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Abstract

Bug severity classification is a critical and time-consuming aspect of the software bug resolution
process, as the severity of a reported bug influences its urgency to fix it. This task is often
automated using supervised machine learning methods; however, there is a notable lack of dedi-
cated lexicons for this purpose. In this thesis, we assessed the potential usefulness of developing
such a resource, implemented it and compared its performance with classic machine learning ap-
proaches and general purpose lexicons used in text classification. We also proposed and tested a
novel lexicon development approach based in the domain of software bug reports. In our empir-
ical assessment, we used publicly available datasets of bug reports for Firefox and Eclipse. The
results indicate that our lexicon approach achieved a comparable F1-score to classic machine
learning models. Our experiments revealed that lexicon-based approaches were effective in most
of the experiments, while machine learning methods performed better in the experiment that
had a more balanced data distribution. The findings highlighted the dataset-dependent nature
of classification performance and also indicated the unexpected usefulness of general sentiment
analysis lexicons. These results suggest that tailored lexicon-based approaches are a valuable
alternative to machine learning techniques for bug severity classification and could potentially
reduce the need for large labeled training sets.
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Povzetek

Razvrščanje napak v programski opremi glede na njihovo resnost je pomemben vidik odpravlja-
nja napak programske opreme, saj resnost prijavljene napake vpliva na nujnost in posledično
potek njene odprave. To razvrščanje je pogosto samodejno, rešeno z uporabo metod nadzoro-
vanega strojnega učenja. Opazili pa smo pomanjkanje namenskih leksikonov in na leksikonih
temelječih metod za to nalogo. V tem delu smo ocenili potencialno uporabnost takih leksikonov,
jih nekaj razvili in primerjali njihovo učinkovitost z učinkovitostjo klasičnih pristopov strojnega
učenja in z leksikoni, ki so bili ustvarjeni za sorodne namene. Pri tem smo predlagali in preizku-
sili tudi nov pristop za razvoj leksikona. V našem empiričnem vrednotenju smo uporabili javno
dostopne nabore podatkov o programskih napakah za orodji Firefox in Eclipse. Rezultati naše
študije kažejo, da je naš leksikonski pristop dosegel primerljivo oceno F1 kot klasični pristopi
strojnega učenja. Ugotavljamo tudi, da so pristopi, ki temeljijo na leksikonih, učinkoviti v večini
poskusov, medtem ko so se metode strojnega učenja izkazale predvsem v poskusu, pri katerem je
bil uporabljen nabor podatkov z relativno uravnoteženo porazdelitvijo ciljnih razredov. Izsledki
poskusov nakazujejo odvisnost rezultatov od nabora podatkov, pa tudi nepričakovano uporab-
nost leksikonov, ki so bili ustvarjeni za analiziranje razpoloženja. V splošnem naši rezultati
kažejo, da so pristopi, ki temeljijo na leksikonih, lahko alternativa tehnikam strojnega učenja v
domeni razvrščanja napak v programski opremi in jih lahko uporabimo za zmanjšanje potreb
po označenih podatkih.
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Linear SVM-based approach on a cross dataset.
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Chapter 1

Introduction

Our lives are increasingly affected by software systems, and effectively managing these systems
is becoming more complex and relevant. Given this complexity, the prevention, detection, and
correction of software errors are among the most critical activities in ensuring the reliability
and functionality of these systems. Software bugs are defined as faults that hinder the intended
operation of a software system. Bugs are reported to bug-tracking systems like Bugzilla and
Jira in the form of a bug report, which can vary from minor issues that have minimal impact
on functionality to critical problems that may cause the software to crash. A bug report usually
includes a concise description of the underlying issue, which is important for development teams
to understand and allows them to reproduce the issue before attempting a fix. However, the state
of these descriptions can vary depending on the reporter’s expertise; experienced testers may
provide more detailed reports than non-experienced ones. As a result, the development team
usually requires additional information before they can address the reported issues correctly [1].

Proper identification and resolution of bugs are crucial for ensuring software functionality,
quality, dependability, and a satisfactory user experience. Prioritizing bugs based on their sever-
ity allows developers and testers to concentrate on high-impact issues first, leading to quicker
resolutions of critical problems and enhancing user satisfaction [2]. Addressing high-severity bugs
accordingly not only improves overall software reliability but also facilitates efficient allocation
of development resources, which is vital for successful product rollouts and future growth [3].
Prioritizing the most critical bugs allows organizations to streamline their development processes
and consistently deliver high-quality software. Efficient bug triaging relies heavily on the textual
descriptions found in bug reports. The initial step of bug triaging involves evaluating a bug’s
impact on various aspects such as software functionality, data integrity, and user experience.
This thorough analysis is essential for determining the true impact of a bug, which then allows
for the assignment of its severity level. Common classifications of severity levels of bugs include
annotations: critical, high, medium, and low. Misclassification of a severity level, particularly
its overestimation, can lead to the misallocation of resources where minor issues receive undue
attention at the expense of more critical problems. Therefore, accurate classification fosters bet-
ter collaboration and clarity within the development process, ensuring timely delivery of good
quality software while satisfying the needs of users [4].

Traditional methods for the identification and classification of software bugs usually require
manual examination, which can be time-consuming and prone to errors, especially in large-
scale projects. To address these challenges, several studies have explored machine learning,
deep learning, and sentiment-lexicon-based approaches for automating this classification process.
Some of the commonly used machine learning models include Support Vector Machines (SVM),
Decision Trees, and Random Forests, which were trained on historical bug report datasets to
classify the severity of software bugs [5]. Commonly used deep learning techniques include
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), due to their
ability to capture complex relationships in textual data [2]. Additionally, sentiment analysis
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has been employed in bug classification systems by using sentiment lexicons, which assess the
emotional tone of bug reports. This provides insights into the urgency and potential impact
of issues [6]. Interestingly though, domain-specific lexicon approaches were very rarely used for
this task and there does not yet exist a publicly available resource of this kind.

1.1 Problem Definition and Motivation

The current methods for bug severity classification primarily rely on machine learning models
and sentiment-based analysis, which may not sufficiently capture the true impact of a software
bug. Lexicon-based approaches address this limitation by providing a structured set of terms
and relationships to assess software bug severity. These approaches leverage domain-specific ter-
minology and context, offering a promising and transparent alternative for accurately predicting
software bug severity. However, the lack of a freely available and well-curated lexicon for this
classification remains a significant gap in the existing research.

The motivation for the current work is as follows:

• Predicting software bug severity is crucial for prioritizing bug fixes in software development.

• Most lexicon-based approaches for bug triaging rely on sentiment analysis, while problem
specific approaches have not been commonly used for this task.

• Lexicon-based methods provide an effective way to classify bugs based on predefined key-
words associated with severity.

• A well-curated general lexicon can serve as a source of seed words for machine learning
and word embedding techniques.

• Lexicons can act as baseline solutions when data or computational resources are limited.

• A lexicon-based approach has the potential to enhance the accuracy, efficiency, and trans-
parency of software bug severity prediction.

1.2 Objectives

The objective of this work is to assess the potential of a lexicon-based approach for bug severity
classification. To this end, the aim is to inspect whether lexicon-based approaches can be
used as relevant baseline solutions for the development of a robust general lexicon of this kind.
Furthermore, this work aims to develop a comprehensive and freely available static lexicon and
compare its performance against existing lexicons.

This thesis aims to answer the following research questions.

• Can a lexicon-based approach be a competitive alternative to classic machine learning
approaches for software bug severity prediction?

• What is the efficiency of the lexicon-based approach in terms of time consumption com-
pared to other methods?

• How does our developed static lexicon perform compared to existing sentiment analysis-
based lexicons used in this problem domain?
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1.3 Contributions

The expected scientific contributions of the proposed work are as follows:

• Design and development of a freely available general lexicon for software bug severity
classification.

• Empirical evaluation of the effectiveness of lexicon-based approaches compared to tradi-
tional machine learning methods and existing sentiment-based lexicons.

1.4 Organization of the Thesis

The rest of this thesis is structured as follows. Chapter 2 discusses the background and related
work. Chapter 3 covers data source and data preparation Chapter 4 explains the methodology.
Chapter 5 details the experimental settings of our research. Chapter 6 presents the results and
discussion that will also include the qualitative analysis of the static lexicons. Chapter 7 provides
the source code and static lexicon in JSON format. Finally, Chapter 8 concludes the thesis.
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Chapter 2

Background and Related Work

Classification of software bug severity has become an important research area, especially within
large-scale open-source projects like Eclipse and Firefox. This process is important for proper
bug triaging, allowing developers to prioritize their tasks and focus on the most critical issues [7].
This process is an important part of software maintenance in the software development cycle.
To speed up the process of bug triaging, bugs need to be accurately classified and assigned to
appropriate developers. Since software testing and bug triaging are time-consuming activities,
proper management of bugs is important in minimizing the cost of the software development
process. A general bug report contains various attributes such as Bug ID, Status, Submission
Date, Summary, Severity, Description, and Priority [8]. Based on the information in the sum-
mary or description in the bug reports, the bug reporters usually classify the bug according to
its severity [9] which affects how the bug is prioritized and assigned to the related developer [10].
This process of assigning a severity level to the bug is error-prone highlighting a significant gap
in the bug severity classification process [11].

Various methods have been explored for bug severity prediction in the literature to enhance
software maintenance efficiency and product quality. One way of assigning severity to a bug is
through automated classification of the text description of a bug report. This approach utilizes
text mining techniques to predict bug severity by analyzing both content and sentiment aspects of
bug reports, resulting in improved accuracy and performance [12]. Several studies have proposed
solutions for automated bug severity prediction and are mostly focused on machine learning
approaches [5], [8], deep learning methods [11], [13], [6] and the use of word embeddings [14].
Recently, a few studies have employed lexicons or word lists [6], [15], [16] either as sources of
features for machine learning or as baseline approaches for comparison. However, in almost
all the cases these are not lexicons that would be tailor-made for the problem of bug severity
classification, but lexicons that were designed for sentiment analysis. Classification approaches
based on lexicons are usually very resource-friendly and can be employed in situations when
the labeled data is scarce. They are usually outperformed by machine learning approaches but
remain commonly used in some domains, for example in finance [17], and serve as baseline
approaches to compare against.

In the field of bug severity classification, one of the rare works that provides insight into
the performance of such approaches is the work of Barrah et al. [6], but the lexicon used there
is a general sentiment one, like in many similar studies on bug severity. There seems to be
a simple reason for this, namely, according to our literature and research review, there is no
lexicon publicly available yet for bug severity classification. An attempt in this direction was
the SentiStrength-SE lexicon [18], which is an adaptation of a general sentiment analysis lexicon
to software development although focusing only on sentiment. The only specific lexicon of
this kind that we could find was reported to be developed for an experimental comparison [19].
However, the lexicon that was used is not provided, and there are no insights about its standalone
performance, as it was used as a feature filter for machine learning approaches, and the study
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leaves a lot to be desired in terms of methodology and experimental setup.
The most recent systematic review of the literature conducted by Olaleye et al. [20] on pre-

dictive analytics and software defect severity highlights the growing interest in machine learning-
based approaches for severity prediction, it identifies key areas that require further exploration,
emphasizing the need for comprehensive models that can effectively capture the nuances of soft-
ware defects. This aligns with ongoing efforts to refine classification techniques and improve the
accuracy of severity assessments. Another study on software bug severity classification investi-
gated the combination of source code metrics and large language models (LLM) [21]. The study
proposed the integration of source code metrics into CodeBERT, to enhance its performance
in classifying bug severity. The dataset used consisted of bug reports from various software
projects, which were analyzed using machine learning models such as Decision Tree and Ran-
dom Forest. The results indicated that fine-tuning CodeBERT LLM significantly enhanced bug
severity prediction results compared to traditional models, and integrating source code metrics
into CodeBERT further improved the model’s performance in bug severity prediction. Moreover,
Guo et al [22] further advanced the field by addressing the issue of distribution imbalance in
bug report datasets. Their approach combines CR-SMOTE (a synthetic minority over-sampling
technique) with an Extreme Learning Machine (ELM), indicating robust performance against
real data imbalance, which is a common challenge in software bug classification. Their findings
emphasize the necessity of addressing data imbalance to improve classification outcomes.
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Chapter 3

Data

In this study, data has been sourced from software bug reports, which are documented in the
bug tracking system and collected in CSV format. This chapter provides an overview of the
data utilized in our research. We begin with an explanation of the datasets used and highlight
their sources and characteristics. Following this, we explain the data preparation processes that
were undertaken to ensure the appropriate characteristics of the data for our study.

3.1 Datasets

The dataset used in this study was taken from the online platforms Bugzilla1 and Eclipse2.
There are various columns in these datasets, but we have considered the default columns for our
study, the column names are shown in Table 3.1.

Table 3.1: Column names in Eclipse and Firefox datasets

Eclipse Firefox
Bug ID Product Bug ID Product
Component Assignee Component Assignee
Status Resolution Status Resolution
Summary Changed-On Summary Updated
Priority Severity Priority Severity

Type -

The column names in the datasets are mostly consistent, with a few exceptions; for example,
‘Updated’ in the Firefox dataset corresponds to ‘Changed-on’ in the Eclipse dataset. Addition-
ally, the Eclipse dataset does not have a ‘Type’ column, as these values are integrated into the
‘Severity’ column. For instance, the ‘Severity’ column in the Eclipse dataset contains all the
severity levels of a defect. However, if the data item is not a valid defect, the values are set to
‘Enhancement’ or ‘Task’ instead of a severity level. To ensure uniformity in column naming, we
renamed ‘Updated’ in the Firefox dataset to ‘Changed-On’ and introduced a new ‘Type’ column
in the Eclipse dataset. This ‘Type’ column has values of ‘defect’ if the ‘Severity’ column contains
severity levels, and it is set to ‘Enhancement’ when the ‘Severity’ column in the data item is
either ‘Task’ or ‘Enhancement.’ In this study, our primary focus is on the ‘Severity’ column,
while the ‘Summary’ column serves as a source of features containing an unstructured textual
description that provides context for the bug.

