-output RF techniques on both CMA-ES and DE algorithms, using
both performance- and Shapley-based meta-representations. However, it is worth noting
that the multi-output RF approach exhibits slightly inferior performance as compared to
single-output RF.

Table 6.5: The F1 scores of the single-output RF, multi-output RF, and single-output
TabPFN models, computed by averaging over the CMA-ES and DE algorithm variants.
The F1 scores are further averaged for both 5 and 30 dimensions, and across the 5 budgets
for function evaluation (B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D}).

Algo

Performance Shapley
single-

output RF
multi-

output RF
single-
output

TabPFN

single-
output RF

multi-
output RF

single-
output

TabPFN
CMA-ES 0.794 0.772 0.811 0.623 0.618 0.629
DE 0.758 0.744 0.790 0.603 0.601 0.589

Additionally, we have compared the performance of single-output RF classifiers with
TabPFN classifiers. Both classifiers showed similar F1 scores, as indicated in Table 6.5.
For instance, when using Shapley-based meta-representations, the RF classifier’s average
F1 score for predicting the modular configuration of CMA-ES variants was 0.623, while
the TabPFN classifier’s F1 score was 0.629, indicating slightly better performance for
TabPFN. However, for the DE variants, we observed the opposite situation, with RF
classifiers achieving an average F1 score of 0.603 and TabPFN of 0.589.

In Table 6.5, the F1 scores are averaged over all algorithm modules. To further analyze
the classifiers trained using the single-output RF method, in Figure 6.4 we present the
F1 scores of the classifiers for each CMA-ES module separately. As a baseline, we use
the majority classifier. Figure 6.4 shows that the highest performance scores are achieved
in predicting the setting of the elitist and step-size adaptation modules. The higher F1
scores for the elitist and step-size adaptation modules compared to the other four CMA-
ES modules are expected because we only investigated two module options for these two
modules, while the remaining four modules used three different module options. By having
fewer classes to distinguish between, the classification problem is simplified, making it easier
to solve.

The highest F1 scores among the remaining four modules have been observed for the
weights option, followed by the base sampler and mirrored. The configuration of the local
restart module is the most difficult to predict. In general, all classifiers for predicting
the status of each module outperform the baseline across the different modules, problem
dimensions, and budgets (see Figure 6.4).

Further, we have observed that the performance-based meta-representations have better
predictive power than the Shapley-based meta-representations.

6.5. Results and Discussion 101

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(a) elitist

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(b) mirrored

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(c) base_sampler

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(d) weights_option

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(e) local_restart

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(f) step_size_adaptation

Figure 6.4: The F1 scores of the RF classifiers for predicting the modular configuration
of the CMA-ES algorithm variants. Results are presented for each CMA-ES module sep-
arately, for 5D and 30D BBOB problem instances, and for 5 different function evaluation
budgets. The baseline is the majority classifier.

In Figure 6.5, we show the F1 scores of the RF classifiers for each DE module. For
the mutation_n_comps, use_archive, crossover, and lpsr modules we have considered
two different module options. As can be seen in Figure 6.5, for these four modules the
classifiers have the highest F1 scores, with lpsr classifiers performing the best, followed by
crossover, mutation_n_comps, and use_archive. As the number of considered modular
options increases (three different options for the mutation base and adaptation method
modules and four different options for mutation reference), the F1 scores of the classifiers
tend to decrease. For both CMA-ES and DE, it is worthwhile to note that the modules
that have limited initial impact (local-restart and adaptation mechanism) are indeed more
challenging to predict, especially for small budgets. Nevertheless, in all cases, the classifiers
outperform the baseline classifier. Furthermore, the RF classifiers that used performance-
based meta-representations consistently outperformed those that used Shapley-based meta-
representations.

Performance difference between algorithm variants. By combining the predictions
of the RF classifiers for all modules, we can predict the modular configuration of the
algorithm instance. To judge the effectiveness of this prediction, we analyze the difference
in performance between the true and predicted modular configurations. Even though there
might be a difference in the configuration, the true and the predicted algorithms may
have similar performance behavior. To evaluate this, we use the DSC approach to test
for statistical significance in the performance of the true and the predicted configuration
across all benchmark problem instances. First, we apply the DSC ranking scheme that
ranks the true and the predicted configuration by comparing the distribution of their raw
performance data for each problem instance separately.

For comparing the distributions, the two-sample Anderson-Darling test [228] is used
by the DSC ranking scheme. Since most of the statistical tests require the independence

102 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(a) crossover

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(b) lpsr

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000
0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(c) Adaptation method

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(d) mutation_base

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(e) mutation_n_comps

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(f) mutation_reference

5D-250

5D-500

5D-1500
5D-2500

5D-5000

5D-7500

30D-1500

30D-3000

30D-9000
30D-15000

30D-30000

30D-45000

0 0.2
0.4
0.6
0.8
1

perf2vec shapley baseline

(g) use archive

Figure 6.5: The F1 scores of the RF classifiers for predicting the modular configuration of
the DE algorithm variants. Results are presented for each DE module separately, for 5D
and 30D BBOB problem instances, and for 5 different function evaluation budgets. The
baseline is the majority classifier.

condition, we have aggregated the rankings per problem class by calculating the average of
the DSC rankings obtained for the five problem instances that belong to that problem class.
Next, the ranked data is analyzed with a statistical test. The rankings obtained for the 24
problem classes have been analyzed with the Wilcoxon signed-ranks test to find if there is
a statistically significant difference (at a p-value of 0.05) in the performance of the true and
predicted configuration on the selected benchmark suite. After determining the statistical
significance of the difference between each true and predicted algorithm pair, we calculate
the percentage of pairs with performance differences that are not statistically significant.
Additionally, we generate five different random predictions for the modular configuration of
each algorithm instance and perform the DSC analysis on them. The results for CMA-ES
and DE across different problem dimensions, budgets, and meta-representations are shown
in Table 6.6 and Table 6.7, respectively.

In both Table 6.6 and Table 6.7, we can observe that the percentage of algorithm
pairs, consisting of true and predicted configurations, with performance differences that
are not statistically significant (based on the predictions generated by our classifiers) is
significantly higher as compared to the scenario where predictions are randomly generated
for the modular configuration. This affirms the robust predictive capabilities exhibited by
our classifiers.

6.5. Results and Discussion 103

Table 6.6: The DSC results on the statistical difference in the performance of CMA-
ES algorithm pairs. Results are reported in the format: percentage of (true, predicted)-
pairs with performance differences that are not statistically significant/percentage of (true,
random)-pairs with performance differences that are not statistically significant. The num-
bers in brackets correspond to the standard deviation for the latter percentage since this
was computed over 5 independent runs.

Budget SHAP Performance
5D 30D 5D 30D

50D 74.4 / 33.6 (2.0) 68.2 / 24.6 (2.7) 89.2 / 36.4 (2.0) 93.2 / 22.5 (1.2)
100D 80.9 / 62.2 (3.5) 68.2 / 26.9 (2.3) 91.0 / 64.0 (1.6) 93.5 / 27.0 (3.1)
300D 75.0 / 57.5 (1.6) 59.6 / 35.2 (3.0) 87.3 / 58.4 (3.1) 88.9 / 36.5 (1.7)
500D 67.6 / 57.2 (2.3) 55.2 / 33.5 (2.4) 89.5 / 55.8 (3.1) 83.6 / 34.8 (1.5)
1000D 74.1 / 48.7 (2.3) 54.3 / 36.8 (1.1) 84.9 / 48.5 (0.6) 82.7 / 38.9 (1.7)
1500D 72.2 / 43.6 (1.7) 49.1 / 34.0 (2.1) 88.0 / 42.7 (3.0) 81.2 / 34.1 (2.9)

Table 6.7: The DSC results on the statistical difference in the performance of DE algo-
rithm pairs. Results are reported in the format: percentage of (true, predicted)-pairs with
performance differences that are not statistically significant / percentage of (true, random)-
pairs with performance differences that are not statistically significant. The numbers in
brackets correspond to the standard deviation for the latter percentage since this was com-
puted over 5 independent runs.

Budget SHAP Performance
5D 30D 5D 30D

50D 50.5 / 14.5 (1.2) 21.7 / 12.2 (1.5) 77.1 / 12.6 (1.7) 53.6 / 10.8 (0.7)
100D 45.0 / 11.2 (0.8) 23.6 / 10.9 (1.6) 70.5 / 12.2 (1.3) 54.3 / 11.7 (1.1)
300D 31.9 / 10.0 (1.4) 27.3 / 12.3 (0.7) 57.1 / 9.9 (1.1) 45.3 / 13.2 (0.9)
500D 31.1 / 11.5 (0.9) 28.6 / 16.6 (1.2) 56.9 / 11.3 (1.6) 48.1 / 15.7 (1.1)
1000D 31.2 / 13.0 (1.1) 31.8 / 19.5 (1.5) 49.5 / 12.6 (1.0) 45.5 / 19.0 (1.0)
1500D 33.0 / 16.0 (1.5) 30.4 / 23.2 (0.9) 54.5 / 15.0 (1.7) 46.5 / 22.5 (1.8)

An additional noteworthy observation is that the percentage of pairs with performance
differences that are not statistically significant is higher for the CMA-ES algorithm variants
as compared to DE. To further investigate this observation, we use UMAP [229] as a
dimensionality reduction technique to depict the performance-based meta-representations
of CMA-ES and DE algorithm variants. Specifically, we focus on the 5D problems and
300D budget cut-off.

Figure 6.6 showcases the UMAP plots, allowing for a visual examination of the per-
formance space. Notably, the CMA-ES algorithm variants exhibit closer proximity to one
another, forming two distinct clusters. This close grouping suggests similar performance
characteristics among these variants. We have observed that the elitism module almost
perfectly separates the algorithm variants into two clusters. In contrast, the DE algorithm
variants display more pronounced differences in performance, leading to a lower percentage
of pairs with performance differences that are not statistically significant. In this case, the
purest clusters are formed by taking into consideration the configurations of the lpsr mod-
ule, indicating that this module exerts the greatest influence on performance as compared
to the other modules.

104 Chapter 6. Using ML Methods to Assess Algorithm Module Performance Contribution

(a) CMA-ES (b) DE

Figure 6.6: UMAP embeddings of the performance-based meta-representations of the 324
CMA-ES and 576 DE algorithm variants.

6.6 Summary

In this study, we have proposed a methodology for examining the impact of different mod-
ules of optimisation algorithms on the overall algorithm performance. We have demon-
strated its relevance within two pre-existing modular optimisation frameworks, namely
modCMA-ES and modDE. To this end, we have analyzed performance data from 324
modCMA-ES and 576 modDE algorithm variants across 24 noiseless BBOB problems.
Among the investigated CMA-ES modules, we have found that the elitism module has the
most pronounced influence on performance, while the local restart module has the small-
est influence, particularly for smaller runtime budgets. These findings are aligned with
existing work analyzing these algorithms. Regarding DE, out of the seven modules exam-
ined, we have observed that the linear population size reduction module exerts the greatest
influence on performance. The mutation reference and adaptation method modules have
considerably smaller effects as compared to the other modules.

Although our findings on some modules are not conclusive, our methodology is adapt-
able and can be applied to other modular optimisation frameworks, where it may yield
different insights. The methodology to other modular optimisation frameworks, such as
ParadisEO [80], [81], PSO-X [82] and the modular hybridization framework of particle
swarm optimisation and differential evolution [83].

Observing variations in the impact of different modules on performance lead us to
conclude that to accurately assess the contribution of a new idea or algorithm design, it is
crucial to compare algorithm modules rather than algorithms themselves.

Furthermore, we have trained classifiers to predict the modular configuration of al-
gorithm variants. We have found that the classifiers achieve higher F1 scores, in both
cases of using performance-based and Shapley-based algorithm meta-representations when
the impact of the module on performance is more substantial. This observation was ex-
pected because, in cases where the impact is less significant, the algorithm variants tend
to be closer in the meta-representation space, making it challenging for the ML model to
differentiate effectively.

Classifiers using performance-based meta-representations show superior predictive per-
formance compared to those built from Shapley-based meta-representations. However, it is
worth noting that performance-based meta-representations are less flexible when it comes
to accommodating new problem classes, as the vector size is predetermined by the number
of classes. On the other hand, Shapley-based meta-representations, which rely on problem

6.6. Summary 105

landscape features, maintain a consistent vector size when introducing new problem classes.
Nonetheless, a limitation arises when new classes are introduced, requiring the retraining
of regression models used to determine the Shapley-based landscape feature importance.

With respect to the importance of the landscape features, it seems that the same ELA
features appear to be the most important features that contribute to the performance of
the algorithm performance prediction regression models, regardless of the possible values
of each module.

107

Chapter 7

Predicting Algorithm Performance in
Numerical Black Box Optimisation
with Knowledge Graph Reasoning

In this chapter, we exploit benchmarking data about modular optimisation algorithms,
and investigate the use of formal semantic representations to predict the performance of
black-box optimisation algorithms. Specifically, we focus on the feasibility of using classical
knowledge graphs, which do not rely on node features or additional data, to predict the
performance of algorithms from two modular frameworks, modCMA-ES and modDE. The
task is framed as a knowledge graph completion problem, where the goal is to infer missing
relationships within the graph.

The data is represented in a factual, discrete form, capturing semantic relationships
between entities such as algorithms, problem instances, and their performance. To explore
this type of representation, we employ a scoring-based knowledge graph embedding (KGE)
model. By training KGEs, we aim to predict performance links (‘solved’ or ‘not-solved’)
between algorithm configurations and problem instances under specific precision thresholds
in a fixed-budget scenario.

Section 7.1 provides a detailed problem definition and discusses the potential of KGs for
predictive modeling in black-box optimisation. Section 7.2 outlines the methodology and
experimental setup, describing the construction of the KG and the KG embedding-based
pipeline for algorithm performance prediction. In Section 7.3, we present the experimental
results from different evaluation scenarios, including both balanced and imbalanced clas-
sification settings. Finally, Section 7.4 summarizes our findings, discusses the limitations
of the transductive learning setting, and outlines directions for future research.

This chapter is based on the paper “Using Knowledge Graphs for Performance Pre-
diction of Modular Optimization Algorithms” [230], which appeared in the International
Conference on the Applications of Evolutionary Computation (Part of EvoStar), 2023.

All data and code related to this chapter are publicly available on GitHub at: https:
//github.com/KostovskaAna/KG4AlgorithmPerformancePrediction.

7.1 Problem Definition

A KG is a set of relational facts represented by entities and the relationships between
them [231]. KGs have become invaluable tools for organizing and leveraging complex
relationships within data across various domains. Their ability to integrate heterogeneous
information and infer new insights has led to successful applications in numerous fields.

https://github.com/KostovskaAna/KG4AlgorithmPerformancePrediction
https://github.com/KostovskaAna/KG4AlgorithmPerformancePrediction

108
Chapter 7. Predicting Algorithm Performance in Numerical Black Box Optimisation with

Knowledge Graph Reasoning

For example, in natural language processing, KGs enhance search engines and recom-
mendation systems by providing context and relational data [232], [233]. In the biomedical
field, they assist in drug discovery and disease research by integrating diverse biological
data sources [234], [235]. KGs are also used in social network analysis to understand and
predict user behavior [236], [237].

In machine learning predictive modeling, KGs have demonstrated significant poten-
tial. One study used a KG with nodes for drugs, protein targets, indications, and adverse
reactions to predict unknown adverse drug reactions, outperforming standard ML tech-
niques [238]. Another study utilized a KG built from National Health and Nutrition Ex-
amination Survey data for health risk prediction, achieving superior performance compared
to baseline classifiers [239].

The success of KGs in these diverse domains highlights their potential for addressing
complex challenges in other fields as well. In evolutionary computation research, empir-
ical analysis and benchmark studies on iterative black-box optimisation algorithms play
a crucial role. The data involved in these studies is often complex and heterogeneous.
Optimisation problems, for instance, can be represented with numerical vectors that cap-
ture landscape characteristics, while high-level problem features can be represented with
categorical values (e.g., separability, multi-modality) [54]. There is also considerable diver-
sity in optimisation heuristics, which stems from variations in operator choices, parameter
adjustment strategies, and hyperparameter settings. The different parameters and hyper-
parameters of the optimisation algorithms influence various aspects of the optimisation
process, such as initialization, mutation, and recombination. These variations can result
in significantly different algorithm behaviors [240]. Additionally, performance data can
be represented using various metrics, further adding to the complexity of analyzing and
comparing algorithm performance [241].

Given the demonstrated effectiveness of KGs in managing and leveraging complex,
heterogeneous data across various domains, applying KGs to evolutionary optimisation
algorithms presents a promising research opportunity. KGs can capture the intricate rela-
tionships between diverse data elements, providing a unified framework for understanding
and analyzing the optimisation process.

By explicitly representing entities such as problems, algorithms, and parameters as
nodes, and their interactions and dependencies as edges, KGs facilitate the integration,
visualization, and exploration of complex data. This structured representation enables
researchers to examine the relationships and interactions within the optimisation process.

Additionally, KGs can be leveraged for predictive modeling and reasoning tasks. In
black-box optimisation, predictive models built using KG data can forecast algorithm per-
formance and identify optimal configurations by learning from the rich, interconnected
data. Furthermore, reasoning tasks such as Knowledge Graph Completion (KGC) can
infer missing relationships or entities, enhancing the utility of KGs by uncovering hidden
patterns and insights. This capability can lead to more informed decision-making and
improved optimisation outcomes.

In Chapter 3, we introduced the OPTION ontology [130], designed to standardize data
representation in the domain of single-objective numerical optimisation. The corresponding
OPTION KB developed is an RDF-based repository that provides structured, semantically
enriched storage, making complex data more accessible for researchers. This semantically
annotated data forms an RDF graph, which can also be viewed as a KG, enabling efficient
querying and retrieval. Additionally, by leveraging the OPTION ontology, it enhances
interoperability across different systems and platforms, ensuring seamless data sharing
and understanding.

Although there have been various efforts to organize knowledge in black-box optimi-

7.2. Methodology and Experimental Setup 109

sation, these studies have mainly focused on representing and structuring domain knowl-
edge [139]–[141], [242], [243]. This is also true for OPTION, where we have concentrated on
organizing and representing knowledge and data. As far as we know, these semantic data
representations have not yet been tested for their effectiveness in analytical and predictive
studies.

While evolutionary optimisation methods have been used to improve knowledge
graphs [244]–[246], knowledge graphs have not yet been applied directly to evolutionary
optimisation algorithms. This gap presents a promising opportunity for future research to
explore how KGs can be integrated with evolutionary optimisation algorithms, potentially
unlocking new ways to solve complex optimisation problems.

While the RDF data model (used for the development of the OPTION KB) helps cre-
ate graph structures and is the most popular for semantic data management in academic
domains, it is complex and verbose, limiting the effectiveness of the use of graph-based anal-
ysis techniques. RDF often includes abstract entities for OWL axioms, implicit statements,
and complex N-ary relationships with provenance information, adding to its complexity.

Recognizing this, in this chapter, we propose a transition from an RDF-based OPTION
KB to a OPTION KG that is more accessible for applying graph-based algorithms. The
KG will provide a simpler and clearer view by focusing on entities and their connections,
making it easier to interact with the data and apply various graph algorithms. Each of
the entities in the KG will have a one-to-one mapping to OPTION ontology classes and
instances, ensuring that the semantic structure is preserved.

In this chapter, we propose a novel approach that leverages the OPTION ontology and
KGs for predicting algorithm performance. We will employ a custom KG view over our
OPTION KB to perform knowledge graph reasoning, with a focus on KG completion, one of
the most common reasoning tasks. Specifically, we will represent optimisation problems,
their descriptors, algorithms, and their configurations as nodes. By performing a link
prediction task using Knowledge Graph Embeddings (KGEs) [247], we aim to predict the
missing links between problem and algorithm nodes, which represent the performance the
algorithm achieves on a given problem.

KGEs are low-dimensional, feature-based representations of the entities and relation-
ships in a knowledge graph. They provide a generalizable context across the entire KG,
enabling tasks such as KG completion, triple classification, link prediction, and node clas-
sification [231]. This approach would enhance our ability to understand and utilize the
interconnected data within the KG.

7.2 Methodology and Experimental Setup

In this chapter, we investigate the use of KGEs to predict algorithm performance through
KGC. Our objective is to predict unseen performance relationships between problem in-
stances and algorithm configurations, determining whether an algorithm can achieve a
specified target precision for a given problem. This task can be formulated as a binary
classification problem.

