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Abstract

As the amount of data that is collected and processed increases, the use of algorithms that
are used to generate knowledge from the data, as well as to provide predictions, increases
as well. The potential and aspirations of our data-driven world rest on the capabilities and
the power of algorithms. Yet, even the most seasoned practitioners of machine learning and
data science (ML and DM) have a hard time choosing which algorithm to use in a given
research or application scenario. This task is even further hard to achieve because there are
no public and comprehensive repositories of ML/DM algorithms, with most practitioners
relying on multiple sources of information to comprehend a specific algorithm: i.e., scientific
literature, web articles, or the documentation of an ML/DM software library. The lack
of a centralized repository that contains comprehensive ML/DM algorithm information
motivated the work described in this thesis.

In this thesis, we address the tasks of representation, semantic annotation, storage, and
querying of algorithms in the domain of ML/DM. For improving the knowledge represen-
tation of ML/DM algorithms, we propose OntoDM-algorithms, an ontology extension of
the OntoDM ontology of data mining. The extension includes several novel entities which
serve to explicitly exhibit the complex structure of ML/DM algorithms. The developed
ontology resource is further utilized to create an ontology-based annotation schema which
is in turn used to annotate a selection of algorithms and populate the algorithm knowledge
base.

Furthermore, we develop a web-based application to support semantic annotation, stor-
age, and querying of ML/DM algorithms. The application offers two different user sce-
narios. The users can either use the annotation tool to manually annotate an ML/DM
algorithm, or they can query the repository of previously annotated ML/DM algorithms.
The query results can be exported in several formats and they can be further used as a
regular tabular dataset. In addition, apart from following a manual approach to semantic
annotation, we explored a methodology for semi-automatic annotation of ML/DM algo-
rithms. The complete methodology and the findings are described and used to open new
research questions in this domain.

The created repositories and the developed application are evaluated based on the
FAIR guiding principles for data stewardship, the OBO Foundry principles, as well as in
multiple annotation scenarios. The evaluation shows that the developed resources provide
the needed infrastructure for annotating, storing, and querying ML/DM algorithms, while
potential venues for improving the work are also presented.
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Povzetek

Ker se količina podatkov, ki se zbirajo in obdelujejo, povečuje, se povečuje tudi uporaba
algoritmov, ki se uporabljajo za ustvarjanje znanja iz podatkov, pa tudi za zagotavljanje
napovedi. Potencial in želje našega podatkovno vodenega sveta temeljijo na zmožnostih
in moči algoritmov. Kljub temu imajo tudi najbolj izkušeni izvajalci strojnega učenja in
podatkovnega rudarjenja (SU in PR) težave pri izbiri algoritma, ki ga bodo uporabili v
danem raziskovalnem ali aplikacijskem scenariju. To nalogo je še dodatno težko doseči, ker
ni javnih in celovitih repozitorijev algoritmov SU/PR, pri čemer se večina izvajalcev zanaša
na več virov informacij, da bi razumeli določen algoritem: npr. znanstveno literaturo,
spletne članke ali dokumentacijo o Knjižnici programske opreme SU/PR. Pomanjkanje
centraliziranega repozitorija, ki bi vseboval izčrpne informacije o algoritmu SU/PR, je
motiviralo delo, opisano v tem magistrskem delu.

V magistrski nalogi obravnavamo naloge zastopanja, semantične anotacije, shranjeva-
nja in poizvedovanja algoritmov v domeni SU/PR. Za izboljšanje predstavitve znanja algo-
ritmov SU/PR predlagamo OntoDM-algorithms, ontološko razširitev OntoDM ontologije
podatkovnega rudarjenja. Razširitev vključuje več novih entitet, ki eksplicitno prikazu-
jejo kompleksno strukturo algoritmov SU/PR. Razviti ontološki vir se nadalje uporabi za
ustvarjanje sheme opomb, ki temelji na ontologiji, ki se nato uporablja za označevanje
izbora algoritmov in polnjenje baze znanja o algoritmih.

Poleg tega razvijamo spletno aplikacijo za podporo semantičnega označevanja, shra-
njevanja in poizvedovanja algoritmov SU/PR. Aplikacija ponuja dva različna uporabniška
scenarija. Uporabniki lahko uporabijo orodje za opombe za ročno komentiranje algoritma
SU/PR ali pa poizvedujejo po repozitoriju predhodno označenih algoritmov SU/PR. Re-
zultate poizvedbe je mogoče izvoziti v več formatih in jih je mogoče nadalje uporabljati kot
običajni tabelarični nabor podatkov. Poleg ročnega pristopa k semantičnemu označevanju
smo raziskali tudi metodologijo za polavtomatsko označevanje algoritmov SU/PR. Celo-
tna metodologija in ugotovitve so opisane in uporabljene za odpiranje novih raziskovalnih
vprašanj na tem področju.

Ustvarjeni repozitoriji in razvita aplikacija so ovrednoteni na podlagi vodilnih načel
FAIR za upravljanje podatkov, načel OBO Foundry, kot tudi v več scenarijih opomb. Ocena
kaže, da razviti viri zagotavljajo potrebno infrastrukturo za označevanje, shranjevanje in
poizvedovanje algoritmov ML/DM, predstavljena pa so tudi možna mesta za izboljšanje
dela.
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Chapter 1

Introduction

The volume of research publications on artificial intelligence (AI) has been growing steadily
for the past 20 years. The AI Index, an organization that measures trends in AI annually
produces the "AI Index Report", according to which, in the period from 2010 to 2021,
the total number of AI publications doubled, growing from 162,444 in 2010 to 334,497 in
2021 (D. Zhang et al., 2022). A large part of these publications describes novel algorithms
developed for different sub-domains of AI, such as machine learning (ML), computer vision
(CV), and others. As a result, there is an increasing need for both better knowledge
organization and knowledge representation of algorithms in the domain of AI.

From a meta-perspective, we can treat information about algorithms like any other data
and apply well-defined practices in knowledge representation and engineering to develop
a logical formalism of the domain of interest (Markman, 2013). The formalism, usually
in the form of an ontology schema, would in turn allow us to semantically annotate any
set of data. In computer and information science, ontology is a technical term denoting
an artifact that is designed to enable the modeling of knowledge about some domain
(Gruber, 1993). Ontologies provide a detailed description of a domain, first by organizing
the domain classes in a taxonomy, and further by defining relations between the classes.
Furthermore, the annotation process can be performed manually — through user input, or
semi-automatically using natural language processing (NLP) models (Chowdhary, 2020) for
tasks such as named entity recognition (NER) and relation extraction. Both approaches
lead to the creation of a repository of algorithms that can be further used in various
scenarios. Some of them include determining the choice of an algorithm, based on user-
specific constraints (i.e., computational resources, data format, task), as well as semantic
analysis of the repository data, and training AI models using the data.

In this thesis, we focus on a beginning-to-end approach to manual semantic annotation
of algorithms in the domain of ML/DM by designing and implementing a system for
semantic annotation, storage, and querying of machine learning/data mining (ML/DM)
algorithms. To provide semantics to the data, we use controlled vocabularies in the form of
ontologies, which formalize domain knowledge. While there exist several ontologies which
we successfully reuse in our work, the need for more explicit knowledge representation led
us to design an ontology extension named OntoDM-algorithms which extends the previous
line of work (Panov et al., 2008), with a focus on the inner-workings of ML/DM algorithms.
By annotating data with ontology-defined terms, we add machine processable meaning to
the data. Based on the annotations, we can query the data, as well as infer new facts based
on the knowledge that we have asserted.

It is important to note that this thesis has a "horizontal" structure in the sense that
it explores both bottom-up and top-down approaches to semantic annotation, with an
emphasis on the top-down approach described above. Hence, it leaves many open questions
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and much room for further work in the quest for knowledge representation and downstream
ML tasks using ML/DM data.

1.1 Problem Description

This thesis is set to contribute to the field of knowledge representation of algorithms in the
domain of ML/DM, with a focus on improving the reusability and accessibility of semantic
annotations of algorithms. The aim is to formalize the knowledge about the algorithms
in an ontology extension, following ontology design principles and best practices, and
further develop an ontology-based annotation schema that will sufficiently encapsulate key
ML/DM algorithm information. The next step is to develop a web-based system for manual
semantic annotation, storage, and querying of ML/DM algorithms through which users,
most commonly ML/DM practitioners and algorithm developers, can create annotations
for any ML/DM algorithm, as well as query the algorithms repository. Additionally, the
system ensures appropriate storage and validation of the data, which can be accessed
publicly using a querying interface. Here, we will briefly present the domains of ML and
DM and the main contributions of the thesis.

1.1.1 Knowledge representation of domain knowledge

Data mining, also called knowledge discovery in databases, in computer science, is the
process of discovering interesting and useful patterns and relationships in large volumes
of data. The field combines tools from statistics and AI with database management to
analyze large digital collections, known as datasets (Clifton, 2022). On the other hand,
machine learning is a field devoted to understanding and building methods that ’learn’,
i.e., methods that leverage data to improve performance on some set of tasks.

ML algorithms build a model on sample data, known as training data to make pre-
dictions or decisions without being explicitly programmed to do so (Mitchell et al., 1997).
The abundance of research in these two domains has led to the development of many new
algorithms. This in turn has driven the need for more explicit data description and orga-
nization, so that domain experts could more efficiently choose which algorithm to use in a
given scenario. This choice is conditioned upon the task, the type of data available, as well
as the computing resources at disposal. Having all these aspects in mind, we developed
an extension of the OntoDM ontology, named OntoDM-algorithms, a resource focused on
semantic representation of ML/DM algorithms, along with related representations closely
tied to what an algorithm is.

1.1.2 Semantic annotation, storage, and querying

Once we have a controlled vocabulary that describes different aspects of ML/DM algo-
rithms, then we can utilize it for semantically annotating algorithms. In this context,
one of the key contributions of this thesis is a web-based application we designed and
implemented that enables the semantic annotation, storage, and querying of ML/DM al-
gorithms. The application infrastructure is divided into two functional units - namely, the
semantic annotation tool and the semantic querying tool.

The semantic annotation tool enables users (i.e., researchers or domain practitioners),
to input algorithm information which through the use of an ontology-based annotation
schema is stored in a repository, in the form of a graph database (“NEO4J Graph Data
Platform,” 2022), and can be easily exported into a semantic format (i.e., RDF “RDF
— Semantic Web Standards,” 2022). The validated user annotations as well as a set of
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proof-of-concept annotations provided by us are then available to be retrieved by the user
through the semantic querying tool.

There are multiple benefits from the creation of such a system. Firstly, it facilitates
users’ contribution to the population of a semantic repository through the annotation tool.
Next, users can query and search the repository, enabling them to find the appropriate
algorithm for their specific requirements, based on the task that is to be addressed, or the
available computational resources. Additionally, data can be exported from the repository
on demand using several common formats (CSV and PDF), as well as a standard model
for data interchange on the web - RDF. Finally, through the logic endowed in the ontology
schema, we can derive new information which is implicit and can be further inferred through
the use of a reasoner.

