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Abstract

With the resurgence of neural network-based learning in the last decade, machine learning
methods are becoming critical components of many real-life intelligent systems. However,
while being able to learn effectively and at scale, such systems are often non-interpretable
and unable to exploit existing symbolic background knowledge. The paradigm that offers
such endeavour is symbolic learning, which has been investigated for more than 50 years.

The main focus of this thesis is the recent paradigm of neuro-symbolic machine learn-
ing. This branch of learning investigates whether combining the techniques from neural
(sub-symbolic) and symbolic machine learning can be used to develop better performing
and more explainable predictive models. The notion of neuro-symbolic machine learn-
ing transcends individual input data types and can be considered when learning from
tables, graphs, and text-based data. This thesis aims to investigate when, and to what
extent, can the neuro-symbolic paradigm prove beneficial when learning network node
representations, classifying texts and ranking features. Furthermore, we investigate dif-
ferent aspects of neuro-symbolic models: from predictive performance to scalability. The
contributions of this thesis address different input data types. We first present the re-
sults of applying neuro-symbolic learning to relational learning, considering two different
relational learning scenarios: learning from relational databases and network node embed-
ding. We demonstrate that by using the neuro-symbolic paradigm, improved scalability of
propositionalization-based approaches is achieved. Further, by considering neuro-symbolic
node representation learning, we demonstrate competitive predictive capabilities, while, by
systematic (symbolic) node pruning, reaching better scalability.

Next, we present autoBOT, a neuro-symbolic autoML system for automating text clas-
sification. By simultaneously considering both symbolic and sub-symbolic document repre-
sentations, evolution-based optimization yields well-performing models that remain inter-
pretable at two different granularities: at the level of feature types (i.e., which feature type
is more relevant) and also at the level of individual features. To our knowledge, autoBOT
is one of the first neuro-symbolic autoML systems aimed at optimizing both performance
and explainability. A novel, previously unpublished contribution is also a computational
framework, enabling us to scale autoBOT to a supercomputing grid, allowing two to three
orders of magnitude more experiments to be conducted on a single machine at the same
time.

The final part of the thesis focuses on of feature ranking. This task addresses the issue
of identifying importance scores for features, which correspond to their capacity to separate
parts of the target space – highly ranked features are commonly the ones that impact the
learning process the most. We demonstrate that the neuro-symbolic paradigm helps better
understand the relationship between neural attention and ranking and offers better scaling
of existing feature ranking approaches, such as the Relief-based feature ranking approaches.
The thesis concludes with an evaluation of the developed approaches, lessons learned and
guidelines for potentially interesting future work.
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Povzetek

Obujeno področje globokega učenja je v zadnjem desetletju ponudilo pristope, ki postajajo
ključni sestavni deli sodobnih inteligentnih sistemov. Poleg učinkovitosti je za te metode
značilna tudi njihova sposobnost procesiranja večjih količin podatkov (skaliranje). Glavni
pomanjkljivosti globokega učenja sta neinterpretabilnost ter nezmožnost direktne izrabe
uporabnega simbolnega predznanja. Veja strojnega učenja, ki uspešno naslavlja te pro-
bleme, je simbolno učenje, ki je v računalništvu prisotno že vsaj 50 let.

Glavna tematika te disertacije je novejše področje t. i. nevro-simbolnega strojnega uče-
nja. Ta veja učenja raziskuje, ali s kombiniranjem oz. izrabo idej tako s področja nevron-
skega (podsimbolnega) učenja ter simbolnega učenja lahko obstoječe metode nadgradimo z
ozirom na njihovo interpretabilnost, skaliranje ter napovedne sposobnosti. Področje nevro-
simbolnega učenja je uporabno za učenje iz različnih tipov vhodnih podatkov, kot so npr.
tabele, grafi ali tekstovni podatki. V disertaciji smo raziskali, kdaj ter do kakšne mere lahko
paradigma nevro-simbolnega učenja pomaga pri učenju reprezentacij vozlišč v omrežjih,
klasifikaciji tekstov ter rangiranju značilk. Raziskali smo različne lastnosti nevro-simbolnih
modelov: od njihovega učinka na npr. klasifikacijsko točnost do njihovega skaliranja na
računalniških gručah. Glavni prispevki, predstavljeni v tem delu, se osredotočajo na raz-
lične tipe vhodnih podatkov. Začnemo z razvitimi metodami za nevro-simbolno učenje iz
relacijskih podatkov, kjer smo raziskali dve nalogi učenja: učenje iz relacijskih baz ter vlo-
žitve vozlišč v omrežjih. Rezultati kažejo, da lahko z uporabno nevro-simbolne paradigme
učenja dosežemo boljše skaliranje metod propozicionalizacije, ter pridobimo kvalitetne vlo-
žitve vozlišč v omrežjih, ki omogočajo boljše skaliranje ter podobno klasifikacijsko točnost
kot obstoječe metode v širši rabi.

V nadaljevanju predstavimo orodje autoBOT, razvito z namenom avtomatizacije naloge
klasifikacije tekstov. V disertaciji pokažemo, da je s hkratno izrabo simbolnih ter podsim-
bolnih reprezentacij dokumentov, dodatno obteženih s pomočjo evolucijske optimizacije,
mogoče pridobiti modele, zmožne dobre klasifikacijske točnosti, ki so hkrati interpretabilni
na dveh nivojih: na nivoju tipov značilk kot tudi posameznih značilk. Gre za enega pr-
vih nevro-simbolnih sistemov, razvitega za avtomatizacijo učenja iz tekstov. Poleg razvite
metode v disertaciji predstavimo tudi še neobjavljeno računsko ogrodje, ki nam je omogo-
čilo skaliranje evolucije na več različnih računalniških gruč, sestoječih iz stotin računskih
vozlišč z različnimi specifikacijami. Ta nivo skaliranja nam je omogočil izvedbo enega do
dveh velikostnih razredov več eksperimentov.

V zadnjem delu disertacije se osredotočimo na nalogo rangiranja značilk. Tu kot rezul-
tat pričakujemo izračunane pomembnosti za vsako značilko. Značilke z večjimi pomemb-
nostmi imajo pričakovano večji vpliv na sposobnost razločevanja elementov izhodnega pro-
stora. V disertaciji prikažemo uporabnost nevro-simbolne paradigme za boljše razumevanje
odnosa med nevronsko pozornostjo ter rangiranjem značilk kot tudi kako lahko z vložitvami
vhodnega prostora pospešimo proces rangiranja z obstoječimi algoritmi, kot so npr. algo-
ritmi iz družine Relief. Na koncu disertacije kritično ovrednotimo razvite pristope, njihove
pomanjkljivosti ter potencialno zanimive razširitve.
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Chapter 1

Introduction

In order to make an apple pie from scratch,
you must first create the universe.

Carl Sagan

This chapter places the research of this thesis into the broader context of machine learning
and representation learning. It introduces the two main paradigms of machine learning,
the sub-symbolic and symbolic learning, their key scaling-related properties, and the open
problems addressed in the thesis. The chapter concludes with an overview of the thesis
and its scientific contributions of the thesis and an outline of its structure.

1.1 Background and Motivation

Machine learning has grown into one of the dominant fields of computer science and has
found applications in biomedicine, the news media industry, engineering, physics and many
other branches of science and industry (Dargan et al., 2020). With its origins in the
previous century (1950s, logic theorem provers) (Russell & Norvig, 2002), the effort to
mimic intelligent behavior focused predominantly on symbolic learning (Kolata, 1982).
The field now known as symbolic machine learning has been at the time known also as
symbolic artificial intelligence. The branch of symbolic machine learning methods has been
popularized with algorithms such as decision tree learning (Quinlan, 1986), inductive logic
programming (Muggleton, 1991) or learning predictive rules (Holte, 1993), and remains
widely utilized in real-world scenarios where each decision needs to be traceable. For
example, if we consider the following decision rule

class(infected)← hasFever(true) ∧ hasHeadache(true) ∧ hasPain(true),

a domain expert can immediately inspect the collection of, in this case, binary features,
identified by the learner as crucial for deducing a given class. This branch of methods is
thus, in most cases, explainable – individual, human-understandable facts that constitute
a decision rule can be inspected directly. One of the main caveats of symbolic methods is
their language bias (i.e., how the decision space is split or the underlying representations
constructed), which potentially constrains the space of possible descriptions and can result
in performance loss. Symbolic methods, unless considered as parts of bagging (Breiman,
2001) or boosting-based ensemble models (Chen & Guestrin, 2016), commonly under-
perform on mainstream learning tasks, including multi-class learning and regression (Sagi
& Rokach, 2018). Furthermore, this branch of methods does not necessarily learn incre-
mentally, rendering their deployment on larger data sets problematic, where specialized,
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Sub-symbolic (neural)
learning

Symbolic
learning

Neuro-symbolic
learning

Scalable
Well-performant

Direct reasoning

Explainable

Specialized hardware Sparse representations

Figure 1.1: Overview of the three learning paradigms considered.

either algorithmic or hardware-level adaptations may be required when scaling to larger,
realistic data sets (Gama et al., 2013; Osojnik et al., 2017).

Compared to symbolic methods, sub-symbolic learners have in recent years shown great
promise in terms of scalability and overall performance for tasks from the fields of computer
vision, language processing and relational learning (LeCun et al., 2015; Pouyanfar et al.,
2018). The main contemporary sub-symbolic methods are mostly based on deep neural
networks – multi-layered collections of real-valued weights with intermediary non-linear
activations, trained via backpropagation (Kelley, 1960; Linnainmaa, 1976; Rumelhart et
al., 1985) (first considered already around 50 years ago). Note that we use the terms
neural/sub-symbolic interchangeably throughout this work. With the resurgence of deeper
neural networks around 2009 (Deng et al., 2009; LeCun et al., 2015), systems capable of
protein folding (Jumper et al., 2021), language generation (Brown et al., 2020) and trans-
lation (Vaswani et al., 2017), fraud detection (Roy et al., 2018), traffic control (Hatolkar
et al., 2018) and similar have emerged, and are already being actively used throughout
industry and academia (Le et al., 2020). Despite being powerful function approximation
engines, neural networks have to this date not been able to fully conquer the types of
tasks where explicit symbolic knowledge of relations and concepts is necessary, requiring
abstract reasoning (Chollet, 2019; Nazarczuk & Mikolajczyk, 2020).

Exploring which aspects of neural-only learning prohibit a given system from solving
such harder reasoning tasks has led research into the direction of neuro-symbolic learn-
ing (Garcez & Lamb, 2020; Lamb et al., 2020; Raedt et al., 2020), which is the key focus
of this thesis. The neuro-symbolic machine learning paradigm emerged in the last two
decades with the aim to explore to what extent can, e.g., existing, logic-based systems
be improved when coupled with differentiable neural network-based components (Sarker
et al., 2021). Furthermore, neuro-symbolic approaches to machine learning retain some
degree of explainability, which can be a critical factor in high-risk scenarios, e.g., clinical
diagnosis (Pisano et al., 2020).

Having discussed the main learning paradigms considered in this thesis, we next discuss
the main motivations underlying the presented research. The symbolic learning paradigm
has offered considerable improvement in understanding the main patterns underlying a
given data set. As such, it served as an invaluable tool when trying to better understand
the underlying process or to present the induced models to domain experts. One of the
main caveats commonly observed when constructing symbolic models is sub-optimal pre-
dictive performance. A possible solution to this problem are ensemble-based methods,
which, however, considerably reduce the interpretability of the final model. Another pos-
sibility, which was the key focus of this work, involves symbolic feature construction. Here,
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human-understandable patterns appearing in the input data are used to construct the fea-
ture space, useful for learning. If the machine learning model learned from such space
is symbolic, the model remains interpretable. Our motivation was to explore whether
the obtained symbolic feature spaces can be efficiently combined with sub-symbolic ones,
potentially offering better predictive performance while maintaining (at least partial) in-
terpretability. As the constructed spaces are sparse, this thesis additionally addresses the
problem of implementing representations, which is just as relevant for successful and effi-
cient learning. To our knowledge, exploring how symbolic and sub-symbolic representation
learning intertwines for different types of inputs (and hence tasks) has not been extensively
studied.

Contemporary neural network models can learn from lightly pre-processed data (e.g.,
sensor data), making them very useful for many tasks that would otherwise require exten-
sive feature engineering. Design of such end-to-end systems has its benefits; however, it
does not necessarily offer insights into what was actually learned and whether the learned
representations are noise resistant. In this thesis, we additionally explored the aspect of
better understanding how and when a particular representation type is dominant and why
this is the case. For example, when representing texts, as multiple different representations
of the same document are possible when solving a given classification task, better under-
standing of how different representations interact and jointly enable a good solution is a
relevant research endeavour. The paradigm of neuro-symbolic machine learning system-
atically investigates such scenarios, and was thus in the background of many of the ideas
presented in this thesis.

Contemporary algorithms useful in practical scenarios must, apart from performing
well, also scale. This aspect of learning was one of the key factors during the resurgence of
neural network-based learning in the last decade. Interestingly, scaling symbolic approaches
is not necessarily straightforward and needs to be addressed as a separate research ques-
tion. In particular, we were motivated to explore whether existing propositionalization
approaches (Lavrač et al., 2020) scale to multi-million instance data sets and which algo-
rithmic advancements are needed to achieve this. Implementing efficient methods that offer
both acceptable predictive performance and adequate explainability for a given use case is
an exciting research endeavour, as these (multiple) objectives are not necessarily aligned.
Given that parts of a learning process can be natively parallelized, a sensible research
direction includes exploration of grid-level scaling, i.e. training a given neuro-symbolic ap-
proach not on one but on multiple machines. We were particularly interested in profiling
the performance of evolution-based (meta)learning, its implementation and other scaling
laws.

One of the key novelties introduced with the recent sub-symbolic methods is their
capability to efficiently learn low-dimensional representations. Thus, instead of trying
to replace existing algorithms with specifically adapted neural network-based methods, a
promising research direction involves investigation of how the existing symbolic methods
can benefit from learned representations of, e.g., instances. We identified the domain
of feature ranking as a promising testbed for such experimentation. We were motivated
to explore whether lower-dimensional representations of very high dimensional data sets
can be directly incorporated into one of the learning paradigms for computing feature
importances.

Even though the neuro-symbolic paradigm is a relatively young research endeavour (last
decade), multiple approaches have already demonstrated that functionality, not achievable
by using only sub-symbolic or symbolic methods, is possible. However, understanding
the trade-offs regarding different input data types and the addressed tasks remains an
interesting research endeavour. In this thesis, we aimed to push the boundary of our
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current understanding of the interplay of the two paradigms on types of data sets seldom
considered in the context of neuro-symbolic machine learning.

With the increasing amounts of available software solutions to solve different learning
tasks, a newcomer to a given field can struggle and spend substantial amounts of time
identifying which approach to representation learning and subsequent, e.g., down-stream
classification should be chosen. To remedy this issue, the area of autoML systems has
evolved in the last decade alongside the other mentioned paradigms (Feurer et al., 2019).
The purpose of autoML approaches is to simplify learning when solving of a given task as
much as possible. In this thesis, we were motivated to push this boundary further to the
level of representation learning. This type of autoML system represents the new wave of
approaches that do not assume the data to be in a learning-ready format but are capable
of deriving appropriate representations on their own.

1.2 Purpose of the Dissertation

The neuro-symbolic paradigm has gained considerable traction in recent years. The main
reasons for the increased interest in this branch of methods are the need for increased ex-
plainability of a given (in most cases neural) method, the need for inclusion of explicit back-
ground knowledge into a given learning process, logic-based constraining of sub-symbolic
representations, the need for an explicit reasoning step when obtaining the final model
output, or the need to improve the scalability of a given symbolic learner.

The purpose of this dissertation is to investigate when, and to what extent, can the
neuro-symbolic paradigm offer either performance, scalability or explainability improve-
ments over the existing neural- or symbolic-only methods, and to demonstrate the advances
in a range of real-life problems.

The thesis also explores whether learnable zeroth-order relational features can serve as
a competitive but more scalable alternative to the existing propositionalization-only learn-
ing schemes. This is achieved by an extensive overview of existing symbolic representation
learning methods, which are compared to neural representation learners with respect to
multiple criteria, ranging from the number of parameters, algorithm type, hardware con-
straints etc. Furthermore, the thesis’ purpose is to explore the implications of adopting the
neuro-symbolic paradigm for the task of scalable node embedding (for node classification).
To our knowledge, this endeavour is one of the first systematic attempts to better under-
stand the relationship between symbolic and sub-symbolic node representation learning,
their algorithmic trade-offs and comparison to the existing state-of-the-art approaches for
structural representation learning.

Next, the thesis also explores whether the neuro-symbolic learning paradigm offers
superior performance for the task of text classification whilst maintaining parts of the
learned representations in symbolic form. By being able to learn directly from such ”hybrid"
representations, a given classifier – that is able to provide feature importances as part of
its training – offers direct insight into whether representation types are problem-dependent
and whether particular representations can be automatically re-weighted to obtain better
performance whilst maintaining at least partial explainability. Apart from considering
learning from neuro-symbolic representations, the purpose of this last investigation is also
to address the issue of hyperparameter optimization by adopting the autoML paradigm
for text-based learning, which has, to our knowledge, not been considered at such scale
before.

The final addressed problem is the computation of feature importances when consider-
ing tabular data sets. This task is of relevance when the end-user is interested in gaining
valuable insights regarding which parts of the feature space are most relevant for solving
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a given, e.g., classification task. In many real-life biological data sets, pinpointing only
a handful of features out of tens of thousands of possible candidates can already provide
valuable insights. The thesis explores two ideas which address the feature importance com-
putation problems, solvable by adopting the neuro-symbolic paradigm. The first problem
addresses the issue of maintaining the link between a given set of neural network weights
and the individual attributes, offering the final (converged) weights as potential feature
importances. As part of this thesis, we explore whether the recently introduced idea of
neural attention layers (Vaswani et al., 2017) can be useful when designing such architec-
ture for tabular data. Furthermore, we are interested in whether embedding-based instance
representations can be useful to speed up the Relief branch of algorithms (Kira & Rendell,
1992) by considering distance computation exclusively in the derived, low-dimensional la-
tent space. The purpose of both endeavours is to demonstrate how the neuro-symbolic
paradigm can be applied in both ways: either to improve the existing symbolic method
(Relief-based ranking in this case), or to address the issue of maintaining a bijection be-
tween the attributes and a part of a given neural network, offering attribute scoring similar
to conventional feature ranking.

The thesis addresses the above-mentioned problems either at the level of representation
learning or at the level of the whole system’s direct learning capabilities. Overall, the
purpose of this dissertation is not to promote/emphasize the relevance of neuro-symbolic
machine learning but to assess its realistic compatibility with modern software/hardware
solutions.

1.3 Hypotheses and Main Goals

This section gives an overview of the main hypotheses and goals of this dissertation. The
central hypothesis of this work addresses the question of whether the neuro-symbolic learn-
ing paradigm can offer a more explainable, scalable and performant branch of methods for
learning from tables, texts and relational data. More specifically, we hypothesize that
neuro-symbolic machine learning can handle larger real-world problems and achieve ad-
vances in terms of

• (H1) improved understanding of the relationship between symbolic and sub-symbolic
representation learning with the aim of developing algorithms capable of exploiting
the suitable aspects of both paradigms,

• (H2) improved explainability compared to neural-only approaches,

• (H3) improved predictive performance compared to symbolic-only approaches, and

• (H4) improved scalability compared to symbolic-only approaches.

The main goal of this dissertation was to investigate machine learning ideas applicable
in real life and whether they can benefit by adopting the neuro-symbolic learning paradigm.
The dissertation intentionally focuses on different types of input data (graphs, relational
databases, texts and tables) with the aim to demonstrate the general applicability of the
neuro-symbolic paradigm.

In terms of explainability, we were interested whether increased explainability could be
achieved for the tasks of representation learning for text classification and neural network-
based learning from tabular data. First, our goal was to build an autoML system capable
of automatic document representation prioritization, pinpointing what type of document
representation is suitable for solving a given text classification task. By offering feature
importances for individual representations, we aim to enable the user to directly inspect
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the key features that play the main role (within a given representation). Second, we were
interested in the link between the neural attention mechanism and feature importance
estimation. We hypothesized that neural self-attention, the process which maintains a
bijection between the attributes and a particular set of weights, resembles the process
of feature importance computation. This hypothesis was addressed as the autoBOT ap-
proach (Škrlj, Martinc, et al., 2021) and self-attention networks for tabular data (Škrlj,
Džeroski, et al., 2020).

In terms of predictive performance, we were interested whether neuro-symbolic learning
algorithms could offer better classification performance when considering relational data
and text-based data while being at least as scalable as their symbolic counterparts. Here, we
hypothesized that there exist two main approaches to learning low-dimensional representa-
tions of either bags of logical statements or individual statements and that both approaches
perform competitively to the state-of-the-art propositionalization approaches. Further-
more, we hypothesized that neural network-based distillation of propositional, PageRank-
based node representations offers state-of-the-art performance. The contributions which
address this hypothesis are the Propositionalization and Embeddings paper (Lavrač et al.,
2020) and the Deep Node Ranking paper (Škrlj et al., 2021). Further, we hypothesized
that the neuro-symbolic paradigm offers text classification performance superior to the
existing symbolic baselines, however performs similarly or worse to the existing founda-
tion models (Bommasani et al., 2021), which, however, contain orders of magnitude more
parameters (and are thus consistently larger) (Škrlj, Martinc, et al., 2021).

Finally, in terms of scalability, we hypothesized that embedding-based feature ranking
can offer better scaling to large, high-dimensional data sets and that neuro-symbolic node
representation learning can offer a more scalable solution compared to adopted structural
representation learners. Further, we hypothesized that the neuro-symbolic paradigm could
offer more seamless scaling to grid infrastructure, comprised of different computing nodes,
as it can be more easily containerized as it is not necessarily constrained by specialized hard-
ware. The contribution related to this hypothesis concerns the construction of an autoML
framework which, with minimal configuration, offers seamless scaling to larger computing
grids, analysis of the resulting collections of result/optimization runs and selection of the
best final models. The two contributions related to the discussed problems are the ReliefE
paper (Škrlj, Džeroski, et al., 2021) and the autoBOT paper (Škrlj, Martinc, et al., 2021).
Furthermore, this thesis includes a chapter that was previously not published, discussing a
grid-scale solution for training autoML systems applied to autoBOT. A schematic overview
of the hypotheses and their relation to the symbolic and sub-symbolic learning paradigms
is shown in Figure 1.2.

1.4 Scientific Contributions

We next present the key scientific contributions which constitute this thesis. The contri-
butions are split into two main parts: the core contributions, which directly address one
of the mentioned hypotheses/problems related to scalable neuro-symbolic learning, and
other (partially relevant) contributions, which address specific (mostly scalability) aspects
of existing state-of-the-art methods, related to the presented work, and are (co-)authored
by the author of this thesis, but not focusing exclusively on the neuro-symbolic paradigm
which is the key focus of this thesis.
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Figure 1.2: Schematic overview of the relations between the learning paradigms with the
placement of the core thesis contributions, presented by the labeled dots corresponding to
the sections of the thesis where these contributions are described. Note that ‘Understand-
ing’ here corresponds to a paradigm’s potential to better understand the addressed task
itself (trade-offs concerning symbolic or sub-symbolic learning).

1.4.1 Core Contributions

We first present the core contributions of this thesis, following the common thread of
studying aspects of neuro-symbolic machine learning.

Propositionalization and Embeddings (see Section 3.2)

Many real-life data sets contain relations, which are neglected by many standard learning
algorithms. This contribution targets the relational domain, i.e., scenarios where a rela-
tional database is used as input, one of its tables is the target table, and the relational
learner must be able to exploit all additional information linked to the target table via
foreign keys. The contribution focuses on representation learning, the process of deriving
a learning-ready representation from the original representation (e.g., an SQL file) that
is not directly suitable as input for learning. The contribution first discusses the relation
between symbolic and sub-symbolic representation learning for the relational domain and
offers an extensive comparison of the two paradigms with respect to both their algorithmic
properties and hardware-level constraints. The contribution also discusses the two main
approaches to embedding-based learning when considering a relational database; either the
approach embeds the sets of logical clauses which describe individual rows in the target
table, or it embeds, in a self-supervised manner, individual clauses, making the process of
classification a matter of comparison of the embeddings of such clauses in a learned la-
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tent space. The contribution demonstrates that both paradigms scale better than existing
state-of-the-art approaches.

Related journal paper

Lavrač, N., Škrlj, B., & Robnik-Šikonja, M. (2020). Propositionalization and embeddings:
two sides of the same coin. Machine Learning, 109 (7), 1465–1507. https://doi.org/10.
1007/s10994-020-05890-8

Deep Node Ranking (see Section 3.3)

This contribution also revolves around learning from relational data. However, it focuses on
simpler, homogeneous networks, i.e., directed/undirected weighted graphs G = (N,E,w).
Such graphs are a suitable representation when modelling, e.g., social or biological net-
works. The contribution addresses the issue of neuro-symbolic node representation learn-
ing. Even though methods such as, e.g., node2vec (Grover & Leskovec, 2016) or graph
neural network-based models (Kipf & Welling, 2017), have been shown to perform well for
the task of structural node classification (where nodes have no attributes), such systems
either do not scale to larger networks or cannot be, at least partially, inspected and system-
atically perturbed. By building on previous work (Kralj et al., 2018) that has shown that
symbolic structural representations based on personalized PageRank vectors offer adequate
performance, we have improved the methodology to scale to much larger networks whilst
retaining the origin representation’s classification performance. As the proposed method
is partially symbolic, we demonstrate that by adopting the neuro-symbolic paradigm, the
relation between the performance and compression can be directly studied. Further, the
proposed method adopts the notion of node pivoting, making it scale to very large networks
(which we empirically evaluated).

Related journal paper

Škrlj, B., Kralj, J., Konc, J., Robnik-Šikonja, M., & Lavrač, N. (2021). Deep node ranking
for neuro-symbolic structural node embedding and classification. International Journal of
Intelligent Systems, 1–30. https://doi.org/https://doi.org/10.1002/int.22651

Automating text classification with autoBOT (see Section 4.2)

The next domain of interest were texts. This type of input does not adhere to a single,
most suitable representation; for example, a document can be represented based on its part-
of-speech-tag structure, keywords, subword information or more semantic representations
learnable with neural language models. The key contribution of this work was the investi-
gation of the intractable problem of constructing the appropriate representation ensemble,
whilst maintaining the system’s explainability via coefficients of simple (explainable) learn-
ers, as well as representation type-level scores obtained in the process of evolution. The
key output is thus a simple-to-use system that operates with non-specialized hardware,
offers better performance than naïve symbolic baselines, and can be competitive to the
state-of-the-art language model-based learners, which are not explainable.

Related journal paper

Škrlj, B., Martinc, M., Lavrač, N., & Pollak, S. (2021). autoBOT: evolving neuro-symbolic
representations for explainable low resource text classification. Machine Learning, 989–
1028. https://doi.org/10.1007/s10994-021-05968-x

https://doi.org/10.1007/s10994-020-05890-8
https://doi.org/10.1007/s10994-020-05890-8
https://doi.org/https://doi.org/10.1002/int.22651
https://doi.org/10.1007/s10994-021-05968-x
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Self-attention and feature ranking (see Section 5.2)

We were exploring the link between feature importance computation and the neural atten-
tion mechanism. This contribution was, at the time of writing, one of the first papers that
explored the implications of considering the neural attention mechanism, conventionally
used in architectures like transformers, as a means to obtain feature importances. We
were especially interested in the notion of self-attention, i.e., the set of weights that di-
rectly relate individual attributes to a real-valued score. The key insight related to this
contribution is that feature ranking can be used to evaluate this idea quantitatively, as the
classification performance of the top k features based on a given ranking can be directly
evaluated.

Related conference paper

Škrlj, B., Džeroski, S., Lavrač, N., & Petkovič, M. (2020). Feature Importance Estimation
with Self-Attention Networks. In G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S.
Barro, A. Bugarín, & J. Lang (Eds.), ECAI 2020 - 24th European Conference on Artifi-
cial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August 29 -
September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial In-
telligence (PAIS 2020) (pp. 1491–1498). IOS Press. https://doi.org/10.3233/FAIA200256

Embedding-based feature ranking (see Section 5.3)

Apart from studying the behaviour of neural-only systems, and trying to link it to a given
symbolic space, a promising application of the neuro-symbolic paradigm is in speeding up
existing learning algorithms. This is achieved by a novel feature ranking approach from
the Relief family, capable of leveraging learned instance representations for seamless scal-
ing to very high-dimensional, sparse data sets. The key idea of this contribution revolves
around efficient representation learning paradigms available nowadays, capable of operat-
ing in high-dimensional sparse regimes and returning low-dimensional representations of
the objects of interest, i.e., the instances, in the case of this contribution. As the Relief
family of algorithms revolves around instance comparison for the purpose of ranking, we
demonstrated that such comparisons can be made in a learned space, inducing provably
lower computational complexity compared to variants that operate in the original space.
The contribution also contains an extensive empirical evaluation of this claim, demon-
strating that lower-dimensional representations are a promising endeavour, speeding up
the Relief family of algorithms in order for them to handle contemporary-scale data sets
(e.g., biological data sets that can contain tens of thousands of features).

Related journal paper

Škrlj, B., Džeroski, S., Lavrač, N., & Petković, M. (2021). ReliefE: feature ranking in
high-dimensional spaces via manifold embeddings. Machine Learning, 1–45. https://doi.
org/10.1007/s10994-021-05998-5

1.4.2 Other related Contributions

The following set of contributions impacted the development of the core thesis contri-
butions, despite not being fully focused on the common thesis thread of neuro-symbolic
learning.

https://doi.org/10.3233/FAIA200256
https://doi.org/10.1007/s10994-021-05998-5
https://doi.org/10.1007/s10994-021-05998-5
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Symbolic Node Embedding (see Section 6.1); Mežnar, S., Lavrač, N., & Škrlj, B.
(2020). SNoRe: scalable Unsupervised Learning of Symbolic Node Representations.
IEEE Access, 8, 212568–212588. https://doi.org/10.1109/ACCESS.2020.3039541

Semantic Reasoning from Embedding-based Communities (see Section 6.2);
Škrlj, B., Kralj, J., & Lavrač, N. (2020). Embedding-based silhouette community de-
tection. Machine Learning, 109 (11), 2161–2193. https://doi.org/10.1007/s10994-
020-05882-8

Semantic Feature Construction with tax2vec (see Section 6.3); Škrlj, B., Mart-
inc, M., Kralj, J., Lavrač, N., & Pollak, S. (2020). tax2vec: constructing Inter-
pretable Features from Taxonomies for Short Text Classification. Computer Speech
& Language, 101104. https://doi.org/https://doi.org/10.1016/j.csl.2020.101104

Contextual Keyword Identification with TNT-KID (see Section 6.4); Martinc, M.,
Škrlj, B., & Pollak, S. (2021). TNT-KID: transformer-based neural tagger for key-
word identification. Natural Language Engineering, 1–40. https://doi.org/10.1017/
S1351324921000127

On Attention Vectors and Explanations (see Section 6.5); Škrlj, B., Sheehan, S.,
Eržen, N., Robnik-Šikonja, M., Luz, S., & Pollak, S. (2021). Exploring neural lan-
guage models via analysis of local and global self-attention spaces. Proceedings of
the EACL Hackashop on News Media Content Analysis and Automated Report Gen-
eration, 76–83. https://aclanthology.org/2021.hackashop-1.11

Interactive Exploration of Causal Drug-Target Interactions (see Section 6.6);
Škrlj, B., Eržen, N., Lavrač, N., Kunej, T., & Konc, J. (2020). CaNDis: a web server
for investigation of causal relationships between diseases, drugs and drug targets.
Bioinformatics, 37 (6), 885–887. https://doi.org/10.1093/bioinformatics/btaa762

1.5 Structure

This chapter served as an overview of the conducted work, the problems addressed and
the main contributions. The remainder of this dissertation is structured as follows. In
Chapter 2 we present the related work relevant to this dissertation. The chapter includes
selected concepts from the areas of symbolic learning, propositionalization, neural network-
based learning and, more generally, representation learning. This chapter also focuses
on the notion of neuro-symbolic learning, key contributions in this field in the last ten
years and its relation to state-of-the-art neural/symbolic approaches. Finally, the chapter
discusses the notion of automatic learning (autoML) systems, existing state-of-the-art in
this domain, and the main implications of being able to use such systems on real problems
supported with existing implementations/use cases.

We begin the description of these contributions by presenting our work on relational
data in Chapter 3. This chapter includes two selected contributions to the better un-
derstanding of how the neuro-symbolic paradigm can be adopted to solve the tasks of
relational classification and node embedding tasks. The chapter first introduces the reader
to the problem of relational learning, typical applications and the current state-of-the-
art approaches. Next, we present our work on propositionalization and embeddings, two
dominant paradigms for transforming complex data, such as relational tables, into sim-
pler, propositional form suitable for learning. By discussing both the relationship between
the two paradigms and two implementations of the discussed ideas, we demonstrate that
neuro-symbolic relational learning is one of the possible ways to improve the scaling of

https://doi.org/10.1109/ACCESS.2020.3039541
https://doi.org/10.1007/s10994-020-05882-8
https://doi.org/10.1007/s10994-020-05882-8
https://doi.org/https://doi.org/10.1016/j.csl.2020.101104
https://doi.org/10.1017/S1351324921000127
https://doi.org/10.1017/S1351324921000127
https://aclanthology.org/2021.hackashop-1.11
https://doi.org/10.1093/bioinformatics/btaa762
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existing methods beyond the reach of the current symbolic state-of-the-art. We continue
by describing the proposed Deep Node Ranking (DNR) algorithm. This approach explores
how propositionalization and embeddings intertwine when considering simpler relational
inputs such as weighted graphs. We demonstrate that the existing symbolic (proposition-
alization via PageRank-based) method can be extended with a neural network that serves
as a compression engine, offering much more compact representations which retain most
of the information. By coupling symbolic with sub-symbolic representation learning, we
demonstrate that the neuro-symbolic paradigm offers the answers to the questions that
cannot be directly addressed with sub-symbolic-only learning; for example, by being able
to control the subgraph that is the input to embedding learning, the user has fine-grained
control over the representation learning process.

Next, we discuss the developed autoML system aimed at text-based neuro-symbolic
classification in Chapter 4. The chapter introduces the reader to the notion of text clas-
sification, the relevance of this task, and the open problems addressed. This is followed
by the contribution describing autoBOT, the in-house autoML system aimed at explor-
ing how far low-resource learning can be pushed by adopting the idea of representation
evolution. In the same chapter, we discuss a computational framework implemented to
properly scale the developed autoML system across hundreds of machines. As individual
evolutions are independent, the framework is able to asynchronously send, summarize and
retrieve the best models completely automatically. The end goal of this contribution was to
build a framework, which, once given the training and testing data, exploits the available
computing power to find the best explainable (regularized) classifier. The contribution
is one of the first to explore representation learning at this scale for the task of neuro-
symbolic text classification. We also discuss our contributions related to neuro-symbolic
learning from tabular data in Chapter 5. The chapter includes two main contributions.
We first present our attempt at linking parts of the tabular input space (attributes) with
corresponding neural network weights. We hypothesized that such bijections could offer
direct attribute ranking, which we evaluated empirically, demonstrating that if the under-
lying neural network converges to a good classifier, the attention-based ranking is of higher
quality. The second contribution presented explores how contemporary embedding learn-
ers such as UMAP (McInnes et al., 2018) can be of use when performing feature ranking
directly. We demonstrated that both theoretically and empirically, by considering embed-
dings of instances instead of the original space instances, the process of ranking can be
substantially faster. When considering very high-dimensional data sets, we demonstrated
that the proposed ReliefE is one of the few solutions that are able to output rankings in
a reasonable time. This method adopts the neuro-symbolic paradigm in the sense that
sub-symbolic representations are used to obtain a symbolic output (ranking).

Further, in Chapter 6, we present the collection of other contributions (papers), which
were not the key focus of this thesis even though they influenced the main set of con-
tributions. The key ideas presented in the individual contributions are summarized. In
Chapter 7, we discuss the implementation aspects of the presented contributions. Having
stable, easy-to-use implementations of a given method is becoming a norm due to the
increasing competition within different sub-fields of machine learning. Most of the pre-
sented work was implemented in the form of simple-to-use Python libraries, capable of
exploiting available computing power, should it be available. We present the developed
software libraries and discuss how the unit testing procedures helped us ensure more robust
implementations in the (hopefully) longer run. We round up this work with our remarks
collected in Chapter 8. We first offer an overview of the developed methods, key results
and their applications. We conclude the thesis with a section discussing possible further
work, and more broadly, the possible limitations of neuro-symbolic computing in general.
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Chapter 2

Related Work

I do not fear computers. I fear the lack of them.

Isaac Asimov

This chapter provides an overview of the key topics covered in the main contributions
of this dissertation. We begin by presenting the machine learning paradigms relevant to
this work. We discuss the notion of symbolic learning, followed by deep learning and
neuro-symbolic learning. We conclude the chapter with an overview of automatic machine
learning and evolutionary computation principles relevant to this work.

2.1 Symbolic Learning

Ever since the first computers, the question of task automation has intrigued multiple
generations of researchers. Some of the first discussions on constructing intelligent agents
date back to 1950s (Turing, A. M., 1950). The first widely explored paradigm of auto-
mated learning was symbolic learning. Here, models in the form of a collection of logical
rules (Holte, 1993; Michalski et al., 1986) or trees (Quinlan, 1986) are learned by using
heuristics-guided algorithms. For example, decision tree learners were successfully em-
ployed to understand data from various sources better and are especially suitable when
a better understanding of, e.g., clinical or biomedical data is desired. An example deci-
sion tree is shown in Figure 2.1. Decision trees can also be decomposed into simple rules.
Continuing the example in Figure 2.1, example (propositional) rule is:

trip(true)← equipment(true) ∧ weekend(true) ∧ sunny(true),

indicating how a decision tree is interpreted when considering different criteria. The com-
mon property of all symbolic learning approaches is that they are interpretable in the
sense that the user can directly inspect which parts of the feature space were crucial for
the final model’s prediction. Scaling up, e.g., tree learning, has been an ongoing research
endeavor (Gama et al., 2013), making this branch of models applicable in many contem-
porary scenarios, where the data sets cannot be processed without proper parallelism and
potential multi-machine scaling or stream-based approaches.

Apart from symbolic predictive models, a learning paradigm which is often considered
in the pre-processing phases also relevant to this work is feature ranking (Chandrashekar
& Sahin, 2014; Kira & Rendell, 1992). Here, given mostly tabular inputs (e.g., table
and the target space), the algorithm’s task is to pinpoint which features are the most
relevant for, e.g., differentiation between the target classes. The feature ranking process
is illustrated in Figure 2.2. The main application of this branch of algorithms is when
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Figure 2.1: A decision tree determining a trip departure.

attempting to better understand the data itself, and not necessarily to construct superior
predictive models. For example, contemporary biological single-cell sequencing data sets
can consist of thousands of features (genes). Understanding which (often small) subset of
them is relevant for differentiating between the observed phenotype is of high relevance
when learning about a given phenomenon (Ibrahim & Kramann, 2019). Recent variants
of feature ranking algorithms can, for example, also incorporate hierarchical information,
which is often natively present when working with biological data (Slavkov et al., 2018).
Furthermore, in recent years, simultaneous consideration of multiple targets during ranking
has shown promising results (Petković et al., 2020). The next example of the symbolic

Features Target

Relevant

Irrelevant

Figure 2.2: Schematic overview of feature ranking. After a sufficient number of iterations,
the final set of relevant features can be selected based on the scoring of all features.

learning paradigm relevant to this work is inductive logic programming (ILP) (Cropper
et al., 2020; Lavrač & Džeroski, 1994; Muggleton, 1992; Shapiro, 1981). The key property
of these models is their symbolic nature – they consist of a collection of logical clauses,
interpretable by e.g., a domain expert. Zeroth- or first-order logic is commonly used to
construct such (relational) rules. An illustrative first-order rule is stated next.

siblingPair(A,B)← parentOf(A,C) ∧ parentOf(B,C)

Note that the logical variables are in this case not boolean. These variables can also be
predicates, possibly yielding higher-order relations. These models are trained via different
search procedures (e.g., top-down, bottom-up, combination of the two), and offer discovery
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of simple generalizations in both propositional and relational domains. An illustration of
the two main search paradigms used in rule induction is shown in Figure 2.3.

Top-down

Bottom-up

Figure 2.3: The two types of computational search.

This branch of learning has been, for example, used for exploration of codebases (Sivara-
man et al., 2019) and in agriculture (Matsumoto et al., 2017) for yield optimization. One
of the most widely used algorithms of this paradigm is Aleph (Srinivasan, 2001). Note
that the ILP task generally attempts to find a logic program that covers all positive ex-
amples and does not cover the negative ones, whilst considering a collection of background
knowledge.

The core focus of the ILP community is working directly with relational data. The
focus of this work, however, is the part of ILP focusing on propositionalization – the
process of transforming a relational database into a propositional (tabular) one. If such
transformation is automated, we refer to it as symbolic representation learning. Symbolic
representation learning has emerged as a sub-field of ILP (Kramer et al., 2001). The
field of symbolic representation learning mostly considers the transformation between rela-
tional and propositional data structures, i.e., the process of propositionalization (see, e.g.,
(Kramer et al., 2001) for an overview). Here, a learning-ready (tabular) representation is
obtained via, e.g., sampling of individual relations, which jointly form a single vector that
describes a given instance. Existing methods which adopt a similar idea when considering
learning from relational databases include SINUS (Lavrač & Flach, 2001), 1BC (Flach &
Lachiche, 1999) and RSD (Železný & Lavrač, 2006). The common point of the mentioned
propositionalization approaches is that they attempt to perform intermediary generaliza-
tion and thus yield features that are complex relational structures (first-order). The most
recent advances in the field of propositionalization aim to exploit as many computational
resources as possible via direct propositionalization of whole relational databases (Per-
ovšek et al., 2013). A schematic overview of Wordification is shown in Figure 2.4. This
work builds on the insights from Wordification, namely that simpler table-attribute-value
triplets, when exhaustively sampled, already offer similar performance to state-of-the-art
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if considered by a learning algorithm capable of capturing non-linear relations. This the-
sis pushes Wordification-based propositionalization ideas further to the boundary between
neural and symbolic representation learning, both when considering information-rich rela-
tional databases (with limited structure), and structure-rich real-life networks.

a)

b)

c)

Figure 2.4: Wordification of a relational database. First (a), foreign-key-based traversal
is conducted to identify linked instances. Next (b), a joint space with respect to different
tables is constructed and (c), vectors with respect to a single instance from the target table
are concatenated.

While relational learning has been, from the ILP perspective, mostly concerned with
relational databases, symbolic representation learning from simpler relational structures,
such as, e.g., complex networks also offers an interesting research venue. Relevant to this
work are two main types of such networks: homogeneous and heterogeneous information
networks, illustrated in Figure 2.5. The main difference between the two network types
is that homogeneous networks are either directed or undirected, with their edges being
weighted. However, the heterogeneous networks commonly consist of typed nodes, links,
weights on the links and optional node/link features.

(a) Homogeneous. (b) Heterogeneous.

Figure 2.5: The two network types. Heterogeneous networks can entail richer structure,
considering also node/link types/features. A common approach to working with heteroge-
neous network includes their transformation into homogeneous ones (Kralj et al., 2018).

Examples of previous work, where propositionalization-like representation learning was
used for learning from heterogeneous information networks, include a methodology by
Grčar et al. (Grčar et al., 2013) and HINMINE (Kralj et al., 2018). These methodologies
explored how heterogeneous information networks can be first decomposed into multiple
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homogeneous networks, which can be subsequently propositionalized via the application of
personalized PageRank algorithm (Page et al., 1999). The methodologies differ with respect
to the type of aggregation of the representations prior to learning and the type of decom-
position used. Further, systems that perform graph propositionalization (Karunaratne &
Boström, 2009) were shown to perform well when considered simultaneously with ran-
dom forest-based learners. One of the key contributions of this work (Lavrač et al.,
2020) explores how these existing approaches could be scaled/improved by also consid-
ering embedding-based representation learning.

2.2 Sub-symbolic Learning

The second widely-adopted paradigm of learning has re-emerged recently due to the in-
creased computational power available to the research community via, e.g., Graphics Pro-
cessing Units (GPUs) (Goodfellow et al., 2016; LeCun et al., 2015). The paradigm consid-
ers the construction of neural networks, a type of machine learning model that iteratively
optimizes a plethora of real-valued weights ordered in layers (e.g., a multipartite graph).
In contrast to the symbolic paradigm, neural networks are mostly trained via the process
of backpropagation, a forward-backwards procedure that gradually learns to associate the
input space with the output space via scalar products of intermediary weights spaces. This
paradigm of learning, initially explored more than 50 years ago (Rosenblatt, 1957), has
resurged as deep learning due to multiple hidden layers considered in contemporary neural
network architectures (Vaswani et al., 2017).

The process of backpropagation can be understood as follows. First, matrix multipli-
cations offer a direct transfer of information from the input to the output (forward pass).
Next, the errors, once computed, can be back-propagated from the last layers to the input
layer. This step requires the computation of derivatives of each weight with respect to the
output, which is possible due to the chain rule. Let x ∈ Rm, y ∈ Rn, g : Rm → Rn, and
f : Rn → R. Let y = g(x) and z = f(y). Then the general expression for computing a
given partial derivative can be stated as

∇xz = J t · ∇yz.

Here, J ∈ Rn×m is the Jacobian matrix of g (i.e. ∂y
∂x). Note that even though neural

networks are commonly comprised of tensors, i.e., multi-dimensional objects that are not
just vectors, as shown in the formula above, the gradient computation works the same
way with an additional step of tensor flattening (Goodfellow et al., 2016). The obtained
gradients are finally used (third step) to update the weights via an optimization algorithm
such as, e.g., the stochastic gradient descent.

Nowadays, neural networks can be built and trained seamlessly via systems such as
PyTorch (Paszke et al., 2019). As deeper architectures are commonly adopted in practice,
diagrams like the one shown in Figure 2.6 are commonly used, where nodes represent
individual vector products (with activations), and the edges represent the weights.

One of the first modern tasks where deep learning prevailed were computer vision tasks
such as image recognition, segmentation and similar tasks (Voulodimos et al., 2018). In
recent years, however, state-of-the-art performance was also observed in the domains of
natural language processing (Devlin et al., 2019) and graph-based learning (Kipf &Welling,
2017).

Neural networks learn to associate the input to output spaces via iterative updates
of real-valued weights. As such, the intermediary weight spaces can be already consid-
ered as representations. Albeit the first breakthrough in adopting deep learning-based
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(a) Feedforward architecture.
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(b) Convolutional architecture.

Figure 2.6: Two examples of commonly used neural network architectures. For the case of
basic single-hidden-layer feedforward neural network architecture (a); weights are empha-
sized based on random initializations (no edge =⇒ w = 0). The second architecture (b)
represents a contemporary multi-hidden-layer neural network with multiple convolutional
and pooling layers.

methods at scale were in the field of computer vision, the first endeavours to better under-
stand the learned representations first raised considerable attention with the representation
learners such as word2vec (Mikolov et al., 2013) and later doc2vec (Le & Mikolov, 2014).
This branch of, e.g., word representation learners opened multiple novel research venues,
focused on compressibility, semantic change in time and overall usefulness of such rep-
resentations for downstream tasks such as document classification of similar. Another
significant improvement in the area of natural language processing (NLP) emerged with
the transformer-based architectures (Devlin et al., 2019). Here, the focus was not, as e.g.,
when considering doc2vec, to obtain a static, non-contextual representation, but to obtain
contextual representations or perform learning directly. Even though their initial focus was
on solving downstream tasks of language understanding, transformer-based representations
have become a research area of their own (Reimers & Gurevych, 2019, 2020).

Apart from the advances in the field of NLP, the area of relational learning has simi-
larly been subject to significant improvements in the last 15 years. Broadly, two distinct
branches of deep-learning-inspired relational representation learning have emerged, which
have started to intertwine in recent years.

The first type of learning was inspired by the ever more available collections of subject-
predicate-object triplets, forming knowledge graphs. This field of knowledge graph embed-
ding explores how representations of both entities and relations can be learned and used to
solve downstream tasks such as graph completion. The canonical example of this branch
of methods is TransE (Bordes et al., 2013) – its key idea is that it models the relations
via linear combinations of entity representations. Other more recent variations of this
method include, for example, its extension to the space of quaternions (S. Zhang et al.,
2019), exploration of rotation-aware embeddings (Sun et al., 2019), inclusion of complex
number-based representations (Trouillon et al., 2017) and similar.

In parallel, the field of relational representation learning focusing on more global net-
work structures emerged. Inspired by the word2vec-based branch of algorithms, Deep-
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Walk (Perozzi et al., 2014) was one of the first node representation learners which scaled
to larger networks, comprised of thousands of nodes. Here, the idea of random walk-based
sampling is exploited to estimate which neighbours are present around a given node and
how they can be encoded into a compact, dense real-valued representation. In the follow-
ing years, multiple generalizations/optimizations of this type of algorithm were proposed.
Examples include node2vec (Grover & Leskovec, 2016), NetMF (Qiu et al., 2018), a het-
erogeneous network-based adaptation metapath2vec (Y. Dong et al., 2017) and similar.
The common point of these methods is a sampling-based estimation of node/edge repre-
sentations. With some delay, however, an alternative representation learning framework
emerged, based on the idea that the adjacency structure of a given network can be di-
rectly exploited during backpropagation. The graph-convolutional neural networks (Kipf
& Welling, 2017) was one of the first to propose a stable normalization-based layer that
effectively offered direct learning of node representations. In the following years, multi-
ple adaptations were proposed, including the graph-attention networks (Veličković et al.,
2018), graph-isomorphism networks (Xu et al., 2019) and many extensions to heterogeneous
networks (C. Zhang et al., 2019).

2.3 Neuro-symbolic Learning

The two discussed paradigms of learning, symbolic and sub-symbolic, are nowadays able
to solve different problems with little overlap. The symbolic branch of methods remains in
widespread use when obtaining compact explainable patterns directly associated with, e.g.,
a given target space. Such models offer direct inspection, are easier to debug and validate.
Ensembles of such models, are less (or not at all) explainable, but can offer performance
competitive to neural network-based learners. One of the problems of symbolic learning
is its inability to fully exploit the developments at the hardware level. Even though tree-
based systems such as, e.g., XGBoost (Chen & Guestrin, 2016) are able to exploit GPUs,
symbolic learners are mostly CPU-based and often do not support multi-threading.

On the other hand, the neural paradigm mitigates these issues and is arguably as
successful as it is today to a large extent due to the engineering effort directed at the
individual parts of, e.g., backpropagation (e.g., gradient computation). Neural network-
based models continue to dominate most tasks with high-dimensional input spaces such
as texts and images; their dominance revolves around their ability to automatically create
abstractions of the (raw) input signal space, which is more resemblant to how, e.g., humans
perceive their surroundings. Albeit able to handle such fine-grained inputs with ease, neural
network-based models continue to underperform on tasks requiring symbolic reasoning,
regardless of their size.

The domain of neuro-symbolic learning aims to mitigate some of these issues by inves-
tigating how the two paradigms can co-exist as naturally as possible as parts of the same
solution/optimization. The interest in neuro-symbolic learning resurged recently (Mao
et al., 2019) by the development of a neuro-symbolic system that partially operates in
a symbolic and partially in a sub-symbolic space, used to distil human-understandable
concepts from images. In addition, the recent work on closing the loop between recogni-
tion (neural) and reasoning (symbolic) (Q. Li et al., 2020) introduced a grammar model
as a symbolic prior to bridging the neural perception and symbolic reasoning, alongside
a top-down, human-like induction procedure. This work demonstrated that such a com-
bined approach significantly outperforms the conventional reinforcement learning-based
baselines; by including explicit symbolic constraints, parts of the unsuitable search space
were automatically omitted.

Despite the neural network-based models’ dominance when working with image-based
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data, these models’ capability of performing reasoning directly from the learned repre-
sentations remains a challenging open problem (see, for example, the recent ARC chal-
lenge (Chollet, 2019)). To address this issue, the Microsoft research division recently
explored the interplay between visual recognition and reasoning (Amizadeh et al., 2020).
They introduced a framework to isolate and evaluate the reasoning aspect of visual ques-
tion answering separately from its perception, followed by a calibration procedure that
explores the relationship between reasoning and perception. Further, a neuro-symbolic
approach to logical deduction was proposed as Neural Logic Machines (H. Dong et al.,
2019). This architecture was shown to have inductive logic learning capabilities, which
was demonstrated on simple tasks such as sorting. Finally, the two recent approaches from
the field of inductive logic programming (ILP) explored the interplay between the logical
input structures and how they perform when associated via neural network learning. The
Deep Relational Machines (Lodhi, 2013) were one of the first approaches to showcase the
utility of combining the two paradigms. Further, recently, researchers (Srinivasan et al.,
2019) explored how Deep Relational Machines can be explained, emphasizing that being
able to explain what a given pattern discovery/recognition system does is highly relevant,
e.g., in the field of biomedicine.

Apart from exploring the propositional setting, neuro-symbolic learning has also been
actively explored when considering first-order rules. For example, TensorLog (Cohen et
al., 2020) is a recent advancement, which offers a thorough investigation of the relation
between tensor-like representations of logical clauses and their discovery/identification.
Prior to this work, the relation between Boltzmann machines and relational learning was
also explored (Kaur et al., 2018). The branch of research between ILP and neural network
learning has also gained significant traction in recent years (Marra et al., 2020). Finally,
the research that explores how to employ logical constraints during neural network learning
also offered promising results (Pinkas & Cohen, 2019).

Although actively explored, the notion of neuro-symbolic representation learning has,
to our knowledge, not yet been considered in the context of node representation learning,
which is the key focus of this work.

2.4 Automating Machine Learning

In this section, we discuss the notion of automatic learning – the study of creating systems
capable of solving a given task with little-to-no human intervention. The process of machine
learning and representation learning, regardless of it being of symbolic or neural nature, is
in most cases governed by hyperparameters, i.e., tunable variables that govern the learning
progress/properties (He et al., 2021). With the increasing availability of computing power,
manual tuning of hyperparameters is gradually being overtaken by automatic processes,
i.e., meta-learning algorithms. The purpose of this second layer of learning is to automate
the redundant and time-consuming manual optimization of a learning process and rely
more on the available computing resources; the amount of available computing resources
keeps increasing, even though this might not remain the case (Theis & Wong, 2017). The
notion of meta learning can be understood as learning from prior experience in a systematic
manner (Lemke et al., 2015; Vanschoren, 2019). Even though general (naïve) solutions for
meta-learning tasks are – due to the no free lunch theorem – practically impossible (Wolpert
& Macready, 1997), optimization within subspaces of the relevant solution space can lead
to efficient and scalable solutions. For example, when designing a routing search engine,
by incorporating the historical data on city-to-city traversals, the algorithm designers do
not need to treat all candidate paths as equiprobable and jump-start the search from the
existing solution(s). Furthermore, greedy search is also commonly used to drastically re-
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Figure 2.7: Schematic overview of an autoML system. The process is iterative, optimally
yielding better and better solutions.

duce the search space size, even if it is neglecting parts of the space containing reasonable
solutions. Design and development of systems capable of automatic model configuration
and data preprocessing has been an active research area in the last years. We refer to a sys-
tem capable of automatic model tuning/data configuration as an autoML system (Kotthoff
et al., 2019). Examples of existing autoML systems which have already shown promising
performances include autoWEKA (Kotthoff et al., 2019), auto-sklearn (Feurer et al., 2019)
and TPOT (Olson & Moore, 2016). Many autoML systems can be understood as search
across a non-convex space comprised of configurations/representations. The minimization
problem addressed can be in its general form stated as follows;

Solution ≈ arg min
Θ∈algorithmSpace
×hyperParamSpace
×transformationSpace

E
[
Loss

(
learnerClass,Θ, data

)]
.