1https://bugzilla.mozilla.org/
2https://bugs.eclipse.org/

https://bugzilla.mozilla.org/
https://bugs.eclipse.org/
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The severity levels in the target column are generally set as a blocker, critical, major, normal,
minor and trivial, or in some cases, the severity level is assigned as S1, S2, S3, and S4 as explained
in Table 3.4. The Type column contains information on topics such as defects, enhancement, or
tasks. A defect here refers to a fault in the system whereas, enhancement represents a new feature
in the system. Task on the contrary defines any refactoring, removing, replacement, enabling, or
disabling of functionality. A general error report holds also various other information such as Bug
ID, Status, Submission Date, etc., but the most critical attribute of the bug report is the severity
level of a bug, on the basis of which one decides how rapidly it should be resolved. A bug report
includes a detailed description of the observed issue, clear instructions on how to reproduce the
bug, expected and actual behavior, and additional information such as screenshots, attachments,
and code snippets. Bug reports also specify which software components are affected, such as
bookmarks, history, or the rendering engine, which helps developers narrow down the issue and
allocate resources effectively. A bug report undergoes various statuses throughout its lifecycle,
including New, Verified, Resolved, and Won’t Fix. The total number of data items in both
datasets are shown in Table 3.2

Table 3.2: Summary of data items in the Eclipse and Firefox datasets. The Total column
represents the total number of bugs collected. The Cleaned column shows the total number of
data items after cleaning. The Severe and Non-Severe columns indicate the number of Severe
and Non-Severe bugs, along with their percentages.

Dataset Total Cleaned Severe Non-Severe
Eclipse 31,115 27,393 6,555 (23.93%) 20,838 (76.07%)
Firefox 20,000 14,745 1,659 (11.25%) 13,086 (88.75%)

Figure 3.1 illustrates the distribution of bugs within these datasets, revealing a consistent
trend: Severe bugs are less frequent compared to Non-Severe bugs. This observation aligns with
the typical nature of bug reports, where Severe issues are prioritized for resolution, organizations
strive to address Severe bugs promptly to ensure software reliability and enhance user experience.

Figure 3.1: Distribution of bugs in Eclipse and Firefox dataset

The following table summarizes the details of Bug ID 123456 from the Firefox bug reports
in Bugzilla, as shown in Table 3.3.

The severity levels in the bug report are shown in Table 3.4
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Table 3.3: Sample data item from Firefox bug reports in Bugzilla

Field Details
Bug ID 123456
Summary Firefox crashes when opening multiple tabs. When open-

ing more than 20 tabs simultaneously, Firefox crashes and
closes unexpectedly. This issue has been observed multi-
ple times and is reproducible on different machines.

Product Firefox
Component General
Version 89.0
Operating System Windows 10
Severity Major

Table 3.4: Bug Severity Labels, Levels, and Descriptions

Severity Label Severity Level Description
Blocker Catastrophic Blocks development/testing, impacts >25% of users, causes data loss,

requires immediate resolution (no workaround).
Critical Serious Major functionality severely impaired, high impact, no satisfactory

workaround.
Major Serious Major functionality impaired, high impact, but partial workaround may

exist.
Normal Normal Blocks non-critical functionality, workaround exists.
Minor Minor/Trivial Cosmetic issues, low user impact, does not affect core functionality.
Trivial Minor/Trivial Very minor, typographical or UI issues, negligible user impact.

3.2 Data Preparation

Following the extraction of the bug reports, the first step of our data preprocesing involved data
cleaning to ensure the integrity of the datasets. Data items categorized as ‘enhancements’ and
‘tasks’ were excluded, as they do not qualify as defects. Additionally, entries with severity values
of ‘N/A’ or ‘-’ were removed, as these did not provide useful information for our analysis. This
data cleaning process is essential, as it enhances the quality of the dataset and ensures that only
relevant information is considered for further analysis, that facilitates accurate assessments of
bug severity classification and improve the overall reliability of our experimental results. After
excluding irrelevant data items, the combined dataset comprised 33924 Non-Severe bugs and
8214 Severe bugs.

Furthermore, to convert this into a binary classification problem, the severity levels in the
‘Severity’ column were categorized into two Classes: Severe and Non-Severe. Specifically, the
severity levels of Blocker, Critical, and Major were labled as Severe, while the levels of Normal,
Minor, and Trivial were labled as Non-Severe.

In the next step of the data preparation, the textual data in the summary column was
preprocessed to transform it into structured data more suitable for analysis and modeling. These
preprocessing steps involve tokenization, stopwords removal, and lemmatization.

Tokenization

Tokenization is the process of breaking down the text into individual tokens or words. In our
study, tokenization is performed using Python module regular expressions (re) and the ‘split()‘
method after converting the text to lowercase and removing non-alphabetic characters. With
such tokenization, we keep the process transparent and under our control without relying on
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external libraries.

Example:
Input text:

‘Firefox crashes when opening a new tab after the update.’

1. After removing non-alphabetic characters:
‘Firefox crashes when opening a new tab after the update’

2. Convert to lowercase:
‘firefox crashes when opening a new tab after the updates’

3. Tokenize by splitting the text using split() method
[‘firefox’, ‘crashes’, ‘when’, ‘opening’, ‘a’, ‘new’, ‘tab’, ‘after’, ‘the’,
’update’]

Stopwords Removal

Stopwords are common words, such as ‘the’, ‘a’, ‘an’, and ‘in’, that do not carry significant
meaning and are often removed from the text to focus on more informative words. In our study,
stopwords were identified and removed using the ‘stopwords‘ list from the ‘nltk.corpus‘ module.
The word ‘not’ is treated specially to preserve its context by concatenating it with the following
word while handling negation. By removing these stopwords, we were able to focus on the more
informative and relevant terms within the bug report summaries.

Example continued:
Remove stopwords:
stopwords: [...‘when’, ‘a’, ‘new’, ‘after’, ‘the’...]
Remaining Tokens: [‘firefox’, ‘crashes’, ‘opening’, ‘tab’, ‘update’]

Lemmatization

Lastly, we applied the lemmatization technique to the tokenized and stopwords-removed text.
It is a normalization process that converts words to their base or root form, known as a lemma.
This step helps to account for word variations and ensures that semantically similar terms
are treated equally, improving the overall quality of the textual features. For example, the
words ‘running’, ‘ran’, and ‘run’ would all be converted to their lemma, ‘run’, through the
lemmatization process. In our case the ‘WordNetLemmatizer‘ from the ‘nltk.stem‘ module is
used to perform lemmatization.

Example continued:
Lemmatized Tokens: [‘firefox’, ‘crash’, ‘open’, ‘tab’, ‘update’]

These preprocessing steps were crucial in our study, as they enabled us to extract meaningful
features from the textual data. By applying these techniques, including tokenization, stopwords
removal, and lemmatization, the unstructured bug report summaries were transformed into a
structured data format in which the feature values are the frequencies of the terms (tokens).
Such a representation is then used in our further analysis and modeling in various experiments.
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Frequent words appearance

The table below displays the top 25 most frequent words in the summary column of the both
Eclipse and Firefox dataset.

Top 25 frequently appearing words in Eclipse dataset

not: 4664, project: 3321, file: 2320, web: 2208, xml: 2045, server: 1835, editor: 1828,
eclipse: 1701, validation: 1694, error: 1504, add: 1270, java: 1255, jsp: 1233, org: 1196,
need: 1114, npe: 1141, j: 1071, create: 1024, ee: 1002, service: 929, fail: 836, wtp: 810,
ear: 831, import: 709...

Top 25 frequently appearing words in Firefox dataset

calendar: 2936, not: 2728, event: 1430, browser: 1148, lightning: 1047, tab: 942, events:
910, firefox: 885, new: 884, open: 842, view: 786, show: 773, test: 752, time: 735, task:
734, file: 732, js: 718, display: 683, use: 692, button: 661, window: 665, page: 647, work:
620, error: 605, change: 564, menu: 559, ...
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Chapter 4

Methodology

This chapter outlines the research methodology, beginning with lexicon-based methods, which
include different approaches to creating lexicons and the lexicon-based classification approach,
followed by other classification methods. We included classical machine learning methods in our
evaluation to assess the effectiveness of our proposed approach. Finally, the empirical settings of
this study are presented, focusing on the performance metrics employed to evaluate the models
and methods.

Note that in this thesis, we use the term class to refer to the target labels in the dataset (e.g.,
Severe and Non-Severe), group when discussing collections of bugs according to their severity in
the context of the bug reports, and category to describe the Severe and Non-Severe divisions in
the final lexicons.

4.1 Lexicon-Based Methods

Lexicon-based approaches use predefined lists of words or phrases to analyze text. Lexicons can
be developed through various methods, such as identifying frequently occurring words in a spe-
cific domain to create domain-specific lexicons. Another method involves constructing lexicons
based on semantic fields, and grouping words by meaning or context. Many lexicons are specifi-
cally designed for sentiment analysis, identifying words that convey positive, negative, or neutral
sentiments. The advantages of lexicon-based methods include their simplicity, interpretability,
and efficiency, making them suitable for rapid and scalable text analysis. Additionally, training
data is not a necessary requirement for lexicon-based methods, which is beneficial in scenarios
with limited or no labeled data.

4.1.1 Lexicon Creation

There are various approaches to lexicon creation. In the following, we introduce two common
ones and our own threshold-based approach.

4.1.1.1 Manual Approach

Manual selection of terms that are indicative of the categories of interest (in this case the Severe
and Non-Severe) is a lexicon creation approach that ensures complete human control of the
process but is at the same time labor intensive [23]. Manually created lexicons usually contain
a relatively low amount of terms, which tend to be mostly free of noise and errors. Such small
and high-quality lexicons are commonly used as seed resources in various approaches, such as
lexicon enrichment or feature construction for machine learning. A simple example of lexicon
enrichment is the extension of the sets of terms with their synonyms and hypernyms using
language resources such as WordNet [24]. More elaborate approaches use vector embeddings [25]



14 Chapter 4. Methodology

or language models [26]. Such extension procedures and their quality checking can be automated
to various degrees.

4.1.1.2 Linear SVM-Based Approach

A Linear SVM (Support Vector Machine) is a supervised machine learning algorithm that finds
the optimal linear decision boundary (in general, a hyperplane) to separate data points of dif-
ferent classes. It works by maximizing the margin—the distance between the hyperplane and
the closest data items from each class, which are denoted as support vectors. This ensures the
best possible separation of classes according to the maximum margin principle.

In addition, a linear SVM can be leveraged to identify important features, such as the
indicative words of each class. This way machine-learned SVM data models can also be exploited
for lexicon creation. For use in our work, we created lexicons with linear SVM-based approach,
following the approach from a paper by Islam et al. [27]. The summary text column from
the training dataset was pre-processed with NLP techniques to obtain a corpus of words. The
CountVectorizer method was used to transform the processed text into a numerical word matrix.
Through training and testing with different values of parameter c on a validation set, the best
parameter value was determined in terms of the F1-score. The linear SVM model with the best
performing c parameter was used to gather the information on the coefficients of features, with
positive coefficients used as indicative of the target class (Severe), and negative coefficients for
the opposite class (Non-Severe). Consequently, two distinct word lists were established: for the
Severe category comprising words with positive coefficients, and for the Non-Severe category,
including words with negative coefficients.

The Severe category is then created based on Equation 4.1 and the Non-Severe category is
created based on Equation 4.2.

Coef s > 0, (4.1)

Coef ns < 0, (4.2)

where Coef s denotes the coefficients for Severe words, and Coef ns denotes the coefficients of
Non-Severe words.

4.1.1.3 Threshold-Based Approach

In this work, a new approach to the creation of lexicons was designed for experimentation. It is
shown in Figure 4.1 and works as follows. The training dataset is preprocessed through tokeniza-
tion, stopwords removal, and lemmatization using a custom function. These transformations are
applied exclusively to the Summary column. The dataset is then split into two subsets (Severe
and Non-Severe) based on their severity labels. For each subset, the preprocessed summaries
are converted into lists of individual words, and the frequency of each word is calculated using
Python’s Counter function. This generates two wordlists, one for each severity category, detail-
ing how often each word appears. Next, the two lists are merged into a single set to get a list
of unique words. For each word w in this combined set, it’s frequency in both the Severe and
Non-Severe categories is denoted by Cs(w) and Cns(w), respectively. If a word is absent in either
category, its count is assigned a value of 0. Finally, two ratios are computed for each unique
word based on these counts.

The ratio of appearance of the word w in the Severe category is computed as shown in
Equation 4.3.

Rs(w) =
Cs(w)

Cs(w) + Cns(w)
, (4.3)

Similarly, the ratio of appearance of the word w in the Non-Severe category is calculated as
defined in Equation 4.4.
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Figure 4.1: Workflow for threshold-based lexicon creation: This diagram outlines the process
for constructing and validating a lexicon.

Rns(w) =
Cns(w)

Cs(w) + Cns(w)
, (4.4)

The lexicons Ls and Lns, for Severe and Non-Severe bugs, respectively, are then defined
based on a given threshold, for Severe in line with Equation 4.5 and for Non-Severe in line with
Equation 4.6

Ls = {w ∈ W ;Rs(w) ≥ Ts}, (4.5)

Lns = {w ∈ W ;Rns(w) ≥ Tns}, (4.6)

where Rs(w) and Rns(w) are the severity and non-severity ratios of each word w from the
word list W , while Ts and Tns denote the thresholds, which are parameters of our method. Their
values, ranging between 0.1 and 1.0 in our experiments, are optimized on a validation subset of
the learning data using the F1-score. The thresholds that maximize performance are selected to
generate the final lexicons. This method produces two distinct lexicons: Severe and Non-Severe.
These lexicons are rigorously evaluated on the test dataset. Finally, both lexicons are combined
into a single JSON file, preserving their respective categories.