1.1.3 Exploratory analysis of automatic annotation

The promising capabilities of large language models in various tasks, including named en-
tity recognition (NER), inspired us to explore the capabilities of automatically populating
a database of ML/DM algorithms, i.e., explore the capabilities of a bottom-up approach
(Nadeau & Sekine, 2007). To do so we selected several text corpora describing ML/DM
algorithms and used pre-trained language models from the Spacy and Scispacy libraries
to automatically extract named entities (Neumann et al., 2019; Srinivasa-Desikan, 2018).
Additionally, we trained a custom model from scratch, which proved the assumption that
the task of NER in the domain of ML/DM is inherently hard due to the nature of the data.
We point to findings during the annotation process of such data, as well as to potential
improvements that can be applied to each step of the bottom-up approach.

1.2 Purpose, Goals, and Hypotheses

In this section, we present the purpose, hypotheses, goals, and contributions of the thesis.

1.2.1 Purpose

The purpose of this thesis is to develop a formal representation of ML/DM algorithms
by designing and implementing an ontology extension and a knowledge base of ML/DM
algorithms, as well as to provide services for populating and exploring the knowledge base.

1.2.2 Goals

Based on the main purpose of the thesis, we define the following operational goals:

• G1. Formalize knowledge about algorithms in the domain of ML/DM in an ontology
resource.

• G2. Design and implement a web-based system for annotating, storing the annota-
tions, and querying the stored annotated algorithms, where the developed system is
used to populate and query the knowledge base.

• G3. Explore the possibilities of semi-automatic algorithm annotation by creating
and populating a domain knowledge base from textual data.
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1.2.3 Hypotheses

In this thesis, we are interested in the following research questions, formulated as hypothe-
ses:

• H1. Knowledge about domain algorithms can be formalized in an ontology resource.

• H2. Semantic annotations of domain algorithms can be created using a manual an-
notation system and stored in a knowledge base.

• H3. A domain knowledge base can be automatically created and populated by using
pre-trained natural language processing models to extract entities from structured
text data.

1.2.4 Contributions of the thesis

This thesis is set to contribute to knowledge representation in the domains of ML/DM.
This is done by providing an ontology schema and a system that allows users to semanti-
cally annotate and query domain algorithms. Additionally, a semi-automatic approach to
semantic annotation is explored using natural language processing techniques. Hence, the
contributions of the thesis are as follows:

• SR1: An ontology extension of the OntoDM-core ontology, named OntoDM-algorithms,
for improved knowledge representation with respect to ML/DM algorithms;

• SR2: A web-based tool for manual semantic annotation, storage, and, querying of
ML/DM algorithms;

• SR3: A populated domain knowledge base of algorithms; and

• SR4: An experimental study that demonstrates the use of a semi-automatic ap-
proach to create and populate a domain knowledge base;

1.3 Methodology

First, we will formalize the knowledge related to ML/DM algorithms in the form of an
ontology. To do so, we follow the best practices in ontology design postulated by the OBO
Foundry principles and the FAIR guidelines (Smith et al., 2007; Wilkinson et al., 2016).
Initially, we will examine related state-of-the-art ontologies, such as OntoDM (Panov et al.,
2008; Panov et al., 2013, 2014; Panov et al., 2016) and DMOP (Keet et al., 2015), which
can be reused in the ontology extension, or equally importantly, serve as a reference point in
the development process. The developed ontology extension will be publicly available with
a permanent identifier and indexed on BioPortal. For developing the ontology extension,
we use the Protégé open-source ontology editor (Musen, 2015).

We will further make use of the ontology extension by creating an ontology-based
annotation schema. This annotation schema will be a key part of the web-based system

https://bioportal.bioontology.org/ontologies/ONTODM-ALGORITHM
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for semantic annotation, storage, and querying of ML/DM algorithms. The system will
enable users to annotate ML/DM algorithms using a user-friendly user interface, as well
as query the repository using custom filters. For developing this system we will mainly
rely on free and open-source technologies such as React (“React – A JavaScript library for
building user interfaces,” 2022) and related front-end technologies (used for building the
user interface), Django (Forcier et al., 2008) (used for building the back-end services), and
Neo4j (“NEO4J Graph Data Platform,” 2022) (used for data storage and manipulation)
and neosemantics (used for adding semantics to the data).

Then, we will use the developed tool to populate the knowledge base and provide ex-
ample annotations using different types of ML/DM algorithms. The populated KB will
enable the use of the querying tool without the presupposition of user-generated annota-
tions, provide a guideline as to what an annotation is envisioned to contain, as well as
validate the quality of the developed resources, i.e., the capability of the ontology to cap-
ture necessary information related to ML/DM algorithms and the capability of the system
to successfully store such data. Ultimately, the result of this segment of the thesis will
result in a populated KB as well as a discussion on the findings of the annotation process.

In the final section of the thesis, we will explore an automated approach to database
population using language models. For this purpose, we select two text corpora in the
domain of ML/DM: the SCIERC corpus of scientific paper abstracts (Luan et al., 2018)
and a corpus of scientific paper abstracts published in the Arxiv repository (Sayak, 2021).
We use the Arxiv abstracts to qualitatively evaluate the capabilities of large pre-trained
language models included in the Spacy and Scispacy libraries. Since the results are not
promising, we turn to train a custom model using the SCIERC dataset (Luan et al., 2018).
The results of this approach will be presented accordingly. Additionally, we will manually
annotate a small corpus of Arxiv abstracts to demonstrate the common annotation issues
which make training language models extremely difficult.

1.4 Thesis Structure

In this chapter, we introduced the domain of the thesis, and we defined the purpose,
goals, and hypotheses, as well as the contributions. Finally, we presented the proposed
methodology with which we aim to achieve the goals and produce the specified scientific
contributions.

In Chapter 2, we present the work relevant to the research presented in the thesis.
We first present several notable algorithm conceptualizations, as per influential theoretical
computer scientists, which served as reference points when developing the ontology. Next,
we describe what an ontology is as well as common ontology engineering principles, and the
two main approaches to developing an ontology. We also present several related ontologies
in the domain of ML/DM and the common framework for representing algorithms in the
ontologies. Finally, we describe the resources and the methodology used to carry out the
semi-automatic KB population study.

Chapter 3 covers the design and implementation of an ontology extension for annotation
ML/DM algorithms named OntoDM-algorithms. We first describe the relevant entities
which have been reused from existing ontologies. Then, we delve deep into each of the
novel entities, explaining the reasoning behind their introduction to the ontology extension
and providing relevant examples. At the end of the chapter, we describe the operational
aspects of the ontology development process.

In Chapter 4, we describe the design and implementation of a web-based application
for annotating, storing, and querying ML/DM algorithms. We thoroughly describe the
system architecture and the implementation of the user interface as well as the services
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for annotation and querying. The use of semantics in the application is also discussed,
accompanied by guidelines on how it can be improved. In the final section of this chapter,
we present the annotations which we have created using the developed resources as well as
a discussion of the lessons learned in the manual annotation process.

Chapter 5 covers two use case scenarios — the annotation use case and the querying use
case, accompanied by detailed depictions of the user interface. Additionally, we present
annotations of two algorithm types, a single generalization and an ensemble algorithm,
through which we illustrate some of the design features of the system. With these use
cases, we showcase the capabilities of the system, from inputting and storing the data to
querying the system for necessary information.

In Chapter 6, we evaluate the developed resources using the FAIR Guiding Principles
for scientific data management and stewardship, the OBO Foundry Principles for ontology
design, as well as present statistical ontology metrics of OntoDM-algorithms (Smith et al.,
2007; Wilkinson et al., 2016).

Moving on to Chapter 7, we present the findings of the semi-automatic approach to
database population using language models. We describe the data selection and annotation
process in detail, as well as provide a discussion on the findings from the use of pre-trained
and custom language models to automatically annotate paper abstracts on the topic of
ML/DM algorithms.

Finally, in Chapter 8, we present our concluding remarks. We summarize the work,
discuss the contributions of the thesis, as well as present venues for future contributions
and improvement.
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Chapter 2

Background and Related Work

The endeavor of semantic annotation of ML/DM algorithms is a task that relies heavily
on extensive background research. This research draws upon decades of work done by
theoretical computer scientists, linguists, and mathematicians, who were all trying to figure
out what are the essential features of an algorithm. Using this background knowledge
enables us to turn to established tools for knowledge organization in the form of an ontology.
The field of ontology development will be described in detail, covering definitions, its
philosophical origins, common approaches to development, as well as general principles of
ontology design. Next, we put forward the most notable ontology resources developed in
the fields of ML/DM and describe the framework which underlies their design. Finally,
we describe the resources and methodology for an alternative approach for semi-automatic
annotation.

2.1 Algorithm Conceptualizations

One of the goals of this thesis is to formalize knowledge about algorithms in the domains
of ML and DM, hence we first have to be well acquainted with the way the term algorithm
was conceptualized in previous work. One definition of an algorithm is: "algorithm is a
clerical procedure which can be applied to any of a certain class of symbolic inputs and
which will eventually yield, for each such input, a corresponding symbolic output" (Rogers
Jr, 1987). Historically, there have been multiple efforts to formalize the term algorithm,
which goes beyond the level of providing a linguistic definition, but rather precisely defines
which entities are algorithms and which are not. These algorithm characterizations were
made by scientists from various disciplines, not limited to mathematicians, linguists, and
philosophers. Here, we describe three such characterizations made by the established
theoretical computer scientists Hartley Rogers, Donald Knuth, and Michael Sipser.

2.1.1 Rogers’ characterization

Professor Hartley Rogers in his 1967 Theory of Recursive Functions and Effective Com-
putability characterizes an "algorithm" as a "clerical (i.e., deterministic) procedure applied
to symbolic inputs and which will eventually yield, for each such input, a corresponding
symbolic output" (Rogers Jr, 1987). He then describes the notion in approximate and
intuitive terms as having ten features, five of which he asserts that most mathematicians
would agree to, while the remaining five would be less obvious and consequently, less agreed
upon. Rogers’ features of an algorithm are presented in Table 2.1.

The last feature is somewhat controversial when bringing machine learning algorithms
into the picture since most of them include procedures based on randomness, such as
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Table 2.1: Rogers’ ten features of an algorithm.

# Algorithm Feature
1. An algorithm is a set of instructions of finite size.
2. There is a capable computing agent.
3. There are facilities for making, storing, and retrieving steps in a computation.

4. Given 1. and 2. the agent computes in "discrete stepwise fashion"
without use of continuous methods or analogue devices.

5.
The computing agent carries the computation forward
"without resorting to random methods or devices, like dice.
(in a footnote Rogers wonders if 4. and 5. are the same).

6. No fixed bound on the size of the inputs.
7. No fixed bound on the size of the set of instructions.
8. No fixed bound on the amount of memory storage available.
9. A fixed finite bound on the capacity or ability of the computing agent.

10.
A bound on the length of the computation. The only requirement is that
a computation will terminate after some finite number of steps;
not insisting on an a priori ability to estimate this number.

random sampling procedures. However, this does not clash with the fourth feature, since
a stochastic procedure is nonetheless carried out in a "step-wise" fashion.