The stated problem is a generalization of the one discussed in (Kotthoff et al., 2019), as it
also includes the space of possible transformations; this space includes e.g., dimensionality
reduction and embedding construction. Note that the expected value of the loss function
for a given configuration Θ is commonly estimated via cross-validation. Even if the stated
criterion addresses the construction of the final learner, note that if the Loss is not rep-
resentative, the solution obtained as the result of the minimization will not necessarily
generalize/perform well on unseen data. Note that the Loss function is task-independent;
autoML systems are capable of addressing supervised/unsupervised learning problems. In
recent years, substantial research effort has been focused on the design and optimiza-
tion of autoML systems for different domains. Widely used autoML libraries include
for example TPOT (Olson & Moore, 2016), OBOE (Yang et al., 2019), H2O autoML1,
FLAML (Wang et al., 2021), ML-Plan (Mohr et al., 2018), auto-XGBoost (Thomas et al.,
2018), GAMA (Gijsbers & Vanschoren, 2019) and others. Even though the early sys-
tems focused mostly on tabular data due to the previously available algorithm libraries
for this domain, other, less structured data sources are being actively explored. Ex-
amples include e.g., automatic exploration of neural network topologies for the task of
computer vision (Tan & Le, 2019), graph neural network topologies for relational regres-
sion/classification (Pareja et al., 2020). Further, meta learning packages built around
widely used deep learning libraries such as Keras have gained popularity in recent years

1https://github.com/h2oai/h2o-3

https://github.com/h2oai/h2o-3
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Figure 2.8: An overview of the the early genetic algorithm idea. The g corresponds to the
number of iterations of population refinement.

(Auto-Keras) (Jin et al., 2019). Recently, many novel autoML methods have been in-
troduced and offered in a form usable to machine learning practitioners. For example,
auto-sklearn (Feurer et al., 2019) and autoWEKA (Thornton et al., 2013) are approaches
for automatic learning from tabular data. Their goal is to minimize the user’s input during
hyperparameter tuning and model selection, which they achieve via Bayesian optimization.
Further, the process of identifying a suitable deep learning architecture was shown to be
suitable for optimization; an example is the NASnet project (Zoph et al., 2018), where
large-scale exploration of neural network architectures is conducted automatically.

The field of neural architecture search has grown significantly in recent years (Elsken
et al., 2020). Finally, recent trends indicate that understanding the transferrability in
the latent space might offer novel and faster ways for neural network model training.
An example of this new paradigm, also relevant to the final part of this dissertation, is
dataset2vec (Jomaa et al., 2021).

A prominent source of freely available information are texts, which are the key focus
of the autoML-related part of this thesis. More concretely, the final part of this disser-
tation explores the implications of meta-learning for the task of representation learning.
We continue with a more detailed overview of the metaheuristic optimization algorithm
relevant to this thesis. One of the algorithm groups which have stood the test of time
are genetic algorithms, which are part of a broader spectrum of methods termed evolu-
tionary computation. These algorithms mimic the behaviour of, e.g., cell division/DNA
replication and offer a highly parallelizable metaheuristic optimization procedure suitable
for most optimization problems. Even though there are no real guarantees regarding their
general performance (the no free lunch theorem (Wolpert & Macready, 1997)), they consis-
tently offer a simple-to-implement and efficient automation of many real-life optimization
endeavours. Moreover, with the increasing amounts of available computing resources, the
relevance of this and similar types of algorithms are gaining traction in the broader machine
learning community. Widely used already in the 1980s (Davis, 1991), the first variants of
genetic algorithms explored simple search schemes that can be summarised as shown in
Figure 2.8.

Later developments in this field focus more on multi-objective optimization of the ex-
ploration of Pareto fronts, efficient implementations and scalability (Corus & Oliveto, 2017;
Doerr et al., 2017). Their applications are becoming increasingly more relevant due to the
larger amounts of available computing resources available. Practical applications include
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energy management (Leonori et al., 2020), and recently autonomous driving research (D.
Li et al., 2020). We were mostly interested in how the fields of genetic algorithm design
and the design of automated learning systems come together – the recently introduced field
of automatic machine learning (autoML) is becoming a promising research direction with
solutions already deployed at scale.

2.5 Scalability Aspects of Learning

The key focus of this work is a collection of methods which scale with the available com-
puting power at a given researcher’s disposal. There are multiple aspects to a learner’s
scalability. These include the study of a given algorithm’s asymptotic behaviour with
respect to consumed space and time, the implementation and its relation to the hard-
ware layer, type of parallelism needed to scale to, e.g., threads within the same machine,
but also across multiple machines, which is currently near the limit of physically imple-
mentable solutions. The study of the computational complexity of machine learning offers
analytical, often closed-form insights into the asymptotic behaviour of how a given learning
process behaves. Further, it concerns scaling laws – the behaviour of a given system when
varying, e.g., data/model size. In this work, we investigate whether parallelism can offer
faster/better performance of existing algorithms and whether algorithmic improvements of
existing approaches can be obtained. The notion of scalability is becoming an increasingly
relevant topic of interest due to the increasing amounts of available data and available
computing resources. If a given method does not scale – cannot process large amounts of
data – it cannot benefit from additional data, which is a limiting factor that can determine
its usefulness.

The neural network-based learning paradigm commonly adopts minibatch-based learn-
ing, meaning that instances can be fed into the algorithm in small, tractable batches that
fit into RAM. On the contrary, e.g., propositionalization-based approaches often first con-
struct a large matrix (mostly sparse), which is next used for learning. If the implementation
of the considered downstream learner is not able to handle the matrix in a sparse data
format, its space complexity quickly becomes intractable in many real-life cases. Further-
more, many ILP learners are not necessarily optimized for speed – even though parts of
e.g., rule search could be parallelized to tens or hundreds of threads simultaneously with
minimal overhead, this is seldom implemented in practice.

Finally, recent machine learning algorithms are capable of exploiting not only CPU-
based resources, but also GPU-based ones. This hardware-level capability often forces
the algorithm designer to think in terms of matrix factorization-like procedures rather
than considering direct search. Finally, the aspect of scalability can transcend a single
machine-based computation and concerns grid-level computation. By default, not many
methods are computing grid-ready – their computing environments need to be specifically
adapted and optimized first. This aspect is also explored as part of this thesis, as many of
the experiments would not have been possible without the national supercomputing grid
infrastructure SLING2.

2https://www.sling.si/sling/

https://www.sling.si/sling/
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Chapter 3

Neuro-symbolic Learning from
Relational Data

In the midst of chaos, there is also opportunity.

Sun Tzu

In this chapter, we focus on the domain of relational data. We first give a more broad
overview of the types of relational learning considered and the reasons why we pursued
the presented work. We then describe our contributions to the domain of neuro-symbolic
relational learning.

3.1 Overview of Relational Learning

Relational learning concerns the analysis of data sets that include explicit relations. Exam-
ples include relational databases (foreign key-based relations) and homogeneous/heterogeneous
complex networks (links correspond to relations). Compared to traditional learning, where
no adjacency structure between the instances of interest is known, relational learners are
able to exploit the information of relations directly, resulting in better performance or
solving a task not addressable with conventional learning directly (e.g., structural node
classification).

A schematic overview of the problems discussed in this chapter can be seen in Figure 3.1.
The scheme demonstrates the key problem addressed in the presented contributions. We
are interested in finding a mapping between a given relational structure such as, e.g., a
relational database or an attributed (sub)network and a designated output space. Example
output spaces include the set of possible protein functions, people’s properties, named
entity flags, or similar.

The learning task addressed with the presented contributions is classification – mapping
the entities of interest, such as nodes in a network, to one or more labels from a finite label
space. In particular, we address binary, multiclass and multilabel classification. The main
difference between these three paradigms is that the multilabel classification corresponds to
a scenario where multiple labels can be simultaneously assigned to a given entity. Multiclass
and binary classification correspond to the process of assigning only a single label per entity,
with binary classification corresponding to the assignment of one of two possible labels,
and multiclass classification corresponding to having more than two possible labels.

Such scenarios include node classification or instance classification when considering
a relational database. The general motivation for exploring relational machine learning
revolves around the fact that real-life instances can be in interaction; for example, people
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Figure 3.1: An overview of the considered relational learning problem.

in a social network are seldom independent. Similarly, proteins in regulatory networks form
functional clusters. Developing learning methods capable of directly exploiting such rich
relational structure is becoming increasingly relevant, as open knowledge bases comprised of
tens of millions of triplets are becoming available for a multitude of practical fields, ranging
from biology and medicine to engineering. This chapter includes two main contributions,
each focusing on a particularly interesting (open) problem considering relational learning
at the boundary between symbolic and sub-symbolic learning. We continue by presenting
individual contributions and their implications, each followed by a discussion relating the
contribution to the set of hypotheses stated in Section 1.3.

3.2 Propositionalization and Embeddings for Relational Data

The final contribution related to relational learning addresses the issue of representation
learning for relational domains from an ILP perspective. Here, we explore the relationship
between propositionalization (the process of symbolic representation learning) and embed-
ding construction (in this context understood as the process of sub-symbolic representation
learning). The purpose of this paper is two-fold; first, a comprehensive survey of existing
propositionalization and different relational embedding methods is offered. Next, we ex-
plore how the existing approach of Wordification (Perovšek et al., 2013) could be linked
with an embedding-producing procedure, offering sub-symbolic representations of either
features (PropStar), or instances (PropDRM). We demonstrate the competitive perfor-
mance of the methods and further pinpoint that they scale better (due to minibatch-based
learning and sparse matrix algebraic operations used to implement all space-intensive in-
termediary steps). The paper relevant to this section is the following one:

Lavrač, N., Škrlj, B., & Robnik-Šikonja, M. (2020). Propositionalization and em-
beddings: two sides of the same coin. Machine Learning, 109 (7), 1465–1507. https:
//doi.org/10.1007/s10994-020-05890-8

3.2.1 Key Contributions

We next present the key contributions of the conducted work.

1. A comprehensive survey of relational embedding and propositionalization techniques.

2. Two new approaches to neuro-symbolic relational embeddings; one based on repre-
sentation learning of relational bags (PropDRM) and the other on representation
learning of individual conjuncts (PropStar).

https://doi.org/10.1007/s10994-020-05890-8
https://doi.org/10.1007/s10994-020-05890-8
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3. Updated and refactored benchmarking library PyRDM, which now includes most
major baselines from this domain.

4. A discussion of the possibilities for considering neuro-symbolic learning at scale.

3.2.2 Addressed Hypotheses and Discussion

As part of this study, we were interested in the following questions. First, we hypothesized
that it is possible to summarize the differences between neural and symbolic representation
learning for relational data (Hypothesis 1, Section 1.3). Moreover, we hypothesized that by
adopting two leading black-box representation learning paradigms alongside the existing
ILP-based propositionalization approaches, we could obtain competitive performance but
achieve better scalability (Hypothesis 4, Section 1.3).

We confirmed the first hypothesis by demonstrating the key differences between the
two representation learning paradigms. We have, however, realized that the two learning
paradigms do not differ with respect to only a single aspect (e.g., interpretable vs. non-
interpretable features), but with regards to computational and hardware-level aspects too.
During this study, one of the main realizations was that it is highly likely that the output
representation will be a high-dimensional sparse matrix when considering symbolic repre-
sentation learning. This observation results from the fact that propositionalization-based
approaches do not perform any feature smoothing or similar aggregations which would
aggregate and compress parts of the space in order to obtain a lower-dimensional represen-
tation. Interestingly, if considering propositionalization-based representations with regard
to their actual memory footprint, they are surprisingly compact if the correct data struc-
tures are used for their storage during learning (e.g., CSR matrices – Column-Separated
Rows). Here, we experimented with different sparse matrix formats, identifying CSR as
the most suitable one.

The second hypothesis (scalability of neuro-symbolic learners) addresses the issue of
linking the existing symbolic representation learners with contemporary relational represen-
tation learning approaches, which mostly revolve around embedding construction. The ra-
tionale for this line of research was that the existing approaches such as the Deep Relational
Machines (Lodhi, 2013) demonstrated compatibility between the well known Aleph (Srini-
vasan, 2001) relational learning tool and contemporary deep neural networks. As part of
the addressed hypothesis, we explored whether the DRM-based combination of symbolic
with sub-symbolic, is the only conceptual approach to neuro-symbolic relational learning
via propositionalization. By incorporating the idea of StarSpace (and similar approaches),
we demonstrated that there exists another way of embedding-based learning from proposi-
tionalized relational databases. Here, relational features are embedded individually based
on their co-occurrences determined by the instance space. Subsequent learning is, in this
case, different to, e.g., DRM-based approaches; embeddings of features are compared di-
rectly to embeddings of labels; the closer a given label to a collection of relational feature
embeddings, the more likely it is to be selected as the final label. One of the purposes
of this paper was also to evaluate to what extent the existing symbolic representation
learners scale to larger data sets that transcend hundreds of instances. The conducted
experiments demonstrate that only Wordification (Perovšek et al., 2013) and the proposed
two neuro-symbolic approaches scale to millions of instances. One of the key problems
we identified regarding the scaling of other methods is their insufficient handling of sparse
matrices, yielding space demanding intermediary processing. This paper, however, rejects
the hypothesis that superior performance can be obtained via neuro-symbolic learners – at
best, we observed (statistically) competitive performance (with existing state-of-the-art).
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Abstract
Data preprocessing is an important component of machine learning pipelines, which 
requires ample time and resources. An integral part of preprocessing is data transforma-
tion into the format required by a given learning algorithm. This paper outlines some of 
the modern data processing techniques used in relational learning that enable data fusion 
from different input data types and formats into a single table data representation, focus-
ing on the propositionalization and embedding data transformation approaches. While both 
approaches aim at transforming data into tabular data format, they use different terminol-
ogy and task definitions, are perceived to address different goals, and are used in different 
contexts. This paper contributes a unifying framework that allows for improved understand-
ing of these two data transformation techniques by presenting their unified definitions, and 
by explaining the similarities and differences between the two approaches as variants of a 
unified complex data transformation task. In addition to the unifying framework, the nov-
elty of this paper is a unifying methodology combining propositionalization and embed-
dings, which benefits from the advantages of both in solving complex data transformation 
and learning tasks. We present two efficient implementations of the unifying methodol-
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1 Introduction

Data preprocessing for machine learning is a great challenge for a data scientist faced with 
large quantities of data in different forms and sizes. Most of the modern data processing 
techniques enable data fusion from different data types and formats into a single table data 
representation, which is expected by standard machine learning techniques including rule 
learning, decision tree learning, support vector machines (SVMs), deep neural networks 
(DNNs), etc. The key element of the success of modern data transformation methods is 
that similarities of original instances and their relations are encoded as distances in the 
target vector space.

Two of the most prominent data transformation approaches outlined in this paper are 
propositionalization and embeddings. While propositionalization (Kramer et  al. 2001; 
Železný and Lavrač 2006) is a well known data transformation technique used in rela-
tional learning (RL) and inductive logic programming (ILP) (Muggleton 1992; Lavrač and 
Džeroski 1994; De Raedt 2008), embeddings (Mikolov et al. 2013; Wu et al. 2018) have 
only recently been recognized by RL and ILP researchers as a powerful technique for pre-
processing relational and complex structured data. In the relational learning context of this 
paper, both approaches take as input a relational data set (e.g., a given relational database) 
and transform it into a single data table format, which is then used as an input to a proposi-
tional learning algorithm of choice.

The first aim of this paper is to present a unifying survey of propositionalization and 
embedding data transformation approaches. While both approaches aim at transforming 
data into a tabular data format, the approaches use different terminology and task defini-
tions, claim to have different goals, and are used in very different contexts. This paper con-
tributes an improved understanding of these data transformation techniques by presenting 
a unified terminology and definitions, by explaining the similarities and differences of the 
two definitions as variants of a unified complex data transformation task, by exploring the 
apparent differences between the two approaches, and by outlining some of their advan-
tages and disadvantages.

In addition to the unifying survey, the main novelty of this paper is a unifying methodol-
ogy that combines propositionalization and embeddings, which benefits from the advan-
tages of both in solving complex data transformation and learning tasks. The unifying 
methodology resulted in two new pipelines, PropDRM and PropStar, which implement an 
instance-based and a feature-based approach to data transformation and learning, respec-
tively. Both approaches are computationally efficient and can successfully solve much 
larger tasks than the existing relational learning approaches. We made their code publicly 
available.

The paper starts by motivating the need for transforming heterogeneous relational data 
into a tabular format in Sect. 2. Section 3 introduces the data transformation approaches in 
the context of information representation levels proposed by Gärdenfors (2000). Section 4 
presents the related work, focusing on selected propositionalization and embeddings meth-
ods relevant to the relational learning context of this paper. Section 5 presents a unifying 
framework for propositionalization and embeddings, allowing for the analysis of charac-
teristic properties of these data transformation approaches. Section 6 proposes a unifying 
methodology that combines propositionalization and embeddings, which benefits from the 
advantages of both, and presents two implementations of the proposed unifying framework: 
an instance-based embedding approach PropDRM based on the existing Deep Relational 
Machines (DRM) (Srinivasan et al. 2019; Lodhi 2013), followed by a novel feature-based 
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embedding approach PropStar proposed in this paper, using the StarSpace entity embed-
ding approach (Wu et al. 2018). Experimental evaluation of the proposed implementations 
is presented in Sect. 7. The paper concludes by a summary and some ideas for future work 
in Sect. 8.

2  Motivation

Machine learning is the key enabler for computer systems to progressively improve their 
performance when helping humans to solve difficult problem solving tasks. Nevertheless, 
current machine learning approaches only come half-way in helping humans, as humans 
still have to formulate the problem and prepare the data in the form that is best suited to the 
powerful machine learning algorithms.

Most of the best performing machine learning algorithms, like Support Vector 
Machines (SVMs) or deep neural networks, assume numeric data and outperform sym-
bolic approaches in terms of predictive performance, efficiency, and scalability. The domi-
nance of numeric algorithms started in 1980s with the advent of backpropagation and neu-
ral networks (Rumelhart et al. 1986), continued in late 1990s and early 2000s with SVMs 
(Cortes and Vapnik 1995), and finally reached the current peak with deep neural networks 
(Goodfellow et  al. 2016). Deep neural networks are currently considered the most pow-
erful learners for solving many of previously unsolvable learning problems in computer 
vision (face recognition rivals humans’ performance), game playing (a program has beaten 
a human champion in the game of Go), and natural language processing (successful auto-
matic speech recognition and machine translation).

While the most powerful machine learning approaches are numeric, humans perceive 
and describe real-world problems mostly in symbolic terms, using various data representa-
tion format, such as graphs, relations, texts or electronic health records, all involving dis-
crete representations. However, if we are to harness the power of successful numeric deep 
learning approaches for discrete learning problems, discrete data should be transformed 
into a form suitable for numeric learning algorithms. The viewpoint of addressing real-
world problems as numeric has a rationale even for discrete domains, as many symbolic 
learners perform generalizations based on object similarity. For example, in graphs, nodes 
can represent similar entities or have connections with similar other nodes; in text, words 
can appear with similar contexts or play the same role in sentences; in medicine, patients 
may have similar symptoms or similar disease histories. Such similarities are used by 
numerous machine learning algorithms to generalize and learn, including classical bottom-
up learning approaches such as hierarchical clustering, as well as symbolic learners adapted 
to top-down induction of clustering trees (Blockeel et al. 1998). If we want to exploit the 
power of modern machine learning algorithms, like SVMs and deep neural networks, to 
process the inherently discrete data, one has to transform discrete data into (numeric) vec-
tors in such a way that similarities between objects are preserved and encoded as distances 
in the transformed (numeric) space.

Contemporary preprocessing approaches that prepare numeric vector data for machine 
learning algorithms are called embeddings. Nevertheless, as demonstrated in this paper, 
symbolic data transformations, as ancestors of the contemporary embedding approaches, 
remain relevant: the role of propositionalization, a symbolic approach to relational 
data transformation into feature vectors, is not only to enable contemporary machine 
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learning algorithms to induce better predictive models, but to allow descriptive data min-
ing approaches to discover interesting human-comprehensible patterns in symbolic data.

As this paper demonstrates, albeit propositionalization and embeddings represent dif-
ferent types of data transformations, these approaches actually represent the two sides of 
the same coin. The main unifying element they have in common is that they transform the 
data into a vector format and encode the relations between objects in the original space as 
distances in the new vector space.

3  Data transformations and information representation levels

As this section will show, we consider data transformations as a particular subprocess of 
data preprocessing. Data preprocessing aims to handle missing attribute values, control 
out-of-range values and impossible attribute-value combinations, or handle noisy or unre-
liable data, to name just some of the types of data irregularities addressed in processing 
real-life data. Data preprocessing may include data cleaning, instance selection, normaliza-
tion, feature engineering (feature extraction and/or feature construction), data transforma-
tion, feature selection, etc. The result of data preprocessing is the final training set, which is 
used as input to a machine learning algorithm.

Data preprocessing can be manual, automated, or semi-automated. We focus on auto-
mated transformations of data, present in heterogeneous types and formats, into a uniform 
tabular data representation. We refer to this specific automated data preprocessing task as 
data transformation, and define it as follows.

Definition 1 (Data transformation) Data transformation is a step in the data preprocessing 
task that automatically transforms the input data and the background knowledge into a uni-
form tabular representation, where each row represents a data instance, and each column 
represents one of the dimensions in a multi-dimensional feature space.

In the above definition, we decided to distinguish between data and background knowl-
edge. This is an intentional decision, although it could be argued that in some settings, 
we could refer to both as data. Let us provide an operational distinction between data and 
background knowledge. Data is considered by the learner as the target data from which 
the learner should learn a model (e.g., a classifier in the case of class labeled data) or a 
set of descriptive patterns (e.g., a set of association rules in the case of unlabeled data). 
Background knowledge is any additional knowledge used by the learner in model or pattern 
construction from the target data. Simplest forms of background knowledge define hierar-
chies of features (attribute values), such as color green being more general than light green 
or dark green. More complex background knowledge refers to any other declarative prior 
domain knowledge, such as knowledge encoded in relational databases, knowledge graphs 
or domain specific taxonomies and ontologies, such as the Gene Ontology, in its 2020-05-
02 release including 44,508 GO terms, 7,765,270 annotations, 1,464,358 gene products 
and 4,593 species.

This data transformation setting is applicable in various data science scenarios involv-
ing relational data mining, inductive logic programming, text mining, graph and network 
mining as well as tasks that require fusion of data of a variety of data types and formats 
and their transformation into a joint data representation formalism.
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3.1  Information representation levels

As currently the most powerful machine learning (ML) algorithms take as input numeric 
representations, users of ML algorithms tend to transform other forms of human knowl-
edge into the numeric representation space. Interestingly, even if this is countering a 
standard RL and ILP viewpoint, this is true also for symbolic representations, which are 
currently used to store most of the human knowledge.

The distinction between the symbolic and numeric representation space mentioned 
above can be further clarified in terms of the levels of cognitive representations, intro-
duced by Gärdenfors (2000), i.e. the neural, spatial and symbolic representation levels. 
In his theory, Gärdenfors assumes that when modeling cognitive systems in terms of 
information processing, all three levels are connected: starting from the sensory inputs 
at the lowest neural representation level, resulting in spatial representations at the mid-
dle conceptual spaces level, up to symbolic representations at the level of language. 

Neural  This representation level corresponds to the sub-conceptual connectionist level. 
At this level, information is represented by activation patterns in densely con-
nected networks of primitive units. This enables concepts to be learned from 
the observed data by modifying the connection weights between the units.

Spatial  This representation level is modeled in terms of Gärdenfors’ conceptual spaces. 
At this level, information is represented by points or regions in a conceptual 
space built upon some dimensions that represent geometrical, topological or 
ordinal properties of the observed objects. In spatial representations, the simi-
larity between concepts is represented in terms of the distances between the 
points or regions in a multidimensional space, where concepts are learned by 
modeling the similarity between the observed objects.

Symbolic  At this representation level, information is represented by the language of sym-
bols (words), where the meaning is internal to the representation itself (i.e. 
symbols have meaning only in terms of other symbols, while their semantics is 
grounded in the spatial level), and concepts are learned by symbolic generali-
zation rules.

From the perspective of this paper, the above levels of cognitive representations 
introduced by Gärdenfors (2000) provide a theoretical ground to separate the learning 
approaches as well as the data transformation approaches into three categories based on 
the levels of their output representation space: neural, spacial and symbolic. However, 
given the scope of this paper, we do not consider neural transformations, and focus only 
on two data transformation types:

• symbolic transformations, in this paper referred to as propositionalization, denoting 
data transformations into a symbolic representation space, and

• numeric transformations, in this paper referred to as embeddings, denoting data 
transformations into a spatial representation space.

These two data transformation approaches are briefly introduced below, and further 
described in the related work (Sect. 4).
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3.2  Transformations into symbolic representation space

The past decades of machine learning were characterized by symbolic learning, where 
the result of a machine learning or data mining algorithm was a predictive model of a 
set of patterns described in a symbolic representation language, resulting in symbolic 
human-understandable patterns and models. Symbolic machine learning approaches 
include rule learning (Michalski et  al. 1986; Clark and Niblett 1989), decision tree 
learning (Quinlan 1986) and learning logical representations by relational learning and 
inductive logic programming (ILP) algorithms (Muggleton 1992; Lavrač and Džeroski 
1994; De Raedt 2008).

To be able to apply a symbolic learner, the data is typically transformed into a single 
tabular data format, where each row represents a single data instance, and each column 
represents an attribute or a feature. Such transformation into symbolic vector space (i.e. a 
symbolic data table format) is well known in the ILP and relational learning community, 
where it is referred to as propositionalization. Propositionalization approaches are pre-
sented in Sect. 4.2.

3.3  Transformations into numeric representation space

In the last 20 years we have been witnessing increasing dominance of statistical machine 
learning and pattern-recognition methods, including neural network learning (Rumelhart 
and McClelland 1986), Support Vector Machines (SVMs) (Vapnik 1995; Schölkopf and 
Smola 2001), random forests (Breiman 2001), and boosting (Freund and Schapire 1997). 
These statistical approaches are quite different from the symbolic approaches mentioned in 
Sect. 3.2, however there are many approaches that cross these boundaries, including e.g., 
the CART decision tree learning algorithm (Breiman et al. 1984), the Bump hunting rule 
learning algorithm (Friedman and Fisher 1999), which are firmly based in statistics. More-
over, ensemble techniques such as boosting (Freund and Schapire 1997), bagging (Breiman 
1996) or random forests (Breiman 2001) also combine the predictions of multiple logical 
models on a sound statistical basis (Schapire et al. 1998; Mease and Wyner 2008; Bennett 
et  al. 2008). All these are also considered to belong to the family of statistical learning 
approaches.

To be able to apply a statistical learner, the data is typically transformed into a single 
tabular data format, where each row represents a single data instance, and each column is 
a numeric attribute or a numeric feature, with some predefined range of numeric values. 
Such transformation into numeric vector space (i.e. a numeric data table format) is well 
known in the deep learning community, where it is referred to as embedding. Approaches 
to embedding relational structures are presented in Sect. 4.3.

4  Related work

In this section we first outline various transformation methods in Sect.  4.1, followed by 
a more detailed description of the data transformation methods relevant for the context 
of relational learning, i.e. propositionalization and embeddings, in Sects.  4.2 and  4.3, 
respectively.
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4.1  Outline of data transformation methods

While there are many algorithms for transforming data into a spatial representation, it is 
interesting that recent approaches rely on deep neural networks, thereby harnessing the 
neural representation level as the means to transform symbolic representations into the 
spatial representation. Below we list the main types of approaches that perform transfor-
mations between representations.

Community detection and graph traversal methods. Many complex data sets can be 
represented as graphs, where nodes represent data instances and edges represent 
their relations. Graphs can be homogeneous (consisting of a single type of nodes and 
relations) or heterogeneous (consisting of different types of nodes and relations). To 
encode a graph in a tabular form by preserving the information about the relations, 
various graph encoding techniques were developed, such as propositionalization via 
random walk graph traversal, representing nodes via their neighborhoods and com-
munities (Plantié and Crampes 2013). These approaches are frequently used for data 
fusion in mining heterogeneous information networks. Neural network approaches 
(presented below) are also very competitive as means for encoding graphs.
Matrix factorization methods. When data is not explicitly presented in the form of rela-
tions but the relations between objects are implicit, given by a similarity matrix, the 
objects can be encoded in a numeric form using matrix factorization. As an example 
take Latent Semantic Analysis used in text mining, which factorizes a word similarity 
matrix to represent words in a vector form. Another example is factorization of graph 
adjacency matrices. These types of embeddings were largely superseded by deep neural 
networks which, instead of observing similarity between different objects, construct a 
prediction task and forecast similarity. For example, for text, given a word, the word-
2vec embedding method (Mikolov et al. 2013) predicts words in its neighborhood.
Propositionalization methods are used to get tabular data from multirelational databases 
as well as from a mixture of tabular data and background knowledge in the form of logic 
programs or networked data, including ontologies. These transformations were mostly 
developed within the Inductive Logic Programming and Relational Learning commu-
nity, and are still actively researched and used. Propositionalisation methods do not per-
form dimensionality reduction and are most often used with data mining and symbolic 
machine learning algorithms. We discuss these methods in Sect. 4.2.
Neural networks based methods. In neural networks the information is represented by 
activation patterns in interconnected networks of primitive units. This enables that 
concepts are gradually learned from the observed data by modifying the connection 
weights between the hierarchically organized units. These weights can be extracted 
from neural networks and used as a spatial representation that transforms relations 
between entities into distances. Recently, this approach became a prevalent way to 
build representation for many different types of entities, e.g., texts, graphs, electronic 
health records, images, relations, recommendations, etc. In Sect. 4.3 we describe the 
data types and approaches, which are capable of embedding relational structures and 
are therefore most relevant for the context of this paper. These include knowledge 
graph embeddings (presented in Sect. 4.3.1), entity embeddings capable of forming 
(both supervised and unsupervised) representations based on the similarity of enti-
ties (presented in Sect. 4.3.2), and Deep Relational Machines methodology that links 
symbolic representations to deep neural networks (presented in Sect. 4.3.3).



1472 Machine Learning (2020) 109:1465–1507

1 3

Other embedding methods. Other forms of embeddings were developed by different 
communities that observed the need to better represent the (symbolic) data. For exam-
ple, Latent Dirichlet Allocation (LDA) (Blei et al. 2003) used in text analysis learns dis-
tributions of words for different topics. These distributions can be used as an effective 
embedding for words, topics, and documents. Feature extraction methods form a rich 
representation of instances by projecting them into a high dimensional space (Lewis 
1992). Another example of (implicit) transformation into high dimensional space is 
the kernel convolutional approach proposed by Haussler (1999), which introduces the 
idea that kernels can be used for discrete structures by iteratively applying convolution 
and kernels to smaller parts of the data structure. Convolutional kernels exist for sets, 
graphs, trees, strings, logical interpretations, and relations (Cumby and Roth 2003). 
This allows methods such as SVM or Gaussian Processes to work with relational data. 
Most of these embeddings are recently superseded or merged with neural networks.

All the above approaches perform data transformations from different data formats to a 
single table representation. However, their underlying principles are different: while fac-
torization and neural embeddings perform dimensionality reduction, resulting in lower-
dimensional feature vector representations capturing the semantics of the data, proposi-
tionalization results in a vector representation using relational features with a higher 
generalization potential than the features used in the original data representation. Note that 
there exist also other approaches to data transformation and fusion, including HINMINE 
(Kralj et  al. 2018), metapath2vec (Zhu et  al. 2018) and OhmNet (Žitnik and Leskovec 
2017), which are out of the main scope of this paper.

4.2  Propositionalization

In propositionalization, relational feature construction is the most common approach 
to data transformation. LINUS  (Lavrač et  al. 1991) was one of the pioneering proposi-
tionalization approaches using automated relational feature construction. LINUS was 
restricted to generation of features that do not allow recursion and existential local vari-
ables, which means that the target relation cannot be many-to-many and self-referencing. 
The second limitation was more serious: the queries could not contain joins (conjunctions 
of literals). The LINUS descendant SINUS (Lavrač and Flach 2001) incorporates more 
advanced feature construction techniques inspired by 1BC  (Flach and Lachiche 1999). 
The LINUS approach had many followers, including relational subgroup discovery system 
RSD (Železný and Lavrač 2006), which is outlined also in the list of propositionalization 
approaches below. Alternatives to relational feature construction include the construction 
of aggregation queries.

In this section we first clearly define the distinction between attributes and features, fol-
lowed by an outline of selected propositionalization approaches and of the specific Wordi-
fication approach used in the algorithms developed in this work.

4.2.1  Features

To be able to apply a symbolic propositional learner, the data should be represented in a 
single table data format, where each row represents a single data instance, and each column 
represents an attribute or a feature. For the sake of clarity, let us distinguish between attrib-
utes and features below.
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Attributes that describe the data instances can be either numeric variables (with values 
like 7 or 1.5) or nominal/discrete variables (with values like red or female). In contrast to 
attributes, a feature describes the presence or absence of some property of an instance. 
As a result, features are always Boolean-valued (values true or false). For example, for 
attribute gender with values female and male, two separate features can be constructed: f1 : 
gender=female and f2 : gender=male, and only one of these features is assumed to be true 
for an individual data instance. Note that features are different even from binary-valued 
attributes: e.g., for a binary attribute ai with values true and false, there are two corre-
sponding features: f3 : ai = true and f4 : ai = false . Furthermore, features can test a value 
of a single attribute, like aj > 3 , or they can represent complex logical and numerical rela-
tions, integrating properties of multiple attributes, like f5 : ak < 2 ⋅ (aj − ai).

Previous feature types are referred to as propositional features. On the other hand, rela-
tional features relate the values of different attributes to each other. In the simplest case, 
for example, they test for the equality or inequality of the values of two attributes of the 
same type, such as Length and Height. More complex relational features can use the back-
ground relations, e.g., f6 : adjacent(NodeX, NodeY). Even more advanced, relational fea-
tures can introduce new variables. For example, if relations are used to encode a graph, a 
relational feature such as f7 : color(CurrentNode, blue) ∧ link(CurrentNode, NewNode) ∧ 
color(NewNode, red), can introduce a new variable NewNode to subsequently test whether 
there exists a previously not visited node in the graph that is colored red.

Take a simple toy trains example learning problem illustrated in Appendix A, and two 
complex relational features describing trains:

f8 : hasCar(T,C) ∧ carLength(C,short) ∧ carRoof(C,peaked)
f9 : hasCar(T,C1) ∧ carLength(C1,short) ∧ hasCar(T,C2) ∧ carRoof(C2,peaked)
Feature f8 is a single complex relational feature, while f9 contains two distinct relational 

features. Formally, a feature is defined as a minimal set of literals such that it introduces at 
most one local (i.e. existential) variable in the feature set composing the relational feature.

The main point of relational features is that they localize variable sharing: this can be 
made explicit by naming the features:

f10 : hasShortCar(T) ← hasCar(T,C) ∧ clength(C,short)
f11 : hasPeakedroofCar(T) ← hasCar(T,C) ∧ carRoof(C,peaked)
The propositionalization approach to relational learning captures exactly this idea: gen-

erating complex features, such as f8 , f10 and f11 , which will allow multi-relational data 
representation of properties of target instances (such as trains T) through representations of 
properties of their components (such as cars C). Selected propositionalization approaches, 
which use complex feature construction in the automated multi-relational data transforma-
tion process are outlined below.

4.2.2  Outline of selected propositionalization algorithms

Below we outline a selection of propositionalization approaches, while an interested reader 
can find extensive overviews of different feature construction approaches in the work of 
Kramer et al. (2001) and Krogel et al. (2003).

Relaggs  (Krogel and Wrobel 2001) stands for relational aggregation. It is a proposi-
tionalization approach that takes the input relational database schema as a basis for a 
declarative bias, using optimization techniques usually used in relational databases (e.g., 
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indexes). The approach employs aggregation functions in order to summarize non-target 
relations with respect to the individuals in the target table.
1BC (Flach and Lachiche 1999) strives to enable the propositional naive Bayes classi-
fier to handle relational data. It does so by a transformation in which a set of first-order 
conditions is generated and then used as attributes in the naive Bayes classifier. The 
transformation, however, is done in a dynamic manner, as opposed to standard proposi-
tionalization, which is performed as a static step of data preprocessing. This approach 
is extended by 1BC2 (Lachiche and Flach 2003), which allows distributions over sets, 
tuples, and multisets, thus enabling the naive Bayes classifier to consider also structured 
individuals.
Tertius (Flach and Lachiche 2001) is a top-down rule discovery system, incorporating 
first-order clausal logic. The main idea is that no particular prediction target is specified 
beforehand, hence Tertius can be seen as an ILP system that learns rules in an unsuper-
vised manner. Its relevance for this survey lies in the fact that Tertius encompasses 1BC, 
i.e. relational data is handled through 1BC transformation.
RSD (Železný and Lavrač 2006) is a relational subgroup discovery algorithm composed 
of two main steps: the propositionalization step and the (optional) subgroup discovery 
step. The output of the propositionalization step can be used also as input to other prop-
ositional learners. RSD effectively produces an exhaustive list of first-order features that 
comply with the user-defined mode constraints, similar to those of Progol (Muggleton 
1995) and Aleph (Srinivasan 2007). Furthermore, RSD features satisfy the connectivity 
requirement, which imposes that no feature can be decomposed into a conjunction of 
two or more features. Mode declarations define the algorithm’s syntactic bias, i.e. the 
space of possible features.
HiFi  (Kuželka and Železný 2008) is a propositionalization approach that constructs 
first-order features with hierarchical structure. Due to this feature property, the algo-
rithm performs the transformation in polynomial time of the maximum feature length. 
Furthermore, the resulting features are the shortest in their semantic equivalence class. 
The algorithm is shown to perform several orders of magnitude faster than RSD for 
higher feature lengths.
RelF  (Kuželka and Železný 2011) is the most relevant of the algorithms in the Tree-
Liker software  (Kuželka and Železný 2011). It constructs a set of tree-like relational 
features by combining smaller conjunctive blocks. RelF preserves the monotonicity of 
feature reducibility and redundancy (instead of the typical monotonicity of frequency), 
which allows the algorithm to scale far better than other state-of-the-art propositionali-
zation algorithms.
Cardinalization  (Ahmed et  al. 2015) is specifically designed to enable more than just 
categorical attributes in propositionalization. Specifically, it can handle a threshold on 
numeric attribute values and a threshold on the number of objects satisfying the condi-
tion on the attribute simultaneously. Cardinalization can be seen as an implicit form of 
discretization. While in discretization one sets a threshold on a numeric attribute and see 
how many objects satisfy the threshold later, and the cardinality follows implicitly from 
the attribute value threshold; on the other hand, in cardinalization, we set a threshold 
on the cardinality, and let an attribute-value learner decide where the threshold value 
on the numerical attribute should lie. Hence, Cardinalization allows for context-aware 
discretization. Quantiles (Ahmed et al. 2015) is a variant of Cardinalization. Instead of 
choosing an absolute number as cardinality threshold, Quantiles uses a relative number.
CARAF (Charnay et al. 2015) approaches the problem of large relational feature search 
space by aggregating base features into complex compounds, which makes CARAF 
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similar to Relaggs. Complex aggregates run the risk of overfitting. While Relaggs tack-
les this problem by restricting itself to relatively simple aggregates, the distinguishing 
feature of CARAF is that instead it incorporates more complex aggregates into a ran-
dom forest, which ameliorates the overfitting effect.
Aleph (Srinivasan 2007) is the most popular ILP algorithm and is actually an ILP toolkit 
with many modes of functionality: learning of theories, feature construction, incremen-
tal learning, etc. Aleph uses mode declarations to define the syntactic bias. Input rela-
tions are Prolog clauses, defined either extensionally or intensionally. Aleph’s feature 
construction functionality also means it is a propositionalization approach.
Wordification (Perovšek et al. 2013, 2015) is a propositionalization method inspired by 
text mining that can be viewed as a transformation of a relational database into a corpus 
of text documents. The distinguishing property of Wordification is its efficiency when 
used on large relational data sets and the potential for using text mining approaches 
on the transformed propositional data. While most of the outlined propositionalization 
algorithms construct complex relational features including variables in the arguments of 
relational features, Wordification constructs simple, easily interpretable features that are 
treated as ‘words’ in the transformed Bag-Of-Words representation. It constructs fea-
tures of the kind ai = vij (formulated as ai_vij ). In addition to such simple features, it 
constructs also conjuncts (of size 2) of such features, e.g., ai = vij ∧ ak = vkl , formulated 
as ai_vij__ak_vkl . To avoid confusion in case the same attribute name appeared in sev-
eral tables, the actual form of features is t_ai_vij including the indicator of the name of 
table t in which attribute ai appears. For a simple example of how such features are gen-
erated, the reader is referred to Appendix A.

4.2.3  Wordification

Given that in a previous experimental evaluation of propositionalization algorithms 
(Perovšek et al. 2013, 2015) the Wordification algorithm was shown to be the most effec-
tive, we selected Wordification as the propositionalization algorithm of choice in the pro-
posed implementations combining propositionalization and embeddings in Sect. 6, where 
the Wordification algorithm was adapted to handle large data sets.

In the Wordification implementation, described in detail in Sect. 6.2.1, the original fea-
ture representation TableName_AttributeName_AttributeValue was—for implementational 
convenience—replaced by a tuple representation (t.name, c, v), where t.name refers to a 
table name, c to a given colon (attribute) in the table t, and v to a given value v of attrib-
ute c. Such features will be referred to as features or as relational items in the algorithm 
description, as appropriate.

Using this feature representation, Wordification of a multi-relational database can be 
summarized as the following operation:

where m maps a given table t’s indices to target (initial) table indices (i) and T  is the set of 
all tables from which a foreign key path exists to the target table. The ⊎ operator represents 
a disjoint union of multisets (sum), yielding a single multiset (duplicates are allowed).

Foreign keys are designated columns that link data between distinct tables. Value of a 
foreign key in a given table is referred to as the instance id (the row is uniquely determined 
by this value). Let C represent the set of all columns that are not foreign keys, ids or target 

DBi =
⨄
t∈T

WORDIFY(t(m(i)))
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classes. The WORDIFY method returns a multiset (a bag) of relational items (for the i-th 
instance) constructed as follows:

where t[c] represents the values v of table t in column c, and t.name is the name of table t. 
Thus, Wordification is naïve in the sense that it simply concatenates attribute values across 
tables by maintaining the column and table name information in constructing features. The 
original implementation, however, can become spatially intractable (see (Perovšek et  al. 
2013), proof of complexity) as its spatial complexity is O(row ⋅ tables ⋅ 2col) . Details of a 
more efficient implementation of Wordification are available in Sect. 6.2.1.

4.3  Embedding relational structures

In this section, we discuss methodologies capable of embedding relational structures. We 
start with an introduction to knowledge graph embeddings, an emerging group of meth-
ods that operate on large, real-world, annotated graphs, in Sect. 4.3.1. We proceed by the 
presentation of entity embeddings, a more general methodology capable of supervised, as 
well as unsupervised embeddings of many entities, including texts and knowledge graphs 
in Sect. 4.3.2. Finally, in Sect. 4.3.3, we present Deep Relational Machines, an emerging 
methodology that links symbolic representations to deep neural networks.

4.3.1  Knowledge graph embeddings

In knowledge graphs (KG), edges correspond to relations between entities (nodes) and 
the graphs present Subject-Predicate-Object triplets. The KG handling algorithms attempt 
to solve the problems like triplet completion, relation extraction, and entity resolution. 
The KG embedding algorithms, briefly discussed below, outline some of the key ideas 
which render these methods highly scalable and useful for large, semantics-rich graphs. 
For detailed description and a recent, extensive overview of the field, we refer the reader 
to Wang et al. (2017), from where we next summarize some of the key ideas underlying 
knowledge graph embedding.

In the below description of KG embedding algorithms, the Subject-Predicate-Object 
triplet notation is replaced by the (h, r, t) triplet notation, where h is referred to as the 
head of a triplet, t as the tail, and r as the relation connecting the head and the tail. 
A schematic representation of triplet embedding is shown in Fig.  1. The embedding 

WORDIFY(t(m(i))) =
⨄

v∈t[m(i)][c∈C]

(t.name, c, v)

Fig. 1  Schematic representation of knowledge graph embedding. Head-Relation-Tail (h,  r,  t) triplets are 
used as inputs. Triplets are embedded in a common d-dimensional vector space
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methods briefly outlined below optimize the total plausibility of the input set of triplets, 
where plausibility of a single triplet is denoted with fr(h, t).

• The first group of KG embedding algorithms are termed translational distance mod-
els, as they exploit distance-based scoring functions. They measure the plausibility 
of a fact as the distance between the two entities, usually after a translation carried 
out by the relation. One of the representative methods for this type of embedding is 
transE (Bordes et al. 2013), where the cost function being optimized can be stated 
as: 

 For vectors � , � , and � in the obtained embedding, score fr(h, t) is high if triplet (h, r, t) 
is present in the data.

• The second group of KG embedding algorithms is not deterministic, as it takes into 
account the uncertainty of observing a given triplet. A representative method for this 
type of embeddings is KG2E (He et al. 2015), which models the triplets with multi-
variate Gaussians. It models individual entities, as well as relations as vectors, drawn 
from multivariate Gaussians, assuming that � , � and � vectors are normally distrib-
uted, with mean vectors �h,�r,�t ∈ ℝd and covariance matrices Σh,Σr,Σt ∈ ℝd×d , 
respectively. KG2E uses Kullback-Liebler divergence to directly compare the distri-
butions as follows: 

 where Nx denotes the probability density function of the normal distribution.
• Semantic matching models exploit similarity-based scoring functions. They measure 

plausibility of facts by matching latent semantics of entities and relations embodied 
in their vector space representations. One of the representative algorithms for learn-
ing by semantic matching is RESCAL (Nickel et al. 2011). RESCAL optimizes the 
following expression: 

where � and � are representations of entities, and Mr ∈ ℝd×d is a matrix associated with 
relations.

• Matching using neural networks. Deep neural networks model triplets via training 
of neural network architectures. One of the first approaches was Semantic Match-
ing Energy (SME) (Bordes et al. 2014). This method first projects entities and their 
relations to their corresponding vector embeddings. The relation’s representation is 
next combined with the relation’s head and tail entities to obtain g1(�, �) and g2(�, �) 
entity-relation representations in the hidden layer. Finally, a dot product is used to 
score the triplet relation matching 

 The simplest version of SME defines the g1 and g2 as: 

fr(h, t) = −||� + � − �||2.

fr(h, t) = KL(N(�t − �h),N(�r))

= ∫ Nx(�t − �h,Σt + Σh) ln
Nx(�t − �h,Σt + Σh)

Nx(�r,Σr)
dx,

fr(h, t) = �
T ⋅Mr ⋅ �,

fr(h, t) = g1(�, �)
T ⋅ g2(�, �).
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 Here, W (1)

1
,W

(2)

1
,W

(1)

2
 and W (2)

2
 are ℝd×d dimensional weight matrices and b1 and b2 are 

bias vectors.
Recent advances in embeddings of knowledge graphs show interesting research direc-
tions. For example, hyperbolic geometry could be used to better capture latent hierarchies, 
commonly present in real-world graphs (Nickel and Kiela 2017). Further, KG embedding 
methods are increasingly tested on large, multi-topic data collections, for example, the 
Linked Data (LD) which standardize and fuse data from different resources. Knowledge 
graph embeddings, such as RDF2vec (Ristoski and Paulheim 2016) attempt to exploit vast 
amounts of information in LD and transform it into a learning-suitable format. As knowl-
edge graphs are not necessarily the only source of available information, algorithms exploit 
also other information, e.g., textual information available for each triplet (Wang et  al. 
2014). Recent trends in knowledge graph embeddings also explore how symbolic, logical 
structures could be used during embedding construction. Approaches such as KALE (Guo 
et al. 2016) construct embeddings by taking into account logical rules (e.g., Horn clauses) 
related to the knowledge graph, thus increasing the quality of embeddings. Similar work 
was proposed by Rocktäschel et  al. (2015), where pairs of embeddings were considered 
during optimization. The same group also showed how relations can be modeled without 
grounding the head and tail entities for simple implication-like clauses (Demeester et al. 
2016). Wang et al. (2015) demonstrated that logical rules can aid in knowledge graph com-
pletion on large knowledge bases. They showed that inclusion of rules can reduce the solu-
tion space and significantly improve the inference accuracy of embedding models.

4.3.2  Entity embedding with the StarSpace approach

The guiding principle behind all embeddings, described in the previous section, is the per-
sistence of similarity, i.e. that entities which are similar in the knowledge graph must be 
represented by vectors that are similar in the embedding space. A general approach imple-
menting this principle is to use any similarity function between entities to form a prediction 
task for a neural network. Below we describe a successful example of this approach, called 
StarSpace (Wu et al. 2018). As this approach assumes discrete features from a fixed dic-
tionary, it is particularly appealing to relational learning and inductive logic programming.

The idea of StarSpace is to form a prediction task where a neural network is trained to 
predict the similarity between an entity and its related entity (e.g., its label or some other 
entity). The resulting neural network can be used for several purposes: directly in classifi-
cation, to rank instances by their similarity, or weights of the trained network can be used 
as pretrained embeddings.

In StarSpace, each entity has to be described by a set of discrete features from a fixed-
length dictionary and forms a so called Bag-Of-Features. This representation is general 
enough to cover texts (documents or sentences can be described by bags-of-words or bags-
of-n-grams), users (described by bags of documents, movies, or items they like), relations 
and links in graphs (described by semantic triples), etc. During training, entities of differ-
ent kinds are embedded in the same latent space, suitable for various down-stream learning 
tasks, e.g., a user can be compared with the recommended items. Note that entities can be 
embedded along with target classes, resulting in supervised embedding learning. This type 

g1(�, �) = W
(1)

1
⋅ � +W

(2)

1
⋅ � + b1

g2(�, �) = W
(1)

2
⋅ � +W

(2)

2
⋅ � + b2.
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of representation learning is the key element of the proposed PropStar algorithm outlined 
in Sect. 6.1.2 and presented in detail in Sect. 6.2.3.

The StarSpace approach trains a neural network model to predict which pairs of enti-
ties are similar and which are dissimilar. Two kinds of training instances are formed, posi-
tive (a, b) ∈ E+ , which are task dependent and contain correct relations between entities 
(e.g., document a with its correct label b), and negative instances (a, b−

1
),… , (a, b−

k
) ∈ E−

a
 . 

For each entity a (e.g., a document) appearing in the positive instances, negative instances 
are formed using k-negative sampling from labels {b−

i
}k
i=1

 as in word2vec (Mikolov et al. 
2013). In each batch, the neural network tries to minimize the loss function L, defined as 
follows:

For each batch update in the training of neural network, k negative examples (a param-
eter) are formed by randomly sampling labels b−

i
 from within the set of entities that can 

appear in b. For example, in the document classification task, document a has its correct 
label b, while k negative instances have their labels b−

i
 sampled from the set of all pos-

sible labels. Similarity function sim represents the similarity between the vector represen-
tations of the two entities; typically a dot product similarity is used. Within one batch, 
loss function Loss sums the losses of the positive instance (a, b) and the average of the 
k negative instances (a, b−

i
), i ∈ 1… k . To asses the loss, margin ranking loss is used, 

Loss = max(0,m − sim(a, b�)) , where m is the margin parameter, i.e. the similarity thresh-
old, and b′ is a label.

The trained network can be used for several purposes. To classify a new instance a, one 
iterates over all possible labels b′ and chooses argmaxb�sim(a, b�) as the prediction. For 
ranking, entities can be sorted by their predicted similarity score. The embedding vectors 
can also be extracted and used for some other downstream task. Wu et al. (2018) recom-
mend that the similarity function sim(⋅, ⋅) is shaped in such a way that it will directly fit the 
intended application, so that training will be more effective.

A few examples of tasks successfully tackled with the StarSpace feature transformation 
approach are described below.

• In multiclass text classification the positive instances (a, b) are taken from the training 
set of documents E+ , represented with bags-of-words and their labels b. For negative 
instances, entities b−

i
 are sampled from the set of possible labels.

• In recommender systems users are described with a bag of items they liked (or bought). 
The positive instances use a single user ID as a and one of the items that user liked as 
b. Negative instances take b−

i
 from the set of possible items. Alternatively, to work for 

new users, the a part of user representation is composed of all the items that user liked, 
except one, which is used as b.

• For link prediction the concepts in a graph are represented as triples head-relation-tail 
(h, r,  t), e.g., gene-generates-protein. A positive instance a consists either of h and r, 
while b consists of t; alternatively, a consists of h, and b consists of r and t. Negative 
instances b−

i
 are sampled from the set of possible concepts. The trained network can 

then predicted links, e.g., gene-generates-what.

L =
�

(a,b)∈E+

⎛
⎜⎜⎜⎜⎜⎝

Loss(sim(a, b)) +
1

k

k�
i = 1

(a, b−
i
) ∈ E−

a

Loss(sim(a, b−
i
))

⎞⎟⎟⎟⎟⎟⎠
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• For sentence embedding in an unsupervised fashion, a collection of documents, con-
taining sentences, is turned into a training set. For positive instances, a and b are sen-
tences from the same document (or are close together in a document), while for nega-
tive instances, sentences b−

i
 are coming from different documents. This definition of a 

task tries to capture the semantic similarity between sentences in a document.

In the PropStar algorithm proposed in this work, we use StarSpace similarly to the first case 
mentioned above (multiclass text classification). Namely, Wordification returns a bag of 
features (relational items) for each instance in the target table. The embeddings are learned 
for each feature separately, and class labels are also embedded in the same space. During 
classification, representations of relational items associated with a given instance (bag of 
features) are averaged to obtain the representation of the instance—a similar idea as in 
the document representation adopted in the highly efficient doc2vec branch of algorithms 
aimed at document classification (Le and Mikolov 2014). The embedded instances, now 
located in the same vector space as the embeddings of class labels, are directly used for 
classification. The label, closest to the representation of a given target instance is selected 
as the final prediction.

4.3.3  Deep relational machines

Deep neural networks are effective learners in numeric space, capable of constructing inter-
mediate knowledge constructs and thereby improve semantics of baseline input represen-
tation. Training deep neural networks on propositionalized relational data were explored 
by Srinivasan et  al. (2019), following the work of Lodhi (2013), where Deep Relational 
Machines (DRMs) were first introduced. In Lodhi’s work, the DRMs used bodies of first 
order Horn clauses as input to restricted Boltzmann machines, where conjuncts of bonds 
and other molecular structure information compose individual complex features; when all 
structural properties are present in a given instance, the target’s value is true, and false oth-
erwise. For example, consider the following propositional representation of five instances 
(rows), where complex features are comprised of conjuncts of atoms fi , as illustrated in 
Fig. 2.