4.1.2 Lexicon-Based Classifiers

Given a lexicon, there are many ways it can be used for classification. This section explains the
lexicon-based classification approach that we used and provides an example that demonstrates
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how the classifier works in various classification scenarios. In addition, we discuss some other
lexicon-based classification methods.

4.1.2.1 Our Lexicon-Based Classification Approach

The classification approach for the lexicon-based classifier that we used was very basic and
straightforward, as shown in Figure 4.2.

Ns > Nns

Ns < Nns

No

Yes

Ns = Nns = 0

No

Yes

Minimum Normalized 
Indices (MNI)

No

MNIs <  MNIns Severe

Non-severe

Yes

No

Severe

Non-severe

Randomly assign

Yes

Selected lexicons
- Severe
- Non-Severe

New Bug

Preprocess summary  
(Tokenization, Stopwords removal,  Lemmatization

Figure 4.2: Our lexicon-based classifier: Each scenario leads to an outcome, which is represented
by the rounded rectangles.

A new bug was classified into the category that corresponded to the lexicon with which the
intersection of the words was the largest.
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N(B,L) = |{w ∈ B ∩ L}| , (4.7)

where the function N(B,L) calculates the number of words w that are common between
the bug report B and the lexicons L, and for a given bug report B, Ns = N(B,Ls) and
Nns = N(B,Lns).

When a bug summary has an equal, non-zero number of intersecting words with both the
Severe and Non-Severe lexicons, it is classified as a neutral bug. To further classify these neu-
tral bugs, we first sort the lexicons in descending order of their severity/non-severity ratios.
For each intersecting word, we calculate its normalized index in both sorted lexicons shown in
Equation 4.8. This index reflects the word’s relative ranking within each lexicon, where a lower
normalized value (due to a smaller index) corresponds to a higher-ranked word (more Severe or
Non-Severe). These normalized indices are stored in two separate lists for Severe and Non-Severe
normalized indices.

NI (w,L) =
I (w,L)

|L|
100, (4.8)

where I(w, L) is the index (rank) of the word w in lexicon L and |L| is the size of the lexicon
L. Next, we converted these lists into two data frames: one for Severe normalized indices and
another for Non-Severe normalized indices. For each data frame, we calculated the minimum
normalized index value. This allowed us to identify the category (Severe or Non-Severe) with the
lowest minimum value, which we hypothesized would best reflect the bug report’s true severity
level. Finally, we compared the minimum values of both categories, assigning the bug report to
the category with the lower minimum index as its predicted severity.

MNI (B,L) = min {NI (w,L);w ∈ B} , (4.9)

where each word w in B that appears in L, its normalized index NI (w,L) is computed based
on its position in L, and MNI (B,L) is defined as the minimum of these values and MNI s =
MNI (B,Ls) and MNI ns = MNI (B,Lns). In cases of neutral bugs where the intersection of
words between the bug summary and the Severe and Non-Severe lexicons is equal and the
intersection count is zero, we employ a random assignment approach to determine the severity
level. Specifically, the bug report is randomly assigned to either the Severe or the Non-Severe
category.

It is important to note that this random assignment approach was utilized as a last resort
when all other lexicon-based classification methods had been exhausted. Moreover, this random
assignment was only applied to a small subset of neutral bugs. By incorporating this strategy
for zero-equal ratio neutral bugs, we aimed to provide a comprehensive and robust lexicon-based
approach for bug severity classification. Ultimately, this method ensured that all bug reports
were assigned a severity level, even in cases where the textual content alone did not provide a
clear indication of the bug’s criticality.

Example of Our Lexicon-Based Classifier

Our lexicon-based classifier determines bug severity by analyzing the intersection of words be-
tween a bug report and the Severe/Non-Severe lexicons. Table 4.1 illustrates four classification
scenarios, demonstrating how the method handles cases where word counts differ or overlap. For
each scenario, the table displays the original bug summary (e.g., ‘payment gateway integration
fails blocking user transaction’), its preprocessed tokenized form (Summary list), the intersect-
ing Severe/Non-Severe words, and their respective counts (Ns and Nns)). In cases where counts
are equal and non-zero (e.g., Scenario 3), the table includes the minimum normalized indices
(MNIs and MNIns), which reflect word rankings in the sorted lexicons. The predicted severity
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is assigned by comparing word counts or, for tied scenarios, the minimum normalized indices,
prioritizing the category with the lower index to resolve ambiguity.

Table 4.1: Lexicon-based classifier example. This table demonstrates the various scenarios
handled by our developed classifier method for classifying new software bugs as severe or non-
severe.

Classification: Scenario 1
Bug: payment gateway integration fails blocking user transaction
Summary list: {‘payment’, ‘gateway’, ‘integration’, ‘fail’, ‘block’, ‘user’, ‘transaction’}
Severe words: {‘user’, ‘fail’, ‘transaction’}
Non-severe words: {}
Severe word count (Ns): 3
Non-severe word count (Nns): 0
Predicted Severity: Severe
Classification: Scenario 2
Bug: spelling mistake text footer section
Summary list: {‘spell’, ‘mistake’, ‘text’, ‘footer’, ‘section’}
Severe words: {}
Non-severe words: {‘mistake’, ‘section’}
Severe word count (Ns): 0
Non-severe word count (Nns): 2
Predicted Severity: Non-severe
Classification: Scenario 3
Bug: security vulnerability allowing unauthorized access web application
Summary list: {‘security’, ‘vulnerability’, ‘allow’, ‘unauthorized’, ‘access’, ‘web’, ‘applica-
tion’}
Severe words: {‘unauthorized’}
Non-severe words: {‘unauthorized’}
Severe word count (Ns): 1
Non-severe word count (Nns): 1
Minimum severe normalized index (MNIs): 21.875
Minimum non-severe normalized index (MNIns): 68.75
Predicted Severity: Severe
Classification: Scenario 4
Bug: Firefox slowdowns when opening multiple tabs
Summary list: {‘firefox’, ‘slowdowns’, ‘open’, ‘multiple’, ‘tab’}
Severe words: {}
Non-severe words: {}
Severe word count (Ns): 0
Non-severe word count (Nns): 0
Predicted Severity: Non-severe

4.1.2.2 Other Lexicon-Based Classification Methods

Lexicon classification can also be done in other ways. Particularly interesting are some intensity-
based methods that are common in the domain of sentiment analysis. Sentiment lexicon classifi-
cation in such cases relies on a set of phrases that have specific sentiment orientations (SO) and
their strengths to assess the overall sentiment of a document. This approach assigns positive SO
values to favorable expressions and negative values to unfavorable ones. For instance, the word
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‘good’ could carry an SO value of +1, whereas ‘not good’ would be rated at -1. Techniques also
incorporate intensifiers and diminishers, like ‘very good’ (which is more positive) and ‘barely
good’ (which is less positive), thus enabling more nuanced SO values that range from -5 to +5
[28] [29].

Another example is VADER (Valence Aware Dictionary and Sentiment Reasoner). It em-
ploys a pre-established lexicon containing over 7500 words and phrases. Each paired sentiment
intensity score ranges from -4(highly negative) to +4(highly positive). VADER classifiers an-
alyze text by breaking it into individual words, assigning sentiment scores to each, and then
calculating the overall score. Its rule-based features enhance sentiment analysis by effectively
handling negation and incorporating grammatical conventions. For instance, it reverses senti-
ment scores for phrases that are negated, such as ‘not good’, and modifies scores according to
intensity boosters, like ‘very’ or ‘barely.’ Furthermore, VADER takes punctuation and capital-
ization into account to enhance the accuracy of sentiment assessments and in fact, it is not just
a lexicon-based method [30].

4.2 Machine-Learning Methods

Though several studies on software bug severity classification have used machine learning models,
we focused on Support Vector Machine (SVM), Logistic Regression (LogReg), and Naïve Bayes
models (multiNB) in this work due to their distinct characteristics. These models were evaluated
for their effectiveness in predicting bug severity levels based on lexicon-derived features.

4.2.1 Support Vector Machines

Support Vector Machines are widely used supervised learning algorithms known for their ef-
fectiveness in handling high-dimensional data spaces. SVMs are particularly suited for binary
classification tasks as they are binary classifiers in essence, identifying the maximum margin hy-
perplane that separates two classes in the feature space. SVMs have the ability to handle both
linearly separable and non-linearly separable data using kernel functions, which transform the
original feature space into a higher-dimensional space where the data becomes linearly separable.
The SVM approaches are also very efficient in terms of handling large feature sets, making them
a suitable choice for tasks that involve a large number of features, such as text classification,
which is the task at hand in our study. The combination of strong theoretical foundations,
versatility, and computational efficiency has made SVM a widely adopted algorithm in various
domains including machine learning, pattern recognition, and data mining.

In our study, we used the linear SVM classifier to develop a predictive model with the
same data split that was utilized for dynamic lexicon creation. We used the SVM classifier
implementation from the scikit-learn library with default parameters (c = 1).

4.2.2 Logistic Regression

Logistic Regression, a widely used statistical model for binary classification tasks, like bug
severity prediction, estimates the probability of a data item belonging to a specific class. Known
for its simplicity, interpretability, and computational efficiency, logistic regression is also quite
robust to noise. These qualities make it a sensible approach for our experiments with bug
severity classification, particularly as it offers efficient model training and classification.

In our study, we used the scikit-learn implementation of logistic regression with default
parameters on the same data split utilized for dynamically creating the lexicons.
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4.2.3 Naïve Bayes

Naïve Bayes, a probabilistic classifier based on Bayes’ theorem with the assumption of feature
independence, is well known for its simplicity and efficiency in text classification tasks. This
classifier excels in handling high-dimensional data and offers rapid training with minimal com-
putational resources and seamlessly manages missing data. It stands out for its effectiveness
in text classification, making it a valuable tool for various applications requiring efficient and
reliable classification algorithms.

In our study, we used the Multinomial Naïve Bayes implementation from the scikit-learn
library on the same data split as all other approaches.

4.3 Empirical Evaluation

For this study, we empirically evaluated the lexicon learning and classification approach and
three classic machine learning methods: Support Vector Machine (SVM), Logistic Regression,
and Naïve Bayes in eight experimental scenarios. In each experiment, the dataset was randomly
split into training, validation, and testing datasets. The lexicon-based classifier was evaluated
using tests with different Severe and Non-Severe thresholds. The same dataset-split was then
used to train the machine learning (ML) classifiers. Each experiment was repeated ten times,
with a diverse random split each time.

4.3.1 Performance Assessment Metrics

The F1-score is a critical metric for evaluating classification models, particularly in imbalanced
datasets. It balances precision (accuracy of positive predictions) and recall (completeness of
positive predictions), making it ideal for scenarios where both false positives (FP) and false
negatives (FN) must be minimized. These metrics are especially relevant to our work, as our
dataset exhibits class imbalance between Severe and Non-Severe bug reports. Below, we define
the confusion matrix components and metrics used:

• True Positive (TP): Actual class is Severe, predicted class is Severe.

• False Positive (FP): Actual class is Non-Severe, predicted class is Severe.

• True Negative (TN): Actual class is Non-Severe, predicted class is Non-Severe.

• False Negative (FN): Actual class is Severe, predicted class is Non-Severe.

The metrics are formally defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (4.10)

where accuracy measures the proportion of correctly classified instances.

Precision =
TP

TP + FP
, (4.11)

where precision quantifies the fraction of true positives among all predicted positives.

Recall =
TP

TP + FN
, (4.12)

where recall measures the fraction of true positives identified from all actual positives.

F1 -score = 2× Precision × Recall

Precision + Recall
, (4.13)
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where the F1-score is the mean of precision and recall.

F1 -mean =
F1Severe + F1Non-Severe

2
, (4.14)

where the F1-mean averages the F1-scores of both classes, ensuring equal weight for Severe and
Non-Severe categories.
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Chapter 5

Experimental Setting

This chapter presents a series of experiments conducted to generate a lexicon for bug severity
classification. The first four experiments were conducted using varying combinations of severe
and Non-Severe thresholds to dynamically generate lexicons for bug severity classification. Based
on the performance outcomes of these experiments, it was determined that it is sensible to
develop a static lexicon for this domain with different approaches, as the results were comparable
with the classic machine learning models used in our experimentation. Furthermore, a group of
experiments was conducted to develop static lexicons for this domain. The first four experiments
were conducted to develop lexicons with a threshold-based approach and various combinations
of datasets, another two experiments were conducted to develop a static lexicon with linear-SVM
coefficient-based approach. Finally, four additional experiments were performed using various
publicly available lexicons to establish a baseline solution for comparison. As shown in Table 5.1,
a series of experiments was conducted employing various approaches and dataset combinations.

5.1 Dynamic Lexicons

In the first stage of our study, a group of experiments was conducted to create and assess dynamic
lexicons, which means lexicons generated and adjusted in real-time based on varying thresholds
during the experimentation process. By employing various combinations of thresholds, the
lexicon is tailored to reflect the context of the dataset.