7.2.1 Knowledge graph completion for automated algorithm performance
prediction

We perform the KGC task by predicting missing links, referred to as performance links,
between problem instances and algorithm configurations. Specifically, our task is to classify
whether an algorithm configuration will achieve a specified target precision for a given
problem instance. Although algorithm performance prediction is inherently a regression

110
Chapter 7. Predicting Algorithm Performance in Numerical Black Box Optimisation with

Knowledge Graph Reasoning

task, the symbolic nature of data in KGs necessitates converting this regression task into
a classification problem.

To achieve this, we set different target precision thresholds and predict whether the
algorithm has reached a solution quality that meets each threshold. The solution quality
is measured by the precision achieved by the algorithm, defined as the distance from the
optimum. This transformation allows us to work effectively within the symbolic data
framework of KGs.

We focus on modular frameworks as these frameworks provide a structured represen-
tation of algorithms suitable for KG modeling.

7.2.2 Construction of the knowledge graph

The primary node types in the KGs are problem instances and algorithm instances (see
Figure 7.1). We use the same benchmarking data as described in Chapter 6. This includes
the first five instances of each of the 24 noiseless BBOB problems [54] in dimensions D = 5
and D = 30, resulting in two problem sets (one for each dimension) with 120 problem
instances each. Each problem instance is characterized by high-level and low-level land-
scape features. The high-level features include five problem classes (i.e., separable, low
or moderate conditioning, high conditioning and uni-modal, multi-modal with adequate
global structure and multi-modal with weak global structure) introduced in the BBOB
test suite [54], which group benchmark problems with similar properties. The low-level
landscape features consist of 46 ELA metrics. For details on their calculation, refer to
Section 6.4.1. Each ELA feature is discretized into 10 bins to follow the symbolic repre-
sentation framework of KGs.

f3_i1

f3_i2

f1

f3_i3

f3_i4

f2

is-a

bin_3 bin_1 bin_6 bin_10

f3_i5BBOB
benchmark

problem

separable

low or moderate
conditioning

high conditioning
and unimodal

multi modal with
adequate global

structure

multi modal with
with global structure

f3

is-a

f4

is-a

f5

mod
CMA-ES

solved

solved

not-solved

solved

not-solved

conf_1

conf_2

...

is-a

true
ELA feature

is-a

...

kurtosis skewness diff
mean_05

diff
mean_02

mirrored
pairwise

conf_324

el
iti

st
m

irr
or

ed

sa
m

pl
in

g

sobol

ba
se

sa

m
pl

er

w
ei

gh
ts

default

lo
ca

l
re

st
ar

t

IPOP csa

st
ep

 s
iz

e
ad

ap
ta

tio
n

Figure 7.1: A snippet of a knowledge graph visualizing the representation of problem
instances, including their high-level and low-level feature representations, as well as the
algorithm instances linked to their respective configuration setups.

The algorithm instances are derived from two distinct modular algorithms, modCMA-
ES and modDE, which were investigated in the preceding chapters. Specifically, we utilize

7.2. Methodology and Experimental Setup 111

324 algorithm instances for modCMA-ES and 576 instances for modDE, representing di-
verse configurations and variants for analysis. Section 4.3.5.5 provides detailed information
on these configurations, which are available via the OPTION KB. In our KGs, each al-
gorithm instance is represented as a node and is connected to the different modules via
labeled links/edges. Performance data is also detailed in Section 4.3.5.5. As a performance
measure, we use the target precision achieved by the algorithm within a fixed budget (i.e.,
after a specified number of function evaluations), using the best precision achieved after
B = {2 000, 5 000, 10 000, 50 000} function evaluations.

Finally, problem instances and algorithm configurations are linked with either a solved
or not-solved edge, depending on the algorithm’s performance against three different tar-
get precision thresholds: T = {1, 0.1, 0.001} for the 5D benchmark problems and T =
{10, 1, 0.1} for the 30D benchmark problems. Specifically, if an algorithm instance achieves
a target precision equal to or lower than the specified threshold for a given problem instance,
we link the algorithm instance and the problem instance with a solved edge; otherwise, we
link them with a not-solved edge.

We create a separate KG for each combination of budget, target precision, problem
dimension, and algorithm family. With four budgets for function evaluations, three target
precisions, two problem dimensions, and two algorithm families, this results in a total of
48 KGs.

7.2.3 KG embedding-based pipeline for automated algorithm perfor-
mance prediction

Our knowledge graph G is represented as a collection of triples {(h, r, t)} ⊆ E×R×E, where
h, t ∈ E and r ∈ R are the entity and relation set. One of the tasks in KG completion is to
predict unseen relations r between two existing entities (h, ?, t). In this context, we focus
on the {(a, s, p)} ⊆ A× S × P triples, where a ∈ A ⊂ E and p ∈ P ⊂ E are the algorithm
and the problem instance sets, respectively, and S = {solved, not-solved} ⊂ R represents
the performance relation. The goal is to predict the unseen performance relations between
algorithm configurations and problem instances (a, ?, p).

Our proposed pipeline for predicting algorithm performance is illustrated in Figure 7.2.
It consists of two main parts: training the KG embeddings and using them in the inference
phase to predict the type of a missing performance links.

7.2.3.1 Training phase

For training the KG embeddings, we utilize the Ampligraph library [248]. During the
training phase, we initialize the KG embeddings with the Xavier initializer [249] and update
them over several epochs.

This process incorporates a ComplEx scoring function [12], a model-specific function
that assigns a score to each triple. ComplEx extends the DistMult [100] scoring function
into the complex space, allowing it to model asymmetric relations effectively. Since Com-
plEx embeddings belong to C, this model uses twice as many parameters as DistMult,
providing greater representational capacity. Scoring functions for knowledge graph embed-
dings measure how far away two entities are relative to the relation in the embedding space.
The primary goal is to maximize the scoring function for positive triples and minimize it
for negative ones.

ComplEx scoring function is based on the trilinear Hermitian dot product in C:

fComplEx = Re(⟨wr, eh, et⟩)

112
Chapter 7. Predicting Algorithm Performance in Numerical Black Box Optimisation with

Knowledge Graph Reasoning

Train KG

[-0.085,0.067,-0.050,0.123]

[0.088,-0.105,0.018,-0.064]

[-0.065,0.114,-0.115,0.003]

[-0.081,-0.136,-0.091,-0.062]

Learned
embeddings

...

Adam optimizer

Lo
ss

 L
ay

er

Em
be

dd
in

g
La

ye
r

Tr
ai

ni
ng

In
fe

re
nc

e solved

f3_i2conf_2

not-solved

f3_i2conf_2

ComplEx
score_1

ComplEx
score_2

pick the triplet
with the higher

score

conf_2

f3_i2

?

= 0.78

= 0.35 solved
f3_i2conf_2

Test KG

C
om

pl
Ex

sc

or
in

g
la

ye
r

Figure 7.2: An illustration of the methodology for training the KG embeddings and the
inference pipeline for automated algorithm performance prediction.

where wr, eh, and et are the complex embeddings of the relation, head, and the complex
conjugate of the tail, respectively. Re denotes the real part of the complex value, and ⟨·⟩
represents the Hermitian dot product, which allows the model to capture asymmetric
relationships.

This scoring function is then used on both positive and negative triples during the train-
ing process. To generate negative triples, we perform negative sampling on the knowledge
graph by corrupting either the head (h) or the tail (t) part of the triples. Specifically, for a
given positive triple (h, r, t) that is part of the KG, we create negative triples by replacing
the head h with a randomly selected entity h′ or the tail t with a randomly selected entity
t′, forming (h′, r, t) and (h, r, t′).

The training process aims to maximize the scores of positive triples and minimize the
scores of negative triples. This is achieved by optimising a loss function that incorporates
contributions from both positive and negative triples. To perform the optimisation, we
utilize the Adam optimiser [250].

7.2.3.2 Inference phase

During the inference phase, we predict missing performance relations for triples of the
form (a, ?, p). For each of these triples, we calculate the ComplEx model scores for both
(a, solved, p) and (a, not-solved, p) using the learned embeddings. The performance relation
with the higher ComplEx score is selected as the inferred relation. This approach allows
us to determine whether an algorithm configuration a solves a problem instance p based
on the highest scoring triple.

7.2.3.3 Evaluation

The evaluation of the embeddings on a validation and test set employs the same inference
methodology. For each (a, s, p) triple in the data set, where s is the true label (solved or not
solved), we calculate the ComplEx model score for both (a, solved, p) and (a, not-solved, p)
triples using the learned embeddings. By comparing these scores, we predict the perfor-
mance relation as the one with the highest score. This process is repeated for all triples in

7.3. Results and Discussion 113

the dataset. To assess the performance of our model in predicting the correct performance
relations, we compute standard classification performance metrics, such as the F1 score.

7.2.3.4 Hyper-parameter tuning

To find the best hyperparameters for training the KGEs, we used the grid search method-
ology, which performs an exhaustive search over the selected hyperparameters and their
corresponding search spaces. Three different hyperparameters were selected for tuning.

The first hyperparameter is k, the dimensionality of the embedding space, with val-
ues considered being 50, 100, 150, and 200. This parameter determines the size of the
embedding vectors for the entities and relations in the knowledge graph.

The second hyperparameter is the optimiser’s learning rate, with values considered
being 1 × 10−3 and 1 × 10−4. The learning rate controls the step size at each iteration
while moving toward a minimum of the loss function.

The third hyperparameter is the type of loss function used during training. We
evaluated three different loss functions: the pairwise margin-based loss, which aims to
maximize the margin between positive and negative triples; the negative log-likelihood
(NLL) loss, which minimizes the log-probability of incorrect triples, thus favoring correct
triples; and the self-adversarial sampling loss, improving robustness by focusing on hard
negatives.

The optimal set of hyperparameters is estimated using a separate validation set. Ini-
tially, the number of training epochs is set to 500, but an early stopping mechanism can be
activated to terminate training if 10 consecutive validation checks/epochs do not improve
performance. The F1 metric is used as a heuristic in the grid search step.

7.3 Results and Discussion

In this section, we present the experimental results from two different evaluation scenarios
based on the assignment of performance triplets to the training, validation, and test-
ing sets. The first scenario employs what we term leave-random-performance-triplets-out
validation 7.3.1, while the second scenario utilizes leave-problem/algorithm-instances-out
validation 7.3.2.

7.3.1 Leave-random-performance-triplets-out validation

For our first set of experiments, we perform automated algorithm performance prediction
using the method described in Section 6.3. Since we consider two problem dimensionalities,
four function evaluation budgets, and three target precision thresholds, we have a total of
24 different KGs for each of the two algorithms (modCMA-ES and modDE).

For each of the KGs, we split the performance triples in the ratio 60:20:20. That is,
60% of the triples are assigned to the training set, 20% to the validation set, and the
remaining 20% to the test set. We do this in a stratified fashion, keeping the distribution
of performance links as in the original KG. Since the split is based on a stratified sample
of the performance links, performance links related to a particular problem instance or
algorithm configuration can be split between the training/validation set and the test set.

This approach can be applied when the performance of algorithm instances is known
for the majority of problem instances in the selected problem portfolio but is unknown
for some. It is crucial that the problem and algorithm portfolios remain fixed, with all
problem and algorithm instances appearing in the training set due to the transductive
nature of the KGE methods we consider. Note that the training KG contains not only the
performance triples but also other types of entities and relations, such as high-level and

114
Chapter 7. Predicting Algorithm Performance in Numerical Black Box Optimisation with

Knowledge Graph Reasoning

Table 7.1: The percentage of ‘solved’ links for the modCMA-ES and modDE algorithms in
the KGs composed of a) 5D and b) 30D problems across the different budget and target
precision thresholds.

modCMA-ES modDE
2000 5000 10000 50000 2000 5000 10000 50000

1 62.9 68.2 71.3 78.9 27.7 42.2 58.1 81.4
0.1 46.8 54.1 57.1 63.7 13.2 23.3 33.1 62.8
0.001 36.9 47.8 50.7 55.9 9.4 14.4 21.7 56.2

(a) 5D problems

modCMA-ES modDE
2000 5000 10000 50000 2000 5000 10000 50000

10 35.1 46.2 49.9 68.1 13.0 21.6 29.1 46.1
1 10.7 16.0 21.0 40.9 1.6 4.4 8.0 17.5
0.1 6.1 08.8 12.5 31.5 1.2 3.2 6.2 12.7

(b) 30D problems

low-level landscape features and descriptions of algorithm instances in terms of modules
and their parameters. The validation and test sets, however, contain only the links/triples
of interest, specifically the ‘solved’ and ‘not-solved’ performance links.

The percentage of the ‘solved’ performance relations with respect to ‘not-solved’ ones for
the modCMA-ES and modDE KGs for the KG composite problem in 5 and 30 dimensions
are shown in Table 7.1. We can notice that in some of the scenarios, we are dealing with
imbalanced classification, especially in the case of 30D problems.

Table 7.2 presents the F1 scores of the performance classifier and the percentage im-
provement compared to the baseline across different budget and target precision thresholds
for both 5D and 30D problems. As a baseline, we used the classifier that predicts the major-
ity class (‘solved’/‘not-solved’ class). While the our classifier shows improved performance
in balanced classification scenarios, it suffers in cases of imbalanced classification.

The ComplEx link prediction model suffers from imbalanced classification as it does
not have enough examples of the minority class to learn effective representations. This
lack of sufficient minority class examples results in a performance drop, indicating that our
proposed pipeline requires adjustments to handle imbalanced data effectively.

7.3.2 Leave-problem/algorithm-instances-out validation

Our second set of experiments evaluates a scenario where there is no performance data for
a given problem or algorithm instance. To assess the performance of our classifier in this
setup, we investigate two evaluation scenarios:

• Leave-problem-instances-out validation: In this scenario, we use all perfor-
mance triples of one problem instance from each of the 24 BBOB problems for test-
ing, select the performance triples from another problem instance for validation, and
use the remaining three for training. For example, we use the first three instances
of each of the 24 BBOB problems for training, the fourth instance for validation,
and the fifth instance for testing. We repeat this five times so that each of the five
instances appears once in the test set.

7.3. Results and Discussion 115

Table 7.2: The F1 score and the percentage of improvement compared to the baseline of the
modCMA-ES and modDE algorithm performance classifier obtained using the ComplEx
scoring model for the KGs composed of 5D and 30D problems across the different budget
and target precision thresholds.

2000 5000 10000 50000
1 0.922/19.43% 0.942/16.15% 0.944/13.33% 0.953/8.05%
0.1 0.905/30.22% 0.933/32.91% 0.937/29.06% 0.942/21.08%
0.001 0.893/15.37% 0.944/37.61% 0.944/40.48% 0.946/31.75%

(a) 5D problems - modCMA-ES

2000 5000 10000 50000
1 0.848/1.07% 0.876/19.67% 0.901/22.59% 0.946/5.46%
0.1 0.788/-15.18% 0.82/-5.53% 0.858/6.98% 0.922/19.43%
0.001 0.831/-12.62% 0.745/-19.20% 0.803/-8.65% 0.919/27.64%

(b) 5D problems - modDE

2000 5000 10000 50000
10 0.937/19.06% 0.927/32.62% 0.939/40.78% 0.953/17.51%
1 0.902/-4.45% 0.808/-11.50% 0.855/-3.17% 0.929/25.03%
0.1 0.935/-3.41% 0.89/-6.71% 0.852/-8.68% 0.921/13.28%

(c) 30D problems - modCMA-ES

2000 5000 10000 50000
10 0.9/-3.23% 0.931/5.92% 0.947/14.10% 0.948/35.24%
1 0.504/-49.19% 0.792/-19.02% 0.846/-11.69% 0.87/-3.76%
0.1 0.695/-30.08% 0.735/-25.30% 0.835/-13.74%% 0.885/-5.04%

(d) 30D problems - modDE

• Leave-algorithm-instances out validation: In this scenario, the algorithm in-
stances are split with a 60:20:20 ratio and their performance triples are selected for
training, validation, and testing, respectively. In order to assess the robustness of
the results, we repeat this procedure five times independently.

We have applied these evaluation scenarios to the KGs comprised of 5D benchmark
problems and modCMA-ES algorithm instances across four different budgets with a target
precision threshold of 0.1. The F1 scores of the classifier (averaged over five runs), their
standard deviations, and the percentage of improvement are displayed in Table 7.3. Similar
to Section 7.3.1, our approach shows improvement compared to the baseline in cases of
balanced classification.

Table 7.4 presents the evaluation results for the modDE performance classifier, where
similar patterns can be observed. We observe that the performance of the KG triple
classifier drops compared to the predictive performance achieved in the leave-random-
performance-triplets-out validation experiments. This drop in performance is expected, as
no performance links of the problem/algorithm instances that are in the test set appear in
the training and validation sets. In the first set of experiments (a classical scenario for KG
completion), we randomly removed performance triples without considering which problem
instances or algorithm instances they are associated with. Thus, performance triples for

116
Chapter 7. Predicting Algorithm Performance in Numerical Black Box Optimisation with

Knowledge Graph Reasoning

Table 7.3: The F1 score and the percentage of improvement compared to the baseline of the
modCMA-ES algorithm performance triple classifier for the KGs where all performance
links are removed for a subset of problems and algorithm configurations composed of 5D
problems across the different budgets and a target precision threshold of 0.1.

Leave-problems-out Leave-algorithms-out
2000 0.728 (0.006)/4.90 0.893 (0.009)/28.67
5000 0.761 (0.018)/8.40 0.915 (0.011)/30.34

10000 0.766(0.008)/5.36 0.91 (0.011)/25.17
50000 0.797(0.014)/2.44 0.913 (0.002)/17.35

Table 7.4: The F1 score and the percentage of improvement compared to the baseline of
the modDE algorithm performance triple classifier for the KGs where all performance
links are removed for a subset of problems and algorithm configurations composed of 5D
problems across the different budgets and a target precision threshold of 0.1.

Leave-problems-out Leave-algorithms-out
2000 0.854(0.061)/-8.07% 0.79(0.035)/-14.96%
5000 0.837(0.022)/-3.57% 0.85(0.021)/-2.07%

10000 0.796(0.024)/-0.75% 0.825(0.010)/2.87%
50000 0.83(0.010)/7.51% 0.822(0.013)/6.48%

a given problem instance or algorithm instance can appear in both the training and test
sets, which is an easier problem to learn.

7.3.3 Addressing the problem of imbalanced classification

To address the issue of imbalanced classification, we modify the pipeline described in
Section 7.2.3. Specifically, after the KG training phase, we add an additional step where
we train a Random Forest (RF) classifier based on the learned embeddings. Our data
instances are the performance triples. To generate the data for the RF classifier, we
represent each (a, s, p) triple as a concatenation of the embedding vectors of the a and
p entities. During inference, we use the RF classifier instead of directly using ComplEx
scores. A similar approach was used by Celebi et al. [251], which used KGEs for drug-
drug interaction prediction and represents. To represent feature vector of a drug pair,
they concatenated embedding vectors of each drug in the pair and used classifiers such as
Logistic Regression, Naive Bayes and Random Forest.

We evaluate this approach using the most imbalanced scenario from the experiments in
Section 7.3.1, specifically the setup where we predict modDE performance on 30D problem
instances with a target precision threshold of 0.1. We train the RF classifier with default
hyperparameters, implemented in the scikit-learn library [185]. In Table 7.5, we compare
the F1 scores of the classifiers trained using the pipeline presented in Section 7.2.3 with
the scores of the RF classifiers described in this section. The results show that training an
RF classifier on the learned embeddings improves performance in terms of the F1 score.

Since we are dealing with imbalanced classification, the choice of the evaluation measure
is essential. In Table 7.6, we additionally report the AUC-ROC, average precision, and
geometric mean scores. These metrics confirm that the embedding-based RF classifier
improves the performance prediction method.

We believe that the results improve because there might be separability in the em-

7.4. Summary 117

Table 7.5: Comparison of the two proposed pipelines for modDE performance prediction
on the 30D problem instances with a target precision of 0.1. Results are reported in
the format: F1-score of the classifier/F1-score of the baseline/Percentage of improvement
compared to the baseline.

KG - ComplEx scoring RF classifier
2000 0.695/0.994/-30.08% 0.999/0.994/0.52%
5000 0.735/0.984/-25.30% 0.998/0.984/1.43%
10000 0.835/0.968/-13.74% 0.996/0.968/2.91%
50000 0.885/0.932/-5.04% 0.991/0.932/6.27%

Table 7.6: Performance of the RF classifier for modDE performance prediction on the
30D problem instances with a target precision of 0.1. Results are reported in the format:
Performance of the classifier/Performance of the baseline.