2.1.2 Knuth’s characterization

One of the most cited and widely accepted algorithm characterizations was provided by
Donald Knuth, building on top of Hartley Rogers’ list of algorithm features. Knuth stated
five features that are widely accepted as requirements for an entity to be an algorithm
(Donald et al., 1999), which can be seen in Table 2.2.

Table 2.2: Knuth’s characterization of an algorithm.

# Algorithm Feature
1. Finiteness. An algorithm must always terminate after a finite number of steps.

2.
Definiteness. Each step of an algorithm must be precisely defined;
the actions to be carried out must be rigorously and
unambiguously specified for each case.

3. Input. An algorithm has zero or more inputs: quantities that are given to it
initially before the algorithm begins, or dynamically as the algorithm runs.

4. Output. An algorithm has one or more outputs:
quantities that have a specified relation to the inputs.

5.
Effectiveness. An algorithm is also generally expected to be effective,
in the sense that its operations must all be sufficiently basic that they can in
principle be done exactly and in a finite length of time by someone using pencil and paper.

While these requirements, echoed in the definition we presented at the beginning of this
section, make intuitive sense, they include many vague terms, such as “precisely defined” or
“sufficiently basic”. Similarly, Stone defines an algorithm as: “A set of rules that precisely
defines a sequence of operations such that each rule is effective and definite and such that
the sequence terminates in a finite time (Stone, 1971).”
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2.1.3 Sipser’s three levels of description

Sipser’s three levels of description of Turing machine algorithms interestingly correspond
heavily to the way algorithms are represented in OntoDM-core, the ontology which we are
to upgrade with this work and will be presented shortly afterward (Sipser, 1996). We will
expand on this later, but for now, it is convenient to see that the high-level description
corresponds to the specification layer, the implementation description corresponds to the
implementation layer and the formal description corresponds to the execution layer.

• High-level description: “Wherein we use prose to describe an algorithm, ignoring the
implementation details. At this level, we do not need to mention how the machine
manages its tape or head.”

• Implementation description: “In which we use prose to describe the way that the
Turing machine moves its head and the way that it stores data on its tape. At this
level, we do not give details of states or transition function.”

• Formal description: “The lowest, most detailed level of description that spells out in
full the Turing machine’s states, transition function, and so on.”

2.2 Ontologies and Ontology Engineering Principles

The promise of computers to store, manage and integrate large amounts of data and in-
formation has led to an increasing need for knowledge representation and organization in
a computer-readable format. This has led to the development of many knowledge organi-
zation systems, such as terminologies, taxonomies, and ontologies. Ultimately, ontologies
have turned out to be an increasingly dominant strategy for the organization of scientific
information in a computer-friendly form. Hence, they will be the focus of this section.

2.2.1 Ontology as a representational artifact

An ontology is a representational artifact, comprising a taxonomy as a proper part, whose
representations are intended to designate some combination of universals, defined classes,
and certain relations between them (Arp et al., 2015). This definition consists of multiple
terms that need to be further described. A taxonomy is a hierarchy consisting of terms
denoting entities linked by subtype relations. Here, a hierarchy resembles a graph-theoretic
structure consisting of nodes and edges with a single top-most node (the “root”) connected
to all other nodes through unique branches. While hierarchies in general allow multiple
inheritance, a taxonomy adheres to the concept of single inheritance, i.e., all nodes beneath
the root have exactly one parent node. An entity can be anything that exists, including
objects, processes, and qualities (Arp et al., 2015). As such, it can be anything that
is sufficiently necessary to be included in the ontology, as determined by the ontology
developer.

Entities in reality that are responsible for the structure, order, and regularity are desig-
nated as universals. Universals are repeatable in the sense that they can be instantiated by
more than one object and at more than one time, whereas particulars are nonrepeatable:
they can exist only in one place at any given time. As such, particulars are individual en-
tities in reality restricted to particular times and places. Particulars instantiate universals,
but they cannot themselves be instantiated. In virtue of instantiating the same universal,
two particulars will be similar in certain corresponding respects. In our domain of interest,
an example of a universal would be the ML/DM Algorithm entity, while a particular would
be GaussianNB or DecisionTreeClassifier.
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A representation is an entity (for example, a term, an idea, an image, a label, a de-
scription, an essay) that refers to some other entity or entities. This is an acknowledgment
of the fact that an ontology is itself a mere representation, a potential entity in yet another
representation. The perception of an entity is different from the entity itself, and hence
we must make a distinction between an entity in an ontology and an entity that exists,
separated from the subjective perception of the beholder. Note that a representation may
be vague or ambiguous, and it may rest on error. An example here would be a memory of
an algorithm formulation described in a paper, as opposed to the actual description of the
algorithm in the paper.

An artifact is something that is deliberately designed by human beings to address a
particular purpose, while a representational artifact is an artifact whose purpose is one
of representation. Thus, a representational artifact is an artifact that has been designed
and made to be about something and uses some public form or format. Examples include
signs, books, drawings, maps, and databases. A simple representational artifact would be
the drawing of the first version of the ontology described in this thesis. Before the ontology
was drawn what existed were only cognitive representations of things I observed through
my senses (i.e., reading papers, discussing). Upon the creation of the drawing, I created
a representational artifact that exists independently of such cognitive representations and
transforms them into something that is publicly observable.

Entities in an ontology are connected via relations, whose names are supposed to carry
inherent semantics. Some examples of relations include the is_a relation and the has_part
relation. Additionally, the relations can be further defined by adding cardinality restric-
tions as well as function characteristics (transitivity, reflexivity, symmetry, etc.). At the
fundamental level, we distinguish three types of relations, based on the types of entities it
connects:

1. Universal-universal relations. The paradigm example of a relation that holds
between universals is the is_a relation, as in protein molecule is_a molecule, or
DecisionTreeClassifier is_a flat classification algorithm. The is_a rela-
tion represents hierarchies of generality, i.e., more specific child universals stand in
is_a relation to more general, or parent universals.

2. Universal-particular relations. A paradigm example of a relation between a
particular and a universal is the instantiates relation, as in Nikola Tesla instantiates
human being, or CART instantiates ML/DM algorithm. All particulars stand in the
instantiation relation to some universal, typically to several universals at different
levels of generality – but universals themselves do not instantiate anything.

3. Particular-particular relations. A paradigm example of a relation holding be-
tween particulars is the part_of relation. For example, John’s left leg part_of John,
or textttDecisionTreeClassifier has_part max_depth.

2.2.2 Ontological realism

It is a widely accepted notion that we cannot know reality directly or know the things
in reality as they are in themselves. But rather, we have access to reality only as it is
mediated by our thoughts or concepts. Hence, our perceptions, thoughts, beliefs, and
theories are most properly conceived as being about our constructions or projections, and
only indirectly (if at all) about mind-independent entities in some external reality. This
philosophical stance was perpetuated by Descartes, Locke, Berkley, and Kant, amongst
others, as presented in Figure 2.1 (Berkeley, 1881; Descartes, 1999; Kant, 1908; Locke,
1847). It is important to note that the goal of ontology for the realist is not to describe



2.2. Ontologies and Ontology Engineering Principles 11

the concepts in people’s heads. Rather, ontology is an instrument of science, and the
ontologist, like the scientist, is interested in terms or labels only insofar as they represent
entities in reality. So, the goal of ontology is to describe and adequately represent those
structures of reality that correspond to the general terms used by scientists.

Figure 2.1: A trace of the idea of subjective realism, via expansions and refutations by
philosophers. Source: https://www.denizcemonduygu.com/philo/browse/.

The most widely accepted view among philosophers today regarding the existence of
an external world is the one of nonskeptical realism. Philosophical skepticism claims that
we do not know propositions that we ordinarily think we do know (Comesaña & Klein,
2019). Nonskeptical, in this regard, means that we believe in the propositions, i.e., assume
that they are true. In a survey of 1785 philosophy faculty members, 79.5% leaned towards
nonskeptical realism, while very few opted for skepticism, idealism, and other (Bourget &
Chalmers, 2020). Realism is the thesis that entities (which can be both physical things and
concepts) have mind-independent existence, i.e. that they are not just a mere appearance
in the eye of the beholder. Adapting this stance allows us to acknowledge that although
our cognitive faculties do not deliver the entire truth about reality, this does not mean that
the information that they do deliver should be viewed as nonrepresentative of how reality
is.

Our faculties – our senses and cognition mechanisms – much like spectacles, micro-
scopes, and telescopes – do indeed provide us with information about reality. They do
this discretely, at different levels of granularity, and with the occasional need for correc-
tion. This correction can be made with the scientific method, which is itself an ongoing
process of data collection and theorizing, using human perceptions supported by scientific
experiments, and yielding results which still may be fallible but are also self-correcting over
time.

It is a basic assumption of scientific inquiry that nature is at least to some degree struc-
tured, ordered, and regular. Scientific experimentation involves in every case observations
of particular instances of more general types, i.e., this eukaryote cell under this microscope.
The ultimate goal of science is to use observations and manipulations of such particulars to
construct, validate, or falsify general statements and laws. Ontology is concerned with en-
coding information about the general features of things in reality, rather than information
about particular individuals, times, or places.

2.2.3 General principles of ontology design

Arp et al., specify the following principles for designing an ontology that optimizes the
utility in support of scientific research presented in Table 2.3 (Arp et al., 2015). They

https://www.denizcemonduygu.com/philo/browse/
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Table 2.3: General principles of ontology design (Arp et al., 2015).

# Principle of Best Practice
1. Realism. The goal of an ontology is to describe reality.
2. Perspectivalism. There are multiple accurate descriptions of reality.

3. Fallibilism. Ontologies, like scientific theories, are revisable in light of new
discoveries.

4. Adequatism. The entities in a given domain should be taken seriously on
their own terms, not viewed as reducible to other kinds of entities.

5. The Principle of Reuse. Existing ontologies should be treated as bench-
marks and reused whenever possible in building ontologies for new domains.

6.
The Ontology Design Process Should Balance Utility and Realism.
Sacrificing realism to address considerations of short-term utility when building
an ontology may be at the detriment of the ontology’s longer-term utility.

7.
The Ontology Design Process Is Open-Ended. Scientific ontologies will
always be subject to the need for an update in light of advances in knowledge;
ontology design, maintenance, and updating is an ongoing process.

8.
The Principle of Low-Hanging Fruit. In ontology design, begin with the
features of the relevant domain that are easiest to understand and define, then
work outward to more complex and controversial features.

highlight the theoretical considerations the ontologist must have in mind, such as accepting
a realist approach, iterative development, and accepting multiple accurate descriptions of
the domain of interest. Additionally, other relevant principles which will be respected
when designing the ontology extension are the OBO Foundry principles and the FAIR
guiding principles which will be described in more detail in Chapter 6 (Smith et al., 2007;
Wilkinson et al., 2016). All of the aforementioned principles serve to enhance the reusability
and invaluableness of the developed resources.

2.2.4 Bottom-up and top-down ontology development approaches

An ontology can be created by following two generally different approaches: the top-down
and the bottom-up development processes. A top-down development process starts with
the definition of the most general concepts in the domain and subsequent specialization of
the concepts, while the bottom-up development process starts with identifying the instances
and moves up towards defining the more general concepts. Similarly, a data corpus can be
annotated following either approach, the top-down approach being more manual, whereas
the bottom-up approach is more automatized. In this thesis, we will mainly follow the top-
down approach to design an ontology (see Chapter 3) and use the ontology to manually
annotate a data corpus (see Section 4.4) while in Chapter 7 we will present a bottom-up
approach for automatic data annotation. A qualitative comparison of the two approaches
can be seen in Table 2.4.