In Experiment 1, the lexicon was created and tested exclusively on the Eclipse dataset,
followed by the training and testing of machine learning classifiers (SVM, Logreg, and MultiNB)
on the same dataset split. This approach aimed to evaluate the performance of the lexicon
method specifically on the Eclipse dataset. A unique characteristic of the Eclipse dataset is that
its bug reports are written by developers and are technical in nature. Additionally, numerous
studies on bug severity have utilized the Eclipse dataset, enabling us to compare the effectiveness
of our classifier with previously reported findings. In Experiment 2, the lexicon was created and
tested on the Firefox dataset alone, followed by training and testing of the ML classifier on
the same split of the dataset. This experiment was conducted to observe the performance of
the lexicon approach on Firefox dataset. In Experiment 3, the lexicon was created and tested
on the combined dataset, followed by training and testing of the ML classifiers on the same
split of the combined dataset. This was conducted to assess the performance of the lexicon
approach on datasets from diverse sources. For this purpose, both datasets were merged in
the pre-processing step so that both the learning and the prediction datasets have instances
from both of the datasets. In Experiment 4, the combined datasets of Eclipse and Firefox were
utilized, with bugs classified as ‘Normal’ excluded from the dataset. This exclusion minimized
the imbalance in the distribution of data between the Severe and Non-Severe categories. Such
exclusion is very common in related work.

For Experiments 1, 2, 3, and 4, the data was split into approximately 64% training, 16%
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validation, and 20% testing sets across 10 iterations. This was achieved using scikit-learn’s
train_test_split in a two-step process: first, 20% was set aside for testing. The remaining 80%
was then further split, yielding the 64% training and 16% validation portions. Each iteration
employed a unique random seed for varied splits.

5.2 Static Lexicons

A group of cross-dataset experiments was conducted to create and test a general static lexicon
for software bug severity classification, which means a lexicon that remains fixed.

Threshold-based lexicon

Experiment 5 was to assess the efficiency of the lexicon developed in the Eclipse dataset and
verify its performance on a different dataset, namely Firefox. In this study, the Eclipse dataset
was divided into 80% for training and 20% for validation, whereas, the entire Firefox dataset was
utilized for testing purposes. After testing each generated lexicon with the validation dataset,
the most suitable lexicon was selected in terms of F1-score (severe), and a static lexicon was
subsequently generated from the lexicon with the highest F1-score. The output from this ex-
periment is a static lexicon in JSON format and is called lexicon_THR_E. The objective of
Experiment 6 was to evaluate the efficacy of the lexicon created on the Firefox dataset and
to test it entirely on the Eclipse dataset. The Firefox dataset was split into 80% for training
and 20% for validation, with 100% of the Eclipse data utilized for testing. The result of this
experiment was a static lexicon in JSON format, referred to as lexicon_THR_F.

Linear SVM-based Lexicon:

In Experiment 9, the Eclipse dataset was split into 80% for training and 20% for validation to
develop a lexicon using a Linear SVM coefficients approach. The developed lexicon was then
tested on the Firefox dataset. In Experiment 10, the Firefox dataset was similarly divided into
80% for training and 20% for validation to create a lexicon and tested on the Eclipse dataset. The
Linear SVM model was trained and tested on the validation dataset on different c parameters,
the best hyperparameter c was identified based on the maximum F1-score, and the linear SVM
model was fitted using this optimal c parameter value. Finally, the coefficients were obtained
from the trained model, resulting in a list of words with positive and negative coefficients. The
output from these experiments includes two static lexicons in JSON format: lexicon_SVM_E
for the Eclipse dataset and lexicon_SVM_F for the Firefox dataset. In these lexicons, negative
coefficients correspond to Non-Severe words, while positive coefficients indicate severe words.
Since the target class is ‘Severe’, stronger positive coefficients signify a greater likelihood of
belonging to this class according to the Linear SVM model. Overall, the data split for these
experiments consisted of 80% for training, 20% for validation from one dataset, and the testing
dataset on an entirely different dataset.

5.3 Publicly Available Lexicons

Following experiments were conducted to classify bug reports using an existing lexicon, estab-
lishing a baseline solution for comparison with our created static lexicon for the same task.

Bing Liu Lexicon

In Experiment 11, the complete Firefox dataset was utilized as the test dataset and in Experiment
12, the Eclipse dataset was used as a test dataset. Bing Liu’s lexicon consists of two text files:
one containing words with positive sentiments and the other containing words with negative
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Table 5.1: Overview of the experiments.

Training Validation Testing Normal Status Split
Dynamic Lexicons

Experiment 1 Eclipse Eclipse Eclipse Included 64|16|20
Experiment 2 Firefox Firefox Firefox Included 64|16|20
Experiment 3 Eclipse&Firefox Eclipse&Firefox Eclipse&Firefox Included 64|16|20
Experiment 4 Eclipse&Firefox Eclipse&Firefox Eclipse&Firefox Excluded 64|16|20

Static Lexicons
Experiment 5 Eclipse Eclipse Firefox Included 80|20|100
Experiment 6 Firefox Firefox Eclipse Included 80|20|100
Experiment 7 Eclipse&Firefox Eclipse&Firefox Eclipse&Firefox Included 64|16|20
Experiment 8 Eclipse&Firefox Eclipse&Firefox Eclipse&Firefox Excluded 64|16|20
Experiment 9 Eclipse Eclipse Firefox Included 80|20|100
Experiment 10 Firefox Firefox Eclipse Included 80|20|100

Existing Lexicons
Experiment 11 - - Firefox Included No Split
Experiment 12 - - Eclipse Included No Split
Experiment 13 - - Firefox Included No Split
Experiment 14 - - Eclipse Included No Split

sentiments [23] [28]. In this experiment instead of our custom-developed lexicons, the Bing Liu’s
opinion lexicon was employed, the positive file was used as the nonsevere dictionary, and the
negative file was used as a severe dictionary, and thus the classifier method that we created
explained in section 4.1.2.1 is applied to classify a new bug. The effectiveness of this approach
was then evaluated using the F1-score.

VADER Rule Based Lexicon

In Experiment 13, the Firefox dataset was utilized for bug severity classification using the
VADER rule-based lexicon. In Experiment 14, the Eclipse dataset was employed for the same
classification task with the VADER lexicon [30]. The VADER lexicon library was imported
from NLTK and used for classification instead of the custom lexicon. A complete sentence from
the description of a bug report was passed to the VADER classifier method, which leverages a
built-in function called ‘analyzer.polarity_scores’. This method generates polarity scores for the
text, categorizing it as positive, negative, neutral, or compound. The compound score was then
used to classify the bug reports into Severe and Non-Severe categories. If the compound score
is greater than zero, the bug is tagged as Severe; if it is less than zero, the bug is tagged as
Non-Severe. Finally, the classifier’s performance was evaluated using the scikit-learn library.

5.4 Static Final Lexicons

Four static lexicons were created for software bug severity classification from different approaches
and various experimental settings. The first three lexicons are created from the threshold-based
approach, the fourth lexicon is created from the linear SVM-based approach. This section
outlines details about the final static lexicons.

Final Static Lexicon: SEV_THR_LEX

The static lexicons generated from Experiments 5 and 6 on a cross dataset (lexicon_THR_E
and lexicon_THR_F) were merged in JSON format. The merging process involved combining
the ‘Severe’ category from lexicon_THR_E with the ‘Severe’ category from lexicon_THR_F,
and similarly for the ‘Non-Severe’ categories. After merging, duplicates were checked within
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each category. In the merged final lexicon, words with higher ratios Rs(w) and Rns(w) were
retained while duplicates with lower ratios were removed from each category. The filtered lexicon,
after duplicate removal, is named SEV_THR_LEX, which contains 1,231 severe words and 6,719
Non-Severe words. An example of 10 random words from this final lexicon is shown in Table 5.2.

Final Static Lexicon: SEV_THR_LEX_c

The static lexicon SEV_THR_LEX_c was derived from Experiment 7. In this experiment, the
Eclipse and Firefox datasets were first concatenated into a single, combined dataset. This
combined dataset was then split following the methodology detailed in Section 5.1 (which as
now clarified results in approximately 64% training, 16% validation, and 20% test data for each
of the 10 iterations). The train_test_split function, applied to this entire merged dataset,
inherently shuffles the data before partitioning. This random shuffling ensures that instances
from both original source projects (Eclipse and Firefox) are randomly distributed across the
training, validation, and test sets in each iteration, reflecting their proportions in the overall
combined data. This lexicon was then constructed exclusively using the 64% training portion
of these consequently mixed splits. The final lexicon contains 2,130 severe words and 5,479
Non-Severe words. An example of 10 random words from this lexicon is shown in Table 5.3.

Final Static Lexicon: SEV_THR_LEX_f

The static lexicon SEV_THR_LEX_f was generated from Experiment 8. For this experiment, bug
reports with the status ’Normal’ were first excluded from the combined Eclipse and Firefox
dataset, creating a filtered, merged dataset. This merged filtered data set was then subjected
to the same 10-iteration splitting process detailed in Section 5.1 (producing approximately 64%
training, 16% validation and 20% test data). Similarly, the train_test_split function’s inherent
shuffling of this entire filtered, merged dataset ensured a random distribution of instances from
both source projects into the training, validation, and test sets. The lexicon was built solely from
this 64% training portion of these mixed splits. The final lexicon contains 45 severe words and
764 Non-Severe words. An example of 10 random words from this lexicon is shown in Table 5.4.

Final Static Lexicon: SEV_SVM_LEX

The static lexicons generated from Experiments 9 and 10 (lexicon_SVM_E and lexicon_SVM_F)
were merged in JSON format. The merging process involved combining the ‘Severe’ category
of lexicon_SVM_E with the ‘Severe’ category of lexicon_SVM_F and likewise for the ‘Non-
Severe’ categories. The final lexicon from this experiment is called SEV_SVM_LEX. It contains
3,756 severe words and 7,307 Non-Severe words. An example of random 10 words from this final
lexicon is shown in Table 5.5.
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Table 5.2: Static Lexicon: SEV_THR_LEX

Severe Terms Non-Severe Terms
Term Ratio Term Ratio
npe 0.5 webapps 1.0
create 0.306 clean 1.0
fail 0.204 noteworthy 1.0
facet 0.311 produce 0.917
freeze 0.411 different 0.953
publish 0.562 byte 0.818
unable 0.4225 compiler 0.878
workspace 0.333 unused 1.0
tvt 1.0 variable 0.938
tct 0.636 allow 1.0

...

Table 5.3: Static Lexicon: SEV_THR_LEX_c

Severe Terms Non-Severe Terms
Term Ratio Term Ratio
undo 0.272 paste 0.851
fold 0.208 document 0.898
fix 0.221 wrong 0.862
deploy 0.576 behavior 0.88
project 0.346 tie 0.820
weblogic 0.444 quick 0.891
generic 0.246 validation 0.809
server 0.267 little 1.0
api 0.203 failure 0.802
provide 0.2 ear 0.842

...

Table 5.4: Static Lexicon: SEV_THR_LEX_f

Severe Terms Non-Severe Terms
Term Ratio Term Ratio
leave 1.0 prevent 1.0
moz 1.0 keyboard 1.0
pdf 1.0 focus 1.0
drain 1.0 item 1.0
individual 1.0 overflow 1.0
structure 1.0 menu 1.0
bookmarkfolder 1.0 dot 1.0
restore 1.0 line 1.0
poor 1.0 focus 1.0
quality 1.0 url 1.0

...
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Table 5.5: Static Lexicon: SEV_SVM_LEX

Severe Terms Non-Severe Terms
Term Ratio Term Ratio
leave 6.920 ico −6.51
damage 6.268 drag −3.47
renstalling 6.150 outbox −3.47
decouple 5.771 prtime −3.47
team 5.709 testtodaypane −3.47
smth 5.540 uitour −3.47
webextensions 5.328 caliicalproperty −6.94
backward 5.052 complete −6.94
reload 4.844 cta −6.94
mrangeend 4.714 got −6.94

...
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Chapter 6

Results and Discussion

In this chapter, we first outline the results of our experimental assessment of dynamic lexicon
generation. For these experiments, we present box plots to show the variation in performance
across the train, validation, and test datasets. Next, we present the results of the experiments
for static lexicons, where the focus is on evaluating variability in a cross-dataset setting using
different training data subsets. Note that box plots are not shown for the static lexicon exper-
iments, as the test dataset remains fixed in each iteration, and no fine-tuning is performed for
the ML methods; for the publicly available lexicons, only testing is conducted. Then, we discuss
the results of the experiments for static lexicons after handling negation. Finally, we present bar
graphs for all experiments, to see the direct comparison of results across different approaches
and before and after handling negation for all different approaches.

Before we focus on our results, we shall revisit the best results from the related work. Previous
studies, such as the one by Bibyan et al. [31] on assessing the severity of software bugs using
neural networks, achieved good results with the F1-score (Severe) for separated four components
of the Eclipse dataset. In this paper they removed the bugs with the "Normal" bugs to reduce
imbalance and ambiguity. They then grouped the remaining levels into two classes: "Severe"
(Blocker, Critical, Major) and "Non-Severe" (Minor, Trivial). Their neural network achieved
F1-scores of 71% for UI, 54% for Core, 71% for Debug, and 68% for Text.

Furthermore, Hamouri et al. [32] achieved the highest reported F1-scores of 94% on the
Eclipse dataset and 93% on the Firefox dataset using Neural Networks. Their results show
such an performance ordering: Neural Networks (94% F1-score on Eclipse), ensemble methods
(87%-90%), SVM (82%), with Random Forest achieving 41%. Their methodology employed
comprehensive NLP preprocessing, with TF-IDF feature extraction to capture semantic rela-
tionships, SMOTE balancing techniques to address class imbalance issues, and leveraged neural
networks’ capacity to learn complex non-linear patterns in the data. Their study utilized a 6-
class severity classification scheme for bug severity assessment. However, the preprocessing steps
were indicated to be done on data before the train-test split, which could be methodologically
questionable.