AUC ROC Average precision G-mean
2000 0.994/0.5 0.962/0.012 0.963/0.0
5000 0.998/0.5 0.975/0.032 0.962/0.0
10000 0.998/0.5 0.977/0.062 0.954/0.0
50000 0.987/0.5 0.964/0.127 0.947/0.0

beddings space that the RF models manage to capture when predicting the algorithm’s
performance. When you concatenate the embeddings of the problem and algorithm in-
stances and train a Random Forest (RF) classifier, you leverage the strengths of both the
embeddings and the RF algorithm. The RF classifier might be using the embeddings more
effectively by focusing on the discriminative features that separate the ‘solved’ and ‘not
solved’ classes, thus achieving better performance even in an imbalanced setting. However,
this assumption requires further investigation.

7.4 Summary

In this chapter, we have investigated the predictive power of formal semantic represen-
tations for automated prediction of algorithm performance in black-box optimisation.
Specifically, we evaluated the feasibility of using KGs to predict the performance of the
modCMA-ES and modDE optimisation algorithms on the noiseless BBOB functions. Our
goal was to determine whether we could train KG embeddings to predict performance
links/triplets (solved or not-solved links) in the KG between algorithm configurations and
problem instances with a given target precision in a fixed-budget scenario. The KGs com-
bine problem landscape and algorithm performance data with data related to the modular
algorithm configuration.

The results indicate that our proposed classifier outperforms the baseline in balanced
classification scenarios when performance triples are randomly selected for the test set (a
classic KG completion scenario). However, in imbalanced classification scenarios, the clas-
sifier’s performance decreases and falls below the baseline. In a more rigorous evaluation
scenario, where we predict all performance links for problem instances and algorithm con-
figurations that appear exclusively in the test set, we observed similar patterns. To address
the performance drop in imbalanced classification, we modified the proposed pipeline and
trained a Random Forest classifier on top of the learned embeddings, which improved the
classifiers performance.

118
Chapter 7. Predicting Algorithm Performance in Numerical Black Box Optimisation with

Knowledge Graph Reasoning

Our pipeline assumes a transductive learning setting, which limits its applicability to
unseen problems or algorithms that do not appear in the training graph. This limita-
tion arises because transductive learning relies on the specific instances observed during
training, meaning it cannot generalize to entirely new instances outside the training set.
Consequently, while our approach is effective for predicting performance within the scope
of the known graph structure, it cannot be directly applied to novel problems or algorithm
configurations. To overcome this limitation, an inductive learning approach, particularly
one that can handle regression tasks within a graph-based framework, is needed.

119

Chapter 8

Graph Neural Networks for
Predicting Algorithm Performance in
Numerical Black Box Optimisation

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning from rela-
tional data, effectively capturing the complex relationships between entities in the data.
The BBO benchmarking data explored in this dissertation is most naturally represented
using a relational structure, reflecting the intricate connections between algorithms, their
parameters, and problem characteristics. Given the inherently relational nature of this
data, GNNs offer a promising framework to explore for meta-learning tasks, such as algo-
rithm performance prediction.

This chapter builds upon the work presented in Chapter 7, where a transductive learn-
ing setup and scoring-based knowledge graph reasoning were used for algorithm perfor-
mance prediction. Here, we shift focus to exploring the potential of GNNs in an inductive
setup, aiming to predict performance for problems not encountered during training. Ad-
ditionally, instead of treating the task as a binary classification—predicting whether an
algorithm reaches a specified performance precision within a given budget of function eval-
uations—we focus on predicting the exact performance value at that budget.

This chapter begins by defining the problem (Section 8.1), highlighting the limitations
of transductive approaches and the advantages of GNNs for analyzing relational data. We
then present the methodology (Section 8.2), detailing the heterogeneous graph representa-
tion of the BBO benchmarking data, the architecture of the heterogeneous GNN models,
and the training process. This is followed by a comprehensive description of the experimen-
tal setup (Section 8.3). Next, the results and discussion section (Section 8.4) compares the
proposed GNN-based approaches to baseline methods and evaluates model explainability
using GNNExplainer to reveal key structural patterns that influence predictions. Finally,
the chapter concludes with a summary of findings and insights (Section 8.5).

All data and code related to this chapter are publicly available on GitHub at: https:
//github.com/KostovskaAna/GNN4PerformancePrediction.

8.1 Problem Definition and Related Work

In the previous chapter, we addressed the task of performance prediction for modular
optimisation algorithms within a discretized framework. In this context, “discretized”
means that the entire knowledge graph was treated as a discrete structure, and the task
at hand was framed as a binary classification problem. Specifically, the focus was on

https://github.com/KostovskaAna/GNN4PerformancePrediction
https://github.com/KostovskaAna/GNN4PerformancePrediction

120 Chapter 8. Graph Neural Networks for Algorithm Performance Prediction

determining whether a given algorithm could solve a problem within a specified precision
threshold using a fixed number of function evaluations. This was achieved using classical
knowledge graph embedding (KGE) methods, such as the scoring-based ComplEx model.
These methods treat the knowledge graph in a classical manner, assuming no additional
node features exist and relying solely on relationships between entities. The resulting
embeddings were inherently transductive, limiting generalization to only those nodes that
appeared during training.

However, in real-world scenarios, it is often necessary to predict algorithm performance
on previously unseen problems. This requires an inductive approach that generalizes be-
yond the training data to new nodes. To address this, we explore the use of Graph Neu-
ral Networks (GNNs), specifically message-passing architectures. Unlike traditional KGE
methods, GNNs are capable of learning functions that generate node representations dy-
namically based on the graph structure and node features. This enables GNNs to generalize
to unseen nodes, making them a suitable choice for inductive tasks [252].

While GNNs have not yet been explored for predicting the performance of modular op-
timisation algorithms (to the best of our knowledge), they have been successfully applied to
performance prediction tasks in other domains. For instance, GNNs have been used to pre-
dict the performance of neural network architectures by representing them as computation
graphs. Lukasik et al. [253] proposed a surrogate model leveraging GNNs to predict the
performance of unseen neural architectures, showcasing its effectiveness on the NAS-Bench-
101 dataset [254]. Similarly, Singh et al. [255] developed a GNN-based performance model
that represents deep neural networks (DNNs) as graphs, effectively capturing inter-stage
interactions and predicting runtime performance with greater accuracy than traditional
methods. Chai et al. [256] introduced PerfSAGE, a generalized inference performance pre-
dictor based on a Graph Neural Network (GNN). PerfSAGE predicts inference latency,
energy consumption, and memory footprint for arbitrary deep neural networks deployed
on edge devices.

In this chapter, we reformulate algorithm performance prediction as a node regression
problem, aiming to predict continuous performance metrics (i.e., algorithm precision) for
BBO problem instances. To accomplish this, we adapt the knowledge graph representa-
tion by incorporating node features, enabling GNNs to leverage both the relational and
feature-based information. For example, optimisation problem nodes are enriched with
ELA features as their node attributes, rather than representing these features as separate
nodes within the graph. It is important to emphasize that the graph structure, as in Chap-
ter 7, remains grounded in the ontology terms developed in Chapter 4, providing a robust
semantic foundation for the representation.

The primary objectives of this chapter are structured as follows:

• Evaluating the applicability of the knowledge graph formalism in an in-
ductive setup for algorithm performance prediction: This chapter investigates
whether knowledge graphs can be effectively utilized in an inductive learning con-
text, addressing the limitations of the transductive approach discussed in Chapter 7.
Additionally, we aim to determine if the proposed formalism can be adapted to pre-
dict exact performance values for algorithms, rather than being limited to binary
classification tasks that evaluate whether an algorithm meets a specified performance
threshold.

• Assessing the performance of different GNN architectures: We aim to com-
pare two widely used GNN methods, GraphSage [13] and GAT [14], to evaluate
their effectiveness in performance prediction and identify if there are any significant
differences in their predictive capabilities.

8.2. Methodology 121

• Comparing GNN-based methods to traditional approaches: Another objec-
tive is to compare the GNN-based approach to traditional machine learning models,
specifically the Random Forest regressors explored in Chapter 6, and to evaluate
whether GNNs can achieve superior predictive performance in this domain.

• Investigating the explainability of GNN models: As GNNs are often viewed
as black-box models, we aim to explore whether graph explainability techniques can
provide insights into their inner workings by identifying which relational informa-
tion and node features are most important for predictions. This objective seeks to
enhance the transparency and usability of GNN models in the context of algorithm
performance prediction.

8.2 Methodology

In this section, we outline the methodology used in our study. This includes the graph
representation of the BBO benchmarking data, the training process for heterogeneous
GNNs, and the GNN architecture design, which describes the general architecture of our
heterogeneous GNN models.

8.2.1 Graph representation

In this chapter, we represent the BBOB problems, modular optimisation algorithms, their
descriptors, and the corresponding algorithmic performance using a heterogeneous graph.

A heterogeneous graph (HG) [257] is defined as a graph G = {V, E ,R, T }, where V
represents the set of nodes, E represents the set of edges, R represents the set of relation
types, and T represents the set of node types. Each node v ∈ V is associated with a node
type through a mapping function T (v) : V → T , and each edge e ∈ E is associated with a
relation type through a mapping function R(e) : E → R. For the graph to be considered
heterogeneous, the sum of distinct node and relation types must be greater than two, i.e.,
|T |+ |R| > 2.

In addition to type mappings, each node v ∈ V is associated with a feature vector
xv ∈ Rd, where d denotes the dimensionality of the feature space. These node features
encode the properties of the nodes.

In Figure 8.1, we illustrate the meta-graph of the BBO heterogeneous graph that we
propose. The meta-graph serves as a meta-template that abstracts the graph structure
by representing node types as nodes and edge types as relationships between them. This
schema provides a higher-level view of the heterogeneous graph, summarizing the relation-
ships between different types of entities and their interactions.

Specifically, the meta-graph in Figure 8.1 illustrates the relationships between various
components. The nodes in the graph are categorized into distinct types, such as parameter,
parameter class, algorithm execution part, algorithm, performance, and BBOB problem,
reflecting the different entities involved in our framework. The directed edges between
these nodes represent specific relationships, such as has-parameter, has-parameter-class,
controls-algorithm-execution-part, has-algorithm, and has-problem.

For instance, the has-parameter edge links an algorithm to its corresponding parameter,
while the controls-algorithm-execution-part edge describes how a parameter class governs
specific aspects of an algorithm’s execution. Similarly, the has-algorithm edge connects
performance metrics to the algorithm responsible for producing those results, and the has-
problem edge indicates which BBOB problem is associated with a particular performance
outcome.

122 Chapter 8. Graph Neural Networks for Algorithm Performance Prediction

has-algorithm

has-parameter

algorithm
has-problem

performance BBOB
problem

parameter
has-parameter-class controls-algorithm

execution-part

parameter-
class

algorithm-
execution-

part

Figure 8.1: The meta-graph for the BBO heterogeneous graph. It consists of six node
types and five edge types, representing the relationships between different components.

In Figure 8.2, we illustrate a concrete instantiation of the meta-graph, providing a
snapshot of the corresponding heterogeneous graph. This example illustrates how a subset
of the graph is structured for the modCMA algorithm variants. The example includes two
connected BBOB problems, two algorithm variants connected to four performance nodes,
and the parameters associated with each algorithm variant. These parameters belong to
the local_restart, base_sampler, and elitism parameter classes. The local_restart and
base_sampler parameter classes influence the mutation part of the algorithm execution,
while elitism impacts the selection process. In this chapter, one graph is defined for each
unique combination of problem dimensionality, runtime budget, and modular algorithm,
resulting in a collection of distinct graphs for the different experimental setups.

8.2.2 Training heterogeneous GNNs

In Section 2.6.2, we have introduced the general concept of GNNs and their message-
passing mechanisms, which has initially been designed for homogeneous graphs. However,
our graph data is heterogeneous, thus introducing additional complexity due to the pres-
ence of multiple node and relation types. This added complexity must be addressed ap-
propriately when training a message-passing GNN, to ensure an effective learning of node
representations. To accommodate the heterogeneous structure of the BBO graph, we apply
an approach designed for computing relation-specific convolutions to each relation type in
the graphs.

In a heterogeneous graph G = {V, E ,R, T }, each relation type r ∈ R governs the
message passing between nodes of different types. Specifically, for a relation r ∈ R, where
source nodes belong to type T (u) = tu and destination nodes belong to type T (v) = tv,
the message from node u to node v at layer l is computed as:

m(l)
r,u→v = MESSAGE(l)

r

(
h(l−1)
u

)
, u ∈ Nr(v)

Here, Nr(v) represents the set of neighbors of node v connected via relation r, and
h
(l−1)
u is the hidden representation of the source node u from the previous layer. The

message function MESSAGE(l)
r is specific to a relation r and can vary depending on the

chosen GNN method. For example, MESSAGE(l)
r might be a simple linear transformation

of node features, or it could involve more sophisticated mechanisms, such as attention-
based methods, where the importance of neighboring nodes is dynamically adjusted based
on their features.

Once the messages are computed, the next step involves aggregation of these messages

8.2. Methodology 123

modCMA
conf1

has-problem

perf_f1_i2
modCMA_conf2

f1_i2

elitism_True

has-parameter-class

controls-algorithm
execution-part

elitism

selection

has-problem

perf_f1_i1
modCMA_conf1

f1_i1

has-parameter

modCMA
conf2

mutation

base
sampler

Halton
base_sampler

has-parameter-class

Gaussian
base_sampler

controls-algorithm
execution-part

local_restart

IPOP

has-parameter-class

BIPOP

has-algorithm

has-problem

perf_f1_i2
modCMA_conf1

has-algorithm

has-problem

perf_f1_i1
modCMA_conf1

has-parameter

Node Type:
algorithm-execution-part

Node Type:
parameter-class

Node Type:
parameter

Node Type:
algorithm

Node Type:
performance

Node Type:
BBOB problem

Figure 8.2: An illustration of an instantiation of the meta-graph, showing a snapshot of
the BBO heterogeneous graph defined for a specific combination of problem dimensionality,
runtime budget, and modular algorithm class.

124 Chapter 8. Graph Neural Networks for Algorithm Performance Prediction

per relation type. For each relation r, the messages passed from the neighbors of v are
aggregated into a single representation as follows:

h(l)
r,v = AGGREGATE_PER_RELATION(l)

r

(
{m(l)

r,u→v : u ∈ Nr(v)}
)

This aggregation function, AGGREGATE_PER_RELATION(l)
r , can vary depending

on the application. It may be instantiated as a simple mean, sum, max pooling function
or concatenation of the incoming messages, as well as a more complex function, such as
those found in attention mechanisms [14] or transformer architectures [258].

Finally, since each node v may participate in multiple relations, the representations
obtained from the per-relation aggregations are further aggregated across relations. This
cross-relation aggregation combines information from all relations that involve node v,
leading to the updated representation for v at layer l:

h(l)
v = AGGREGATE_CROSS_RELATION(l)

(
{h(l)

r,v : r ∈ R(Ev)}
)

where, R(Ev) is the set of all relations in which node v is involved. The cross-relation
aggregation function AGGREGATE_CROSS_RELATION(l) aggregates the results from
different relation-specific convolutions. This is done using a specified method, such as
summing or averaging the outputs from the various relation modules. The aggregation is
performed per destination node type, meaning that nodes of the same type can receive
updates from multiple relations, and these updates need to be combined. After the cross-
relation aggregation, the final hidden representation of node v is typically updated by
applying a non-linear transformation.

8.2.3 GNN architecture design

In this study, we implement the proposed framework for training heterogeneous GNNs, as
outlined earlier. The model architecture consists of multiple stacked GNN layers, where
each layer is tailored to the specific GNN algorithm employed. This is followed by aggre-
gation across relation types to capture the heterogeneity of the graph. This flexible design
enables experimentation with different GNN algorithms, such as GraphSAGE [13] and
GAT [14]. Relation-specific convolutions are first applied independently to each relation
type using the selected GNN algorithm. The resulting features are then aggregated across
all relations to form the final node representations. The overall architecture is depicted in
Figure 8.3.

Each GNN layer in the architecture performs message passing and relation-specific
aggregation, followed by a cross-relation aggregation step. Non-linearity is introduced
through an activation function, and dropout is applied after each convolutional block to
prevent overfitting.

The primary task in this study is node regression, where the objective is to predict
algorithm performance on various problem instances. Each performance node is associated
with a numerical score that reflects the performance of a particular algorithm on a specific
BBOB problem instance. The model learns to predict these scores by leveraging the
relationships captured in the heterogeneous graph and learning node embeddings. The
output from the GNN layers is passed through a fully connected linear layer to predict the
performance score (ŷ) for the performance nodes.

Note that, such trained model is capable of generalizing across different algorithm vari-
ants, predicting the performance of all modular algorithm variants for a given runtime
budget and problem dimensionality. Also, although the input graph shown in Figure 8.2
is directed, with edges representing the flow of information from one node type to an-
other (e.g., from algorithm to performance or from parameter class to algorithm execution

8.3. Experimental Setup 125

INPUT

H
et

er
oC

on
v

+
G

N
N

C
on

v

activation
function

D
ro

po
ut

GNN layer

Li
ne

ar
 T

ra
ns

fo
rm

at
io

n

ŷ

Performance
prediction layer

...

Figure 8.3: An overview of the general GNN architecture for predicting algorithm perfor-
mance using heterogeneous graphs.

part), we incorporate reverse edges during message passing. This modification effectively
transforms the graph into an undirected structure, allowing bidirectional information flow
between connected nodes and enhancing the representation learning process.

8.3 Experimental Setup

We use the Deep Graph Library (DGL) [259] to implement Graph Neural Networks (GNNs)
for modular optimisation algorithm performance prediction. Specifically, we employ the
HeteroConv layer for cross-relation aggregation, alongside the SageConv and GATConv lay-
ers, which implement the GraphSAGE and GAT algorithms, respectively. For a compre-
hensive explanation of these algorithms, we direct readers to the works of Hamilton et
al. [13] for GraphSAGE and Veličković et al. [14] for GAT.

Within each relation, message aggregation is performed using the mean function, while
aggregation across different relations is carried out using summation. The feature vectors
for the BBOB problem nodes are based on 46 Exploratory Landscape Analysis (ELA)
features, as introduced in Chapter 4. In contrast, the feature vectors for the remaining
nodes are initialized randomly using the Kaiming uniform distribution [260]. After each
GNN layer, we apply the GELU activation function [261] to introduce non-linearity.

We use a 4-hop neighborhood during learning to ensure that all relational information
about the algorithms, which are located up to four hops away from the performance nodes,
is effectively incorporated.

Additionally, a nested cross-validation scheme is used to tune the dropout rate (0.1,
0.2, 0.3) and the dimensionality of the learned embeddings (32, 64, 128). For the GAT
models, an additional parameter, the number of attention heads (4, 8), is also tuned.
All experiments are repeated 10 times to account for randomness in initialization and to
provide more reliable results. The model is trained using the L1 loss function, defined as:

126 Chapter 8. Graph Neural Networks for Algorithm Performance Prediction

L1Loss =
1

N

N∑
i=1

|yi − ŷi|

where N is the number of performance nodes. The model performance is evaluated
using two metrics: R2 and mean squared error (MSE).

To ensure robustness, we employ a leave-instance-out nested cross-validation procedure,
as outlined in Chapter 6. The experimental setup in this case remains the same as in
Chapter 6. To summarize, we have 324 variants of the modCMA algorithm, 567 variants
of modDE, 6 runtime budgets, 2 problem dimensionalities, and the first five instances of
the 24 BBOB problems. Each combination of these parameters defines a distinct learning
task, with an associated graph.

The model is optimised using the Adam optimiser [250], and a ReduceLROnPlateau
scheduler is employed. We start with an initial learning rate of 0.1, which is reduced by a
factor of 0.5 every 20 epochs if the validation performance plateaus. The model is trained
for a total of 200 epochs.

8.4 Results and Discussion

Building on the methodology and experimental setup outlined above, we conducted com-
putational experiments to predict the performance of modular algorithms. The results of
the predictive models evaluation are presented in Table 8.1 and Table 8.2, which show the
R2 scores and MSE scores, respectively. Each table provides results for two problem di-
mensionalities and six evaluation budgets, comparing the performance of GraphSAGE and
GAT. Additionally, we include the results of RF regression models presented in Chapter 6
as a baseline for comparison with the GNN models.