2.2.4.1 Bottom-up (Data-driven)

The bottom-up approach is based on raw data, most commonly in the form of text. This
approach relies heavily on automated semantic analysis and consequently, the methods
used come from the field of NLP. The amount of data required to automatically build an
ontology or more broadly, a knowledge organization system depends on the methodology.
For example, language models, like transformer-based neural nets, require a large corpus of
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text data, while techniques like latent semantic analysis require much fewer data. The main
advantage of the bottom-up approach is that since it is automatic, it is easily scalable, i.e.,
increasing the data input would require no extensive changes to the methodology. While the
representations produced by these models can account for the inter-dependencies between
the entities, as Chomsky and his acolytes have pointed out for decades, language is just
not an unambiguous vehicle for clear communication (Reboul, 2015). Without the human
input of a nonlinguistic understanding of the context, the quality of these systems will
always be limited (Browning, 2022).

2.2.4.2 Top-down (Knowledge-driven)

The top-down approach is based on the knowledge that is obtained through human ab-
straction of raw data. As we discussed in Section 2.2.2, this approach can produce an
ontology that is an insufficiently realistic representation of the real world, contingent on
biased human perception. However, it is essential to adhere to best-practice design princi-
ples and engage in regular communication with community experts, to sieve out potential
bias-induced inconsistencies. Here, the ability of the ontologist to deeply understand con-
text is an advantage, at the expense of low scalability. The main benefit of this approach
is that it is lightweight, both concerning data and computational resources, however, it
requires a significant amount of human effort, as the ontology developer must go through
heavy research to acquire the knowledge necessary to design an ontology.

2.2.4.3 A comparison of both approaches

In Table 2.4, a qualitative comparison of both approaches is presented based on several
criteria. When considering scalability, the top-down approach is much more difficult to
scale, since it requires more human effort to gain knowledge to further expand the ontology.
On the other hand, the bottom-up approach would not usually require modifications to the
methodology, i.e., human effort, while it would potentially require more data (obtaining
the data could however imply more human effort). Hence, the bottom-up approach is
considered to be more scalable than the top-down approach. The expressiveness criterium
is related to the contextual understanding of text data, which is fundamentally tied to the
nature of language, as described earlier (Browning, 2022).

The development complexity of both approaches is high due to the required knowledge
of the data that is required, as well as the methodologies used to utilize the data. As for
the data requirements, bottom-up approaches require much more data to develop repre-
sentations and contextual knowledge of sufficient quality. While the top-down approach
also requires extensive research, the data requirements are much less due to full-bodied
human thinking, not exclusively based on language. The top-down ontology developer
has to understand the domain to design an ontology that encapsulates domain knowledge,
while in the bottom-up approach, the focus is based more on the methods used, instead of
the input data.

Table 2.4: Bottom-up and top-down ontology development. A qualitative comparison of
bottom-up and top-down ontology development approaches.

Approach Scalability Expressiveness Development
Complexity

Data
Requirements

Domain
Expertise

Top-down Low Low High Low High
Bottom-up High Low High High Low
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2.2.5 Formal and domain ontologies

Ontologies can differ mainly based on the generality of their content. So, we can distinguish
between formal and material ontologies. A formal ontology, or top-level / upper-level
ontology is domain neutral. It contains just those most general terms – such as “object”
and “process” – which apply in all scientific disciplines. In a sense, it is much more related
to philosophers. A material or domain ontology is domain-specific. It contains terms – such
as “cell”, “algorithm” or “time complexity” – which apply only in a subset of disciplines.

The use of domain ontologies is very common in many branches of science, starting from
medicine, physics, and computer science. However, while multiple groups of researchers are
creating incompatible domain ontologies focused on their specific local needs, we are led to
the problem of inaccessible, non-sharable data, and nonoptimal use of resources. This is
precisely why formal ontologies exist. They serve the purpose of providing a common back-
bone for domain ontologies, where the most general terms (universals) are defined. These
terms are to be used as a starting point for developing definitions of terms representing the
various sorts of lower-level universals and defined classes needed for different application
purposes. The use of a top-level ontology ensures effective sharing of annotated informa-
tion and it allows more effective governance and quality assurance of ontology development.
Notable examples of formal ontologies include the Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE), Standard Upper Merged Ontology (SUMO), and Basic
Formal Ontology (BFO) (Arp et al., 2015; Borgo et al., 2006; Pease et al., 2002).

A domain is a delineated portion of reality corresponding to a scientific discipline such
as cell biology or machine learning. Each domain ontology consists of a taxonomy to-
gether with other relations along with definitions and axioms governing how its terms and
relations are to be understood. A domain ontology provides a controlled, structured rep-
resentation of the entities within the relevant domain, one that can be used, for example,
to annotate data pertaining to entities in that domain to make the data more easily acces-
sible and shareable by human beings and processable by computers. Notable examples of
domain ontologies mainly come from the domain of biology and include the Gene Ontol-
ogy (GO), Foundational Model of Anatomy (FMA), and Chemical Entities of Biological
Interest (ChEBI) (Consortium, 2004; Degtyarenko et al., 2007; Rosse & Mejino Jr, 2003).

Basic Formal Ontology (BFO) is an upper-level ontology developed to support inte-
gration of data obtained through scientific research (Arp et al., 2015). It was deliberately
designed to be very small, so that it should be able to represent consistently those upper-
level categories common to domain ontologies developed by scientists in different fields.
It is small, also, to allow the exercise of the benefits of modularity and the division of
expertise. BFO assists domain ontologists by providing a common top-level structure to
support the interoperability of the multiple domain ontologies created in its terms. In
this way, it helps to bring about a situation in which information compiled in separate
repositories can form part of a common framework for the categorization of, and reasoning
about, the entities in the corresponding domains. Entities are divided into two categories
– continuants (entities that continue or persist through time, i.e., objects) and occurents
(entities that occur or happen, i.e., events). This ontology was used as a top-level ontology
in OntoDM and consequently, it is used by the ontology extension described in this thesis.
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2.3 Overview of Relevant Ontologies

2.3.1 Ontologies for machine learning and data mining

In terms of formalizing domain knowledge, there are several notable efforts in the domain
of data mining and machine learning. In this section, we will describe the OntoDM suite
of ontologies (Panov et al., 2008), based on which an ontology extension was designed,
presented in Section 3, as well as the Data Mining Optimization Ontology (DMOP) (Keet
et al., 2015), the Expose ontology (Vanschoren & Soldatova, 2010) and the MEX vocabu-
lary (Esteves et al., 2015).

The OntoDM ontology (Panov et al., 2008) consists of three modular ontologies: OntoDM-
core (Panov et al., 2014) which represents core data mining entities such as datasets, data
mining tasks, algorithms, models and patterns, OntoDT (Panov et al., 2016) — a generic
ontology of data types, and OntoDM-KDD (Panov et al., 2013), which describes the knowl-
edge discovery process. The ontology defines top-level concepts in data mining and machine
learning, such as data mining task, algorithm, and their generalizations, which denote the
results of applying an implementation of an algorithm to a given data set. Based on these
general concepts, OntoDM also defines the components of algorithms, such as distance and
kernel features, and other features they may contain. From the perspective of input and
output data, there is a hierarchical representation of data in this ontology, from general
concepts such as dataset to more specific concepts regarding their structure, such as the
number of features, their role in a particular task, and finally the data type of each at-
tribute. These features of OntoDM provide a complete formal representation of the data
mining process from start to finish.

The Data Mining OPtimization Ontology (DMOP) was developed to support au-
tomation at various selection points in the DM process, including a deeper view of algo-
rithms (mainly for classification and regression) (Keet et al., 2015). While other domain
ontologies treat domain algorithms as black boxes and focus mainly on the inputs and
outputs that specify the algorithms, DMOP provides a conceptualization of the internals
of algorithms. The core concepts of DMOP are the different ingredients that go into the
data mining process (DM-Process): The input of the process is composed of a task spec-
ification (DM-Task) and training/test data (DM-Data) provided by the user. Its output
is a hypothesis (DM-Hypothesis), which can take the form of a global model (DM-Model)
or a set of local patterns (DM-PatternSet). Tasks and algorithms are not processes that
directly manipulate data or models, rather they are specifications of them: A DM-Task
specifies a DM process (or any part thereof) in terms of the input it requires and the
output it is expected to produce. A DM-Algorithm is the specification of a procedure
that addresses a given DM-Task, while a DM-Operator is a program that implements a
given DM-Algorithm and is executed by a DM-Operation. Instances of DM-Task and DM-
Algorithm do no more than specify their input/output types (only processes have actual
inputs and outputs). Each of these high-level entities is extended by corresponding hier-
archies which are explained in more detail in a separate paper (Keet et al., 2013).

Expose is an ontology for data mining experiments (Vanschoren & Soldatova, 2010). It
is complementary to OntoDM and DMOP and covers data mining experiments in detail,
including experiment context, evaluation metrics, datasets, and algorithms. The authors
provide ways to describe algorithm implementations using metadata such as name, version,
URL, and the library to which they belong. The ontology also facilitates algorithm com-
positions and a look at the internal learning mechanisms of algorithms, i.e., how machine
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learning models are built and optimized. The ontology is used in designing the databases
of OpenML, an online repository for storing and accessing data related to the execution
of ML algorithms, containing information on Tasks, Runs, Flows, etc. (Vanschoren et al.,
2014).

The MEX Vocabulary was introduced as a lightweight interchange vocabulary for ma-
chine learning experiments (Esteves et al., 2015). It is based on the PROV Ontology
(PROV-O) to provide a light and simple representation of provenance information. The
PROV Ontology (“Prov-O: The prov ontology,” 2013) defines classes, relations, and re-
strictions to represent provenance information generated in different systems and different
contexts.

MEX consists of three sub-vocabularies, each representing one big part of the data
mining process. MEX-Core contains both the definitions of key data mining entities for
representing the basic steps of executing a machine learning experiment and the prove-
nance information for linking the published results with the produced metadata. The
MEX-Algorithm sub-vocabulary represents the whole concept of machine learning algo-
rithms. It contains definitions for the characteristics associated with every algorithm, such
as the class of the algorithm, learning problem, and learning method. MEX-Performance
defines the entities for representing the findings from a finished machine learning experi-
ment.

2.3.2 A common framework for representing a data mining algorithm

A key ontology design pattern for the representation of algorithms is the Algorithm-
Implementation-Execution design pattern (Lawrynowicz et al., 2017). This pattern has
originated from independent research of several groups on modeling the domain of ML/DM.
Ontologies which are based on this design pattern include the MEX vocabulary (Esteves
et al., 2015), the DMOP ontology (Keet et al., 2015), and the OntoDM ontology (Panov et
al., 2008). An advantage of adhering to this pattern is to conceptually align the ontologies
which facilitate the metadata interchange process and reproducible research.