6.1 Dynamic Lexicons Results

Results from our dynamic learned lexicon experimentation are presented in Tables 6.1–6.4. The
best results of each performance measure are displayed in bold in this and all the following tables
with performance results. Additionally, the results shown in the tables are presented in Figure
6.5, showing a graphical representation of the trends and insights in terms of F1-score and F1-
mean. The tables present a comparative evaluation of various bug severity classification models,
including a lexicon-based approach, Support Vector Machines, Multinomial Naïve Bayes, and
Logistic Regression. The metrics reported include F1-score (Severe), F1-mean, True Positives
(TP), False Positives (FP), True Negatives (TN), False Negatives (FN), computing time for
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learning (tl), and computing time for classification (tc).
According to the F1-score for the Severe category as the most relevant performance measure

in our setting—the usefulness of the lexicon approach is shown by its superior performance in
three experiment variations and very comparable performance to ML approaches. However,
there are at least two cautionary notes to consider in view of these results. First, as explained in
Section 4.1.1.3, we employed a learning approach to learn and tune the lexicon to the training
data, so it is not a classic lexicon-based classification approach, but machine-learning to some
extent. Second, the SVM approach is very sensitive to some parameters (we used defaults),
and a much more informative assessment of its performance can be gained if the parameters are
tuned with the validation set, like in the case of the lexicon approach. The SVM tuning was left
out because it took prohibitive amounts of time. However, we have the F1-score results of SVM
with parameter fitting for Experiment 1 and it is 0.3314, considerably better than with defaults,
but still comparable to other approaches.

The running time of the learning and classification parts of the approaches are also reported
in the result, Tables 6.1–6.2 (in seconds). As mentioned, even without parameter tuning, the
SVM took much longer than other methods. The learning part of our lexicon approach is also
time-consuming, but as learning is not necessary given a fixed static lexicon, which is our end
goal, the more important is the classification time. Interestingly, even during classification, some
classic machine learning approaches are faster than our (which is not time optimized) use of the
lexicon. This is a relevant result to consider, as besides usefulness in situations with low (or no)
training data, lexicons are commonly argued to be fast and not computationally intensive.

Table 6.1: Results of Experiment 1 as averages of 10 iterations.

F1-score F1-mean TP FP TN FN tl tc
lexicon_THR 0.4631 0.5466 821.7 1392.4 2775.7 489.2 1024.6 5.2
SVM 0.2866 0.5737 256.1 220.1 3948 1054.8 2225.1 140.03
MultiNB 0.3559 0.6041 363.7 368.8 3799.3 947.2 1.2 0.04
LogReg 0.3030 0.5815 277.7 244.2 3923.9 1033.2 3.2 0.08
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Figure 6.1: Box plots for Experiment 1 comparing the F1-score (a) and mean F1-score (b)
between our threshold-based lexicon approach and machine learning methods.

The results of Experiment 1 are displayed in Table 6.1, and box plots are presented in
Figure 6.1. The results show that the lexicon-based approach achieved the highest F1-score
of 0.4631 and F1-mean of 0.5466, outperforming the machine learning models. This suggests
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that the lexicon-based method is effective in capturing the textual patterns and characteristics
associated with bug severity using the information contained in the Severe and Non-Severe
word lexicons. On the other end, the machine learning methods, including SVM, MultiNB, and
LogReg, were first trained on various sizes of feature sets: ‘1000, 10000, 15000, and unlimited’,
it was observed that after 15000 features there was no big difference in the performance metrics,
the results show that the machine learning models exhibit F1-score 0.2866 to 0.3559 and F1-
mean 0.5737 to 0.6041 when trained on the full, unlimited feature set. The results indicate
that there are opportunities for enhancing the performance of machine learning models through
feature engineering, and hyperparameter tuning. However, these models demonstrate higher
F1-mean scores, ranging from 0.5737 to 0.6041. This means that the machine learning models
are better at predicting the Non-Severe class, and the Non-Severe F1-score is better. However,
we are interested in the F1-score for Severe.

The computation time analysis shows that SVM in most cases took the longest for both
learning and classification. The shortest classification times were achieved by Multinomial Naïve
Bayes (MultiNB) and Logistic Regression (LogReg). Our lexicon-based approach performed
better than SVM in terms of both learning and classification time. However, it is slower than
MultiNB and LogReg. Overall, our threshold-based approach provided a good balance between
computational time and accuracy in this experiment setting.

Table 6.2: Results of Experiment 2 as averages of 10 iterations.

F1-score F1-mean TP FP TN FN tl tc
lexicon_THR 0.3997 0.5266 202.5 475.5 2140.9 130.1 333.3 1.7
SVM 0.2759 0.6061 65.9 78.6 2537.8 266.7 83.9 16.4
MultiNB 0.3382 0.6345 94.5 131.5 2484.9 238.1 0.5 0.02
LogReg 0.2985 0.6193 69.3 61.6 2554.8 263.3 1.3 0.03
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Figure 6.2: Box plots for Experiment 2 comparing the F1-score (a) and mean F1-score (b)
between our threshold-based lexicon approach and machine learning methods.

Similarly, the results from Experiment 2 are displayed in Table 6.2 and box plot presented in
Figure 6.2 also show that the lexicon-based approach achieved the highest F1-score of 0.3997 and
F1-mean of 0.5266, outperforming the machine learning methods in terms of F1-score. However,
machine learning models, including SVM, MultiNB, and LogReg, exhibit lower F1-scores ranging
from 0.2759 to 0.3382 and an F1-mean ranging from 0.6061 to 0.6345 when trained on the full,
unlimited feature set. In this experiment, the difference in the F1-mean between the lexicon
approach and machine learning methods is slightly more noticeable compared to Experiment
1. This shows that Experiment 2 performed better for the Non-Severe class, and the F1-mean



32 Chapter 6. Results and Discussion

for the Non-Severe is much better than Experiment 1. Moreover, the computation time for
classification (tc) shows that SVM took the longest, and in terms of computation time for learning
our threshold-based approach took the longest, while MultiNB had the shortest computation
time for both learning and classification. The lexicon approach was faster than SVM but not
faster than MultiNB and LogReg in terms of classifier computation time. It is crucial to note
that the computational cost of the lexicon-based method is primarily incurred during the one-
time creation of the Severe and Non-Severe lexicons. After this step, the classification process
can be performed efficiently by matching the bug report words with the pre-computed lexicons.

Table 6.3: Results of Experiment 3 as averages of 10 iterations.

F1-score F1-mean TP FP TN FN
lexicon_THR 0.4174 0.5281 1070.2 2396 4378.9 582.9
SVM 0.2763 0.5814 315.6 308.4 6459.9 1344.1
MultiNB 0.3652 0.6204 504.3 597.3 6171 1155.4
LogReg 0.2878 0.5877 330.4 305.2 6463.1 1329.3
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Figure 6.3: Box plots for Experiment 3 comparing the F1-score (a) and mean F1-score (b)
between our threshold-based lexicon approach and machine learning methods.

The results of Experiment 3, presented in Table 6.3, and and box plot presented in Figure
6.3 demonstrate that the lexicon-based approach outperformed the machine learning methods,
achieving an F1-score of 0.4174. Among the machine learning methods, MultiNB achieved an F1-
score of 0.3652, followed by LogReg at 0.2878 and SVM at 0.2763 with infinite features. However,
in terms of the mean F1-score, the machine learning methods exhibited better performance,
ranging from 0.5814 to 0.6204, compared to the lexicon-based approach, which achieved a mean
F1-score of 0.5281.

Table 6.4: Results of Experiment 4 as averages of 10 iterations.

F1-score F1-mean TP FP TN FN
lexicon_THR 0.8925 0.7508 1561.5 284 319.5 92
SVM 0.8874 0.7679 1517 248.4 355.1 136.5
MultiNB 0.8952 0.7845 1529.6 233.9 369.6 123.9
LogReg 0.8969 0.7786 1553 256.4 347.1 100.5
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Figure 6.4: Box plots for Experiment 4 comparing the F1-score (a) and mean F1-score (b)
between our threshold-based lexicon approach and machine learning methods.

The results of Experiment 4, which includes both the Eclipse and Firefox datasets with the
bug status ‘normal’ filtered to ensure a slightly more balanced data distribution, are presented
in Table 6.4 and the and box plot presented in Figure 6.4. The data indicates that MultiNB
and LogReg outperform the lexicon-based approach, achieving F1-scores of 0.8952 and 0.8969,
respectively. However, the lexicon-based approach, with an F1-score of 0.8925, shows only a
relatively small difference in performance compared to the machine learning methods. In terms
of the mean F1-score, the machine learning methods exhibit a range of 0.7679 to 0.7845, while
the lexicon-based approach achieves a slightly lower mean F1-score of 0.7508.

6.2 Static Lexicons Results

According to the F1-score for the Severe category as the most relevant performance measure in
our setting, the lexicon approach looked promising compared to the machine learning methods.
This led us to conduct cross dataset experiments to create static lexicons for software bug severity
classification. Here, we present the results of the experiments conducted for static lexicons. In
this study, two datasets—Firefox and Eclipse—were employed to evaluate various approaches for
predicting software bug severity. The methodologies examined included threshold-based lexicon
generation, linear SVM coefficient-based lexicon generation, utilization of a publicly available
lexicon lexicon_BL, VADER, and machine learning methods. The results of these approaches in
a cross-dataset experimental setup, as well as existing lexicon experiments for both the Eclipse
and Firefox datasets, are presented in Table 6.5 and Table 6.6 and the results shown in the tables
are visually depicted in Figure 6.6 and Figure 6.7 showing graphical representation of F1-score
and F1-mean for different approaches tested on the same dataset.

The results of the cross-dataset experiments, where the Firefox dataset was used to cre-
ate the lexicon and the Eclipse dataset was used for testing, are presented in Table 6.5. The
results show that the lexicon_BL method achieved the highest performance with an F1-score
of 0.3546, closely followed by lexicon_SVM with an F1-score of 0.3364. In contrast, the lex-
icon_THR approach performed comparatively lower, achieving an F1-score of 0.2304. When
comparing the threshold-based and linear SVM-based lexicon approaches with existing lexi-
con methods(lexicon_BL, Vader), it is evident that both lexicon_BL and lexicon_SVM out-
performed lexicon_THR. Additionally, Vader demonstrated competitive performance with an
F1-score of 0.2831.

In comparison to the machine learning methods, all lexicon-based approaches outperformed
SVM (F1-score: 0.0615), MultiNB (F1-score: 0.119), and LogReg (F1-score: 0.017). However,
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Table 6.5: Comparative evaluation of different approaches on the Eclipse dataset. Results
include averages of 10 iterations for cross-dataset experiments (static lexicons created using
Firefox data), single-iteration results for lexicon_BL and Vader, and untuned machine learning
methods. All approaches were tested on the same Eclipse dataset to enable direct comparison.

F1-score F1-mean TP FP TN FN
lexicon_THR_F 0.2304 0.4137 1218.5 2687.5 18150.5 5336.5
lexicon_SVM_F 0.3364 0.4734 2779.5 7181.5 13656.5 3775.5
lexicon_BL 0.3546 0.4809 4116 12539 8299 2439
Vader 0.2831 0.5144 2031 5758 15080 4524
SVM 0.0615 0.4599 221.3 410.8 20427.2 6333.7
MultiNB 0.1198 0.4865 469 802 20036 6086
LogReg 0.0170 0.4399 57 90 20748 6498

Table 6.6: Comparative evaluation of different approaches on the Firefox dataset. Results
include averages of 10 iterations for cross-dataset experiments (static lexicons created using
Eclipse data), single-iteration results for lexicon_BL and Vader, and untuned machine learning
methods. All approaches were tested on the same Firefox dataset to enable direct comparison.

F1-score F1-mean TP FP TN FN
lexicon_THR_E 0.2559 0.4506 592.1 2373.3 10712.7 1066.9
lexicon_SVM_E 0.2469 0.4462 678.1 3151.7 9934.3 980.9
lexicon_BL 0.2141 0.4297 1143 7842 5244 516
Vader 0.2218 0.5112 667 3688 9398 992
SVM 0.1576 0.5374 208 771.9 12314.1 1451
MultiNB 0.1718 0.5465 220 681 12405 1439
LogReg 0.1746 0.5510 208 515 12571 1451

in terms of the F1-mean, Vader achieved the highest F1-mean of 0.5144, while the threshold-
based lexicon approach achieved the lowest F1-mean of 0.4137 and the machine learning meth-
ods achieved F1-mean better than lexicon_THR_F. These findings indicate that lexicon-based
methods, particularly lexicon_SVM_F and lexicon_BL, are more effective for predicting soft-
ware bug severity compared to lexicon_THR_F and the machine learning models evaluated in
this study.

The results of the study, where the lexicon was created using the Eclipse dataset and tested on
the Firefox dataset, are presented in Table 6.6. On the Firefox dataset, the evaluation of various
classification methods based on their F1-scores reveals that all approaches achieved relatively
low F1-scores. However, lexicon_THR performed better than the others, achieving an F1-
score of 0.2555. Among the lexicon-based methods, lexicon_SVM and Vader also demonstrated
competitive performance, with F1-scores of 0.2469 and 0.2218, respectively. In contrast, the
lexicon_BL approach achieved a slightly lower F1-score of 0.2141.

When compared to the machine learning methods, the lexicon-based approaches outper-
formed the machine learning models in this experimental setting. Specifically, the SVM ap-
proach achieved an F1-score of 0.1576, while MultiNB and LogReg achieved F1-scores of 0.1718
and 0.1746, respectively. However, in terms of the F1-mean, the machine learning methods
performed better than all lexicon-based approaches, as evident in the table. This suggests that,
in this experimental setting, the machine learning methods were more effective in classifying the
Non-Severe class.