Table 8.1: The R2 scores of the GraphSage, GAT and RF regression models for pre-
dicting the performance of CMA-ES and DE algorithm variants for the BBOB prob-
lem instances in 5 and 30 dimensions where the target precision is measured at B ∈
{50D, 100D, 300D, 500D, 1000D, 1500D} function evaluations.

Budget CMA-ES - 5D CMA-ES - 30D
GraphSage GAT RF GraphSage GAT RF

50D 0.80 0.77 0.76 0.94 0.93 0.94
100D 0.78 0.73 0.77 0.94 0.93 0.92
300D 0.61 0.58 0.61 0.88 0.84 0.85
500D 0.70 0.65 0.70 0.88 0.84 0.83
1000D 0.73 0.69 0.73 0.87 0.81 0.81
1500D 0.71 0.67 0.73 0.89 0.84 0.84

DE - 5D DE - 30D
GraphSage GAT RF GraphSage GAT RF

50D 0.90 0.86 0.88 0.96 0.92 0.94
100D 0.91 0.88 0.88 0.96 0.94 0.94
300D 0.90 0.85 0.86 0.95 0.92 0.94
500D 0.86 0.83 0.84 0.95 0.93 0.94
1000D 0.75 0.74 0.78 0.94 0.90 0.92
1500D 0.76 0.71 0.78 0.93 0.90 0.92

In both cases (R2 and MSE), GraphSAGE generally outperforms the RF models across
dimensionalities and budgets. Interestingly, GAT exhibits lower performance compared to
both GraphSAGE and RF. This suggests that the choice of GNN architecture significantly
influences the performance of predictive models. While GATs are generally considered

8.4. Results and Discussion 127

Table 8.2: The MSE scores of the GraphSage, GAT and RF regression models for pre-
dicting the performance of CMA-ES and DE algorithm variants for the BBOB prob-
lem instances in 5 and 30 dimensions where the target precision is measured at B ∈
{50D, 100D, 300D, 500D, 1000D, 1500D} function evaluations.

Budget CMA-ES - 5D CMA-ES - 30D
GraphSage GAT RF GraphSage GAT RF

50D 0.75 0.95 0.78 0.15 0.19 0.15
100D 1.16 1.41 1.22 0.19 0.25 0.27
300D 3.68 3.94 3.98 0.75 0.99 1.03
500D 4.39 5.13 4.85 0.85 1.12 1.27
1000D 4.38 4.99 5.22 1.09 1.63 1.72
1500D 4.57 5.34 5.19 1.34 2.07 1.88

DE - 5D DE - 30D
GraphSage GAT RF GraphSage GAT RF

50D 0.36 0.50 0.37 0.21 0.31 0.26
100D 0.39 0.51 0.43 0.19 0.29 0.25
300D 0.62 0.92 0.81 0.27 0.44 0.30
500D 1.00 1.21 1.04 0.32 0.47 0.38
1000D 2.08 2.16 1.95 0.49 0.81 0.54
1500D 2.26 2.56 2.34 0.58 0.85 0.63

more expressive due to their attention mechanism, this additional complexity appears to
lead to overfitting and reduced generalizability on the test set.

Although GraphSAGE achieves slightly better performance than RF, the improvement
is not substantial. For instance, in the best case for R2 scores (predicting CMA-ES on 30D
problems with a 1000D budget), GraphSAGE improves from 0.81 to 0.87, representing a
relative improvement of approximately 7.41%. This improvement highlights that while
GNN models can offer advantages, their benefits may depend on the specific evaluation
settings.

8.4.1 The impact of the GNN receptive field

The results presented above are based on architectures composed of 4 GNN layers, allowing
the model to aggregate information from nodes up to 4 hops away from the performance
nodes. We chose 4 layers to ensure all relational data is incorporated. However, in this
section, we investigate the influence of the number of GNN layers on the final results.
Using the same experimental setup, we vary the number of layers from 1 to 4, focusing on
GraphSAGE models due to their superior performance compared to GAT.

When employing an architecture with one GNN layer, the model can only aggregate
information from nodes directly connected to a performance node (i.e., 1-hop neighbors).
In our case, this includes the BBOB problem and the algorithm associated with the perfor-
mance node, along with the ELA features of the problem as node features. Consequently,
the model cannot leverage information about the algorithm configuration and its parame-
ters.

As the number of layers increases, the receptive field of the GNN model expands. With
2 GNN layers, the model gains access to information about the algorithm parameters and
due to the addition of the reverse edges it can access the performance nodes connected with
the same problem instance. With 3 GNN layers, among other information, it incorporates
information about the parameter classes to which these parameters belong. With 4 GNN
layers, the model additionally learns from information about the parts of the algorithm
execution controlled by each parameter class.

Figures 8.4 and 8.5 illustrate the R2 performance of the GraphSAGE models with

128 Chapter 8. Graph Neural Networks for Algorithm Performance Prediction

varying numbers of layers (from 1 to 4), across different performance dimensionalities and
budgets, for CMA-ES and DE, respectively.

0.4

0.6

0.8

1.0

R²

D=5, Budget=50D D=5, Budget=100D D=5, Budget=300D D=5, Budget=500D D=5, Budget=1000D D=5, Budget=1500D

1 2 3 4
n_layers

0.4

0.6

0.8

1.0

R²

D=30, Budget=50D

1 2 3 4
n_layers

D=30, Budget=100D

1 2 3 4
n_layers

D=30, Budget=300D

1 2 3 4
n_layers

D=30, Budget=500D

1 2 3 4
n_layers

D=30, Budget=1000D

1 2 3 4
n_layers

D=30, Budget=1500D

Figure 8.4: R2 performance of GraphSAGE models with 1 to 4 layers for CMA-ES across
different dimensionalities and budgets.

0.4

0.6

0.8

1.0

R²

D=5, Budget=50D D=5, Budget=100D D=5, Budget=300D D=5, Budget=500D D=5, Budget=1000D D=5, Budget=1500D

1 2 3 4
n_layers

0.4

0.6

0.8

1.0

R²

D=30, Budget=50D

1 2 3 4
n_layers

D=30, Budget=100D

1 2 3 4
n_layers

D=30, Budget=300D

1 2 3 4
n_layers

D=30, Budget=500D

1 2 3 4
n_layers

D=30, Budget=1000D

1 2 3 4
n_layers

D=30, Budget=1500D

Figure 8.5: R2 performance of GraphSAGE models with 1 to 4 layers for DE across different
dimensionalities and budgets.

We observe that increasing the number of GNN layers generally improves R2 predictive
performance, indicating that the model effectively utilizes relational information as its re-
ceptive field expands. Notably, the most significant performance improvement occurs when
increasing the number of layers from 1 to 2. This can be attributed to the incorporation
of algorithm parameter information at the 2-hop neighborhood, which provides critical
insights about the algorithms. In contrast, the smallest improvement is observed when
increasing the number of layers from 3 to 4. This can be explained by the fact that the
information about the part of the algorithm execution controlled by specific parameters
has minimal impact on R2 performance.

8.4. Results and Discussion 129

8.4.2 Explaining GNN predictions

Explainability in GNNs is essential for interpreting the model’s decision-making process,
particularly in complex applications such as predicting algorithm performance in numerical
black-box optimisation. By understanding which parts of the graph structure and which
node features drive the model’s predictions, we gain valuable insights into the relation-
ships captured by the GNN. For heterogeneous GNNs, explainability becomes even more
important, as it allows us to analyze the contributions of different node and relation types,
clarifying how diverse entities and interactions affect the predictions.

In this study, we use the GNNExplainer algorithm, originally proposed in GNNEx-
plainer: Generating Explanations for Graph Neural Networks [15], and adapted for het-
erogeneous graphs. GNNExplainer identifies small, important parts of the graph structure
and specific features of nodes that contribute most to the GNN model’s predictions.

To create these explanations, the explainer model learns edge masks M and feature
masks F , optimising the following objective:

l(y, ŷ) +
∑
r∈R

(α1,r∥Mr∥1 + α2,rH(Mr)) +
∑
t∈T

(β1,t∥Ft∥1 + β2,tH(Ft))

where l(y, ŷ) measures the loss between the original prediction y and the masked pre-
diction ŷ, ensuring prediction quality. The terms α1,r∥Mr∥1 and β1,t∥Ft∥1 impose L1-norm
regularization on edge masks Mr and feature masks Ft, respectively, to enforce sparsity.
The entropy terms α2,rH(Mr) and β2,tH(Ft) reduce uncertainty in the masks, guiding
them to focus on the most relevant edges and features.

The explainer model generates explanations for each performance node individually.
This approach enables explainability at a local level, allowing us to analyze the model’s
behavior specific to each node. In this section, we demonstrate how this explainability
technique can be applied for local explanations. However, to achieve global explainabil-
ity, future work could focus on aggregating the edge and node feature masks across all
performance nodes. Such aggregation would capture general patterns and identifying key
relationships that consistently influence the model’s predictions.

To evaluate local explainability, we focus on interpreting the predictions made by a
GraphSAGE model for a randomly selected performance node, which predicts the perfor-
mance of a CMA-ES algorithm variant in the 5D problem setting with a 100D budget.
While this analysis highlights GraphSAGE, it is important to emphasize that GNNEx-
plainer is model-agnostic and can be applied to various GNN architectures.

We use the implementation with default hyperparameters, including the masking terms
α1 = 0.005, α2 = 1.0, β1 = 1.0, and β2 = 0.1, with mean squared error (MSE) as the loss
function.

We analyze the learned node feature mask for the problem nodes, which can be inter-
preted as the importance of the ELA features. Only the problem node features are assessed,
as the input features for other node types are randomly generated and, therefore, not mean-
ingful for interpretation. Figure 8.6 illustrates the top 15 most important ELA features
based on the learned node feature mask. The analysis of ELA feature importance highlights
that features such as lin_w_interact.adj_r2, diff_median_25, and ratio_median_25 are
among the most influential in predicting performance. This indicates that these features
capture critical characteristics of the problem landscape, providing insights for the model
predictions.

We also analyze the edge mask by calculating the mean values for each edge type. This
analysis provides insights into the relative importance of different edge types within the
graph. Figure 8.7 illustrates the importance of each edge type based on the averaged edge
mask values.

130 Chapter 8. Graph Neural Networks for Algorithm Performance Prediction

Figure 8.6: The top 15 most important ELA features for explaining the predictions of a
performance node.

Figure 8.7: Aggregated edge importance scores for the different edge types in the graph.

From the results, we observe that the hasalgorithm, hasproblem, and hasparameter
edge types exhibit lower importance compared to controls-algorithmexecutionpart and has-
parameterclass. This difference can be explained by the bidirectional nature of edges in
our graph. At a 4hop neighborhood from the central performance node, the graph includes
other algorithm nodes and problems that are not directly connected to the performance
node being predicted. Since we average the importance values across all instances of a
given edge type, the lower scores for these three edge types suggest that the influence of
other algorithms and problems in the graph is relatively small.

However, if we consider only the has-problem edge type associated with the immedi-
ate problem node connected to the performance node, its importance is high. When this
importance is averaged with contributions from other problem nodes in the local neighbor-
hood, the overall score becomes lower. This indicates that while the direct connections are
critical for predictions, the influence of more distant nodes diminishes, leading to reduced
aggregated importance for these edge types.

8.5. Summary 131

8.5 Summary

In this chapter, we investigated the use of GNNs for predicting modular optimisation algo-
rithm performance in numerical BBO. Addressing the limitations of transductive learning
approaches discussed in Chapter 7, we introduced an inductive learning framework us-
ing heterogeneous GNNs. This approach enables generalization to previously unseen BBO
problem instances, overcoming the constraints of traditional KGE methods that are limited
to entities and relationships observed during training. Furthermore, the transition from
binary classification to node regression allowed for the prediction of exact performance
values, providing a more detailed understanding of algorithm behavior.

The chapter demonstrated the applicability of KGs in an inductive setup by incorpo-
rating both node features and relational structures. This approach proved effective for
predicting the performance of modular algorithms across various experimental setups. By
comparing GraphSAGE and GAT architectures, we found that GraphSAGE consistently
outperformed GAT. This analysis highlighted the significance of selecting appropriate GNN
architectures for performance prediction tasks.

In addition, the performance of the GNN-based framework was compared to traditional
machine learning models, such as Random Forest regressors. While the GNN models offered
slight improvements in predictive performance scores, their ability to generalize to unseen
problem instances was a key advantage. This inductive capability in relational learning
scenarios makes GNNs a suitable choice for real-world applications where data extends
beyond the training set. The analysis of the GNN receptive field revealed that increasing
the number of layers improves the model’s ability to learn from broader relational contexts.

To address the inherent “black-box” nature of GNNs, we employed GNNExplainer to
analyze which parts of the graph structure and node features contributed most to the
model’s predictions. By focusing on local-level explainability, we demonstrated how the
technique provides insights into individual predictions. Future work could explore aggre-
gating these explanations across performance nodes to achieve global explainability.

In conclusion, this chapter showcased the potential of heterogeneous GNNs for lever-
aging relational and feature-based information to predict algorithm performance. The
findings lay the groundwork for future advancements in the utility of GNN-based methods,
paving the way for more effective frameworks for performance prediction in single-objective
numerical BBO.

133

Chapter 9

Conclusions

This chapter highlights the scientific contributions of this dissertation, discussing how the
the research questions were addressed and providing an outline of potential directions for
future work.

9.1 Research Outcomes and Scientific Impact

In this section, we revisit the research questions posed in the introduction of the dissertation
and summarize the key findings of the conducted research. Each question is addressed by
summarizing the main insights and contribution, and highlighting their broader impact on
the field.

R1. Can an MLC ontology-based semantic annotation scheme be designed and applied to
annotate MLC benchmarking data to enable easy data accessibility, improved query-
ing capabilities, increased reusability, and support for automated data integration
and domain knowledge sharing?

This research question is addressed in Chapter 3, where an MLC ontology-based
semantic annotation scheme was developed, representing a primary outcome of this
work. The scheme was applied to annotate MLC benchmarking data, resulting in
the creation of the MLCBench online catalog, which showcases the practical appli-
cation of the designed scheme. All annotated data is easily accessible via a SPARQL
endpoint, enabling users familiar with semantic technologies to perform diverse and
complex queries efficiently. Additionally, the data is accessible through the ML-
CBench graphical user interface, ensuring usability for a broader audience. The
semantic annotations make the data machine-readable, facilitating automated data
integration and promoting domain knowledge sharing.

R2. Can a BBO benchmarking ontology be designed and applied to annotate BBO bench-
marking data to enhance data accessibility, querying capabilities, reusability, and
enable automated data integration and domain knowledge sharing?

This research question is addressed in Chapter 4, where a novel ontology named OP-
TION was developed to formally represent the benchmarking domain of BBO. The
ontology was applied to annotate a substantial pool of benchmarking data originating
from multiple platforms, resulting in the creation of the OPTION knowledge base

134 Chapter 9. Conclusions

(KB). These platforms utilized distinct storage formats, demonstrating the versatil-
ity of the ontology in integrating diverse data sources. The annotated data is made
easily accessible via a REST API, facilitating seamless integration with external tools
and workflows. Specifically, this API is incorporated within the IOHprofiler environ-
ment, further showcasing the practical utility and efficient querying capabilities of the
OPTION KB. The semantic annotations produced using OPTION ensure machine-
readability, enabling increased reusability of the benchmarking data across diverse
applications. Finally, these annotations facilitate automated data integration and
promote domain knowledge sharing by providing a standardized and interoperable
representation of BBO benchmarking data.

R3. Does the development of a data-driven AAS pipeline for multi-label classification
(MLC) lead to better AS practices by leveraging dataset-specific characteristics, and
how does it compare to static approaches using a single algorithm across all datasets?

We addressed this research question in Chapter 5, where we developed and vali-
dated a data-driven automated algorithm selection pipeline for MLC. By leveraging
dataset-specific characteristics tailored to MLC datasets, we demonstrated that pre-
dictive models built using these features consistently outperform static approaches
relying on a single algorithm performing best on average. This result was confirmed
across multiple machine learning approaches and performance evaluation metrics.
The proposed pipeline has the potential to significantly improve algorithm selection
practices, enabling more efficient and tailored solutions for diverse real-world MLC
applications.

R4. Can a systematic empirical analysis of modular BBO algorithm behavior, combined
with algorithm and problem characterization, improve our understanding of the im-
pact of algorithm modules and problem landscape characteristics on algorithm per-
formance?

This question is studied in Chapter 6, where we developed an empirical pipeline
to systematically evaluate modular BBO frameworks, such as modCMA-ES and
modDE. By leveraging their modular structures, we analyzed the influence of individ-
ual modules on algorithm performance. Notably, the elitism module in modCMA-ES
and the linear population size reduction module in modDE demonstrated substantial
impacts on performance. Additionally, we leveraged problem landscape character-
istics to train regression models for performance prediction. This analysis revealed
consistent trends in the importance of specific landscape features across various con-
figurations. These findings confirm that our systematic evaluation approach en-
hances the understanding of how algorithm modules influence performance, while
demonstrating the predictive value of problem features for performance prediction.
Furthermore, this work provides insights for designing more effective modular BBO
algorithms, potentially enabling improved optimisation performance across diverse
problem landscapes.

R5. Are KGs as semantic data representations effective for predicting the performance of
modular BBO algorithms?

9.2. Final Conclusions and Future Work 135

This research question is explored in Chapters 7 and 8. In Chapter 7, we employ shal-
low scoring-based knowledge graph embedding models, such as ComplEx, in a trans-
ductive setup. These models predict whether modular algorithms like modCMA-ES
and modDE solve specific problems within fixed budgets and precision thresholds.
The results show that our approach surpasses baseline methods, particularly in bal-
anced classification scenarios. Chapter 8 extends this by demonstrating the predic-
tive power of Graph Neural Networks in an inductive setup. Together, these findings
highlight the predictive power and versatility of KGs across diverse performance pre-
diction tasks. This work underscores the potential of KGs as a foundational tool
for integrating and exploiting semantic data, paving the way for more robust perfor-
mance prediction frameworks in optimisation and algorithm selection.

9.2 Final Conclusions and Future Work

Benchmarking data is a cornerstone of empirical research in ML and BBO, offering critical
insights into algorithm behavior and performance trends. However, the true potential of
benchmarking data lies in its effective representation and exploitation. Accurate and con-
sistent representation ensures accessibility, interoperability, and reusability, while thought-
ful exploitation reveals meaningful patterns, predicts performance, and supports informed
decision-making in algorithm selection and design. Together, these aspects bridge the gap
between raw data and actionable knowledge, advancing the state of the art in both ML and
BBO. This dissertation demonstrates how formal semantic representation and innovative
methodologies for benchmarking data exploitation can advance the state of the art in ML
and BBO, paving the way for more robust, interpretable, and reliable research.

For the representation of benchmarking data, this dissertation has developed formal
semantic models, including the semantic annotation schema for MLC benchmarking data
and the OPTION ontology. These models are complemented by practical implementations:
MLCBench, a semantic catalog for exploring and accessing MLC benchmarking data, and
the OPTION Knowledge Base (KB), which enables access to BBO benchmarking data
from different benchmarking platforms. While these contributions represent a significant
progress in the representation of benchmarking data, several opportunities for future work
remain.

One promising direction is the expansion of MLCBench through community contri-
butions. Opening the knowledge base to inputs from the broader research community,
supported by a curation layer to maintain high data quality, could enrich the repository
and foster collaborative growth. Additionally, extending the schema to incorporate custom
evaluation scenarios and more detailed representations of MLC algorithms, such as their
hyperparameters, assumptions, constraints, and computational complexity, would further
enhance the catalog’s utility.

For the OPTION ontology, future efforts could focus on extending annotations to cover
benchmarking data from additional platforms actively used in the optimisation commu-
nity, such as DEAP (Distributed Evolutionary Algorithms in Python) [262] and Hyper-
Bench [263]. This expansion would strengthen the ontology’s role as a unified model for
connecting diverse data formats and enabling full interoperability.

Another exciting avenue to explore involves the use of Description Logic (DL) within
the OPTION ontology to classify algorithms and problems based on their characteristics.
For example, high-level problem landscape properties such as ruggedness, or multimodal-
ity could be encoded with DL rules, thus enabling automated classification of problems
using an ontology reasoner. Similarly, algorithms could be categorized based on their com-
ponents, operators, or performance characteristics. These rules would form the basis for

136 Chapter 9. Conclusions

a dynamic and adaptive algorithm taxonomy within the ontology. This approach would
also support the seamless addition of new algorithms and problems to the ontology. By
answering a set of predefined questions, such as specifying the high-level properties of a
problem or the components of an algorithm, users could integrate new entities into the
ontology without extensive manual intervention. The ontology reasoner would then apply
the DL rules to automatically classify the new entries, ensuring that the ontology grows
organically while maintaining consistency and coherence.