A key element in the pattern is the Algorithm class which represents any algorithm
regardless of its software implementation. Implementation is an executable implementa-
tion of an algorithm (a script or a workflow). The Execution class is an execution of an
implementation on a given machine. Task is a formal description of a process that needs
to be completed, based on inputs and outputs, or defined conceptually. Input and Output
are information entities, where the former is an input to an Execution, i.e., some data, and
the latter is an output of the Execution, i.e., some transformed data, the result of some
computations, etc. Parameter is a parameter of an implementation which is set before
its execution. It is different from Input in that it is a variable. ParameterSetting is an
entity that connects a parameter and its value that is being set before an implementation
execution.

Since the aim of the MEX vocabulary was not to describe the complete data-mining
process, unlike Onto-DM and DMOP, it does not include entities like Task, Input, Out-
put, etc. Instead, MEX was designed to provide a simple and lightweight vocabulary
for exchanging machine learning metadata and supporting data management in ML sce-
narios. It reuses terms from the PROV-O ontology such as Algorithm, Execution, and
ExperimentConfiguration, modeled in a way that closely matches the design pattern.

DMOP was developed with a primary use case in meta-mining, that is meta-learning
extended to an analysis of full DM processes. The design pattern is closely matched via the
following entity chain: DM-Operation executes DM-Operator implements DM-Algorithm.
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Figure 2.2: The Algorithm-Implementation-Execution ontology design pattern. Repro-
duced from (Lawrynowicz et al., 2017).
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In OntoDM, the description structure includes three layers: a specification layer, an
implementation layer, and an application layer. This structure is based on the upper-level
ontologies, i.e., the more general ontologies which are reused, such as BFO, OBI, and IAO.
Intuitively, it is clear that the specification layer covers the specification of an algorithm
(i.e., expressed in some form of text), the implementation layer covers the runnable version
of an algorithm (i.e., code or pseudocode), while the execution layer covers an actual
execution of an algorithm (a workflow describing the exact inputs, outputs, as well as the
execution environment).

2.4 Resources for Semi-automatic Annotation of ML/DM Text
Data

In this section, we will present resources that are used for the semi-automatic annotation of
ML/DM paper abstracts. The main ingredient of the process is the data, which naturally
comes in the form of text, as many ML/DM algorithm developers describe the algorithms
in publications, such as conference papers and journal papers. The other key factor besides
the data are the methods used to annotate the data. We will present the methods that
can be used to automatically annotate paper abstracts, mainly consisting of pre-trained
language models, as well as a custom neural net model for named-entity recognition (NER).

2.4.1 Information extraction and named entity recognition

Information extraction (IE) is the task of automatically extracting structured information
from unstructured and/or semi-structured machine-readable documents and other electron-
ically represented sources. In most cases, this activity concerns processing human language
texts employing NLP (Freitag, 2000). NER is a subtask of IE that seeks to locate and
classify named entities mentioned in unstructured text into pre-defined categories such as
person names, organizations, locations, medical codes, time expressions, etc. (Nadeau &
Sekine, 2007).

NER systems have been created that use linguistic grammar-based techniques as well
as statistical ML models. Hand-crafted grammar-based systems typically obtain better
precision, but at the cost of lower recall and months of work by experienced computational
linguists. ML-based NER systems typically require a large amount of manually annotated
training data. Semi-supervised approaches have been suggested to avoid part of the anno-
tation effort, where a combination of a small amount of labeled data with a large amount
of unlabeled data is used for training (Nadeau & Sekine, 2007).

2.4.2 Data resources

Here, we will describe several compiled text corpora which cover paper abstracts. ML/DM
practitioners usually describe novel algorithms in scientific publications. These publications
contain information related to how the algorithm works, accompanied by experiments,
findings, and potential applications. While papers contain different modalities, including
text, images, tables, formulas, and pseudocode, the abstracts briefly describe the key
aspects of an algorithm in a textual form. Hence, they are well-suited as a resource for
NLP tasks, such as NER, relation extraction, etc. Apart from using already developed
corpora, there are possibilities for compiling custom corpora, for example by collecting
data from the OpenReview paper repository. Some of the resources already come packed
with named entity annotations, while some require manual annotation.

https://openreview.net/
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2.4.2.1 The SCIERC corpus of paper abstracts

The SCIERC corpus (Luan et al., 2018) includes annotations for scientific entities, their
relations, and coreference clusters for 500 scientific abstracts. The abstracts are taken
from 12 AI conference/workshop proceedings in four AI communities, from the Semantic
Scholar Corpus. SCIERC extends previous datasets in scientific articles SemEval 2017
Task 10 and SemEval 2018 Task 7 by extending entity types, relation types, relation cov-
erage, and adding cross-sentence relations using coreference links. The annotation schema
consists of six types for annotating scientific entities (Task, Method, Metric, Material,
Other-ScientificTerm, and Generic) and seven relation types (Compare, Part-of, Conjunc-
tion, Evaluate-for, Feature-of, Used-for, HyponymOf). Directionality is taken into account
except for the two symmetric relation types (Conjunction and Compare). Coreference links
are annotated between identical scientific entities. A Generic entity is annotated only when
the entity is involved in a relation or is referred to with another entity.

2.4.2.2 The Arxiv corpus of paper abstracts

The corpus of scientific paper abstracts published in the Arxiv repository contains 38972
paper abstracts, along with paper titles and subject categories. It is available to down-
load from the Kaggle repository of datasets and models (Sayak, 2021). The categories are
labeled according to the Arxiv category taxonomy which at the most general level distin-
guishes between fields like Computer Science, Economics, Physics, Quantitative Biology,
etc. Most of the papers in this corpus belong to the Computer Science category along
with smaller segments belonging to similar fields like Mathematics, Statistics, Electrical
Engineering, and Systems Science.

2.4.3 Pre-trained language models

spaCy is an open-source software library for advanced natural language processing (Srinivasa-
Desikan, 2018). spaCy also supports deep learning workflows that allow connecting statis-
tical models trained by popular machine learning libraries like TensorFlow and PyTorch
(Abadi et al., 2016; Paszke et al., 2019). Using Thinc as its backend, spaCy features
convolutional neural network models for part-of-speech tagging, dependency parsing, text
categorization, and NER. Prebuilt statistical neural network models to perform these tasks
are available for 17 languages. Their models have emerged as the de facto standard for
practical NLP due to their speed, robustness, and close-to state-of-the-art performance.

scispaCy was developed as a robust, efficient, and performant NLP library to satisfy
the primary text processing needs in the biomedical domain (Neumann et al., 2019). For
this purpose, spaCy3 models were retrained for POS tagging, dependency parsing, and
NER using corpora relevant to the biomedical text, while also the tokenization module
was enhanced with additional rules.
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Chapter 3

OntoDM-algorithms: An Ontology
Extension for Annotating ML/DM
Algorithms

In this chapter, we describe OntoDM-algorithms, an extension of the OntoDM-core ontol-
ogy, with a focus on the representation of algorithms for predictive modeling. First, we
present the relevant entities from which we extend the OntoDM-core ontology. Following
this, we describe the newly added entities and the related modeling decisions. Finally, we
delve deeper into how the ontology extension is brought together using all the relevant and
available resources.

3.1 Relevant Entities from the OntoDM-core Ontology

Following the Principle of Reuse described in Section 2.2.3, when developing an ontology,
it is essential to reuse as much as possible relevant ontological content that has already
been created, so as to not spend time and effort reinventing the wheel. However, since not
every ontology follows adequate design principles, the developed ontologies can be poor
in quality and subsequently not directly utilizable. Still, they should not be disregarded
altogether, but rather they should be examined to provide a reference point for the newly
created content. In domains of ML/DM, several ontologies exemplify quality modeling,
which we presented in Section 2.3.1. Specifically, we will use the OntoDM-core ontology
as a backbone, which we will extend with new entities. In this thesis, we will mainly focus
on the specification and implementation levels of the ontology, which generally contain
information entities included in the ontology design pattern like data mining task, data
mining algorithm, data mining dataset, etc.

The central entity in the OntoDM ontology, and consequently in the extension devel-
oped, is the Data Mining Algorithm. A data mining algorithm is an algorithm, designed to
solve a data mining task. It takes as input a dataset of examples of a given datatype and
produces as output a generalization (from a given class) on the given datatype. A data
mining algorithm as a specification is a subclass of the IAO class plan specification having
as parts a data mining task, an action specification (reused from IAO), a generalization
specification, and a document (reused from IAO). The data mining task defines the objec-
tive that the realized plan should fulfill at the end giving as output a generalization, while
the action specification describes the actions of the data mining algorithm realized in the
process of execution. The generalization specification denotes the type of generalization
produced by executing the algorithm. Finally, having a document class as a part allows
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us to connect the algorithm to the annotations of documents (journal articles, workshop
articles, technical reports) that publish knowledge about the algorithm. In analogy with
the taxonomy of datasets, data mining tasks, and generalizations, the ontology includes a
taxonomy of data mining algorithms. The taxonomy design was based on the data min-
ing task and the generalization produced as the output of the execution of the algorithm.
Generally, a data mining algorithm can either be a single generalization algorithm (i.e.,
producing a single generalization as output), or an ensemble algorithm (i.e., producing two
or more generalizations as output). The structure of the key classes in OntoDM-core can
be seen in Figure 3.1.

Figure 3.1: Key classes in the OntoDM-core ontology. The boxes in green represent classes
at the specification layer, the yellow boxes denote classes at the implementation layer, and
the blue boxes denote classes at the application layer, while the violet boxes represent
material entities. The figure is reused from (Panov et al., 2014).

The task of data mining is to produce a generalization from given data. In OntoDM-
core, the term generalization is used to denote the outcome of a data mining task. A data
mining task is defined as a sub-class of the IAO class objective specification. It specifies the
objective that a data mining algorithm execution process needs to achieve when executed
on a dataset to produce as output a generalization. The definition of a data mining task
depends directly on the data specification and indirectly on the datatype of the data at
hand. This allows us to form a taxonomy of data mining tasks based on the type of data.
The four basic classes of data mining tasks based on the generalizations that are produced
as output used are clustering, pattern discovery, probability distribution estimation, and
predictive modeling (Džeroski, 2006). These classes of tasks are included as a first level of
the OntoDM-core data mining task taxonomy.

OntoDM imports the IAO class dataset (defined as "a data item that is an aggregate
of other data items of the same type that have something in common") and extends it by
further specifying that a DM dataset has part data examples. OntoDM-core also defines
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the class dataset specification to enable reasoning about data and datasets. It specifies the
type of the dataset based on the type of data it contains. Using data specifications and
the taxonomy of datatypes from the OntoDT ontology, a taxonomy of datasets is defined.

A generalization denotes the outcome of a data mining task. Many different types of
generalizations have been considered in the data mining literature. The most fundamental
types of generalizations are in line with the data mining tasks. These include clusterings,
patterns, probability distributions, and predictive models. In OntoDM-core, the general-
ization specification class is a subclass of the OBI class data representational model. It
specifies the type of the generalization and includes as part the data specification for the
data used to produce the generalization, and the generalization language specification, for
the language in which the generalization is expressed. Examples of generalization language
formalisms for the case of a predictive model include the languages of trees, rules, Bayesian
networks, graphical models, neural networks, etc. As in the case of datasets and data min-
ing tasks, a taxonomy of generalizations is constructed. In OntoDM-core, at the first level,
we distinguish between a single generalization specification and an ensemble specification.
Ensembles of generalizations have as parts single generalizations. We can further extend
this taxonomy by taking into account the data mining task and the generalization language.