Note that the propositionalized data set P is usually a sparse matrix, which can represent 
additional challenge for neural networks. The DRMs proposed by Lodhi (2013) were used 
for prediction of protein folding properties, as well as mutagenicity assessment of small 
molecules. This approach used feature selection with information theoretic measures such 
as information gain as the sparse matrix resulting from the propositionalization was not 

Fig. 2  Example input data for 
a deep relational machine that 
operates on the instance level
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suitable as an input to the neural network. The initial studies regarding DRMs explored 
how deep neural networks could be used as an extension of relational learning.

Recently, promising results were demonstrated in the domain of molecule classification 
(Dash et al. 2018) using ILP learner Aleph in its propositionalization mode for feature con-
struction. After obtaining propositional representation of data, the obtained data table was 
fed into a neural network that associated such representations with the output space (e.g., 
a molecule’s activity). Again, sparsity and size of the propositionalized representation is a 
problem for deep neural networks. Again, stochastic feature selection of relational features 
that are used as input to deep relational machines can improve the performance and inter-
pretability (Dash et al. 2019).

The work of Srinivasan et al. (2019) is relevant for the interpretability of deep relational 
machines, proposing a logical approximation of well-known prediction explanation method 
LIME (Ribeiro et al. 2016) and showing how it can be efficiently computed.

In summary, DRMs address the following issues at the intersection of deep learning and 
relational learning:

• DRMs demonstrated that deep learning on propositionalized relational structures is a 
sensible approach to relational learning.

• Their input is comprised of logical conjuncts, offering the opportunity to obtain human-
understandable explanations.

• DRMs were successfully employed for classification and regression.
• Emerging ideas in the area of representation learning have only recently been explored 

in the ILP context (Dumančić et al. 2018), indicating there are many possible improve-
ments both in terms of execution speed, as well as more informative feature construc-
tion on the symbolic side of computation.

We further discuss DRMs in the context of efficiency of their implementation in 
Sects. 6.1.1 and 6.2.2. Development of DRMs that are efficient with respect to both space 
and time is an ongoing research effort. Building on the ideas of DRMs, we implemented 
a variant of this approach, capable of learning directly from large, sparse matrices that 
are returned from Wordification of a given relational database, rather than using feature 
selection or the output of Aleph’s feature construction approach. Our novel, efficient DRM 
implementation is presented in Sect. 6.2.2.

5  Unifying framework for propositionalization and embeddings

The connection we made between different information representation levels and differ-
ent transformation techniques shows that propositionalization and embeddings are two 
sides of the same coin. If we view embeddings as transformations for texts, graphs, recom-
mendations, electronic health records, and other entities with defined similarity function, 
we can conclude that all these transformation present a multifaceted approach to feature 
construction.

To this end, the paper contributes a novel understanding of these data transformation 
techniques. In Sect. 5.1, we first present a unified terminology and definitions, and explain 
the apparent differences between the definitions of propositionalizationa and embed-
dings as variants of a complex data transformation task. In further sections we explore the 
apparent differences between the two approaches. In Sects.  5.2, 5.3, and 5.4 we discuss 
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differences in data representation, learning, and use. Finally, in Sect.  5.5 we summarize 
strengths and limitations of propositionalization and embeddings.

5.1  Unifying definitions

Below we present a unified view on the definitions of propositionalization and embedding 
tasks, as instances of a general data transformation task defined in Sect. 1 via Definition 1.

Definition 2 (Propositionalization)

Given:  Input data of a given data type and format, and heterogeneous background 
knowledge of various data types and formats.

Find:  A tabular representation of the data enriched with the background knowledge, 
where each row represents a single data instance, and each column represents a 
feature in a d-dimensional symbolic1 vector space Fd.

Definition 3 (Embedding)

Given:  Input data of a given data type and format, and heterogeneous background 
knowledge of various data types and formats.

Find:  A tabular representation of the data enriched with the background knowledge, 
where each row represents a single data instance, and each column represents 
one of the dimensions in the d-dimensional numeric vector space ℝd.

5.2  Unifying propositionalization and embeddings in terms of data representation

Both data transformation techniques result in a vector space representation. The unifying 
dimensions of propositionalization and embeddings in terms of data representation, which 
are summarized in Table 1, are explained below.

In propositionalization, the transformation results in a binary matrix of sparse 
binary vectors, where rows corresponds to training instances and columns correspond 

Table 1  Unifying and 
differentiating aspects of 
propositionalization and 
embeddings in terms of data 
representation

Representation Propositionalization Embeddings

Vector space Symbolic Numeric
Features/variables Symbolic Numeric
Feature values Boolean (0 or 1) Numeric
Sparsity Sparse Dense
Space complexity Space consuming Mostly efficient
Interpretability Interpretable features Non-interpretable

1 In the case of binary valued features, each value in each column is ∈ {0, 1}.
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to symbolic features constructed by a particular propositionalization algorithm. These 
features are human interpretable, as they are either simple logical features (such as 
attribute values), conjunctions of such features, relations among simple features (such 
as e.g., a test for the equality or inequality of values of two attributes of the same 
type), or relations among entities (such as links among nodes in a graph). Given that 
the number of constructed features is usually large, such transformation results in a 
sparse binary matrix with few non-zero elements.

Embeddings output is usually a dense matrix of a user-defined dimensionality, com-
posed of vectors of numeric values, one for each object of interest. For neural network 
based embeddings, vectors usually represent the activation of neural network nodes 
of one or more levels of a deep neural network. Given a relatively low dimensional-
ity of these vectors (from 100 to 1000) this dense representation is efficient in terms 
of space. However, the features/dimensions are non-interpretable, therefore a separate 
explanation mechanisms and visualizations are required.

5.3  Unifying propositionalization and embeddings in terms of learning

For both data transformation techniques, the resulting vector space representation is 
used as an input to a learning algorithm of the user’s choice. The unifying dimen-
sions of propositionalization and embeddings in terms of most frequently used learners 
(summarized in Table 2) are explained below.

After propositionalization, any learner capable of processing symbolic features can 
be used. Typical learners include rule learning, decision tree learning, random for-
ests for a supervised setting, or association rules and symbolic clustering algorithms 
applied in a non-supervised learning setting. Learners usually use heuristic search to 
find a global optimum in terms of heuristics to be optimized (exceptions being, e.g., 
association rule learners using exhaustive search with constraints). Typical algorithms 
are decision tree learners, rule learners, linear regression and SVMs. Learners require 
some parameter tuning to achieve optimal results, but parameters are relatively few. 
Learning is typically performed on CPUs.

The embedded vectors are best suited for distance-based learners, such as neural 
networks, and to a lesser degree for kernel methods or logistic regression. Deep neural 
networks use greedy search to find locally optimal solutions, and are usually trained 
on GPUs, but can be used for prediction on both CPUs or GPUs. As a weakness, deep 
learning algorithms require substantial (hyper)parameter tuning.

Table 2  Unifying and 
differentiating aspects of 
propositionalization and 
embeddings in terms of learning 
context

Learning Propositionalization Embeddings

Meaning capturing Via symbols Via distances
Search strategy Heuristic search Greedy
Search goal Global optimum Local optimum
Typical algorithms Symbolic, linear 

regression, SVM
Deep neural networks

Parameters Few Many
Hardware CPU CPU/GPU
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5.4  Unifying propositionalization and embeddings in terms of use

The unifying dimensions of propositionalization and embeddings in terms of their use 
(summarized in Table 3) are explained below.

Propositionalization (Kramer et al. 2001) is one of the established methodologies used 
in relational learning (Džeroski and Lavrač 2001; De Raedt 2008) and ILP (Muggleton 
1992; Lavrač and Džeroski 1994; De Raedt 2008) (see the propositionalization methods 
outlined in Sect. 4.2). The propositionalization approach was applied also in the semantic 
data mining where ontologies are used as a background knowledge in relational learning 
(Podpečan et al. 2011; Lavrač et al. 2009; Vavpetič and Lavrač 2011).

The embedding technologies are mostly used in the context of deep learning for vari-
ous data formats, including tabular data, texts, images, and graphs (including knowledge 
graphs). In addition to knowledge graph embedding approaches (see Sect. 4.3.1), we out-
line some other approaches to graph embeddings below.

The first studies of graph embeddings were influenced by embedding construction from 
textual data. For example, the well known skip-gram model, initially used as part of word-
2vec (Mikolov et al. 2013) was successfully applied to learn node representations. Deep-
Walk (Perozzi et al. 2014) was one of the first learners that treats short random walks in 
graphs as sentences (or short phrases) to learn latent node embeddings. DeepWalk was 
revisited as node2vec (Grover and Leskovec 2016) to take into account different types 
of random walks, parameterized by breadth, as well as depth-first search. LINE (Tang 
et al. 2015b) performs similarly well for the tasks of classification and link prediction by 
attempting to optimize both local, as well as global network structure.

As for fusing heterogeneous data types, a propositionalization approach was proposed 
as a mechanism for heterogeneous data fusion (Grčar et al. 2013). As for data type fusion 
using embedding-based methods, PTE (Tang et al. 2015a) exploits heterogeneous networks 
of texts for supervised embedding construction. NetMF (Qiu et al. 2018) is a generaliza-
tion of Deepwalk, node2vec, LINE and PTE, re-formulating them as a matrix factorization 
problem. Furthermore, struc2vec (Ribeiro et  al. 2017) builds on two main ideas: repre-
sentations of two nodes must be close if the two nodes are structurally similar, and the 
latent node representation should not depend on any node or edge attribute, including the 
node labels. Examples of approaches to heterogeneous graph embeddings include HIN-
MINE (Kralj et al. 2018), metapath2vec (Zhu et al. 2018) and OhmNet (Žitnik and Lesko-
vec 2017), an extension of node2vec to a heterogeneous biological setting. Heterogeneous 
data embeddings (Chang et al. 2015) of images, videos and text were also formulated as a 
task of heterogeneous graph embedding.

Concerning the interpretability of results, propositionalization approaches are mostly 
used with symbolic learners whose results can be interpretable, given the interpretability 
of features used in the transformed data description. For embedding-based methods, given 
the non-interpretable numeric features/dimensions, specific mechanisms need to be imple-
mented to ensure results explanation (Robnik-Šikonja and Kononenko 2008; Štrumbelj and 

Table 3  Unifying and 
differentiating aspects of 
propositionalization and 
embeddings in terms of use

Use Propositionalization Embeddings

Problems/context Relational Tabular, texts, graphs
Data type fusion Enabled Enabled
Explanation Directly interpretable Special approaches
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Kononenko 2014). A recent well-known approach, which can be used in a post-process-
ing phase of an arbitrary prediction model, is named SHAP (Lundberg and Lee 2017). 
In this approach, Shapley values offer insights into instance-level predictions by assign-
ing fair credit to individual features for participation in prediction-explaining interactions. 
Explanation methods such as SHAP are commonly used to understand and debug black-
box models. We refer the reader to Lundberg and Lee (2017) for a detailed overview of the 
method.

5.5  Summary of strengths and limitations of propositionalization and embeddings

Let us summarize the unified presentation of propositionalization and embeddings by pre-
senting the strengths and weaknesses of the two approaches. The main strength of propo-
sitionalization is the interpretability of the constructed features, while the main strength 
of embeddings is high performance of classifiers learned from embeddings due to their 
compact representation in a vector space.

In terms of their strengths, both approaches to data transformation are: (a) automated, 
(b) fast, (c) semantic similarity of instances is preserved in the transformed instance space 
(as a remark, due to a more compact representation, embeddings preserve semantic simi-
larity of features even better than propositionalization), (d) transformed data can be used as 
input to standard propositional learners, as well as to contemporary approaches.

In addition to these characteristics, embeddings have other favorable properties: (a) 
embedded vectors representations allow for transfer learning, e.g., for cross-lingual appli-
cations in text mining or image classification from different types of images, (b) cover a 
very wide range of data types (text, relations, graphs, images, time series), and (c) have a 
very wide community of developers and users, including industry.

In terms of their limitations when used in a multi-relational setting, both approaches to 
data transformation: (a) are limited to 1-many relationships (cannot handle many-to-many 
relationships between the connected data tables), (b) cannot handle recursion, and (c) can-
not be used for predicate invention.

In addition to these characteristics, limitations of propositionalization include: (a) only 
boolean values are used in the transformed vector space, (b) generated sparse vectors can 
be memory inefficient, (c) limited range of data types are handled (relations, graphs), and 
(d) a small community of developers and users (mainly from ILP).

Embeddings also have several limitations: (a) loss of explainability of features and con-
sequently of the models trained on the embedded representations, (b) many user-defined 
hyper-parameters, (c) high memory consumption due to many weights in neural networks, 
and (d) requirement for specialized hardware (GPU) for efficient training of embeddings, 
which may be out of reach for many researchers.

6  Proposed unification methodology and its two implementations

The unifying aspects analyzed in Sect. 5 can be used as a basis for a unifying methodology 
that combines propositionalization and embeddings, and benefits from the advantages of 
both. The propositionalization successfully captures relational information through com-
plex relational feature construction, but results in a sparse symbolic feature vector represen-
tation. This weakness can be successfully overcome by embedding the constructed feature 
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vectors into a lower dimensional numeric vector space, resulting in a condensed numeric 
feature vector representation appropriate for use by modern deep learning algorithms.

To this end, we describe two novel data transformation algorithms, combining proposi-
tionalization and embedding based transformations into a joint data transformation frame-
work. We first briefly outline the two approaches in Sect. 6.1, followed by their detailed 
descriptions in Sect. 6.2.

6.1  Outline of proposed data transformation and learning methods

We first overview the proposed unifying data transformation approaches. The first, named 
PropDRM, is an instance-based data transformation approach. The second one is a feature-
based data transformation pipeline, called PropStar. The approaches are outlined in the 
next two subsections.

6.1.1  PropDRM: an instance‑based approach

The first unifying approach for embedding of multi-relational databases is based on Deep 
Relational Machines (Dash et al. 2018) (DRMs), presented in Sect. 4.3.3. Rather than using 
the output of Aleph’s feature construction approach, as was the case in the DRM implemen-
tation of Dash et al. (2018), we implemented a variant of this approach, capable of learning 
directly from large, sparse matrices that are returned by the Wordification (Perovšek et al. 
2015) approach to propositionalization of relational databases. In this work, following the 
paradigm of propositionalization by Wordification, each instance is described by a bag (a 
multiset that allows for multiple appearances of its elements) of features of the form Table-
Name_AttributeName_Value. Wordification treats these simple easily interpretable features 
as ‘words’ in the transformed Bag-Of-Words representation. In this work, they represent 
individual ‘relational items’ and we use the notation (table.name, column.name, value).

Relational representations are thus obtained for individual instances, resulting in embed-
dings of instances (e.g., molecules, persons, companies etc). Batches of instances are then 

Fig. 3  Overview of the PropDRM instance-based embedding methodology, based on DRMs. Note that fea-
tures in the propositionalized relational database represent either single features fi or conjuncts of features, 
e.g., fi ∧ fj , given that Wordifications constructs both feature forms. For simplicity, the propositionalized 
database shows only two instances
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fed to a neural network, which performs the desired down-stream task, such as classifica-
tion or regression. Schematically, the approach is illustrated in Fig. 3.2

Note that although propositionalization and subsequent learning are conceptually two 
distinct steps, they are not necessarily separated when implemented in practice: as neural 
networks operate with small batches of input data, if propositionalization is capable of sim-
ilar batch functionality, relational features can be generated in a lazy manner when needed 
by the neural network. The technical details of the proposed PropDRM implementation are 
presented in Sect. 6.2.2.

When compared to our PropStar algorithm presented in Sects. 6.1.2 and 6.2.3 below, 
the key difference of the outlined DRM-based implementation of the unifying methodol-
ogy is the type of embeddings: PropDRM embeds instances (i.e. whole bags of constructed 
features), whereas PropStar embeds features along with the class values in the same vector 
space.

6.1.2  PropStar: a feature‑based approach

In this section, we outline the proposed PropStar algorithm for classification via feature 
embedding. Its details and implementation are presented in Sect. 6.2.3. Unlike the Prop-
DRM algorithm, where each embedding vector represents a single data instance, the idea 
of PropStar is to use embedding vectors to represent the features of the data set. Here, indi-
vidual relational features, obtained as the result of propositionalization by Wordification, 
are used by a supervised embeddings learner to obtain representations, co-located with 
instance labels. This approach is conceptually different in the sense that representations are 
not learned for individual instances (as is the case of DRMs); instead, they are learned for 
every single relational feature that is the output of the selected propositionalization algo-
rithm (i.e. Wordification).

The fact that PropStar produces vector representations of features means that the labels 
(label=true and label=false) are also represented by vectors in the same dense space as 
the other vectors. This leads to an intuitive direct classification of new examples. We can 
observe the set of vectors representing the relational items present in the itemset represent-
ing the new example. To classify a new instance, the embeddings of the set of its features 
(i.e. true values) are averaged and the result is compared to the embedding of class labels. 
The nearest class label is chosen as the predicted value.

Figure 4 illustrates how new instances are classified by direct comparison of the repre-
sentations of their features in the latent dense semantics-preserving space that also contains 
the information on labels. The classification is based on the proximity to a given label (in 
the latent space). If the center of feature vectors of a given instance is closer to the vector 
representing the feature label=true, then the example is classified as positive.

In contrast to the instance-based embeddings discussed in Sect.  6.1.1, which relies 
on batches, the whole data set is needed to obtain representations for individual fea-
tures. To avoid high spatial complexity, this class of algorithms would ideally operate 
on sparse inputs. An example of feature-based embeddings are items that are to be rec-
ommended to users, where the representation of a given item is obtained by jointly opti-
mizing the item’s co-occurrence with other items, as well as other user’s properties. In 

2 As its last step, the methodology includes the explanation of results using the SHAP approach. However, 
as Sect. 6 focuses on our research contributions, this well known approach and its results are presented in 
Appendix D.
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a relational setting considered in this work, we follow the paradigm of propositionaliza-
tion by Wordification, where each instance is described by a bag of features of the form 
(table.name, column.name, value) . Consequently, in the PropStar approach the embed-
dings represent bags of such features and their conjunctions (of size 2). There are as many 
embeddings as there are unique features in the propositionalized representation of a given 
relational database. As such embeddings by themselves do not contain any information 
which relates them to the desired output space, target values get embedded alongside other 
features in a supervised manner.

6.2  Detailed description of proposed data transformation and learning methods

This section presents the implementations of the proposed methods, preceded by the 
description of the updates to the Wordification algorithm (Perovšek et al. 2015 for multi- 
propositionalization algorithm presented in Sect. 6.2.1. In Sect. 6.2.2 we discuss how Deep 
Relational Machines (described briefly in Sect. 4.3.3), which use neural networks for learn-
ing from relational databases, were adapted to operate on sparse matrices generated by an 
improved Wordification algorithm. In Sect.  6.2.3 we describe a novel algorithm, called 
PropStar, which embeds relational features, extracted as part of propositionalization.

6.2.1  Improving the efficiency of Wordification

In this work we significantly extend the ideas proposed in Wordification (Perovšek et al. 
2013, 2015) with the aim to maintain the classification performance, yet improve its scal-
ability. Both proposed algorithms build on the idea of Wordification, yet its use in our 
algorithms is differentiated by the following design decisions: 

1. Inputs do not need to be hosted in relational databases. PropStar operates on .sql files 
directly. The algorithm supports SQL conventions, as commonly used in the ILP com-

Fig. 4  Overview of the proposed feature-based embedding methodology PropStar. Note that embedded fea-
tures represent embeddings of single features fi or of conjuncts of features, e.g., fi ∧ fj , given that Wordi-
fications constructs both feature forms. For simplicity, the propositionalized database shows two instances 
Blank and shaded circles correspond to embedded representations of instances and features, respectively
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munity.3 This modification renders the method completely local, enabling offline exe-
cution without additional overhead. Such setting also offers easier parallelism across 
computing clusters.

2. Algorithm is implemented in Python 3 with minimum dependencies for computationally 
more intense parts, such as the Scikit-learn (Pedregosa et al. 2011), Pandas, and Numpy 
libraries (Van Der Walt et al. 2011). All database operations are implemented as array 
queries, filters or similar, unlocking the potential to run PropDRM and PropStar also 
on GPUs.

3. As shown by Perovšek et al. (2015), Wordification’s caveat is extensive sampling of (all) 
tables. We relax this constraint to close (up to second order) foreign key neighborhood, 
notably speeding up the relational item sampling part, but with some loss in terms of 
relational item diversity. For larger databases, minimum relational item frequency can 
be specified, constraining potentially noisy parts of the feature space.

One of the original Wordification’s most apparent problems is its spatial complexity. In this 
work we address this issue as follows: 

1. Relational items are hashed for minimal spatial overhead during sampling.
2. During construction of the final representation, a sparse matrix is filled based on rela-

tional item occurrence.
3. The matrix is serialized directly into list-like structures, suitable for StarSpace algorithm 

and thus we maintain minimal spatial overhead.
4. Only the final representation is stored as a low-dimensional (e.g., 32) dense matrix.

6.2.2  Detailed description of the proposed PropDRM implementation

The novelty of the proposed implementation of DRM instance-based embedding, inspired 
by the work of Dash et al. (2018), concerns its capability to effectively handle the sparse-
ness of the data with deep neural networks. The main novelty of the proposed implementa-
tion is that it is indeed capable of operating on larger, sparse matrices directly. Such capa-
bility is necessary for DRMs to be compatible with propositionalization, which yields large 
sparse matrices as the main output. Below we discuss the neural network architecture and 
its adaptations.

Let P represent a sparse item matrix, as returned by Wordification (discussed in 
Sects. 4.2.3 and 6.2.1). Note that Wordification is unsupervised, and thus does not include 
any information on instance labels. The neural network we use (termed � ) represents the 
mapping � ∶ P → C , where C is the set of classes. In this work, we experimented with 
dense feed-forward neural networks, regularized using dropout (Srivastava et  al. 2014), 
and ELU activation function (Clevert et  al. 2016) (of intermediary weights). The output 
weights are activated using sigmoid activation ( � ) in order to obtain binary predictions.

where c is the user-specified constant. For a given input matrix P, an example of a single 
hidden-layer neural network is defined as follows.

ELU(x) =

{
c(ex − 1), for x < 0

x for x ≥ 0
,

3 https ://relat ional .fit.cvut.cz/.
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Here, the � is a sigmoid activation, defined as �(x) = 1

1+e−x
 . The W1 is the weight matrix, 

P the sparse input space, and bl the bias vector of a given layer l ∈ {0, 1} . The described 
neural network returned satisfactory results, hence, we did not perform neuroevolution or 
similar large-scale search for potentially better performing architectures. Throughout this 
work, we use the binary cross-entropy loss, referred to as Loss. For a given probabilistic 
classifier, which returns a probability pij of an instance i belonging to a class j, the loss 
function is defined as follows:

Here yij is a binary value (0 or 1) indicating whether class j is the correct class label 
assigned to instance i, and C is a set of all the target classes. In the case of DRMs, where 
the instances of a relational database (one of the tables) are classified, each of the |C| output 
neurons predicts a single probability pij for a given target class j ∈ C . If the neural net-
works are trained in small batches, the results of the Loss function are averaged to obtain 
the overall loss of a given batch of instances.

Neural networks are adapted for dense inputs such as images and texts, and are not nec-
essarily suitable for large sparse matrices, as considered in this work (i.e. P). The proposed 
variant of DRMs is adapted as follows. Once the batch size bs (a free parameter) is deter-
mined, propositionalized representation P is traversed (in chunks of bs instances). Note 
that each instance is effectively a d-dimensional vector. As the neural network operates 
with dense batches, each batch is converted to a dense matrix of bs ⋅ d elements that is used 
during matrix multiplication within the neural network. The spatial complexity is thus at 
most O(bs ⋅ d) . We observed that even by considering batch size of one, the DRMs are 
stable and efficient.

6.2.3  Detailed description of the PropStar algorithm

We next present the novel feature-based embedding algorithm that can operate directly on 
the propositionalized relational databases. The proposed PropStar algorithm merges sym-
bolic and non-symbolic representations as part of a single procedure for obtaining real-
valued representations of features in arbitrary relational databases. The pseudocode of the 
PropStar algorithm is given in Algorithm 1.

� = �(WT
o
(ELU(Drop(WT

1
P + b1))) + bo).

Loss(i) =
∑
j∈C

yij ⋅ log pij.
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The algorithm consists of two main steps. First, a relational database is transformed into 
sets of features describing individual instances. The WORDIFY method constructs fea-
tures of the form (table.name, column.name, value) and uses them to describe each indi-
vidual instance (see Sect. 6.2.1 for a detailed formulation of this step).

Second, sets of relational items (features) are used as input to the StarSpace entity 
embedding algorithm (described in Sect.  4.3.2), producing embeddings for each distinct 
relational item. The StarSpace embeddings are computed using efficient C++ implementa-
tion. We wrote a wrapper which seemingly integrates the first part of PropStar (sampling 
and propositionalization) with the embedding construction. The problem is formulated as 
a multiclass classification, where the positive pair generator comes directly from a training 
set of labeled data specifying (a, b) ∈ E+ pairs where a are relational item ‘documents’ and 
b are labels (singleton features). Negative entities b−

i
 are sampled from the set of possible 

labels. Inputs can be described as (multi) sets comprised of both relational items fi , their 
conjuncts, as well as class labels ci . For example,

represents a simple input consisting of three relational items, a conjunct and the target label 
c1 . Note that we apply StarSpace in such manner that the representations are learned for 
individual relational items. A representation matrix of dimension ℝ|W|×d is produced as the 
final output (|W| represents the number of unique relational items considered). Intuitively, 
the embedding construction can be understood as determining relational item locations in a 
latent space based on their co-occurrence with other items present in all training instances. 
The wrapper can be called via ‘fit’ and ‘predict’ methods, commonly used in contemporary 
data science and machine learning. In this work, we consider the inner product similarity 

{f1, f2, f6, f6 ∧ f2, c1}
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between a pair of vectors e1, e2 for the construction of embeddings.4, i.e. The complexity 
of obtainingsim(e1, e2) = eT

1
⋅ e2. As the class labels are embedded in the same space as 

individual relational items, classification of novel bags of relational items is possible by 
direct comparison, as common tasks operating on word embeddings. We discuss this clas-
sification below.

Let M represent a novel instance to be classified. Note that M (without additional index) 
is considered a multiset of relational items. For prediction purposes, StarSpace averages 
the representations of relational items present in a given input instance (a bag). The rep-
resentation is normalized (as during training) and compared to label embeddings in the 
common space. Representation of a relational bag eM is computed (with considered hyper-
parameters) as:

which is a d-dimensional, real-valued vector. Note that ⊕ in this expression denotes ele-
ment-wise summation. The Munique represents the set of all (unique) relational features cur-
rently considered. Note that original bags of features can be redundant (multisets), yet rep-
resentations are learned for unique features. Next, the similarity of this vector is compared 
to the label embeddings in the same space. The label that is the most similar to eM is the 
top-ranked prediction, the second most similar label is the second-ranked prediction, etc. 
In this work we consider only the top-ranked prediction, resulting in the following label 
assignment:

The complexity of obtaining a single prediction is hence O(|C|) , not taking the complexity 
of scalar product for function sim into account. The PropStar algorithm first samples the 
relational items with respect to the target table (lines 2-11 in Algorithm 1). Binary indica-
tor function (relationalFeatures) is applied to obtain the propositionalized representation 
of the target table (line 12). Here, zeros represent absence of a given relational items, and 
ones their presence.5 Finally, StarSpace is used to embed the table into a low-dimensional, 
real valued embedding (line 19).

The spatial complexity of PropStar is linear with respect to the number of non-zero ele-
ments in the propositionalized version of a relational database. The exact spatial complex-
ity can be formulated as follows. Let row represent the average number of rows per table. 
Let nt represent the number of tables and col the average number of columns per table. We 
improve the original spatial complexity of O(rows ⋅ nt ⋅ 2

col) by introducing a constraint, 
which determines the maximum number of relational items that can be considered. The 
exponential term in the initial complexity thus reduces to col times some constant, yielding 
the complexity of O(rows ⋅ col ⋅ nt) . This formulation yields a scalable propositionalization.

eM =

⊕
fi∈M

efi
√

|Munique|
,

label(eM) = argmax
c∈C

[
sim(eM , ec)

]
.

4 Note that e1, e2 represent vector representations of relational items (i.e. features) in the output of proposi-
tionalization.
5 Note that in the actual implementation CSR format of sparse matrices is used to reduce the spatial over-
head of storing zeros.
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7  Experimental evaluation

In this section we describe the implementation details of the proposed methods, the rela-
tional data sets used in the experiments, and the experimental evaluation of the proposed 
methods.

7.1  Implementation and hyperparameters

We discuss how the proposed methods were implemented, along with the hyperparameters 
explored. Both new methods (PropDRM and PropStar) are implemented in Python, with 
the following exceptions. In PropDRM, the DRMs are implemented in PyTorch. For Prop-
Star we used the efficient StarSpace implementation written in C++, for which we build a 
wrapper offering basic embedding training and prediction functionality.

We used 10-fold stratified cross validation, which was conducted for individual hyper-
parameter settings. The best setting is reported, other are discussed in ablation studies. 
Experiments were performed on an of-the-shelf workstation with no GPUs (even though 
PropDRM and PropStar can exploit them). We intentionally omit the GPU-based training 
to explore the minimum hardware, required to perform competitively on the selected data 
sets—ILP baselines, such as Aleph and RSD are Prolog-based, and are to our knowledge 
not able to use multiple GPU threads simultaneously. The machine on which experiments 
were conducted had 128GB of RAM and 12 CPUs (Intel i8 series).

In PropDRM, we varied the dropout rate, learning rate, number of epochs, and the hid-
den layer size. In PropStar, we varied the number of negative samples, embedding dimen-
sion, learning rate, and the number of epochs.

The source code of our implementation is publicly available6.

7.2  Relational data sets

Five relational database sources7 (Motl and Schulte 2015) were used in the experiments. 
Their characteristics are summarized in Table 4.

Trains (Michie et al. 1994) data set is used in the East-West trains challenge problem, 
which is well-known in ILP. The East-West trains challenge is to predict whether a train 
is eastbound or westbound, based on the properties of eastbound and westbound cars. 
Trains contain variable number of cars, each having one of various shapes and carrying 
various loads.
Carcinogenesis  (Srinivasan et  al. 1997) task is to predict carcinogenicity of a diverse 
set of chemical compounds. The data set was obtained by testing different chemicals on 
rodents, where each trial would take several years and hundreds of animals. The data set 
consists of 329 compounds, of which 182 are carcinogens.
Mutagenesis (Debnath et al. 1991) task addresses the problem of predicting mutagen-
icity of aromatic and heteroaromatic nitro compounds. Predicting mutagenicity is an 
important task as it is very relevant to the prediction of carcinogenesis. The compounds 
from the data are known to be more structurally heterogeneous than in any other ILP 

6 https ://githu b.com/SkBla z/PropS tar.
7 Freely accessible at https ://relat ional .fit.cvut.cz/.
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Table 4  Properties of the experimental data tables

Trains #rows #attributes

Cars 63 10
trains 20 2

Carcinogenesis #rows #attributes

atom 9,064 5
canc 329 2
sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4,134 4

Mutagenesis 42 #rows #attributes

atoms 1,001 5
bonds 1,066 5
drugs 42 7
ring_atom 1,785 3
ring_strucs 279 3
rings 259 2

Mutagenesis 188 #rows #attributes

atoms 4,893 5
bonds 5,243 5
drugs 188 7
ring_atom 9,330 3
ring_strucs 1,433 3
rings 1,317 2

IMDB #rows #attributes

actors 7,118 4
directors 130 3
directors_genres 1,123 4
movies 166 4
movies_directors 180 3
movies_genres 408 3
roles 7,738 4

MovieLens #rows #attributes

actors 99,129 3
directors 2,201 3
movies 3,832 5
movies2actors 152,532 3
movies2directors 4,141 3
u2base 946,828 3
users 6,039 4



1495Machine Learning (2020) 109:1465–1507 

1 3

data set of chemical structures. The database contains 230 compounds of which 138 
have positive levels of mutagenicity and are labeled as ‘active’. Others have class value 
‘inactive’ and are considered to be negative examples. We took the data sets from the 
original paper (Debnath et al. 1991), where the data was split into two subsets: a 188 
compound data set and a smaller data set with 42 compounds.
IMDB database is publicly available in the SQL format.8 This database contains tables 
of movies, actors, movie genres, directors, and director genres. The data set used in our 
experiments encompasses only movies whose titles and years of production appear in 
the IMDB’s top-250 and bottom-100 chart (Snapshot taken on July 2, 2012). The snap-
shot contains 166 movies, along with all of their actors, genres and directors. We des-
ignate movies present in the IMDB top-250 chart as positive examples, and those in the 
bottom-100 as negatives.
MovieLens data set from the UC Irvine machine learning repository.9 The data set is 
similar to IMDB above, however is much larger. Overall, the database consists of more 
than 1.2 million instances. The task is to predict gender of the movie database’s users.

7.3  Results

We present the results of the empirical evaluation of the proposed methodologies on the 
presented set of standard benchmark ILP data sets. The accuracies of individual learners 
are given in Table 5, and the AUC scores are reported in Table 6. The results for Aleph, 
RSD, RelF and Wordification were taken from previous work of Perovšek et al. (2015).

It can be observed that the proposed unifying approaches perform competitively on 
most data sets. We can observe a distinct difference in performance on the Mutagenesis 
data sets, where both PropDRM as well as PropStar do not outperform the baselines on 
the smaller data set (Mut42), yet notably outperform the (best) baselines on the larger one 
(Mut188). Further, minor improvement over the baseline algorithms is also achieved on 
Carcinogenesis data set.

In terms of spatial complexity, the proposed methodology greatly outperforms the alter-
natives under a given set of constraints. Only PropDRM and PropStar scale to very large 
relational databases without specialized hardware. Detailed studies regarding the sensitiv-
ity of PropDRM and PropStar to their parameters are discussed in Appendices B and C, 
respectively.

We consider the presented results as very favorable for the two proposed approaches. In 
particular, PropStar is better than current state-of-the-art methods on 3 out of 6 data sets, 
and is therefore a method to take into consideration when attempting to solve any new rela-
tional problem.

7.3.1  Study of propositionalization projections

The considered propositionalization is entirely unsupervised. Only once the symbolic rep-
resentations of instances are obtained, PropDRM and PropStar learn the associations to 

9 https ://relat ional .fit.cvut.cz/datas et/Movie Lens.

8 http://www.webst epboo k.com/suppl ement s/datab ases/imdb.sql.
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individual classes. A good representation, however, already contains relevant information 
on the instance space. In Fig. 5, we projected the propositionalized Mutagenesis 188 and 
Trains instance space to two dimensions to qualitatively explore whether instances group 
or any meaningful patterns emerge. Understanding whether the symbolic space exhibits 
distinct structure on its own could offer insights into why the proposed methods perform 
well. For projecting the 10,000 dimensional space to two dimensions we used UMAP, a 
recently introduced non-linear dimensionality reduction method based on insights from 
manifold theory (McInnes et al. 2018).

We can observe an apparent distinction in the clustering of the UMAP projections of 
the two propositionalized data sets. The Mutagenesis 188 data set consists of two distinct 
clusters that, when colored according to the class labels, approximately correspond to the 
two classes (Fig. 5a). On the other hand, the clustering is not apparent in the case of the 
Trains data set (Fig. 5b), where the instances do not group distinctly. The purpose of the 
considered visualizations is twofold. First, we show how the symbolic space can exhibit 
clustering properties, related to properties of instances such as class labels. Next, we show 
that projections do not necessarily exhibit such properties, indicating potentially harder 
classification problems. We believe that UMAP and similar tools offer insights into repre-
sentation structure.

Table 5  Classification accuracy on different relational data sets

The best score for each dataset is in bold
For the proposed methods, we report average performance over 5 runs. The runs, marked with—were una-
ble to finish in 12 h

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains MovieLens
MajorityVote 0.55 0.73 0.67 0.69 0.50 0.72

Aleph (Perovšek et al. 2015) J48 0.55 0.73 0.60 0.69 0.55 –
Aleph (Perovšek et al. 2015) SVM 0.55 0.73 0.60 0.69 0.70 –
RSD (Perovšek et al. 2015) J48 0.60 0.75 0.68 0.98 0.60 –
RSD (Perovšek et al. 2015) SVM 0.56 0.73 0.71 0.69 0.80 –
RelF (Perovšek et al. 2015) J48 0.60 0.70 0.75 0.76 0.65 –
RelF (Perovšek et al. 2015) SVM 0.56 0.73 0.69 0.76 0.80 –
Wordification (Perovšek et al. 

2015)
J48 0.62 0.82 0.67 0.98 0.50 –

Wordification (Perovšek et al. 
2015)

SVM 0.61 0.73 0.82 0.79 0.50 –

Aleph (replicated) J48 0.55 – 0.80 0.76 0.70 –
Aleph (replicated) SVM 0.55 – 0.80 0.79 0.60 –
RSD (replicated) J48 0.56 0.84 0.88 0.92 0.60 –
RSD (replicated) SVM 0.60 0.82 0.89 0.84 0.80 –
Wordification (replicated) J48 0.47 0.85 0.91 0.88 0.90 0.60
Wordification (replicated) SVM 0.39 0.80 0.83 0.33 0.50 0.72
Treeliker J48 0.58 – 0.77 0.81 0.50 –
Treeliker SVM 0.60 – 0.90 0.80 0.70 –
PropDRM 0.63 0.73 0.91 0.86 0.70 0.72
PropStar 0.66 0.74 0.92 0.90 0.80 0.74
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7.3.2  Statistical comparison of PropDRM and PropStar

In previous sections, we demonstrated that both PropDRM and PropStar perform well on 
the considered data sets, indicating that both approaches are successfully unifying proposi-
tionalization and embeddings. We further study the differences in performances of the two 
approaches. For this purpose, we employ the hierarchical Bayesian t-test, a Bayesian test 
capable of comparing a pair of classifiers across multiple data sets (Benavoli et  al. 2017; 
Corani et al. 2017). For this comparison, we selected the overall best performing hyperpa-
rameter sets for each method, and conducted ten repetitions of stratified ten-fold cross valida-
tion (for each data set). The results are visualized as probability distributions across the space 
of both classifiers and the ‘rope’ region (region of practical equivalence) within which the 
two classifiers perform the same. The size of this region is a free parameter of the hierarchical 

Table 6  AUC scores on individual data sets

The best score for each dataset is in bold
We report average performance over 5 runs. The runs, marked with—were unable to finish in 12 h

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains Movies

Aleph (from Perovšek et al. 2015) J48 0.50 0.50 0.68 0.50 0.55 –
Aleph (from Perovšek et al. 2015) SVM 0.50 0.50 0.68 0.50 0.70 –
RSD (from Perovšek et al. 2015) J48 0.59 0.59 0.54 0.96 0.60 –
RSD (from Perovšek et al. 2015) SVM 0.52 0.50 0.58 0.50 0.80 –
RelF (from Perovšek et al. 2015) J48 0.59 0.66 0.68 0.68 0.75 –
RelF (from Perovšek et al. 2015) SVM 0.52 0.50 0.54 0.62 0.75 –
Wordification (from Perovšek et al. 2015) J48 0.61 0.75 0.55 0.96 0.95 –
Wordification (from Perovšek et al. 2015) SVM 0.58 0.50 0.78 0.65 0.50 –
Alpeh (replicated) J48 0.50 – 0.71 0.72 0.70 –
Aleph (replicated) SVM 0.50 – 0.75 0.73 0.60 –
RSD (replicated) J48 0.55 0.71 0.87 0.92 0.60 –
RSD (replicated) SVM 0.58 0.65 0.90 0.73 0.80 –
Wordification (replicated) J48 0.48 0.72 0.90 0.86 0.90 0.52
Wordification (replicated) SVM 0.42 0.62 0.81 0.50 0.50 0.50
Treeliker J48 0.58 – 0.75 0.71 0.50 –
Treeliker SVM 0.58 – 0.88 0.68 0.70 –
PropDRM 0.63 0.68 0.90 0.87 0.80 0.54
PropStar 0.63 0.66 0.87 0.87 0.95 0.56

(a) (b)

Fig. 5  Two UMAP projections of selected propositionalized data sets
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t-test, and was set to 0.05 in this work. Other parameters of the test were left as defaults. The 
exact methodology for the interested reader is explained by Benavoli et al. (2017).

In terms of AUC, the probabilities returned by the Bayesian test were as follows: 
p(PropStar) = 0.07 and p(PropDRM) = 0.54 ), and in terms of classification accuracy, 
p(PropStar) = 0.96 and p(PropDRM) = 0.04 . The results of statistical analysis indicate that 
with respect to AUC performance, the two approaches perform similarly, even though the prob-
ability that PropDRM will outperform PropStar is higher. With respect to the classification accu-
racy, PropStar outperforms PropDRM in majority of comparisons. Thus, considering the 95% 
or higher as the probability denoting significance boundary, we can determine that PropStar is 
(significantly) more suitable choice if accuracy is being optimized for. As Bayesian comparisons 
are computationally expensive, we compared the two methods using default hyperparameter set-
tings. The PropStar’s default configuration is not necessarily optimal when AUC is considered.

8  Conclusions and further work

This paper first provides a critical survey of propositionalization and embedding tech-
niques, especially relevant for relational learning and inductive learning programming. 
While both data approaches, propositionalization and embeddings, aim at transforming 
data into the tabular data format, the research papers describing the approaches use dif-
ferent terminology and task definitions, claim to have different goals, and are used in very 
different contexts. In this paper, we define the main categories of data transformation tech-
niques based on the representation they use and approaches employed. Propositionalization 
approaches produce tabular data from multirelational databases as well as from a mixture 
of tabular data and background knowledge in the form of logic programs or networked 
data, including ontologies. Knowledge stored in graphs can be assessed with commu-
nity detection and graph traversal methods. Relations described with similarity matrices 
are encoded in a numeric form using matrix factorization. Currently, the most promising 
approach to data transformations are neural networks based methods which can be applied 
to text, graphs, and other entities for which we can define a suitable similarity function.

One of the main strategic problems machine learning has to solve is better integration 
of knowledge and models across different domains and representations. While the research 
area of embeddings can unify different representations in a numeric space, symbolic learn-
ing may be an essential ingredient for integration of different knowledge areas. We see 
our PropStar approach that combines advantages of propositionalization and neural embed-
dings in the same data fusion pipeline as a step in that direction.

The first minor contribution of the paper is that our exposition is based on three cogni-
tive representation levels introduced by Gärdenfors (2000), i.e. neural, spatial, and sym-
bolic. As most of human knowledge is stored in the symbolic form, while the most powerful 
machine learning algorithms take as input spatial representations, this explains a plethora of 
techniques that transform other forms of human knowledge into the spatial representation 
space. The next contribution is the unifying framework in which we describe propositionali-
zation and embedding techniques in terms of their joint properties and their differences. We 
show how the propositionalization techniques can be merged with deep neural network based 
embedding to produce a joint embedding, such that spatial representation can be used with 
any deep learning algorithm and the predictions can be comprehensively explained. The main 
contributions of our work are thus the two implementations that merge propositionalization 
and embeddings in the same unifying methodology. The first is an efficient reimplementation 
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of existing Deep Relational Machines, while the second one is the novel Deep Proposition-
alization algorithm. We also contribute an experimental evaluation of the two algorithms and 
show favorable results in terms of predictive performance, as well as time and space require-
ments. The source code of both algorithms, DeepProp and PropDRM, is publicly available.10

In further work, it is worth investigating the integration of symbolic and deep learn-
ing, considering them as multitask learning approaches which try to integrate many differ-
ent learning tasks and use embeddings as input representations. The issue is that different 
embedding methods have so far only been used in isolation. We already address this chal-
lenge in the current work of the authors, where we combine complementary embedding 
methods from different classes: in particular, to use network traversal methods to produce 
initial embeddings that are then refined using a deep neural network (Škrlj et al. 2019).
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Appendix A: Wordification example

The Wordification approach is illustrated on a modified and substantially simplified version 
of the well-known East-West Trains domain (Michie et al. 1994). Our input database con-
sists of just two tables shown in Fig. 6, where we have only one east-bound and one west-
bound train, each with just two cars with certain properties11.

The TRAIN table is the main table and the trains are the instances, with a class label 
denoting the direction of the train (east of west). As Fig. 7 shows, a multiset (a bag) of 
features is generated for each train t1 and t5 with the class label appended to the resulting 
feature vector (bag of features). Both single features and conjunctive features are shown in 
this example.

10 https ://githu b.com/SkBla z/PropS tar.
11 Note that in the experiments we use the standard version of the East-West Trains domain.
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Fig. 6  Example input for Wordification in the East-West Trains domain

Fig. 7  The database from Fig.  6 in the bag-of-features representation (as in the original Wordification 
implementation, conjunctions of features are denoted by a long underscore instead of ∧)

(a) Dependence on hidden layer size. (b) Dependence on the number of epochs.

(c) Dependence on the learning rate. (d) Dependence on Dropout.

Fig. 8  Sensitivity of PropDRM to hyperparameter settings
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Appendix B: Ablation study—PropDRM

We discuss the impact of individual hyperparameters on the performance of PropDRM. We 
first visualize the performance of PropDRM w.r.t. individual hyperparameters in Fig. 8.

We can observe that the relevance of individual hyperparameters varies from data set to 
data set. The learning rate, when too small, decreases the performance. In terms of embed-
ding dimension, even smaller dimensions are sufficient for the considered data sets. This 
result potentially implies that the considered data sets are relatively small and contain 
only a small set of relevant features (when propositionalized). Thus, if the neural network 
detects the correct features as relevant, not many parameters are needed for a successful 
classification. An alternative explanation would imply that PropDRM learns hierarchi-
cal representations efficiently, albeit not optimized with their hierarchical nature in mind, 
which was previously demonstrated to capture hierarchical relations well (Nickel and Kiela 
2017).

ality.
(a) Dependence on embedding dimension- (b) Dependence on the number of epochs.

(c) Dependence on the learning rate. (d) Dependence on the maximum negative
sampling number.

Fig. 9  Sensitivity of PropStar to various hyperparameter settings
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Appendix C: Ablation study—PropStar

We first explore the behavior with respect to various hyperparameter settings and visual-
ize them in Fig. 9. We can observe that the amount of negative samples (Subfigure 9d)) 
impacts the PropStar’s performance the most on the mutagenesis 42 data set, overall reduc-
ing the performance, even though a handful of models (outliers marked as dots) perform 
well. This indicates the importance of negative sample selection. As StarSpace does not 
use any sophisticated technique for sampling negative examples, the variability in perfor-
mance could be notable due to this parameter.

It can be observed that a relatively small relational item embedding dimensionality is 
needed for successful performance. The dependence on other parameters varies from data 
set to data set. For example, the learning rate does not impact the larger Mutagenesis data 
set (Mut188) as much as it does the Trains data set. As the proposed methodology is not 
well adapted to such small data sets (e.g., tens of instances), large variability in perfor-
mance could be linked to potential overfitting. Further, sufficient number of epochs are 
needed for PropStar to converge on individual data sets.

Appendix D: Interpretability of embedding‑based methods using 
SHAP

The approximation power of deep neural network which are commonly used with embed-
dings comes at a cost of lesser interpretability. Compared to symbolic relational (or propo-
sitional) learners, one cannot understand the deep relational models’ deductive process by 
inspecting the model. However, post hoc explanation methods for prediction models can 
be used to better understand which parts of the feature space are relevant for the neural 
network’s individual predictions. In this work, we leverage the state-of-the-art explanation 
tool SHAP (Lundberg and Lee 2017), based on the coalitional game theory. This tool cap-
tures the importance of interactions between features with Shapley values.

When considered in a feature importance scenario, the contribution of the i-th instance 
�i , is approximated by SHAP with the following expression:

where S is a subset of all features F, f is the used predictive model, and xS is an instance 
containing only features from the subset S. Shapley valufs offer insights into instance-level 
predictions by assigning fair credit to individual features for participation in interactions. 
They are commonly used to understand and debug black-box models.

In this work, we use the SHAP kernel approximator, the recently introduced, model-
agnostic method for explaining model outputs. The used SHAP kernel explainer is consid-
ered an additive feature attribution method. Such methods are characterized as having an 
explanation model g that is a linear function of binary variables:

𝜏i =
∑

S⊆F⧵{i}

|S|!(|F| − |S| − 1)!

|F|!
�������������������������������������

All possible subsets

[
f (xS∪{i}) − f (xS)

]
���������������������

Difference in predictive performance
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where z� ∈ {0, 1}|F| , |F| is the number of input features and �i ∈ ℝ . This class of models 
assign an effect �i to each feature, and summing the effects of all such feature attributions 
approximates the output f(x) of the original model. Detailed theoretical analysis of how this 
idea can be extended to approximation of outputs via a kernel is given in Lundberg and Lee 
(2017).

As an example demonstrating the explainability of the two paradigms, we visualize 
the Shapley values as explanations of learned classifiers for Mutagenesis 188 problem in 
Fig. 10. Explanations indicate parts of the feature space that have the largest impact on the 
model’s output. Even though the considered SHAP kernel explainer is known to be a com-
putationally expensive variant of SHAP (it is also the most general one), explanations were 
obtained in the order of minutes, indicating the potential of this methodology for explana-
tions of predictors in larger relational databases.
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3.3 Neuro-symbolic Node Embedding

Learning from simpler relational structures, such as weighted graphs G = (N,E,w), has
been an ongoing research endeavour in the last years (Perozzi et al., 2014). A prominent
technique for general relational learning from such structures revolves around the construc-
tion of node embeddings. These real-valued, low-dimensional representations of nodes, when
used as input to a given learner, capture the rich graph-topological properties of a given
node’s neighbourhood, whilst maintaining low dimension and do not require special learn-
ing techniques for solving a given task. Currently, most representation learning algorithms
that address the problem of node embedding operate as black boxes (Kipf & Welling, 2017;
Veličković et al., 2018), offering relatively little insight into the learning process, but also
the content of the learned representations. To address this issue, we hypothesized and im-
plemented an approach that explored whether the neuro-symbolic paradigm could be of use
to address some of these limitations. The paper relevant to this section is the following one:

Škrlj, B., Kralj, J., Konc, J., Robnik-Šikonja, M., & Lavrač, N. (2021). Deep node
ranking for neuro-symbolic structural node embedding and classification. Interna-
tional Journal of Intelligent Systems, 1–30. https://doi.org/https://doi.org/10.1002/
int.22651

3.3.1 Key Contributions

We next present the key contributions of the conducted work.

1. A neuro-symbolic algorithm for node embedding achieving state-of-the-art perfor-
mance.

2. Comparison of symbolic vs. sub-symbolic performance offering insights into suitable
representation types for low-resource learning.

3. An improved version of Personalized PageRank with Shrinking which includes node
pivoting, the process of ranking only with respect to a heuristically selected (ranked)
node subspace, demonstrating substantial scalability improvements for larger net-
works.

4. A simple-to-use Python library, implementing highly optimized versions of the Deep
Node Ranking algorithm.

3.3.2 Addressed Hypotheses and Discussion

The main hypotheses concerning the presented contribution address both the scalability
aspect – we were interested whether neuro-symbolic representation learning scales better
than symbolic for a given task (Hypothesis 4, Section 1.3), as well as the understandability
of the relationship between symbolic and sub-symbolic representation learning (Hypothesis
1, Section 1.3). Further, the proposed DNR also represents a strong competitor to existing
sub-symbolic approaches (Hypothesis 3, Section 1.3). In particular, we first demonstrated
that by performing personalized node ranking with respect to a selected sub-network (and
not the whole network), followed by embedding learning, the proposed procedure per-
forms competitively to a symbolic variant which includes the stationary walk distributions
with respect to all nodes, but need significantly (asymptotically) less space. To validate
this claim, we performed extensive ablation studies on multiple synthetic networks, where
consistent space performance improvements were observed for the neuro-symbolic node
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embedding (DNR). Further, we demonstrated that the proposed neuro-symbolic node em-
bedding algorithm performs well when the labels are scarce, even if not (on average) as
well as the symbolic-only variant. This result indicates that, in terms of performance,
the additional compression from the |N | dimensions to d dimensions results in minimal
performance loss. Such behaviour is expected, as the neural network-based representation
compression is not a lossless process.

The second hypothesis concerns better understanding of the interplay between ranking-
based symbolic node representations and the final, sub-symbolic ones. The proposed DNR
is, to our knowledge, the first neuro-symbolic node embedding algorithm that offers a direct
exploration of the two learned node spaces, their performance trade-offs and the obtained
representations’ properties. We demonstrated that the two spaces differ in their compact-
ness; the symbolic (high-dimensional) space consists of very distant representations, with
only a small percentage that is close to each other. On the contrary, the neuro-symbolic rep-
resentations (low-dimensional) are more compact – more representations are close to each
other. We also demonstrated that the two representation types differ mostly with respect to
the node representations that are close to each other, with the distant node representations
being similar for both representation types. We believe this type of study offers a direct
exploration of both properties of different representations and, more importantly, their im-
pact on one another; note that DNR first constructs symbolic representations, which are
only subsequently distilled with a neural network. Compared to the existing state-of-the-
art structural node representation learners, DNR offers controlled interventions into the
initial representation learning step with predictable consequences. This property led us to
include node pivoting, which enables scalable heuristic-based construction of the symbolic
representations. As the heuristic addresses the question of selecting the appropriate node
subspace, we could, during the development of this heuristic, test different options, for
which we could, to some extent, anticipate their effect on the constructed symbolic rep-
resentation. This type of debugging/exploration would have been harder if considering a
black-box learner directly.

The next discussed hypothesis is the third one, focusing on predictive performance. The
obtained results indicate that the proposed neuro-symbolic node representation learning
algorithm performs competitively to the existing state-of-the-art. Statistical evaluations
indicate, however, that the differences are not significant, indicating that no clear domi-
nance was observed by any of the existing state-of-the-art approaches. We believe there
are two possible reasons for this observation. First, it is possible that the algorithms (the
best-performing ones) approached the limit of what is possible to learn from a given net-
work’s structure. As each network is most likely not representative of the ground-truth
relations and potentially changes, a given network’s snapshot was perhaps not sufficient
for very good classification. The second reason could be that walk-based methods are
not expressive enough in terms of graph-topological features they can capture. Examples
of features that are possibly not directly captured via walks include convex subgraphs,
graphlets and community-like structures, which can play prominent roles in a given net-
work’s behaviour/overall structure.