While we have developed ontology-based KBs, such as the MLCBench catalogue and
the OPTION KB, the primary value of this work lies in the creation of the semantic an-
notation schema for MLC benchmarking data and the OPTION ontology. Both the MLC
schema and the OPTION ontology establish a robust foundation for the formal semantic
representation of benchmarking data, empowering the creation of decentralized knowl-
edge bases. Researchers and developers are not constrained to contributing to centralized
repositories; instead, they can use the schema and ontology to independently build and
maintain their own KBs. Any KB developed using these standardized vocabularies will
seamlessly integrate with others adhering to the same approach, enabling data sharing and
interoperability across platforms and studies.

In situations where managing semantic triplestores of annotated data is not feasible,
semantic web technologies offer an alternative solution through ontology-based data access
(OBDA). OBDA facilitates the integration of heterogeneous data sources by mapping them
onto a unified, queryable format without the need to change the storage of data in a
semantic triplestore or a KB. Instead, existing databases, regardless of their structure
or format, can be aligned with semantic data models through the use of standardized
vocabularies that they provide. This approach ensures that the advantages of semantic
interoperability and consistency are preserved, even in contexts where traditional KBs are
not suitable.

Building on the foundation of benchmarking data representation, this dissertation has
focused on exploiting benchmarking data through data-driven methodologies for automated
algorithm selection, analysis of algorithm behavior, and performance prediction.

In the MLC domain, we have demonstrated the potential of benchmarking data to
enable data-driven decision-making in AAS. By assessing the predictive power of dataset
meta-features and leveraging machine learning models, we showcased how the unique char-
acteristics of MLC datasets can effectively guide the algorithm selection process. This
approach addresses the inherent variability in MLC datasets, where no single algorithm
consistently excels across all datasets. By tailoring algorithm selection to dataset-specific
attributes, it ensures more efficient and effective utilization of computational resources.

Future work can build on our findings and contributions to MLC AS following several
avenues. Expanding the diversity of MLC datasets in the AS pipeline would improve
the generalizability and robustness of the findings, enabling models to better capture the
variability in MLC tasks. Additionally, techniques for selecting representative dataset
portfolios, such as those described in by Eftimov et al. [264] and Cenikj et al. [265], could be
explored to mitigate bias by ensuring that AS models are not disproportionately influenced
by certain types of dataset distributions or landscapes. Furthermore, while Random Forests
proved effective in this study, future research could investigate alternative ML methods such
as deep neural networks [41], k-nearest neighbors [266], support vector machines [267], or
gradient boosting machines [268] to determine whether they offer improved performance
or novel insights.

In the BBO domain, leveraging benchmarking data about modular black-box optimisa-
tion algorithms, we developed methodologies to assess the influence of individual algorithm
modules on overall performance. This general framework provides a robust approach to

9.2. Final Conclusions and Future Work 137

understanding how specific components contribute to the behavior of modular optimisation
algorithms.

Future work could extend this methodology by applying it to other modular frameworks
beyond modCMA-ES and modDE, thereby exploring its generalizability and adaptability
across diverse optimisation paradigms. Additionally, a promising avenue for research in-
volves investigating the interplay and interactions between multiple algorithm modules.
Understanding how combinations of modules influence performance could uncover synergis-
tic configurations, enabling the design of more effective and efficient modular optimisation
algorithms.

Finally, this dissertation explores the use of KGs to represent benchmarking data. We
argue that KGs are a suitable representation for predictive modeling studies involving such
data. Unlike traditional feature-based tabular representations, KGs provide a structured
yet flexible framework that captures the rich semantics and relationships inherent in bench-
marking data, offering a refreshing perspective on the task. This novel approach lays the
groundwork for innovative methodologies that could significantly enhance the utility of
benchmarking data in ML and optimisation research.

So far, we have explored the predictive power of KGs primarily with modular opti-
misation algorithms. Extending this approach to other modular frameworks would be an
interesting direction for future research. However, applying it beyond modular frameworks
presents a more significant challenge. The methodology relies on representations for both
algorithms and problems. While problem representations are well-established, structured
and standardized representations for algorithms are often lacking.

To apply this approach effectively to non-modular algorithms, a formal and standard-
ized vocabulary is needed to represent algorithm operators, their hyperparameters, and
their interactions. Developing these representations is a complex and resource-intensive
task that requires consensus and collaboration across the research community. We hope
this work inspires efforts toward creating standardized, unified representations for black-
box algorithms, facilitating the broader application of this methodology to diverse black-
box optimisation algorithms and expanding its impact. Furthermore, the general nature
of this approach opens the door for its exploration in the domain of ML, where it could
provide valuable insights into algorithm selection and performance prediction.

Future research could build on this foundation by incorporating continuous learning
paradigms with Graph Neural Networks (GNNs) [101], enabling models to dynamically
adapt as new benchmarking data becomes available. This approach aligns well with the
iterative nature of empirical research, where new data and algorithms are continually
added to the ecosystem. Additionally, integrating the KG-based approach with foundation
models [269] could unlock new capabilities, allowing pretrained models to generalize across
domains and tasks using the rich relational structure of KGs as a grounding mechanism.

Using transfer learning also presents a promising avenue to follow, where learned rep-
resentations from one set of benchmarking studies could be applied to other domains or
tasks, enhancing both efficiency and performance in scenarios with limited labeled data.
Furthermore, the interplay of GNNs and transfer learning in KG representations [270] of-
fers a compelling strategy for building robust models that can effectively leverage diverse
datasets without extensive retraining.

139

References

[1] N. Sharma, R. Sharma, and N. Jindal, “Machine learning and deep learning appli-
cations - a vision,” Global Transitions Proceedings, vol. 2, no. 1, pp. 24–28, 2021,
1st International Conference on Advances in Information, Computing and Trends
in Data Engineering (AICDE - 2020), issn: 2666-285X. doi: https://doi.org/
10.1016/j.gltp.2021.01.004. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2666285X21000042.

[2] D. Molina, A. LaTorre, and F. Herrera, “An insight into bio-inspired and evolution-
ary algorithms for global optimization: Review, analysis, and lessons learnt over a
decade of competitions,” Cognitive Computation, vol. 10, pp. 517–544, 2018.

[3] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” Data Ware-
housing and Mining: Concepts, Methodologies, Tools, and Applications, pp. 64–74,
2008.

[4] J. Vanschoren, “Meta-learning,” Automated machine learning: methods, systems,
challenges, pp. 35–61, 2019.

[5] T. Bartz-Beielstein, C. Doerr, J. Bossek, et al., “Benchmarking in optimization: Best
practice and open issues,” CoRR, vol. abs/2007.03488, 2020. arXiv: 2007.03488.
[Online]. Available: https://arxiv.org/abs/2007.03488.

[6] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The FAIR guiding princi-
ples for scientific data management and stewardship,” Scientific Data, vol. 3, no. 1,
pp. 1–9, 2016.

[7] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated algorithm
selection: Survey and perspectives,” Evolutionary computation, vol. 27, no. 1, pp. 3–
45, 2019.

[8] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown, “Performance prediction
and automated tuning of randomized and parametric algorithms,” in Principles
and Practice of Constraint Programming - CP 2006, F. Benhamou, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 213–228, isbn: 978-3-540-46268-
2.

[9] J. M. Moyano, E. L. Gibaja, and S. Ventura, “MLDA: A tool for analyzing multi-
label datasets,” Knowledge-Based Systems, vol. 121, pp. 1–3, 2017.

[10] B. Smith, M. Ashburner, C. Rosse, et al., “The OBO Foundry: coordinated evolution
of ontologies to support biomedical data integration,” Nature biotechnology, vol. 25,
no. 11, pp. 1251–1255, 2007.

[11] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predic-
tions,” in Proc. of the 31st International Conference on Neural Information Process-
ing Systems, ser. NIPS’17, Long Beach, California, USA: Curran Associates Inc.,
2017, pp. 4768–4777, isbn: 9781510860964.

https://doi.org/https://doi.org/10.1016/j.gltp.2021.01.004
https://doi.org/https://doi.org/10.1016/j.gltp.2021.01.004
https://www.sciencedirect.com/science/article/pii/S2666285X21000042
https://www.sciencedirect.com/science/article/pii/S2666285X21000042
https://arxiv.org/abs/2007.03488
https://arxiv.org/abs/2007.03488

140 References

[12] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Complex embed-
dings for simple link prediction,” in International conference on machine learning,
PMLR, 2016, pp. 2071–2080.

[13] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” Advances in neural information processing systems, vol. 30, 2017.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer: Gen-
erating explanations for graph neural networks,” Advances in neural information
processing systems, vol. 32, 2019.

[16] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and D. Nardi, The
description logic handbook: Theory, implementation and applications. Cambridge
university press, 2003.

[17] H. Bronkhorst, G. Roorda, C. Suhre, and M. Goedhart, “Logical reasoning in formal
and everyday reasoning tasks,” International Journal of Science and Mathematics
Education, vol. 18, pp. 1673–1694, 2020.

[18] M. Morelli, M. Casagrande, and G. Forte, “Decision making: A theoretical review,”
Integrative Psychological and Behavioral Science, vol. 56, no. 3, pp. 609–629, 2022.

[19] T. Gruber, “Toward principles for the design of ontologies used for knowledge shar-
ing?” International journal of human-computer studies, vol. 43, no. 5-6, pp. 907–
928, 1995.

[20] O. Hartig, “Provenance information in the web of data,” in LDOW, 2009.

[21] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “HermiT: an OWL 2
reasoner,” Journal of Automated Reasoning, vol. 53, no. 3, pp. 245–269, 2014.

[22] D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: System descrip-
tion,” in International joint conference on automated reasoning, Seattle, USA: Springer,
2006, pp. 292–297.

[23] G. O. Consortium et al., “Creating the gene ontology resource: Design and imple-
mentation,” Genome research, vol. 11, no. 8, pp. 1425–1433, 2001.

[24] D. M. Dooley, E. J. Griffiths, G. S. Gosal, et al., “Foodon: A harmonized food
ontology to increase global food traceability, quality control and data integration,”
npj Science of Food, vol. 2, no. 1, pp. 1–10, 2018.

[25] P. L. Buttigieg, N. Morrison, B. Smith, C. J. Mungall, and S. E. Lewis, “The
environment ontology: Contextualising biological and biomedical entities,” Journal
of biomedical semantics, vol. 4, no. 1, pp. 1–9, 2013.

[26] P. Panov, L. Soldatova, and S. Džeroski, “Ontology of core data mining entities,”
Data Mining and Knowledge Discovery, vol. 28, no. 5, pp. 1222–1265, 2014.

[27] F. van Harmelen, “The Semantic Web: What, Why, How, and When,” IEEE Dis-
tributed Systems Online, vol. 5, no. 03, p. 4, Mar. 2004, issn: 1541-4922. doi:
10.1109/MDSO.2004.1285880.

[28] O. Erling, “Virtuoso, a Hybrid RDBMS/Graph Column Store.,” IEEE Data Eng.
Bull., vol. 35, no. 1, pp. 3–8, 2012.

[29] D. International, DAMA-DMBOK: Data management body of knowledge. Technics
Publications, LLC, 2017.

https://doi.org/10.1109/MDSO.2004.1285880

References 141

[30] D. Lis, J. Gelhaar, and B. Otto, “Data strategy and policies: The role of data
governance in data ecosystems,” in Data Governance: From the Fundamentals to
Real Cases, Springer, 2023, pp. 27–55.

[31] D. Lin, J. Crabtree, I. Dillo, et al., “The TRUST Principles for digital repositories,”
Scientific Data, vol. 7, no. 1, pp. 1–5, 2020.

[32] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[33] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “Tree ensembles for predicting struc-
tured outputs,” Pattern Recognition, vol. 46, no. 3, pp. 817–833, 2013.

[34] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, “An extensive experimental
comparison of methods for multi-label learning,” Pattern recognition, vol. 45, no. 9,
pp. 3084–3104, 2012.

[35] J. Levatić, D. Kocev, and S. Džeroski, “The importance of the label hierarchy in
hierarchical multi-label classification,” Journal of Intelligent Information Systems,
vol. 45, pp. 247–271, 2015.

[36] C. N. Silla and A. A. Freitas, “A survey of hierarchical classification across different
application domains,” Data mining and knowledge discovery, vol. 22, pp. 31–72,
2011.

[37] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,”
Computer Science Review, vol. 40, p. 100 379, 2021.

[38] S. B. Kotsiantis, “Decision trees: A recent overview,” Artificial Intelligence Review,
vol. 39, pp. 261–283, 2013.

[39] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[40] K. Gurney, An introduction to neural networks. CRC press, 2018.

[41] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, “Ex-
plaining deep neural networks and beyond: A review of methods and applications,”
Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[42] R. Olson, W. La Cava, P. Orzechowski, R. Urbanowicz, and J. Moore, “PMLB: a
large benchmark suite for machine learning evaluation and comparison,” BioData
mining, vol. 10, no. 1, p. 36, 2017.

[43] A. Rivolli, L. P. Garcia, C. Soares, J. Vanschoren, and A. C. de Carvalho, “Meta-
features for meta-learning,” Knowledge-Based Systems, vol. 240, p. 108 101, 2022.

[44] J. Bogatinovski, L. Todorovski, S. Džeroski, and D. Kocev, “Explaining the perfor-
mance of multilabel classification methods with data set properties,” International
Journal of Intelligent Systems, vol. 37, no. 9, pp. 6080–6122, 2022.

[45] P. Kerschke, H. Hoos, F. Neumann, and H. Trautmann, “Automated Algorithm
Selection: Survey and Perspectives,” en, Evolutionary Computation, vol. 27, no. 1,
pp. 3–45, Mar. 2019, issn: 1063-6560, 1530-9304. (visited on 12/11/2019).

[46] H. H. Hoos, “Automated algorithm configuration and parameter tuning,” in Au-
tonomous search, Springer, 2012, pp. 37–71.

[47] E. Chong, An introduction to optimization, 2013.

[48] S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, “Two decades
of blackbox optimization applications,” EURO Journal on Computational Optimiza-
tion, vol. 9, p. 100 011, 2021.

142 References

[49] X.-S. Yang, “Metaheuristic optimization: Algorithm analysis and open problems,”
in International symposium on experimental algorithms, Springer, 2011, pp. 21–32.

[50] O. Kramer, Genetic Algorithm Essentials (Studies in Computational Intelligence).
Springer, 2017, vol. 679, isbn: 978-3-319-52155-8. doi: 10.1007/978-3-319-52156-
5. [Online]. Available: https://doi.org/10.1007/978-3-319-52156-5.

[51] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of ICNN’95-
international conference on neural networks, IEEE, vol. 4, 1995, pp. 1942–1948. doi:
10.1109/ICNN.1995.488968.

[52] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE compu-
tational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[53] A. E. Eiben and M. Schoenauer, “Evolutionary computing,” Information Processing
Letters, vol. 82, no. 1, pp. 1–6, 2002.

[54] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-Parameter Black-Box Opti-
mization Benchmarking 2009: Noiseless Functions Definitions,” INRIA, Tech. Rep.
RR-6829, 2009. [Online]. Available: https://hal.inria.fr/inria-00362633/
document.

[55] D. Vermetten, F. Ye, T. Bäck, and C. Doerr, “MA-BBOB: Many-Affine Combina-
tions of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numer-
ical Black-Box Optimization Contexts,” in International Conference on Automated
Machine Learning, PMLR, 2023, pp. 7–1.

[56] J. Rapin and O. Teytaud, Nevergrad - A gradient-free optimization platform, https:
//GitHub.com/FacebookResearch/Nevergrad, 2018.

[57] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff, “COCO:
A platform for comparing continuous optimizers in a black-box setting,” Optimiza-
tion Methods and Software, vol. 36, pp. 114–144, 2020. doi: 10.1080/10556788.
2020.1808977. [Online]. Available: https://doi.org/10.1080/10556788.2020.
1808977.

[58] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph,
“Exploratory Landscape Analysis,” in Genetic and Evolutionary Computation Con-
ference (GECCO), ACM, 2011, pp. 829–836, isbn: 978-1-4503-0557-0. (visited on
03/14/2019).

[59] Q. Renau, C. Doerr, J. Dreo, and B. Doerr, “Exploratory landscape analysis is
strongly sensitive to the sampling strategy,” in Parallel Problem Solving from Nature–
PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands,
September 5-9, 2020, Proceedings, Part II 16, Springer, 2020, pp. 139–153.

[60] C. Song and R. Kawai, “Monte Carlo and variance reduction methods for structural
reliability analysis: A comprehensive review,” Probabilistic Engineering Mechanics,
vol. 73, p. 103 479, 2023.

[61] P. Kerschke and H. Trautmann, “Comprehensive feature-based landscape analysis
of continuous and constrained optimization problems using the R-package flacco,”
in Applications in Statistical Computing: From Music Data Analysis to Industrial
Quality Improvement, N. Bauer, K. Ickstadt, K. Lübke, G. Szepannek, H. Traut-
mann, and M. Vichi, Eds., Springer, 2019, pp. 93–123, isbn: 978-3-030-25146-8.

[62] R. P. Prager and H. Trautmann, “Pflacco: Feature-based landscape analysis of con-
tinuous and constrained optimization problems in python,” Evolutionary Computa-
tion, pp. 1–6, 2024.

https://doi.org/10.1007/978-3-319-52156-5
https://doi.org/10.1007/978-3-319-52156-5
https://doi.org/10.1007/978-3-319-52156-5
https://doi.org/10.1109/ICNN.1995.488968
https://hal.inria.fr/inria-00362633/document
https://hal.inria.fr/inria-00362633/document
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1080/10556788.2020.1808977

References 143

[63] Q. Renau, C. Doerr, J. Dréo, and B. Doerr, “Exploratory landscape analysis is
strongly sensitive to the sampling strategy,” in Proc. of Parallel Problem Solving
from Nature (PPSN), ser. LNCS, Data available at: https://doi.org/10.5281/
zenodo.3886816, vol. 12270, Springer, 2020, pp. 139–153. doi: 10.1007/978-3-
030-58115-2_10. [Online]. Available: https://doi.org/10.1007/978-3-030-
58115-2%5C_10.

[64] T. Eftimov, A. Jankovic, G. Popovski, C. Doerr, and P. Korošec, “Personalizing
performance regression models to black-box optimization problems,” in Proc. of
Genetic and Evolutionary Computation Conference (GECCO 2021), 2021.

[65] A. Jankovic, T. Eftimov, and C. Doerr, “Towards feature-based performance regres-
sion using trajectory data,” in Applications of Evolutionary Computation (EvoAp-
plications 2021), Springer, vol. 12694, 2021, pp. 601–617.

[66] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge, “Algorithm selection for
black-box continuous optimization problems: A survey on methods and challenges,”
Inf. Sci., vol. 317, pp. 224–245, 2015. doi: 10.1016/j.ins.2015.05.010.

[67] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer, “Per instance algorithm configu-
ration of CMA-ES with limited budget,” in Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO), ACM, 2017, pp. 681–688. doi: 10.1145/3071178.
3071343. [Online]. Available: https://doi.org/10.1145/3071178.3071343.

[68] G. Cenikj, A. Nikolikj, G. Petelin, N. van Stein, C. Doerr, and T. Eftimov, “A
survey of meta-features used for automated selection of algorithms for black-box
single-objective continuous optimization,” arXiv preprint arXiv:2406.06629, 2024.

[69] G. Petelin, G. Cenikj, and T. Eftimov, “TLA: Topological landscape analysis for
single-objective continuous optimization problem instances,” in 2022 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), IEEE, 2022, pp. 1698–1705.

[70] L. Wasserman, “Topological data analysis,” Annual Review of Statistics and Its
Application, vol. 5, no. 1, pp. 501–532, 2018.

[71] R. P. Prager, M. V. Seiler, H. Trautmann, and P. Kerschke, “Towards feature-free
automated algorithm selection for single-objective continuous black-box optimiza-
tion,” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE,
2021, pp. 1–8.

[72] M. V. Seiler, R. P. Prager, P. Kerschke, and H. Trautmann, “A collection of deep
learning-based feature-free approaches for characterizing single-objective continuous
fitness landscapes,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2022, pp. 657–665.

[73] G. Cenikj, G. Petelin, and T. Eftimov, “TransOpt: Transformer-based representa-
tion learning for optimization problem classification,” arXiv preprint arXiv:2311.18035,
2023.