The Parameter entity is modeled as a quality of the data mining algorithm implementa-
tion entity, which in turn is a concretization of the data mining algorithm. The parameters
of the algorithm affect its behavior when the algorithm implementation is used as an op-
erator. A parameter itself is specified by a parameter specification that includes its name
and description.

The OntoDT taxonomy of datatypes consists of primitive datatypes, generated
datatypes, subtypes, and defined datatypes (Panov et al., 2016). The primitive datatypes
are pre-defined axiomatically and include the classes of discrete, enumerated, character,
date and time, scaled, real and complex datatypes, while pre-defined instances of primi-
tive datatypes include boolean, void, ordinal, rational, and integer datatypes. Generated
datatypes are defined by a datatype generator and component datatypes. For example, the
aggregated datatype is a generated datatype whose values are made up of values of other
datatypes joined by an aggregate (tuple, class, set, bag, sequence, array, and table). Sub-
types are derived datatypes obtained by restricting the value space of an existing datatype
with the use of a subtype generator (range, selection, exclusion, size, extension, explicit
enumeration). Defined datatypes are user-defined datatypes with a type specification.

3.2 Knowledge Modelling in the OntoDM-algorithms Exten-
sion

In this section, we introduce the OntoDM-algorithms extension. We will present its core
entities, the modeling decisions as well as the implementation of the ontology. The ontology
was designed following the OBO Foundry principles, which note that ontologies should be
open, orthogonal, instantiated in a well-specified syntax, and designed to share a common
space of identifiers (Smith et al., 2007). Additionally, the general principles for ontology
design described in Section 2.2.3 were followed. Being an extension of OntoDM, OntoDM-
algorithms reuses external entities from resources such as the Relations Ontology (RO)
(Mungall, 2015), Information Artifact Ontology (IAO) (Ceusters, 2012), and the Basic
Formal Ontology (BFO) which is used as an upper level ontology (Arp et al., 2015). The
use of an upper-level ontology makes the ontology easily interoperable with other ontologies.

The ontology backbone was provided by OntoDM-core and it consists of the following
main entities: data mining algorithm, data mining task, dataset specification, generaliza-
tion specification, and parameter specification. Apart from these more general entities,



24 Chapter 3. OntoDM-algorithms: An Ontology Extension for Annotating ML/DM Algorithms

we introduce new entities and taxonomies, such as the computational problem taxonomy,
the model and algorithm parameter entities, the computational complexity entity, the as-
sumption specification, the ensemble algorithm taxonomy, and the sampling entity. An
overview of OntoDM-algorithms can be seen in Figure 3.2.

3.2.1 Computational problem

Generally, algorithms are designed to solve a specific problem or perform some sort of com-
putation. In theoretical computer science, a computational problem is defined as a problem
that may be solved by an algorithm. A computational problem can be further divided into
five types: Decision Problem, Search Problem, Counting Problem, Optimization Problem,
and Function Problem. In DM and ML, the most frequent problem types are the Search
Problem (i.e., in Decision Trees), and the Optimization Problem (i.e., in Neural Networks,
Support Vector Machines, etc.). More concrete examples of computational problems using
mathematical notation will be given in Section 3.2.2.

Search problem. A search problem consists of a search space, start state, and goal state.
Search algorithms provide search solutions through a sequence of actions that transform
the initial state into the goal state. To formulate the search problem, its constituent factors
need to be defined. The initial state is the state in which the search starts. The state space
consists of all the possible states that can be attained from the initial state through a
series of actions. Actions are steps, or operations undertaken by the search algorithm in a
particulate state, while the goal state is the endpoint or the desired state. When there are
multiple paths to the goal state, the path cost is used to choose the optimal path from the
initial state to the goal state (Russell, 2010).

Search algorithms are usually divided into uninformed and informed search algorithms.
Uninformed search algorithms do not have supplementary information (i.e., a heuristic
function) that can assist them to attain the end goal other than the information given in
the problem definition. Search algorithms usually operate on graph or tree data struc-
tures. Examples include breadth-first search, depth-first search, and uniform cost search.
Informed search algorithms are heuristic algorithms that apart from the problem definition
have additional information which helps in more efficient searching. This information is
obtained by a heuristic function that estimates how close a state is to the goal state. Ex-
amples include greedy search algorithms, A search, Hill Climbing algorithm, etc. (Russell,
2010).

Decision Tree learning is one segment where informed search algorithms are heavily
utilized (Breiman et al., 2017). The problem of learning an optimal decision tree is known
to be NP-complete. As a consequence, practical decision tree learning algorithms are
based on heuristics such as the greedy algorithm where locally optimal decisions are made
at each node. In deep learning, uninformed search algorithms are heavily employed in
more traditional approaches to hyperparameter tuning. Grid search is one of the most
commonly-used methods to explore hyperparameter configuration space. It can be consid-
ered an exhaustive search or a brute-force method that evaluates all the hyperparameter
combinations given to the grid of configurations. Random search works similarly, but in-
stead of testing all values in the search space, it randomly selects a pre-defined number of
samples between the upper and lower bounds as candidate hyperparameter values and then
trains these candidates until the defined budget is exhausted. Because of the limitations
of uninformed search algorithms, informed search algorithms are more reliable and hence
used more frequently. Examples include Gradient-based optimization, Bayesian optimiza-
tion, etc. (Yang & Shami, 2020).
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Optimization Problem. The key process of ML is to solve optimization problems. In
mathematical terms, an optimization problem is the problem of finding the best solution
from among the set of all feasible solutions to maximize or minimize the objective function
(Sun et al., 2019). An optimization problem consists of three major components: a set of
decision variables x, an objective function f(x) to be either minimized or maximized, and
a set of constraints that allow the variables to take on values in certain ranges (if it is a
constrained optimization problem). Therefore, the goal of optimization tasks is to obtain
the set of variable values that minimize or maximize the objective function while satisfying
any applicable constraints. Many traditional methods can be used to solve optimization
problems, including gradient descent, Newton’s method, conjugate gradient, and heuristic
optimization methods. The NEOS guide taxonomy of optimization problems is a well-
structured taxonomy that focuses mainly on the sub-fields of deterministic optimization
with a single objective function. The taxonomy is presented in Figure 3.3.

In ML model training, the model parameters are initialized and optimized by an opti-
mization method until the objective function approaches a minimum value or the accuracy
approaches a maximum value. Similarly, hyperparameter optimization methods aim to
optimize the architecture of an ML model by detecting the optimal hyperparameter con-
figurations. In OntoDM-algorithms we add the Computational Problem entity and the
corresponding children as a descendant of the information processing objective entity, at
the same level as the data mining task in OntoDM-core. We allow the optimization prob-
lem to be expressed with natural language and mathematical notation, stored in the latex
format. The optimization problem entity can further be divided along several dimensions,
such as, whether one or multiple objectives exist, whether there are constraints on the
variables, and based on the variables’ datatypes.

Figure 3.3: The optimization problem taxonomy. Source: https://neos-guide.org/
optimization-tree.

Continuous Optimization versus Discrete Optimization. Some models only make
sense if the variables take on values from a discrete set, often a subset of integers, whereas
other models contain variables that can take on any real value. Models with discrete vari-
ables are discrete optimization problems; models with continuous variables are continuous

https://neos-guide.org/optimization-tree
https://neos-guide.org/optimization-tree
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optimization problems. Continuous optimization problems tend to be easier to solve than
discrete optimization problems; the smoothness of the functions means that the objective
function and constraint function values at point x can be used to deduce information about
points in a neighborhood of x.

Unconstrained Optimization versus Constrained Optimization. Another impor-
tant distinction is between problems in which there are no constraints on the variables
and problems in which there are constraints on the variables. Unconstrained optimization
problems arise directly in many practical applications; they also arise in the reformulation
of constrained optimization problems in which the constraints are replaced by a penalty
term in the objective function. Constrained optimization problems arise from applications
in which there are explicit constraints on the variables. The constraints on the variables
can vary widely from simple bounds to systems of equalities and inequalities that model
complex relationships among the variables. Constrained optimization problems can be
further classified according to the nature of the constraints (e.g., linear, nonlinear, convex)
and the smoothness of the functions (e.g., differentiable or nondifferentiable).

None, One or Many Objectives. Most optimization problems have a single objective
function, however, there are interesting cases when optimization problems have no objec-
tive function or multiple objective functions. Feasibility problems are problems in which
the goal is to find values for the variables that satisfy the constraints of a model with no
objective to optimize. Complementarity problems, common in engineering and economics,
address the goal to find a solution that satisfies the complementarity conditions. Multi-
objective optimization problems are used when optimal decisions need to be taken in the
presence of trade-offs between two or more conflicting objectives. For example, choos-
ing a portfolio might involve maximizing the expected return while minimizing the risk.
However, in practice, problems with multiple objectives are often reformulated as single
objective problems by either forming a weighted combination of the different objectives or
by replacing some of the objectives with constraints.

Deterministic Optimization versus Stochastic Optimization. In deterministic opti-
mization, it is assumed that the data for the given problem are known accurately. However,
for many actual problems, the data cannot be known accurately for a variety of reasons.
The first reason is due to simple measurement error. The second and more fundamental
reason is that some data represent information about the future (e.g., product demand or
price for a future time) and simply cannot be known with certainty. In stochastic opti-
mization, the uncertainty is incorporated into the model. Robust optimization techniques
can be used when the parameters are known only within certain bounds; the goal is to
find a solution that is feasible for all data and optimal in some sense. Stochastic optimiza-
tion models take advantage of the fact that probability distributions governing the data
are known or can be estimated; the goal is to find some policy that is feasible for all the
possible data instances and optimizes the expected performance of the model.

3.2.2 Algorithm parameters

Two types of parameters exist in ML/DM algorithms; ones that can be initialized and
updated through the data learning process (e.g., the weights of neurons in neural networks),
named model parameters, while the other, named algorithm (hyper)parameters, cannot be
directly estimated from data learning and must be set before training an ML model because
they define the ML model. Algorithm parameters are used to either configure an ML model
(e.g., the penalty parameter C in a support vector machine, and the learning rate to train
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a neural network) or to specify the algorithm used to minimize the loss function (e.g.,
the activation function and optimizer types in a neural network, and the kernel type in a
support vector machine). Because of this, they can also be referred to as hyperparameters,
since the word ’hyper’ (meaning over, above, beyond in Greek) semantically describes
the relationship between the model parameters and the algorithm parameters, i.e., the
algorithm parameters govern the model, or are ’above’ the model parameters. Therefore,
model parameters are parameters that change, i.e., are being updated during the training
(learning) process, while algorithm (hyper)parameters remain static during the training
process. The schema depicting the modeling of these entities in the ontology is presented
in Figure 3.4.