We finally discuss the explainability of the final set of learners. Note that we adopted
the accepted benchmarking scheme that utilizes the logistic regression classifier (LR) for
learning to map from the obtained node representations to the designated target space.
Should LR be used to learn from the symbolic representation, the importance of individual
nodes could be inferred directly based on the final set of coefficients (weights). In any
other case, if more sophisticated learners are used, SHAP-based explanations are a viable
alternative, as demonstrated elsewhere (Mežnar et al., 2020).
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Abstract

Network node embedding is an active research subfield

of complex network analysis. This paper contributes a

novel approach to learning network node embeddings

and direct node classification using a node ranking

scheme, coupled with an autoencoder‐based neural net-

work architecture. The main advantages of the proposed

Deep Node Ranking (DNR) algorithm are competitive or

better classification performance, significantly higher

learning speed and lower space requirements when

compared to state‐of‐the‐art approaches on 15 real‐life
structural node classification benchmarks. It also enables

exploration of the relationship between symbolic and the

derived sub‐symbolic node representations, offering in-

sights into the learned node space structure. To avoid the

space complexity bottleneck in a direct node classification

setting, DNR, if needed, computes stationary distribu-

tions of personalized random walks from given nodes in

mini‐batches, scaling seamlessly to larger networks. The

scaling laws associated with DNR were also investigated

by considering 1,488 synthetic Erdős‐Rényi networks,

demonstrating its scalability to tens of millions of links.
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1 | INTRODUCTION

Numerous real‐world systems consisting of interconnected entities can be represented as complex
networks. Analysis of such networks provides insights into the underlying patterns applicable in
various practical scenarios, including the discovery of drug targets, modelling of disease outbreaks,
author profiling, modelling of transportation and the study of social dynamics.1

Modern machine learning approaches applied to complex networks offer intriguing op-
portunities for developing fast and accurate algorithms that can learn based on the structural
topology of a given network. Recently, approaches based on network node embedding2–4 be-
came prevalent for many common tasks, such as node classification, edge prediction and
unsupervised node clustering (community detection). Node embedding refers to the process of
learning node representations in a numeric vector format that captures the topological prop-
erties of network nodes.5 Embeddings are useful, as vector representations are suitable for
conventional machine learning algorithms capable of addressing numerous tasks, ranging from
classification and regression to clustering.

In this study, we propose a new network node embedding and classification algorithm
named Deep Node Ranking (DNR), which combines efficient node ranking with the nonlinear
approximation power of deep neural networks. The developed framework uses deep neural
networks to obtain node embeddings directly from stationary random walk distributions pro-
duced by random walkers with a restart from individual nodes of interest. Compared to existing
methods, DNR is one of the first neuro‐symbolic node representation learning algorithms,
which offers joint construction of low‐dimensional latent representations via symbolic
(inspectable) node features.

Even though there already exist embedding approaches based on higher‐order random
walks2,4 (i.e. random walkers with memory), the stationary distribution of first‐order random
walkers has not yet been fully explored in a deep learning setting. Widely used methods such as
node2vec and struc2vec perform well; however, they do not necessarily scale to larger networks
and often require extensive hyperparameter tuning for good performance. Further, these
methods mostly learn representations via rather shallow, single latent layer‐like optimization
schemes, potentially missing the abstraction learning power of deeper neural networks. Finally,
in massive networks, not all nodes need to be accounted for during representation learning—
information relevant to representing a given node can depend on its relation to a small number
of key nodes. We demonstrate that the neuro‐symbolic paradigm offers an elegant solution to
this problem via ranking‐based pivoting (selection of symbolic features before deep learning),
scaling to networks comprised of tens of millions of links and tens of thousands of nodes on
commodity hardware. This paper also offers ablation studies of DNR's scalability on more
than 1,400 synthetic networks of different sizes—this type of analysis is seldom considered in
related work.

We showcase the developed algorithm's capabilities on the challenging problems of node
classification and network visualization, highlighting its ability to learn and accurately predict
node labels at scale. Further, we compiled one of the largest collections of node classification
data sets and used it for empirical evaluation of the methods. Key contributions of this paper
are the following:

1. A fast network embedding algorithm named DNR based on global personalized node
ranks. It performs competitively and can be used for a multitude of downstream learning
tasks, including node classification, network visualization and similar. The proposed
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neuro‐symbolic algorithm is also faster than many state‐of‐the‐art embedding algorithms,
and scales better.

2. To our knowledge, the proposed node embedding algorithms are for the first time
benchmarked against contemporary approaches on such a scale (15 real data sets), as
commonly, the algorithms are tested only on a handful of data sets.

3. We conducted an extensive empirical evaluation on 1,488 synthetic networks to study the
effects of node pivoting, for which we hypothesized substantially improves scalability.

4. The DNR algorithm performs better than the competing algorithms when the labelled data
is scarce (small percentage of labelled nodes).

The remainder of this study is structured as follows. In Section 2, we shortly review the
related work on neuro‐symbolic representation learning, network node classification and net-
work node ranking. Section 3 presents the proposed DNR network node embedding algorithm
that combines deep neural networks with network node ranking. In Section 4, we describe the
experimental setting and different non‐synthetic complex networks from different domains used
in the evaluation, including the newly composed data sets. The experimental results are pre-
sented in Section 5. In Section 6 we conclude the work and present the plans for further work.

2 | BACKGROUND AND RELATED WORK

This section presents deep and neuro‐symbolic learning preliminaries that describe how
algorithms learn from complex networks and what is learned, followed by an overview of node
ranking algorithms relevant to this study.

2.1 | Neuro‐symbolic representation learning

We first discuss the branch of methods from the fields of deep learning and symbolic learning,
referred to as neuro‐symbolic representation learning. This paradigm of learning has been actively
studied for the past 20 years (see d'Avila Garcez and Lamb6); however, it resurged recently with
many works that demonstrated this paradigm's utility when compared to symbolic/sub‐symbolic‐
only learning. The interest in neuro‐symbolic learning, for example, spiked recently7 by the
development of a neuro‐symbolic system that partially operates via symbolic and partially via a sub‐
symbolic space, used to distil human‐understandable concepts from images. The recent work on
closing the loop between recognition (neural) and reasoning (symbolic)8 introduced a grammar
model as a symbolic bridge between neural perception and symbolic reasoning, alongside a top‐
down, human‐like induction procedure. This study demonstrated that such a combined approach
significantly outperforms the conventional reinforcement learning‐based baselines. The Microsoft
research division (MSR) recently explored the interplay between visual recognition and reasoning.9

They introduced a framework to isolate and evaluate the reasoning aspect of visual question
answering separately from its perception, followed by a calibration procedure that offers an ex-
ploration of the relation between reasoning and perception. Further, a neuro‐symbolic approach to
logical deduction was proposed as Neural Logic Machines.10 This architecture was shown to have
inductive logic learning capabilities, which was demonstrated on simple tasks such as sorting.
Finally, the two recent approaches from the field of inductive logic programming (ILP) explored the
interplay between the logical input structures and how they perform when associated with neural
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network‐based learning. The Deep Relational Machines11 were one of the first approaches to
showcase the utility of combining the two paradigms. Further, the recent work of Srinivasan et al.12

explored how Deep Relational Machines can be explained, emphasizing that being able to explain
what a given pattern discovery/recognition system does is highly relevant in, for example, the field
of biomedicine.

In the last years, links between sub‐symbolic learning and inductive logic programming
were also established. For example, the DeepProbLog system13 demonstrates how neural
predicates could be useful for constructing expressive (and short) programs for complex tasks
such as image‐based enumeration/computing. Furthermore, links between statistical learning
and the neuro‐symbolic paradigm were also studied.14 Finally, recent endeavours in this
direction also introduce the notion of stochasticity as a programming component.15

Albeit being actively explored, the notion of neuro‐symbolic representation learning was, to
our knowledge, not yet considered in the context of node representation learning, which is the
key focus of this study.

2.2 | Network node classification

Complex networks, representing real‐world phenomena such as financial markets, transportation,
biological interactions, or social dynamics1,16,17 often possess interesting properties such as scale
invariance, nontrivial partitioning, presence of hub nodes, weakly connected components, heavy‐
tailed node degree distributions, occurrence of communities, significant motif pattern counts, and
so on.18,19 Learning from complex networks considers different aspects of complex networks, for
example, network structure and node labels, which are used as inputs to machine learning algo-
rithms to address learning tasks such as link prediction, node classification, and similar.

In this paper we focus on node classification, that is, the problem of classifying nodes into
two or more distinct classes. This task is considered as semi‐supervised learning, given that
the whole network is used to obtain the representations of individual nodes, from which the
network node classification model is learned. Information propagation algorithms20 propagate
label information via nodes' neighbours until all nodes are labeled. These algorithms learn in
an end‐to‐end manner, meaning that no intermediary representation of a network is first
obtained and subsequently used for training a classifier.

Another class of node classification algorithms learns node labels from node embeddings,
that is, node representations in vector form.21 Here, the whole network is first transformed
into an information‐rich, compact low‐dimensional representation (a dense matrix). This
representation serves as an input to a plethora of more general machine learning approaches
that can be used for node classification.

We distinguish between two main branches of embedding‐based learning algorithms, dis-
cussed next: graph neural networks and random walk‐based learners. Graph neural networks
(GNNs), introduced in the recent years, attempt to incorporate a given network's adjacency
structure as a part of new neural network layers. Among first such approaches were the graph
convolutional networks (GCNs),22 their generalization with the attention mechanism,23 and
the more recent isomorphism‐based variants with provable properties.24 Treating the adjacency
structure as a neural network has also shown promising results.25 The key characteristic of this
branch of methods is their capability to account for node features by multiplication of the
normalized adjacency matrix as part of a special layer during learning from features. In con-
trast, if node features are not available, which is the case with the majority of freely available
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public data sets, more optimized methods focused on structure‐based learning are preferred. For
example, the LINE algorithm26 uses the network's eigendecomposition to learn a low dimen-
sional network representation, for example, a representation of the network's nodes in 128
dimensions instead of the dimension that matches the number of nodes. Approaches that use
random walks to sample the network include DeepWalk5 and its generalization node2vec.2 It
was recently proven that DeepWalk, node2vec, and LINE can be reformulated as implicit
matrix factorization.27 Furthermore, approaches such as struc2vec4 demonstrated how more
complex, multilayer structure can be compressed into node representations for better perfor-
mance. Despite many promising approaches developed, a recent extensive evaluation of net-
work embedding techniques28 suggests that node2vec2 remains one of the best embedding
approaches for the task of structural node classification.

2.3 | Network node ranking

Node ranking algorithms assess the relevance of a node in a network either globally (relative to
the whole network) or locally (relative to a subnetwork) by assigning a score (i.e. rank) to each
node in the network. In this study we only consider node ranking algorithms that compute a
local relevance score of a node based on its direct neighbourhood. The key such node ranking
algorithm is the Personalized PageRank (P‐PR) algorithm,29 sometimes referred to as random
walk with restart.30 Personalized PageRank uses random walks to calculate the relevance of
nodes in a network. It obtains the stationary distribution of a random walk that starts at a given
node. The P‐PR‐based approaches were used successfully to study cellular networks, social
phenomena,31 and many other real‐world networks.32 Efficient implementation of P‐PR algo-
rithms remains an active research field, for example, the recent bidirectional variation of the
P‐PR was introduced to speed up the node ranking process.33 The obtained stationary
distribution of a random walk can be used directly for network‐based learning tasks, as
demonstrated by the HINMINE methodology.34

2.4 | Combining node ranking and node representation learning

Exploring the ideas of augmenting learning with ranking was in the recent years explored in the
context of graph neural networks. For example, ranking was used to prioritize propagation35 and
to scale graph neural networks.36 A similar idea was exploited by Xu et al.,37 where a more
efficient propagation scheme was proposed by using node ranking. The proposed DNR algorithm
is novel with respect to these works, as it exploits both the fast, parallel personalized node rank
computation and the representation learning power of deep neural networks.

3 | DEEP NODE RANKING

This section presents the DNR algorithm for neuro‐symbolic structural network node em-
bedding and end‐to‐end node classification (overview shown in Figure 1). The name of the
algorithm, DNR, reflects the two main ideas considered: network node ranking step (symbolic)
and the subsequent deep neural network learning step (neural/sub‐symbolic). In the first step of
DNR, personalized node ranks are computed for each node, resulting in Personalized
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PageRank with shrinking (P‐PRS) vectors. These vectors are symbolic, as each dimension
corresponds to a given node. In the second step, the P‐PRS vectors are considered by a deep
neural network consisting of at least a single dense embedding layer of size equal to the
predefined embedding dimension. This embedding is sub‐symbolic, as one can no longer in-
terpret the meaning of individual (latent) dimensions. The third, output step, consists either of
an output layer with the number of its neurons equal to the number of target classes (top)
enabling direct classification of nodes or embeddings (bottom), which correspond to the em-
bedding layer from Step 2. The obtained embeddings can be used for downstream machine
learning tasks, such as classification, network visualization, and comparison.

The DNR algorithm, which takes as input a partially labeled complex network, consists of
three steps outlined below.

1. Network node ranking results in learned node representations, obtained by using the P‐PRS
algorithm. This step results in a matrix of P‐PRS vectors of dimension N .

2. Representation distillation. A neural network architecture compresses the prepared perso-
nalized PageRank vectors into compact representations (of dimension d).

3. Output phase. The output of the network can be either node classification, that is, direct
learning of node labels or a collection of low‐dimensional node representations.

3.1 | Node ranking with the personalized pagerank with shrinking
algorithm

We first build and upgrade the representation learning idea, introduced in previous work,34

where node representations are obtained via personalized node ranking. The following de-
scription represents a substantial theoretical extension of the original idea, which was further
parallelized for the first time in this study. Furthermore, this study introduces node pivoting,
which substantially speeds up the personalized ranking time. We consider a version of the
PPR38 algorithm to which we refer to as P‐PRS (algorithm 1). This variant of the widely known
PPR algorithm produces node representations (or P‐PRS vectors) by simulating random walks
for each node of the input network. Compared to the network adjacency matrix, P‐PRS vectors
contain traversal information for each node, reflecting its ranking based on a node's position
with respect to a given network's topology.

FIGURE 1 Deep Node Ranking algorithm. The symbolic part of the algorithm computes personalized PageRank
vectors (E), which are subsequently compressed with a neural network (NN) into either a lower dimensional
representation (En), or used for end‐to‐end classification (T ). Note that the intermediary symbolic P‐PRS based
representation remains interpretable (features are nodes) [Color figure can be viewed at wileyonlinelibrary.com]
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The P‐PRS algorithm consists of two main parts:

1. In the first part named the shrinking step (Lines 5–20 of Algorithm 1), in each iteration, the
walker spreads from nodes with nonzero PageRank values to their neighbours.

2. In the second part of the algorithm, named the P‐PRS computation step (Lines 23–38 of
Algorithm 1), P‐PRS vectors corresponding to individual network nodes are computed using
the power iteration method (Equation 1).

Shrinking step. In the shrinking step we take into account the following:

• If no path exists between node u (the starting node) and node i, the P‐PRS value assigned to
node i will be zero.

• The P‐PRS values for nodes reachable from u will be equal to P‐PRS values calculated for a
reduced networkGu, obtained from the original network by only accounting for the subset of
nodes reachable from u and connections between them (Lines 6–15 in Algorithm 1).

If the network is strongly connected, Gu will be equal to the original network, yielding no
change in performance compared to the original P‐PRS algorithm. However, if the resulting
networkGu is smaller, the calculation of P‐PRS values will be faster as they are calculated onGu
instead of on the whole network. In our implementation, we first estimate if network Gu
contains less than 50% (i.e., spread percentage) of nodes of the whole network (Lines 6–14 in
Algorithm 1). This is achieved by expanding all possible paths from node i and checking the
number of visited nodes in each step. If the number of visited nodes stops increasing after a
maximum of 15 steps, we know we have found a network Gu, and we count its nodes. If the
number of nodes is still increasing, we abort the calculation of Gu. We limit the maximum
number of steps because each step of computing Gu is computationally comparable to one step
of the power iteration used in the PageRank algorithm38 which converges in about 50 steps.
Therefore we can considerably reduce the computational load by limiting the number of steps
in the search for Gu. Next, in Lines 16–20, the P‐PRS algorithm shrinks the personalized rank
vectors based on nonzero values obtained as the result of the shrinking step.

P‐PRS computation step. In the second part of the algorithm (Lines 23–38), node ranks are
computed using the power iteration (Equation 1), whose output consists of P‐PRS vectors.
An example stationary distribution is shown in Figure 2 for the Cora network.

For each node u V∈ , a feature vector γu (with components γ i i N( ), 1u  ≤ ≤ ) is computed
by calculating the stationary distribution of a random walk, starting at node u. The stationary
distribution is approximated using power iteration, where the ith component γ i( )u

k( ) of
approximation γu

k( ) is computed in the k + 1th iteration as follows:

γ i α
γ j

d
α v i k( ) =

( )
+ (1 − ) ( ); = 1, 2, …u

k

j i

u
k

j
out u

( +1)
( )⋅ ⋅

→

(1)

The number of iterations k is increased until the visit distribution converges to the final
stationary distribution vector (P‐PRS value for node i). In the above equation, α is the damping
factor that corresponds to the probability that a random walk follows a randomly chosen
outgoing edge from the current node rather than restarting its walk. The summation index j

runs over all nodes of the network that have an outgoing connection towards i (denoted as
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j i→ in the sum), and dj
out is the out‐degree of node dj. Term v i( )u is the restart distribution

that corresponds to a vector of probabilities for a walker's return to the starting node u, that is,
v u( ) = 1u and v i( ) = 0u for i u≠ . This vector guarantees that the walker will jump back to the
starting node u in case of restart.*

In a single iteration (k k + 1→ ), all stationary distribution vector components
γ i i N( ), 1u  ≤ ≤ , are updated which result in the P‐PRS vector γu

k( +1). Increasing k thus leads to
the γu

k( ) eventually converging to the PageRank γu of a random walk starting from node u (see
Algorithm 1). Equation (1) is optimized by using the power iteration, which is especially
suitable for large sparse matrices, since it does not rely on spatially expensive matrix
factorization to obtain the eigenvalue estimates.†

The P‐PRS algorithm simulates a first‐order random walk in which no past information is
incorporated during obtaining the final stationary distribution. The time complexity of the
described P‐PRS algorithm with shrinking for k iterations is N E N k( ( + ) )      ⋅ for the whole
network, and E N k(( + ) )    ⋅ for a single node.

3.2 | Additional shrinking by rank‐based pivoting

We next present an additional step of shrinking explored as part of this study that offers scaling
to very large networks. Recall (Algorithm 1) that the PageRank iteration, if the network is
reduced, operates on the smaller adjacency matrix indexed via the set of nodes toReduce. This
step, as offered in the Algorithm 1, prunes out the nodes unreachable via traversal from the
current node. This step preserves the computed vectors' properties, however, it does not
guarantee asymptotically faster computation and is largely dependent on a given network's
structure. For DNR to scale to very large networks, a more lossy selection scheme can be
adopted. Recall the toReduce, the set of nodes that define the final set of iterations that yield a
given node's P‐PRS‐based representation. The idea discussed next defines the set toReduce
upfront; the size of this set is parametrized with an integer value p (number of pivot nodes).
Members of this set are obtained as follows. We hypothesize that two main types of pivot nodes
need to be preserved in toReduce; namely, the nodes local to the node of interest, but also
global nodes (via their relation to the node of interest). To address both concerns, we first

FIGURE 2 Stationary distribution, visualized (Cora). The origin node is the large yellow node pointed from.
The upper right part of the network contains nodes that a simulated walker (from the origin node) likely ends
up at (green‐colored nodes) [Color figure can be viewed at wileyonlinelibrary.com]
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define a given target node u's neighbours as uNe( ). Next, we define with argSortDes(PR(G))

the set of initial nodes, sorted by their PageRank values in descending order. Note that this step
takes only N N E( log + )      steps, and as such, scales to very large networks. The final ordered
set of toReduce is constructed by first including all nodes from the neighbourhood, followed by
the global nodes which are not already in the neighbourhood until the set is of cardinality p.
We can formally define the set of toReduceu pivot nodes as the first p nodes of the ordered
union of the node's neighbourhood and the top‐ranked nodes, that is,

{ }
T u u

T T T

= Ne( ) argSortDes(PR(G)) Ne( )

toReduce = , , …, .

u

u
u u

p
u

1 2

 ⧹

Here, Tu is the final ordered set (“∥” denotes concatenation), and Ti
u the ith element of that

set (obtained with respect to node u). This heuristic selection of pivot nodes implies local
neighbourhood for low values of p, and mixed neighbourhood for larger p values. The com-
puted (symbolic) node representations are used as inputs to the subsequent step of (neural)
representation compression.

The advantage of the deep neural network architecture discussed in the following section is
that it can learn incrementally, from small batches of calculated P‐PRS vectors. In contrast, the
related HINMINE approach34 requires that all P‐PRS vectors are calculated before learning,
which is due to HINMINE using the k‐nearest neighbours and Support Vector Machine‐based
classifiers. This incurs substantial space requirements as the P‐PRS vectors for the entire
network require N( )2  space. The DNR algorithm presented here uses a deep neural network
instead, which can take as small input batches of P‐PRS vectors. Therefore, only a small
percentage of vectors need to be computed before the second step of the algorithm (neural
network training) can begin. This results in improved space and time complexities of the
learning process.

3.3 | Node representation learning

In this section, we address the second step of DNR algorithm (outlined in Figure 1)—the in-
cremental compression of batches of personalized PageRank vectors via neural network learning.
We next discuss the key formalisms used to describe the two types of learning implemented as
part of DNR. We can formalize the key idea underlying DNR as the following mapping:

DNR : [0, 1] ,N N N N N d×

Adjacency matrix

P‐PRS
×

P‐PRS vectors

NN
×

Node embeddings

f

                 ⎯ →⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯

where d represents a latent dimension, N is the set of nodes and DNR the mapping approxi-
mated by the proposed approach. Note how the second space consists of visit probabilities with
respect to individual nodes. We will next focus on the two mapping methods displayed in the
scheme above; P‐PRS and NNf .
The first mapping (P‐PRS) takes as input the network adjacency matrix and, if executed for
each node, outputs the same dimensional matrix which contains richer, walk convergence‐
based information describing individual nodes (instead of only their neighbours). The initial
adjacency can be stored as a sparse data structure, requiring only E( )  space. However, the
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probability matrix is commonly dense (with the exception of nodes in different components,
e.g.), N( )2  space can already pose a problem to the method's utility. To address this concern,
we can consider batches of nodes (b) from the first mapping onwards, potentially at no point
requiring the full dense N( )2  matrix. The first mapping adheres to this implementation due
to the fact that with respect to individual nodes, P‐PRS vectors can be obtained independently.
We denote with P− PRS b a produced batch of such vectors. The union of all such batches
(forming the set B) can be used to construct the whole probability matrix, that is,

A[0, 1] = P− PRS ( ),N N
b B b

×    
∈ (2)

where A represents the adjacency matrix and b the concatenation alongside the first axis. Here,
we assume the batches preserve the order of input nodes. The same property holds for
transforming the b N×  ‐dimensional vectors into b d× dimensional ones with a trained
neural network NN f

b . Similarly to the Equation (2), the final matrix can be written as follows:

A= NN (P − PRS ( )).N d
b B f

b
b

×  
∈

The two equations above assume projection‐ready mapping methods (NN f and P‐PRS). The
probability vector computation P‐PRS indeed requires no additional training. However, this is not
the case for the neural network NN. Note that we denoted with NN f only the forward pass up to
the hidden layer with d outputs—the embedding. To describe the whole process, the missing point
remains the neural network training. Denoted with NN, we represent a single epoch (forward and
backward pass) of training the neural network (for all nodes). If we denote with ω the number of
epochs required to train either an autoencoder‐like, or an end‐to‐end architecture (d is in this case
the number of classes), DNR requires ω N E N( (NN + ( + ))      ⋅ operations. Furthermore, if the
whole probability matrix fits into memory, the product is decoupled, making the full probability
matrix computed only once, resulting in complexity ω N E N( NN + ( + ))      ⋅ . The initial
complexity which recomputes the rank vectors for each batch (b) has, compared to the pre-
computed rank matrix version lower space complexity, that is, b N N( ) << ( )2    ⋅ . This analysis
demonstrates that for larger networks, additional computation needs to be performed to maintain
the DNR's low space complexity. Finally, the node pivoting scheme similarly reduces the space
complexity of the rank matrix computation from N( )2  to N p( )  ⋅ (p is the number of pivot
nodes). Similarly, the time complexity reduces linearly (N p  → ) for the ranking step. Hence, the
pivoting scheme was hypothesized to improve both space and time‐related performances sub-
stantially. Having discussed the coupled and the decoupled (memoization) variants of DNR, it is
apparent that the low space version will take much longer to compute compared to the memory‐
intensive version. To fine‐tune this to a given hardware setting, DNR is able to estimate
the approximate RAM utilization by assuming 32‐bit floating point precision and takes as hy-
perparameter an integer number denoting the upper RAM bound. Should this bound be exceeded,
the memory‐efficient version is considered, and the faster one otherwise. In this study, we set this
bound to 16GB.

3.4 | DNRNet: A neural network architecture

In the previous section, a description of the core feature construction process based on per-
sonalized node ranking was described alongside its time and space complexities. We next
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discuss in more detail the considered neural network architecture and the training regime,
which is also a contribution of this study.

We are interested in compressing the P‐PRS‐based representation (Equation 2) we hence-
forth refer to as P. The goal of the designed neural network is to compress this representation
from dimension N  to d, in unsupervised manner. To achieve this compression, we im-
plemented an autoencoder‐like architecture with a forward pass defined as follows (note the
indexing):

( )( )
( )

( )
( )

( )

W P

W

W

W

W

W

l b

h l b

h h b

r l b

r r b
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The first part of the architecture projects and activates the input probabilities (P) to a lower
dimension (d). The ELU activation is defined as follows:

x
x x

α e x
ELU( ) =

; > 0,

( − 1); 0.x

 ⋅ ≤

The parameter α was set to 1 throughout this study. The inner part of the architecture consists
of multiple same‐dimensional (d) layers, which refine the representation. The final layer
projects the refined representation back to the initial dimension (N ). The key component is the
regularization (dropout) before the embedding layers, as it notably improved the architecture's
stability during design. The loss function used is the Smooth L1 Loss defined as follows:

x y β x y β

x y β
=

( − ) ; − < ,

− − ; otherwise.
n

n n n n

n n

1

2
2

1

2







 
 
⋅ ∕

⋅

Here, xn represents the prediction, yn the actual value and β a parameter (set to 1.0 in this study).
The loss is averaged on the batch level. The key novelty of the proposed neural network‐based
compression is not the architecture but the way forward passes are conducted. We impose an
additional constraint on the intermediary representations by implementing the forward
pass so that it includes multiplication in both ways across the hidden layers (note the
shared parameters—there is no weight duplication). This means that each forward pass in-
corporates a scenario where the first hidden layer is first, but also last in the forward pass (inverted
latent space); with this, we enforce reverse consistency, as all intermediary representations are used
to obtain the final embedding. This is possible due to the symmetric nature of the activation‐dense
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layers—inverting the order during the forward pass amplifies the effect of different hidden layers
with the same type of output. When inspecting the following scheme note that ⊕ denotes the
Hadamard summation (elementwise). Note also that such inverse projections during the same
forward pass are possible because the dimensionalities of the intermediary representations are all
the same (d). A schematic overview of this idea is shown in Figure 3.

Lastly, we discuss how the final representations (node embeddings) are obtained. Recall
that h h, …, k1 represent the outputs of the intermediary embedding layers. The final node
representations (E) are obtained by performing Hadamard summation across these inter-
mediary representations and dividing with the number of intermediary hidden outputs, that is,

E hk= .
i

i
−1 ⋅ ⊕

Schematic overview of this process is shown in Figure 4. The main reason such multispace
aggregation is conducted is that the information used for reconstructing the origin rank space is

FIGURE 3 The forward pass with the inclusion of reversed latent spaces [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 DNRNet's representation construction process. The final representation (E) is obtained as an
aggregate of all relevant intermediary layers
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likely distributed across all hidden layers, implying that by considering, for example, only the
last layer, valuable parts of the final representation could be lost. This idea was inspired by how
representations are obtained from contextual language models.39

4 | DATA SETS AND EXPERIMENTAL SETTING

This section first describes the data sets used, the experimental setting and the DNR im-
plementations tested together with their hyperparameters, followed by a description of the
compared baseline approaches.

4.1 | Data sets

We evaluated the proposed approach on 15 real‐world complex networks, three of them in-
troduced in this study, which is one of the largest collections of complex networks for the task
of node classification. The Homo Sapiens (proteome),40 POS tags,41 and Blogspot data sets42 are
used in the same form as in Grover and Leskovec.2

The Homo sapiens data set represents a subset of the human proteome, that is, a set of
interacting proteins. The subnetwork consists of all proteins for which biological states are
known.43 The goal is to predict protein function annotations. The POS data set represents part‐
of‐speech tags obtained from Wikipedia—a co‐occurrence network of words appearing in the
first million bytes of the Wikipedia dump.41 Thus, different POS tags are predicted. The
Blogspot data set represents a social network of bloggers (Blogspot website).42 The labels
represent bloggers' interests inferred through the metadata provided by the bloggers. The
CiteSeer citation network consists of scientific publications classified into one of the six classes
(categories).44 The Cora citation network consists of scientific publications classified into one of
seven classes (categories).44 The E‐commerce network is a heterogeneous network connecting
buyers with different products. As DNR and the compared baseline algorithms operate on
homogeneous networks, the E‐commerce network was transformed to a homogeneous network
before learning using a term frequency weighting scheme.34 The created edges represent
mutual purchases of two persons, that is, two customers are connected if they purchased an
item from the same item category. We refer the interested reader to Kralj et al.,34 for a detailed
description of the data set and its transformation to a homogeneous network. The two‐class
values being predicted correspond to the buyers' gender. The film, squirrel, chameleon, wis-
consin, texas, and cornell data sets are based on a recent study about geometric deep learning.45

Given that some of the data sets have features, and the purpose of this paper is structure‐only
learning, instead of neglecting the feature spaces, we converted them into weights between
nodes as follows. If the cardinality of the feature spaces of a given node was the same for all
nodes, we computed the weights as inverse Euclidean distances with one added to the de-
nominator (similarities). If the features were sets, we computed the weights as cardinalities of
the intersection sets between pairs of nodes.

One of the contributions of this study are also three novel node classification data sets,
which we constructed as follows. Two data sets are related to Bitcoin trades.46 The two net-
works correspond to transactions within two different platforms, namely Bitcoin OTC and
Bitcoin Alpha. Each edge in this network represents a transaction along with an integer score
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denoting trust in the range [−10, 10] (zero‐valued entries are not possible). We reformulate this
as a classification problem by collecting the trust values associated with individual nodes and
considering them as target classes. The resulting integer values can thus belong to one of the
20 possible classes. Note that more than a single class is possible for an individual node, as we
did not attempt to aggregate trust scores for individual nodes.

The ions data set is based on the recently introduced protein‐ion binding site similarity
network.47 The network was constructed by structural alignment using the ProBiS family of
algorithms48–50 where all known protein‐ion binding sites were considered. The obtained
network was pruned for structural redundancy as described in Škrlj et al.47 Each node corre-
sponds to one of 12 possible ions, and each weighted connection corresponds to the ion‐binding
site similarity between the two considered binding sites. Overall, this is to date one of the
largest collections of structure‐only node classification benchmark data sets.

The considered data sets are summarized in Table 1. In the table, CC denotes the number of
connected components. The clustering coefficient measures how nodes in a graph tend to
cluster together and is computed as the ratio between the number of closed triplets and the
number of all triplets. The network density is computed as the number of actual connections
divided by all possible connections. The mean degree corresponds to the average number of
connections of a node. Links to data sets, along with other material presented in this paper are
discussed in Section 7.

Furthermore, to test the DNR's scalability, we created 1488 Erdős‐Rényi networks in node
number range from 2500 to 35,000 in the increments of 1000 with different seeds and the
probability parameter set to 0.05 (sparser networks).

TABLE 1 Networks used in this study and their basic statistics

Name #Classes #Nodes #Edges Mean deg CC CCoef Density

cornell 4 183 280 3.06 1 0.17 0.0168

texas 4 183 295 3.22 1 0.20 0.0177

wisconsin 4 251 466 3.71 1 0.21 0.0149

ions 12 1969 16,092 16.35 326 0.53 0.0083

chameleon 4 2277 31,421 27.60 1 0.48 0.0121

cora 7 2708 5278 3.90 78 0.24 0.0014

citeseer 6 3327 4676 2.81 438 0.14 0.0008

Bitcoin_alpha 20 3783 14,124 7.47 5 0.18 0.0020

Homo_sapiens 50 3890 38,739 19.92 35 0.15 0.0051

POS 40 4777 92,517 38.73 1 0.54 0.0081

squirrel 4 5201 198,493 76.33 1 0.42 0.0147

Bitcoin 20 5881 21,492 7.31 4 0.18 0.0012

film 4 7600 14,056 3.70 1975 0.04 0.0005

Blogspot 39 10,312 333,983 64.78 1 0.46 0.0063

ecommerce_tf 2 29,999 178,608 11.91 8304 0.48 0.0004
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4.2 | Experimental setting

In this section, we describe the experimental setting used to evaluate the proposed method
against the existing baselines.

There are two main evaluation aspects relevant to this paper; investigating the quantitative
performance of embeddings on a given downstream task and computation time. To assess the
classification performance, we use the same evaluation scheme as in related work on node
classification.2,5,26,51 Here, as all methods for node embedding construction are unsupervised,
an embedding is first constructed and used as input to a logistic regression‐based classification
scheme suitable for multiclass and multilabel classification tasks.

We repeated the classification experiments five times and averaged the results to obtain
stable performance estimates with corresponding variabilities. The performance of trained
classifiers was evaluated by using micro and macro F1 scores, as these two measures are used in
the majority of related node classification studies.2,5,26,51

Due to many classifier comparisons, we utilize the Friedman test with Nemenyi post hoc
correction to compute the statistical significance of the differences. The results are visualized as
critical difference diagrams, where average ranks of individual algorithms according to scores
across all data set splits are presented.52 The selected algorithms are also compared via the
Bayesian hierarchical t‐test53 with a prior value of ρ = 0.8 and rope region value set to 2%.
All experiment repetitions were used for posterior sampling.

All experiments were conducted on a machine with 64 GB RAM, 6 core Intel(R) Core(TM)
i7‐6800K CPU @ 3.40GH with a Nvidia 1080 GTX GPU. As the maximum amount of RAM
available for all approaches was 64 GB, the run is marked as unsuccessful, should this amount
be exceeded. Further, we gave each algorithm at most 5 h for learning the embeddings and
subsequent classification. We selected these constraints as the networks used are of medium
size, and if a given method cannot work on these networks, it will not scale to larger networks;
for example, social networks with millions of nodes and tens of millions, or even billions of
edges, without substantial adaptation of the method. The unsuccessful runs were replaced with
a random embedding. Node ranking was implemented by using sparse matrices from the SciPy
module54 and the PyTorch library.55

4.3 | DNR implementations

We implemented the following variants of DNR, each emphasizing a different aspect of the
algorithm.

The DNR represents a default DNR implementation with no node pivoting, two hidden layers,
trained for at most 100 epochs with the stopping criterion of five epochs. The learning rate was set
to 0.01 and adaptively decreased throughout the training. The upper memory bound was set to
16GB, meaning that networks that would require more space would be computed incrementally,
on the fly, reducing the space requirements but increasing the computation time. The final
embedding dimension was for this and all other embedding‐based methods set to 128 (as also seen
in related work). The DNR4 architecture includes four hidden layers instead of two, and DNR8
eight hidden layers. The DNRPH is a DNR variant with the pivoting node number set to N 2 ∕ . The
DNRPQ to N 0.75  ⋅ and DNRPM to N  . All pivot number estimates were rounded to the nearest
integer. Finally, we implemented the symbolic‐only learner we refer to as DNR‐symbolic, which
outputs the matrix of personalized rank vectors (symbolic part of the full DNR).
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The P‐PRS algorithm parameters (constant throughout all experiments) were set as follows. ϵ,
the error bound, which specifies the end of an iteration, was set to 10−6. Max steps is the number
of maximum steps allowed during one iteration, was set to 100,000 steps. Damping factor is the
probability that a random walker continues at a given step and was set to 0.5. Spread step and is
the number of iteration steps allowed for the shrinking part and was set to 10. Spread percent is
the maximum percentage of the network to be explored during shrinking and was set to 50%.

4.4 | The baseline approaches

We tested the proposed approach against different baselines outlined below. The baselines were
selected as they are currently considered as either very weak (random) or strong (node2vec,
struc2vec). All approaches apart from label propagation are node embedding algorithms. For
label propagation, the same data splits were used for classification evaluation as for the logistic
regression when considering embedding‐based learning.

• node2vec.2 This algorithm maximizes the likelihood of preserving network neighbourhoods
of nodes. This is achieved via biased random walk sampling. This algorithm is considered a
strong baseline for structure‐only learning.

• struc2vec.4 This algorithm uses a hierarchy‐like structure to measure node similarity at dif-
ferent scales and constructs a multilayer graph to encode structural similarities and generate
structural context for nodes. It remains one of the key approaches capable of including
information on structural similarity.

• Label propagation (LP).56 Label propagation is a well‐known algorithm for node classifica-
tion. It operates by incrementally sending information from the neighbouring nodes to the
unlabeled nodes, eventually reaching an equilibrium and yielding the final set of predictions
for the masked part of the network.

• GraphWave57 is a method that represents each node's local network neighbourhood via a
low‐dimensional embedding by leveraging spectral graph wavelet diffusion patterns. This is
one of the more scalable methods considered in this study.‡

• Graph neural networks (GAT and GCN).23 We trained the models with the stopping criterion of
100 epochs for up to 1000 epochs. Due to unstable performance, we report the best performance
(epoch scoring best). Further, as GATs were not initially implemented for multilabel classifi-
cation, we extended them, so they minimize binary cross‐entropy and output a sigmoid‐activated
space with the same dimension as the number of targets (the multiclass version does not work
for such problems). As this branch of models operates with additional features assigned to nodes,
and the considered benchmark data sets do not possess such features, we used the identity
matrix of the adjacency matrix as the feature space, thus expecting suboptimal performance. This
Algorithm was shown to outperform other variants of graph neural networks such as the GCNs22

which were also considered under the same training regime. The PyTorch‐Geometric library was
used for the two GNN‐based baselines.58

• Random baseline which is a random float matrix [0, 1]N d× ∈ .

For all baselines, suggested default hyperparameter settings were used (either taken from
papers or from the codebases). Similarly, default configurations of DNR variants were used to
ensure fair comparisons (no additional hyperparameter optimization was conducted across
data sets). Thus, we evaluated out‐of‐the‐box performance – additional hyperparameter
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tunning could significantly increase the training time and render some of the methods
inapplicable even at the mid‐scale networks considered in this study.

5 | RESULTS

In this section, we present the empirical results and discuss their qualitative as well as
quantitative aspects. We first present the results for the node classification task, followed by a
qualitative evaluation of the proposed DNR algorithm for the task of node visualization.

5.1 | Classification performance

We first present the results of classification experiments. In Figure 5 the reader can observe the
critical difference plots of micro and macro F1 scores aggregated across all data sets. It can
be observed that similar algorithms dominate with respect to both scores; node2vec, DNR,

(A)

(B)

FIGURE 5 Overview of classification performance—critical difference diagrams. (A) Critical differences—
micro‐F1 and (B) critical differences—macro‐F1 [Color figure can be viewed at wileyonlinelibrary.com]
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DNR‐symbolic, and label propagation are amongst the best‐performing ones. The differences be-
tween the best performers are insignificant, as demonstrated via statistical analysis (CD dia-
grams).52 Next, GraphWave and DNRPM underperform w.r.t. macro‐F1 (Figure 6). This
observation could be due to multiple factors, ranging from GraphWave's hyperparameter sensi-
tivity, poor performance on small networks (too much information is lost) or similar. Among the
best performing algorithms are either the default DNR variant with two hidden layers, DNR‐
symbolic or node2vec. The DNR variant implementing a deeper neural network (DNR8) performed
worse than the more shallow versions, indicating overfitting (highly likely especially for smaller
networks). The DNRPM variant, which uses a substantially reduced version of the adjacency
matrix for rank computation, performed better than random when considering micro‐F1. However,
it was overall among the worst performing variants of DNR. The DNRPQ variant performed better,
indicating that node pruning can have a substantial impact on the final representation—too low
values of p indicate detrimental effects on the final performance. The end‐to‐end variant of DNR
performed competitively w.r.t. micro‐F1; however, it performed worse when considering macro‐F1.
This result indicates over‐fitting, but also the method's potential sensitivity to classification of nodes
in smaller networks (see the appendix materials for detailed scores on smaller networks). Note that
the proposed end‐to‐end DNR out‐performed the two GNN‐based baselines. Current results in-
dicate that structure‐only learning is harder for GCN and GAT‐based models—either due to higher
possibility of overfitting or due to space complexity which arises if considering the attention‐based

(A) (B)

FIGURE 6 Micro‐ and macro‐F1 performance distributions for considered algorithms. (A) Box plots—
micro‐F1 and (B) box plots—macro‐F1 [Color figure can be viewed at wileyonlinelibrary.com]
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architecture. Current results indicate that the neural network in neuro‐symbolic DNR variants, as
expected, acts as a compression layer, losing some of the expressive power of the origin rank space
at the cost of being more efficient space‐wise. Bayesian comparison of default DNR with node2vec
and struc2vec confirms the results obtained via frequentist analysis and is shown in Figure 7. The
numbers denote the posterior probability estimates (higher is better). Note the insignificant dif-
ference between DNR and node2vec (most of the density is in the rope region), but the significant
difference (as also confirmed via frequentist analysis) between DNR and struc2vec. Overall, the
Bayesian analysis confirms the findings supported by the classical analysis.

5.2 | Execution time analysis

Overview of the execution times is shown in Figure 8. We present overall execution times
followed by the per‐data set execution times.

It can be observed that the fastest DNR variants perform up to two orders of magnitude
faster than, for example, struc2vec and node2vec. Given that, for example, DNR offers very
similar performance, this result serves as a strong case for using DNR‐based embeddings,
especially on larger networks. Further, note that the execution time includes both embedding
construction and classification, rendering the random baseline slower than label propagation
(logistic regression is the bottleneck in this case).

5.3 | Number of pivot nodes and scalability

We finally present the results on synthetic Erdős‐Rényi networks, where the effect of the number of
pivot nodes on the execution time was studied. The main result is shown in Figure 9. The result
indicates that the number of pivot nodes can reduce the execution time by more than an order of
magnitude—with no pivoting nodes, DNR's execution time increases observably faster. More de-
tailed results displaying the dependence with the node and link numbers are shown in Figure 9A,B.
The complexity, if considering pivoting, remains linear with respect to the number of nodes
(constant d p= instead of d N=   in the symbolic step of DNR). Without pivoting, the complexity
increases substantially, which is problematic for larger networks. Consistent improvement with

(A) (B)

FIGURE 7 Bayesian comparison of selected algorithm pairs. (A) DNR and node2vec and (B) DNR and
struc2vec [Color figure can be viewed at wileyonlinelibrary.com]

20 | ŠKRLJ ET AL.



respect to the number of pivot nodes was observed—the lower the pivot number, the faster the
overall process. This observation confirms our theoretical analysis which indicated that substantial
improvements could be observed, especially for larger networks. The results indicate that for larger
networks comprised of tens of millions of edges, the pivoting‐based solutions could offer more than
an order of magnitude faster embedding construction. For completion, tabular results summarised
in this section are available as Appendix A.

(A) (B)

FIGURE 8 Execution time analysis. The proposed DNR algorithm performs substantially faster than
struc2vec and node2vec. (A) Execution time and (B) time per data set [Color figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 9 Execution time with respect to the number of pivot nodes. Smaller number of pivot nodes
induces substantially faster execution times. (A) Time w.r.t. N  and (B) Time w.r.t. E  [Color figure can be
viewed at wileyonlinelibrary.com]

5.4 | Performance in a low‐data regime

One of the main limitations of many existing node classification algorithms is their per-
formance when only a small portion of a given network is labelled. We next present the
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DNR's behaviour when considering only 10% of the labelled data in Figure 10. The ex-
periment indicates that two of the DNR variants perform well when only a relatively few
labelled data are available. This result potentially indicates the link between using a sym-
bolic (global) rank space instead of using the more local, sampled walks, indicating that
neuro‐symbolic node representation learning has exciting potential for low‐resource
learning. Note that for larger data sets, this amount of labelled nodes can already be at
the limit of what can be learned on a given commodity hardware setup, rendering DNR
potentially relevant for larger data sets.

5.5 | Network visualization

We next demonstrate how DNR's results can be compressed to two dimensions with UMAP59 to
visualize a given network. By considering 10 nearest neighbours with the minimum distance
parameter set to 0.5, we obtained the visualization (colored by node labels) as shown in
Figure 11.

The visualization shows distinct clustering patterns which to some extent also correspond to
the label space (colors). Note that this representation was obtained in unsupervised manner,
hence some variability with respect to label‐position assignment is expected. A prominent use
for this type of visualizations is when inspection of potentially interesting, structurally similar
units is investigated via an overlay of additional information. This visualization was, alongside
the embedding to 2D, computed in a matter of seconds.

5.6 | Comparing symbolic and sub‐symbolic representations

The proposed DNR's neuro‐symbolic capabilities render it open for exploration of all inter-
mediary representations and the relations between them. For the Cora network, we first com-
puted node representations with DNR‐symbolic (d N=  ) and DNR (d = 128) and investigated
the distances between representations of individual nodes. For each node representation, we
computed the cosine distance and normalized all values in the matrix by subtracting the

FIGURE 10 Micro‐F1 performance when the labelled data is scarce (10%) [Color figure can be viewed at
wileyonlinelibrary.com]
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minimum and dividing with the difference between the maximum and minimum to ensure a
more fair comparison with respect to the distance bias for individual representations. The result
is shown in Figure 12. We observe the following. The symbolic representation comparison matrix
(a) mostly consists of entries indicating very high distances between a given embedding pair
(intense red color ⇒ higher distance). This observation indicates that representations in high‐
dimensional spaces (in this case d N=  ) are far apart. The exceptions (similar nodes) are in the
upper left part (blue). On the contrary, many more nodes are closer if we consider the more
compact node representations obtained via the DNR algorithm (b). This result indicates that
the neural network compresses the space (as expected), yielding fewer node representations that
are distant from the others (red strips in the matrix). The final representation (c) represents the
difference between the representations—blue color in this case represents similar representa-
tions. The reader can observe that distant node representations obtained by DNR are relatively
close to the ones obtained by DNR‐symbolic (blue horizontal and vertical strips). The red squares
in the upper left part, however, indicate node similarities that were not amplified by DNR‐
symbolic, but with DNR. This type of ablation is possible only for neuro‐symbolic representation
learners, and is to our knowledge one of the first of its kind for the considered task.

6 | DISCUSSION AND CONCLUSIONS

In this study, we presented DNR, a methodology for scalable neuro‐symbolic node embedding
and direct end‐to‐end classification based on a given network's structure. In extensive empirical
evaluation, we demonstrated DNR's competitive performance and superior scalability on
multiple real‐life and synthetic benchmark problems.

The proposed methodology offers one of the first neuro‐symbolic node representation
learners—the initial node features that are interpretable are compressed with a novel neural
network architecture (DNRNet). Albeit the resulting representations are latent and non-
interpretable to a human, the input to obtaining such a representation can be manipulated in a
symbolic manner (e.g., effects of node removal), offering a simple‐to‐use testbed for in-
vestigating the effects of different structural interventions on a given network. Extensive em-
pirical evaluation indicates that symbolic features are highly competitive. However, they could
be impractical to compute, rendering the proposed neuro‐symbolic variant of DNR highly
useful for many contemporary network‐based learning tasks. Furthermore, DNRNet performs

FIGURE 11 Embedding visualization with overlaid labels (Cora). The random embedding is added as a
reference of a non‐structure‐preserving projection visualization. (A) DNR; (B) DNR (8 hidden); and (C) Random
embedding [Color figure can be viewed at wileyonlinelibrary.com]
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well in low‐data regimes, which was an interesting finding—we expected that the symbolic‐
only variant would dominate in such settings.

We demonstrated that neuro‐symbolic approaches could scale better than purely
sub‐symbolic ones (e.g., node2vec or struc2vec), indicating that not all interpretability is ne-
cessarily sacrificed for good performance. We demonstrated that out‐of‐the‐box DNR im-
plementation performs competitively and in terms of micro‐F1, better than state‐of‐the‐art, and
further, it offers at least an order of magnitude speedup. By introducing the concept of node
pivoting, we demonstrate that DNR can scale to very large networks with tens of millions of
links—a scale where many other considered methods do not operate well without specialized
hardware. We confirmed the findings related to algorithms' performance with frequentist and
Bayesian analysis. As Bayesian analysis was previously not conducted in such evaluation set-
tings, we believe further work which will investigate the suitability (and scalability) of this
branch of tests for network‐related tasks is an interesting research direction.

In terms of further work related to the proposed algorithm, we see the following main direc-
tions. First, the effects of studying different pivoting schemes could offer better trade‐offs between
efficiency and performance. Next, by considering GPU‐based implementations of the power
iteration considered for computing the stationary random walk distributions, we believe additional
speedups could be observed. Neuro‐symbolic node ranking offers the direct study of the effects
of perturbing specific, for example, nodes, and observing the properties of the resulting
low‐dimensional representations. Such structural interventions potentially offer a more native ex-
planation mechanism compared to post‐hoc approximation schemes considered in contemporary
machine learning. Finally, we plan to explore the scalability of DNR across multiple machines by
sharing the input network and performing the rankings only locally. Such implementation could
scale to much larger networks than considered by current state‐of‐the‐art approaches.

Finally, this study demonstrates that deeper neural networks are suitable models for
structure‐only learning, albeit, as shown, in a neuro‐symbolic setting. Current results indicate
that deeper neural networks are possible representation learners for the considered task, and
potentially offer superior performance (unless overfitting takes place). A promising direction
that would offer additional improvements is also the automatic development of neural network
architectures via neuroevolution.

(A) (B) (C)

FIGURE 12 Representation space comparison. Each cell in (A) and (B) represents cosine distance between a
given embedding pair. Cells in (C) represent the absolute difference values. The rows and columns correspond to the
same nodes for all three sub‐figures. Red represents high values and blue low ones. (A) DNR‐symbolic (d N=  );
(B) DNR (d = 128); (C) abs(DNR ‐ symbolic − DNR) [Color figure can be viewed at wileyonlinelibrary.com]
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APPENDIX A: TABULAR RESULTS WITH DEVIATIONS
In this section, we present the performance results for micro‐ and macro‐F1 scores. The first
table represents the micro‐F1 scores, followed by a table showing macro‐F1 scores. The runs
marked with NaN reached the time‐out point (did not finish).
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Chapter 4

Neuro-symbolic Representation
Evolution from Text Data

Follow that will and that way
which experience confirms to be your own.

Carl Gustav Jung

In this chapter, we discuss the design and development of a neuro-symbolic method aimed
at automating humans’ participation at competitions related to the domain of text clas-
sification. The key novelty introduced in this chapter concerns a developed approach to
automatic representation evolution and subsequent learning. The developed approach is
one of the first approaches offering autoML capabilities on an off-the-shelf laptop, while
performing better than many existing baseline approaches that are commonly adopted in
practice.

4.1 Learning from Texts

The central problem addressed with the developed approach concerns representation learn-
ing from texts. As this type of input cannot be directly considered by fast learners, such
as regularized logistic regression, an initial step is required, which produces a collection
of representations of a given document. This set of representations can be re-weighted
and combined to address a particular task, which is many times manually conducted by
a human developer. The goal of this work was to automate this part, using an evolution
strategy-based approach which learns to emphasize particular parts of the feature space in
an interactive manner.

(    ,   )
Text input space Tabular output space

Figure 4.1: Schematic overview of text classification.
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4.2 Automating Neuro-symbolic Representation Learning

The key contribution discussed next addresses the problem of automated neuro-symbolic
representation evolution. The rationale for developing the presented autoBOT method re-
volves around the assumption that non-structured data sources, such as documents (texts),
can be represented differently, entailing a given instance’s properties at different seman-
tic/lexical levels. As identifying the suitable level can be a cumbersome (manually solved)
task, we aimed to automate this step entirely by performing an evolution-based search
through the space of both representations and learners for a given classification task. The
paper relevant to this section is the following one:

Škrlj, B., Martinc, M., Lavrač, N., & Pollak, S. (2021). autoBOT: evolving neuro-
symbolic representations for explainable low resource text classification. Machine
Learning, 989–1028. https://doi.org/10.1007/s10994-021-05968-x

4.2.1 Key Contributions

We next present the key contributions of the conducted work.

1. We developed autoBOT, an automated text classifier. Its performance was demon-
strated on multiple real data sets against strong baselines such as neural language
models and other autoML approaches.

2. By exploring how sparse text representations can be integrated into the final joint
representation efficiently, the developed method scales to hundreds of thousands of
features on an off-the-shelf laptop.

3. We demonstrated that the representations relevant for a given task highly depend on
the task type itself, indicating that an adaptive approach such as autoBOT captures
task-specific intricacies potentially ignored by conventional approaches, which do not
perform task-specific representation tuning.

4. The proposed autoBOT does not reach neural language model-level performance for
all considered tasks, however remains interpretable both at the level of individual
features and at the level of feature types (indicating what feature type is the most
relevant). Furthermore, the final models include orders of magnitude fewer parame-
ters than state-of-the-art, offering solutions that do not require specialized hardware
for competitive performance.

5. The developed autoBOT is presented as a simple-to-use Python library, requiring
only a few lines of code to test the default version, making it one of the simplest-to-
use autoML systems for text.

4.2.2 Addressed Hypotheses and Discussion

We next discuss the two main hypotheses addressed with the work presented in this chap-
ter. The first hypothesis concerns neuro-symbolic model interpretability (Hypothesis 1,
Section 1.3), and the second model scalability (Hypothesis 4, Section 1.3). As demon-
strated in the presented paper, maintaining high-performant and interpretable classifiers is
a non-trivial task. Current experiments indicate that automatically obtained models can
perform similarly to contemporary large neural language models; however, the obtained
models remain interpretable as their coefficients correspond directly to separate features.
Furthermore, feature type-level importances are obtained as a direct result of evolution.

https://doi.org/10.1007/s10994-021-05968-x
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By being able to pinpoint what are the key feature types/features, even though parts of the
feature space are sub-symbolic, autoBOT demonstrates that the neuro-symbolic paradigm
is a potentially promising solution to better understand the key patterns identified for
solving a given task. It can happen, however, that the sub-symbolic features are the most
important ones. In this case, autoBOT is as interpretable as any sub-symbolic model – it
can be hard to pinpoint what impacts such models without post-hoc analysis.

One of the key contributions of this work is the autoBOT’s capability to adapt to
a given task automatically. This part of the evaluation partially also addresses the hy-
pothesis concerning the better understanding of the two paradigms when jointly used for
learning. We observed that for different tasks, different feature subspaces emerged as the
most relevant. Furthermore, as the feature types remain the same across all considered
text classification tasks, we could directly compare these solutions (i.e. type-related im-
portances), discovering that sets of tasks share the same parts of the feature space in the
final solution.

In terms of predictive performance (Hypothesis 3, Section 1.3) we observed the follow-
ing. We hypothesized that the neuro-symbolic system would perform better than its sym-
bolic counterparts, however, worse when compared to the contemporary language models
such as RoBERTa and BERT. Based on current results, we can confirm the hypothesis as,
indeed, autoBOT (neuro-symbolic) performed better than its symbolic-only counterparts.
Further, the large language models performed consistently better in terms of classification
performance. We attribute this performance difference to the differences in model sizes
– the neuro-symbolic version of autoBOT includes at most tens of thousands of parame-
ters (≈ 104), whereas the language models’ parameter count exceeds 108. These multiple
orders of magnitude larger models appear to capture more potentially relevant/more so-
phisticated, sub-word patterns, which can offer superior performance. Interestingly, how-
ever, we observed that variants of autoBOT with, e.g., 20,000 features performed better
than word-only TF-IDF-based models with more features. This observation indicates that
different feature types, when correctly emphasized, potentially offer task-specific, efficient
solutions for a given text classification problem. Another observation related to classifica-
tion performance is that when a larger number of classes are present, contextual language
models do not necessarily offer competitive performance out-of-the-box. This observation
indicates that additional fine tuning of these models could have been appropriate, however,
it was out of the scope of this study.