[74] M. V. Seiler, P. Kerschke, and H. Trautmann, “Deep-ELA: Deep Exploratory Land-
scape Analysis with Self-Supervised Pretrained Transformers for Single-and Multi-
Objective Continuous Optimization Problems,” arXiv preprint arXiv:2401.01192,
2024.

[75] B. van Stein, F. X. Long, M. Frenzel, P. Krause, M. Gitterle, and T. Bäck, “Doe2vec:
Deep-learning based features for exploratory landscape analysis,” in Proceedings
of the Companion Conference on Genetic and Evolutionary Computation, 2023,
pp. 515–518.

https://doi.org/10.5281/zenodo.3886816
https://doi.org/10.5281/zenodo.3886816
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1007/978-3-030-58115-2%5C_10
https://doi.org/10.1007/978-3-030-58115-2%5C_10
https://doi.org/10.1016/j.ins.2015.05.010
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343

144 References

[76] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces,” Journal of global optimization, vol. 11,
no. 4, pp. 341–359, 1997.

[77] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation,” in Proc. of IEEE Congress
on Evolutionary Computation, IEEE, 1996, pp. 312–317.

[78] J. de Nobel, D. Vermetten, H. Wang, C. Doerr, and T. Bäck, “Tuning as a means of
assessing the benefits of new ideas in interplay with existing algorithmic modules,” in
Proc. of Genetic and Evolutionary Computation Conference (GECCO, Companion
Material), ACM, 2021, pp. 1375–1384.

[79] D. Vermetten, F. Caraffini, A. V. Kononova, and T. Bäck, “Modular differen-
tial evolution,” in Proc. of the Genetic and Evolutionary Computation Conference,
ser. GECCO ’23, ACM, 2023, pp. 864–872. doi: 10.1145/3583131.3590417. [On-
line]. Available: https://doi.org/10.1145/3583131.3590417.

[80] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: A framework for the reusable
design of parallel and distributed metaheuristics,” Journal of Heuristics, vol. 10,
no. 3, pp. 357–380, 2004.

[81] J. Dreo, A. Liefooghe, S. Verel, et al., “ParadisEO: From a modular framework for
evolutionary computation to the automated design of metaheuristics: 22 years of
paradiseo,” in Proc. of Genetic and Evolutionary Computation Conference (GECCO,
Companion Material), ACM, 2021, pp. 1522–1530.

[82] C. L. Camacho-Villalón, M. Dorigo, and T. Stützle, “PSO-X: A component-based
framework for the automatic design of particle swarm optimization algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 26, no. 3, pp. 402–416, 2021.

[83] R. Boks, H. Wang, and T. Bäck, “A modular hybridization of particle swarm opti-
mization and differential evolution,” in Proc. of Genetic and Evolutionary Compu-
tation Conference (GECCO, Companion Material), ACM, 2020, pp. 1418–1425.

[84] J. R. Rice, “The algorithm selection problem,” in Advances in computers, vol. 15,
Elsevier, 1976, pp. 65–118.

[85] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge, “Algorithm selection for
black-box continuous optimization problems: A survey on methods and challenges,”
Information Sciences, vol. 317, pp. 224–245, 2015.

[86] L. Meunier, H. Rakotoarison, P. K. Wong, et al., “Black-box optimization revis-
ited: Improving algorithm selection wizards through massive benchmarking,” IEEE
Transactions on Evolutionary Computation, vol. 26, no. 3, pp. 490–500, 2021.

[87] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,” Knowledge-
based systems, vol. 212, p. 106 622, 2021.

[88] U. Škvorc, T. Eftimov, and P. Korošec, “Transfer learning analysis of multi-class
classification for landscape-aware algorithm selection,” Mathematics, vol. 10, no. 3,
p. 432, 2022.

[89] A. Jankovic, T. Eftimov, and C. Doerr, “Towards Feature-Based Performance Re-
gression Using Trajectory Data,” in Proc. of Applications of Evolutionary Compu-
tation (EvoApplications 2021), ser. LNCS, vol. 12694, Springer, 2021, pp. 601–617.
doi: 10.1007/978-3-030-72699-7_38. [Online]. Available: https://doi.org/
10.1007/978-3-030-72699-7%5C_38.

https://doi.org/10.1145/3583131.3590417
https://doi.org/10.1145/3583131.3590417
https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1007/978-3-030-72699-7%5C_38
https://doi.org/10.1007/978-3-030-72699-7%5C_38

References 145

[90] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, “Algorithm portfolios
based on cost-sensitive hierarchical clustering.,” in IJCAI, vol. 13, 2013, pp. 608–
614.

[91] J. N. van Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren, “Fast algorithm
selection using learning curves,” in Advances in Intelligent Data Analysis XIV: 14th
International Symposium, IDA 2015, Saint Etienne. France, October 22-24, 2015.
Proceedings 14, Springer, 2015, pp. 298–309.

[92] D. Pulatov, M. Anastacio, L. Kotthoff, and H. Hoos, “Opening the black box: Au-
tomated software analysis for algorithm selection,” in International Conference on
Automated Machine Learning, PMLR, 2022, pp. 6–1.

[93] M. Alissa, K. Sim, and E. Hart, “Automated algorithm selection: From feature-
based to feature-free approaches,” Journal of Heuristics, vol. 29, no. 1, pp. 1–38,
2023.

[94] L. Tian, X. Zhou, Y.-P. Wu, W.-T. Zhou, J.-H. Zhang, and T.-S. Zhang, “Knowledge
graph and knowledge reasoning: A systematic review,” Journal of Electronic Science
and Technology, vol. 20, no. 2, p. 100 159, 2022.

[95] T. Shen, F. Zhang, and J. Cheng, “A comprehensive overview of knowledge graph
completion,” Knowledge-Based Systems, vol. 255, p. 109 597, 2022.

[96] D. Lee, B. Oh, S. Seo, and K.-H. Lee, “News recommendation with topic-enriched
knowledge graphs,” in Proceedings of the 29th ACM international conference on
information & knowledge management, 2020, pp. 695–704.

[97] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Product knowledge graph
embedding for e-commerce,” in Proceedings of the 13th international conference on
web search and data mining, 2020, pp. 672–680.

[98] F. Gong, M. Wang, H. Wang, S. Wang, and M. Liu, “SMR: medical knowledge
graph embedding for safe medicine recommendation,” Big Data Research, vol. 23,
p. 100 174, 2021.

[99] Z. Gun and J. Chen, “Novel knowledge graph-and knowledge reasoning-based clas-
sification prototype for obia using high resolution remote sensing imagery,” Remote
Sensing, vol. 15, no. 2, p. 321, 2023.

[100] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and rela-
tions for learning and inference in knowledge bases,” in International Conference on
Learning Representations, 2014. [Online]. Available: https://api.semanticscholar.
org/CorpusID:2768038.

[101] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive sur-
vey on graph neural networks,” IEEE transactions on neural networks and learning
systems, vol. 32, no. 1, pp. 4–24, 2020.

[102] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[103] A. Kostovska, J. Bogatinovski, S. Džeroski, D. Kocev, and P. Panov, “A catalogue
with semantic annotations makes multilabel datasets FAIR,” Scientific Reports,
vol. 12, no. 1, p. 7267, 2022.

[104] F. Charte, A. J. Rivera, D. Charte, M. J. del Jesus, and F. Herrera, “Tips, guidelines
and tools for managing multi-label datasets: The MLDR datasets R package and
the Cometa data repository,” Neurocomputing, vol. 289, pp. 68–85, 2018.

https://api.semanticscholar.org/CorpusID:2768038
https://api.semanticscholar.org/CorpusID:2768038

146 References

[105] Cometa, Available at: https://cometa.ujaen.es/datasets/, 2024. [Online].
Available: https://cometa.ujaen.es/datasets/.

[106] KDIS-Cordoba, Available at: https://www.uco.es/kdis/mllresources//, 2024.
[Online]. Available: https://www.uco.es/kdis/mllresources/.

[107] MULAN, Available at: https://mulan.sourceforge.net/datasets-mlc.html,
2024. [Online]. Available: https://mulan.sourceforge.net/datasets-mlc.html.

[108] K. Bhatia, K. Dahiya, H. Jain, et al., The extreme classification repository: Multi-
label datasets and code, Available at: http://manikvarma.org/downloads/XC/
XMLRepository.html, 2016. [Online]. Available: http://manikvarma.org/downloads/
XC/XMLRepository.html.

[109] N. Macia and E. Bernadó-Mansilla, “Towards UCI+: a mindful repository design,”
Information Sciences, vol. 261, pp. 237–262, 2014.

[110] J. Rijn, B. Bischl, L. Torgo, et al., “OpenML: A collaborative science platform,”
in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Prague, Czech Republic: Springer, 2013, pp. 645–649.

[111] M.-L. Alvite-Diez, “Linked open data portals: Functionalities and user experience
in semantic catalogues,” Online Information Review, vol. 45, no. 5, pp. 946–963,
2021.

[112] S. Kim and E. E. Bolton, “PubChem: A Large-Scale Public Chemical Database for
Drug Discovery,” Open Access Databases and Datasets for Drug Discovery, pp. 39–
66, 2024.

[113] H. Dibowski, S. Schmid, Y. Svetashova, C. Henson, and T. Tran, “Using semantic
technologies to manage a data lake: Data catalog, provenance and access control.,”
in SSWS@ ISWC, Athen, 2020, pp. 65–80.

[114] N. Kasrin, M. Qureshi, S. Steuer, and D. Nicklas, “Semantic data management for
experimental manufacturing technologies,” Datenbank-Spektrum, vol. 18, pp. 27–37,
2018.

[115] A. Kostovska, S. Džeroski, and P. Panov, “Semantic description of data mining
datasets: An ontology-based annotation schema,” in Proceedings of International
Conference on Discovery Science, Springer, 2020, pp. 140–155.

[116] List of Schema.org Dataset properties, Available at: https://schema.org/Dataset,
2021. [Online]. Available: https://schema.org/Dataset.

[117] Schema.org, Available at: https://schema.org/, 2024. [Online]. Available: https:
//schema.org/.

[118] P. Panov, L. N. Soldatova, and S. Džeroski, “Generic ontology of datatypes,” Infor-
mation Sciences, vol. 329, pp. 900–920, 2016.

[119] M. Keet, A. Lawrynowicz, C. d’Amato, et al., “The data mining OPtimization
ontology,” Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 32, pp. 43–53, 2015.

[120] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, “Mulan: A java
library for multi-label learning,” The Journal of Machine Learning Research, vol. 12,
pp. 2411–2414, 2011.

[121] F. Briggs, B. Lakshminarayanan, L. Neal, et al., “Acoustic classification of multiple
simultaneous bird species: A multi-instance multi-label approach,” The Journal of
the Acoustical Society of America, vol. 131, no. 6, pp. 4640–4650, 2012.

https://cometa.ujaen.es/datasets/
https://cometa.ujaen.es/datasets/
https://www.uco.es/kdis/mllresources//
https://www.uco.es/kdis/mllresources/
https://mulan.sourceforge.net/datasets-mlc.html
https://mulan.sourceforge.net/datasets-mlc.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://schema.org/Dataset
https://schema.org/Dataset
https://schema.org/
https://schema.org/
https://schema.org/

References 147

[122] I. Tolovski, S. Džeroski, and P. Panov, “Semantic annotation of predictive mod-
elling experiments,” in Discovery Science: 23rd International Conference, DS 2020,
Thessaloniki, Greece, October 19–21, 2020, Proceedings 23, Springer, 2020, pp. 124–
139.

[123] A. Bandrowski, R. Brinkman, M. Brochhausen, et al., “The ontology for biomedical
investigations,” PloS one, vol. 11, no. 4, e0154556, 2016.

[124] J. Bogatinovski, L. Todorovski, S. Džeroski, and D. Kocev, “Comprehensive compar-
ative study of multi-label classification methods,” Expert Systems with Applications,
vol. 203, p. 117 215, 2022.

[125] Weka ARFF file format, Available at: https://waikato.github.io/weka-wiki/
arff/, 2021. [Online]. Available: https://waikato.github.io/weka-wiki/arff/.

[126] Apache Jena RDF API, Available at: https://jena.apache.org/documentation/
rdf/index.html, 2024. [Online]. Available: https://jena.apache.org/documentation/
rdf/index.html.

[127] Apache Jena Library, Available at: https://jena.apache.org/index.html, 2024.
[Online]. Available: https://jena.apache.org/index.html.

[128] Apache Jena Fuseki server, Available at: https://jena.apache.org/documentation/
fuseki2/, 2021. [Online]. Available: https://jena.apache.org/documentation/
fuseki2/.

[129] Apache Jena Inference Support, Available at: https://jena.apache.org/documentation/
inference/index.html, 2024. [Online]. Available: https://jena.apache.org/
documentation/inference/index.html.

[130] A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and T. Eftimov,
“OPTION: OPTImization Algorithm Benchmarking ONtology,” IEEE Transactions
on Evolutionary Computation, vol. 27, no. 6, pp. 1618–1632, 2023. doi: 10.1109/
TEVC.2022.3232844.

[131] A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and T. Eftimov,
“OPTION: OPTImization Algorithm Benchmarking ONtology,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, 2021, pp. 239–
240.

[132] F. Caraffini and G. Iacca, “The SOS Platform: Designing, Tuning and Statistically
Benchmarking Optimisation Algorithms,” Mathematics, vol. 8, no. 5, 2020, issn:
2227-7390. doi: 10.3390/math8050785. [Online]. Available: https://www.mdpi.
com/2227-7390/8/5/785.

[133] O. E. Gundersen and S. Kjensmo, “State of the art: Reproducibility in artificial in-
telligence,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
2018.

[134] R. E. Carter, Z. I. Attia, F. Lopez-Jimenez, and P. A. Friedman, “Pragmatic con-
siderations for fostering reproducible research in artificial intelligence,” NPJ digital
medicine, vol. 2, no. 1, pp. 1–3, 2019.

[135] M. López-Ibáñez, J. Branke, and L. Paquete, “Reproducibility in evolutionary com-
putation,” ACM Trans. Evol. Learn. Optim., vol. 1, no. 4, 14:1–14:21, 2021. doi:
10.1145/3466624. [Online]. Available: https://doi.org/10.1145/3466624.

[136] C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck, “IOHprofiler: A Benchmarking
and Profiling Tool for Iterative Optimization Heuristics,” CoRR, vol. abs/1810.05281,
2018, An up-to-date documentation of IOHprofiler is available at https://iohprofiler.
github.io/. [Online]. Available: http://arxiv.org/abs/1810.05281.

https://waikato.github.io/weka-wiki/arff/
https://waikato.github.io/weka-wiki/arff/
https://waikato.github.io/weka-wiki/arff/
https://jena.apache.org/documentation/rdf/index.html
https://jena.apache.org/documentation/rdf/index.html
https://jena.apache.org/documentation/rdf/index.html
https://jena.apache.org/documentation/rdf/index.html
https://jena.apache.org/index.html
https://jena.apache.org/index.html
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/inference/index.html
https://jena.apache.org/documentation/inference/index.html
https://jena.apache.org/documentation/inference/index.html
https://jena.apache.org/documentation/inference/index.html
https://doi.org/10.1109/TEVC.2022.3232844
https://doi.org/10.1109/TEVC.2022.3232844
https://doi.org/10.3390/math8050785
https://www.mdpi.com/2227-7390/8/5/785
https://www.mdpi.com/2227-7390/8/5/785
https://doi.org/10.1145/3466624
https://doi.org/10.1145/3466624
https://iohprofiler.github.io/
https://iohprofiler.github.io/
http://arxiv.org/abs/1810.05281

148 References

[137] C. L. Camacho-Villalón, T. Stützle, and M. Dorigo, “Grey wolf, firefly and bat
algorithms: Three widespread algorithms that do not contain any novelty,” in Proc.
of Swarm Intelligence (ANTS’20), ser. LNCS, vol. 12421, Springer, 2020, pp. 121–
133. doi: 10.1007/978-3-030-60376-2_10. [Online]. Available: https://doi.
org/10.1007/978-3-030-60376-2%5C_10.

[138] K. Sörensen, “Metaheuristics - the metaphor exposed,” International Transactions
in Operational Research (ITOR), vol. 22, pp. 3–18, 2015.

[139] A. Yaman, A. Hallawa, M. Coler, and G. Iacca, “Presenting the ECO: evolutionary
computation ontology,” in European conference on the applications of evolutionary
computation, Springer, 2017, pp. 603–619.

[140] V. Basto-Fernandes, I. Yevseyeva, A. Deutz, and M. Emmerich, “A survey of diver-
sity oriented optimization: Problems, indicators, and algorithms,” in EVOLVE–A
Bridge between Probability, Set Oriented Numerics and Evolutionary Computation
VII, Springer, 2017, pp. 3–23.

[141] L. Li, I. Yevseyeva, V. Basto-Fernandes, H. Trautmann, N. Jing, and M. Emmerich,
“Building and using an ontology of preference-based multiobjective evolutionary al-
gorithms,” in International conference on evolutionary multi-criterion optimization,
Springer, 2017, pp. 406–421.

[142] B. Smith et al., “Relations in biomedical ontologies,” Genome biology, vol. 6, no. 5,
R46, 2005.

[143] R. Arp, B. Smith, and A. Spear, Building ontologies with basic formal ontology. Mit
Press, 2015.

[144] M. Dumontier, C. J. Baker, J. Baran, et al., “The semanticscience integrated ontol-
ogy (sio) for biomedical research and knowledge discovery,” Journal of biomedical
semantics, vol. 5, no. 1, pp. 1–11, 2014.

[145] N. F. Noy, M. Crubézy, R. W. Fergerson, et al., “Protégé-2000: An open-source
ontology-development and knowledge-acquisition environment.,” in AMIA... Annual
Symposium proceedings. AMIA Symposium, American Medical Informatics Associ-
ation, vol. 2003, 2003, pp. 953–953.

[146] N. F. Noy, N. H. Shah, P. L. Whetzel, et al., “BioPortal: ontologies and integrated
data resources at the click of a mouse,” Nucleic acids research, vol. 37, no. suppl_2,
W170–W173, 2009.

[147] A. Lawrynowicz, D. Esteves, P. Panov, T. Soru, S. Dzeroski, and J. Vanschoren,
“An algorithm, implementation and execution ontology design pattern,” Adv. Ontol.
Des. Patterns, vol. 32, p. 55, 2017.

[148] M. A. Musen, “The protégé project: A look back and a look forward,” AI matters,
vol. 1, no. 4, pp. 4–12, 2015.

[149] D. C. M. Initiative et al., Dublin core metadata element set, version 1.1, 2012.

[150] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posík, “Comparing results of 31 algo-
rithms from the black-box optimization benchmarking BBOB-2009,” in Genetic and
Evolutionary Computation Conference, GECCO 2010, Proceedings, Portland, Ore-
gon, USA, July 7-11, 2010, Companion Material, M. Pelikan and J. Branke, Eds.,
ACM, 2010, pp. 1689–1696. doi: 10.1145/1830761.1830790. [Online]. Available:
https://doi.org/10.1145/1830761.1830790.

[151] N. Hansen, A. Auger, and D. Brockhoff, Data repository of the BBOB test suite of
the COCO benchmark environment, https://numbbo.github.io/data-archive/
bbob/, Data collected from 2010 to 2020, 2020.

https://doi.org/10.1007/978-3-030-60376-2_10
https://doi.org/10.1007/978-3-030-60376-2%5C_10
https://doi.org/10.1007/978-3-030-60376-2%5C_10
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1145/1830761.1830790
https://numbbo.github.io/data-archive/bbob/
https://numbbo.github.io/data-archive/bbob/

References 149

[152] J. Liu, A. Moreau, M. Preuss, et al., “Versatile black-box optimization,” in Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference, 2020, pp. 620–
628.

[153] Q. Renau, C. Doerr, J. Dréo, and B. Doerr, “Exploratory landscape analysis is
strongly sensitive to the sampling strategy,” in Proc. of Parallel Problem Solving
from Nature (PPSN’20), ser. LNCS, vol. 12270, Springer, 2020, pp. 139–153. doi:
10.1007/978-3-030-58115-2_10. [Online]. Available: https://doi.org/10.
1007/978-3-030-58115-2%5C_10.