To build an optimal ML model, a range of possibilities must be explored. The process
of designing the ideal model architecture with an optimal hyperparameter configuration is
named hyperparameter tuning. Tuning hyperparameters is considered a key component of
building an effective ML model, especially for tree-based ML models and deep neural net-
works, which have many hyperparameters. The hyperparameter tuning process is different
among different ML algorithms due to their different types of hyperparameters, including
categorical, discrete, and continuous hyperparameters.

In general, ML/DM algorithms can be classified as supervised and unsupervised learn-
ing algorithms, based on whether they are built to model labeled or unlabeled datasets.
Supervised learning algorithms are a set of ML algorithms that map input features to a
target by training on labeled data, and mainly include linear models, k-nearest neighbors
(KNN), support vector machines (SVM), naive Bayes (NB), decision-tree-based models,
and deep learning (DL) algorithms. Furthermore, supervised learning methods can be clas-
sified as classification or regression methods, depending on whether the target variables
are discrete or continuous. Moreover, several ensemble learning methods combine differ-
ent single generalization algorithms to further improve model performance, like bagging,
boosting, voting, and stacking. In this section, we study the important hyperparameters of
common ML algorithms based on their names in the Python library scikit-learn (sklearn).
We will focus only on supervised single generalization algorithms and ensemble algorithms.

Linear regression. Linear regression is a typical regression model that predicts a target
y with the following equation:

ŷ(w, x) = w0 + w1x1 + ...+ wpxp, (3.1)

where the target variable y is expected to be a linear combination of p input features
x = (x1, · · · , xp), and ŷ is the predicted value. The weight vector w = (w1, · · · , wp)
is designated as an attribute ’coef_’ and w0 is defined as another attribute ’intercept_’
of the linear model in sklearn. Usually, no hyperparameter needs to be tuned in linear
regression. A linear model’s performance mainly depends on how well the problem or data
follows a linear distribution.

To improve the original linear regression models, ridge regression was proposed in
(Hoerl & Kennard, 1970). Ridge regression imposes a penalty on the coefficients, and aims
to minimize the objective function:

min
w
||Xw − y||22 + α||w||22 (3.2)

The complexity parameter α controls the amount of shrinkage: the larger the value of
α, the greater the amount of shrinkage, and thus the coefficients w become more robust to
collinearity. Therefore, the regularization strength parameter α represents a hyperparam-
eter in the ridge regression model.
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KNN. K-nearest neighbor (KNN) is a simple ML algorithm that is used to classify data
points by calculating the distances between different data points. In KNN, the predicted
class of each test sample is set to the class to which most of its k-nearest neighbors in
the training set belong. Assuming the training set T = (x1, y1), (x2, y2), · · · , (xn, yn), xi
is the feature vector of an instance, and yi ∈ c1, c2, · · · , cm is the class of the instance,
i = (1, 2, · · · , n), for a test instance x, its class y can be denoted by (Keller et al., 1985):

y = argmax
cj

∑
xi∈Nk(x)

I(yi = cj), i = 1, 2, · · · , n; j = 1, 2, · · · ,m, (3.3)

where I(x) is an indicator function, I = 1 when yi = cj , otherwise I = 0; Nk(x) is
the field involving the k-nearest neighbors of x. In KNN, the number of considered near-
est neighbors, k, is the most crucial hyperparameter. If k is too small, the model will be
under-fitting; if k is too large, the model will be over-fitting and require high computational
time. In addition, the weighted function used in the prediction can also be chosen from
’uniform’ (points are weighted equally) or ’distance’ (points are weighted by the inverse of
their distance), depending on specific problems. The distance metric and the power param-
eter of the Minkowski metric can also be tuned as they can result in minor improvements.
Lastly, the ’algorithm’ used to compute the nearest neighbors can also be chosen from a
ball tree, a k-dimensional (KD) tree, or a brute force search. Typically, the model can de-
termine the most appropriate algorithm itself by setting the ’algorithm’ to ’auto’ in sklearn.

SVM. A support vector machine (SVM) is a supervised learning algorithm that can be
used for both classification and regression problems (Cortes & Vapnik, 1995). SVM al-
gorithms are based on the concept of mapping data points from low-dimensional into
high-dimensional space to make them linearly separable; a hyperplane is then generated
as the classification boundary to partition data points. Assuming there are n data points,
the objective function of SVM is:

argmin
w

{ 1

n

n∑
i=1

max
{
0, 1− yif(xi)

}
+CwTw

}
, (3.4)

where w is a normalization vector; C is the penalty parameter of the error term, which
is an important hyperparameter of all SVM models. The kernel function f(x), which is
used to measure the similarity between two data points xi and xj , can be chosen from
multiple types of kernels in SVM models. Therefore, the kernel type would be a vital
hyperparameter to be tuned. Common kernel types in SVM include linear kernels, radial
basis function (RBF), polynomial kernels, and sigmoid kernels. Depending on the choice of
kernel type, additional hyperparameters can be tuned. For example, the polynomial kernel
has an additional conditional hyperparameter d representing the ’degree’ of the polynomial
kernel function.

Naive Bayes. Naive Bayes (NB) algorithms are supervised learning algorithms based on
the Bayes’ theorem (H. Zhang, 2004). Assuming there are n dependent features x1, · · ·xn
and a target variable y, the objective function of NB can be denoted by:

ŷ = argmax
y

P (y)

n∏
i=1

P (xi|y), (3.5)

where P (y) is the probability of a value y, and P (xi|y) is the posterior probabilities of
xi given the values of y. Regarding the different assumptions of the distribution of P (xi|y),
there are different types of NB classifiers. The four main types of NB models are: Bernoulli
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NB, Gaussian NB, multinomial NB, and complement NB. For the Gaussian NB, there is
not usually any hyperparameter that needs to be tuned; the performance of a Gaussian
NB model mainly depends on how well the dataset follows Gaussian distribution. The
other variants have the additive (Laplace/Lidstone) smoothing parameter, α, as the main
hyperparameter that needs tuning.

Decision Tree. Decision tree (DT) is a common classification method that uses a tree
structure to model decisions and possible consequences by summarizing a set of classifica-
tion rules from the data (Breiman et al., 2017). A DT has three main components: a root
node representing the entire data; multiple decision nodes indicating decision tests and
sub-node splits over each feature; and several leaf nodes representing the result classes.
DT algorithms recursively split the training set with better feature values to achieve good
decisions on each subset. Pruning, which means removing some of the sub-nodes of de-
cision nodes, is used in DT to avoid over-fitting. Since a deeper tree has more sub-trees
to make more accurate decisions, the maximum tree depth, ’max depth’, is an essential
hyper-parameter that controls the complexity of DT algorithms.

There are many other important HPs to be tuned to build effective DT models. Firstly,
the quality of splits can be measured by setting a measuring function (heuristic), denoted
by ’criterion’ in sklearn. The choice of the heuristic depends on the task being solved
(classification or regression). Gini impurity and information gain are the two main types
of measuring functions in the classification scenario, while the mean squared error and the
mean absolute error are the most common options in the regression scenario.

The split selection method, ’splitter’, can also be set to ’best’ to choose the best split, or
’random’ to select a random split. The number of considered features to generate the best
split, ’max features’, can also be tuned as a feature selection process. Moreover, there are
several discrete hyper-parameters related to the splitting process: the minimum number
of data points to split a decision node or to obtain a leaf node, denoted by ’min samples
split’ and ’min samples leaf’, respectively; the ’max leaf nodes’, indicating the maximum
number of leaf nodes, and the ’min weight fraction leaf’ that means the minimum weighted
fraction of the total weights, can also be tuned to improve model performance.

Deep Learning Models. Deep learning (DL) algorithms are widely applied to various
areas like computer vision, natural language processing, and machine translation since they
have had great success solving many types of problems. DL models are based on the theory
of artificial neural networks (ANNs). Common types of DL architectures include feedfor-
ward neural networks (FFNNs), deep belief networks (DBNs) (Hinton, 2009), convolutional
neural networks (CNNs) (LeCun, Bengio, et al., 1995), recurrent neural networks (RNNs)
(Mikolov et al., 2010) and many more. All these DL models have similar hyperparameters
since they have a similar underlying neural network architecture. Compared with other
ML models, DL models benefit more from hyperparameter optimization since they often
have many hyperparameters that require tuning.

One set of hyperparameters is mainly related to the neural network model architecture.
Here, the two main hyperparameters relate to the size of the network, measured with the
number of layers (excluding the input and output layer), and the number of neurons in
each layer. These two hyperparameters are tuned with respect to the complexity of the
dataset, or the complexity of the problem; generally, a larger complexity requires a larger
model size. Next, the activation function at each layer can be configured and tuned. The
main choices are ’softmax’, ’sigmoid’, ’tanh’, etc. The loss function is usually not tuned,
since it depends directly on the problem type, i.e., binary cross-entropy is used for binary
classification tasks, while root-mean-squared error (RMSE) is used for regression tasks.
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Another set of hyperparameters relates to the general training procedure. Mini-batch
size and the number of epochs represent the number of processed samples before updating
the model, and the number of complete passes through the entire training set, respectively.
Mini-batch size is affected by the resource requirements of the training process and the
number of iterations. The number of epochs depends on the size of the training set and
should be tuned by slowly increasing its value until validation accuracy starts to decrease,
which indicates over-fitting. On the other hand, DL models often converge within a few
epochs, and the following epochs may lead to unnecessary additional execution time and
over-fitting, which can be avoided by the early stopping method. Early stopping is a form
of regularization whereby model training stops in advance when validation accuracy does
not increase after a certain number of consecutive epochs. The number of waiting epochs,
called early stop patience, can also be tuned to reduce model training time.

Related to the optimization procedure we have another set of hyperparameters. The
most obvious tuneable hyperparameter here is the type of optimization algorithm; common
choices include stochastic gradient descent (SGD), adaptive moment estimation (Adam),
etc. Here, the most important hyperparameter is the learning rate which determines the
step size at each iteration, which enables the objective function to converge. A large learn-
ing rate speeds up the learning process, but the gradient may oscillate around a local
minimum value or even cannot converge. On the other hand, a small learning rate con-
verges smoothly, but will largely increase model training time by requiring more training
epochs. An appropriate learning rate should enable the objective function to converge to
a global minimum in a reasonable amount of time. Another common hyper-parameter is
the drop-out rate. Drop-out is a standard regularization method for DL models proposed
to reduce overfitting. In drop-out, a proportion of neurons are randomly removed, and the
percentage of neurons to be removed should be tuned.

Ensemble Algorithms. In sklearn, the voting method can be set to be ’hard’ or ’soft’,
indicating whether to use majority voting or averaged predicted probabilities to determine
the classification result. The list of selected single ML estimators and their weights can
also be tuned in certain cases. For instance, a higher weight can be assigned to a better-
performing singular ML model in a voting model. When using bagging methods, the first
consideration should be the type and number of base estimators in the ensemble, denoted
by ’base estimator’ and ’n estimators’, respectively. Then, the ’max samples’ and ’max
features’, indicating the sample size and feature size to generate different subsets, can also
be tuned. In AdaBoost, the type of base estimator, ’base estimator’, can be set to a decision
tree or other methods. In addition, the maximum number of estimators at which boosting
is terminated, ’n estimators’, and the learning rate that shrinks the contribution of each
classifier should also be tuned to achieve a trade-off between these two hyperparameters.