Finally, one of the key features of autoBOT is its low-resource mode of operation. The
tool was designed to not require any specialized hardware, require as little human input as
possible, and perform better than ad-hoc baselines even on an off-the-shelf laptop. One of
the key design patterns which led us to the current implementation is the adoption of sparse
matrix algebra, both for representing the feature space and for training the classifiers. By
being able to maintain only the sparse structure of the space (and weights) through the
evolution, autoBOT requires relatively low memory. Furthermore, the final models are
also low-resource: they commonly consist of thousands (or at most tens of thousands of
parameters).
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Abstract
Learning from texts has been widely adopted throughout industry and science. While state-
of-the-art neural language models have shown very promising results for text classifica-
tion, they are expensive to (pre-)train, require large amounts of data and tuning of hun-
dreds of millions or more parameters. This paper explores how automatically evolved text 
representations can serve as a basis for explainable, low-resource branch of models with 
competitive performance that are subject to automated hyperparameter tuning. We pre-
sent autoBOT (automatic Bags-Of-Tokens), an autoML approach suitable for low resource 
learning scenarios, where both the hardware and the amount of data required for training 
are limited. The proposed approach consists of an evolutionary algorithm that jointly opti-
mizes various sparse representations of a given text (including word, subword, POS tag, 
keyword-based, knowledge graph-based and relational features) and two types of docu-
ment embeddings (non-sparse representations). The key idea of autoBOT is that, instead 
of evolving at the learner level, evolution is conducted at the representation level. The pro-
posed method offers competitive classification performance on fourteen real-world classifi-
cation tasks when compared against a competitive autoML approach that evolves ensemble 
models, as well as state-of-the-art neural language models such as BERT and RoBERTa. 
Moreover, the approach is explainable, as the importance of the parts of the input space is 
part of the final solution yielded by the proposed optimization procedure, offering potential 
for meta-transfer learning.
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1 Introduction

Contemporary machine learning approaches successfully solve many natural language 
processing tasks, spanning from question answering, disambiguation, duplicate detection 
to classification. The emerging paradigm that successfully solves these tasks are trans-
former-based language models, i.e. deep neural networks that are first pre-trained on large 
corpora and only fine-tuned for a specific task (Devlin et al. 2019; Jing and Xu 2019).

Even though such (black-box) models offer state-of-the-art performance, the mod-
els are not directly explainable (Rudin 2019). Further, specialized hardware, such as 
Tensor Processing Units (TPUs) or GPGPUs (General Purpose Graphical Processing 
Units) are needed for their training and evaluation. Neural language models (such as 
the transformer architectures) inherently operate with dense vector spaces (embed-
dings), leveraging the multiparallelism of the modern hardware (Jouppi et  al.  2017). 
This work focuses on the other part of the model spectrum: we investigated whether dif-
ferent sparse representations of text could be evolved in a low-resource manner, offering 
similar performance as dense representations, especially in settings where the available 
data is scarce. The main contributions of this work are summarized below.

– We propose autoBOT (automatic Bags-Of-Tokens), a system capable of efficient, 
simultaneous learning from multiple representations of a given document set.

– The system’s hyperparameters are optimized  by using an evolutionary algorithm, 
adopted for exploration of high-dimensional sparse vector spaces—evolution gov-
erns the representation used for learning by a collection of linear models trained 
with stochastic gradient descent.

– The dimension of the evolved space is estimated based on the expected sparsity of 
the representation.

– The performance of autoBOT can be competitive to pre-trained transformer mod-
els and other state-of-the-art learners, as demonstrated on fourteen text classifica-
tion data sets, while using less computational resources and requiring zero manual 
hyperparameter tuning for achieving reasonable out-of-the-box performance (given 
enough time).

– autoBOT offers visualization of the similarity of parts of the feature space across 
multiple data sets. Such visualizations offer fast overview into key parts of the fea-
ture space relevant for a given data set.

– We explore three novel feature types, namely features derived from document key-
words, relational features that represent pairs of tokens at a given distance and first-
order features constructed based on a collection of 34,074,917 grounded relations 
from the ConceptNet (Speer et al. 2017) knowledge graph.

– The proposed system is especially suited for settings, where hardware as well as the 
amount of data are limited.

The remainder of this work is structured as follows. In Section 2 we discuss the related 
work that influenced the development of autoBOT. Section  3 presents the proposed 
autoBOT system for learning from evolvable text representations, including the issue 
of representing texts, the formulation of the autoBOT learning task, as well as the issue 
of its explainability. Section 4 presents the conducted experiments, and in Section 5 we 
discuss the obtained results. Section  6 presents the conclusions and plans for further 
work.
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2  Related work

In this section we discuss the related approaches that inspired the development of the pro-
posed autoBOT system. We begin by discussing the notion of text representation learning 
(Section 2.1), followed by text classification (Section 2.2) and evolutionary computation 
(Section 2.3). Finally, we discuss the state-of-the-art autoML systems in Section 2.4.

2.1  Text representation learning

Machine learning approaches that learn from text usually consist of two main steps: pre-
processing the text into a suitable representation, e.g., the Bag-of-words (BoW) format, 
followed by subsequent learning. The main drawback of such approaches is the require-
ment of the user’s specification of how the text should be represented, at what granular-
ity etc. Such semi-automated feature construction can be time-demanding and requires 
large amounts of development time, however, the subsequent learning can be very efficient 
(Mirończuk and Protasiewicz 2018).

Recent developments in the field of representation learning offer many insights into the 
importance of having a suitable representation for the given problem. Transformer-based 
language models, such as BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019), XLNet 
(Yang et  al. 2019), learn multi-faceted representations of the provided input sequences, 
where multiple computational layers are used to distill the obtained representation into a 
form used for more general problem solving. Similar insights also emerged in the fields 
of graph (Kipf and Welling 2017) and image (Szegedy et al. 2017) representation learn-
ing. The state-of-the-art transformer language models also use subword information due to 
byte-pair encoded inputs (Sennrich et al. 2016), offering even better performance, albeit at 
the cost of explainability.

Representations learnt by deep neural network models are dense; for example, vectors 
of dimension < 1000 are used to capture relations between input tokens. On the other hand, 
many shared tasks, especially the ones where the number of input instances is in the order 
of hundreds, yield themselves to more conventional, even linear models that operate on 
sparse input spaces (Martinc et al. 2017). The main caveat of such approaches is the inclu-
sion of the human factor: humans need to carefully fine-tune many parameters without well 
defined properties or predictable behavior. For example, it is not clear how the word-based 
features should be weighted when compared to character-based ones, how the classifier 
should be regularized etc.

Further, the collections of features are also arbitrary as there is no general theoretical 
background as to when to apply what type of e.g., n-grams or other features (e.g., emoji 
counts etc.). Hence, such systems are commonly fine-tuned for a particular domain, yet 
need non-negligible human effort to perform adequately well for the same task in a differ-
ent domain. For example, a system can perform well when classifying sentiment, however 
it fails at the prediction of side effects based on the patient reports. Finally, exhaustive 
search of the hyperparameter space is in most cases computationally intractable.

2.2  Text classification

We continue the discussion by considering different machine learning approaches 
employed for the task of text classification, how they relate to this paper and what are their 
potential limitations. Text classification explores how representations of a given collection 
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of documents can be associated with a given target space, such as for example a collec-
tion of genres. Broadly, text classification approaches can be split into two main groups, 
namely symbolic and sub-symbolic classifiers. The canonical example of symbolic learn-
ers are linear classifiers such as the logistic regression or linear Support Vector Machines, 
which learn to classify e.g., TF-IDF encoded documents (Manning et  al. 2008; Kowsari 
et al. 2019; Agarwal and Mittal 2014). In recent years, however, the paradigm of neural 
language models has also offered state-of-the-art classifiers across multiple domains (Jing 
and Xu 2019). Some of the currently best-performing classifiers are commonly fine-tuned 
language models, pre-trained on large textual corpora (Belinkov and Glass 2019). Albeit 
extensive pre-training is currently inaccessible to majority of researchers, fine-tuning 
can be conducted with adequate off-the-shelf GPUs, and is actively employed on many 
e.g., shared tasks, ranging from classification of social media-related texts to classifica-
tion of biomedical documents (Moradi et  al. 2020). Compared to discussed approaches, 
which derive a representation from raw text, approaches that are able to exploit background 
knowledge alongside raw text are also of increasing interest and serve as one of the motiva-
tions for the proposed autoBOT. Background knowledge can be considered in many forms. 
Ontologies and taxonomies represent formally defined, hierarchical structures with human-
defined concepts and relations between them. Some canonical examples of such knowl-
edge sources are for example the WordNet (Fellbaum 2012) and similar taxonomies. On 
the other hand, knowledge graphs are the structures that can be defined semi-automatically, 
and are commonly comprised of millions of subject-predicate-object triplets. Examples of 
freely available knowledge graphs include the ConceptNet (Speer et al. 2017) used in this 
work.

2.3  Evolutionary computation and learning

We discuss in more detail the applications and the underpinnings of evolutionary computa-
tion, and more specifically genetic algorithms, as this metaheuristic optimization idea was 
also used to guide representation learning conducted by autoBOT. Genetic algorithms have 
been considered for both combinatorial and continuous optimization problems in the sec-
ond part of the 20th century (Mitchell 1998). Inspired by (a very basic) notion of biological 
evolution, these optimization algorithms often gradually evolve a solution via the process 
of intermediary evaluation, crossover, mutation and selection.

More recently, genetic algorithms (GA) evidence widespread use throughout industrial 
and academic projects, where GAs were successfully applied to tackle otherwise analyti-
cally intractable problems (Chambers 2000). Even though genetic and other algorithms for 
hard optimization problems were applied to many real-life problems, their use for improv-
ing machine learning approaches has only recently become mainstream (see Stanley et al. 
(2019) for an exhaustive overview); neuroevolution was already considered in 1960s, 
however it was computationally infeasible at the time. Neuroevolution performs well for 
traditional benchmark tasks, such as the knapsack problems (Denysiuk et  al. 2019), but 
also real-life robotics problems (Zimmer and Doncieux 2017). Evolution-based approaches 
were also successfully adopted for the task of scientific workflow discovery (Pilat et  al. 
2016), offering symbolic descriptions of data mining workflows, directly applicable in 
practice. Neuroevolution Stanley et  al. (2019) approaches have shown promising results 
in the domain of computer vision, where more efficient neural networks were evolved with 
minimal performance trade-offs (Zoph et al. 2018).
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One of the early approaches on how genetic algorithms can be adopted for the feature 
selection purposes was proposed in Vafaie and De Jong (1998). The authors developed 
a system that employs a genetic algorithm to select feature subspaces useful for a deci-
sion tree classifier. They successfully showcased the performance of their approach on an 
eye-detection problem. The proposed autoBOT builds on a similar idea, i.e. that feature 
subspaces can be evolved prior to learning, however, extends the idea to multiple differ-
ent instance (documents instead of images) representations, from symbolic to non-sym-
bolic. Further, autoBOT also explores novel representation types such as e.g., knowledge-
graph based features, capable of exploiting the knowledge beyond the textual training data 
considered.

More recent works explore how task scheduling can be tackled by employing a combi-
nation of evolution and learning (Dorronsoro and Pinel 2017). Similarly convincing results 
were also recently demonstrated for the task of material discovery (Jennings et al. 2019), 
where machine learning algorithms were used to guide the evolution, offering up to 50x 
speedup compared to naïve exhaustive search.

2.4  Advancements in autoML systems

Automatic learning of machine learning pipelines has been thoroughly explored for tabular 
data in tools such as AutoWEKA (Thornton et  al. 2013) and auto-sklearn (Feurer et  al. 
2019). The key idea is that parts of the learning procedure are modularized and automati-
cally explored. For example, AutoWEKA and auto-sklearn employ Bayesian optimization 
(Snoek et al. 2012) for scalable and efficient exploration of such hyperparameter spaces. 
These approaches assume a tabular input, and consequently explore both the preprocess-
ing, as well as heterogeneous ensemble construction methods that yield the best perform-
ing configuration. Another example of automated (tree-based) learning is conducted within 
TPOT (Olson et al. 2019), a tool for automatic construction of scikit-learn workflows spe-
cializing in tree-based learners. The main advantage of TPOT is simplicity—competitive 
results on tabular data sets can be obtained by merely running the default optimization 
setting for a dedicated amount of time. Development of approaches for automatic learning 
renders possible fast prototyping—instead of spending days in deciding to what extent the 
current data is suitable for learning—autoML systems offer quick and effortless answers 
to such questions, greatly speeding up the machine learning development and deployment 
process.

Another prominent example of the machine learning algorithm design are the automati-
cally constructed deep neural architectures, for example, used for solving image recognition 
tasks (He et al. 2018). In this field of neuroevolution (Stanley et al. 2019) , genetic algo-
rithms and their variations are commonly used, and were recently shown to perform better 
than many alternative optimization approaches. Even though evolved neural networks were 
shown to perform well for image data, and the majority of the remaining autoML systems 
focus on tabular data, we believe that research on how automatic machine learning can aid 
the development of algorithms that learn from texts is still scarce and worth exploring. The 
idea of autoML was adapted also to text domains (Madrid 2019). Similarly, Google also 
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offers proprietary cloud-based solutions that address also the domain of natural language1. 
Learning from texts automatically is an interesting research question, especially if the hard-
ware is not specialized for learning, and the data are scarce.

Apart from the machine learning-based approaches, explored by the evolutionary com-
putation community, the machine learning papers that exploit evolution (or similar optimi-
zation) were developed in parallel to the aforementioned studies. For example, the impli-
cations of using evolutionary computation for the meta learning purposes on tabular data 
was also explored (Reif et al. 2012). They explored the performance of SVMs and random 
forest-based classifiers on over 100 data sets from the UCI   (Dua and Graff 2017). The 
authors have shown that a standard genetic algorithm already offers performance improve-
ments. Note that the methods such as the auto-sklearn (Feurer et al. 2019), TPOT  (Olson 
et al. 2019) and AutoWEKA  (Kotthoff et al. 2017) also show consistent improvements of 
using stochastic optimization on tabular data. Further, autoML frameworks such as GAMA  
(Gijsbers and Vanschoren 2019), hyperopt-sklearn  (Komer et al. 2014), ML-Plan  (Mohr 
et al. 2018) and OBOE  (Yang et al. 2019) all offer an optimization layer on top of an exist-
ing e.g., learning pipeline which requires hyperparameter tuning. The proposed autoBOT, 
albeit being conceptually similar to the work of  (Dua and Graff 2017) at the optimization 
level, explores how the evolution can be conducted at the representation level, which is a 
rather novel endeavour. Further, evolution on unstructured data such as texts is also a nov-
elty compared to e.g., optimization for tabular classifiers.

2.5  The rationale behind autoBOT

This work presents autoBOT, an approach for scalable, low-resource text classification that 
requires as little human input as possible, but nevertheless offers a decent classification 
performance. To our knowledge, similar approaches were explored mostly for tabular data, 
where the representation is already given, or for evolution of neural network architectures, 
where the models many times require custom hardware and are not (at all) explainable. We 
believe that evolution—when operating with less structured inputs such as texts—should 
simultaneously consider both the suitable representation and the subsequent learning, 
which was to our knowledge not yet explored at the scale done in this work. Further, the 
optimized feature space is inherently sparse, requiring an end-to-end implementation that 
operates with sparse matrix-algebraic operations (including learning), otherwise resulting 
in high dimensional dense vector spaces that require lots of computational resources. For 
example, considering a dense matrix of a hundred thousand features is computationally 
infeasible, unless sparse representation is considered.

3  Learning from evolving text representations with autoBOT

In this section, we present the proposed autoBOT approach. First, we discuss the repre-
sentations of text considered, followed by the overall formulation of the approach. A sche-
matic overview of autoBOT is shown in Figure 1.

1 https://cloud.google.com/natural-language/automl/docs/beginners-guide, however this software is not 
open-source.
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Here, the training set of documents is first represented at different granularities ( F ); Sparse 
bag-of-words type of vectors on the level of characters, words, part-of-speech (POS) tags as 
well as keywords and relations spanning multiple tokens, to dense document embeddings 
and knowledge graph-based features ( K ). This is followed by the process of representation 
evolution (G field). The obtained initial set of representations is considered as the base for 
evolutionary optimization. Here, weights (individuals), multiplied with the feature values cor-
responding to the parts of this space are evolved so that a given performance score is maxi-
mized. The final set of solutions is used to obtain a set of individual classifiers, each trained on 
a different part of the space. However, for obtaining final predictions, a majority vote scheme 
is considered. Hence, evolution effectively emits an ensemble of classifiers. More details fol-
low below.

3.1  Multi‑level representation of text

Let FT represent the set of all feature types that are considered during evolution. Let D denote 
the set of considered document instances. Examples of feature types include single word fea-
tures, their n-grams, character n-grams etc. Assuming f represents a given feature type. Let df  
denote the number of features of this type. The number of all features is defined as d =

∑
f df . 

Hence, the final d-dimensional document space consists of concatenated Ff ∈ ℝ|D|×df-dimen-
sional matrices, i.e.

F =
|||
|||iFi,

Fig. 1  Schematic overview of autoBOT. The input is a collection of documents D alongside a knowledge 
graph K . The feature space F is constructed based on the information from both sources. Next, G gen-
erations of representation evolution are conducted. Here, the o(F) represents the application of different 
operators to solution vectors representing weights of feature subspaces (e.g., word, character etc.), followed 
by selection, s(F) , where the next generation of solutions is chosen. Once the optimization finishes, the 
best solutions (HOF - Hall Of Fame) are used for the final set of predictions. The  SOL1…ιHOFι denotes the 
individual solutions, used for construction of final classifiers, and ε represents the set of explanations – 
feature-value associations. As the solutions encode both the weights at the feature subspace level, as well as 
weights of individual features, autoBOT offers two distinct views of feature importances
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where i denotes the i-th feature type, and |||| denotes concatenation along the separate col-
umns. The matrix is next normalized (L2, row-wise), as is common practice in text mining. 
Types of features considered by autoBOT are summarized in Table 1.

The considered features, apart from the relational ones and document embeddings, are 
subject to TF-IDF weighting, i.e.,

where t is a token of interest and m the document of interest. The D is the set of all docu-
ments. While word and character n-grams, POS tags as well as document embeddings2 are 
commonly used, the relational, knowledge graph-based and keyword-based features are a 
novelty of autoBOT discussed below.

Relational features. One of the key novelties introduced in this paper is the rela-
tional feature construction method, summarized as follows. Consider two tokens, t1 and 
t2 . autoBOT already considers n-grams of length 2, which would account for patterns 
of the form ( t1,t2 ). However, longer-range relations between tokens are not captured 
this way. As part of autoBOT, we implemented an efficient relation extractor, capa-
ble of producing symbolic features described by the following (i-th) first-order rule: 
Ri ∶= presentAtDistance(t1, t2, �(t1, t2)) , where � represents the average distance between 
a given token pair across the training documents. Thus, the features represent pairs of 
tokens, characterized by binary feature values, derived from the top dt=relational distances 
(number of considered features) between token pairs. An example is given next.

(1)TF-IDF(t,m) =
�

j∈m

�[j = t] ⋅ log
�

�D�
∑

k∈D �[t ∈ k] + 1

�
,

Table 1  Different feature types considered by autoBOT

Feature generator type Description Data type Feature type Sparse

Word n-grams words raw text symbolic yes
Character n-grams tuples of sequential char-

acters
raw text symbolic yes

Keyword features one or multi-term keyphrases graph-based token paths symbolic yes
Relational features globally close characters distance relation symbolic yes
POS n-grams part-of-speech tags grammatical symbolic yes
Knowledge graph features grounded relations semantic symbolic yes
Document embeddings document embeddings (dis-

tributed memory - DM)
embedding sub-symbolic no

Document embeddings document embeddings 
(distributed bag of words - 
DBOW)

embedding sub-symbolic no

2 See Le and Mikolov (2014) for an overview of the two embedding models used. The two namings, i.e., 
DBOW and DM are used in the state-of-the-art implementation in Khosrovian et al. (2008).
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Keyword-based features.
The second type of features introduced in this work are the features based on keywords. 

Given a document, keywords represent a subset of tokens that are representative of the 
document. There exist many approaches for keyword detection. For example, statistical 
methods, such as KP-MINER (El-Beltagy and Rafea 2009), RAKE (Rose et al. 2010) and 
YAKE (Campos et  al. 2018), use statistical characteristics of texts to capture keywords. 
On the other hand, graph-based methods, such as TextRank (Mihalcea et al. 2004), Single 
Rank (Wan and Xiao 2008), TopicRank (Bougouin et al. 2013), Topical PageRank (Ster-
ckx et al. 2015) and RaKUn (Škrlj et al. 2019) build graphs to rank words based on their 
position in the graph. The latter is also the method adopted as a part of autoBOT for the 
feature construction process, which proceeds in the following steps: 

1. Keyword detection. First, for each class, the set of documents from the training cor-
pus corresponding to this class are gathered. Next, keywords are detected by using the 
RaKUn algorithm for each set of documents separately. In this way, a set of keywords 
is obtained for each target class.

2. Vectorization. The set of unique keywords is next obtained, and serves as the basis for 
novel features that are obtained as follows. For each document in the training corpus, 
only the keywords from the subset of all keywords corresponding to the class with 
which the document is annotated are recorded (in the order of appearance in the origi-
nal document), and used as a token representation of a given document. This way, the 
keywords specific for a given class are used to construct novel, simpler “documents”. 
Finally, a TF-IDF scheme is adopted as for e.g., character or word n-grams, yielding n 
most frequent keywords as the final features 3.

The rationale behind incorporating keyword-based features is that more local information, 
specific to documents of a particular class is considered, potentially uncovering more sub-
tle token sets that are relevant for the differentiation between the classes.

Knowledge graph-based features. A key novelty introduced as part of autoBOT is 
the incorporation of knowledge-graph-based features. Knowledge graphs are large, mostly 
automatically constructed relational sources of knowledge. In this work we explored how 

3 The features, identified on the training set of data as relevant are also used to construct the test set’s 
instances.
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ConceptNet (Speer et al. 2017), one of the currently largest freely available multilingual 
knowledge graphs could be used to construct novel features of which scope extends the 
considered data set4. We propose an algorithm for propositionalization of grounded rela-
tions, discussed next.

Assuming a collection of documents D, the proposed propositionalization procedure 
identifies which relations, present in the knowledge graph, are also present in a given 
k ∈ D . Let K = (N,E) represent the knowledge graph used, where N is the set of terms 
and E the set of subject-predicate-object triplets, so that the subject and the object are two 
terms. We are interested in finding a collection of features FKG (i.e. knowledge graph-based 
features). We build on the late propositionalization ideas  of Lavrač et  al. (2020), where 
zero-order logical structures are effectively used as features, that are automatically identi-
fied. We refer to the algorithm capable of such scalable extraction of first-order features as 
PropFOL, summarised next. The key idea of PropFOL is related to grounding the triplets, 
appearing in a given knowledge graph while traversing the document space. More specifi-
cally, each document k is traversed, and the relations present in each document are stored. 
The relations considered by PropFOL are shown in Table  2. The PropFOL operates by 
memorizing the collections of grounded relations in each k (document). Once the docu-
ment corpus is traversed, the bags of grounded relations are vectorized in TF-IDF manner. 
Finally, for each new document, two operations need to be conducted. First, the grounded 
relations need to be identified. Second, the collection of relations is vectorized by using the 
stored weights of the individual relations occurring based on the training data. The feature 
construction algorithm is given as the Algorithm 1.

Table 2  Considered relations. from ConcepNet considered by PropFOL

/r/Antonym /r/AtLocation /r/CapableOf
/r/Causes /r/CausesDesire /r/CreatedBy
/r/dbpedia/capital /r/dbpedia/field /r/dbpedia/genre
/r/dbpedia/genus /r/dbpedia/influencedBy /r/dbpedia/knownFor
/r/dbpedia/language /r/dbpedia/leader /r/dbpedia/occupation
/r/dbpedia/product /r/Desires /r/DistinctFrom
/r/Entails /r/EtymologicallyDerivedFrom /r/EtymologicallyRelatedTo
/r/ExternalURL /r/FormOf /r/HasA
/r/HasContext /r/HasFirstSubevent /r/HasLastSubevent
/r/HasPrerequisite /r/HasProperty /r/HasSubevent
/r/InstanceOf /r/IsA /r/LocatedNear
/r/MadeOf /r/MannerOf /r/NotDesires
/r/NotHasProperty /r/NotUsedFor /r/ObstructedBy
/r/PartOf /r/ReceivesAction /r/RelatedTo
/r/SimilarTo /r/SymbolOf /r/Synonym
/r/UsedFor /r/MotivatedByGoal /r/NotCapableOf
/r/DefinedAs /r/DerivedFrom

4 September 2020 version, found at https:// github. com/ commo nsense/ conce ptnet5
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 The algorithm consists of two main steps. First, the document corpus (D) is traversed 
(line 4), whilst the relations are being recorded for each document (k). Once memorized 
(for training data, line 7), a vectorizer is constructed, which in this work conducts TF-IDF 
re-weighting (line 16) of first order features, and based on their overall frequency selects 
the top n such features that shall be used during evolution. Note that this simple proposi-
tionalization scheme is adopted due to a large knowledge graph considered in this work, 
as one of the key purposes of autoBOT is to maintain scalability (such graph can be pro-
cessed on an off-the-shelf laptop). Note that in practice, even though millions of entities 
and tens of millions of possible relations are inspected, the final collection of grounded 
relations, particular to a considered data set, remains relatively small. In more detail, the 
getAllTokens (line 2) method maps a given document corpus D to a finite set of possible 
tokens (e.g. words). The obtained token base is retrieved for each document (k, line 7) via 
getTokens method. The subset of tokens corresponding to a given document is next used to 
extract a subgraph of the input knowledge graph K , corresponding to a given document. 
This step is mandatory as the subgraph effectively corresponds to the set of triplets that are 
used as features. The missing component at this point are the relations, which are retrieved 
via the decodeToTriplet method (line 12). Such triplets represent potentially interesting, 
background knowledge ( K)-based features. In the final part of the algorithm, triplet sets 
are processed as standard bags-of-items to obtain the real valued feature space suitable for 
learning ( FKG).
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The following example demonstrates how the constructed features are obtained, 
and what are the potentially interesting relations entailed by performing such feature 
construction.

P

This type of feature construction is thus able to extract relations, otherwise inaccessi-
ble by conventional learners that operate solely based on e.g., word-based representations. 
Even though current implementation of autoBOT exploits the ConceptNet knowledge 
graph due to its generality, the implementation permits utilization of any triplet knowledge 
base that can be mapped to parts of texts, and as such offers many potentially interesting 
domain-specific applications.

3.2  Solution specification and weight updates

The key part of every genetic algorithm is the notion of solution (an individual). The solu-
tion is commonly represented as a (real-valued) vector, with each element corresponding 
to the part of the overall solution. Let FT represent the set of feature types. The solution 
vector employed by the autoBOT is denoted with SOL ∈ [0, 1]|FT| (|FT| is the number of 
feature types).

Note that the number of parameters a given solution consists of is exactly equal to the 
number of unique feature types (as seen in Table 1). The solution is denoted as:

Thus, the solution vector of the current implementation of autoBOT consists of 8 (hyper) 
parameters (for eight different feature types as seen in Table 1). Next, solution evaluation, 
the process of obtaining a numeric score from a given solution vector is discussed.

Each solution vector SOL consists of a set of weights, applicable to particular parts of 
the feature space. Note that the initial feature space, as discussed in Section 3.1, consists of 
d features. Given the weight-part of SOL , i.e. [w1,w2,… ,w|FT|] , we define with Ifrom

i
 and 

Ito
i

 the two column indices, which define the set of columns of the i-th feature type. The 
original feature space F is updated as follows:

where ⊙ refers to matrix-scalar product and s to a particular individual (updated feature 
space). Note also that the superscript in the weight vector corresponds to the considered 
individual. The union of the obtained subspaces represents the final representation used for 
learning.

The key idea of autoBOT is that instead of evolving on the learner level, evolution is 
conducted at the representation level. The potential drawback of such setting is that if 
only a single learner was used to evaluate the quality of a given solution (representation), 

SOL =
[
w1,w2,… ,w|FT|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Subspace weights

]
.

(2)FIfrom
i

to Ito
i

s = ws
i
⊙ FIfrom

i
to Ito

i .
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the fitness score (that in this work equals to the mean score obtained during a  five-fold 
cross validation on the training set) would be skewed. To overcome this issue, autoBOT—
instead of a single classifier—considers a wide spectrum of linear models parameterized 
with different levels of elastic net regularization (trade-off between L1 and L2 norms) and 
losses (hinge and log loss are considered). Being trained by the stochastic gradient descent, 
hundreds of models can be evaluated in a matter of minutes, offering a more robust esti-
mate of a given representation’s quality. Note that each solution is considered by hundreds 
of learners, and there are multiple solutions in the overall population. More formally, we 
denote with

the optimization process yielding the best performing classifier when considering feature 
space F , where SGD represents a single, stochastic gradient descent-trained learner param-
eterized via h (a set of hyperparameters such as the loss function and regularization). Note 
that SGD considers the labeled feature space during learning.

A detailed specification of the family of linear models that are considered during fitness 
computation are given in Section 4.2. We next discuss the final component of autoBOT 
that can notably impact the evolution—the initialization. Let Ff  represent a feature sub-
space (see Section 3.1 for details). The initial solution vector is specified as:

Note the link to Equation 3: the vector consists of feature type-specific performances. The 
U(a, b) represents a random number between a and b drawn from the uniform distribution. 
This serves as noise which we add to prevent initialization of too similar individuals. As in 
this work the F1 score is adopted for classifier performance evaluation, its range is known 
(0 to 1), thus the proposed initialization offers stable initial weight setting5.

3.3  Dimension estimation

Commonly, dimension of a learned representation is considered as a hyperparameter. How-
ever, many recent works in the area of representation learning indicate that high-enough 
dimension is a robust solution across multiple domains, albeit at the cost of additional 
computational complexity. The proposed autoBOT exploits two main insights and adapts 
them for learning from sparse data. The dimension estimation is parametrized via the fol-
lowing relation:

where df  is the final dimension, dd the dense dimension and s the estimated sparsity. The 
idea is that autoBOT attempts to estimate the size of the sparse vector space based on the 
assumption that models that operate with dense matrices require dd dimensions for suc-
cessful performance, and that s is the expected sparsity of the space produced by autoBOT. 
In this work, we consider dd = 128 and s = 0.1 , the dense dimension is based on the exist-
ing literature and s is low enough to yield a sparse space.

(3)Sc(F) = arg max
h

[
SGD(SOL, h,F)

]

(4)SOLinit = [Sc(Ff ) ⋅ U(0.95, 1.05)]f∈FT .

df = round(dd∕s),

5 However, should a different custom score be used, it is not necessarily a sensible approach.
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3.4  Formulation of autoBOT

Having defined the key steps for evaluation of a single solution vector SOL , we continue 
by discussing how such evaluation represents a part of the evolution process undertaken by 
autoBOT. The reader can observe that the genetic algorithm adopted as part of autoBOT is 
one of the simplest ones, introduced already in the 1990s (Davis 1991).

The key steps of autoBOT, summarized in Algorithm  2, are outlined below. They 
involve initialization (line 2), followed by offspring creation (line 6). The two steps first 
initialize a population of a fixed size, followed by the main while loop, where each iteration 
generates a novel set of individuals (solutions), and finally (line 14) evaluates them against 
their parents in a tournament scheme. Note that prior to being evaluated, each population 
undergoes the processes of crossover and mutation (lines 7 and 10), where individuals are 
changed either pointwise (mutation), or piecewise (crossover). Once the evolution finishes, 
the HOF object (hall-of-fame) is inspected, and used to construct an ensemble learner that 
performs classifications via a voting scheme. In this work, we explore only time-bound 
evolution. Here, after a certain time period, the evolution is stopped. The more detailed 
description of the methods in Algorithm 2 is as follows. The generateSplits method offers 
the functionality to generate data splits used throughout the evolution. This step ensures 
that consequent steps of evolutions operate on the same feature spaces and are as such 
comparable. The generateInitial method generates a collection of real-valued vectors that 
serve as the initial population as discussed in Equation 4. Next, the initializeRepresenta-
tion method constructs the initial feature space, considered during evolution. Note that 
by initializing this space prior to evolution, the space needs to be constructed only once 
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compared to the naïve implementation where it is constructed for each individual. The 
mate and mutate methods correspond to standard crossover and mutation operators. The 
evaluateFitness method returns real valued performance assessment score of a given repre-
sentation.6 The updateHOF method serves as a storage of the best-performing individuals 
throughout all generations, and is effectively a priority queue with a fixed size. The select-
Tournament method is responsible for comparisons of individuals and the selection of the 
best-performing individuals that constitute the next generation of representations. Finally, 
the trainFinalLearners method considers the best-performing representations from the 
hall-of-fame, and trains the final classifier via extensive grid search.

We next discuss the family of linear models considered during evolution. Note that the 
following optimization is conducted both during evolution (line 13) and final model train-
ing (line 16). The error term considered by stochastic gradient descent is:

where y is the target vector, xi the i-th instance, w is a weight vector, L is the considered 
loss function, and � and � are two numeric hyperparameters: � represents the overall weight 
of the regularization term, and � the ratio between L1 and L2. The loss functions consid-
ered are the hinge and the log loss, discussed in detail for the interested reader in Friedman 
et al. (2001).

3.5  Theoretical considerations and explainability

We next discuss relevant theoretical aspects of autoBOT, with the focus on computational 
complexity and parallelism aspects, as the no-free-lunch nature of generic evolution as 
employed in this work has been previously studied in other works (Wolpert and Macready 
1997; English 1996). In terms of computational complexity, the following aspects impact 
the evolution the most:

Feature construction. Let � represent the number of unique tokens in the set of docu-
ments D. Currently, the most computationally expensive part is the computation of key-
words, where the load centrality is computed  (Škrlj et al. 2019). The worst case complex-
ity of this step is O(�3) – the number of nodes times the number of edges in the token 
graph, which is in the worst case �2 . Note, however, that such scenario is unrealistic, as 
real-life corpora do not entail all possible token-token sequences (Zipf’s law). The com-
plexities of e.g., word, character, relational and embedding-based features are lower. Addi-
tionally, the features based on the knowledge graph information also contribute to the 
overall complexity, discussed next. Let E(K) denote the set of all subject-predicate-object 
triplets considered. The propFOL (Algorithm 1) needs to traverse the space of triplets only 
once ( O(|E(K)|) ). Finally, both of the mentioned steps take additional |D| steps to read the 
corpus. We assume the remaining feature construction methods are less expensive.

Fitness function evaluation. As discussed in Section  3.2, evaluation of a single 
individual that encodes a particular representation is not conducted by training a single 

Err(w, b) =
1

|D|

|D|∑

i=1

L(yi,w
Txi + b))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Loss term

+�

[
1 − �

2

|D|∑

i=1

w2
i

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
L2

+ �

|D|∑

i=1

|wi|

⏟⏞⏟⏞⏟
L1

]
,

6 Note that each representation is evaluated by training a collection of linear classifiers in a cross-validation 
setting.
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learner, but a family of linear classifiers. Let the number of models be denoted by � , the 
number of individuals by � , and the number of generations by |G| (G is a set of aggre-
gated evaluations for each generation). The complexity of conducting evolution, guided 
by learning, is O(� ⋅ � ⋅ |G|).

Initial dimensionality estimation. The initial dimensionality is computed via a lin-
ear equation, and is O(1) w.r.t. the |FT| (number of feature types).

Space complexity. When considering space complexity, we recognize the follow-
ing aspects as relevant. Let |I| denote the number of instances and |FT| the number of 
distinct feature types. As discussed in Section 3.1 the number of all features is denoted 
with da , the space required by the evolution is O(|I| ⋅ da ⋅ �) . In practice however, the 
feature space is mainly sparse, resulting in no significant spatial bottlenecks when tens 
of thousands of features are considered.

The individual computational steps considered above can be summarized as the fol-
lowing complexity:

We next discuss how autoBOT computes solutions in parallel, offering significant speed-
ups when multiple cores are used. There are two main options for adopting parallelism 
when considering simultaneously both the evolution and learning. The parallelism can be 
adopted either at the level of individuals, where each CPU core is occupied with a single 
individual, or at the learner level, where the grid search used to explore the space of linear 
classifiers is conducted in parallel. In autoBOT, we employ the second option, which we 
argument as follows. Adopting parallelism at the individual level implies that each worker 
considers a different representation, thus rendering sharing of the feature space amongst the 
learners problematic. However, this is not necessarily an issue when considering parallel-
ism at the level of learners. Here, individuals are evaluated sequentially, however, the space 
of the learners is explored in parallel for a given solution (representation). This setting, 
ensuring more memory efficient evolution, is implemented in autoBOT. Formally, the space 
complexity, if performing parallelism at the individual’s level rises to O(c ⋅ |I| ⋅ d� ⋅ �) , 
which albeit differing (linearly) only by the parameter c (the number of concurrent pro-
cesses), could result in an order of magnitude higher memory footprint (when considering 
autoBOT on a e.g., 32 core machine). The option with sequential processing of the indi-
viduals but parallel evaluation of learners remains of favourable complexity O(|I| ⋅ d� ⋅ �) 
(assuming shared memory). An important aspect of autoBOT is also explainability, which 
is discussed next.

As individual features constructed by autoBOT already represent interpretable pat-
terns (e.g., word n-grams), the normalized coefficients of the top performing classifiers 
obtained as a part of the final solution can be inspected directly. However, in practice, 
this can result in manual curation of tens of thousands of features, which is not neces-
sarily feasible, and can be time consuming. To remedy this shortcoming, autoBOT’s 
evolved weights, corresponding to semantically different parts of the feature space can 
be inspected directly. At this granularity, only up to e.g., eight different importances 
need to be considered, one per feature type, giving practical insights into whether the 
method, for example, benefits the most by considering word-level features, or it per-
forms better when knowledge graph-based features are considered. In practice, we 
believe that combining both granularities can offer interesting insights into the model’s 
inner workings, as considering only a handful of most important low-level (e.g., n-gram) 

O( |D| + �3 + |E(K)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Representation construction

+ � ⋅ � ⋅ |G|
⏟⏞⏞⏟⏞⏞⏟
Evolution

).
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features can also be highly informative and indicative of the patterns recognized by the 
model as relevant.

Finally, autoBOT also offers direct insights into high-level overview of what types of 
features were the most relevant. We believe such information can serve for transfer learn-
ing purposes on the task level, which we explore as part of the qualitative evaluation.

3.6  How successful was evolution?

Quantification of a given evolution trace, i.e. fitness values w.r.t generations has been 
previously considered in Beyer et al. (2002), and even earlier in Rappl (1989), where the 
expected value of the fitness was considered alongside the optimum in order to assess how 
efficient is the evolution, given a fixed amount of resources. To our knowledge, however, 
the scores were not adapted specifically for a machine learning setting, which we address 
in the heuristic discussed next. We remind the reader that G = (perf(i))i represents a tuple 
denoting the evolution trace – the sequence of performances. Each element of G is in this 
work a real valued number between 0 and 1. Note that the tuple is ordered, meaning that 
when moving from left to right, the values correspond to the initial vs. late stages of the 
evolution’s performance. Further, the perf(i) corresponds to the maximum performance in 
each generation. Let maxg(G) denote the maximum performance observed in a given evo-
lution trace G. Let arg max g(G) represent the generation (i.e. evolution step) at which the 
maximum occurs. Finally, let |G| denote the total number of evolution steps. Intuitively, 
both the maximum performance, as well as the time required to reach such performance (in 
generations) need to be taken into account. We propose the following score:

Intuitively, the score should be high if the overall performance is good and evolution found 
the best performing solution quickly. On the other hand, if all the available time was spent, 
no matter how good the solution, the GPERF will be low. Note that the purpose of GPERF 
is to give insights into the evolution’s efficiency, which should also take into account the 
time to reach a certain optimum. If the reader is interested solely in performance, such 
comparisons are also offered. Note that maxg(G) represents the best performing solution 
obtained during evolution. The heuristic, once computed for evolution runs across different 
data sets, offers also a potential insight into how suitable are particular classification prob-
lems for an evolution-based approach – this information is potentially correlated with the 
problem hardness.

4  Experiments

In this section we present the considered data sets, the adopted baselines with correspond-
ing hyperparameter settings and the hardware environment used to conduct the experi-
ments. The data sets are discussed in Section 4.1, followed by the discussion of the base-
lines in Section 4.2. Finally, the used hardware and software are presented in Section 4.3, 
followed by the evaluation in Section 4.4.

GPERF(G) = max
g

(G)

⏟⏟⏟
Top score

⋅
(
1 −

arg max g(G)

|G|

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
How late it converged to the top score?

.
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4.1  Data sets

This section presents the data sets used for quantitative evaluation of the autoBOT’s per-
formance. The data sets are summarized in Table 3. The selection of data sets spans from 
sentiment classification (semeval data sets), to news classification (fox, bbc), as well as per-
sonality classification (mbti). The data sets span various numbers of documents, from a 
few hundred to tens of thousands. The number of unique tokens represents the number of 
tokens obtained by doing document splitting directly by whitespace. Furthermore, multi-
class and binary classification are considered.

4.2  Classifiers tested and hyperparameter settings

We next discuss the baseline approaches and configurations of autoBOT tested in this 
work. We divide baselines into the following main groups.

Manually tuned linear models. The first branch of models are linear classifiers, i.e. sup-
port vector machines (SVM) (Chang and Lin 2011) and logistic regression (LR), fine tuned 
across manually specified regularization ranges. The regularization of SVM and LR clas-
sifiers was in the range [0.1, 0.5, 1, 5, 10, 20, 50, 100, 500]. Each of the two learners was 
tested on word, character and word + character n-gram space. The feature space was nor-
malized prior to learning.

Another autoML system. We considered TPOT, a state-of-the-art learner that adopts 
evolution on the level of learners (it evolves tree ensembles). We used the default settings 
on the word n-gram space, as this approach is not suitable for large sparse spaces.

Neural language models. Strong baselines, which operate with two orders of magnitude 
more parameters were also considered. More specifically, we fine-tuned BERT (base) and 
RoBERTa (base), two state-of-the-art language models for up to 20 epochs with early stop-
ping, should the optimization converge faster. The hyperparameters for the two language 
models were left to defaults7.

Representation-specific baselines. One of the key experiments needed to be conducted 
in order to assess the performance of the evolution was that of establishing baselines that 
learn directly from the constructed representation, however are not subject to iterative re-
weighting of the feature space. To address this problem, we implemented a cartesian prod-
uct of representation-learner baselines, that offer a solid estimation of how far can e.g., a 
SVM get by using only the initial autoBOT representation (but no evolution). The imple-
mented classifiers are (as named in figures): autoBOT-svm-neural (only embeddings + 
SVM), autoBOT-svm-neurosymbolic (full feature space + SVM), autoBOT-svm-symbolic 
(symbolic features + SVM), and autoBOT-lr-neural (only embeddings + LR), autoBOT-
lr-symbolic (symbolic features + LR) and autoBOT-lr-neurosymbolic (full feature space + 
LR).

Other baselines. We implemented a stratified majority classifier8.
Having discussed the baseline approaches, we next discuss the considered variants 

of autoBOT. The main hyperparameters of evolution that we explored were the muta-
tion rate and crossover rate. The mutation rates were varied in the range [0.3, 0.6, 0.9] 
and the crossover rates in the range [0.3, 0.4,  0.6, 0.9]. The tournament size was set to 

7 https:// github. com/ Thili naRaj apakse/ simpl etran sform ers
8 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. dummy. Dummy Class ifier. html, default option
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be integer-rounded one third of the number of individuals. Three main variants of auto-
BOT are reported, i.e. autoBOT-neurosymbolic, a variant where document embeddings are 
evolved along with the symbolic part of the feature space and autoBOT-symbolic, a vari-
ant where the document embeddings are omitted (see Table 1). Further, autoBOT-neural 
evolves only the two neural representations. The time for evolution was set to 8h per data 
set. The time was selected from a practical viewpoint; leaving an autoML running during 
the night instead of having an idle machine is an option that does not require any additional 
time allocation at the user side. The population sizes were set to 8, the same number as the 
number of available cores for parallel evolution (with minimal overhead). The spectrum of 
linear models, evaluated during fitness evaluation was specified as follows9. The loss func-
tions considered were the hinge and the log loss. The learning rate of stochastic gradient 
descent was set to a value from the set {0.01, 0.001, 0.0001}. The elasticnet penalty was 
adopted, where the ratio between L1 and L2 terms was varied in the range [0, 0.1, 0.5, 0.9, 
1]. Here, if this ratio was 0, the penalty would be L2, however, if the ratio was 1, L1 pen-
alty (lasso) would be adopted.

Finally, we discuss the data set splits considered used to evaluate the aforementioned 
approaches. Three different splits used for evaluation are discussed next. Each data set was 
split to 60% training, 20% validation and 20% testing, where the validation set was used to 
e.g., stop the training early on convergence when considering language models, however, 
as autoBOT employs cross-validation for determining the best learners, training and valida-
tion were merged—a similar scenario is computationally not feasible for language models.

4.3  Hardware and software used

The experiments were conducted using the SLING supercomputing architecture10. Each 
run was given at most 16GB of ram and 8CPU cores. autoBOT was implemented as a 
CPU-parallel procedure, and does not need GPU accelerators.

Additional information on the hardware used is accessible in Appendix  1. For lan-
guage models benchmarks, however, specialized hardware Nvidia Tesla GPUs with 32GB 
of RAM (GPU) and 128GB of RAM (CPU) was used. Intentionally, we minimized the 
number of dependencies. Hence, Scikit-learn was used to fit linear classifiers (highly opti-
mized) (Pedregosa et al. 2011), evolution primitives from the DEAP library (De Rainville 
et al. 2012) were used, and for matrix subsetting and similar linear-algebraic operations, 
Scipy library was adopted (Virtanen et al. 2020). The NLTK library was used for part-of-
speech tagging and language parsing (Bird et  al. 2009). The GENSIM library was used 
to obtain document embeddings (compiled versions of the algorithms) (Khosrovian et al. 
2008). The language model baselines were implemented by using the PyTorch-transform-
ers library (Wolf et al. 2020).

4.4  Evaluation of the results

Throughout the experiments we adopted the micro F1 score for multiclass classification 
and F1 score for binary classification. As critical distance diagrams (Demšar 2006) are 
currently one of the only alternatives for simultaneous comparison of multiple classifiers 

9 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. linear_ model. SGDCl assifi er. html
10 http:// www. sling. si/
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across multiple data sets, we report the results by using these diagrams (for F1 and accu-
racy, separately) as they offer a more compact view compared to tabular results (which are 
reported in Appendix 2. The distance diagrams are interpreted as follows. The black lines 
denote the average ranks. The lower the average rank, the better the classifier. The red lines 
join all classifiers which are according to Friedman-Nemenyi testing part of the same sig-
nificance class – there are no significant differences in their performance at ( p = 0.05 ). We 
interpret the diagrams in alignment with the tabular results. In terms of GPERF, we visual-
ize distributions for different data sets—such visualizations offered insights into which data 
sets are, given the same resources, easier or harder for the conducted evolution.

5  Results

In this section we discuss the results of empirical evaluation. We first report on classifica-
tion performance in Section  5.1, followed by qualitative exploration of possible transfer 
learning properties of autoBOT in Section 5.2, an explainability case study in Section 5.3, 
and case studies of evolution’s behavior in Section 5.4.

5.1  Classification performance

We summarize the F1 and accuracy-based performances in the form of critical distance 
diagrams, shown in Figures  2 and   3, and tabular results, shown in Tables  5 and  6 in 
Appendix 2. We report the results for the best performing evolution hyperparameter set-
tings which were the mutation rate of 0.3 and the crossover rate of 0.9. It can be observed 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bert-base

roberta-base

autoBOT-base-neurosymbolic
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autoBOT-svm-symbolic

LR (char + word)

autoBOT-svm-neurosymbolic

autoBOT-svm-neural
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doc2vec (svm)

doc2vec (lr)

LR (char)
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LR (word)

autoBOT-lr-symbolic

SVM (word)

critical distance: 7.9242

Fig. 2  Critical distance diagrams showing average ranks based on the F1 scores
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that the proposed autoBOT-neurosymbolic performs competitively to the other state-
of-the-art approaches, even though it is outperformed by BERT (and to some extent by 
RoBERTa). Surprisingly, the symbolic-only version of autoBOT (autoBOT-symbolic) is 
also highly competitive. The performance is similar if compared against TPOT, and signifi-
cantly higher than the weak baselines such as the majority classifier (the red lines do not 
join the classifiers). We also observe that RoBERTa (125M parameters) performed margin-
ally worse than BERT (110M parameters), which we believe is due to the fact that we did 
not perform extensive hyperparameter search, especially exploring various regularization 
settings. Another interpretation of this result is that due to the large number of parame-
ters, overfitting on the validation set occurred. Such behavior can be problematic for low 
resource scenarios where many classes are predicted (e.g., mbti). Current results indicate 
that language models perform sub-optimally, if multiple classes are considered (e.g., five 
or more), however, the results could also be due to the class imbalance, which is present in 
the most multiclass problems. 

The overall performance can be, based on the diagrams, summarised as follows. The 
neural language models, as discussed, on average out-perform other approaches. The pro-
posed autoBOT variants including either the combination of symbolic and non-symbolic 
features (autoBOT-neurosymbolic) and only symbolic features (autoBOT-symbolic) are 
ranked next, performing on average better than e.g., TPOT (autoML baseline) and other 
variants of linear learners trained on the constructed representation, which, however, do 
not consider the evolved representation. The LR (char + word) baseline performed sur-
prisingly well, and was, out of the weaker baselines, out-performed only by the symbolic 
feature space of autoBOT + SVM classifier (autoBOT-svm-symbolic). The doc2vec-only 
representations were amongst the worst-performing ones (doc2vec (svm) and doc2vec 
(lr)), indicating their potential complementarity with symbolic features (as observed 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bert-base

roberta-base

autoBOT-base-symbolic

autoBOT-base-neurosymbolic

TPOT

SVM (word)

autoBOT-lr-symbolic

autoBOT-lr-neurosymbolic

autoBOT-svm-symbolic

autoBOT-base-neural

majority

doc2vec (svm)

LR (char)

doc2vec (lr)

LR (word)

SVM (char + word)

SVM (char)

autoBOT-svm-neural

autoBOT-svm-neurosymbolic

LR (char + word)

autoBOT-lr-neural

critical distance: 7.9242

Fig. 3  Critical distance diagrams showing average ranks based on the Accuracy scores
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in e.g., autoBOT-base-neurosymbolic). Interestingly, if the two neural representations 
were evolved, the performance increased, however did not reach the neuro-symbolic 
combinations.

In terms of the performance across individual data sets, we highlight the following 
observations. The news-based data sets were rather easy to classify – in e.g., bbc, the 
strong learners all achieved around 99% accuracy. The data sets, where the discrepancy 
was larger, are for example the ones with more classes. One such example is the mbti, 
where TPOT outperformed the other learners, however was followed closely by the auto-
BOT-symbolic variant. On data sets such as sarcasm, the discrepancy between the neural 
language models and other types of methods was the largest. For example, BERT and RoB-
ERTa achieved > 90% accuracy, the closest autoBOT implementation was again the sym-
bolic one which scored with 82%, which is substantially lower. Interestingly, on the data 
sets with a large number of instances, the proposed autoBOT came within two percentage 
points w.r.t. the neural language models. Finally, when considering the hatespeech data 
set, the proposed autoBOT performed on par with neural language models, albeit being 
completely explainable, which can be the decision factor when deploying a model on a this 
type of task. Overall, the clear win of neural language models is in alignment with previous 
work (e.g., Devlin et al. (2019)), where such models performed very well across a spec-
trum of multiple tasks. In terms of the interpretable methods, autoBOT was shown to offer 
a viable alternative a user can obtain with minimal input (and setup), and no specialized 
hardware (GPUs in this case).

5.2  Towards meta transfer learning

As the proposed approach yields solution vectors that uniquely determine the importance 
of each type of features, we explored further whether the obtained solution vectors share 
properties across similar data sets. The clustered solution space is shown in Figure 4. The 
colors represent the scale of solution weights—weights that correspond to the individual 
feature types.

We observe that distinct clustering patterns emerge, roughly grouping the data sets 
based on the type of classification task. For example, the yelp and bbc data sets appear 
to have similar solutions, similarly the insults, questions and the sarcasm data sets. As 
we conducted two-way (hierarchical) clustering, insights into relations between types can 
also be observed. The POS and relational features appear to have the most in common, 
and similarly word-, character- and the keyword-based features. The two types of docu-
ment embeddings behave similarly, and were recognized by autoBOT as such, which is 
an expected result that validates the purpose of such visualization. The image also offers 
insights into the question whether the embedding-based representations are always use-
ful (assuming high weights correspond to relevance). For data sets such as sarcasm and 
insults, keyword and word-level features emerged with higher weights, however, when con-
sidering for example the yelp data set, the embedding-based representation appears to have 
had the most impact on the success of learning. Another apparent benefit of such visuali-
zation is the inspection of how relevant a given feature type is across multiple data sets. 
Current results indicate that POS tag-based features and the relational features appear to 
improve the predictive performance very selectively. For example, the POS tags appear to 
work well when considering the sarcasm data set, and relational features help, albeit mod-
erately, when considering semeval2019 and hatespeech data sets. We believe the visualiza-
tions like the proposed one are a very transparent option for efficient exploration of which 
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feature types carry the most information, and could be potentially further inspected (or 
extended). Current results indicate that the observed clustering is related to the properties 
of the addressed task (e.g., embedding relevance for bbc, yelp and the articles)

5.3  Explainability

One of the key features of autoBOT is its two-level transparency scheme. The first level 
corresponds to weights, representing parts of a given feature space, and can be used to 
understand what autoBOT emphasizes across data sets (Figure  4). However, autoBOT 
can also offer direct importances, based on the absolute coefficients of linear classifiers 
employed. An example for the bbc data set is given in Table 4. The tokens such as “blair”, 
“election” and similar emerged as the most relevant, which is in alignment with the task 
that addresses differentiation between the topics. Note that proper nouns (nnp – noun-noun-
pronoun), either one or two in a sequence, were found to be the most relevant POS tags. 
The table demonstrates that even though importances can be computed for each feature 
separately, if the feature itself is non-symbolic, such feature importances contribute very 
little to the interpretation (or nothing at all). Hence, we see token or knowledge graph-level 
features as the most relevant when attempting to interpret what impacts the autoBOT’s 

Fig. 4  Similarity of the solution vectors across considered data sets. It can be observed that data sets related 
to similar tasks group together, indicating potential transfer learning possibilities at the evolution solution 
level. The importances were re-scaled to 0-1 range
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decisions. Further, the proposed ConceptNet features also offer interesting insight into 
what predicates emerged as the most relevant. For example, synonym(movie, film) indicates 
the relevance of synonyms, however, the hascontext(fall, uk) offers insight into symbolic 
context, previously not considered in such setting.

5.4  The Evolution’s behavior

We next present aggregations of autoBOT’s GPERF scores when varying the evolution 
hyperparameters in Figure 5.