6.2.1 Qualitative Analysis

We conducted a qualitative analysis for three lexicons: the existing lexicon (BingLiu), the final
merged threshold-based lexicon created on cross dataset, and the final merged linear SVM-based
lexicon, also created on a cross dataset. This qualitative assessment aims to analyze how the
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choice of words in these lexicons relates to the severity of software bugs. In some cases, a negative
term may be classified in the Non-Severe category, or conversely, a positive term may be assigned
to the Severe category due to the specific vocabulary used by the individual bug reporter. For
this purpose, the top 25 most frequently occurring words from the above approaches are enlisted
below to better understand their relevance and categorization within the context of software
bugs and their severity.

Intersection of the lexicon_BL lexicon with Eclipse dataset

The purpose of the qualitative analysis regarding lexical intersections of lexicon_BL and the
summary text column in the software bug report for Eclipse is to explore the relationship between
the languages users use in bug reports and the corresponding terms in the opinion lexicon. The
aim is to identify patterns that may help categorize the bug severity correctly. Interestingly,
lexicon_BL performed comparatively better on the Eclipse dataset, making it interesting for
a qualitative comparison in this case. The methodology for determining the intersection is an
exact match of words from lexicon_BL and the words from the summary column in the bug
report. The most frequently intersecting examples are provided below:

Intersection of Negative Words from lexicon_BL with the Summary Column of Eclipse
Dataset

error: 1504, fail: 836, miss: 701, incorrect: 469, break: 391, invalid: 386, wrong: 364,
problem: 324, unable: 277, issue: 224, hang: 198, disable: 195, deadlock: 193, object:
189, ignore: 184, bug: 166, incorrectly: 160, failure: 144, static: 131, slow: 113, leak:
105, crash: 98, inconsistent: 95, false: 86, failures: 82, regression: 79, bad: 78,...

Intersection of Positive Words from lexicon_BL with the Summary Column of Eclipse
Dataset

work: 792, support: 551, dynamic: 269, properly: 236, correctly: 234, clean: 195, avail-
able: 143, improve: 138, refresh: 121, correct: 88, right: 83, better: 77, respect: 68, top:
63, flexible: 57, lead: 56, improvements: 51, like: 47, progress: 44, consistent: 40, proper:
40, clear: 38, well: 37, prompt: 34, contribution: 30, ...

Category-wise List of Intersecting Negative Words from lexicon_BL with the Summary
Column of Eclipse Dataset

Words only in Severe category: terrible, erase, emergency, burn, inopportune, dubi-
ous, radically, unsafe, fake, incompatability, painful, erratically, clueless, cripple, discrim-
inate, degrade, sting.
Words only in Non-Severe category: harden, rogue, downcast, exclusion, haywire,
suspect, alarm, ambiguous, harsh, annoy, slave, gutter, regress, fat, downgrade, insensi-
tively, unhelpful, mistake, scratch, sporadic, restriction, lag, undesirable, harm, indistin-
guishable, ...
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Category-wise List of Intersecting Positive Words from lexicon_BL with the Summary
Column of Eclipse Dataset

Words only in Severe category: responsive, awesome, warm, portable, overtake, rapid,
intelligent, guidance, protection, reliably.
Words only in Non-Severe category: classic, free, realistic, effective, precise, easier,
perfectly, modest, straightforward, endorse, enhance, smarter, steady, excel, eager, logical,
guarantee, stability, favor, nicely, pros, facilitate, suitable, selective, appropriate, ...

The intersecting words from the positive and negative wordlists of lexicon_BL and the
bug report fall into both Severe and Non-Severe categories. In the Severe category, words
like ‘terrible’, ‘emergency’, ‘unsafe’, ‘destroy’, and ‘painful‘ express strong negative sentiments,
indicating issues that could impact user experience. This shows that the lexicon is effective
in the context of software bug severity classification. From the intersection of positive words
in the Bing Liu lexicon with the Eclipse dataset, words like ‘responsive’, ‘guidance’, ‘reliably’,
and ‘protection’ appear in the positive wordlist of Bing Liu lexicon but intersect with Severe
bugs in the report, indicating minor issues or suggestions. Interestingly, words like ‘mistake’,
‘restriction’, ‘lag’, ‘ambiguous’, ‘harsh’, and ‘annoy’ from Bing Liu lexicon’s negative words
intersect with Non-Severe bugs in the Eclipse bug report. This also depends on the quality of
the bug report, though these words should appear with the Severe bugs in the report because it
clearly shows user frustration and urgency.

Intersection of the threshold-based custom lexicon with Eclipse dataset

This section presents the qualitative analysis conducted on the final lexicon generated using our
threshold-based approach. In the following section, we first display the top 25 intersecting words
and their counts from the Severe and Non-Severe categories of the threshold-based lexicon with
the complete dataset of Eclipse. Next, we show the intersecting words from the Severe and
Non-Severe categories within the Eclipse dataset. In a threshold-based lexicon, a word could
appear in both categories, as the lexicon is created based on various combinations of thresholds.
The objective of categorizing the words is to identify unique words from our final lexicon that
originally appeared in either the Severe or Non-Severe category.

Intersection of Severe Words from lexicon_THR with the Summary Column of Eclipse
Dataset

not: 4664, project: 3321, file: 2320, web: 2208, xml: 2045, server: 1835, validation: 1694,
error: 1504, add: 1270, wizard: 1092, update: 1072, j: 1071, create: 1024, new: 1023,
ee: 1002, service: 929, change: 877, build: 860, fail: 836, ear: 831, view: 817, wtp: 810,
work: 792, class: 773, import: 709, jar: 673, ...

Intersection of Non-Severe Words from lexicon_THR with the Summary Column of Eclipse
Dataset

not: 4664, project: 3321, file: 2320, web: 2208, xml: 2045, editor: 1828, validation: 1694,
error: 1504, add: 1270, java: 1255, org: 1196, use: 1145, page: 1127, need: 1114, update:
1072, j: 1071, new: 1023, ee: 1002, test: 944, content: 930, service: 929, type: 888,
change: 877, remove: 860, fail: 836, view: 817, ...
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Category-wise Intersecting Severe words from lexicon_THR with the Summary Column
of Eclipse Dataset

Words only in Severe category: erase, kernel, shift, acknowledge, creat, reliably, con-
figurationerror, severty, acknowledge, linkageerror, iterate, firewalls, burn, flood, desta-
bilize, indexoutofboundsexception, suspendvalidation, executionexception, latet, errrors,
malforming, deadload, unsupportedencoding, correctness, wake, duplication, sting, unac-
cessable, asynch, errretrt, broadcast, swterror ...
Words only in Non-Severe category: green, distinguish, backup, spam, sucessfully,
resurrect, dual, daily, multiply, forward, cyrillic, lan, nightly, june, program, ugly, quite,
incompatibility, mistyped, pause, authorization, limitation, quit, filesize, death, invisible,
changeable, potentially, temporarily, dismiss, inaccurate, vanish, slower ...

Category-wise Intersecting Non-Severe words from lexicon_THR with the Summary Col-
umn of Eclipse Dataset

Words only in Severe category: government, backout, blocker, flood, unsafe, unac-
cessable, spawn, degrade, erratically, cripple, recycle, reboot, erratically, painful, unini-
tialized, intervals, weekly, installations, portable, implications, proceed, additionally, re-
sponsive, repetitive mr, cup, life, ...
Words only in Non-Severe category: logwarning, connectexception, abnormal, back-
out, startserver, validateentries, removelistener, illegalargumentsexception, reboot, accel-
erator, val, pasted, outdated, stacktrace, spuriously, synching, inconsistancy, misreports,
internalresolvetype, validatepage, inferencing, restarts, trivially, interterface, ...

Our qualitative analysis for the threshold-based lexicon shows that, in the Severe category,
words like ‘configurationerror’, ‘linkageerror’, ‘errors’, ‘unaccessible’, ‘severity’, and ‘deadload’
indicate major issues and correctly appear in the Severe category in the final lexicon. However,
words like ‘dual’, ‘limitation’, ‘mistyped’, and ‘temporarily’, for example, indicate that these
words do not correctly belong in the Severe category. Conversely, the Non-Severe category of
our lexicon includes words like ‘logwarning’, ‘inconsistency’, ‘validatepage’, and ‘trivially’ which
indicate minor issues and correctly appear in the Non-Severe category in the lexicon. Moreover,
words like ‘blocker’, ‘illegalargumentexception’, and ‘painful’ have appeared in the Non-Severe
category of the lexicon, indicating misclassification. However, some words like ‘wake’, ‘June’ and
‘government’ do not show any urgency or indication of bugs, suggesting that these should not
appear in the lexicon. The frequent appearance of ‘not’ suggests the need to consider negating
words.

Intersection of the linear SVM-based custom lexicon with Eclipse dataset

In this section we explain the insights from our qualitative analysis from the intersection of
linear SVM-based lexicon with the Eclipse dataset. The following tables show the top 25 words
for each analysis section.

Intersection of Severe Words from lexicon_SVM with the Summary Column of Eclipse
Dataset

not: 4664, project: 3321, web: 2208, xml: 2045, server: 1835, eclipse: 1701, validation:
1694, error: 1504, add: 1270, jsp: 1233, org: 1196, npe: 1141, need: 1114, wizard: 1092,
create: 1024, new: 1023, ee: 1002, service: 929, type: 888, build: 860, fail: 836, ear: 831,
wst: 828, wsdl: 821, wtp: 810, work: 792, import: 709, miss: 701, jar: 673, ejb: 662,
open: 650, exception: 613, cannot: 598, module: 587, ...
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Intersection of Non-Severe Words from lexicon_SVM with the Summary Column of Eclipse
Dataset

project: 3321, file: 2320, server: 1835, editor: 1828, validation: 1694, error: 1504, add:
1270, java: 1255, org: 1196, use: 1145, page: 1127, need: 1114, wizard: 1092, update:
1072, new: 1023, ee: 1002, test: 944, content: 930, service: 929, type: 888, change: 877,
remove: 860, view: 817, name: 812, ui: 805, class: 773, miss: 701, jar: 673, tag: 672,
attribute: 662, show: 650, default: 640, ...

Category-wise Intersecting Severe words from lexicon_SVM with the Summary Column
of Eclipse Dataset

Words only in Severe category: configurationerror, degrade, terrible, linkageerror,
indexoutofboundexception, erratically, cripple, emergency, unpublish, destabilize, npex,
flood, expection,validation, add, create, import, module, update, restart, build, debug
burn, billions, displose, clueess, concatenated,...
Words only in Non-Severe category: inaccessible, mistyped, incompatibility, inac-
curate, limitation, unexplainable, invisible, dissapear, typos, insufficient, inconsistency,
misinterpret, abnormally, phantom, borked, modifiying, constructure, parcing, collision,
death, ’admin’, ’orientation’, ’modifiying’, ’percent’, ’stretch’, ’slower’ ...

Category-wise Intersecting Non-Severe words from lexicon_SVM with the Summary Col-
umn of Eclipse Dataset

Words only in Severe category: blocker, unaccessable, flood, unsafe, degrade, cripple,
erratically, deserialization, unintended, recycle, uninitialized, painful, fake, reboot, expe-
rience, implications, uninitialized, unintended, degrade, greek, capitan, recently, unix,
popups, reappear, inconsistancies, discriminate
Words only in Non-Severe category: borked, unsuccessful, illegible, failed, con-
form, restartimpl, recommend, arithmeticexception, malformedtreeexception, exception,
invalidstate, overclock, compilerfailure, typeerror, nodenameerror, referenceerror, miss-
ingmethodexception, dependencyerror, compilation, faultyexecution,versionchecker, ab-
stractdocumentloader, entitygroups, detach, plaintext, ...

From our analysis of the intersection of the linear SVM-based custom lexicon with the Eclipse
dataset, it was observed that in the Severe category from the linear SVM-based final lexicon,
such as ‘configurationerror’, ‘terrible’, ‘linkage error’, ‘crashing’, ‘emergency’, and ‘destabilize’
show critical issues that could lead to system failure and user frustration. This indicates that
these words correctly appear in the Severe category of the lexicon. On the other hand, the
Non-Severe category includes words like ‘typeerror’, ‘detach’, ‘restartimpl’, and ‘nodenameerror’
which indicate minor inconveniences and are correctly appear in the Non-Severe category in the
final lexicon. However, words like ‘blocker’, ‘flood’, and ‘unsafe’ seem that it should not appear
in the Non-Severe category of the lexicon; moreover, these words have intersections with Severe
bugs in the bug report, which also suggests that these words express user inconvenience and
should be classified as Severe.

Intersection of lexicon_BL with Firefox dataset

This section presents the qualitative analysis of Bingliu’s lexicons used in our study with the
Firefox dataset.
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Intersection of Negative Words from lexicon_BL with the Summary Column of Firefox
Dataset

error: 605, fail: 511, intermittent: 413, alarm: 362, wrong: 345, bug: 300, crash: 293,
drag: 232, miss: 227, break: 218, disable: 208, incorrect: 162, unable: 126, lose: 110,
issue: 108, problem: 104, hang: 95, unexpected: 84, freeze: 83, slow: 80, dark: 76,
incorrectly: 75, failure: 72, errors: 72, ignore: 67, ...

Intersection of Positive Words from lexicon_BL with the Summary Column of Firefox
Dataset

work: 620, right: 173, correctly: 149, refresh: 139, properly: 134, top: 127, support:
120, prompt: 91, clear: 90, win: 81, correct: 81, like: 71, available: 66, protection: 47,
progress: 37, respect: 37, accessible: 34, improve: 34, better: 32, exceed: 32, free: 31,
well: 30, lead: 27, master: 26, compatible: 25, safe: 22, ...