[154] J. de Nobel, F. Ye, D. Vermetten, H. Wang, C. Doerr, and T. Bäck, “IOHexperi-
menter: Benchmarking platform for iterative optimization heuristics,” Evolutionary
Computation, pp. 1–6, 2024, Available online at https://doi.org/10.1162/evco_
a_00342. doi: 10.1162/evco_a_00342. eprint: https://direct.mit.edu/evco/
article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf.
[Online]. Available: https://doi.org/10.1162/evco%5C_a%5C_00342.

[155] SPARQL, Available at: https://www.w3.org/TR/rdf- sparql- query/, 2021.
[Online]. Available: https://www.w3.org/TR/rdf-sparql-query/.

[156] L. Richardson and S. Ruby, RESTful web services. " O’Reilly Media, Inc.", 2008.

[157] H. Wang, D. Vermetten, F. Ye, C. Doerr, and T. Bäck, “IOHanalyzer: Detailed
performance analyses for iterative optimization heuristics,” ACM Transactions on
Evolutionary Learning and Optimization, 2022, issn: 2688-299X. doi: 10.1145/
3510426. [Online]. Available: https://doi.org/10.1145/3510426.

[158] H. Stegherr, M. Heider, and J. Hähner, “Classifying metaheuristics: Towards a uni-
fied multi-level classification system,” Natural Computing, pp. 1–17, 2020.

[159] J. Stork, A. E. Eiben, and T. Bartz-Beielstein, “A new taxonomy of global opti-
mization algorithms,” Natural Computing: An International Journal, vol. 21, no. 2,
pp. 219–242, Jun. 2022, issn: 1567-7818. doi: 10.1007/s11047- 020- 09820- 4.
[Online]. Available: https://doi.org/10.1007/s11047-020-09820-4.

[160] J. Liu, S. Anavatti, M. Garratt, K. C. Tan, and H. A. Abbass, “A survey, tax-
onomy and progress evaluation of three decades of swarm optimisation,” Artificial
Intelligence Review, pp. 1–119, 2021.

[161] P. Domingos, “A few useful things to know about machine learning,” Communica-
tions of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[162] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based
algorithm selection for SAT,” J. Artif. Intell. Res., vol. 32, pp. 565–606, 2008. doi:
10.1613/jair.2490. [Online]. Available: https://doi.org/10.1613/jair.2490.

[163] Z. Mu, H. H. Hoos, and T. Stützle, “The impact of automated algorithm config-
uration on the scaling behaviour of state-of-the-art inexact tsp solvers,” in Learn-
ing and Intelligent Optimization, P. Festa, M. Sellmann, and J. Vanschoren, Eds.,
Springer International Publishing, 2016, pp. 157–172, isbn: 978-3-319-50349-3. doi:
10.1007/978-3-319-50349-3_11. [Online]. Available: https://doi.org/10.1007/
978-3-319-50349-3_11.

[164] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. H. Hoos, and K. Leyton-Brown,
“The configurable SAT solver challenge (CSSC),” Artif. Intell., vol. 243, pp. 1–
25, 2017. doi: 10.1016/j.artint.2016.09.006. [Online]. Available: https:
//doi.org/10.1016/j.artint.2016.09.006.

https://doi.org/10.1007/978-3-030-58115-2_10
https://doi.org/10.1007/978-3-030-58115-2%5C_10
https://doi.org/10.1007/978-3-030-58115-2%5C_10
https://doi.org/10.1162/evco_a_00342
https://doi.org/10.1162/evco_a_00342
https://doi.org/10.1162/evco_a_00342
https://direct.mit.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf
https://direct.mit.edu/evco/article-pdf/doi/10.1162/evco_a_00342/2335957/evco_a_00342.pdf
https://doi.org/10.1162/evco%5C_a%5C_00342
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://doi.org/10.1145/3510426
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/978-3-319-50349-3_11
https://doi.org/10.1007/978-3-319-50349-3_11
https://doi.org/10.1007/978-3-319-50349-3_11
https://doi.org/10.1016/j.artint.2016.09.006
https://doi.org/10.1016/j.artint.2016.09.006
https://doi.org/10.1016/j.artint.2016.09.006

150 References

[165] P. Kerschke, L. Kotthoff, J. Bossek, H. H. Hoos, and H. Trautmann, “Leveraging
TSP solver complementarity through machine learning,” Evol. Comput., vol. 26,
no. 4, 2018. doi: 10.1162/evco_a_00215. [Online]. Available: https://doi.
org/10.1162/evco%5C_a%5C_00215.

[166] C. Molnar, Interpretable Machine Learning. Lulu Press, 2020.

[167] H. Chen, S. M. Lundberg, and S.-I. Lee, “Explaining a series of models by propa-
gating Shapley values,” Nature communications, vol. 13, no. 1, p. 4512, 2022.

[168] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler, “Problems
with Shapley-value-based explanations as feature importance measures,” in Inter-
national Conference on Machine Learning, PMLR, 2020, pp. 5491–5500.

[169] A. Kostovska, A. Jankovic, D. Vermetten, S. Džeroski, T. Eftimov, and C. Do-
err, “Comparing Algorithm Selection Approaches on Black-Box Optimization Prob-
lems,” in Proceedings of the Companion Conference on Genetic and Evolutionary
Computation, 2023, pp. 495–498.

[170] A. Tornede, L. Gehring, T. Tornede, M. Wever, and E. Hüllermeier, “Algorithm
selection on a meta level,” Machine Learning, pp. 1–34, 2022.

[171] S. Ali and K. A. Smith, “On learning algorithm selection for classification,” Applied
Soft Computing, vol. 6, no. 2, pp. 119–138, 2006.

[172] N. Pise and P. Kulkarni, “Algorithm selection for classification problems,” in 2016
SAI Computing Conference (SAI), 2016, pp. 203–211. doi: 10.1109/SAI.2016.
7555983.

[173] N. Cohen-Shapira and L. Rokach, “Automatic selection of clustering algorithms
using supervised graph embedding,” Information Sciences, vol. 577, pp. 824–851,
2021.

[174] L. Xu, F. Hutter, J. Shen, H. H. Hoos, and K. Leyton-Brown, “SATzilla2012: Im-
proved algorithm selection based on cost-sensitive classification models,” Proceedings
of SAT Challenge, pp. 57–58, 2012.

[175] A. Kostovska, G. Cenikj, D. Vermetten, et al., “PS-AAS: Portfolio Selection for
Automated Algorithm Selection in Black-Box Optimization,” in International Con-
ference on Automated Machine Learning, PMLR, 2023, pp. 11–1.

[176] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[177] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label
classification,” Machine Learning, vol. 85, p. 333, 2011.

[178] R. Schapire and Y. Singer, “Boostexter: A boosting-based system for text catego-
rization,” Machine Learning, vol. 39, pp. 135–168, 2000.

[179] G. Nasierding, A. Kouzani, and G. Tsoumakas, “A triple-random ensemble classifi-
cation method for mining multi-label data,” in IEEE International Conference on
Data Mining Workshops, Washington, DC, USA: IEEE Computer Society, 2010,
pp. 49–56.

[180] K. Brinker, “On active learning in multi-label classification,” in From Data and
Information Analysis to Knowledge Engineering, Berlin, Heidelberg: Springer, 2006,
pp. 206–213.

[181] J. Fürnkranz, E. Hüllermeier, E. Loza Mencía, and K. Brinker, “Multilabel classifi-
cation via calibrated label ranking,” Machine Learning, vol. 73, no. 2, pp. 133–153,
2008.

https://doi.org/10.1162/evco_a_00215
https://doi.org/10.1162/evco%5C_a%5C_00215
https://doi.org/10.1162/evco%5C_a%5C_00215
https://doi.org/10.1109/SAI.2016.7555983
https://doi.org/10.1109/SAI.2016.7555983

References 151

[182] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” Interna-
tional Journal of Data Warehousing and Mining, vol. 2007, pp. 1–13, 2007.

[183] J. Read, B. Pfahringer, and G. Holmes, “Multi-label Classification Using Ensembles
of Pruned Sets,” in Proceedings of the 8th IEEE International Conference on Data
Mining, Washington, DC, USA: IEEE Computer Society, 2008, pp. 995–1000.

[184] J. Read, “Scalable multi-label classification,” Ph.D. dissertation, University of Waikato,
Hamilton, New Zeland, 2010.

[185] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[186] A. Kostovska, D. Vermetten, P. Korošec, S. Džeroski, C. Doerr, and T. Eftimov,
“Using machine learning methods to assess module performance contribution in
modular optimization frameworks,” Evolutionary Computation, pp. 1–27, Aug. 2024,
issn: 1063-6560. doi: 10.1162/evco_a_00356.

[187] A. Kostovska, D. Vermetten, S. Džeroski, C. Doerr, P. Korosec, and T. Eftimov,
“The importance of landscape features for performance prediction of modular CMA-
ES variants,” in Proc. of Genetic and Evolutionary Computation Conference (GECCO),
ACM, 2022, pp. 648–656.

[188] K. Hussain, M. N. Mohd Salleh, S. Cheng, and Y. Shi, “Metaheuristic research: A
comprehensive survey,” Artificial intelligence review, vol. 52, pp. 2191–2233, 2019.

[189] C. Aranha, C. L. Camacho Villalón, F. Campelo, et al., “Metaphor-based meta-
heuristics, a call for action: The elephant in the room,” Swarm Intelligence, vol. 16,
no. 1, pp. 1–6, 2022.

[190] T. Eftimov, P. Korošec, and B. K. Seljak, “A novel approach to statistical com-
parison of meta-heuristic stochastic optimization algorithms using deep statistics,”
Information Sciences, vol. 417, pp. 186–215, 2017.

[191] J. N. Hooker, “Needed: An empirical science of algorithms,” Operations research,
vol. 42, no. 2, pp. 201–212, 1994.

[192] J. N. Hooker, “Testing heuristics: We have it all wrong,” Journal of Heuristics,
vol. 1, pp. 33–42, 1995.

[193] N. G. Hall and M. E. Posner, “The generation of experimental data for computa-
tional testing in optimization,” in Experimental methods for the analysis of opti-
mization algorithms, Springer, 2010, pp. 73–101.

[194] M. A. Lones, “Mitigating metaphors: A comprehensible guide to recent nature-
inspired algorithms,” SN Computer Science, vol. 1, no. 1, p. 49, 2020.

[195] H. Stegherr, M. Heider, and J. Hähner, “Classifying Metaheuristics: Towards a uni-
fied multi-level classification system,” Natural Computing, vol. 21, no. 2, pp. 155–
171, 2022.

[196] B. Andersen, G. Delipei, D. Kropaczek, and J. Hou, “MOF: A modular framework
for rapid application of optimization methodologies to general engineering design
problems,” arXiv preprint arXiv:2204.00141, 2022.

[197] A. Nikolikj, A. Kostovska, D. Vermetten, C. Doerr, and T. Eftimov, “Quantifying
individual and joint module impact in modular optimization frameworks,” arXiv
preprint arXiv:2405.11964, 2024.

https://doi.org/10.1162/evco_a_00356

152 References

[198] D. Vermetten, M. López-Ibáñez, O. Mersmann, R. Allmendinger, and A. V. Kononova,
“Analysis of modular CMA-ES on strict box-constrained problems in the SBOX-
COST benchmarking suite,” in Proc. of the Genetic and Evolutionary Computa-
tion Conference (GECCO, Companion Material), ACM, 2023, pp. 2346–2353. doi:
10.1145/3583133.3596419. [Online]. Available: https://doi.org/10.1145/
3583133.3596419.

[199] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-
art,” IEEE transactions on evolutionary computation, vol. 15, no. 1, pp. 4–31, 2010.

[200] R. Trajanov, S. Dimeski, M. Popovski, P. Korošec, and T. Eftimov, “Explainable
landscape-aware optimization performance prediction,” in 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), IEEE, 2021, pp. 01–08.

[201] A. Nikolikj, R. Lang, P. Korošec, and T. Eftimov, “Explaining differential evolution
performance through problem landscape characteristics,” in Proc. of Bioinspired
Optimization Methods and Their Applications (BIOMA)), Springer, 2022, pp. 99–
113.

[202] A. Jankovic and C. Doerr, “Landscape-aware fixed-budget performance regression
and algorithm selection for modular CMA-ES variants,” in Proc. of Genetic and
Evolutionary Computation Conference (GECCO), ACM, 2020, pp. 841–849. doi:
10.1145/3377930.3390183. [Online]. Available: https://doi.org/10.1145/
3377930.3390183.

[203] R. P. Prager, H. Trautmann, H. Wang, T. H. Bäck, and P. Kerschke, “Per-Instance
Configuration of the Modularized CMA-ES by Means of Classifier Chains and Ex-
ploratory Landscape Analysis,” in 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), IEEE, 2020, pp. 996–1003.

[204] T. Eftimov, G. Popovski, D. Kocev, and P. Korošec, “Performance2vec: A step fur-
ther in explainable stochastic optimization algorithm performance,” in Proc. of Ge-
netic and Evolutionary Computation Conference (GECCO, Companion Material),
ACM, 2020, pp. 193–194.

[205] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph, “Ex-
ploratory landscape analysis,” in Proc. of Genetic and Evolutionary Computation
Conference (GECCO), 2011, pp. 829–836.

[206] B. Rozemberczki, L. Watson, P. Bayer, et al., “The Shapley value in machine learn-
ing,” in The 31st International Joint Conference on Artificial Intelligence and the
25th European Conference on Artificial Intelligence, 2022.

[207] J. de Nobel, H. Wang, and T. Baeck, “Explorative data analysis of time series
based algorithm features of CMA-ES variants,” in Proc. of Genetic and Evolutionary
Computation Conference (GECCO), 2021, pp. 510–518.

[208] L. C. Bezerra, M. López-Ibánez, and T. Stützle, “Automatic component-wise de-
sign of multiobjective evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 20, no. 3, pp. 403–417, 2015.

[209] A. Aziz-Alaoui, C. Doerr, and J. Dreo, “Towards large scale automated algorithm
design by integrating modular benchmarking frameworks,” in Proc. of Genetic
and Evolutionary Computation Conference (GECCO, Companion Material), ACM,
2021, pp. 1365–1374.

https://doi.org/10.1145/3583133.3596419
https://doi.org/10.1145/3583133.3596419
https://doi.org/10.1145/3583133.3596419
https://doi.org/10.1145/3377930.3390183
https://doi.org/10.1145/3377930.3390183
https://doi.org/10.1145/3377930.3390183

References 153

[210] T. Weise and Z. Wu, “Difficult features of combinatorial optimization problems and
the tunable W-model benchmark problem for simulating them,” in Proc. of Genetic
and Evolutionary Computation Conference (GECCO, Companion Material), ACM,
2018, pp. 1769–1776.

[211] C. Doerr, F. Ye, N. Horesh, H. Wang, O. M. Shir, and T. Bäck, “Benchmarking
discrete optimization heuristics with IOHprofiler,” Applied Soft Computing, vol. 88,
p. 106 027, 2020. doi: 10.1016/j.asoc.2019.106027. [Online]. Available: https:
//doi.org/10.1016/j.asoc.2019.106027.

[212] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle,
“The irace package: Iterated racing for automatic algorithm configuration,” Opera-
tions Research Perspectives, vol. 3, pp. 43–58, 2016.

[213] D. Rey and M. Neuhäuser, “Wilcoxon-signed-rank test,” in International Ency-
clopedia of Statistical Science, M. Lovric, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 1658–1659, isbn: 978-3-642-04898-2. doi: 10.1007/978-3-
642-04898-2_616. [Online]. Available: https://doi.org/10.1007/978-3-642-
04898-2_616.

[214] P. Kerschke and H. Trautmann, “The R-package FLACCO for exploratory landscape
analysis with applications to multi-objective optimization problems,” in Proc. of
IEEE Congress on Evolutionary Computation, IEEE, 2016, pp. 5262–5269. doi:
10.1109/CEC.2016.7748359. [Online]. Available: https://doi.org/10.1109/CEC.
2016.7748359.

[215] Q. Renau, J. Dréo, C. Doerr, and B. Doerr, “Towards Explainable Exploratory
Landscape Analysis: Extreme Feature Selection for Classifying BBOB Functions,” in
Proc. of Applications of Evolutionary Computation (EvoApplications 2021), ser. LNCS,
vol. 12694, Springer, 2021, pp. 601–617. doi: 10.1007/978-3-030-72699-7_2.
[Online]. Available: https://doi.org/10.1007/978-3-030-72699-7%5C_2.

[216] A. Nikolikj, R. Trajanov, G. Cenikj, P. Korošec, and T. Eftimov, “Identifying mini-
mal set of exploratory landscape analysis features for reliable algorithm performance
prediction,” in Proc. of IEEE Congress on Evolutionary Computation, IEEE, 2022,
pp. 1–8.

[217] M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “A meta-learning prediction model
of algorithm performance for continuous optimization problems,” in Proc. of Parallel
Problem Solving from Nature (PPSN), Springer, 2012, pp. 226–235.

[218] M. Collautti, Y. Malitsky, D. Mehta, and B. O’Sullivan, “SNNAP: Solver-Based
Nearest Neighbor for Algorithm Portfolios,” in Machine Learning and Knowledge
Discovery in Databases, Springer, 2013, pp. 435–450, isbn: 978-3-642-40994-3.

[219] P. Kerschke and H. Trautmann, “Automated Algorithm Selection on Continuous
Black-Box Problems by Combining Exploratory Landscape Analysis and Machine
Learning,” Evolutionary Computation, vol. 27, no. 1, pp. 99–127, 2019. doi: 10.
1162/evco_a_00236. [Online]. Available: https://doi.org/10.1162/evco%5C_
a%5C_00236.

[220] A. Kostovska, A. Jankovic, D. Vermetten, et al., “Per-run algorithm selection with
warm-starting using trajectory-based features,” in Proc. of Parallel Problem Solving
from Nature (PPSN), Springer, 2022, pp. 46–60.

[221] A. Jankovic, G. Popovski, T. Eftimov, and C. Doerr, “The Impact of Hyper-Parameter
Tuning for Landscape-Aware Performance Regression and Algorithm Selection,” in
Proc. of Genetic and Evolutionary Computation Conference (GECCO), ACM, 2021.

https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1007/978-3-030-72699-7_2
https://doi.org/10.1007/978-3-030-72699-7%5C_2
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1162/evco%5C_a%5C_00236
https://doi.org/10.1162/evco%5C_a%5C_00236

154 References

[222] S. Varma and R. Simon, “Bias in error estimation when using cross-validation for
model selection,” BMC bioinformatics, vol. 7, no. 1, pp. 1–8, 2006.

[223] S. Bates, T. Hastie, and R. Tibshirani, “Cross-validation: What does it estimate and
how well does it do it?” Journal of the American Statistical Association, pp. 1–12,
2023.

[224] N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter, “TabPFN: A transformer
that solves small tabular classification problems in a second,” in The Eleventh Inter-
national Conference on Learning Representations, 2023. [Online]. Available: https:
//openreview.net/forum?id=cp5PvcI6w8_.

[225] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posík, “Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009,” in Proc.
of Genetic and Evolutionary Computation Conference (GECCO, Companion Ma-
terial), ACM, 2010, pp. 1689–1696. doi: 10.1145/1830761.1830790. [Online].
Available: https://doi.org/10.1145/1830761.1830790.

[226] A. P. Piotrowski, “Review of differential evolution population size,” Swarm Evol.
Comput., vol. 32, pp. 1–24, 2017. doi: 10.1016/j.swevo.2016.05.003. [Online].
Available: https://doi.org/10.1016/j.swevo.2016.05.003.

[227] A. Kostovska, D. Vermetten, P. Korošec, S. Džeroski, C. Doerr, and T. Eftimov,
Linking Problem Features with Configurations of Modular Black-box Optimization
Algorithms, Data, code, additional figures for this work are available at https:
//doi.org/10.5281/zenodo.8151814, Jun. 2023. doi: 10.5281/zenodo.8151814.
[Online]. Available: https://doi.org/10.5281/zenodo.8151814.

[228] F. W. Scholz and M. A. Stephens, “K-sample anderson–darling tests,” Journal of
the American Statistical Association, vol. 82, no. 399, pp. 918–924, 1987.

[229] L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: Uniform Manifold Ap-
proximation and Projection,” Journal of Open Source Software, vol. 3, no. 29, p. 861,
2018. doi: 10.21105/joss.00861. [Online]. Available: https://doi.org/10.
21105/joss.00861.

[230] A. Kostovska, D. Vermetten, S. Džeroski, P. Panov, T. Eftimov, and C. Doerr,
“Using knowledge graphs for performance prediction of modular optimization algo-
rithms,” in International Conference on the Applications of Evolutionary Computa-
tion (Part of EvoStar), Springer, 2023, pp. 253–268.