We observe the following. There exist distinct distribution differences among the data 
sets. For example, the articles and subjects data sets, and also bbc are characterized with 
high GPERF scores. On the other hand, yelp, insults and semeval2019 data sets are on 
the lower end of the spectrum. As GPERF considers both the percentage of generations 
needed to convergence, as well as performance, we conjecture that the data sets with high 
GPERF are indeed easier to learn. For example, when considering bbc, both the F1 scores 
are above 95%, and also converge to the final maximum in the first couple of generations.

In contrast, we observe gradual evolution when considering e.g., the insults data set, 
and when this information is combined with the fact that F1 scores for this data set are 
lower than e.g., when considering bbc, we can conclude that this data set is harder to 
learn from and requires more time (generations). Another observation is that fox, bbc 
and subjects data sets are all focusing on topic prediction, where word-level seman-
tics (and keywords) can play a dominant role. Note that comparison of multiple data 

Fig. 5  GPERF across considered data sets. The standard deviations entail different hyperparameter settings 
(mutation, crossover)
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sets yields different distributions even if only performances are considered—the GPERF 
only offers additional insight into the nature of the evolution trace that led to a cer-
tain performance. For example, the semeval2019’s GPERF is very low, even though its 
final F1 performance is around 60%. We believe GPERF (or its variants) could serve 
for inspecting how the evolution progresses and potentially serve as a mechanism for 
automatic stopping, however we leave such evaluation for further work. Note also, that 
if autoBOT would be expected to perform well on a particular collection of data sets 
of the same type, this type of measurement (and visualization) would offer immediate 
insight into its success (e.g., detection of insults, hate speech and fake news) and poten-
tially interesting task hardness ranking.

We next discuss the behavior of the two main hyperparameters; the crossover and 
mutation, on the GPERF score in Figure 6. It can be observed that very high mutation 
rates result in, on average, lower GPERF scores (0.3 and 0.6 yield similar results). On 
the contrary, current results indicate that high crossover values are beneficial for the 
considered problem setting.

In Figure 7 we present the interesting evolution traces we observed and discuss their 
implications. The figure shows four distinct evolution traces we observed when further 
investigating the conducted experiments. One of the key observations is that a fixed 
amount of time (8 hours) is not necessarily enough, and can vary highly when con-
sidering different data sets. For example, the kenyan data set appears relatively simple 
compared to e.g., the semeval2019 data set, when gradual progress is observed, how-
ever there is no visual evidence of convergence (evolution, when considering the ken-
yan data set, converges rather quickly in the first 10% of generations). An interesting 
trace was observed when considering the insults data set, where at first larger perfor-
mance increases were observed, however, when a certain point was reached, only minor 
improvements were present. Even though not systematically addressed, the results indi-
cate neuro-symbolic learning is subject to faster convergence. Further, we acknowledge 
the existence of many approaches that could help with further analysis of such traces 
(e.g., Eiben et al. (1990)), however we consider them for further work, as the purpose 
of this paper was to evaluate whether autoML systems for text are feasible at all and in 
what scenarios.

Fig. 6  Relation between GPERF and the crossover and mutation hyperparameters of evolution. Mutation of 
0.3 and crossover of 0.9 offer a good trade-off between performance and evolution convergence, and were 
considered as the default setting
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6  Discussion and conclusions

The focus of this paper is the proposed autoBOT system for automatic learning of classi-
fiers and representations for texts. We demonstrate the system’s competitive performance 
on multiple data sets, when compared to strong baselines such as other autoML systems 
or neural, transformer-based language models. We additionally investigate the evolution’s 
behavior for selected examples, showing that instead of evolving a heterogeneous ensemble 
of learners, as performed by existing state-of-the-art approaches, evolution on the represen-
tation level proves to be a feasible and computationally more sensible option.

The proposed autoBOT system currently considers six symbolic and two non-symbolic 
document representations, however it is by no means limited to feature types consid-
ered in this work—these were selected to take multiple possible text representations into 
account, as well as to explore potentially interesting implications for meta transfer learn-
ing, where the solution vectors could be directly transferred across similar problems. As 
part of the future work, we believe incorporation of translational distance-based features 
could also be a promising approach. Here, a feature would be a conjunct of e.g., pairs of 

Fig. 7  Examples of evolution traces. The blue lines represent mean and red ones maximum fitness values. 
It can be observed (c,b) that in some cases, the dedicated evolution time of 8 hours, was not necessarily 
enough to achieve convergence. On the other hand, as seen for example when considering the kenyan data 
set (d), relatively fast convergence is observed due to a relatively simple classification task. The evolution 
either gradually unveils a relevant representation (b), or in a few generations, as can be seen in (d)
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presentAtDistance predicates, which approximate the distance between the considered pair 
of tokens. This type of features could potentially entail more complex relations between 
tokens that can be otherwise hard to detect.

The proposed autoBOT approach can also be considered in analogy to the attention 
mechanism, used in contemporary transformer-based architectures (Devlin et  al. 2019). 
The neural attention, during backpropagation, prioritizes parts of the byte pair encoded 
space, yielding sparse signals that are highly dependent on the context. The evolution, as 
implemented in this work, effectively optimizes a single vector of weights, each corre-
sponding to a particular collection of features. Similarly to the attention, however, particu-
lar collections are left out (e.g., character-level features when considering semantics-rich 
texts). In this way, the evolution is responsible for distillation of the feature space (and not 
backpropagation). Finally, we believe that also the granularity of the considered space is 
different. While the attention mechanism emphasized e.g., individual tokens (or pairs), the 
autoBOT importances are related to larger feature subsets related to feature types.

Even though the proposed implementation of autoBOT is not meant for online execution, a 
potentially interesting research direction would be its adaptation for operation with e.g., data 
streams. Here, we see two main opportunities on how this setting could be considered. First, 
the existing, pre-initialized evolution weight space could be used to evolve a collection of clas-
sifiers just for a few iterations, potentially adapting to the new properties of the data, and sec-
ond, as the learners are trained with stochastic gradient descent, their weights could be updated 
in a minibatch manner; in this scenario, the evolution iteration would not be considered after 
each learning update but more seldom, lifting the potentially time expensive re-training.

The proposed dimensionality estimation procedure operates based on a simple assump-
tion that there exist useful high-dimensional feature spaces that have the same memory 
footprint as the commonly used low-dimensional ones (e.g., of size 128). This intui-
tively means that one can select the dimensions with the spatial footprint of a reasonable 
size, e.g., a 128 dimensional dense representation (the dimension is a hyperparameter), 
for which we already got an insight into its behavior on a given hardware. The estima-
tion assumes the same dimension for all feature types, making it possible to happen that 
e.g., there are fewer POS-based features than the estimated dimension permits. This could 
be solved via some form of dynamic assignment procedure, despite the apparently low 
expected effect on the overall performance.

In terms of computational load, we observed the following. As the proposed autoBOT 
was developed with sparse representation structure in mind, its memory footprint never 
exceeded that of available in individual cluster jobs (16GB). As the runtime is coupled 
with the parameter denoting the time, current results indicate that in 8h (e.g., over-night), 
autoBOT is able to find good classifiers, an explanation as to what are the relevant parts 
of the feature space, and the features themselves that matter for the final classification. 
We observed that even though TPOT performs competitively, it is not able to leverage the 
sparseness of input matrices, resulting in potentially high memory overhead. Finally, as the 
neural language models were evaluated on specialized hardware, and could not be easily 
fine-tuned on an off-the-shelf laptop due to high working memory, disk and computation 
requirements, we believe this branch of models does not cover all the low-resource sce-
narios in which symbolic or neuro-symbolic approaches should operate well.

In terms of explainability, the proposed autoBOT offers insight into feature type and 
feature-level importances that are jointly learned. Potentially, a similar level of explainabil-
ity can be obtained by combining explanations based on linear learners that learn based 
on individual features in conjunction with learners that learn on the subspaces governed 
by  the separate feature types. The main difference between the two paradigms is that the 
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feature-type weights are obtained by evolution, offering potentially easier incorporation 
of additional type-related constraints or simultaneous consideration of multiple objectives 
related to a given representation’s properties. The bags-of-features-based approaches can be, 
on the contrary, faster and are potentially an interesting future research direction in terms of 
weight screening prior to the main, more computationally intense evolution part. We leave 
a more detailed study of the explanatory power and combinations of the two paradigms for 
further work. Note that the evolution performs feature selection only in the scenario where 
the weights are exactly zero (for a given type). This type of features will be omitted entirely 
during classification (extreme feature discarding). In most of the experiments conducted to 
this end, the evolution merely re-weighted parts of the feature space, which is used in a reg-
ularization-based approach (as part of the fitness function). Even though document embed-
dings could be obtained with existing language models, and potentially further improve the 
performance, such implementation would defeat the current purpose of autoBOT, which 
emphasizes low resource learning. To our knowledge current state-of-the-art language mod-
els (e.g., RoBERTa) are not yet necessarily suitable for commodity hardware, even though 
due to increasingly more computational power, this statement might change in the future. 
Overall, as autoBOT was built with modular representation learning in mind, should the 
need arise, contextual document space could also be included as one of the considered fea-
ture types (see Section 3.1). Further, we observed that large language models struggle with 
problems where the amount of data is not large, and there are many classes (e.g., mbti). 
Such behaviour will be further studied, as it is not clear whether this is a general limitation.

One of the emphasis of this paper is autoBOT’s capability to operate on sparse spaces. 
The sparsity of the considered document representations can be the result of two different 
procedures. First, the classifier, evolved as part of the evolution is regularized so that it 
potentially prunes out parts of the feature space. One of the classifiers explored as a part of 
each individual is also lasso, hence the classifier-based sparseness is obtained if the clas-
sifier performs well. Further, sparseness can also be induced at the representation level by 
the evolution itself; here, typed parts of the feature space can be jointly neglected (weight 
= 0) if e.g., character-based features are non-informative.

Current autoBOT implementation considers very basic evolution principles, known for 
at least 30 years. This choice is intentional, aiming to demonstrate that by considering a 
simple tournament-based evolution with mutation and crossover, the system already offers 
competitive performance. An apparent direction of future work is thus to explore more 
advanced evolution schemes, including the exploration of Pareto optimal representations 
(as for example discussed by Deb and Jain (2013))—simultaneous optimization of multiple 
metrics could be beneficial in many real-life scenarios (Ishibuchi et al. 2008), and shall be 
considered in future work.

Another design choice of autoBOT was the adoption of simple, well regularized lin-
ear learners instead of more computationally intensive ones. This choice was due to the 
emphasis on representation evolution, which can otherwise be out-sourced to the model 
itself (e.g., with deeper neural network models). Furthermore, the current implementation 
of autoBOT offers relatively simple (drop-in replacement) exploration of more involved 
models, which we leave for further work.

Finally, as the main result of this work we recognize the autoBOT’s performance to 
offer reasonable results with zero human hyperparameter tuning, while at the same time 
offering insights into which parts of the input space, either at the level of feature types, 
or at the level of individual features is relevant. Even though we employed simple coef-
ficient normalization, we believe importance assessment can already be useful for low-risk 
scenarios such as e.g., model debugging for news classification, however more involved 
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normalization schemes with statistical guarantees should be adopted if systems of this type 
were to be used in more high-risk (e.g., biomedical) domains. The proposed implemen-
tation offers a straightforward way of obtaining relatively strong classifiers with as little 
human input as possible, whilst remaining interpretable.

Appendix 1: Hardware used for neural language model training

The following is the hardware specification of the machine used for training neural language mod-
els. Note that GPUs were not used for autoBOT, as it performs as a parallel, CPU-only algorithm.
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Appendix 2: Tabular results
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4.2.4 Implementing Grid-scale Neuro-symbolic autoML

The introduced autoML system offers a straightforward exploration of the representation-
model space on a single machine. It was designed to use the available (free) threads;
this functionality was tested with up to 64 threads, indicating that even single-machine-
level parallelism can have a significant impact on the portion of the hyperparameter space
explored. As individual autoML jobs (evolutions) were designed to last for a predefined
amount of time, we investigated how this type of learning can further scale to the grid,
i.e., a collection of machines. This section presents our attempt at scaling autoBOT to all
available supercomputing resources in as friction-less manner as possible – our goal was to
implement a computational framework, which addresses the following main components
required for scaling:

• automatic job management,

• automatic result gathering/summarization,

• intermediary checkpoints for a given model,

• cleaning up redundant files when needed,

• appropriate containerization,

• proxy maintenance and job scheduling.

The remaining sections address the mentioned points in more detail. We conclude with an
overview of the developed framework.

Framework Overview. We begin the description of the proposed framework with an
overview of the key components required for its continuous operation. An overview of the
main building blocks with corresponding descriptions is shown in Figure 4.2. The key parts
of the framework include job generation, retrieval, summarization/selection and checkpoint
construction. Even though, conceptually simple, these steps need to be able to adapt to
different computing nodes (hardware-wise) and be robust enough that even if whole job
batches fail (due to, e.g., proxy misconfiguration), a solution is produced. We continue
with a more detailed description of the individual steps next.

Job Construction. The initial part of every search iteration includes the construction of
‘jobs’, i.e., self-contained instruction sets which, given a data split, return the performance
of a given autoML configuration. To make this step unified so that it can be adopted
beyond autoBOT, based on which we developed the framework, a unified JSON-based
format specifying individual jobs was introduced. The idea of this global configuration
file is that it stores the information regarding the autoML configuration (e.g., crossover
and mutation rates), and also describes to Singularity-based environments, which enable
execution on an arbitrary computing node that has Singularity installed. Jobs thus include
the information on where the data is stored, how long should a given evolution last, and
what are the expected result files.

Once the jobs are generated in the form of simple bash scripts, they are automatically
converted to the xrsl language suitable for grid-scale job specification.

Job Execution and Scheduling. The next step involves sending the xrsl specifications to
the cluster alongside the relevant files and monitoring their execution. To achieve this, the
user needs to specify as an argument two main parameters. First, the proxy server, which
gets periodically called to update the permission session, and second, a list of computing
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Figure 4.2: An overview of the key components comprising the autoML (grid-scale) frame-
work. Instead of conducting a single evolution run, the proposed framework performs
continuous evolution. By iterative solution refinement and job generation, it offers seam-
less scaling to an arbitrary number of computing clusters that support Singularity-based
dockerization and InfiniBand-based caching. The different textures of the computing nodes
symbolize different hardware properties (not all nodes are the same).

clusters to which a given user can access, and can send xrsl -based jobs. The generated jobs
are next partitioned into small batches based on how long was the evolution specified to last
and how long a particular xrsl job is allowed to run. For example, if we conduct evolution
for four hours and the available compute time is one day, the framework will automatically
generate five subsequent evolution runs (with some time left for file copying).

The jobs are periodically generated and sent to a randomly selected cluster (out of the
user-specified list). This step assures a fair distribution of jobs. After jobs are sent, the
framework checks for existing jobs, their success/failure and retrieves them.

Job Retrieval and Summarization. The next step includes retrieving the finished jobs
and their summarization. As each job submission generates a collection of files that include
the exact job IDs, this step first traverses these IDs and checks the jobs’ state. If a given
job has finished, it retrieves it into a designated folder so that all results are in one place.
If the job was retrieved, its IDs are removed from the current collection of ’active’ jobs’
IDs.

For each resulting job, the framework traverses its result JSON-based report and stores
the result into a simple TSV table that is easy to inspect. This way, the framework, running
continuously, constantly provides the user with the current best result. As the framework
also maintains the global results table, it is able, with each update, to re-rank the mod-
els/identify possible better models. Should a better model be identified, the current best
model (stored separately) is replaced. Furthermore, as all other models are automatically
removed, the space overhead of this retrieval/ranking step is very low – the main node
responsible for sending out and retrieving jobs can be an off-the-shelf laptop if needed.
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Automating model containerization. This section addresses the problem of model
deployment. By being able to obtain/select models at the grid-scale automatically, we
demonstrated that finding good classifiers can be, to some extent, automated. A model,
however, remains useless if it is not deployed/utilized in a realistic setting. Even though
the produced models come in the form of compressed pickle objects that are easy to
share/distribute, their use is limited to the set of people able to load/parse such objects.
The additional step that potentially further facilitates model development/deployment is
automatic dockerization of models alongside simple Application Programming Interfaces
(APIs). We aimed at developing a simple-to-use dockerization wrapper, which takes a
given pickle model and outputs the Docker image, which, when run, serves the models in
a simple-to-use API. We next discuss this software’s architecture, followed by an example.

Server Architecture and Build Procedures. This section provides an overview of the
considered server architecture and its link to the automatic model construction framework
discussed in the previous sections. The key goal of the presented dockerization regime is
to be very simple to use and offers adequate, out-of-the-box performance. The container
construction can be split into three main steps discussed next.

Model verification. The first step of building a model container performs a collection
of tests which assess its validity, i.e., suitability for being hosted. The tests include
model loading/decompression and example predictions.

Container specification. Even though the current solution already includes a generic
container specification capable of handling pickled models with a scikit-learn-like
class structure, the model object should include all required weights/background
knowledge. Further it should include the standard fit and transform methods if
required. Furthermore, the core API request handler can be modified to the user’s
preference, should, e.g., a non-pickle-based object be required (e.g., model binaries
directly).

Container building. Should the specification be correct, the container can be built
and used for a downstream application. The container can be subsequently loaded
in a monitoring system like podman (to ensure its uptime) and used in further de-
sign/development of a given application. The build procedure will automatically in-
stall the project’s requirements (requirements.txt) alongside an uvicorn-based API1

(SimpleAPI), which serves the pre-defined app at some generic port (which can
be forwarded when needed during hosting). The full project is available freely at
https://gitlab.com/skblaz/autobot-api/.

Table 4.1: Overview of different sparse matrix data structures.

Representation
Identifier Description Advantages Disadvantages
CSC Compressed Sparse Column Col. slicing, arithmetic, matrix-vector products Row slicing, structure changes
BSR Block Sparse Row Block-containing matrices Non-block-like matrices
COO Coordinate format Fast conversions to other formats Slicing and arithmetic
CSR Compressed Sparse Row Arithmetic, row slicing, matrix-vector products Col. slicing, structure changes
DIA Diagonal storage Arithmetic Transformations, non-diagonal structure
DOK Dictionary of Keys Arithmetic, O(1) access Duplicate handling, slicing
LIL List of lists Slicing, structure changes Arithm., matrix-vector products, col. slicing

A note on sparsity. Sparse representations can be represented in two main ways: as dense
matrices or as sparse data structures corresponding to the sparse matrix itself. Should

1https://www.uvicorn.org/

https://gitlab.com/skblaz/autobot-api/
https://www.uvicorn.org/
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the amount of memory be sufficient to represent a given sparse representation with a
dense matrix, this is the preferred option for the following reasons. First, all subsequent
operations do not require investigation of which sparse matrix types are the most suitable,
simplifying the final implementation. And second, dense matrices can be more natively
ported to specialized hardware such as GPUs, offering faster execution. On the contrary, if
a sparse representation, when represented with a dense matrix, does not fit into memory,
a multitude of data structures capable of holding the sparse structure directly can be
considered (and, in fact, were considered). Examples include the CSR, COO, BSR, CSC,
DIA, DOK and LIL formats2. A summary of different sparse matrix formats and their
intended use is given in Table 4.1.

The common denominator to all formats is that they are more suitable for some oper-
ations and less for others. For example, CSR matrices are suitable when performing dot
product-based operations, but not indexing.

2See more extensive descriptions at https://docs.scipy.org/doc/scipy/reference/sparse.html

https://docs.scipy.org/doc/scipy/reference/sparse.html
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Chapter 5

Neuro-symbolic Learning from
Tabular Data

A chain is only as strong as its weakest link.

Thomas Reid (1786)

Many real-life data sets are in tabular format. Examples include biomedical, genomics,
demographic and sensor-based data. In this chapter, we discuss the contribution, which
addresses the question of how the input feature space can be linked with a part of a neural
network and whether this connection resembles feature ranking.

5.1 Learning from Data Tables

Tabular data remains one of the most widely studied data formats, and is commonly
considered in biology, medicine, finance, engineering, and physics to describe different
problems. A schematic overview of the core learning task related to this chapter is shown
in Figure 5.1. The input space (green) is a real-valued matrix; each column represents a
feature. The target space (yellow) can similarly be a real-valued matrix, with each column
representing a target variable. In this work, targets are discrete – we are considering
classification. The goal of learning is to find f , which, given the input space, correctly
outputs the target values. The figure shows a high-level statement of the problem; we are
interested in automatically obtaining a function capable of associating inputs to outputs.
However, an essential aspect of many tabular methods is understanding which parts of the
input are crucial for producing a given output. This problem is addressed in the following
section.

(    ,   )
Tabular input space Tabular output space

Figure 5.1: Overview of learning from tabular data.
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5.2 Evaluating Neural Attention as Feature Ranking

As discussed in Chapter 2, neural networks have overcome the conventional approaches
in the domains of image recognition and text-based learning. Learning from propositional
data, however, remains an interesting open problem. This section presents one of the first
attempts at designing neural network architectures capable of maintaining the link between
individual attributes and a particular subset of weights. The purpose of this paper was
to demonstrate that the weights associated with this link can be interpreted as feature
ranking, i.e. an ordered set reflecting the importance of individual features. As feature
rankings can be evaluated, we conducted an extensive empirical evaluation to demonstrate
that the feature self-attention, as we term it, can offer ranking-like properties. The contri-
bution was strongly inspired by the attention mechanism (Devlin et al., 2019), which was
the key architectural breakthrough that enabled neural network-based models to prolifer-
ate in the domain of text mining. The paper is structured first to present the notions of
feature ranking and the relevant neural network concepts, followed by the formulation of
the idea, its implementation, theoretical analysis, empirical results and the implications of
being able to maintain the link to the feature space. The paper relevant to this section is
the following one:

Škrlj, B., Džeroski, S., Lavrač, N., & Petkovič, M. (2020). Feature Importance Esti-
mation with Self-Attention Networks. In G. D. Giacomo, A. Catalá, B. Dilkina, M.
Milano, S. Barro, A. Bugarín, & J. Lang (Eds.), ECAI 2020 - 24th European Confer-
ence on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela,
Spain, August 29 - September 8, 2020 - Including 10th Conference on Prestigious Ap-
plications of Artificial Intelligence (PAIS 2020) (pp. 1491–1498). IOS Press. https:
//doi.org/10.3233/FAIA200256

5.2.1 Key Contributions

We next present the key contributions of the conducted work.

1. We proposed SAN (Self-Attention Networks), a neural network architecture inspired
the recent developments in attention-based neural network design applicable to propo-
sitional data.

2. We identified a link between the self-attention vectors (diagonals of attention matri-
ces) and the notion of feature ranking.

3. To evaluate the hypothesis that self-attention resembles feature ranking, we con-
ducted an extensive empirical evaluation against strong baselines such as the Relief
branch of algorithms.

4. We offered a theoretical analysis of the algorithm’s computational complexity, offering
insights into when and why SAN potentially works and when it might encounter
problems.

5. We proposed multiple types of aggregations, which could lead to self-attention vectors
(rankings).

5.2.2 Addressed Hypotheses and Discussion

We next discuss the key research questions addressed in this work. The questions by no
means reflect all the work considered, but, summarise the main, at the time, unknown

https://doi.org/10.3233/FAIA200256
https://doi.org/10.3233/FAIA200256
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relations explored. We are interested in the following association. A recent branch of
neural network-based methods relies heavily on the notion of the attention mechanism –
a specialized layer that maintains the input-weight correspondences. We hypothesize that
self-attention vectors (diagonals of the attention matrix) offer similar rankings of features
as can be obtained via conventional feature ranking approaches such as, e.g., Relief. By
demonstrating a persistent link between a part of a neural network architecture and a
corresponding part of the instance space, a plethora of possibilities for further inspection
of key patterns relevant to a neural network could emerge.

We next discuss how the presented work addresses the raised hypotheses and poten-
tial implications. We remind the reader that the main hypothesis related to this chapter
was whether the self-attention mechanism, if adopted for use in a propositional (tabular)
learning setting, yields feature scoring that could be interpreted as feature ranking. This
hypothesis addresses both the understanding and explainability aspects (Hypotheses 1 and
2, Section 1.3), addressed more broadly as part of this thesis. First, by quantitatively evalu-
ating to what extent can attention-based ranking resemble conventional rankings, this work
offers a better understanding of the nature of the attention mechanism for propositional
data and its relation to feature importances (Hypothesis 1). Second, by demonstrating
that attention vectors can indeed represent rankings in a given learning scenario, the ex-
plainability increases (Hypothesis 2).

To verify these hypotheses, we conducted extensive experiments, demonstrating that
the rankings obtained via the proposed neural approach offer competitive performance
when evaluated with an external classifier – in the conducted experiments, this was the
myopic logistic regression. Further, we have for the first time studied the associations
between the neural rankings and conventional ones via the adoption of the Fuzzy Jaccard
Index (Petković et al., 2021), a recently proposed score that generalizes the commonly
used Jaccard index. This part of the study corresponds to the first hypothesis concerning
better understanding of a given black-box procedure (self-attention ranking in this case).
We demonstrated that self-attention rankings are more similar to the Relief-branch of
algorithms and less similar to myopic ones such as mutual information-based rankings. In
terms of explainability (Hypothesis 2), current results support the following conclusions.
One of the key goals of the paper was to evaluate whether the self-attention mechanism
indeed offers a potential link to the concept of feature ranking as known in the wider data
mining/machine learning community. Current results indicate that as long as the full neural
network converges to a well-performing model, the attention vectors offer feature rankings
compared to the existing ones. This result indicates that further study of how the neural
attention mechanism offers better insight into what the model emphasizes both at the
instance and at the global level is a promising research endeavour. This claim is partially
supported by related studies, such as the TabNet (Arik, Sercan Ö. and Pfister, Tomas,
2021) paper, which were submitted for publication at around the same time. Finally,
we demonstrated that the proposed architecture scales to real-life data sets with tens of
thousands of features; however, we acknowledge its expensive space overhead (O(|F |)2,
which could be further optimized.



Feature Importance Estimation with Self-Attention
Networks

Blaž Škrlj1 and Sašo Džeroski1 and Nada Lavrač1 and Matej Petković1

Abstract. Black-box neural network models are widely used in in-
dustry and science, yet are hard to understand and interpret. Recently,
the attention mechanism was introduced, offering insights into the in-
ner workings of neural language models. This paper explores the use
of attention-based neural networks mechanism for estimating feature
importance, as means for explaining the models learned from propo-
sitional (tabular) data. Feature importance estimates, assessed by
the proposed Self-Attention Network (SAN) architecture, are com-
pared with the established ReliefF, Mutual Information and Random
Forest-based estimates, which are widely used in practice for model
interpretation. For the first time we conduct scale-free comparisons
of feature importance estimates across algorithms on ten real and
synthetic data sets to study the similarities and differences of the
resulting feature importance estimates, showing that SANs identify
similar high-ranked features as the other methods. We demonstrate
that SANs identify feature interactions which in some cases yield
better predictive performance than the baselines, suggesting that at-
tention extends beyond interactions of just a few key features and de-
tects larger feature subsets relevant for the considered learning task.

1 Introduction

Deep neural networks have been successfully applied to text, graph
and image-based classification tasks, as well as to learning accurate
classifiers from propositional (tabular) data [10, 13, 20]. However,
with increasing number of parameters, neural networks are becom-
ing less human-understandable. The currently adopted paradigm to
tackle this problem involves using post hoc explanation tools, such
as SHAP and LIME [23]. Such approaches operate by approximating
the outputs of a given black-box model via some tractable scheme,
such as efficient computation of Shapley values or local approxima-
tion via a linear model. Such methods do not take into account the
inner structure of a given (deep) neural network, and treat it as a black
box, only considering its inputs and outputs.

Recent advances in the area of language processing, however, of-
fer the opportunity to link parts of a given neural network with the
input space directly, via the attention mechanism [33]. Achieving
super-human performance on many language understanding tasks,
attention-based models are becoming widely adopted throughout sci-
entific and industrial environments [34]. Models, such as BERT [11]
and XLNet [37], exploit this learnable lookup to capture relations be-
tween words (or tokens). The attention layers, when inspected, can
be seen to map real values to parts of the human-understandable input
space (e.g., sentences). Exploration of the potential of the attention
mechanism is becoming a lively research area on its own [7, 21]. We

1 Jožef Stefan Institute and International Postgraduate School Jožef Stefan,
Slovenija, matej.petkovic@ijs.si

believe similar ideas can be investigated in the context of proposi-
tional (tabular) data (where every row represents an individual data
instance) that remain one of the most widely used data formats in
academia and industry.

In this work, we propose the concept of Self-Attention Networks
(SANs) and explore, whether the representations they learn can be
used for feature importance assessment, comparable to feature im-
portance estimates returned by the established feature ranking ap-
proaches ReliefF [27], Mutual Information and Genie3 [16, 24]. The
main contributions of this work are:

1. The Self-Attention Network (SAN) architecture, a novel neural
network architecture capable of assessing feature importance di-
rectly, along with three ways of obtaining such importance esti-
mates.

2. Extensive empirical evaluation of SANs against ReliefF, Mutual
Information and Genie3 feature ranking approaches, demonstrat-
ing comparable performance to the SAN architecture. The most
important features according to SAN are shown to be in agree-
ment with the ones detected by the established approaches used in
the comparison.

3. Direct comparison of feature importance estimates, highlighting
similarities between the considered algorithms’ outputs.

4. A theoretical study of SAN’s properties, considering its space and
time complexity.

In the remainder of this paper we first discuss the related work, fol-
lowed by the formulation and empirical evaluation of SANs.

2 Related work
In this section we present selected feature ranking approaches and
briefly survey the approaches to learning from propositional data,
followed by a presentation of neural attention mechanisms.

2.1 Feature ranking
Feature importance estimation refers to the process of discovering
parts of the input feature space, relevant for a given predictive mod-
eling problem, i.e. identifying the (most) important features to be
used in model construction.

The simplest task of estimating feature importance is partition-
ing the features into groups of irrelevant and relevant ones, which is
equivalent to assigning every feature either importance 1 (feature is
relevant) or 0 (feature is irrelevant). This task is referred to as fea-
ture selection. Here, one can only partially order the features. In a
more general case, when every feature is assigned an arbitrary im-
portance score, one can sort the features with respect to these scores
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and obtain feature ranking. In this case, the features can be totally
ordered. Given a feature ranking, one can partition the features into
relevant and irrelevant ones by thresholding, i.e., proclaiming rele-
vant the features whose importance is higher than some threshold.

The main motivation for performing feature ranking (or selection)
is that an appropriately chosen subset of features may reduce the
computational complexity of learning, while potentially increasing
the learner’s performance. Moreover, the learned models that use a
smaller number of features are easier to explain.

In this work we consider a feature space F with a correspond-
ing class label set C. We focus on feature ranking algorithms, but
use thresholding (for many different values of the threshold) at the
ranking-evaluation stage, i.e., we measure the quality of the ranking
as the predictive performance of the models that are built from sets
of top-ranked features.

In this work we consider two types of feature ranking algorithms:

Wrappers. A feature ranking algorithm of this family comes to-
gether with a supervised learner. Once trained on the training data,
the learner is, apart from prediction, also capable of estimating
how relevant is each of the features for the task at hand. An impor-
tant member of this family is Genie3 feature ranking, computed
directly from Random Forest [4].

Filters. Algorithms such as the Relief family or Mutual Informa-
tion do not need a predictive model to obtain feature rankings.
Since they are model-agnostic, the corresponding feature rankings
are typically computed very efficiently, e.g., Mutual Information.
However, the computational efficiency often comes at the cost of
myopia, i.e., they ignore possible feature interactions.

Recent advances in deep learning mostly address model-based rank-
ing, where methodology, such as e.g., SHAP is used for post-hoc
analysis of a trained model. Note that such a methodology can also
be model-agnostic, yet it needs a model to compute feature impor-
tance.

2.2 Propositional learning and neural networks

In this work we focus on learning from (propositional) data tables,
where columns represent features (attributes) and rows correspond
to individual data instances. Despite its simplicity, training neural
network architectures on this type of data might be non-trivial in the
cases of small data sets, noisy feature spaces, spurious correlations,
etc. Further, recurrent or convolutional neural architectures are not
that useful for tabular data as there is frequently no spatial or tempo-
ral information present in the data. Methods, such as Extreme Gra-
dient Boosting [5] and similar, e.g., tree-based ensemble algorithms
often dominate competitive shared tasks on such input spaces.

Neural network approaches recently used in modeling proposi-
tional data are discussed next. The approach by Sakakibara [28] ad-
dresses learning of context-free grammars based on tabular (propo-
sitional) representations. Further, multilayer perceptrons have been
widely used, already in the previous century [18]. The recently intro-
duced Regularization Learning Networks (RLNs) represent one of
the most recent attempts at training deep neural networks on propo-
sitional data sets [31]; the paper shows that correctly regularized neu-
ral networks perform on par with e.g., gradient boosting machines,
demonstrating competitive performance on multiple data sets. Fur-
ther, the authors also explored the information content of the feature
space, showing that RLNs detect highly informative features. The
attention-based propositional neural networks were also considered

in the recently introduced TabNet [2]. Finally, ensemble-based learn-
ers were also successfully applied to propositional data, including
time series modeling [26].

2.3 Attention-based neural network architectures
The area of deep learning has witnessed many novel ideas in recent
years. The notion of attention has emerged recently for language
model learning [11, 33], as well as geometric deep learning [36].
In short, the attention mechanism enables a neural architecture to
pinpoint parts of the feature space that are especially relevant, and
filter out the remainder. The attention mechanism effectively sparsi-
fies the input space, emphasizing only the elements relevant for the
task at hand (e.g., language understanding). This way, the attention
mechanism is commonly used to e.g., better learn the relations be-
tween words. Even though this mechanism has been widely adopted
to text-based and graph-based tasks, less attention has been devoted
to its application to propositional learning from tabular data.

3 Self-Attention Networks
This section presents the proposed Self-Attention Network (SAN)
approach, illustrated in Figure 1. We begin by a formal description
of the architecture, followed by feature importance computation.

3.1 Propositional Self-Attention Networks
This section sources some of the ideas from the seminal works on
the attention mechanism [6, 33]. We refer the interested reader to
the aforementioned publications for a detailed description and ex-
plain here only the essential ideas implemented as part of SANs in
a propositional learning setting. The neural network architecture that
implements the attention mechanism can be stated as:

l2 = σ(W2 · (a(W|F | · Ω(X) + bl1)) + bl2).

The first neural network layer Ω is designed specifically to maintain
the connection with the input features F . We define it as:

Ω(X) =
1

k

⊕

k

[
X ⊗ softmax(W k

lattX + bklatt )

]
.

Input vectors X are first used as input to a softmax-activated layer
containing the number of neurons equal to the number of features
|F |, where the softmax function applied to the ji-th element of a
weight vector v is defined as:

softmax(vji) =
exp(vji)∑|F |
j=1 exp(vj)

,

where v ∈ R|F |. Note that k represents the number of attention
heads—distinct matrices representing relations between the input
features. The ⊗ sign corresponds to the Hadamard product and the
⊕ refers to the Hadamard summation across individual heads. Ω thus
represents the first layer of a SAN, its output is of dimensionality |F |.
a corresponds to the activation function SELU [19], defined as:

SELU(x) = λ

{
x if x > 0

α(exp(x)− 1) if x ≤ 0
.

where λ and α are hyperparameters. The proposed architecture en-
ables self-attention at the feature level, intuitively understood as fol-
lows. As Ω maintains a bijection between the set of features F and
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Feature importance
Dimension = 

Prediction

Figure 1: Overview of Self-Attention Networks. latt corresponds to the attention layer, where the element-wise product with the input space is
computed on each forward pass. l1 and l2 correspond to two dense layers, yielding a prediction ŷ. The 1

k
⊕ box represents element-wise means

across the attention heads (k). Note that, if extracted, the attention vectors from latt can be used to compute the feature importance estimates.

the set of weights in individual heads W k
latt

, the weights in the
|F | × |F | weight matrix can be understood as relations between
features. Finally, SANs are additionally regularized using Dropout
[32]2. In this work, we are interested exclusively in self-attention—
the relation of a given feature with itself. We posit that such self-
relations correspond to features’ importance. Once a SAN is trained,
we next discuss the ways of computing feature importance.

3.2 Computing feature importance with SANs
Let us show how the considered architecture can be used to obtain
real values which we argue represent feature importance. We explore
the procedures for obtaining the final vector, as a mapping from the
feature space to the space of non-negative real values, i.e. function
f : F → R+

0 .

Instance-level aggregations (attention). Let (xi,yi), 1 ≤ i ≤ n,
be the instances. Let SAN(xi) represent the attention output of
the i-th instance, defined as

SAN(xi) =
1

k

⊕

k

[
softmax(W k

lattxi + blatt )

]
.

The first option for computing feature importance performs the
following operation, where the outputs are averaged on-instance
basis.

RI =
1

n

n∑

i=1

SAN(xi).

Counting only correctly predicted instances (attentionPositive).
The second variant of the mechanism operates under the hy-
pothesis, that only correctly predicted instances should be taken
into account, as they offer extraction of representative attention
vectors with less noise. Such scenarios are suitable when the
number of instances based on which features’ importance are
to be computed is low, and the classification performance is not
optimal. Let ŷi represent the final prediction of an architecture
(not only attention vectors). This version of the approach assesses
feature importance Rc

I (c stands for clean) as follows:

Rc
I =

1

n

n∑

i=1

SAN(xi) [ŷi = yi] .

2 For readability purposes, we omit the definition of this well known regular-
ization method.

Global attention layer (attentionGlobal). The previous two ap-
proaches construct the global feature importance vector incremen-
tally, by aggregating the attention vectors based on individual in-
stances used for training. However, such schemes can depend on
the aggregation scheme used. The proposed global attention ap-
proach is more natural, as it omits the aggregation: once trained,
we simply activate the attention layer’s weights by using softmax.
This scenario assumes, that the weight vector itself contains the in-
formation on feature importance, and can be inspected directly3.
Global attention is defined as follows:

RG =
1

k

⊕

k

[
softmax(diag(W k

latt ))

]
;W k

latt ∈ R|F |×|F |.

4 Theoretical considerations
In this section we discuss the relevant theoretical aspects of the con-
sidered neural network architecture, starting with SAN’s space and
time complexity, and followed by an overview of the computational
complexity of the considered methods.

4.1 Space and time complexity of SANs
We first discuss the space complexity with respect to the number of
parameters, as we believe this determines the usefulness of SANs in
practice. Assuming the number of features to be |F |, the most com-
putationally expensive part of SANs is the computation of the atten-
tion vector. The attention, as formulated in this work, operates in the
space of the same dimensionality as the input space; the number of
parameters is O(|F |2). This complexity holds if a single attention
layer is considered. As theoretically, there can be multiple such map-
pings to the input space in a single attention block, the space com-
plexity in such case rises to O(|F |2 · k), where k is the number of
considered attention weight matrices (heads). In practice, however,
even very high dimensional data sets with, e.g., more than 60,000
features can be processed, which we prove in the empirical section.
Note that (6 ·104)2 = 3.6 ·109 (≈ 11GB if stored as floating points),
which is the scale at which language models such as RoBERTa [22]
and similar operate, thus the complexity does not prohibit the use on
high dimensional data that of practical relevance. We believe, how-
ever, that sparsity at the input level could significantly reduce the
complexity, which we leave for further exploration.
3 In Appendix A we discuss another way how global attention can be ob-

tained, yet do not consider it in this work.
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We finally discuss the time complexity of computing feature im-
portance for a single instance, as well as for a set of instances. In
Section 3.2 we introduced three different implementations of SANs
considered in this work: two instance-based, where attention is com-
puted for each instance and aggregated afterwards, as well as global,
where after training, the attention vector is simply extracted and used
to represent features’ importances. The first situation, where predic-
tions up to the end of the second layer need to be conducted (up to the
activated attention vector), is of linear complexity with respect to the
number of test instances, across which the final importances shall be
aggregated. On the other hand, if the attention vector is activated di-
rectly after the training phase, the computational complexity reduces
to the computation of the softmax, and is in factO(1) w.r.t. the num-
ber of test instances. Note that such computation is fundamentally
faster and scales to massive production environments seamlessly.

4.2 Overview of computational complexity
To contextualize the computational complexity of SANs, we com-
pare it with some of the established feature ranking algorithms that
will offer the reader insights into possible benefits, as well as draw-
backs of individual methods considered in this work.

In Tables 1 and 2, t denotes the number of trees in the Random For-
est, while k denotes the number of attention matrices (heads) used.

Table 1: Computational complexity of feature importance estimation:
The learning stage.

Algorithm time complexity space complexity
ReliefF O(|F | · |I|2) O(|F |)
Random Forest O(t|F ||I| log2 |I|) O(|I|+ |F |)
Mutual Information O(|F | · |I|) O(|I|)
SAN O(|F |2 · |I|) O(k · |F |2)

Table 2: Computational complexity of feature importance estimation:
The post-learning stage. NA (not applicable) denotes the cases where
feature importance is obtained directly from the learning stage.

Algorithm time complexity space complexity
ReliefF NA NA
Random Forest O(t|I|) O(|I|)
Mutual Information NA NA
SAN O(1) orO(|I|) O(k · |F |2)

In Table 1, we compare the computational complexity of the learn-
ing process: this refers to either building a predictive model (Random
Forest, SAN) or computing the feature importances from the training
data (ReliefF, Mutual Information). Further, in Table 2, we discuss
the complexity of obtaining feature importances after the learning
stage. Note that filter methods, such as the ReliefF and Mutual Infor-
mation only require the first step of the computation, whereas SAN
and Random Forest require an additional computational step that ex-
tracts feature importances based on the trained model.

5 Experimantal setting
In this section we discuss the empirical evaluation setting used in
this work. The evaluation is split into two parts: measuring the fea-
ture ranking similarity and feature ranking quality. When measuring
feature ranking similarity, we compare pairs of the rankings via FUJI
score. When measuring feature ranking quality, we explore how a se-
ries of classifiers behave, when top n features are considered for the
task of classification.

5.1 Pairwise comparisons with FUJI

The output of a feature ranking can be defined as a real-valued list,
whose j-th element is the estimated feature importance of the j-th
feature. A typical approach for comparing such lists is to compute the
Jaccard indices [17] between the sets of top-ranked features. How-
ever, this score takes into account feature importances only implic-
itly (via the order of the features) and is consequently unstable and
often too pessimistic. Thus, we use its fuzzy version FUJI (the Fuzzy
Jaccard Index) [25].

Even though FUJI takes importances directly into account, it is
still scale-free and thus appropriate for comparing the outputs of dif-
ferent feature ranking algorithms. Given a pair of feature rankings,
e.g., Mutual Information and Attention, FUJI is computed for differ-
ent sizes of top-ranked feature sets that belong to the two rankings.
The obtained values are then plotted as a single curve, as shown in
Figure 2. Such a comparison is very informative, since one can ob-
serve how the similarity of the two rankings changes when the num-
ber of features considered grows, but aggregation of a curve into a
single scalar may sometimes be preferred. We do so by computing
the area under the FUJI curve. Either trapezoidal or Simpson’s rule
can be employed; in this work we use the latter4.

In the experiments, we obtain feature rankings for similarity com-
parison as follows. The model-based ranking algorithms (SANs and
Random Forests) were trained by first selecting optimal model based
on ten fold stratified cross validation. This step is skipped in the case
of ReliefF and Mutual Information algorithms. In the second step,
we use the whole data set to estimate feature importances (either di-
rectly or using the chosen model). The whole data set can be used
since these feature rankings are only used in the similarity compu-
tation (and not for predicting the target values), and should be used
since the feature rankings are expected to be better when computed
from more data.

5.2 Classification performance evaluation

In the second set of the experiments, we investigate how the top n
features assessed by a given method influence the performance of
the Logistic Regression (LR) classifier, for different values of n. We
selected this learner for the following reasons. As evaluation of in-
dividual values of n requires hundreds (or thousands) of models to
be built, LR is fast enough to be used in such setting. Next, it is
sensitive to completely non-informative features. Should a given fea-
ture importance assessment method prioritize completely irrelevant
features, the classifier will not perform well. In terms of hyperparam-
eters, we use the same parametrization of SANs across all data sets.
The rationale for this decision is that neural networks can easily over-
fit a given data set. We decided to use the same set of hyperparame-
ters to showcase the overall adequate performance of SANs. The l1
dimension was set to 128, the network was trained for 32 epochs,
with the batch size of 5. The learning rate for the Adam optimizer
was set to 0.001, and the dropout, which we used for regularization,
was set to 20%. We used stratified 10 fold cross validation where a
feature ranking is computed from the training set and evaluated on
the testing set. A single attention head was used (k = 1). We report
the average Logistic Regression performance for each n.

4 This implicitly assumes the FUJI curve is a spline of quadratic polynomials.
We average the normalized areas across all data sets to obtain a single scalar
representing the relation between two methods.
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5.3 Experimental data sets
We conducted the experiments on the following data sets.

DLBCL [3]. A series of translocations specify a distinct gene ex-
pression profile that distinguishes a unique leukemia. The data set
consists of 7,070 features and 77 instances.

Genes [35]. The cancer genome atlas pan-cancer analysis project.
The data set consists of 20,531 features and 801 instances. Fea-
tures correspond to gene expression vectors.

p53 [9]. Predicting Positive p53 Cancer Rescue Regions Using
Most Informative Positive (MIP) Active Learning. The data set
consists of 5,409 features and 16,772 instances.

Chess [30] (King-Rook vs. King-Pawn). The data set describes var-
ious endgames, and consists of 3,196 instances and 36 features.

pd-speech [29]. Collection and Analysis of a Parkinson Speech
data set with Multiple Types of Sound Recordings. The data set
consists of 26 features and 1,040 instances.

aps-failure [8]. IDA 2016 Industrial Challenge: Using Machine
Learning for Predicting Failures. The data set consists of 171 fea-
tures and 60,000 instances.

biodeg [12]. Biodegradability of commercial compounds. the data
set consists of 62 features and 328 instances.

optdigits [1]. Optical Recognition of Handwritten Digits. The data
set consists of 64 features and 5,620 instances.

madelon [15]. This is a synthetic data set published at NIPS 2003,
aimed to test feature selection capabilities of various algorithms.
The data set consists of 500 features and 4,400 instances.

The selected data sets span across multiple topics, and were selected
to provide insights into the quality of feature importance assessment
methods. Finally, we also evaluated the difference in the attention
across relevant and irrelevant features based on the algorithm pro-
posed by Guyon et al. [14]5. For the purpose of this synthetic ex-
periment, we generated a binary classification problem data set com-
prised of 100 features, where only 50 were deemed relevant, with
1,000 samples of the data used for training SANs. The experiment
was conducted via three repetitions of three-fold cross validation. We
aggregated the attention values separately for the positive, as well as
the negative class if the classification accuracy for a given fold was
more than 50%. The attentions were aggregated only if a given pre-
diction was correct—this step was considered to reduce the effect
of the neural network’s performance on the attention vectors’ prop-
erties, as we only attempted to extract the attention relevant for the
discrimination between the classes.

6 Results of experiments
In this section, we present the results of the empirical evaluation. For
improved readability, the results are presented graphically.

6.1 Differences in attention vectors
We first visualize the distributions of attention with respect to both
positive and negative instances in Figure 2.

It can be observed that the attention is on average observably
higher when positive instances are considered. As the neural network
is trained to recognize such examples, such outcome indicates the at-
tention mechanism potentially detects the relevant signal. Note that

5 Implemented in https://scikit-learn.org/stable/
modules/generated/sklearn.datasets.make_
classification.html
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Figure 2: Differences in attention, aggregated w.r.t. correctly pre-
dicted positive and negative examples.

Figure 2 shows attention, aggregated only on the features that were
assessed as important (half of the features).

6.2 Importance similarities
We next discuss the similarities between the considered feature im-
portance approaches. The results are presented as FUJI curves,
where we omit the space of all possible (pairwise) comparisons to
the ones, that are compared with the proposed SANs. The results are
shown in Figure 3.

The considered visualizations depict at least two general patterns.
First, the attentionClean and attention-based importances are indeed
very similar. We remind the reader that the difference between the
two is that attentionClean only takes into account the correctly classi-
fied instances. Next, we can observe that ReliefF and Random Forest-
based importances are different. Further, the global attention appears
the most similar to Random Forest importances. Overall areas below
FUJI curves are shown in Figure 4.

6.3 Classification performance
We next discuss the classification performance results. Let us remind
the reader that the results show how the logistic regression (C = 1, L2
normalization) classifier performs when parts of the feature space are
pruned according to a given feature importance vector. The results
are shown in Figure 5.

The first observation—to our knowledge not known to the
community—is that SANs indeed perform competitively. Especially
on data sets with a large number of features, such as the p53, genes
and dlbcl (all biological ones), the attention mechanism detects larger
subsets of features that can improve the performance of the logistic
regression classifier, in e.g., dlbcl even outperforming all other ap-
proaches by a margin of more than 15%. On smaller data sets, SANs
perform competitively (e.g., madelon, optdigits, chess), or do not per-
form that well (biodeg-p2-discrete). Overall, worse performance of
SANs coincides with smaller data sets, indicating that not enough
data was present for SANs to distill the relevant parts of the feature
space. Further, it can be observed that ReliefF on data sets such as
pd-speech and madelon outperforms all other approaches, indicating
this state-of-the-art approach is suitable for low-resource situations.

7 Discussion and conclusions
Operating on propositional data, SANs have some inherent bene-
fits, as well as drawbacks. The most apparent drawback is the ar-
chitecture’s space complexity, as with more attention heads, it could
increase greatly for the data sets with a large number of features.
In comparison, language models are maintaining a fixed sequence
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Figure 4: Similarities of considered feature importance assessment
approaches. The attention-based importances are the most similar to
each other, as well as to the ReliefF algorithm.

length during training, which is commonly below e.g., 1,024, and
can thus afford multiple attention heads more easily.

Another key difference is the mapping to the input space. As with
text, each input instance consists of potentially different tokens, at-
tention matrices represent different parts of the vocabulary for each
e.g., sentence. In contrast, the proposed SANs exhibit a consistent

mapping between the input space and the meaning of individual fea-
tures, making possible the aggregation schemes considered in this
work.

In terms of general performance, this paper proves empirically that
SANs can emit attention vectors that offer similar feature rankings
relevant for an external classifier (e.g., Logistic Regression). As the
purpose of this work was not excessive grid search across possible
architectures, which we leave for further work. We believe SANs’s
performance could be notably improved by improving the underlying
neural network’s performance, as well as by using other types and
variations of the attention mechanism. Further, the proposed SANs
shall be compared to the recently introduced TabNet [2], an approach
that also attempts to unveil the feature importance landscape via se-
quential attention mechanism.

An additional contribution of this work is the FUJI score based
comparison, where we uncover similarities between all considered
approaches. The SANs are similar to the Genie3 and ReliefF, indi-
cating the importance computation is possibly non-myopic (as MI),
yet we leave validation of this claim for further work.

8 Availability

The code to reproduce the results is freely accessible for academic
users at: https://gitlab.com/skblaz/attentionrank.
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Figure 5: Feature ranking performance for different classifiers across different data sets. We report the relative F1 score, i.e., performance with
respect the setting where all features are used as inputs to the logistic regression classifier.
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A Obtaining attention via feature-level activation

We defined global attention as:

Rg =
1

k

⊕

k

[
softmax(diag(W k

latt ))

]
;W k

latt ∈ R|F |×|F |.

One could consider a similar scheme, with the difference that the
softmax could be applied for each feature w.r.t. the remainder of the
features, and simply extracted as the main diagonal of the obtained
matrix. Let RWS be defined as:

RWS = concatByRows(softmax(Wlatt (i))); i is a row.

Where Wlatt (i) corresponds to the i-th row of the weight matrix.
Thus, the global attention can be computed as:

Rg =
1

k

⊕

k

[
diag(RWS(W k

latt ))

]
.
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5.3 Embedding-based Feature Ranking in High Dimensions

The final core contribution of this thesis explores the possibilities of performing fast feature
ranking when high-dimensional data sets are considered. We investigated to what extent
can the existing, Relief-based (Kira & Rendell, 1992), feature ranking approaches bene-
fit from utilizing learned representations of both input and output spaces to learn more
efficiently (Hypothesis 4, Section 1.3). Even though adopting low-dimensional represen-
tations to learn more efficiently has been previously explored to speed up learning, many
such approaches are not adapted to handle sparse data well. This, in practice, results in
large memory consumption, which renders a given algorithm less useful when considering,
e.g., biomedical data sets, where many dimensions are present, albeit the data sets can be
very sparse.

We explored whether the current state-of-the-art embedding algorithm UMAP (McInnes
et al., 2018) can offer sufficient performance when considering high-dimensional data sets.
Furthermore, by rewriting the multiclass and multilabel variants of the RelieF(F) algo-
rithm to operate with sparse matrices, we demonstrated significant speedups and relatively
low-performance degradation. Even though UMAP handles larger sparse data sets, its ini-
tialization remains prohibitive when considering data sets with many instances. This is
due to its spectral initialization, which at some point results in quadratic space require-
ments (pairwise distances between the instances are stored for graph minimization). The
proposed ReliefE detects such scaling problems up-front and adapts by considering only
a sub-sample of the whole data set if needed. Hence, the presented contribution does not
focus solely on building an embedding-based Relief algorithm but also explores how to
push further the scaling capabilities of existing embedding algorithms. The paper relevant
to this section is the following one:

Škrlj, B., Džeroski, S., Lavrač, N., & Petković, M. (2021). ReliefE: feature ranking
in high-dimensional spaces via manifold embeddings. Machine Learning, 1–45. https:
//doi.org/10.1007/s10994-021-05998-5

5.3.1 Key Contributions

We next present the key contributions of the conducted work.

1. We present ReliefE, an algorithm from the Relief family capable of feature ranking
by exploiting learned, low-dimensional representations of instances.

2. The implementation of ReliefE that supports embeddings of both target and the
input spaces scales seamlessly to very high-dimensional data sets and was shown to
perform competitively.

3. To scale ReliefE, we also improved the training regime of the selected embedding
algorithm; if a given input data set is too large, it selects a representative subspace
and estimates the projection of instances/targets based on this subspace, scaling
beyond the capabilities of out-of-the-box implementation.

4. ReliefE automatically determines the latent dimension of the input/target space prior
to embedding, thus omitting the need for manual tuning of this hyperparameter.

5. We demonstrate both theoretically and empirically that embedding-based ranking is
a promising research endeavour.

https://doi.org/10.1007/s10994-021-05998-5
https://doi.org/10.1007/s10994-021-05998-5
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5.3.2 Addressed Hypotheses and Discussion

The developed ReliefE algorithm adopts the instance/target embeddings to scale the Relief-
based feature ranking better. The main hypothesis related to the presented work concerns
model scalability (Hypothesis 4, Section 1.3). We demonstrated, both in theory and in
practice, that substantial speedups can be observed by reducing the number of features
(|F | → d). Furthermore, by considering only representative subspaces, the proposed ap-
proach scales better also with respect to the number of instances. This second constraint,
in particular, appeared problematic when attempting to leverage contemporary embedding
learners (UMAP (McInnes et al., 2018) in this case). The need to better scale the em-
bedding estimation based on the representative subspace was not one of the goals of the
paper; however, it was needed for ReliefE to scale properly to the largest considered data
sets. A substantial amount of time was spent on implementing ReliefE via Numba-based
(compilable) operations. Such implementation, at least in theory, maintains the simplicity
of use (a simple-to-use library without the need for explicit compilation). As reported, we
achieved mixed results with this approach. On the one hand, substantial speedups were ob-
served if the operations could be easily compiled (multi-fold). However, in some scenarios,
we were not certain which parts offered speedups and which did not; hence additional pro-
filing was conducted. This step resulted in the realization that in order to implement very
fast Numba-compatible, e.g., Relief updates, the code becomes harder to maintain, slowly
converging towards, e.g., C++-like syntax. We believe, however, that transpillation 1 of
higher-order languages, when possible, is a very interesting and straightforward approach
to obtaining substantial speedups on a given problem. In time, such libraries/approaches
for transpilation are expected to become only better. Hence, having an understandable
and easy-to-maintain codebase with the benefit of parts of it being compiled, remains an
interesting design decision for scientific computing. Overall, the presented work demon-
strates that adopting contemporary embedding algorithms, which enable the comparison
of instances/targets in the latent space, offers substantial speedups. The proposed method
can be interpreted as a neuro-symbolic feature ranking approach, where the embedding
learning is considered sub-symbolic (neural), and the ranking is considered symbolic.