Category-wise List of Intersecting Negative Words from lexicon_BL with the Summary
Column of Firefox Dataset

Words only in Severe category: miscalculate, limitation, jitters, death, concern,
drain, obtuse, unstable, flakey, degradation.
Words only in Non-Severe category: dangerous, dead, incomplete, virus, unreadable,
painful, interrupt, unavailable, malicious, Severe, mess, idle, unresponsive, sticky, broken,
freeze, ineffective, slower, unexpected, glitch, contradictory, vice, shake, fuzzy, junk

Category-wise List of Intersecting Positive Words from lexicon_BL with the Summary
Column of Firefox Dataset

Words only in Severe category: important, advantage, guarantee, gutsy, accurately.
Words only in Non-Severe category: smooth, bright, recommendation, readable,
adaptive, fine, fast, revive, capable, usable, reachable, effective, recover, fluent, quiet,
attractive, fancy, improvement, comfort, eagerly, precisely, good, prompt, safely, simplify,
support, ...

Our analysis on the intersection of words from Bing Liu’s positive and negative word lists
with the Firefox dataset shows that, in the Severe category, words like ‘improper’, ‘miscalculate’
and ‘drain’ express negative sentiments, indicating issues that could impact user experience.
This suggests that Bing Liu’s lexicon performs well in the context of software bug severity
classification. However, some intersecting words from the negative words in the lexicon also
appear in Non-Severe bug reports. For example, words like ‘dangerous’, ‘dead’, and ‘virus’ are
strong negative words, but they appear with the Non-Severe bugs in the bug reports. This
indicates the quality of a bug reports, what type of vocabulary used by different authors. In
the Non-Severe category, words like ‘improvement’, ‘simplify’, ‘revive’, and ‘support’ indicate
minor issues and suggests enhancements, accurately categorizing them as Non-Severe. Moreover,
words like ‘shake’, ‘quiet’, ‘sticky’, and ‘funny’ are not very helpful in the context of bug severity
classification.

Intersection of threshold-based custom lexicon with Firefox dataset

This section presents the qualitative analysis of the intersection of our threshold-based custom
lexicon with the Firefox dataset.
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Intersection of Severe Words from lexicon_THR with the Summary Column of Firefox
Dataset

calendar: 2936, not: 2728, event: 1430, lightning: 1047, events: 910, new: 884, view: 786,
show: 773, time: 735, file: 732, task: 723, display: 683, work: 620, error: 605, change:
564, date: 538, add: 537, fail: 511, day: 498, update: 495, sunbird: 430, thunderbird:
426, intermittent: 413, cannot: 401, google: 378, windows: 377, start: 369, ...

Intersection of Non-Severe Words from lexicon_THR with the Summary Column of Firefox
Dataset

calendar: 2936, not: 2728, event: 1430, browser: 1148, tab: 942, firefox: 885, new: 884,
open: 842, view: 786, show: 773, test: 752, time: 735, file: 732, task: 723, js: 718, use:
692, display: 683, window: 665, button: 661, page: 647, work: 620, error: 605, change:
564, menu: 559, dialog: 541, ...

Category-wise Intersecting Severe words from lexicon_THR with the Summary Column
of Firefox Dataset

Words only in Severe category: icalendars, recurrent, quality, workspace, adata,
kinds, edu, academia, runner, funny, bookmarkfolder, renderviewpage, ftp, docaccessi-
bleparent, newtree, drain, gpos, worker, gtkparent, cpp, improper, activation, inspect,
windowsjumplists, mozstorageservice ...
Words only in Non-Severe category: eagerly, regression, revert, delay, problem, quit,
unpredictable, break, malfunction, degrade, suspend, configure, initiate, access, login,
intermittent, inaccurate, install, update, misconfigure, notify, plugin, funny, team, ebay,
activate ...

Category-wise Intersecting Non-Severe words from lexicon_THR with the Summary Col-
umn of Firefox Dataset

Words only in Severe category: funny, improper, runner, inspect, concern, quite,
towards, modifiying, installable, someday, comparator, encodings, death, enumeration,
linefeeds, sucessfully, mistyped, allocation, preselected, runner, nod, attemping, concur-
rency, strategy, checkin,...
Words only in Non-Severe category: exhaustion, block, unpredictable, spawn, unfin-
ished, sanitizeonshutdown, forever, interaction, error, reset, configure, improperly, resiz-
able, negotiation, hoverable, noticeable, interact, units, newtab, context, paint, forever,
noticeable, organization, package, ...

Our analysis on the intersection of words from the threshold-based final lexicon and the
Firefox dataset provides the following insights about the final lexicon. Firstly, the frequent
appearance of ‘not’ shows that it is important to consider negation. Secondly, the Severe category
of the lexicon includes words like ‘drain’ and ‘improper’, which indicate major issues and correctly
appear in the Severe category. However, words such as ‘regression’, ‘revert’, ‘delay’, ‘quit’, and
’unpredictable’ also appear in the Severe category of the final lexicon, which is correct. However,
the intersection of words shows that these words have appeared with the severity level ‘Non-
Severe’ in the bug reports, indicating that these words can help in predicting bug severity but
are not urgent. Moreover, some words, such as ‘cpp’ ‘update’ and ‘funny’ lack context and do
not help predict a software bug. This shows that these words in the lexicon are not helpful in
bug classification. Conversely, the Non-Severe category includes words like ‘reset’, ‘configure’,
‘improperly’, ‘resizable’, ‘negotiation’, and ‘noticeable’, which indicate minor issues and are
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correctly classified. However, words like ‘exhaustion’, ‘block’, ‘unpredictable’, and ‘error’ have
appeared in the Non-Severe category in the final lexicon. These words show more urgency and
should appear in the Severe category of the final lexicon.

Intersection of linear SVM-based custom lexicon with Firefox dataset

This section presents the qualitative analysis of the intersection of our linear SVM-based custom
lexicon with the Firefox dataset.

Intersection of Severe Words from lexicon_SVM with the Summary Column of Firefox
Dataset

calendar: 2936, not: 2728, event: 1430, lightning: 1047, new: 884, open: 842, time: 735,
task: 723, js: 718, display: 683, work: 620, error: 605, add: 537, fail: 511, sunbird: 430,
thunderbird: 426, intermittent: 413, cannot: 401, google: 378, set: 375, start: 369, alarm:
362, create: 361, wrong: 345, save: 338, delete: 314, bug: 306, ...

Intersection of Non-Severe Words from lexicon_SVM with the Summary Column of Firefox
Dataset

calendar: 2936, browser: 1148, tab: 942, firefox: 885, new: 884, view: 786, show: 773,
test: 752, file: 732, task: 723, use: 692, display: 683, window: 665, button: 661, page:
647, error: 605, change: 564, menu: 559, dialog: 541, date: 538, add: 537, day: 498,
update: 495, bar: 490, click: 466, ...

Category-wise Intersecting Severe words from lexicon_SVM with the Summary Column
of Firefox Dataset

Words only in Severe category: ftp, adata, newtree, inspect, renderviewpage, worker,
gtkparent, cpp, improper, nsprintdialoggtk, gpos, docaccessibleparent, mozstorageservice,
kinds, edu, workspace, quality, bookmarkfolder, academia, drain, activation, runner, ...
Words only in Non-Severe category: malformed, inability, dirty, free, break, stage,
searchable, plain, snapshot, faculty, unstable, python, undefined, transport, end, nonfunc-
tional, sitecore, adjustment, encrypt, error, tether, sparse, mean, me, gallery, ...

Category-wise Intersecting Non-Severe words from lexicon_SVM with the Summary Col-
umn of Firefox Dataset

Words only in Severe category: structure, consumed, important, write, improper
Words only in Non-Severe category: particular, silently, ssh, welcome, slow, im-
provement, packaged, fxa, log, affecting, stick, accesskeys, highlighting, instantly, yet,
encountered, entry, merged, arrange, violation, bugged, across, msg, antivirus, sugges-
tion, modern

The insights of our qualitative analysis of the linear SVM-based lexicon intersection with the
Firefox dataset, shows that in the Severe category, words like ‘drained’, and ‘improper’ indicate
major issues and correctly appear in the Severe category of the lexicon. However, some words,
like ‘ftp’, ‘activation’, and ‘bookmarkfolder’ have no context and do not help in the classification
of a bug, and such words are safe to remove from the final lexicon. On the other hand, the
Non-Severe category includes words like ‘improvement’, ‘encountered’, and ‘minimize’, which
indicate minor issues and correctly appear in the Non-Severe category of the lexicon. Notably,
words like ‘bugged’ and ‘violation’ have appeared in the Non-Severe but imply critical problems,
which shows that they are misclassified.
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6.3 Considering Negation

In the scope of of our qualitative analysis of the lexicons created using threshold-based and
linear SVM coefficient-based methods, we found that the word ‘not’ appeared very frequently.
In the preprocessing steps, we chose to retain the word ’not’ while removing other stopwords, as
it holds significant value for our analysis. Following our quantitative and qualitative analyses,
we addressed the issue of negation during the preprocessing phase by concatenating ‘not’ with
the subsequent word (e.g., ‘not_reliable’).

Frequent words appearance in both datasets before and after handling nega-
tion

The table below displays the most frequent words in the summary column of the datasets, before
and after handling negation.

Top 25 frequent appearing words in Eclipse dataset before and after handling negation

Before: not: 4664, project: 3321, file: 2320, web: 2208, xml: 2045, server: 1835, editor:
1828, eclipse: 1701, validation: 1694, error: 1504, add: 1270, java: 1255, jsp: 1233, org:
1196, need: 1114, npe: 1141, j: 1071, create: 1024, ee: 1002, service: 929, fail: 836, wtp:
810, ear: 831, import: 709...
After: project: 3319, file: 2320, web: 2207, xml: 2045, server: 1834, editor: 1828, eclipse:
1701, validation: 1694, error: 1503, java: 1255, add: 1212, jsp: 1233, org: 1196, need:
1098, npe: 1141, j: 1071, create: 979, ee: 1002, ear: 831, service: 929, fail: 834, ...
not_add: 58, ... not_create: 45, ... not_need: 16, ... not_fail: 2, not_project: 2, ...
not_server: 1, not_error: 1, not_web: 1

Top 25 frequent appearing words in Firefox dataset before and after handling negation

Before: calendar: 2936, not: 2728, event: 1430, browser: 1148, lightning: 1047, tab:
942, firefox: 885, new: 884, open: 842, view: 786, show: 773, test: 752, time: 735, task:
734, file: 732, js: 718, display: 683, use: 692, button: 661, window: 665, page: 647, work:
620, error: 605, change: 564, menu: 559, ...
After: calendar: 2935, event: 1429, browser: 1148, lightning: 1045, tab: 942, firefox:
885, new: 884, open: 805, view: 786, time: 734, task: 732, file: 732, error: 605, add:
521, fail: 510, update: 430, thunderbird: 426, ... work: 359, ... not_work: 261, ...
not_show: 147, ... not_update: 65,... message: 48,... not_open: 37,... not_add: 16, ...
not_calendar: 1,... not_event: 1

This experimentation was conducted for all the lexicon approaches and machine learning
methods, and the results are shown from Table 6.7 - Table 6.8. Our hypothesis proposed that
handling the negation would improve performance across all experiments, particularly in F1-
scores. However, the results contradicted our expectations. For established lexicons like VADER
and Bing Liu lexicon performance metrics remained unchanged after negation handling in both
experimental settings. For threshold-based lexicon methods and ML methods, there was a slight
improvement in F1-score in the second experimental setting. However, linear SVM-based lexicon
approach showed no performance gains after negation handling, it has even performed worst.
These findings suggest that incorporating negation handling did not produce the anticipated
improvements in bug severity classification accuracy.

Below is an example of a preprocessed summary text, both before and after negation han-
dling, along with the most frequently negated words identified in the final lexicon after negation
handling.
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Example:
Summary: Firefox is not working when opening multiple tabs.
Before negation: [‘firefox’, ‘not’, ‘work’, ‘open’, ‘multiple’, ‘tab’]
After negation: [‘firefox’, ‘not_work’, ‘open’, ‘multiple’, ‘tab’]

Frequent Negated Words appearance in the threshold-based lexicon

Severe: not_auth ratio: 1.0, not_build ratio: 1.0, not_changeable ratio: 1.0, not_choke
ratio: 1.0, ... not_launch ratio: 0.75, not_check ratio: 0.666, not_convert ratio: 0.6666,
not_install ratio: 0.625, not_cause ratio: 0.5, not_consistently ratio: 0.5, ... not_start
ratio: 0.470, not_fire ratio: 0.428, not_register ratio: 0.428, not_create ratio: 0.416,
not_accept ratio: 0.333, not_editable ratio: 0.333, not_enough ratio: 0.333, ... not_find
ratio: 0.266, not_load ratio: 0.258, not_actually ratio: 0.25, not_adjust ratio: 0.25,
not_available ratio: 0.233, not_initialize ratio: 0.222, not_handle ratio: 0.214, ...
Non-Severe: not_persist ratio: 1.0, not_persistent ratio: 1.0, not_pick ratio: 1.0,
not_pin ratio: 1.0, not_preloaded ratio: 1.0, not_present ratio: 1.0, not_preserve ratio:
1.0, not_press ratio: 1.0, not_proceed ratio: 1.0, not_always ratio: 0.956, not_correctly
ratio: 0.952, not_change ratio: 0.951, not_respect ratio: 0.947, not_correct ratio: 0.944,
not_render ratio: 0.937, not_match ratio: 0.9333, not_define ratio: 0.931, not_delete
ratio: 0.916, not_restore ratio: 0.916, not_allow ratio: 0.913, not_use ratio: 0.903,
not_get ratio: 0.9, not_visible ratio: 0.9, ...