[231] X. Chen, S. Jia, and Y. Xiang, “A review: Knowledge reasoning over knowledge
graph,” Expert Systems with Applications, vol. 141, p. 112 948, 2020.

[232] P. Wang, H. Jiang, J. Xu, and Q. Zhang, “Knowledge graph construction and ap-
plications for web search and beyond,” Data Intelligence, vol. 1, no. 4, pp. 333–349,
2019.

[233] X. Zhao, H. Chen, Z. Xing, and C. Miao, “Brain-inspired search engine assistant
based on knowledge graph,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 34, no. 8, pp. 4386–4400, 2021.

[234] X. Zeng, X. Tu, Y. Liu, X. Fu, and Y. Su, “Toward better drug discovery with
knowledge graph,” Current opinion in structural biology, vol. 72, pp. 114–126, 2022.

[235] F. MacLean, “Knowledge graphs and their applications in drug discovery,” Expert
opinion on drug discovery, vol. 16, no. 9, pp. 1057–1069, 2021.

[236] J. Qian, X.-Y. Li, C. Zhang, L. Chen, T. Jung, and J. Han, “Social network de-
anonymization and privacy inference with knowledge graph model,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 16, no. 4, pp. 679–692, 2017.

https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1016/j.swevo.2016.05.003
https://doi.org/10.1016/j.swevo.2016.05.003
https://doi.org/10.5281/zenodo.8151814
https://doi.org/10.5281/zenodo.8151814
https://doi.org/10.5281/zenodo.8151814
https://doi.org/10.5281/zenodo.8151814
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861

References 155

[237] Z. Wang, T. Chen, J. S. J. Ren, W. Yu, H. Cheng, and L. Lin, “Deep reason-
ing with knowledge graph for social relationship understanding,” in International
Joint Conference on Artificial Intelligence, 2018. [Online]. Available: https://api.
semanticscholar.org/CorpusID:49558620.

[238] D. M. Bean, H. Wu, E. Iqbal, et al., “Knowledge graph prediction of unknown
adverse drug reactions and validation in electronic health records,” Scientific reports,
vol. 7, no. 1, p. 16 416, 2017.

[239] X. Tao, T. Pham, J. Zhang, et al., “Mining health knowledge graph for health risk
prediction,” World Wide Web, vol. 23, pp. 2341–2362, 2020.

[240] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyzing evolu-
tionary algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 19–31,
2011.

[241] A. H. Halim, I. Ismail, and S. Das, “Performance assessment of the metaheuris-
tic optimization algorithms: An exhaustive review,” Artificial Intelligence Review,
vol. 54, no. 3, pp. 2323–2409, 2021.

[242] G. Mahmoudi and C. Muller-Schloer, “Semantic multi-criteria decision making sem-
cdm,” in 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making (MCDM), IEEE, 2009, pp. 149–156.

[243] J. F. Aldana-Martín, M. del Mar Roldán-García, A. J. Nebro, and J. F. Aldana-
Montes, “MOODY: An ontology-driven framework for standardizing multi-objective
evolutionary algorithms,” Information Sciences, vol. 661, p. 120 184, 2024.

[244] X. Xue and H. Zhu, “Matching knowledge graphs with compact niching evolutionary
algorithm,” Expert Systems with Applications, vol. 203, p. 117 371, 2022.

[245] X. Xue, “Automatic knowledge graph matching via self-adaptive designed genetic
programming,” Knowledge-Based Systems, vol. 293, p. 111 628, 2024.

[246] Z. Liu, D. Yang, Y. Wang, M. Lu, and R. Li, “EGNN: Graph structure learning
based on evolutionary computation helps more in graph neural networks,” Applied
Soft Computing, vol. 135, p. 110 040, 2023.

[247] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A sur-
vey of approaches and applications,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[248] L. Costabello, S. Pai, C. Le Van, R. McGrath, N. McCarthy, and P. Tabacof, “Ampli-
graph: A library for representation learning on knowledge graphs,” Retrieved Oct,
vol. 10, p. 2019, 2019.

[249] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proc. AISTATS, JMLR Workshop and Conference Proceedings,
2010, pp. 249–256.

[250] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[251] R. Celebi, H. Uyar, E. Yasar, O. Gumus, O. Dikenelli, and M. Dumontier, “Evalua-
tion of knowledge graph embedding approaches for drug-drug interaction prediction
in realistic settings,” BMC bioinformatics, vol. 20, pp. 1–14, 2019.

https://api.semanticscholar.org/CorpusID:49558620
https://api.semanticscholar.org/CorpusID:49558620

156 References

[252] G. Lachaud, P. Conde-Cespedes, and M. Trocan, “Comparison between inductive
and transductive learning in a real citation network using graph neural networks,” in
2022 IEEE/ACM International Conference on Advances in Social Networks Analy-
sis and Mining (ASONAM), 2022, pp. 534–540. doi: 10.1109/ASONAM55673.2022.
10068589.

[253] J. Lukasik, D. Friede, H. Stuckenschmidt, and M. Keuper, “Neural architecture
performance prediction using graph neural networks,” in Pattern Recognition: 42nd
DAGM German Conference, DAGM GCPR 2020, Tübingen, Germany, September
28–October 1, 2020, Proceedings 42, Springer, 2021, pp. 188–201.

[254] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, “NAS-bench-
101: Towards reproducible neural architecture search,” in International conference
on machine learning, PMLR, 2019, pp. 7105–7114.

[255] S. Singh, B. Steiner, J. Hegarty, and H. Leather, “Using graph neural networks to
model the performance of deep neural networks,” arXiv preprint arXiv:2108.12489,
2021.

[256] Y. Chai, D. Tripathy, C. Zhou, et al., “Perfsage: Generalized inference perfor-
mance predictor for arbitrary deep learning models on edge devices,” arXiv preprint
arXiv:2301.10999, 2023.

[257] Y. Sun and J. Han, “Mining heterogeneous information networks: A structural anal-
ysis approach,” SIGKDD Explor. Newsl., vol. 14, no. 2, pp. 20–28, Apr. 2013, issn:
1931-0145. doi: 10.1145/2481244.2481248. [Online]. Available: https://doi.
org/10.1145/2481244.2481248.

[258] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer networks,”
Advances in neural information processing systems, vol. 32, 2019.

[259] M. Y. Wang, “Deep graph library: Towards efficient and scalable deep learning on
graphs,” in ICLR workshop on representation learning on graphs and manifolds,
2019.

[260] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[261] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),” arXiv preprint
arXiv:1606.08415, 2016.

[262] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms made easy,” The Journal of Machine Learning
Research, vol. 13, no. 1, pp. 2171–2175, 2012.

[263] W. Fischl, G. Gottlob, D. M. Longo, and R. Pichler, “Hyperbench: A benchmark and
tool for hypergraphs and empirical findings,” Journal of Experimental Algorithmics
(JEA), vol. 26, pp. 1–40, 2021.

[264] T. Eftimov, G. Petelin, G. Cenikj, et al., “Less is more: Selecting the right bench-
marking set of data for time series classification,” Expert Systems with Applications,
vol. 198, p. 116 871, 2022.

[265] G. Cenikj, R. D. Lang, A. P. Engelbrecht, C. Doerr, P. Korošec, and T. Eftimov,
“SELECTOR: selecting a representative benchmark suite for reproducible statis-
tical comparison,” in Proceedings of The Genetic and Evolutionary Computation
Conference, 2022, pp. 620–629.

[266] M. Steinbach and P.-N. Tan, “kNN: k-nearest neighbors,” in The top ten algorithms
in data mining, Chapman and Hall/CRC, 2009, pp. 165–176.

https://doi.org/10.1109/ASONAM55673.2022.10068589
https://doi.org/10.1109/ASONAM55673.2022.10068589
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/2481244.2481248
https://doi.org/10.1145/2481244.2481248

References 157

[267] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector
machines,” IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18–
28, 1998.

[268] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in
neurorobotics, vol. 7, p. 21, 2013.

[269] J. Liu, C. Yang, Z. Lu, et al., “Towards graph foundation models: A survey and
beyond,” arXiv preprint arXiv:2310.11829, 2023.

[270] N. Kooverjee, S. James, and T. Van Zyl, “Investigating transfer learning in graph
neural networks,” Electronics, vol. 11, no. 8, p. 1202, 2022.

159

Bibliography

Publications Related to the Dissertation

Journal Articles

A. Kostovska, J. Bogatinovski, S. Džeroski, D. Kocev, and P. Panov, “A catalogue with
semantic annotations makes multilabel datasets FAIR,” Scientific Reports, vol. 12, no. 1,
p. 7267, 2022.

A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and T. Eftimov, “OPTION:
OPTImization Algorithm Benchmarking ONtology,” IEEE Transactions on Evolution-
ary Computation, vol. 27, no. 6, pp. 1618–1632, 2023. doi: 10.1109/TEVC.2022.
3232844.

T. Eftimov, G. Petelin, G. Cenikj, et al., “Less is more: Selecting the right benchmarking
set of data for time series classification,” Expert Systems with Applications, vol. 198,
p. 116 871, 2022.

A. Kostovska, D. Vermetten, P. Korošec, S. Džeroski, C. Doerr, and T. Eftimov, “Us-
ing machine learning methods to assess module performance contribution in modular
optimization frameworks,” Evolutionary Computation, pp. 1–27, Aug. 2024, issn: 1063-
6560. doi: 10.1162/evco_a_00356.

Conference Papers

A. Kostovska, S. Džeroski, and P. Panov, “Semantic description of data mining datasets:
An ontology-based annotation schema,” in Proceedings of International Conference on
Discovery Science, Springer, 2020, pp. 140–155.

A. Kostovska, D. Vermetten, S. Džeroski, P. Panov, T. Eftimov, and C. Doerr, “Using
knowledge graphs for performance prediction of modular optimization algorithms,” in
International Conference on the Applications of Evolutionary Computation (Part of
EvoStar), Springer, 2023, pp. 253–268.

A. Kostovska, A. Jankovic, D. Vermetten, et al., “Per-run algorithm selection with warm-
starting using trajectory-based features,” in Proc. of Parallel Problem Solving from
Nature (PPSN), Springer, 2022, pp. 46–60.

A. Kostovska, D. Vermetten, S. Džeroski, C. Doerr, P. Korosec, and T. Eftimov, “The
importance of landscape features for performance prediction of modular CMA-ES vari-
ants,” in Proc. of Genetic and Evolutionary Computation Conference (GECCO), ACM,
2022, pp. 648–656.

A. Kostovska, D. Vermetten, C. Doerr, S. Džeroski, P. Panov, and T. Eftimov, “OPTION:
OPTImization Algorithm Benchmarking ONtology,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, 2021, pp. 239–240.

https://doi.org/10.1109/TEVC.2022.3232844
https://doi.org/10.1109/TEVC.2022.3232844
https://doi.org/10.1162/evco_a_00356

160 Bibliography

A. Kostovska, C. Doerr, S. Džeroski, D. Kocev, P. Panov, and T. Eftimov, “Explainable
Model-specific Algorithm Selection for Multi-Label Classification,” in 2022 IEEE Sym-
posium Series on Computational Intelligence (SSCI), IEEE, 2022, pp. 39–46.

A. Jankovic, D. Vermetten, A. Kostovska, J. de Nobel, T. Eftimov, and C. Doerr, “Trajectory-
based algorithm selection with warm-starting,” in 2022 IEEE Congress on Evolutionary
Computation (CEC), IEEE, 2022, pp. 1–8.

A. Kostovska, G. Cenikj, D. Vermetten, et al., “PS-AAS: Portfolio Selection for Auto-
mated Algorithm Selection in Black-Box Optimization,” in International Conference
on Automated Machine Learning, PMLR, 2023, pp. 11–1.

A. Kostovska, A. Jankovic, D. Vermetten, S. Džeroski, T. Eftimov, and C. Doerr, “Compar-
ing Algorithm Selection Approaches on Black-Box Optimization Problems,” in Proceed-
ings of the Companion Conference on Genetic and Evolutionary Computation, 2023,
pp. 495–498.

A. Nikolikj, A. Kostovska, D. Vermetten, C. Doerr, and T. Eftimov, “Quantifying indi-
vidual and joint module impact in modular optimization frameworks,” arXiv preprint
arXiv:2405.11964, 2024.

Publications Not Related to the Dissertation

Journal Articles

B. Stevanoski, A. Kostovska, P. Panov, and S. Džeroski, “Change detection and adaptation
in multi-target regression on data streams,” Machine Learning, pp. 1–38, 2024.

I. Dimitrovski, I. Kitanovski, P. Panov, A. Kostovska, N. Simidjievski, and D. Kocev,
“AiTLAS: Artificial intelligence toolbox for earth observation,” Remote Sensing, vol. 15,
no. 9, p. 2343, 2023.

M. Petković, L. Lucas, J. Levatić, et al., “Machine-learning ready data on the thermal
power consumption of the Mars Express Spacecraft,” Scientific Data, vol. 9, no. 1,
p. 229, 2022.

Conference Papers

A. Kostovska, M. Petković, T. Stepišnik, et al., “GalaxAI: Machine learning toolbox for
interpretable analysis of spacecraft telemetry data,” in 2021 IEEE 8th International
Conference on Space Mission Challenges for Information Technology (SMC-IT), IEEE,
2021, pp. 44–52.

161

Biography

Ana Kostovska was born on 14.04.1995 in Strumica, North Macedonia. She finished her
primary and secondary school in Strumica, North Macedonia. In 2013, she started her
bachelor’s at the Faculty of Computer Science and Engineering of Ss. Cyril and Methodius
University in Skopje, Macedonia. During her undergraduate studies, she held a state
scholarship for talented students awarded by the Ministry of Education and Science of
North Macedonia.

In 2017, after successfully finishing her undergraduate studies with a GPA of 9.15, she
started her master’s studies in Information and Communication Technologies at the Jožef
Stefan International Postgraduate School, Ljubljana, Slovenia. During her master’s studies,
she was awarded the Ad Futura scholarship from the Public Scholarship, Development,
Disability, and Maintenance Fund of the Republic of Slovenia. In September 2019, she
completed her master’s studies with an average grade of 9.95 under the supervision of
Asst. Prof. Panče Panov and co-supervision of Prof. Dr. Sašo Džeroski.

In 2019, she started to work as a young researcher at the Department of Knowledge
Technologies, Jožef Stefan Institute in Ljubljana, under the supervision of Prof. Dr. Sašo
Džeroski. In 2019, she enrolled in the PhD study program in Information and Communica-
tion Technologies at the Jožef Stefan International Postgraduate School, Ljubljana, Slove-
nia under the supervision of Asst. Prof. Panče Panov and co-supervision of Prof. Dr. Sašo
Džeroski and Asst. Prof. Tome Eftimov. During her PhD studies, she received the SPECIES
scholarship and conducted a three-month research visit at LIP6, Sorbonne University in
Paris, under the supervision of Dr. Carola Doerr.

Her research interests lie in the field of machine learning and knowledge representation
and reasoning. Specifically, her work has focused on formalizing knowledge in a variety of
domains, such as machine learning, process-based modeling, and black-box optimisation, in
the form of ontologies. Her goal is to improve the reusability and reproducibility of research
resources and to develop new resources for knowledge representation and reasoning that can
be applied to various domains. Additionally, Ana is actively interested in the application of
machine learning techniques for algorithm selection and algorithm performance prediction
tasks.

	Title
	Acknowledgments
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Study Domains
	1.2 The Role and Types of Benchmarking Data
	1.3 Challenges in Exploiting Benchmarking Data
	1.4 Exploiting Benchmarking Data
	1.5 Problem Formulation
	1.6 Purpose of the Dissertation
	1.7 Goals of the Dissertation
	1.7.1 Research questions
	1.7.2 Scientific contributions

	1.8 Methodology
	1.8.1 Representation of Benchmarking Data
	1.8.2 Exploitation of Benchmarking Data

	1.9 Structure of the Dissertation

	2 Background
	2.1 Knowledge Representation
	2.2 Data Management Guiding Principles
	2.3 Benchmarking for Machine Learning
	2.3.1 The machine learning domain
	2.3.2 Key concepts of ML benchmarking
	2.3.3 Meta-learning and meta-data

	2.4 Benchmarking for Numerical Black-Box Optimisation
	2.4.1 The domain of black-box optimisation
	2.4.2 Key concepts of BBO benchmarking
	2.4.3 Modular algorithm frameworks

	2.5 Algorithm Selection
	2.6 Knowledge Graphs and Knowledge Graph Reasoning
	2.6.1 Scoring-based KGE methods
	2.6.2 Graph neural networks

	3 Semantic Catalogue of MLC Benchmarking Data
	3.1 Problem Definition
	3.2 Related Work
	3.3 Semantic Annotation Schemes for MLC Benchmarking Data
	3.3.1 Semantic annotation of MLC datasets
	3.3.2 Semantic annotation of MLC experiment and performance data

	3.4 MLCBench: Semantic Catalogue of MLC Benchmarking Data
	3.4.1 Knowledge base of MLC benchmarking data
	3.4.2 System for semantic annotation, storage and querying

	3.5 Summary and Discussion

	4 Representation of BBO Benchmarking Data
	4.1 Problem Definition
	4.1.1 Domain challenges for data integration and interoperability
	4.1.2 Addressing data integration challenges with ontologies

	4.2 Related Work
	4.3 The OPTION Ontology
	4.3.1 Ontology design and implementation
	4.3.2 Ontology layers
	4.3.3 Core entities
	4.3.4 Representation of problem landscape entities
	4.3.5 Use cases

	4.4 The OPTION System for Semantic Data Management
	4.4.1 The OPTION KB: annotation and storage
	4.4.2 The OPTION KB: querying semantic annotations
	4.4.3 Integration of the OPTION knowledge base with the IOHprofiler environment
	4.4.4 Extending the OPTION ontology and knowledge base

	4.5 Summary and Discussion

	5 Algorithm Selection for Multi-Label Classification
	5.1 Problem Definition
	5.2 Related Work
	5.3 ML Approaches for AS
	5.3.1 Regression approach
	5.3.2 Pairwise regression approach
	5.3.3 Classification approach
	5.3.4 Pairwise classification approach

	5.4 Experimental Setup
	5.4.1 Dataset portfolio and landscape data
	5.4.2 Algorithm portfolio and performance data
	5.4.3 Model training and validation
	5.4.4 Evaluation of MLC AS

	5.5 Results and Discussion
	5.5.1 Performance comparison of the different ML approaches for AS
	5.5.2 Discussion on explainable AS

	5.6 Summary

	6 Using ML Methods to Assess Algorithm Module Performance Contribution
	6.1 Problem Definition
	6.2 Related Work
	6.3 Methodology
	6.3.1 Generating meta-representations of modular algorithms
	6.3.2 Exploratory analysis using the meta-representations
	6.3.3 Prediction of a module's configuration of the algorithm instances

	6.4 Experimental Design
	6.4.1 Problem instance portfolio and landscape features
	6.4.2 Algorithm portfolio and performance data
	6.4.3 Regression models for algorithm performance prediction
	6.4.4 Classification models for predicting/identifying the modular configuration of algorithm variants

	6.5 Results and Discussion
	6.5.1 Exploratory analysis
	6.5.2 Predicting the modular configuration of an algorithm using its behavior meta-representation

	6.6 Summary

	7 Predicting Algorithm Performance in Numerical Black Box Optimisation with Knowledge Graph Reasoning
	7.1 Problem Definition
	7.2 Methodology and Experimental Setup
	7.2.1 Knowledge graph completion for automated algorithm performance prediction
	7.2.2 Construction of the knowledge graph
	7.2.3 KG embedding-based pipeline for automated algorithm performance prediction

	7.3 Results and Discussion
	7.3.1 Leave-random-performance-triplets-out validation
	7.3.2 Leave-problem/algorithm-instances-out validation
	7.3.3 Addressing the problem of imbalanced classification

	7.4 Summary

	8 Graph Neural Networks for Algorithm Performance Prediction
	8.1 Problem Definition and Related Work
	8.2 Methodology
	8.2.1 Graph representation
	8.2.2 Training heterogeneous GNNs
	8.2.3 GNN architecture design

	8.3 Experimental Setup
	8.4 Results and Discussion
	8.4.1 The impact of the GNN receptive field
	8.4.2 Explaining GNN predictions

	8.5 Summary

	9 Conclusions
	9.1 Research Outcomes and Scientific Impact
	9.2 Final Conclusions and Future Work

	References
	Bibliography
	Biography