The results indicate that exploration of how the existing paradigm of representation
learning could be of use when improving algorithms that have been present and used
for decades is a promising research venue. Furthermore, the results indicate that if the
learned representations are not of high quality, i.e. the latent space is not reflective of
the original space, the subsequent ranking will most likely underperform. This trade-
off is expected, as it adheres to the noise-in noise-out principle. The first hypothesis
(better understanding; Section 1.3) was also partially addressed. As ReliefE leverages
both the symbolic and the sub-symbolic learning paradigm, its behaviour could be studied
with respect to the learned representation’s quality. As the embedding algorithms can be
understood as lossy compression engines, performance degradation is a potential side effect
of coupling the two paradigms. However, it is not necessarily the case that immediate
performance degradation takes place – note that the initial data sets can include much
noise, indicating that compressing the data set to a high-enough dimension could also have
de-noising effects (better performance). To summarize the findings, we confirmed that the
neuro-symbolic paradigm can offer more scalable solutions to existing Relief-based feature
ranking approaches and that the overall performance of such a system depends on the
embeddings’ quality, which can be a limiting factor.

1Transpillation corresponds to translation of source from one language to source in a different language.
In the context of this thesis, it was mostly considered for performance reasons (e.g., speeding up Python).
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and irrelevant instances. Despite their high utility, these algorithms can be computation-
ally expensive and not-well suited for high-dimensional sparse input spaces. In contrast, 
recent embedding-based methods learn compact, low-dimensional representations, poten-
tially facilitating down-stream learning capabilities of conventional learners. This paper 
explores how the Relief branch of algorithms can be adapted to benefit from (Riemann-
ian) manifold-based embeddings of instance and target spaces, where a given embedding’s 
dimensionality is intrinsic to the dimensionality of the considered data set. The developed 
ReliefE algorithm is faster and can result in better feature rankings, as shown by our evalu-
ation on 20 real-life data sets for multi-class and multi-label classification tasks. The util-
ity of ReliefE for high-dimensional data sets is ensured by its implementation that utilizes 
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1 Introduction

Contemporary machine learning has found its use in many scientific disciplines, rang-
ing from biology, sociology, logistics and engineering sciences to physics. Data sets are 
often available in tabular form and consist of instances (rows) and features (columns), 
where attributes denote column names and individual features correspond to individual 
attribute values.

Even though predictive models can offer insights into how well a certain aspect of 
a given system can be predicted, researchers and industry practitioners are frequently 
interested in which parts of the input space are the most relevant. Having such knowl-
edge can yield novel insights into relevant aspects of the studied problem, leading to 
improved human understanding of the studied phenomenon. For example, in modern 
molecular and systems biology, discovery of novel biomarkers is of high relevance—
once the researchers know which, e.g., compounds or proteins indicate the presence of 
the studied condition, they can be used for preliminary condition detection, but also to 
advance the human understanding of the conditions leading to the construction of novel 
hypotheses. We next discuss the types of feature ranking algorithms.

Feature ranking algorithms can be split into two main groups: myopic and non-
myopic. Myopic algorithms do not consider multiple features simultaneously and thus 
potentially neglect interactions between features. Examples of myopic feature ranking 
algorithms include, e.g., the information gain-based ranking. Algorithms from the non-
myopic Relief branch, originating in the early Relief algorithm (Kira and Rendell 1992), 
are among the most widely used non-myopic algorithms for feature ranking, where each 
feature is assigned a real-valued score, offering insights into its importance. The Relief 
family of algorithms has been successfully applied to numerous real-life problems 
(Stiglic and Kokol 2010; Stokes and Visweswaran 2012; Petković et al. 2021). In this 
work we propose ReliefE, an embedding-based feature ranking algorithm built on the 
ideas of the original Relief and ReliefF (Robnik-Šikonja and Kononenko 2003), as well 
as their extensions to a multi-label classification setting (Petković et al. 2018). ReliefE 
does not compute feature importances based on the original, high-dimensional feature 
space, but via low-dimensional embeddings of the input and/or output spaces. The key 
contributions of this work are summarized as follows:

• We present ReliefE, an algorithm for feature ranking implemented using sparse 
matrix algebraic computation of distances between low-dimensional manifold 
embeddings of both instances and targets (when considering multi-label classifica-
tion).

• The latent dimension of the space, in which the distances are computed, is inferred 
automatically in an efficient manner.

• We show that the number of neighbors to be considered can be automatically 
inferred based on the distribution of distances to the considered instances, rather 
than hard-coded as part of the input.

• Theoretically grounded sparsification of the input was considered as a preprocessing 
step, potentially decreasing the execution time.

• We offer evidence that ReliefE performs significantly faster than many state-of-the-
art methods, especially in high-dimensional input (and output) spaces.

• Theoretical properties of ReliefE, including the properties of the embedding spaces, 
their relations and computational complexity analysis are studied.
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• We showcase the ReliefE’s performance against six strong (widely used) baselines on 
20 real-life multi-class and multi-label classification data sets.

• We perform extensive Bayesian and frequentist performance comparisons assessing the 
statistical evidence of ReliefE’s utility and potential drawbacks.

The rest of this paper is structured as follows. In Sect.  2, we discuss the key ideas that 
have led to the developments described in this paper. Section  3 presents the proposed 
ReliefE methodology, followed by a description of the experimental setting in Sect.  4 
and the results of the empirical evaluation in Sect. 5. The overall findings are discussed 
in Sect. 6, followed by the conclusions and plans for further work in Sect. 7. The paper 
includes numerous appendices presenting detailed results of empirical comparisons and 
case studies.

2  Background

In this section we discuss the works that have impacted this paper the most, starting with 
the notion of feature ranking and the description of the Relief branch of feature ranking 
algorithms. Next, we discuss how embedding-based learning can be of use when solving 
otherwise intractable problems, serving as a motivation for the proposed work.

2.1  Feature ranking

Feature ranking can be considered as the process of learning to prioritize the feature space 
with respect to a given learning task. Algorithms that rank features can operate in non-myopic 
(considering feature interactions) or myopic manner (ignoring feature interactions). One of 
the first and most widely used algorithms for non-myopic feature ranking is Relief (Kira and 
Rendell 1992), introduced in the early 1990s. This iterative algorithm operates by randomly 
selecting parts of the instance space (e.g., rows), followed by iterative update of weights cor-
responding to individual features based on the closest instances from the positive and negative 
classes. The original Relief performs well for binary classification, however was unable to gen-
eralize to more complex learning tasks such as multi-class classification. Its extension, ReliefF 
(Robnik-Šikonja and Kononenko 2003), introduced a prior-based weighting scheme that can 
take different classes into account. In the following years, multiple adaptations of both Relief 
and ReliefF were introduced, varying mostly in terms of schemes for taking into account a 
given instance’s neighborhood and its (aggregated) properties. For example, SURF (Greene 
et al. 2009) unifies the considered per-class neighborhoods, whereas SURFstar (Greene et al. 
2010) additionally considers distant neighbors. Further, MultiSURFstar (Granizo-Macken-
zie and Moore 2013) takes neighborhood boundaries into account based on the average and 
standard deviation of distances from the target instance to all others. The TuRF adaptation 
(Moore and White 2007) of any Relief algorithm also employs recursive feature elimination, 
whilst applying the dedicated Relief implementation iteratively during feature pruning. TuRF 
attempts to address some of the problems that arise in very large feature spaces (e.g., more 
than 20,000 features), yet at the cost of higher computational complexity. In terms of scalabil-
ity, for example, VLSReliefF (Eppstein and Haake 2008) samples random subspaces whilst 
simultaneously offering competitive performance at a far lower computational cost. The above 
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ReliefF variants mostly attempt to correct some of the original ReliefF drawbacks by re-con-
sidering the update step and how the neighbors are taken into account.

In recent years, the Relief algorithms have also been extended to a multi-label classifica-
tion setting (MLC)—a learning problem where multiple labels for an instance are simultane-
ously possible. Examples of this task include gene function prediction. The first attempt of 
extending ReliefF to MLC that scales well with the number of labels (Petković et al. 2018) 
uses the Hamming distance as the distance measure between two label sets. Since Hamming 
loss can be expressed as a sum of component-wise differences, it is not able to detect the pos-
sible label-label interactions, which may lead to sub-optimal quality of the obtained rankings 
as shown recently (Petković et  al. 2018), where other MLC error measure-based distances 
between labels were shown to offer superior performance.

2.2  Embeddings

The rise of embedding-based learning can be nowadays observed in virtually all areas of sci-
ence and industry. Since the 2010s, for example, deep neural networks are successfully used 
in fields such as computer vision, where state-of-the-art results are consistently demonstrated, 
e.g., in face recognition and anomaly detection (LeCun et al. 2015; Pouyanfar et al. 2018). 
Further, in the recent years, natural language processing has been transformed first by the 
introduction of recurrent neural networks, followed by the attention-based neural networks 
(transformers), showing prominent results in the areas of question answering, language under-
standing and text classification (Vaswani et al. 2017). Similar results have been observed in 
the areas of network mining (Kipf and Welling 2016) and time series analysis (based on the 
initial work of Connor et al. 1994).

Neural networks offer an elegant alternative for learning a latent representation of the 
input data set that can be transferred, as well as directly used for problem solving. More 
recent works on representation learning, however, suggest that a low-dimensional manifold 
is a suitable topological object for learning rich and transferable representations (Bronstein 
et al. 2017; Masci et al. 2015). Even though representations learned by neural networks can be 
associated with manifold learning, the development of algorithms capable of approximating 
such low-dimensional manifolds has been an active research area even before the era of deep 
learning, and is of particular relevance to this work. For example, algorithms such as Isomap 
(Balasubramanian and Schwartz 2002) and Locally linear embedding (Roweis and Saul 2000) 
have been successfully used for data visualization and more efficient learning. Further, mod-
ern omics sciences have widely adopted t-SNE (Maaten and Hinton 2008), an approximation 
method capable of producing two dimensional embeddings of high-dimensional spaces, mak-
ing it suitable for e.g., gene expression visualization. Hyperbolic embeddings have been also 
recently demonstrated to be useful when considering hierarchical multi-label classification 
(Stepišnik and Kocev 2020).

This work builds on the notion of uniform manifold projections (UMAP) (McInnes et al. 
2018a, b), a recently introduced algorithm with a strong theoretical grounding in manifold 
theory. We explore, whether low-dimensional manifold approximations of sparse input spaces 
can be a natural extension to the Relief family of algorithms.
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3  Proposed methodology

One of the main criticisms of the Relief branch of algorithms is their lack of ability 
to handle very high-dimensional, potentially sparse input spaces, where problems arise 
either due to increased space complexity or due too incremental weight update steps 
that result in similar importance scores for many features (i.e. non-informative rank-
ings). We developed the proposed ReliefE algorithm with the goal to addresses these 
issues. In this section, we discuss in detail ReliefE, the proposed embedding-based fea-
ture ranking algorithm for multi-class and multi-label classification problems, along 
with its implementation, currently one of the fastest Python-based implementations 
compiled to machine code capable of handling both multi-class and multi-label clas-
sification problems.

The proposed ReliefE algorithm is summarized in Fig. 1. Here, the input feature space 
( F ) is mapped (by �F ) to its corresponding low-dimensional approximation ( EF ). Finally, 
the Relief feature ranking (f) is adapted to operate via this low-dimensional representation 
to obtain final feature rankings w . Further, in a multi-label setting, distances between tar-
gets ( T ) can also be computed in the latent space ET , constructed via �T.

3.1  Rationale for embedding‑based ranking

Embedding the instances in the feature space prior to feature ranking is sensible due to 
the fact that volume increases exponentially with dimension. Many classifiers benefit from 
increasing the number of dimensions, however, once a certain dimensionality is reached, 
their performance can degrade (Hughes 1968). Feature ranking aids this problem by prior-
itizing parts of the feature space that are relevant for learning.

Higher-dimensional feature spaces render feature importance detection in the initial 
feature space harder, as more subtle differences between instances need to be taken into 
account. Embedding (in an unsupervised manner) offers the construction of instance rep-
resentations that potentially carry additional semantic context, as comparing instances in 
the embedded space does not compare only the considered pairs of instances but also their 
potential roles in the joint latent space, offering more meaningful comparisons (as shown 

Fig. 1  Overview of the core idea behind ReliefE. Distances in both the feature and target space are com-
puted based on instance embeddings
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in e.g., Mikolov et al. 2013 for words and phrases). We next discuss the embedding method 
considered throughout this work.

3.2  Uniform manifold approximation and projection

This work builds on the recently introduced idea of Uniform Manifold Approximation and 
Projection (UMAP) (McInnes et al. 2018a) for the task of low-dimensional, unsupervised 
representation learning. Even though a detailed treatment of the theoretical underpinnings 
of UMAP is beyond the scope of this paper, we discuss some of the key ideas underlying 
the actual implementation, and refer the interested reader to McInnes et al. (2018a) for a 
detailed overview of the theory.

UMAP is formulated with concepts from both topological manifold theory and applied 
category theory. Riemannian manifolds are topological spaces that have a locally constant 
metric, and are locally connected. UMAP assumes that high dimensional data can be uni-
formly mapped across a low-dimensional Riemannian manifold. The locality of the metric, 
connectivity and uniformity of the mapping are the three main assumptions of this method. 
Even though such assumptions are not necessarily fulfilled, appropriate selection of the 
metric used by UMAP can offer better performance and generalization when the learned 
representations are used for down-stream learning tasks. In contrast to t-SNE, which is 
effective for two dimensional embeddings, UMAP is highly efficient also for embeddings 
into higher-dimensional vector spaces. UMAP thus serves as a general unsupervised rep-
resentation learner.1 It has been successfully used for exploration of biological and other 
high-dimensional data sets (Cao et al. 2019). In summary, the topological manifold theory 
underlying UMAP offers a very general representation learning framework, applicable 
beyond the current implementation of UMAP, which we discuss in more detail below.

Even though the original formulation assumes continuity, in practice, discrete graph-
theoretical analogs of the continuous concepts are employed. The representations are 
a result of a two-step procedure, where in the first step, a weighted graph is constructed 
based on the distances between the closest instances. The second step resembles conven-
tional graph layout computation, which is normally computed in two or three dimensions 
for visualization purposes, where, e.g., two coordinates of a 2D layout represent two fea-
tures. Analogously, UMAP extends the idea to higher dimensions, where the instances are 
positioned in a d-dimensional space (with d going up to several hundred in most cases). 
The resulting space is not useful for direct visualization, but serves as a representation suit-
able for a down-stream learning task—in this work, feature ranking. The computation of 
the UMAP embedding can be described as follows. 

Weighted graph construction.  Assume a user-specified dissimilarity measure 
� ∶ ℝ|F| ×ℝ|F| → [0,∞) and the number of nearest neigh-
bours k, computed via an approximation algorithm (Dong 
et al. 2011). We refer to the ordered set of instances near-
est to instance ri as {ri1 ,… , rik} . For each instance, let 

𝜔i = min {𝛿(ri, rij )|1 ≤ j ≤ k, 𝛿(ri, rij ) > 0},

1 UMAP can also perform supervised embeddings, yet this functionality is not considered in this work.
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 and �i such that 

 Next, a weighted directed graph G = (N,E,w) is constructed, where N is the set of consid-
ered instances, E = {(ri, rij )|1 ≤ j ≤ k} and 

 The final adjacency matrix B is computed as B = A + AT − A⊙ AT where, A is the adja-
cency matrix of G and ⊙ denotes the Hadamard product.
Layout computation.  In the second step, the graph undergoes a process resem-

bling energy minimization, where repulsive and attrac-
tive forces are iteratively applied across pairs of instances, 
resulting in a d-dimensional layout, which is effectively 
a real-valued embedding. The attractive forces ( F+ ) are 
computed, for a given pair of vertices ni and nj and their 
corresponding coordinate representations (embeddings) ri 
and rj as follows: 

 and similarly, the repulsive forces ( F− ) are computed as 

 Here, � is introduced for numerical stability (a small constant), while a and b are hyper-
parameters. Note that the F− update is computationally very expensive, and is addressed 
via sampling. The initial coordinates are computed by using spectral layout—here, the two 
eigenvectors corresponding to the two largest eigenvalues are used as the starting set of 
coordinates.
 The two steps, when implemented efficiently, offer fast construction of d-dimensional, 
real-valued representations. The considered UMAP implementation exploits the Numba 
framework (Lam et al. 2015) for compiling parts of Python code, making it scalable whilst 
maintaining user-friendly API-based execution. Note that UMAP’s computational com-
plexity depends heavily on the approximate k-nearest neighbor computation. In the fol-
lowing sections, we discuss how we further facilitate the embedding computation, as the 
current version of UMAP still has high space complexity (graph construction).

3.3  Input sparsification

The proposed methodology is capable of handling highly sparse inputs without additional 
memory overheads. However, real-life data frequently comes in the form of dense matri-
ces, as is the case with, e.g., gene expression data sets. As a part of the proposed method-
ology, we explored whether input sparsification can speed up the feature ranking process 

k∑

j=1

exp

(−max(0, �(ri, rrj ) − �i)

�i

)
= log2(k).

w((ri, rij )) = exp

(−max(0, �(ri, rij ) − �i)

�i

)
.

F+ =
−2 ⋅ a ⋅ b ⋅ ||ri − rj||2(b−1)2

1 + ||ri − rj||22
⋅ w(ni, nj) ⋅ (ri − rj),

F− =
b ⋅ (1 − w(ni, nj)) ⋅ (ri − rj)

(� + ||ri − rj||22)(1 + ||ri − rj||22)
.
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with minimal ranking quality degradation. We implemented the theoretically grounded 
Probabilistic Matrix Sparsification algorithm (PrMS) for matrix sparsification (Arora et al. 
2006), given in Algorithm 1.

The mathematical intuition behind PrMS is as follows. Given a real-valued matrix 
A ∈ ℝn×n , let S =

∑
ij �Aij� . A single PrMS pass through A guarantees at least O(

√
n⋅S

�
) ele-

ments with probability 1 − exp (−�(
√
n⋅S

�
)) . Here, � represents the lower bound, and 

� = �∕‖A‖2 , where parameter 𝜖 > 0 determines the approximation level. Further, with 
probability 1 − exp (−�(n)) , ||A − Â||2 ≤ O(𝜖) holds.2 Note that, as the majority of real-
life data sets are not represented by symmetric matrices (typically, they are not even square 

matrices), the transformation B ↦ A =

[
0 B

BT 0

]
 of the initial matrix B ∈ ℝm×n has to be 

employed since A is symmetric and ‖A‖2 = ‖B‖2 . We heuristically consider 
� = ‖A‖∞∕(m + n) , i.e. the maximal column-average (of absolute values) of matrix A.

The sparsification procedure remains highly dependent only on � , the parameter deter-
mining the reconstruction error that is allowed.

We have used this estimate of � as it is fast to compute and avoids the need for user spec-
ification of � , whilst simultaneously guaranteeing reasonable performance (see Sect.  5). 
One of the most crucial hyperparameters related to representation learning in general is the 
dimension of the space in which the constructed representation resides. We have attempted 
to automate the choice of this—otherwise hard-coded—parameter and discuss the consid-
ered estimate next.

3.4  Estimation of latent dimension

Following (Facco et al. 2017), we improve upon the idea of latent dimension estimation 
via top two nearest neighbors. To compute the latent dimension d of the data (under the 
assumption of a locally constant probability density), it suffices to define two (hyper)
spheres S1 and S2 . Both are centred at a random data sample and have radii equal to the dis-
tances between the sample and its two nearest neighbors (Facco et al. 2017). The radii and 
the dimension d define the volumes of the spheres and it turns out that the value of d can be 
easily estimated from the empirical probability distribution of the ratio V(S2�S1)∕V(S1) of 
the volumes of the shell S2∖S1 and sphere S1 . The method, implemented as a part of ReliefE 
is summarized in Algorithm 2. 

2 For extensive theoretical treatise, please consult (Arora et al. 2006).
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The algorithm first computes distanceMatrix, i.e. a matrix comprised of distances to 
the top two nearest neighbors. In this work, we improve upon the original idea of simply 
computing the two nearest neighbors of a given instance. Instead, we ignore the neighbors 
that are equal to a given instance (are at distance 0), and take into account the two nearest 
neighbors that are at a positive distance to the given instance (method pairwiseDistanc-
esNonzero). The rationale for this step is that this method is also used on the output space 
of multi-label classification data, where two (or more) examples can often have the same 
output value (vector describing the labels assigned to the instance). If we had followed 
the original method, some components of the vector � would equal ∞ or NaN. Using the 
modified procedure, numerical instability is avoided whilst observing the same, or very 
similar, results. Next, � , a quotient between the two distance vectors is computed (second 
closest against closest). An empirical distribution is derived from � . This distribution can 
be defined as:

where � represents the indicator function (presence). Thus, for a given x, Fn represents the 
relative number of elements that are smaller than x. The logarithms of � , as well as (1 - 
EMPn(x) ) are computed next. The line between the two quantities intersects 0, and its coef-
ficient, when rounded to the nearest integer, corresponds to the estimated latent dimension. 
For example, the intrinsic dimension of the genes data set is estimated to 33 (see Fig. 2).

3.5  Scaling up UMAP: learning to embed based on representative subspaces

As the most apparent memory (space) bottleneck, we (empirically) identified the UMAP’s 
graph construction phase, where the entirety of the instance space is used for learning to 
approximate the low-dimensional manifold (embedding). This paper explores whether rep-
resentative subspaces of the instance space can serve similarly well for learning to embed. 
The idea was inspired by recent work on random output space selections for ensemble 
learning (Breskvar et al. 2018). The two adaptations we needed to consider were the initial-
ization and training on a representative subspace of the instances. In the original UMAP, 
the initialization is based on the spectral decomposition of the instance graph. We instead 
considered random initialization, which already notably reduced the memory requirement, 
and kept the quality of the ranking at the approximately same level. However, on larger 
data sets (see Sect. 4), the embedding computation was still beyond the capabilities of an 
off-the-shelf computer (Lenovo Carbon X1). To overcome this issue, we employ the fol-
lowing two-step sampling scheme. In the first step, the set of target values appearing in the 
data was ordered into a list. In the second step, we cyclically iterate through the list and 

EMPn(x) =
1

|I|
∑

�xi<x
,
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(without repetition) choose an element with a given target value, or skip this value if all 
samples labeled with the considered target value have already been chosen.

The multi-class (and binary) classification examples thus adhere to straightforward map-
ping from possible classes to the corresponding multisets of instances. We also extended 
this idea to the task of multi-label classification (MLC) where multiple labels can be simul-
taneously assigned a given example. However, a finite number of possible different label 
sets allows for first enumerating them, and then proceeding as in the multi-class classifica-
tion scenario. We consider the theoretical properties of this procedure in Sect. 3.8.

3.6  Adaptive neighbor selection and comparison to average neighbor 
representation

The first improvement we introduce next, removes the hyperparameter k—the number of 
neighbors considered for an update step w.r.t. a single randomly chosen instance. Com-
monly, k is a user defined hyperparameter: However, we explored whether this part of the 
user input can be removed entirely and replaced by a distance distribution-based heuristic 
that dynamically allocates a number of neighbors suitable for a given randomly selected 
instance, albeit at some additional computational cost. The rationale for such a heuristic is 
that real-life data sets are often not uniformly distributed (Liu et al. 2005), indicating only a 
few other instances are mostly well connected with a given one (scale-free property).

We implement this (optional) estimation as follows. For each instance, ReliefF com-
putes its distance to the remainder of the other instances in order to obtain the top k nearest 
ones. Such hard-coded selection scheme is not optimal, as it does not take into account the 
shape of the distance distribution with respect to an individual instance. To overcome this 
issue, we propose the following procedure: 

1. Sort distances w.r.t. the selected instance ri.

Fig. 2  Intrinsic dimension for the genes (Weinstein et al. 2013) data set
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2. Compute the difference between each pair of consequent entries in the distance vector.
3. Select the value of k based on the maximum difference observed.

This procedure intuitively takes into account the shape of the distance distribution as fol-
lows. Assuming that all instances are similarly far from the selected instance, the difference 
vector will mostly consist of small values (a given pair of distances is not all that different). 
This can result in large k, as the global difference maximum can occur very late. On the 
contrary, if only a handful of instances are close, and the remainder is very far, only this 
handful shall serve to determine k, which will be consequently lower. Furthermore, if very 
high k is selected and all distances are approximately the same, their mean will be similar 
no matter how many are selected. If a similar situation is considered for highly non-uni-
form distance distribution, the mean of selected k nearest instances should represent only 
the ones that are indeed similar to the selected instance, and do not take into account the 
remainder which is further and possibly not as relevant.

Even if the standard IID assumption holds when sampling a data set, we are always 
given a finite sample. The neighborhoods of the samples on the border of the convex hull 
of the data set are most probably different than the neighborhoods of those in the interior 
of the hull. Additional theoretical properties of this neighbor number selection are given in 
Sect. 3.8, where computational complexity is also considered.

The proposed adaptation of ReliefF was further extended with an additional option to 
use the average neighbor for the update step, instead of performing updates based on all 
neighbors and averaging the updates. Albeit subtle, this difference potentially improves the 
update part’s robustness, making the update step less prone to possible outliers amongst 
the nearest neighbors—such situations could emerge, if the value of k is hard-coded, as 
is commonly the practice. The intuition behind this incremental change in weight update 
is as follows. As the distance computation is conducted in the latent space, averaging the 
representation of the neighborhood can also be considered as constructing a semantic rep-
resentation of the considered instance’s neighborhood.

3.7  ReliefE—ranking via manifold embeddings

In the following sections, we discuss more formally the proposed ReliefE algorithm incor-
porating the possible improvements stated in the previous sections. The solution (that han-
dles both multi-class and multi-label classification) is given as Algorithm 3. We can see 
that this is an iterative algorithm where a random sample r is chosen on each of the n itera-
tions, and distances between r and the remaining instances are computed (lines 6 and 18). 
We next discuss the two main parts of ReliefE with respect to the addressed classification 
task. 
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The adaptive threshold step can be further formalized as shown in Algorithm 4. 
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3.7.1  Multi‑class classification

We first discuss the part of ReliefE algorithm that handles multi-class classification (MCC) 
tasks. Here, the classes are traversed (line 8) as follows. If adaptiveThreshold is enabled, 
the number of neighbors to be considered is determined dynamically for each sample 
(see Sect.  3.6 for more details). Next, the neighbors are selected and used for the final 
weight update, where the prior probabilities of individual classes are also considered. The 
updateScore method iteratively updates the weights (line 16), and is in this work for the j-
th feature and i-th sample defined as follows:

In the proposed update step, an instance is compared directly to the mean of its neigh-
bors which reduces the noise compared to the original updates of Relief (Kira and Rendell 
1992) where the order of the averaging and | ⋅ | operators is reversed.

The nearestNeighbors represents the ordered set of indices of the top k neighbors, thus 
�[nearestNeighbors(i)][j] represents the first moment w.r.t. the j-th feature based on the 
nearest neighbors of the i-th instance (there are k such neighbors). We set the prior to -1 
and the offset for considering the nearest neighbors to +1 if c = ci , i.e., the considered class 
ci is equal to the currently considered class c.

3.7.2  Multi‑label classification

For multi-label classification (MLC option), the weight update step differs substantially 
from the MCC case, after selecting a random instance ( ri ) and determining its distance 
to the other examples. First, the indices of the closest k neighbors are stored in nearest-
Neighbors. As the values in the target space T are sets of (multiple) labels per instance, the 
simple iteration considered in the MCC case does not take the interactions between classes 
into account (label co-occurrences). Hence, distances are also computed between the target 
values of ri and its nearest neighbors (line 26), by using one of the implemented options of 
ReliefE, which are given in Table 1.

Note that we also consider the cosine and hyperbolic distances which are applicable if 
the label space is embedded prior to the ranking step. We believe employment of manifold 
projections that operate on sparse spaces can be of relevance for high-dimensional output 
spaces, as for example seen when considering gene function prediction (Urbanowicz et al. 
2018). Once the distances are obtained both based on the input space and the output space, 

w[j]+=
|||r

j

i
− �[nearestNeighbors(i)][j]

|||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

absMean weight update

⋅
{

P[c]∕(1 − P[ci]) ; c ≠ ci
−1 ; c = ci

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Prior information

.
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this information is used for updating feature weights as follows. Let K represent the set of 
considered nearest neighbors. Let t-diff represent the mean of the target distances tar-diff. 
Let d-diff represent the mean of the (descriptive) distances to neighbors (des-diff), as also 
considered for the MLC case, i.e. the absolute difference between the selected instance ri 
and the mean of the nearest neighbors. More formally

where X[n ∈ K] keeps only the rows of the matrix X that correspond to the neighbors 
n ∈ K.

We further define

and the weight update can be defined as:

The weight update concludes the ranking for multi-label classification.

3.8  Theoretical analysis

We next discuss the relevant theoretical aspects of ReliefE, ranging from computational 
complexity analysis (both time and space) to the implications of the adaptations considered.

3.8.1  Time complexity

The time complexity of ReliefE can be studied with respect to the two main modes of func-
tion—multi-class and multi-label classification. 

T-DIFF = �[dist(ti,T[n ∈ K])] and D-DIFF = �[dist(ri,E[n ∈ K])],

TD-DIFF = �[TAR-DIFF ⊙ DES-DIFF],

(1)w[j]+=
TD-DIFF

T-DIFF
−

D-DIFF − T-DIFF

1 − TD-DIFF
.

Table 1  Considered distances between rows in the multi-label output matrix T

The t
1
 and t

2
 correspond to two rows, the nnz represents the count of non-zero elements in a given row vec-

tor. Note that the considered vectors are binary in all but the cosine and hyperbolic cases (last two rows)

Distance Definition

F1
dist =

{
1 −

2t1 t
T

2

(nnz(t1)+nnz(t2))
;(nnz(t1) + nnz(t2)) > 0

0 ; otherwise

Accuracy
dist =

{
1 −

t1 t
T

2

(nnz(t1+t2))
;(nnz(t1 + t2)) > 0

0 ; otherwise

Subset
dist =

{
1 ; t1 == t2;

0 ; otherwise

Hamming dist =
∑�t1�

i=1
�t1,i − t2,i�∕�t1�

Cosine (if embedded) dist = t1t
T

2
∕(‖‖t1‖‖2‖‖t2‖‖2)

Hyperbolic (if embedded) dist = arcCosh (−t1t
T

2
)
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Dimensionality estimation.  The dimensionality estimation step, as optionally considered 
in this work, requires pairwise distance computation between 
the instances. Thus, �(|�|2 ⋅ |F|) operations are required, 
where � represents the indices of the samples for dimen-
sion estimation, and |𝜈| < |I| , as discussed in Sect. 3.5. Note 
that if all instances are considered, the complexity rises to 
�(|I|2 ⋅ |F|).

Manifold projections.  Learning low-dimensional representations represents one of 
the computationally more intensive parts of ReliefE. Fol-
lowing (McInnes et  al. 2018b), the UMAP’s complexity 
can be split into two main parts. First, approximate nearest 
neighbor computation was shown to have empirical com-
plexity of O(|I|1.12 ⋅ |F|) (Dong et  al. 2011). However, in 
the sampling limit, if all instances are considered, the com-
putational complexity is equal to that of pairwise compari-
sons—O(|I|2 ⋅ |F|) The optimization of embeddings requires 
additional O(k ⋅ |I|) steps, where k is the number of nearest 
neighbors (a hyperparameter). Overall complexity is in the 
worst case thus O(|I|2 ⋅ |F|) . Note that the proposed cyclic 
sampling scheme (Sect.  3.5) implies I → � for all cases in 
this paragraph.

Multi-class.  Given a fixed number of samples s, ReliefE traverses each 
of the classes |T|, and for each one performs the sampling. 
The adaptive neighbor selection scheme does not cost any 
additional time w.r.t. |I|, as the distances are already com-
puted. The feature update step requires O(|F|) operations, 
for each neighbor. The complexity of the original, re-imple-
mented ReliefF is thus O(|I| ⋅ |F| ⋅ s) (Robnik-Šikonja and 
Kononenko 2003). The absMean update does not change 
this complexity, however, when adaptive scoring is consid-
ered, distances to the class members need to be sorted. We 
re-use the sorted indices of top neighbors to obtain clos-
est distances, thus no additional time is spent on sorting. If 
ReliefE is considered, the complexity needs to be adapted for 
input dimension estimation, as well as lower dimension in 
which distances are computed. The final complexity is thus: 
O(|�|2 ⋅ |F| + |I| ⋅ d ⋅ s) , where d is the dimensionality of the 
embedding. Assuming the “empirical complexity" from the 
previous paragraph holds, the multi-class complexity can 
also be stated as O(|�|1.12 ⋅ |F| + |I| ⋅ d ⋅ s)

Multi-label.  The complexity of multi-label classification needs to addi-
tionally account for the distances computed between the tar-
get instances. Effectively, O(|�|2|F| + s ⋅ (|I| ⋅ dF + k ⋅ dT )) 
operations are required, where dT and dF correspond to 
embedding dimensions of the input and output space – for 
each sample, first distances need to be computed between the 
instances to that sample within the input space (|I|). Once top 
k nearest instances are identified, the distances of the target 
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instance to these k other target instances are computed in dT 
space.

Down-stream ranking.  Commonly, Relief algorithms operate in the raw feature 
space, however, as ReliefE operates via embedding-based 
distance computation, we consider the option that embed-
dings are pre-computed. This is possible due the fact that 
many contemporary embedding algorithms refine the repre-
sentation, once the new data is obtained, and do not (neces-
sarily) re-compute the embedding for each new instance. In 
this case, the initial complexity of O(|�|2 ⋅ |F| + |I| ⋅ d ⋅ s) 
reduces to O(|I| ⋅ d ⋅ s).

3.8.2  Space complexity

The proposed implementation of ReliefE in comparison with, e.g., state-of-the-art 
Python-based implementations (as found in Urbanowicz et  al. 2018) operates eas-
ily in very high-dimensional, sparse vector spaces. In practice, we adopt the CSR for-
malism for matrix representation. Here, a sparse matrix is stored as three arrays, a data 
array, a pointer array and an index array. All three code for non-zero entries in the input 
space. Note that such representation is not optimal for dense matrices, as it results in 
some (minor) space overhead. This design decision means that every computationally-
intensive operation that is part of ReliefE was re-written with handcrafted CSR-friendly, 
Numba-compilable methods. More formally, let nnz correspond to the number of non-
zero elements in a given matrix. The space complexity of ReliefE can thus be stated as: 
O(max(nnz(F), nnz(EF)) +max(nnz(T), nnz(ET))).

The complexity thus depends on the relation between the embedded space and the input 
space, which can be very context-dependent, however very low-dimensional embeddings 
normally do not result in space overhead, and neither do highly sparse input matrices. 
More formally, if nnz(F) ≥ |I| ⋅ d or nnz(T) ≥ |I| ⋅ d,

the embedded space will require less (or equal) memory. Note that T , correspond-
ing to a potentially very sparse output space, is similarly considered as a sparse matrix, 
meaning that classification problems with very high-dimensional target spaces can also be 
considered, which is to our knowledge one of the first such Python-based, user-friendly 
implementations. As dimensionality estimation only requires the two closest neighbors, 
we do not keep all others in memory, the space complexity becomes linear, i.e., O(|I|) 
(in fact, exactly 2 ⋅ |I| ). We empirically discovered that UMAP’s memory requirements are 
the main space bottleneck, and, based on the evaluation on the larger data sets, require 
O(|I|2) (empirical) space. Such complexity potentially arises from the dense computational 
graph derived by UMAP. This observation led us to introduce the representative (cyclic) 
sampling scheme, which reduced this complexity to O(|�|2) , making ReliefE executable 
even on an off-the-shelf computer (Lenovo Carbon X1). Note that the number of samples is 
lower-bounded by the number of classes or unique label sets.

3.8.3  absMean update step and its implications

Compared to the original ReliefF, one of the proposed modifications implemented in 
ReliefE is the comparison of a given instance directly to the average nearest neighbor. We 
believe that this approach is advantageous in two ways.
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First, as shown in Fig. 3a, if a sample r that is far away from the class border is chosen, 
we cannot capture the local structure of the data in the other classes, so such samples r 
should not influence the updates considerably. This is not the case in the standard ReliefF, 
since the differences in feature values are necessarily large. This is overcome by computing 
the average neighbor first, and then updating the weights.

Second, when the sample r is close to the border (Fig. 3b), averaging neighbors results 
in correctly detecting that the general direction of the neighbors should be perpendicular to 
the class borders when the number of samples goes to infinity. For example, in the situation 
depicted in Fig. 3b, only n1 should be rewarded. Again, computing the mean neighbor �(n) 
first, brings us closer to the optimal direction. The reduction of noise can be also proven by 
using the triangle inequality, 1

k

∑k

j=1
�n0

i
− n

j

i
� ≥ �n0

i
−

1

k

∑k

j=1
n
j

i
�, from which it directly fol-

lows that this approach results in smaller weight updates.

3.8.4  Adaptive neighbor selection and its behavior

The considered adaptive neighbor selection attempts to reduce the number of hyperparam-
eters by one (k), potentially saving O(k) optimization iterations, should this parameter be 
tuned. Furthermore, by considering neighbors, potentially relevant for a given instance, 
less noise is considered during the weight update step. For example, assume k = 7 , with 
only three other instances very close and the remaining four much further (by a large mar-
gin). The latter 4 instances will impact the weight update significantly, as the average dis-
tance will be heavily biased towards their mean, and thus potentially not representative of 
the close neighborhood of a given instance that naturally appears in the data. A visualiza-
tion in such a situation is shown in Fig. 4.

In both panels ((a) and (b)), the outer circle represents the neighbourhood for a hard-
coded value of k. In Fig. 4a, very distant instances are also considered for the update (e.g., 
from n3 onward) and the adaptive estimation only selects the closest neighbors (green). 
However, in Fig. 4b, all instances are very close, thus the value of k is equal to the auto-
matically selected choice.

This follows the intuition behind the Relief family of algorithms, where an instance is 
compared to its slight perturbations. Another downside of having k fixed, is that taking into 
account more distant nearest neighbors would (on average), increase the importance of more 

(a) (b)

Fig. 3  Updating weights with the absMean approach. The n
1,2,3

 represent the instance � ’s neighbors
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noisy features, since the distance values directly influence the importance. Irregularities in dis-
tance distribution were shown to hold for many real-life data sets, see for example the assump-
tions and their implementation in Dong et al. (2011). Finally, as ReliefE operates in a latent, 
low-dimensional space, obtained by instance similarity comparison, comparison to the closest 
instances only is potentially meaningful.

3.8.5  Parallelism aspects

The proposed implementation exploits the Numba framework for just-in-time compilation 
(Lam et al. 2015). Numba offers parallelism at the level of individual methods that get com-
piled, meaning that the proposed implementation offers parallelism at the level of weight 
updates. During compilation, parts of the code that are sensible to compile get detected auto-
matically. Many operations such as scalar-vector addition and similar can easily be parallel-
ized. With auto-parallelization, Numba attempts to identify such operations in the ReliefE 
weight update step, and fuses adjacent ones together, to form one or more kernels that are 
automatically run in parallel. In practice, we observed that such auto-parallelism does not nec-
essarily offer superior performance in terms of speed. However, it represents an elegant, array-
level parallelism detection which, when improved/updated, shall speed up the execution time 
even more. We omit the discussion regarding different spaces considered during ReliefE to 
“Appendix 1”.

3.8.6  How powerful is ReliefE?

Throughout this paper, we propose and demonstrate the utility of ReliefE when tabular data is 
considered. However, as ReliefE requires merely the representations of instances (training or 
target), the proposed approach generalizes well beyond tabular data with a single adaptation: 
the embedding method needs to be suitable for the considered data type. For example, if an 
instance is described by an ordered list of graphs, the plethora of graph embedding methods 
(Goyal and Ferrara 2018; Mežnar et al. 2020) could be used to prioritize the graphs based on 
their (learned) representations. Similarly, ReliefE could be adapted for learning in the context 
of relational data bases, via Wordification (Perovšek et al. 2015) and other propositionaliza-
tion-like algorithms.

Fig. 4  Adaptive neighbor 
selection. The n

1,2,3,…
 represent 

neighbors

(a) (b)
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4  Empirical evaluation setting

Our empirical evaluation of ReliefE consists of many sub-studies, and can be sum-
marized as follows. First, we discuss the evaluation of ReliefE against state-of-the-art 
ranking algorithms on eight multi-class classification data sets. Next, we present the 
empirical evaluation setup where ReliefE’s capabilities are shown on nine multi-label 
classification data sets. Finally, we conducted a series of experiments where we investi-
gated in more detail the convergence and time performance. We conclude this section by 
describing the Bayesian and frequentist approaches, to aid understanding of the results.

4.1  Multi‑class classification data sets

Multi-class classification remains one of the most widely adopted forms of learning. 
Here, the input space is associated with a single, integer-valued vector, where each 
instance can belong to one of the many possible classes. In this work, we consider a 
wide spectrum of data sets, summarized in Table 2.

The data sets are from multiple domains, incl. biological, social and other domains 
(e.g., chess). The data sets are of different dimensions, in terms of the numbers of rows 
and also columns.

4.2  Multi‑label classification data sets

Feature ranking for multi-label classification remains an active research area. Many 
of the approaches considered in the previous section (multi-class classification) are 
not able to handle the multi-label setting, where a single instance can belong to many 
classes simultaneously. Such a setting, for example, naturally emerges when gene 

Table 2  The properties of the considered multi-class classification data sets

The last column denotes the proportion of non-zero elements in the data table

Data set Instances Features Classes Proportion 
of non-zero 
entries

chess (Shapiro 1984) 3196 38 2 0.726558
biodeg-p2-discrete (Džeroski et al. 1999) 328 61 4 0.107357
optdigits (Alpaydin and Kaynak 1998) 5620 62 10 0.528117
madelon (Guyon et al. 2005) 2000 500 2 0.999999
php88ZB4Q (Anguita et al. 2013) 10299 561 6 0.999860
pd_speech_features (Sakar et al. 2013) 756 753 2 0.995294
dlbcl (Armstrong et al. 2002) 77 7070 2 0.997388
tumors C (Pomeroy et al. 2002) 60 7129 2 0.995722
AP_Ovary_Kidney (Stiglic and Kokol 2010) 458 10935 2 1.000000
ohscal.wc (Han and Karypis 2000) 11162 11465 10 0.005270
genes (Weinstein et al. 2013) 801 20531 5 0.857824
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function prediction is considered—a single gene is associated with many functions and 
contexts. The considered multi-label data sets are summarized in Table 3.

Similarly to the multi-class setting, we selected data sets from various domains to main-
tain diversity. Note that multiple repetitions of 10 fold cross validation were needed to per-
form Bayesian comparisons.

4.3  Additional experiments and statistical evaluation of results

For MCC, logistic regression with its default parameters was used as the learner. The 
first reason for this choice is the fact that this very learner is commonly used to evaluate 
the quality of a given data representation (in our case a subset of the feature space), and 
is known to be sensitive to noisy features. The second reason is computational: With all 
repetitions required for Bayesian analysis, additional grid search would be out of reach as 
it could further increase the computational time beyond reasonable capabilities. For the 
MLC setting, the default random forest parametrization was used, as it has been previously 
shown to perform competitively/well in such setting. Throughout the experiments, we 
set the regularization term of logistic regression (C) to one, the default value (Pedregosa 
et al. 2011). For multi-label classification, we considered the RandomForest classifier with 
default settings as set in Pedregosa et al. (2011).

As we consider either multi-class or multi-label problems, we compute either relative 
F1 or micro-averaged relative F1 scores, defined as:

where F1 is the harmonic mean of precision and recall, and f is the number of features. 
The macro rF1 is defined in the same fashion. Considering relative performance offers 
direct insights into how performant a given ranking is with how many top-ranked features. 
Note that by considering relative performance, it can be directly observed when the feature 
ranking algorithm identifies a ranking that outperforms the situation where all features are 

rF1(f ) =
F1f

F1f=|F|
,

Table 3  The properties of the considered MLC data sets

The last column denotes the proportion of non-zero elements in the data table

Data set Instances Features Classes Proportion 
of non-zero 
entries

delicious (Tsoumakas et al. 2008) 16105 1000 983 0.500000
imdb (imdb dataset 2010) 120919 1001 28 0.019363
medical (Pestian et al. 2007) 978 2898 45 0.500000
bibtex (Katakis et al. 2008) 7395 3672 159 0.500000
Education1 (Ueda and Saito 2003) 12030 27534 33 0.004059
Health1 (Ueda and Saito 2003) 9205 30605 32 0.003555
Entertainment1 (Ueda and Saito 2003) 12730 32001 21 0.004552
Science1 (Ueda and Saito 2003) 6428 37187 40 0.004659
Social1 (Ueda and Saito 2003) 12111 52350 39 0.002949
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considered—a reasonable baseline. We performed ten fold stratified cross-validation ten 
times, as required for the statistical analysis discussed next.

In order to summarize the overall performance of a given ranking, we believe taking 
into account the ranking’s quality over all possible values of top f features needs to be con-
sidered. Hence, we introduce the area under rF1 (AUrF1), i.e., the integral of rF1 normal-
ized by the number of considered top f rankings (to be more comparative across data sets), 
where we numerically integrate with the Simpson’s method.

Recent criticisms of the frequentist non-parametric comparison of multiple classifiers 
(Demšar 2006) has given rise to a novel spectrum of Bayesian t-tests, that directly offer 
insight into a probability space corresponding to the differences in algorithm performance 
(Benavoli et  al. 2017). In this work we adopt the hierarchical t-test, which is capable of 
comparing pairs of classifiers. The hierarchical Bayesian t-test is used to assess the proba-
bility of observing a given difference in performance between a pair of classifiers. As noted 
by   Benavoli et al. (2017), it requires that e.g., ten repetitions of ten fold cross validation 
need to be considered in order to reliably fit a hierarchical model. The approach attempts 
to model the probability of observing a given difference in performance between a pair of 
classifiers, which can be in favor of either of the classifiers or undetermined—practically 
equivalent (rope region). The plotted results are given in the form of triangular schemes, 
where each point represents a sample from the posterior distribution. Such samples, when 
aggregated, directly represent a probability of observing a given state (in this case differ-
ence between the classifiers). We set the rope region to 5%—if the difference in quality 
between two rankings is less than 5%, they are considered equal. The remaining setting is 
the same as in the original paper (Benavoli et al. 2017), we compare the top ranking for 
each fold. For a given pair of ranking algorithms, the pairwise Bayesian tests were per-
formed on the data sets common to both algorithms. Finally, results of time performance 
are presented in computation time (in seconds) diagrams with standard deviations. Such 
a comparison is not necessarily informative/useful when multiple classifiers are simulta-
neously considered, thus we also offer the results in the form of average rank diagrams 
(Demšar 2006). We believe that having both local and global insights into the relations 
between classifiers their differences are easier to study, even though looking at the classi-
fier ranks alone can be misleading (Benavoli et al. 2017).

4.4  Considered implementations and baselines

We next discuss the implementations considered. For multi-class classification, the consid-
ered Relief variants were MultiSURF, MultiSURFstar, ReliefF, all from the scikit-rebate 
library (Urbanowicz et  al. 2018). We also used RandomForest (RF)-based importances 
(Genie3) and Mutual information (MI)-based ones (Pedregosa et al. 2011). The multi-class 
Relief variants that are the original contribution of this work include: ReliefE, ReliefE-
absMean, ReliefE-adaptive and ReliefE-absMean-adaptive. The suffix adaptive denotes the 
use of an adaptive threshold and absMean the use of absMean update step.

Multi-label classification is not supported (at all) in scikit-rebate (Urbanowicz et  al. 
2018), and thus we considered the multi-label variants of ReliefE and ReliefF (re-imple-
mented in this work with Numba) with all of the possible distances given in Table 1. We 
emphasize that when multi-label distances are considered, only the cosine and hyperbolic 
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distances operate on target space embeddings (the other distances do not). The computa-
tion of these distances is also more efficient.

Note that all versions of ReliefF, implemented or re-implemented in this work,3 natively 
operate on sparse spaces, which is on its own a contribution of this work. In terms of spar-
sification, we set the sparsification threshold to 0.15, meaning that if a matrix’s density 
is higher than 15%, it is sparsified with the proposed procedure (there are many of such 
matrices amongst the considered data sets). Detailed results of investigating the ablation 
of the considered data sets’ (induced) sparsities are given in “Appendix 2”. Similarly, the 
behavior of the adaptive k statistic was also studied in more detail in “Appendix 3”. Fur-
ther, � (the sample for intrinsic dimension estimation) was set to 2048. The dimension 
number was set so that the algorithm runs normally on an off-the-shelf-computer (Lenovo 
Carbon X1) even for larger data sets. Thus, if a given data set consisted of more than 2048 
instances, a representative subset of 2048 instances was considered for estimating the 
intrinsic dimension and consequent embedding. The UMAP’s setting is left to its defaults, 
with the dimension being set to the estimated one.4 The value of k is set to 15 for our 
implementation for ReliefF, and left at its defaults for the baselines. The time and space 
complexity of the baselines and ReliefE are summarized in Table 4. Note that, even though 
ReliefF (and its other variants’) space complexity is linear w.r.t |F|, their implementations, 
should they not consider the sparse input structure, in fact require O(|I| ⋅ |F|) space (as 
found, e.g., in Urbanowicz et al. 2018).

Finally, the considered experiments for multi-label classification consider both Euclid-
ean embeddings, as well as non-Euclidean ones (Poincaré ball).

5  Results

This section presents the results of the empirical evaluation. We begin by discussing the 
performance comparisons for the task of multi-class classification. We follow on by dis-
cussing the results of the experiments on multi-label classification tasks. Finally, we pre-
sent additional investigations of ReliefE’s behavior.

Table 4  Computational 
complexity of feature importance 
estimation

For Relief algorithms, we used s = |I| . The t corresponds to the num-
ber of trees

Algorithm Time complexity Space complexity

ReliefE O(|�|2 ⋅ |F| + |I| ⋅ d ⋅ s) O(|�|2)
ReliefF O(|F| ⋅ |I|2) O(|F|)
Random Forest O(t ⋅ |F| ⋅ |I| ⋅ log2 |I|) O(|I| + |F|)
Mutual Information O(|F| ⋅ |I|) O(|I|)

4 Extensive evaluation of UMAP’s capabilities w.r.t. the proposed implementations is beyond the scope of 
this paper, and is left for further work.

3 Implementation’s official repository is https:// github. com/ SkBlaz/ relie fe.
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5.1  Multi‑class classification

We first present two average rank diagrams depicting the relative performance on the 
different ranking methods for MCC in terms of the quality of the produced rankings, as 
measured by the corresponding average and maximum F1 scores (Fig.  5a, b , respec-
tively). The diagrams include critical distances, representing the minimum differences 
in performance that are statistically significant. It can be observed that the ReliefE vari-
ants yield the best performing rankings (with lowest average ranks, Fig. 5a), but there 
are not many such rankings (Fig. 5b). The AUrF1 values (“Appendix 4”) indicate that 
the performances of the top 5 feature ranking algorithms are highly similar (within the 
confidence interval).

We next present the mean time consumption averaged across data sets. Consistently 
slower SURF variants of ReliefF can be observed in the rightmost part of Fig. 6a. The 
average rank diagram is shown in Fig. 6b.

Additional analysis of the proportions of time spent at different parts of the algo-
rithm is presented in “Appendix 5”, showing that most time is spent on feature weight 
updates. Average rank diagrams comparing the rankings in terms of the top 50 and 100 
features are given in “Appendix 6”.

(a)

(b)

Fig. 5  Max (a) and mean (b) F1 scores across all feature rankings
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5.2  Bayesian ranking comparison of ranking approaches for MCC

In this section, we present selected Bayesian pairwise comparisons of classifiers’ per-
formance. Previously determined relationships, such as the dominance of the SURF 
branch of algorithms over mutual information were confirmed, and further extended by 
adding comparisons with the proposed ReliefE branch of algorithms. The comparisons 
are presented in Figs. 7 and  8.

Each diagram has three main regions (parts of the pyramid). The two bottom regions 
correspond to the samples associated with the dominance of each of the two algorithms 

(a)

(b)

Fig. 6  Speed comparison of ranking approaches for MCC. Absolute running times (a) show that ReliefE 
variants perform an order of magnitude (or more) faster. Relative running times are given in terms of aver-
age ranks (b), where lower ranks mean worse performance, i.e., longer running times
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Fig. 7  Bayesian comparisons of performance (ranking qualities) between MultiSURFstar and other feature 
ranking methods for MCC
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compared, and the rope region to the difference space, where the winner is not clearly 
defined. The probability density directly corresponds to the density of dots in the diagram, 
thus, the part of the diagram with the highest density implies the most probable situation. 
Individual (posterior) probabilities are also shown next to each diagram, and denote the 
probabilities of one algorithm outperforming the other or the algorithms being of similar 
performance.

The key results of such pairwise comparisons can be summarized as follows. Very few 
comparisons yield clear winners. In the majority of the cases, when the most competitive 
methods are considered, less than 50% probability that one of the ranking algorithms domi-
nates is observed, giving no strong evidence for dominant ranking algorithms. This is the 
case also for the diagrams in Fig. 7.

The visualizations in Fig. 8 show that ReliefE-absMean-adaptive, the implementation 
proposed in this work, performs on par, or better than many existing, well established 
approaches such as MultiSURF and RandomForest-based rankings. However, we observe, 
in the second part of Fig. 8, that ReliefE-absMean-adaptive offers small, albeit incremental 
win rate when compared against the other methods. With the highest probability (80%), 
we can claim ReliefE’s dominance against MultiSURF, however, the observed probability 

Fig. 8  Bayesian comparisons of performance (ranking qualities) between ReliefE-absMean-adaptive and 
other feature ranking methods for MCC
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ratio does not suffice for a significant difference with > 95% probability (the commonly 
considered convention). To further study the algorithm performance, we visualize the top 
f features—rF1 curves and discuss the selected examples—such figures showing in detail 
the ranking performance of the different algorithms for the selected data sets are given 
in “Appendix  7”. Overall, considering the different statistical approaches to evaluating 
ReliefE’s performance, the results indicate that the method has similar performance to its 
competitors, but offers up to two orders of magnitude faster ranking computation, which 
also confirms the theoretical findings from Sect. 3.8.