6.3.1 Results After Handling Negation

The results of the experiments conducted for handling negation are presented in Tables 6.7–
6.8. Furthermore, the results shown in the tables are visually depicted in Figures 6.6 and
Figure 6.7, which provide a graphical representation that compares different approaches before
handling the negation and after, in terms of the F1-score and the F1-mean. The results from

Table 6.7: Results showing averages of 10 iterations of experiments where static lexicon was
created with Firefox dataset and tested with Eclipse dataset after handling negation

F1-score F1-mean TP FP TN FN
lexicon_THR_F 0.2181 0.4125 1094.9 2372.4 18465.6 5460.1
lexicon_SVM_F 0.3135 0.4611 2388.7 6282.8 14555.2 4166.3
lexicon_BL 0.3517 0.4790 4258 12780 8058 2297
Vader 0.2831 0.5144 2031 5758 15080 4524
SVM 0.0640 0.4606 232.2 461.5 20376.5 6322.8
MultiNB 0.1132 0.4828 442 812 20026 6113
LogReg 0.016 0.4396 55 94 20744 6500

the study in which the lexicon was created with the Firefox dataset and tested on the Eclipse
dataset and after handling negation are shown in Table 6.7. The results show the lexicon_BL
approach consistently achieved better performance both before and after negation handling,
followed by Vader. The lexicon_THR and lexicon_SVM approach showed a slight decline in
performance after negation handling, while the machine learning models generally had lower F1-
scores in both scenarios, with only minor changes after negation handling. This indicates that
the lexicon-based methods, especially lexicon_BL and lexicon_SVM, performed well in terms
of F1-score after negation handling. The results from experiments where lexicon was created
on Eclipse dataset and tested with Firefox dataset and after handling negation are displayed in
table 6.8, and in Figure 6.7, the results show that after considering negation the F1-score for
lexicon_THR improved slightly, while the F1-score for lexicon_SVM, lexicon_BL and Vader
slightly declined with few decimals but almost remained unchanged. Furthermore, to compare
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Table 6.8: Results showing averages of 10 iterations of experiments where static lexicon was
created with Eclipse dataset and tested with Firefox dataset after handling negation.

F1-score F1-mean TP FP TN FN
lexicon_THR_E 0.2612 0.4533 604.4 2361.9 10724.1 1054.6
lexicon_SVM_E 0.2437 0.4443 625 2841.2 10244.8 1034
lexicon_BL 0.2138 0.4296 1154 7981 5105 505
Vader 0.2218 0.5112 667 3688 9398 992
SVM 0.18981 0.5532 261 830.1 12255.9 1398
MultiNB 0.1747 0.5480 224 681 12405 1435
LogReg 0.1675 0.5472 199 518 12568 1460

the machine learning methods, before and after negation, the F1-score for SVM and MultiNB
improved slightly after negation.

6.4 LLM Zero-Shot Evaluation

Large language models are a state-of-the-art approach for text classification tasks. They do,
however, require significant computing resources. In our work, we were primarily interested in
comparison of lexicon approaches with the conventional machine learning approaches, as they
are more comparable in terms of resource demands and as their performance was expected to
be in between that of the lexicon approaches and the LLMs. It is also not straightforward to
evaluate the LLMs and interpret their evaluation results, as the LLMs have most probably used
all the public textual datasets and have therefore also observed all the test data. However, we
have conducted a simple experiment also with the LLMs to provide insight into what one could
expect from a smaller quantized LLM that can be deployed on a local server.

We assessed three quantised LLMs—gemma3:27b, llama3.3:70b, and deepseek-r1:14b—on
the Firefox bug-report dataset (14,745 summaries). Each model was queried through a locally
hosted API with the following zero-shot prompt:

You are a bug-severity classifier. Classify the following bug-report summary as either
Severe or Non-Severe. Return only the label.

The API returned a single label, and any call that failed was excluded from metric computa-
tion. All metrics were calculated on the remaining, successfully classified summaries. F1-mean
denotes the macro-average of the Severe and Non-Severe F1-scores.

Table 6.9: Results of a zero-shot evaluation of LLMs on the Firefox dataset

F1-score(Severe) F1-mean TP FP TN FN
deepseek-r1:14b 0.1778 0.5354 302 1435 11650 1357
llama3.3:latest 0.3773 0.6359 769 1747 10769 791
gemma3:27b 0.3287 0.5427 1289 4895 8185 369

Our evaluation of selected LLMs on the Firefox dataset, which contains 14,745 bug re-
ports, demonstrates the potential of LLMs for automated bug severity classification. The
llama3.3:latest model showed the best performance, successfully classifying 14,076 out of 14,745
summaries (with 669 cases excluded due to API call failures), and achieved an F1-score of 0.3773
for the Severe class and an F1-mean of 0.6359. The gemma3:27b model provided a strong bal-
ance between performance and reliability, with an F1-score of 0.3287 for the Severe class and an
F1-mean of 0.5427, successfully classifying 14,738 summaries (only 7 excluded due to API fail-
ures). In comparison, the deepseek-r1:14b model processed 14,744 summaries (1 excluded) but
had a lower Severe F1-score of 0.1778 and an F1-mean of 0.5354. Both llama3.3 and gemma3:27b
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outperformed our lexicon-based approach (F1-score: 0.2612 for the Severe class), showing the
usefulness of LLMs for bug severity classification. Experiments on public datasets, however, can-
not provide a very strong indication whether the same kind of improvement would be observed
also in completely unseen test data.

6.5 Results Summary

Across all the experimental settings, lexicon-based approaches, particularly those using threshold-
based and linear SVM-based lexicon generation, demonstrated competitive performance in classi-
fying bug severity, often outperforming traditional machine learning models in terms of F1-score
for the Severe class. However, machine learning methods generally performed better for the
Non-Severe class, as reflected in the higher F1-mean scores. Classification time of lexicon-based
methods was faster than of the SVM but slower than LogReg and MultiNB, which was some-
what unexpected, although code optimization was not a focus in this work. Our developed static
lexicons performed well compared to existing lexicons, with results heavily influenced by dataset
quality and domain. In particular, even general sentiment lexicons without software-specific
vocabulary proved to be surprisingly effective. Handling negation did not yield significant im-
provements in most cases. Overall, we found the lexicon-based methods to be effective and
robust for bug severity classification, especially when training data is limited, while machine
learning models may offer advantages in more balanced or data-rich scenarios. In addition, a
zero-shot evaluation with LLMs was conducted on the Firefox dataset, with LLMs assessed using
the same data and task as our threshold-based approach. The results show that both llama3.3
and gemma3:27b outperformed our method for bug severity classification, while deepseek-r1:14b
was less effective for the Severe class. These findings highlight the potential of LLMs for this
task, even without additional training.

Figure 6.5: Dynamic threshold-based lexicon results in comparison with and machine learning
methods on different experimenting settings.
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Figure 6.6: Static lexicon results for different approaches tested on the Eclipse dataset before
and after handling negation, this shows how different approaches performed before and after
handling negation on the same experimental settings.
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Figure 6.7: Static lexicon results for different approaches tested on the Firefox dataset before
and after handling negation, this shows how different approaches performed before and after
handling negation on the same experimental settings.
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Chapter 7

Source Code and Final Lexicons

This chapter provides an overview of the code files, data files, and static lexicon files used and
generated in this study. This detailed explanation aims to assist the reader in running the code
and generating the static lexicons. These files are available on the github repository, and the
final lexicons are available on Zenodo, link provided below.
https://github.com/fatymaziz/DataAnalysis/tree/main/Experiments
https://zenodo.org/records/15591197

7.1 Data Files

The following table provides a brief description of each CSV file and the data contained within
used in our study.

Table 7.1: Overview of the Dataset CSV Files

File Name Description

bugs_Eclipse.csv
Contains the data of the Eclipse bug report used in our ex-
perimentation.

bugs_Firefox.csv
Contains the data of the Firefox bug report used in our ex-
perimentation.

bugs_Calendar.csv
Contains the data of the Calendar bug report for our exper-
imentation.

7.2 Code Files

Following are the Python files that contain the code for learning, classification, and running
experiments. The repository includes one file named helper.py which contains all methods for
learning and classification, and fourteen additional Python files that act as controllers for running
various experimental setups involving lexicon-based and machine learning methods.

7.3 Final Static Lexicon Files

The final static lexicons generated from our experiments are saved in JSON format and are also
available in the static lexicon folder in the github repository with the following files.
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Table 7.2: Descriptions and Functions of Python Code Files

File Name Description

helper.py Contains all methods for learning and classification across
different approaches.

Experiment1.py
Contains code for experimental setup for dynamic lexicon
generation and for the ML methods tailored to Eclipse
dataset using threshold-based approach.

Experiment2.py
Contains code for experimental setup for dynamic lexicon
generation and for the ML methods on the Firefox dataset
using threshold-based approach.

Experiment3.py
Contains code for dynamic lexicon generation on the com-
bined dataset of Firefox and Eclipse using threshold-based
approach.

Experiment4.py
Contains code for dynamic lexicon generation on the com-
bined dataset of Firefox and Eclipse with additional filters
using threshold-based approach.

Experiment5.py
Contains code for static lexicon created on the Eclipse
dataset and tested on the Firefox dataset using a threshold-
based approach.

Experiment6.py
Contains code for static lexicon created on the Firefox
dataset and tested on the Eclipse dataset using a threshold-
based approach.

Experiment7.py
Contains code for static lexicon generation on the com-
bined dataset of Firefox and Eclipse and ML methods using
threshold-based approach.

Experiment8.py
Contains code for static lexicon generation on the combined
dataset of Firefox and Eclipse with additional filters and for
the ML methods using a threshold-based approach.

Experiment9.py
Contains code for static lexicon created on the Eclipse
dataset and tested on the Firefox dataset using a linear SVM-
based approach.

Experiment10.py
Contains code for static lexicon created on the Firefox
dataset and tested on the Eclipse dataset using a linear SVM-
based approach.

Experiment11.py
Contains code for classification of the Eclipse dataset using
the Bing Liu Opinion Lexicon.

Experiment12.py
Contains code for classification of the Firefox dataset using
the Bing Liu Opinion Lexicon.

Experiment13.py
Contains code for classification of the Eclipse dataset using
VADER.

Experiment14.py
Contains code for classification of the Eclipse dataset using
VADER.
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Table 7.3: Overview of Lexicon JSON Files

File Name Description

SEV_THR_LEX.json

Contains the final static lexicon after merging the gen-
erated lexicon from Firefox and Eclipse dataset using
the threshold-based approach for classifying bug sever-
ity.

SEV_THR_LEX_c.json
Contains the static lexicon generated from the com-
bined dataset of Eclipse and Firefox using the
threshold-based approach.

SEV_THR_LEX_f.json

Contains the static lexicon generated from the com-
bined dataset of Eclipse and Firefox but status with
Normal bug filtered, using the threshold-based ap-
proach.

SEV_SVM_LEX.json
Contains the static lexicon generated using the SVM-
based approach for classifying bug severity.
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Chapter 8

Conclusions

This thesis has explored the potential of a lexicon-based approach for classifying bug severity,
with the primary objective of determining whether such methodologies can serve as relevant
baseline solutions for developing a robust general lexicon, since such a lexicon does not currently
exist. To achieve this, static lexicons for software bug severity classification were created using
two approaches and datasets from different sources.

Overall, this work has addressed the research questions in the following ways:

Can a lexicon-based approach be a competitive alternative to machine learning
approaches for predicting the severity of software bugs?

The results of our study indicate that the performance of threshold-based, linear SVM-based
approaches, and publicly available lexicons is influenced by the dataset used. The lexicons
perform well in terms of the metric most relevant to our problem — the F1-score. However, this
does not hold for the F1-mean, which suggests that machine learning methods perform better
for the Non-Severe class.

The advantages of lexicon-based approaches — such as speed, effective classification per-
formance, and transparency — typically make them viable alternatives to machine learning
methods. Our results further suggest that lexicon-based approaches can indeed serve as practi-
cal solutions.

What is the efficiency of the lexicon-based approach in terms of time consump-
tion compared to other methods?

The results indicate that the classification time of all lexicon-based approaches outperformed
SVM, but did not match the efficiency of LogReg and MultiNB in the tested implementations.
Notably, our lexicon learning and classification code was not time-optimized, so these observa-
tions are specific to the implementation used in this thesis.

How do our developed static lexicons perform against existing lexicons?

Our developed static lexicons performed well when compared with existing lexicons. How-
ever, performance was heavily influenced by the quality and domain of the datasets used during
the lexicon creation process.

Publicly available lexicons were effective in classifying bug severity, and the results showed
that even sentiment lexicons lacking software-specific vocabulary were surprisingly useful.

In some experiments, we also addressed negation handling. However, this did not lead to
major improvements in performance. While slight improvements were observed in a few cases,
in most experiments, the metrics were worse than before negation handling.
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The scientific contributions of this work include the design and development of comprehen-
sive and freely available general lexicons for software bug severity classification. By comparing
their performance against existing lexicons and classic machine learning methods, this research
provides valuable insights into the applicability and effectiveness of lexicon-based methods in
this domain, ultimately contributing to more accurate and efficient bug severity classification
practices.

In addition to lexicon-based and machine learning approaches, we also included a zero-shot
evaluation of selected LLMs on the Firefox dataset. The results showed that llama3.3 and
gemma3:27b outperformed our threshold-based lexicon approach for bug severity classification,
while deepseek-r1:14b was less effective for the Severe class. These findings highlight the potential
of modern LLMs for this task, even without additional training, and suggest that prompt-based
LLM methods may offer a promising direction for future research.

In future work, we plan to improve the quality and coverage of our lexicon by using LLMs
through prompt-based techniques. These models can be used to suggest related or synonymous
terms, which could make the lexicon more complete and useful. This method would reduce
the need for manual effort while still maintaining domain relevance. Additionally, once large
LLMs become more affordable and practical to run, especially since current models require
significant computing resources like GPUs, we aim to carry out a thorough comparison between
our approach and LLM-generated output. This will allow us to better understand the strengths
and limitations of each method in terms of accuracy, cost, and usability. We also plan to apply
our improved approach to other domains where such lexicons are currently unavailable, which
could help expand the benefits of this work beyond our original focus.
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