5.3  Multi‑label classification

We next present the results of feature ranking for multi-label classification. For readability 
purposes, we present the average rank diagrams in “Appendix 8”. The time required for the 
execution of various distance-ranking algorithm combinations is shown in Fig. 9.

The differences in the execution times are apparent. The ReliefE branch (blue) offers 
more than an order of magnitude faster ranking computation.

The AUrF1 scores, averaged across data sets are shown in Fig. 10.
The best performing ReliefF variants for multi-label classification do not embed the 

input space. However, the top performant variant employs Euclidean embeddings of the 
target space, where the distances are computed based on the cosine similarity score. This 
result indicates multi-label classification can benefit from embedding-based approaches. A 

Fig. 9  Running times for the MLC variants of ReliefE (and ReliefF, reimplemented in this work and 
denoted ReliefF-this)
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case study, where the behavior of various ReliefE variants for MLC is considered in more 
detail can be found in “Appendix 9”.

5.4  Relations between ranking algorithms

We employ the fUJi score, a recently introduced scale-free comparison of ordered positive 
real-valued lists, to study how different feature ranking algorithms relate to each other. This 
study employs the same methodology as discussed in Petković et al. (2020) and Škrlj et al. 
(2020). The considered fUJi scores can, apart from the ranking, also take into account the 
differences between the elements that are being compared—this is not possible by using, 
e.g., the Jaccard score. We compare pairs of curves comprised of (rF1,top f) tuples, thus 
effectively comparing the shape of the rankings’ performance. The results of these com-
parisons are shown in Fig. 11 for multi-class classification and in Fig. 12 for multi-label 
classification. The most apparent pattern that emerges when these comparisons is that 
embedding-based rankings (ReliefE variants) tend to give very similar rankings. This holds 
for both multi-class and multi-label classification rankings.

5.5  Convergence to the final ranking

Note that in all the examples up to this point, the number of iterations via which the 
weights corresponding to feature importances were updated was equal to the number of 
instances (hence the quadratic complexity). Having shown that this setting already offers 

Fig. 10  Area under the relative F1 for different ranking approaches in the context of multi-label classifica-
tion
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state-of-the-art performance, we further explored how redundant is the iteration process, 
i.e., what is the minimum number of iterations needed to obtain a similar ranking. We 
investigated this question on MCC datasets following the approach described below.

For each number of considered iterations, we conducted 100 logistic regression 
runs building models with up to 100 top-ranked features. We computed the AUrF1 and 
inspected the curve induced by the obtained series of (top f, AUrF1) tuples. We conducted 
these experiments for the DLBCL, Tumors C, Biodeg-discrete and chess data sets, with the 
results shown in Fig. 13. We compared ReliefE-absMean-adaptive with ReliefF as imple-
mented in this work, evaluating each iteration with three-fold cross validation (same splits).

It can be observed in Fig. 13a that the convergence is slower with the ReliefE-absMean-
adaptive variant, however, once the performance is achieved, it is no longer impacted by 
additional iterations. This does not appear to be the case with ReliefF, where a decrease 
is observed when 32 iterations are considered. Overall, ReliefE-absMean-adaptive offers 
state-of-the-art performance already after four iterations. A similar situation is observed in 
the case of Biodeg in Fig. 13c. We also observed that on the Tumors C data set (Fig. 13d), 
ReliefE-absMean-adaptive was consistently outperformed by ReliefF. Being very high-
dimensional, and with only tens of instances, this data set’s intrinsic dimension is most 
likely under-estimated, yielding feature ranking based on representations that loose too 
much information. The ReliefE branch of algorithms is highly dependent on the underlying 
embeddings, where construction of high quality embeddings in such data scarce scenarios 
remains a lively research area on its own.

Fig. 11  AUfUJi scores for multi-class rankings. Higher numbers (red colors) mean higher similarity 
between rankings (Color figure online)
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Fig. 12  AUfUJi scores for multi-label rankings. The red block of cells in the upper left part of the triangle 
corresponds to various variants of ReliefE (Color figure online)

(a) (b)

(c) (d)

Fig. 13  Impact of the number of ReliefF iterations on ranking quality
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Potential speedups by decreasing the number of iterations will be explored in fur-
ther work. The performance on the chess data set, however, remains consistent for both 
algorithms—this is a low-dimensional data set, where feature importance estimation via 
embedded space does not offer notable performance improvements, both with respect to 
top F1 and computation time.

5.6  Relevant negative results

Even though the paper proposes a promising Relief variant, capable of operating in high-
dimensional sparse spaces, many intermediary steps did not perform as expected, and are 
summarized below: 

1. Due to pointer-based storage, using sparse matrix algebra can result in additional over-
head which can be significant in large, dense data sets.

2. Running UMAP with spectral decomposition resulted in an unexpected memory over-
head. We circumvented this issue with � , however, the original implementation, once 
adapted for large scale embedding, could offer an alternative that is more native to 
UMAP’s routines.

3. Employment of Numba’s parallel capabilities led to somewhat mixed results. On one 
hand, trivially parallel routines such as independent looping and similar could easily 
be adapted to run in parallel, however, when the parallel decorator was employed over 
the whole ReliefE weight update step, even though all cores were utilized, no notable 
speedups were observed. Additional study of the intricacies of such decorator-based 
parallelism is left for further work.

4. When validating our and scikit-rebate’s implementations against Weka’s ReliefF, it 
turned out that ReliefF, as implemented in scikit-rebate differs with a somewhat negative 
effect on performance (as shown in this paper).

5. We did not experiment with detailed typing of the most time-consuming methods, how-
ever we believe some of the routines could be, this way, made even faster.

6. The intrinsic dimension algorithm (Algorithm 2) appears to underestimate the real 
dimension, leading to poorer performance in some cases.

7. Embedding target instances in hyperbolic space either works well, or does not work at 
all. We believe the observed performances are due to the intrinsic geometry of the data, 
which we will explore in further work.

We next discuss some of the general observations and their implications.

6  Discussion

In this work, we considered extensions of the original ReliefF approach with embedding-
based distance computations to both multi-class and multi-label classification settings. We 
observed that, especially in MLC, embedding the target space can contribute both to lower 
running time and improve a classifier’s performance. The distance that showed the most 
promising results was based on the cosine similarity, which is widely used when consider-
ing embedding-based learning and exploration. The main contribution of this work, the 
ReliefE ranking approach, is capable of operating via embeddings of both input and output 
spaces (e.g., in multi-label classification).
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In this section, we comment on the obtained results and discuss further implications 
of ReliefE. We first observe that adaptive neighbor selection empirically performs very 
similarly to implementations where neighbor selection is hard-coded. This positive 
results indicate that one hyperparameter less needs to be tuned, should the user not have 
the computational resources for extensive grid searches. Further, the simple adaptation 
of the update step to take into account the distance to the mean of the neighbors simi-
larly offered competitive results. One of the possible reasons for such performance is the 
potential cancellation of noise, as with averaging, especially in the embedding space, 
a joint representation is obtained that can also carry some information regarding the 
semantic similarity amongst the neighbors.

Within the proposed ReliefE approach, we also explored how data sparsification 
can be leveraged to further speed up feature ranking in high-dimensional settings. The 
sparsification procedure was targeted at larger, higher-dimensional data sets and did not 
affect smaller data sets as much.

In terms of multi-label classification performance, we observed that the classic 
adaptation of ReliefF with the proposed adaptive distance and the hamming loss was 
amongst the best performing options. Interestingly, the variant which used the cosine 
distance on the target space embeddings was also amongst the top three best perform-
ing solutions, indicating that multi-label classification potentially benefits more by con-
sidering only the embeddings of the target space instances (and not of instances in the 
feature space). Similarly, the absMean variant of ReliefF was also amongst the top five 
algorithms performed, indicating that this aggregation scheme is competitive to the 
widely accepted averaging followed by the absolute value computation step. The best 
variant of ReliefE that considered both feature and target space embeddings is ranked 
poorly, indicating that by embedding the feature space, performance is lost (albeit sig-
nificant speedups can be obtained): This hints at a trade-off between performance and 
ranking quality. Of the remaining metrics, the subset and hyperbolic distances were 
amongst the worst performing ones, indicating that hyperbolic embeddings operate well 
in rather limited settings, possibly where a hierarchical structure of the target space can 
be observed.

This work is also one of the first (to our knowledge) to compare the performance 
curves of different ranking algorithms with the Fuzzy Jaccard Index. We observe that 
embedding-based algorithms proposed in this work behave very similarly, for both 
multi-label and multi-class classification. Especially in MLC, two consistent patterns 
emerge. All ReliefE variants are shown to be very similar to one another (red block in 
Fig. 12). However, also the hyperbolic and subset versions of ReliefF appear to behave 
similarly to the embedding-based ones, even though the input space was not embedded 
in these cases. For multi-label classification (Fig. 11), the ReliefE variants again emerge 
as the most similar (to one another). However, similarly to the MLC comparison, ver-
sions of the adapted ReliefF, as implemented in this work, were shown to yield similar 
performance curves to ReliefE-based variants.

Following the results of ablation studies, we believe further speedups could be 
obtained by considering fewer iterations. Current experiments indicate that potentially 
quadratic speedup could be obtained, as adequate performance was already observed 
after 

√
�I� iterations in some cases. Further, the number of iterations could also be 

adapted dynamically, by monitoring the feature ranking scores and detecting conver-
gence before all iterations are carried out.

When studying individual data sets, e.g., DLBCL and opt-digits, we observe that 
ReliefE offers superior performance at a fraction of the computation time required by 
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the other methods, indicating that the development of approaches based on ideas intro-
duced in this paper is a sensible research avenue.

In this work, we have evaluated feature rankings based on classification performance 
obtained by robust learners, such as logistic regression, which have not been fine-tuned. 
The purpose of such evaluation was to emphasize the effect of feature ranking. However, 
extensive studies of the interplay between regularization regimes (e.g., L1 vs. L2) and 
ranking performance could also offer interesting insights into the robustness of rankings, 
and further, their purpose. For example, a L1 regularized learner could automatically dis-
card large parts of the feature space: Although this would be considered as feature selection 
(and not ranking), it would potentially offer similar results. We leave this type of experi-
ments for further work.

Similarly, the Bayesian comparisons, involving mostly a state-of-the-art feature ranker 
MultiSURFstar and the proposed ReliefE algorithm(s), indicate that ReliefE is competitive 
and many times outperforms MultiSURFstar, even in a probabilistic sense. For example, 
the probability that ReliefE-absMean-adaptive outperforms MultiSURFstar is more than 
30%, with most of the remaining probability density lying in the equal performance (rope) 
region.

Finally, we discuss several potentially interesting future empirical studies that would 
represent a non-trivial extension of the proposed work. Detailed analysis of the algo-
rithms’ performance with respect to various properties of the data sets could offer addi-
tional insights into when to use what type of ranking. We believe that meta-learning could 
be a promising research venue, as by linking the data sets’ properties with suitable algo-
rithms could largely benefit situations where embedding-based ranking is not the best 
option. Overall, if one optimizes for efficient performance on large, contemporary data 
sets, ReliefE offers a computationally efficient approach, that could serve as a first step to 
further study where to invest the remaining computational resources, and whether feature 
ranking is a sensible approach at all (it might not be for, e.g., image-based data). Simi-
larly, understanding whether the choice of the distance score can be further transferred 
between similar data sets also represents an interesting research direction worth of further 
study. Overall, the proposed paper provides an empirical, as well as a theoretical founda-
tion for potentially more involved embedding schemes, such as e.g., (variational) autoen-
coder-based ones. We believe that a relevant factor influencing ReliefE’s performance is 
the quality of the learned representation, indicating that another promising research venue 
could be the investigation of different embedding approaches (this work explores different 
distances within a single embedding approach, but does not consider different embedding 
approaches).

7  Conclusions and further work

In this paper, we proposed one of the first embedding-based Relief implementations with 
both theoretical and practical grounding. We explored whether embedding the input, but 
also the output space onto a Riemannian manifold prior to feature ranking yields better 
rankings. The results indicate that, while being significantly faster, embedding-based rank-
ing methods do not consistently outperform the ones that do not use the embeddings. How-
ever, we show that they are indeed consistently faster than all other Relief-based ranking 
approaches.
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We also show that for multi-label classification, where additional complexity arises 
due to multiple label co-presence, ReliefE can offer more stable, and on data sets like 
Delicious, better performance. Further, we demonstrate that embedding the target 
label space is beneficial for the final ranking’s quality in a multi-label setting. The 
proposed adaptive neighbor estimation procedure could be further developed in terms 
of the neighborhood dependence with respect to a given metric. Similarly, the current 
implementation potentially over-estimates the neighborhood size, which could be due 
to the nature of the embedded space or the method’s bias. Both possibilities are to be 
explored in future work.

We believe that comparison of feature ranking algorithms should also be considered 
at the level of their properties and not only their performance. In this work, we show 
that embedding-based ranking gives rise to a fundamentally different type of rank-
ings, which we believe are worthy of being studied further. To our knowledge, we are 
the first to perform such large-scale comparisons of a long list of ranking approaches 
(using, e.g., different similarities in MLC) and take into account also the actual values 
of importance scores of rankings (through the fUJi score), and not only the feature 
order.

We also observe that the variants of the original ReliefF, as re-implemented in this 
work, already offer superior performance to, e.g., the SURF branch of algorithms, 
indicating that their scikit-rebate implementations have some limitations in terms of 
numeric stability (and are not adapted at all to handle sparsity).

As further work, we believe the study of non-Euclidean spaces could yield many 
novel insights, as the target space is frequently of hierarchical nature, implying Euclid-
ean geometry is not sufficiently good for its representation. In this work, we show ini-
tial results for embedding on a hyperboloid (Pincaré ball model). However, Lorenzian 
geometry can also be considered.

Appendix 1: Theoretical considerations of embedding spaces

As many of the recently introduced embedding-based methods tend to replace ear-
lier methods, whilst maintaining the representation power, we believe the compari-
son of the two mappings, when considered, can be represented as a simple diagram. 
The example, considered to represent ReliefE’s mapping compared to, e.g., that of the 
standard ReliefF’s can be represented as 

F E

w

φ

q f

Here, the initial, real valued feature matrix F is either directly (q), or indi-
rectly ( � and f) mapped to the output weight vector w . Note that q ∶ ℝ|I|×|F| → ℝ|F| , 
� ∶ ℝ|I|×|F| → ℝ|I|×d and f ∶ ℝ|I|×d → ℝ|F| . ReliefE operates under the assumption that 
the initial ranking can be retrieved via latent space E in two steps ( � and f).
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Appendix 2: Ablation study of data sparsity

The considered sparsification procedure is dependent on the parameter epsilon, i.e., the 
approximation error. The study of how different error thresholds impact the final sparsi-
fication result is shown in Fig. 14. It can be observed that most of the data sets only get 
sparsified after a rather large epsilon is permitted. The second ablation explores the relation 
between the initial data sparsity and the final sparsity, i.e., the sparsity of a given data set 
after the conducted sparsification procedure. The result is shown as a kernel density plot in 
Fig. 15.

Fig. 14  Dependence of sparsification on approximation error allowed

Fig. 15  Kernel density estimation of the relation between the initial and final sparsity
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The observed result indicates that when the data set is sparse to begin with, the result 
will be, as expected, similarly sparse. However, the vertical density at the rightmost part 
of the figure demonstrates that the sparsification procedure indeed yields sparser data, 
albeit not in all cases. A similar visualization can be produced for the space based on 
estimated epsilon values, shown in Fig. 16.

Fig. 16  Kernel density estimation − estimated epsilon values

Fig. 17  Density of estimated k values for 100 iterations of ReliefE
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The considered estimate yields a similar landscape sparseness to that obtained via grid-
search (Fig. 15), indicating decrease in most cases. However, there are examples where a 
given data set’s density was substantially lowered, such as for example pd-speech-features 
and biodeg-p2-discrete. The results indicate that the considered estimate could be further 
relaxed, albeit at the cost of worse approximation of the input matrix, which could nega-
tively impact the final performance.

Appendix 3: Adaptive k distributions

In this ablation study, we visualized the distributions of the neighborhoods across all con-
sidered MCC data sets. This plot demonstrates that for different data sets, differently sized 
neighborhoods were identified by the proposed heuristic (Fig. 17).

Appendix 4: Area under the rF1

The AUrF1 scores, averaged across data sets are shown in Fig. 18. It can be observed that 
the first 5 rankings behave very similarly w.r.t. this measure. Thus, we emphasize other 
types of comparison, where the differences are more apparent.

Fig. 18  Area under the relative F1 curve for multi-class classification. All ranking approaches perform sim-
ilarly with no notable differences. More insights into the relative performance of ranking algorithms are 
provided by Bayesian tests and FUJI-based comparisons of performance curves
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Appendix 5: Detailed analysis of running time

We additionally studied how different parts of ReliefE impact the total running time. 
For p53, one of the largest considered data sets, we visualize the proportions in Fig. 19.

Fig. 19  Proportions of time spent 
on different methods within 
ReliefE on the p53 dataset. 
Majority of time is spent on 
weight update steps (as expected)

Fig. 20  Max first 100 features. Similarly to the situation with 50 top features, the ReliefE variants, includ-
ing the adaptive one, perform well for the multi-class classification task

Fig. 21  Max first 50 features. The performance if considering only first 50 features. The adaptive version of 
ReliefE performs on average the best in this scenario
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Appendix 6: Multi‑class classification, additional rank diagrams

This appendix includes additional ablation studies in the form of critical distance dia-
grams presenting the performance for multi-class ranking (Figs. 20 and  21).

Appendix 7: Multi‑class classification—case study with Madelon, 
DLBCL and genes

This section contains feature rankings, visualized for the Madelon data set, where 
either the ReliefE or a variant of ReliefF equiped with one of the proposed heuristics 
shows different behavior (better performance) (Fig. 22.) The visualized performances 
offer insights into behavior of the algorithms. For example, the ReliefF branch of adap-
tations (and vanilla ReliefF) peak at less than a hundred features, however, another 
performance peak where feature ranking is sensible ( rF1 > 1 ) is around 250 features, 
where ReliefE-type algorithms are consistently amongst the best-performing ones.

The power of ReliefE is apparent when considering DLBCL data set (very high 
dimensional with not many instances). Results are shown in Fig. 23. Finally, the results 
for the genes data set are shown in Fig. 24. Note how the more time expensive SURF 
variants were not able to finish in dedicated time. Further, ReliefF is notably worse, 
requiring more information to detect the relevant signal. On the other hand ReliefE 
variants perform consistently well.

Fig. 22  Madelon performance curves. This result indicates that there exist situations where initially better 
rankings are obtained via e.g., the SURF branch of the algorithms, however, when considering more fea-
tures, ReliefE variants are the only ones that find rankings which perform well
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Appendix 8: Multi‑label classification—additional rank diagrams

In this section, we present the average rank diagrams that offer insights into global distribu-
tion of the performances when multi-label classification setting is considered (Figs. 25 and 
26).

Fig. 23  DLBCL performance curves. The DLBCL is a very high-dimensional data set and reflects the 
ReliefE’s capability to operate with high-dimensional feature spaces

Fig. 24  Genes performance curves. Compared to mutual information (myopic)-based rankings ReliefE per-
forms consistently better (steeper curve at the beginning in the first around hundred features
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Fig. 25  Max (upper) F1 scores for top 10 highly-ranked features. The results indicate that the adaptive 
threshold step impacts the placing of the top features (adaptive) version of ReliefF

Fig. 26  Mean (upper) F1 scores for top 10 highly-ranked features. The average rank diagrams confirm the 
finding that if the target space is embedded via cosine distance, the MLC ReliefF variant performs the best
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Appendix 9: Multi‑label classification—case study with Delicious

We study in more detail the performance on the Delicious data set, as it offers interest-
ing insights into the algorithms’ performances (Fig.  27). The algorithms’ performances 
are overall consistent. Note how cosine-based embeddings of the target space emerge as 
the best option (orange line), indicating embedding-based distances amongst the target 
instances can already offer competitive performance.
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Chapter 6

Related Contributions

The goal of Computer Science is to build something that will last at
least until we have finished building it.

William C. Brown

The following set of related contributions impacted the development of the core thesis
contributions, even if not fully focusing on the common thesis thread of neuro-symbolic
learning. The scope of individual contributions (dots) is shown in Figure 6.1. Each related
contribution is described next.

Understanding

Symbolic
Sub-symbolic
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xplainability

Predictive performance
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Figure 6.1: Schematic overview of the relations between the symbolic and sub-symbolic
learning paradigms, with the placement of the related thesis contributions, presented by
the labeled dots corresponding to the sections of this chapter where these contributions
are described.
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6.1 Symbolic Node Embedding

The contribution explored the notion of symbolic node representation learning.
It is partially related to the core contribution DNR (Škrlj
et al., 2021), as the goal was, similarly, to obtain node rep-
resentations. The main difference, however, was, that this
paper explored how one can obtain sparse node representa-
tions exclusively in a symbolic manner. As part of this paper,
we also explored the extent to which the sparse and dense
node representations are equivalent in terms of space use and
proposed a simple heuristic for determining the dimension of
symbolic space with similar computational requirements to
its dense counterparts. The key hypothesis addressed in this
work was whether symbolic embeddings are competitive to
conventional, e.g., node2vec-based ones. Should this be the
case, a substantially more interpretable node representation
is possible, with implications for understanding the model be-
haviour at the individual prediction level. In the context of
this thesis, the tool addresses the scalability and performance hypotheses, even though it
is purely symbolic.

Mežnar, S., Lavrač, N., & Škrlj, B. (2020). SNoRe: scalable Unsupervised Learning
of Symbolic Node Representations. IEEE Access, 8, 212568–212588. https://doi.org/
10.1109/ACCESS.2020.3039541

6.2 Semantic Reasoning from Embedding-based Communi-
ties

The following publication represents our endeavor towards better understanding
of how network node communities can be a side product of
pre-trained embeddings and what are the implications of this
approach, but also whether existing methodology from the
field of ILP, namely the semantic reasoner Hedwig (Vavpetič
et al., 2013), could be adopted to better understand the
detected communities. Instead of inspecting the term sets
present in a given community, the resulting semantic rules
for some communities yielded term conjuncts, offering in-
sight into the simultaneous occurrence of, e.g., multiple bi-
ological processes. One of the key contributions of this pa-
per is an efficient implementation of the now well known
NetMF algorithm, which joins multiple node embedding al-
gorithms within the joint framework of matrix factorization.
This work, not focusing on the neuro-symbolic paradigm by
design, addresses first the issue of community detection, and
subsequently, explanations of these communities. It is, to our
knowledge, one of the first attempts to derive semantic rules for a given community – the
main hypothesis addressed is how symbolic rule discovery can be used to better under-
stand a given node grouping (community), hence not focusing on the overall approach’s
scalability, but showing competitive predictive performance.

https://doi.org/10.1109/ACCESS.2020.3039541
https://doi.org/10.1109/ACCESS.2020.3039541
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Škrlj, B., Kralj, J., & Lavrač, N. (2020). Embedding-based silhouette community
detection. Machine Learning, 109 (11), 2161–2193. https://doi.org/10.1007/s10994-
020-05882-8

6.3 Semantic Feature Construction with tax2vec

This contribution was one of the first contributions of the thesis’ author,
focusing on feature construction for the task of document clas-
sification. Even though a given document corpus can already
include sufficient information for creating, e.g., word-based
features which solve a given classification task, an active re-
search endeavour attempts to go beyond the inclusion of ‘raw‘
textual information, investigating whether semantic sources
of knowledge are of potential use. The key goal of tax2vec was
to explore whether word taxonomy-based features can com-
plement the existing TF-IDF-based ones (or embedding-based
ones). In this paper, we also investigated different graph-
based heuristics for selection of the representative term set –
here, one of the best-performing heuristics was based on the
recent idea of graph-based ontology prunning (Kralj et al.,
2019). The proposed tax2vec method was implemented as
a self-contained library, requiring zero knowledge about parsing/processing, e.g., RDF-
encoded semantic data. This tool addresses the explainability hypothesis, as its sole pur-
pose is to construct interpretable, high-level semantic features that aid understanding,
while also having the potential to improve few-shot classification.

Škrlj, B., Martinc, M., Kralj, J., Lavrač, N., & Pollak, S. (2020). tax2vec: construct-
ing Interpretable Features from Taxonomies for Short Text Classification. Computer
Speech & Language, 101104. https://doi.org/https://doi.org/10.1016/j.csl.2020.
101104

6.4 Contextual Keyword Identification with TNT-KID

The subsequent related publication concerns the task of key-
word identification. The task of keyword identification refers
to the identification of key tokens or ordered token sets which
effectively summarize a given document. The contribution
(TNT-KID) is a transformer-based solution to this prob-
lem. By incorporating a specialized (final) detection head,
we transformed the problem of keyword identification into
the problem of token tagging. One of the key novelties intro-
duced with TNT-KID was extensive investigation of knowl-
edge transfer – by pre-training the language model on related
corpora, we demonstrated improved performance. Further,
the presented transfer learning capabilities indicate that sub-
stantially smaller amounts of data might be required for ad-
equate keyword detection. Note that this approach is super-
vised, meaning that pre-labelled documents are obligatory for

https://doi.org/10.1007/s10994-020-05882-8
https://doi.org/10.1007/s10994-020-05882-8
https://doi.org/https://doi.org/10.1016/j.csl.2020.101104
https://doi.org/https://doi.org/10.1016/j.csl.2020.101104
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the method’s correct function. One of the key features of TNT-KID is its scalability and
seamless domain adaptation. By fine-tuning the neural network model to a given domain,
better keyphrases can be obtained. However, the symbolic learning paradigm offers a
promising research direction with regards to the generation of informed prompts based on
existing background knowledge sources, offering a potential way to reduce the amount of
data needed for adaptation to completely new domains. The author helped with the design
of TNT-KID.

Martinc, M., Škrlj, B., & Pollak, S. (2021). TNT-KID: transformer-based neural
tagger for keyword identification. Natural Language Engineering, 1–40. https://doi.
org/10.1017/S1351324921000127

6.5 On Attention Vectors and Explanations

In this final related publication, we present our approach to
interactive attention visualization. With the emergence of
attention-based language models (foundation models), many
research attempts were made to link the attention and its po-
tential for explanation. We developed an online tool termed
AttViz (https://attviz.ijs.si/) which facilitates interactive vi-
sualization of the neural attention layers. Our contribution
offers an interactive (online) tool that enables exploration
of the learned attention spaces and potentially helps the re-
searcher understand what was emphasized, but more impor-
tantly, whether any artefacts were present during learning.
The tool addresses mostly the ‘understanding‘ aspect of learn-
ing – it was built to identify potential artefacts identified as
relevant by the neural network and other relevant attention
patterns.

Škrlj, B., Sheehan, S., Eržen, N., Robnik-Šikonja, M., Luz, S., & Pollak, S. (2021).
Exploring neural language models via analysis of local and global self-attention spaces.
Proceedings of the EACL Hackashop on News Media Content Analysis and Automated
Report Generation, 76–83. https://aclanthology.org/2021.hackashop-1.11

6.6 Interactive exploration of causal drug-target interactions

The following publication represents our attempt to fuse two layers of biological infor-
mation that can be of great relevance to researchers from the field of medicinal chem-
istry. This publication, although not being directly related to neuro-symbolic comput-
ing, helped us better understand how different sources of relational (background) knowl-
edge can be processed, fused and utilized in a stand-alone web application. Substantial
amounts of time were spent on making the web server as responsive and interactive as
possible with the current 3D, webGL-based visualization libraries. The main aim of this
project was to demonstrate the extent to which graph-based data fusion can facilitate
the exploration of heterogeneous biological networks and the amount/effort required to
host such graphs and serve them in real-time. To our knowledge, this was one of the
first applications which incorporated the FDA-approved drugs alongside causal biolog-
ical interactions. Although not directly considering learning, the developed tool illus-

https://doi.org/10.1017/S1351324921000127
https://doi.org/10.1017/S1351324921000127
https://attviz.ijs.si/
https://aclanthology.org/2021.hackashop-1.11
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trates how fusing heterogeneous data sources and subsequent presentation (visualization)
of such data can offer novel insights into the interplay between drugs and drug targets.
The key novelty of this tool was the inclusion of causal
interactions, which add an additional layer of certainty
to the derived networks (of reactions). In the context
of this work, the tool focuses on a better understand-
ing of a given learning process, albeit in this case con-
cerning the users of the tool and not the algorithms as
such.
Škrlj, B., Eržen, N., Lavrač, N., Kunej, T., & Konc, J.
(2020). CaNDis: a web server for investigation of causal
relationships between diseases, drugs and drug targets.
Bioinformatics, 37 (6), 885–887. https://doi.org/10.1093/
bioinformatics/btaa762

https://doi.org/10.1093/bioinformatics/btaa762
https://doi.org/10.1093/bioinformatics/btaa762
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Chapter 7

Implementations

The most effective way to do it, is to do it.

Amelia Earhart

In this chapter, we focus on the implementations of the developed methods. Many times
overlooked, the implementation aspects of a given project/paper can play a crucial role
in the presented idea’s adoption. We next present the main design decisions we adopted
when developing the software packages related to each contribution.

7.1 From Libraries to Web Servers

There exist multiple possible ways of disseminating a newly developed algorithm. The
design decision which governs the implementation thus depends on users. Given that the
purpose of the dissertation was to produce easy-to-use methods for other machine learn-
ing practitioners, most developed software was developed in the form of libraries. This,
however, is not the only possible way to disseminate the results. Should the computation
times be rather short, and there is a requirement for interactivity, web-server-based so-
lutions can also serve as a viable alternative, even though it requires the knowledge of a
more diverse set of technologies. As the only tool which was developed as a web server was
CaNDis (Škrlj, Eržen, et al., 2020), which is not of core relevance to the key focus of this
thesis, the subsequent sections focus mostly on the development of simple-to-use Python
libraries.

7.2 The Common Format of the Developed Libraries

We next present two of the papers’ implementations that illustrate how the implemented
libraries are used. Finally, we conclude this section with actual code examples that acquaint
the reader with how the developed approaches/algorithms can be used with relatively little
effort.

One of the key features of libraries such as scikit-learn (Pedregosa et al., 2011) is an
intuitive Application Programming Interface (API), which abstracts away the unnecessary
method calls/class initializations and offers the user a simple end-point for running, fine-
tunning and storing a given machine learning model. For example, the key methods one
encounters for most of the scikit-learn-compatible algorithms are the following ones.

fit(). This method takes as input either only the input space or the input and the
target space, updating a given model’s state so that, e.g., the weights correspond to
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the association being learned. This method is common, for example, in supervised
learning (fit(x, y)), but also in unsupervised learning (fit(x)). There exist special
versions suitable for larger data sets (e.g., partial_fit), which, however, are used in
a similar manner.

predict(). The prediction method is commonly applied on a given instance space (predict(X)),
offering the user to obtain a collection of predictions from a given model.

transform(). The transformation method converts the original space into a new space.
This method is useful, for example, when converting a list of documents into the
corresponding TF-IDF space.

The mentioned three methods are the main tools a machine learning practitioner many
times works with. They are normally inherent to a given model class, so that, for example,
model.fit(X,Y ) is a valid call. Even though, in theory, the three methods could be sufficient
to represent most of what one encounters when designing/developing models, when consid-
ering, e.g., feature ranking, the model itself has attributes that might be of interest. The
chosen API hence also, when needed, supports calls such as model.feature_importances,
enabling access to the results of, e.g., the process of feature ranking.

7.3 Examples

This section presents some of the examples which illustrate the simplicity of using the
developed approaches. We focus first on autoBOT, followed by DNR. The implementations
of the ideas presented in other papers follow the same principles. The two examples were
selected as they represent two different levels of complexity (software-wise), albeit both
being currently packaged in the form of Python libraries.

7.3.1 An autoML in a few lines

The first example we consider is the implementation of autoBOT1. The example in Fig-
ure 7.1 represents a simple method which incorporates the key components of each autoML
run. First, the data is loaded, followed by the call to the autoBOT. Here, we intentionally
omitted all hyperparameters (e.g., evolution length) to demonstrate how simple it can be
to experiment with the developed approach. The reader can also observe that predictions
can be obtained in a Scikit-like manner (the same API). Additional effort was focused on
developing the appropriate documentation, which documents all other functionalities in a
systematic manner2.

7.3.2 Neuro-symbolic Node embedding

The second example concerns node embedding. As here, networks are used as inputs, a
similar API was implemented (Figure 7.2). Hence, the user can use the fit, and transform
calls to obtain the embeddings of the desired nodes of interest. Note that only the adjacency
structure is here used as input (unsupervised node representation learning). The output
embedding is a matrix ∈ R|N |×d.

1https://github.com/SkBlaz/autobot
2https://skblaz.github.io/autobot/

https://github.com/SkBlaz/autobot
https://skblaz.github.io/autobot/
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Figure 7.1: An example of using the autoBOT library.

7.3.3 Overview of the implementations

This section summarizes the implemented approaches alongside their repositories. Most
of the work is implemented in a manner similar to the two discussed libraries (DNR,
autoBOT), making their use straight-forward for the users that are less programming
savvy – at least that was the goal. The implementations are summarised in Table 7.1.

Table 7.1: Overview of the implementations related to this thesis.

Thesis part Paper Implementation Software type
Relational Deep Node Ranking https://github.com/SkBlaz/DNR Library
Relational Propositionalization and Embeddings https://github.com/SkBlaz/PropStar Jupyter notebooks

Texts autoBOT https://github.com/SkBlaz/autobot Library
Tabular Attention-based feature ranking https://github.com/SkBlaz/san Library
Tabular ReliefE https://github.com/SkBlaz/reliefe Library
Other tax2vec https://github.com/SkBlaz/tax2vec Library
Other AttViz https://attviz.ijs.si/ Web server
Other CaNDis https://candis.ijs.si/ Web server
Other SNoRe https://github.com/smeznar/SNoRe Library
Other Silhouette Community Detection https://github.com/SkBlaz/SCD Library

The implementations also include, if possible (license-wise), the relevant collections of
data sets useful for replicating their results. If needed, we also implemented sufficient
dockerization, mostly via the Singularity containers (Kurtzer et al., 2017).

https://github.com/SkBlaz/DNR
https://github.com/SkBlaz/PropStar
https://github.com/SkBlaz/autobot
https://github.com/SkBlaz/san
https://github.com/SkBlaz/reliefe
https://github.com/SkBlaz/tax2vec
https://attviz.ijs.si/
https://candis.ijs.si/
https://github.com/smeznar/SNoRe
https://github.com/SkBlaz/SCD
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Figure 7.2: An example of using the DNR library.
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Chapter 8

Conclusions

A ship in port is safe, but that’s not what ships are built for.

Grace Hopper

This final chapter gives an overview and conclusion. It first summarizes the conducted
work, the main results and their applications, followed by further work.

8.1 Overview of the Conducted Work

This dissertation focused on the neuro-symbolic learning paradigm with emphasis on the
scalability of this type of method. We began by discussing the developed neuro-symbolic
methods focusing on relational learning (Chapter 3). The two presented methods offer
scalable neuro-symbolic solutions to the problems of instance classification from relational
databases (SQL-like databases) and node classification in homogeneous real-life networks.
We demonstrated that by adopting the neuro-symbolic paradigm, the proposed approaches
offer competitive performance, while scaling better when considering the task of instance
classification from relational databases. Furthermore, the proposed node classification
algorithm termed Deep Node Ranking (DNR) offered state-of-the-art performance whilst
simultaneously offering insights into the learned representations and their properties, which
shed new light on the relationship between symbolic and sub-symbolic representations of
the (same) entities.

In the second part of the dissertation, we focused on learning from texts (Chapter 4).
Here, we proposed (to our knowledge) one of the first neuro-symbolic autoML engines aimed
at solving the task of (multi-class) text classification. The proposed autoBOT approach
revolves around the idea of representation evolution – a collection of representations of
the same document is simultaneously re-weighted to identify the appropriate combination,
which offers the best performance for a given training set of (labeled) documents. Spe-
cial care was devoted to making autoBOT easy to use on off-the-shelf hardware. Current
results indicate that models with orders of magnitude fewer parameters can offer compet-
itive performance to current state-of-the-art contextual language models. Currently, we
believe autoBOT should serve as a strong baseline when assessing both what are the key
phrases/aspects of a text that are crucial for obtaining good classifiers (explainability) and
obtaining out-of-the-box models that perform better than ad hoc baselines commonly used
due to their simplicity/speed.

The final part of the dissertation focused on learning from tabular data (Chapter 5).
Here, we presented two contributions that address two aspects of neuro-symbolic systems:
the explainability when considering neural-only learners and the scalability when using



220 Chapter 8. Conclusions

learned representations of instances for the task of feature ranking. We first demonstrated
that by adopting an attention-like layer as the initial layer of a multi-layer deep neural
network, if the trained neural network offered good performance, the attention coefficients
resembled the ones obtained in a conventional feature ranking. This paper was one of
the first to explore the link between neural attention and feature ranking, as this area
of research has now gone mainstream and is the subject of discussion at every larger
conference. The second contribution enabled us to explore whether – by adopting learned
low-dimensional representations of the instances of interest – we could speed up the feature
ranking process. Current results indicate that this is indeed the case, even though this
type of ranking additionally depends on the representation quality, which can vary at the
data set level.

8.2 Lessons Learned

Behind each contribution presented in this thesis, large amounts of experimentation and
learning took place. This chapter focuses on the main lessons learned, i.e. the take-
away messages concerning the development of neuro-symbolic methods for different input
types. We begin by discussing the algorithmic aspects of representation learning that were
relevant when designing algorithms capable of operating with sparse matrices. We continue
the discussion by assessing the role of specialized hardware for the developed approaches,
including promising new directions which are yet to be explored. We continue the discussion
by assessing the development regime, which led us to the current metaheuristic governing
the developed autoML’s behaviour – the evolution strategies. We further discuss the impact
of model sizes on their applicability and conclude with a note on Bayesian hypothesis
evaluation, a promising new direction that offers probabilistic bounds, apart from the
widely adopted p-based hypothesis (rejection/acceptance).

8.2.1 Implementing Representations

We begin the discussion with the notion of representation implementation. This aspect of
representation learning, albeit not being the focus of many methods, can play a crucial
role when considering the scaling properties of a given method. Note that implementing a
representation corresponds to identifying a suitable implementation of a given representa-
tion with respect to solving a given down-stream task. Throughout the presented work, we
encounter two main representation types: sparse and dense representations. Implementing
dense representations is, as long as there is enough memory at one’s disposal, straight-
forward and is supported in most of the linear algebra-focused computing libraries. The
dense representations commonly correspond to low-dimensional real-valued spaces – here,
millions or more instances can be stored seamlessly if the dimension is low enough. The
limiting factor at some point becomes the bit precision of a given representation’s matrix’s
entries, which can be further fine-tuned (see Section 3.3). In contrast to dense representa-
tions, which mostly result as the output of sub-symbolic learning, sparse representations
are more common when considering symbolic representations. Given the topic of this
dissertation, this type of representation was used in most of the presented contributions.

One of the main insights obtained during the development of the presented methods was
that the type of sparse structure used could greatly determine the method’s performance.
Furthermore, a combination of sparse-dense representations, for example, in the case of
well-performing solution PropDRM (Lavrač et al., 2020), was, that even though the whole
data set could not be represented as a dense matrix, densifying only the mini-batches proved
efficient (especially as GPUs could be leveraged this way). Even though existing libraries
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many times support the mentioned sparse matrix-holding structures (Virtanen et al., 2020),
using such structures implies that the considered piece of computation can be vectorized.
Even though this is mostly the case, it is possible that many operations are required on the
sparse matrices, which are non-trivial to vectorize, leading us to the second option regarding
the implementation of sparse matrix-related operations. Contemporary Python frameworks
such as, e.g., Numba (Lam, Siu Kwan and Pitrou, Antoine and Seibert, Stanley, 2015)
offer transpilation of specifically formatted Python code to machine code, ensuring C-like
performance. This approach was very suitable when implementing the ReliefE algorithm,
as non-trivial operations are considered during each update step. Overall, the question of
using sparse/dense data structures for representing the data of interest was, in most cases,
related to the representation type considered: sparse matrices are primarily associated
with symbolic, and dense with sub-symbolic representations.

8.2.2 To GPU or not to GPU

We next discuss the presented methods from the viewpoint of the hardware used to carry
out the required computation. Contemporary machine learning approaches have profited
greatly from being able to exploit the parallelism capabilities offered by GPUs or TPUs.
Arguably, these hardware components were of crucial relevance when designing the first
super-human vision and language generation systems. However, when considering neuro-
symbolic learning, interesting trade-offs regarding the use of GPUs can emerge and are
discussed next. Even though GPUs offer an order or more parallel processes, they are con-
strained both by recursion depth and allowed memory (memory storage is implemented
differently from the classic CPU-based setting). These properties led us to explore the
trade-offs between using multiple CPU and GPU threads. The developed methods, which
can directly exploit the existing GPU-based computing power are autoBOT, PropDRM
and DNR. In autoBOT however, only some of the representations (or more precisely trans-
former classes) can exploit the available GPUs; in the most recent implementation, the
representation learners are limited to the ones based on large pre-trained language mod-
els. PropDRM, being a feed-forward neural network, generally profits from being able to
use GPU-based computing power. One trade-off we observed, however, is that of densi-
fication of the representations during the forward pass. Here, should too large batches
be considered with (high-dimensional inputs this is quickly the case), the available GPU
can be overloaded. Finally, the DNR algorithm similarly can use GPUs for distilling the
final representation. We observed a few fold speedups; however, for larger networks the
GPU’s memory started to become the bottleneck; hence the default DNR implementation
operates in a CPU-only manner.

8.2.3 Taming the Evolution

One of the most computationally intensive endeavours of this thesis was the meta learning
governing the document representation space (autoBOT). As there are no closed-form
solutions that would enable efficient derivation of the final set of feature type weights,
we resorted to metaheuristic optimization to at least approximately solve this problem.
The selected metaheuristic approaches relied on evolutionary strategies, a type of genetic
algorithms capable of operating with real valued solutions (∈ Rd).

The development of autoBOT required approximately two years of experimentation to
arrive at the current point, which ensures relatively fast convergence and offers state-of-
the-art performance. Further, developing an autoML system is prone to longer debugging
cycles – for example, when investigating the selection schemes, it was apparent only after
tens of generations whether a given scheme outperforms the others, resulting in long ex-
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periments that already transcended the capabilities of an off-the-shelf machine. The main
lessons learned during experimentation with evolution are the following. First, one should
always start with as simple a solution as possible. We initially attempted to explore a
multi-objective scenario, which also requires models to be compact; however, this type of
optimization did not converge well enough to be considered. Furthermore, the solution
selection schemes played a pivotal role during the development of autoBOT. Only when
we considered the tournament-based selection, we start to observe faster and more con-
sistent convergence. Note that this type of selection is one of the oldest and best-tested
selection schemes. In terms of the initialization, we observed a substantial performance
improvement when, instead of random initialization, we initialize the type importances
to their performance in an internal round of cross-validation. Being normalized to the
interval [0, 1], these initial conditions offered adequate solutions out-of-the-box; however,
when exposed to evolution, they resulted in an even better final solution. In terms of
representation implementation, we considered two main scenarios. In the first one, the
representation space was copied for each individual. As proved in our work, this results
in linearly higher space complexity compared to a scenario where representations are pre-
computed and only re-weighted during evolution. At the time of development it was not
clear how large a memory bottleneck this copying represents; we thus implemented both
versions, only to discover that the one which conducts copying does not scale when con-
sidering tens of thousands of features even on a moderately sized data set. Note that by
copying the individuals, the implementation is much simpler compared to the one currently
used – we had to ensure that sparse matrices are used at each step of the evolution, as
even a single unplanned densification could result in too high overhead for an off-the-shelf
machine.

8.2.4 On Model Sizes and their Applicability

Next, we discuss the resulting models’ sizes for different input data types, the implications
of the obtained model sizes, and potentially interesting further developments. Contempo-
rary machine learning models, especially those based on deep neural networks, are larger
than simpler symbolic models such as linear regression-based models, decision trees and
rules. A useful measure of model complexity, which is mostly resonant with its actual
memory footprint, is the number of tunable parameters the final model consists of. Note
that these are not hyperparameters, i.e. parameters governing the model creation. Con-
temporary deep neural networks comprise hundreds of millions and sometimes billions of
parameters. Such over-parametrization leads to models which are Gigabytes in size, ren-
dering them harder to deploy without specialized infrastructure. As hypothesized, neuro-
symbolic approaches commonly require less space, making them potentially more useful
in scenarios where the hardware is limited. Furthermore, when the data is very sparse,
densifying it in order to, e.g., perform the forward pass, can already be a problematic
endeavour. We demonstrated that the neuro-symbolic paradigm offers solutions to some
of the problems of this type; by first learning the representations of concepts, which are
subsequently processed in a symbolic manner, a given approach can retain most of its
performance whilst scaling better. One of the most expensive models produced in terms
of space were the results of evolution (text classifiers resulting from autoBOT runs). Here,
the models were of various sizes, which directly reflect the properties of the underlying
representations. For example, a version of neuro-symbolic autoBOT, which also incor-
porates language-model based (contextual) representations, could be Gigabytes in size.
However, its symbolic counterpart was only about 100 Megabytes. This discrepancy can
be crucial when deciding which model to implement as part of the final solution for a given
classification task.
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8.2.5 (Bayesian) Hypothesis Testing

We next discuss the notion of hypothesis testing and its developments in the last years.
Benchmarking these methods against a collection of other (mostly) established algorithms
is a common (good) practice when developing machine learning methods. However, merely
reporting the performance without any additional comparisons is not necessarily enough –
the user should also be interested in how, e.g., interchangeable a given pair of methods is
and with what probability a given model outperforms the other one. In recent years,
a paradigm shift related to model evaluation has been taking place. Bayesian model
comparisons (Benavoli et al., 2017) are increasingly used to more precisely assess the
relations between different algorithms. Even though, to our knowledge, such comparisons
are limited to pairs of learning algorithms, they are very useful to determine to what extent
the performances are similar/practically equivalent. In this thesis, we adopted this type
of hypothesis testing where applicable. However, in most cases, it was complemented with
classical (Friedman-Nemenyi) testing, which also remains used in the community. In all
cases, we observed that the results of the tests were complementary – if a clear dominance
of a given algorithm was observed with the classical approach, similar dominance was also
observed as the result of Bayesian hypothesis testing. Furthermore, Bayesian comparisons
offer additional context, which helped us better understand the relations between the
algorithms’ performances. A remaining major drawback of using Bayesian tests remains
their large computational complexity if one accounts for the required number of experiment
repetitions (the Bayesian model fitting itself is not problematic).

8.3 Further Work

This final section addresses the open problems suitable for further study. As neuro-symbolic
learning is a relatively young paradigm, there remain interesting research opportunities to
understand better the complementarity between symbolic and sub-symbolic learning in
general. For example, only in recent years, an emphasis on incorporating computational
reasoning with sub-symbolic representation learning has gained considerable attention. By
being able to first, in a self-supervised manner, produce representations of the objects of
interest and next reason with/about such objects in a consistent, computationally tractable
manner, is an interesting open issue. Even though many existing deep learning-only sys-
tems have shown promising performance for the tasks of, e.g., protein folding, autonomous
driving and similar, the aspect of understanding why such methods work at all could offer
interesting knowledge regarding their corner-case behaviour. Even though perturbation-
based studies are commonly used to understand individual decisions better, it often remains
unclear what representations were learned and whether they generalize out-of-distribution.
Recently, tasks such as ARC (Chollet, 2019) have unveiled that deep learning-based ap-
proaches are not sufficient for solving few-shot reasoning-based tasks – here, a promising
endeavour to explore the link between the learned representations and program synthesis
– the paradigm of inducing simple programs which produce a given output.

Apart from exploring the scalability aspects of neuro-symbolic learning, a promising
research venue that is of increasing interest to the community is few shot learning. Here,
a given algorithm’s capability to learn well from as few data as possible (but not fewer)
is the main focus. As one of the main discrepancies between symbolic and sub-symbolic
learning is precisely the amount of data needed to learn well, such a research endeavour can
unveil the limiting properties of existing models and the techniques to improve them. By
being able to learn from smaller amounts of data, contemporary breakthroughs in machine
learning become relevant for, e.g., less-resourced languages or domains where obtaining
new instances is prohibitively expensive (e.g., biomedicine). Currently, the approach of
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model pre-training has seen mainstream adoption. Deep learning models are here first pre-
trained on large collections of data (e.g., a crawl of the internet), and only fine-tuned for
solving a particular task. The success of model pre-training raises the question of whether
this idea generalizes to all representation types in a similar manner. Even though we have
partially explored this issue by demonstrating that incorporating domain knowledge in the
form of knowledge graphs can be a sensible way of including priors about the observed
facts into an existing process, many similar techniques are possible and potentially even
more robust. For example, by maintaining a collection of grounded subject-predicate-
object triplets that correspond to physically realistic relations, a model could, instead of
learning the representation of an object for each task separately, learn to combine pre-
learned representations of the objects. This process could be faster compared to model
pre-training, even though task-dependent – the impact of a given representation on the
final, e.g., document representation, would be context-dependent in a manner similar to
representations obtained by using contextual language models.

The discussed autoML approach offered the initial results regarding meta-transfer
learning for text-based tasks. We believe that building on this idea to understand better,
but especially transfer symbolic knowledge from task to task, is a promising endeavour,
mostly bound by the available computing resources (which is becoming less of a problem).
Ideally, a database of algorithm configurations comprising of different representation type-
weight associations should be available at the beginning of each new run, serving as a
database of meta priors. This way, each autoML run would first determine the task type it
is dealing with and jump-start the evolution accordingly. It remains an interesting question
whether the neuro-symbolic paradigm can transcend the capabilities of the sub-symbolic
learning-only paradigm. For example, in autoBOT, as the representation space was rep-
resented with sparse matrices, the downstream learning algorithms had to exploit sparse
data structures to operate in space efficiently. We solved this issue by adopting simple
linear classifiers which are very efficient when working with sparse data. However, such
learners are myopic, and, as demonstrated, compared to larger neural language models,
potentially miss interesting feature interactions (apart from not being pre-trained). We
believe a logical next step at this point, which operates in a complementary manner to the
current developments in the field of neural language models, would be to adopt a different
classification paradigm – one similar to the PropStar presented in this work. Here, embed-
dings of features would be learned alongside the embeddings of labels, producing a joint
latent space within which the classification takes place. The classification is based solely
on measuring distances between the learning objects’ representations, making the object
placement a hard but solvable problem with contemporary gradient-based optimization
methods. Interestingly, such space would contain both symbolic and sub-symbolic points
(features), which has, to our knowledge, not been studied before in this setting.

One of the key lessons learned was the fact that if one is given an abundance of com-
puting resources, one should be able to adopt a given approach to leverage that additional
computing power. The unpublished part of this thesis related to scaling the autoBOT ex-
plored one of the possibilities (Section 4.2.4), indicating that more robust solutions which
adopt dockerization (and are not prone to some of the jobs failing) need to be consid-
ered. In general, with more computing resources, especially the search part of a given
approach can be many times seamlessly scaled. Examples include exploration of the space
of hyperparameters, but also the weights themselves. We believe that with the increas-
ing computing resources, the symbolic paradigm might offer the only solution to better
understand the nature of the conducted search, helping the researchers/practitioners with
profiling the (non-convex) objective space. A promising symbolic paradigm, which is yet
to be fully exploited for this purpose, is rule learning – by being able to identify simple
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logical patterns which cover parts of the observed space, the system’s user can immediately
identify the relations between the variables of interest (e.g., hyperparameters).

The current mainstream research direction focuses primarily on sub-symbolic (neural)
algorithms. Given the success of this branch of algorithms, the necessity of maintaining
parts of systems purely symbolic can be questioned. Tasks such as the mentioned ARC and
similar are currently canonical examples where neural-only approaches do not dominate.
Further, similar results were recently also observed when considering the best solutions to
the NetHack Challenge (Küttler et al., 2020)1, a reinforcement learning benchmark where
the goal was to build agents which consider the NetHack game as the environment. Here,
symbolic-only agents were substantially better performing when compared to neural-only
solutions. According to the organizers of this shared task, efficient background knowledge
incorporation is highly relevant for constructing successful agents; Given very sparse re-
wards, such knowledge can be the decisive factor between succeeding or failing at specific
points in the game. Even though neural-only approaches can learn constraints relevant to
a given system, incorporation of e.g., physical laws can speed up learning, and remains a
lively research area (Jagtap et al., 2020; Shin et al., 2020).

With the advent of computing power suitable for machine learning purposes in recent
years, a promising research direction includes re-implementation of methods capable of
inductive computational reasoning on specialized hardware. Examples include the early
approaches from the field of inductive logic programming including Aleph (Srinivasan,
2001) and similar computational reasoning engines. The recent developments in the field
of neuro-symbolic learning such as DeepProbLog are already exploring this direction with,
e.g., the neural predicate. However, a promising direction would include speeding up the
rule discovery/induction procedures, making them subject to multithreading and other
out-of-the-box functionalities of modern programming languages. Furthermore, one of the
main caveats of the contemporary ILP-based approaches remains their usefulness to the
researchers outside of the community. Simple, tutorial-like demonstrations utilizing high-
level wrappers which abstract away the unnecessary complexity appear to have emerged
as one of the key solutions to this problem. Similar developments boosted the adoption of
neural methods in recent years. By emphasizing robust, simple-to-use implementations, the
learning curve for the newcomers to a given field has decreased, increasing wider adoption.
Thus, the neuro-symbolic paradigm could play a pivotal role in bringing decades-old meth-
ods which work very well into the spotlight (again), potentially systematically improving
the machine learning toolkit used for practical applications.

As this thesis focused mainly on the development of novel methods, we believe the
next step should include mostly applications. The reason for this would be two-fold. First,
using the developed methods on new data sets, the implementations’ validity is assessed,
with imminent adaptations mostly needed when dealing with realistic (noisy) data sets.
Furthermore, the added value of being partially explainable could offer significantly better
understanding when considering tasks that are also hard for humans. Examples include
ambiguity and fake news detection. The applicability of the neuro-symbolic paradigm re-
mains to be evaluated in the following years; the current resurgence of novel methods/ideas
on this topic indicates that the field carries the potential to offer methods that learn better
and are more inspectable. To further this claim, the neuro-symbolic paradigm potentially
transcends the notion of having both paradigms within the same ‘method’, as presented in
this work. Even learner/explainer combinations can be understood as a whole as neuro-
symbolic systems, implying that the widespread adoption of neuro-symbolic methods (at
this level) is already present. Applications of immediate relevance for the developed set
of methods include analysis of high-dimensional biological data sets, text classification

1https://nethackchallenge.com/

https://nethackchallenge.com/
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(when the data is scarce), node classification, link prediction, and model explanation. A
promising direction would also explore how deep neural network-based representations,
representing contextually different corpora could be jointly used for learning by adopting
the representation ensemble idea considered in autoBOT paper.

More ambitious further work would explore beyond the current paradigm of classical
computing. Albeit in its infancy, quantum computing could offer drastic speedups to a
particular subset of machine learning-relevant problems, including kernel computation and
search. Currently, it remains unclear whether this paradigm scales/will scale and when
will it be suitable for mainstream adoption. We believe, however, that if a given neuro-
symbolic approach is built mostly with linear-algebraic operations from widely supported
libraries, it is possible that there will be drop-in replacements for parts of the codebase
which could already prove beneficial. However, the development of quantum machine
learning algorithms from scratch is possibly a much more complex challenge that will be
tackled in the years.
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