3.2.3 Complexity specification

An important aspect of any algorithm, and consequently any algorithm in the domains
of ML and DM, is the computational complexity, which specifies the amount of resources
required to run the given algorithm. Its importance stems from the fact that time and
space are two of the most important considerations when seeking a practical solution to
many computational problems, and so optimal resource usage is preferred.

The time complexity is the computational complexity that describes the amount of
computer time it takes to run an algorithm, while the memory complexity describes the
amount of memory space required to solve an instance of the computational problem.
Time complexity is commonly estimated by counting the number of elementary operations
performed by the algorithm, supposing that each elementary operation takes a fixed amount
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Figure 3.4: Modelling of parameters in OntoDM-algorithms. The algorithm parame-
ter/hyperparameter and model parameter entities in OntoDM-algorithms.

of time to perform. Thus, the amount of time taken, and the number of elementary
operations performed by the algorithm is taken to be related by a constant factor.

Since an algorithm’s running time may vary among different inputs of the same size,
one commonly considers the worst-case time complexity, which is the maximum amount of
time required for inputs of a given size. Less commonly used is the average-case complexity,
which is the average of the time taken on inputs of a given size (this makes sense because
there are only a finite number of possible inputs of a given size).

In both cases, the time complexity is generally expressed as a function of the size of
the input. Since this function is generally difficult to compute exactly, and the running
time for small inputs is usually not consequential, one commonly focuses on the behavior
of the complexity when the input size increases — that is, the asymptotic behavior of the
complexity. Therefore, the time complexity is commonly expressed using big O notation.
Algorithmic complexities are classified according to the type of function appearing in the
big O notation. Space complexity shares many of the features of time complexity and
serves as a further way of classifying problems according to their computational difficulty.
The space complexity is typically estimated using asymptotic notation (Sipser, 1996).

The computational complexity is modeled in OntoDM-algorithms using the complexity
specification entity which is connected to the data mining algorithm entity via the has_part
relation. Following the theoretical basis, we split the complexity specification with respect
to time and space, as well as with respect to whether the complexity is measured during
training or run-time. As the computational complexity is expressed using a complexity
function, we add a has_part relation between these two entities. The complexity function
specification entity is further divided into sub-classes consisting of the most commonly
encountered time complexities. The entities involved in this ontology schema fragment
can be seen in Figure 3.5. To allow greater expressiveness, we add the annotation property
"big O notation", using a maths notation written in latex. Each complexity function
is accompanied by problems that can be solved using an algorithm with the given time
complexity. The complexity functions added in the ontology can be seen in Table 3.1.

Consequently, we add both the time and memory complexity to the ontology. Apart
from enabling an algorithm to have a specific complexity class, we also allow the complex-
ity function to be expressed more explicitly, either by using a mathematical representation
or a natural language representation. What this means is that algorithms that have the
same complexity class can have a different mathematical representation of that class. Ad-
ditionally, we divide the complexity specification into model training complexity and model
prediction complexity. Model training complexity measures the time necessary for the al-
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Figure 3.5: Representation of computational complexity in OntoDM-algorithms. The core
entities for representing the computational complexity of an algorithm. Entities with a
yellow color represent imported entities, while the ones with green color represent newly
added entities. Empty arrows represent is_a relations.

gorithm to train a specific predictive model, while model prediction complexity measures
the time necessary for the trained model to make a single prediction. These measures
can have the same values, but often that is not the case. The addition of the complexity
function entities is an important improvement to the ontology since this information can
have a crucial role in the use-case of a user choosing which algorithm to use given a specific
set of available resources.

3.2.4 Algorithm assumption

An algorithm assumption is a hypothesis based on which an algorithm has been developed,
and which should be true if the algorithm is to achieve the task it was designed to address
(Keet et al., 2015). This means that the satisfaction of an assumption is a guarantee of the
expected quality of the results produced by the ML/DM algorithm. In the case where the
assumptions are violated, the algorithms would still produce results, which would have an
inherently poor predictive capability. These assumptions are usually related to the data,
e.g., the feature distribution, the dependency between the instances, etc. As ML is an
empirical discipline, specific guidelines exist, which represent a less strict assumption. An
example here would be the guideline that the hyperparameter k in the Nearest Neighbors
Classifier should be an odd number to avoid a tie. Another example is a neural network,
which imposes no underlying assumptions on the data, while there are some general guide-
lines for more efficient learning, e.g., data standardization. In OntoDM-algorithms we
include the algorithm assumption specification entity which is directly connected to the
data mining algorithm via the has-part relationship. In Table 3.2 below, we present sev-
eral common algorithm assumptions derived from the study of several supervised learning
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Table 3.2: Examples of assumptions in ML/DM algorithms.

Algorithm Assumption

SVM The examples are independent and identically distributed (IID),
according to an unknown probability distribution.

Linear
Regression

Linear relationship (the relationship between the independent
and dependent variables must be linear)

Linear
Regression Normality of residuals (the residuals should follow a normal distribution)

Naive Bayes Naive conditional independence assumption
(between every pair of features given the value of the class variable)

Gaussian
Naive Bayes Each target class follows a Gaussian distribution

algorithms, such as Ordinary Least Squares, SVM, Tree-based Models, KNN, etc.

3.2.5 Ensemble algorithms

As noted, in OntoDM-core, an ensemble algorithm is defined as a data mining algorithm
that produces two or more generalizations as output. This entity is further divided into
four ensemble algorithm types, based on the type of generalization that is produced as
output. In our research, we define four types of ensemble algorithms, which are consistent
with the OntoDM-core backbone to a certain extent. Specifically, we distinguish between
bagging, boosting, voting, and stacking ensemble algorithms.

Bagging methods form a class of algorithms that build several instances of a black-
box estimator on random subsets of the original training set and then aggregate their
predictions to form a final prediction. Since bagging methods essentially constitute a
sampling process, the Sampling entity is added to the ontology to better represent this
algorithm type. This will be described in more detail in the following sections. Notable
examples of bagging algorithms include: Pasting (Breiman, 1999), Bagging (Breiman,
1996), Random Subspaces (Ho, 1998) and Random Patches (Louppe & Geurts, 2012).

In boosting methods, base estimators are built sequentially and one tries to reduce
the bias of the combined estimator. The motivation is to combine several weak models to
produce a powerful ensemble. Notable examples of boosting algorithms include: AdaBoost
(Freund & Schapire, 1997) and Gradient Tree Boosting (Friedman, 2001).

In voting methods, the goal is to combine conceptually different machine learning
classifiers and utilize a voting procedure (hard/soft) to predict the class labels. Such a
classifier can be useful for a set of equally well-performing models to balance out their
individual weaknesses.

Finally, stacking is a method for combining estimators to reduce their biases (Wolpert,
1992). More precisely, the predictions of each estimator are stacked together and used as
input to a final estimator to compute the prediction.

In the ontology, we model the four described ensemble algorithm types as children of
the entity predictive modeling ensemble algorithm. This is true for most bagging and
boosting algorithm instances since most of them rely on decision trees as base estimators
(which are predictive modeling entities). However, in the voting and stacking scenarios,
this could be debatable, since some model-free algorithms like Naive Bayes and Nearest
Neighbors can also be constituent parts of these algorithm types. In practice, the voting and
stacking scenarios usually include at least one predictive modeling algorithm, and so the
pragmatic decision was made to model in this specific way. Alternatively, we could model
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Figure 3.6: Modelling of ensemble algorithms in OntoDM-algorithms.

the four described ensemble algorithm types as direct children of the ensemble algorithm,
however, this would mean digressing from the OntoDM-core modeling practices. The
different ensemble algorithms and the connection with the single generalization algorithms
can be seen in Figure 3.6.

3.2.6 Sampling

Sampling is a process used in statistical analysis in which a predetermined number of
observations are taken from a larger population. The sampling process can be used in
different use cases to achieve different objectives. In a model validation scenario, a dataset
can be sampled in training and testing splits to validate the performance of an ML/DM
model. In an ensemble algorithm, multiple models are trained on subsets of the dataset,
obtained through a sampling process. This is especially present in bagging and boosting
algorithms, such as Bagging (Breiman, 1996) and Stochastic Gradient Boosting (Friedman,
2002).

In this thesis, we will explore the sampling process from a perspective covering the
second use case. The sampling entity is connected to the already existing data mining
algorithm and dataset entities via the has-part relationship. We distinguish between four
sampling types, distinguished based on three dimensions: whether the sampling is made on
the features (columns in a dataset), or examples (rows in a dataset), whether replacement
is used or not, and the sampling distribution. Notable instances of the sampling entity
include:

• Sampling random subsets of the samples without replacement (Pasting),

• Sampling random subsets of the samples with replacement (Bagging, Stochastic Gra-
dient Boosting),

• Sampling random subsets of the features without replacement (Random Subspaces),
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• Sampling random subsets of the features without replacement (Random Patches).

3.3 Implementation of the OntoDM-algorithms Extension

In the development process, we relied on several tools. For automating ontology develop-
ment tasks we used the ROBOT tool (a recursive acronym for "Robot is an OBO Tool").
It provides ontology processing commands for a variety of tasks, including commands for
converting formats, running a reasoner, creating import modules, running reports, and
various other tasks (Jackson et al., 2019). Specifically, we used ROBOT for extracting
subsets of terms that were necessary for representing an ML/DM algorithm. These terms
provided a backbone of the OntoDM-algorithms ontology extension and ensured that it
could be easily plugged into the OntoDM ontology, which covered the data mining process
from a broader perspective.

The ROBOT tool offers several extraction methods, depending on which classes con-
cerning the terms in question are needed (i.e., super-classes, sub-classes, etc.). Upon ex-
perimenting with the settings of this method, we discovered that the method yielding the
optimal results was the Minimum Information to Reference an External Ontology Term
method (MIREOT) (Courtot et al., 2011). The MIREOT method preserves the hierarchy
of the input ontology (subclass and subproperty relationships) but does not try to pre-
serve the full set of logical entailments. Hence, even though the relationship entities were
exported properly, the axioms comprised of class entities and relationship entities were
not exported. We curbed this limitation by manually adding the axioms, which was not
exceedingly time-consuming because of the size of the extracted ontology. Once the ontol-
ogy extraction was completed and validated, the extracted terms were imported into the
Protégé ontology editor, where the rest of the ontology development process was carried
out (Musen, 2015).

OntoDM-algorithms is expressed in OWL-DL, a de facto standard for representing
ontologies. It has 361 classes, 300 of which are external, i.e., reused from the referenced
ontologies, while 61 are newly added. The ontology is regularly maintained and publicly ac-
cessible via the following Git repository: https://github.com/lidija-jovanovska/ontologies.
It is also a part of the BioPortal repository of biomedical ontologies, at https://bioportal.
bioontology.org/ontologies/ONTODM-ALGORITHM. Since BioPortal does not support
integration with Git, there is a possibility of these two versions diverging if they are not
updated properly. Hence, we have to maintain version consistency by manually updating
both repositories using the BioPortal REST API. An alternative option for ensuring con-
sistency is by using the Persistent uniform resource locator (PURL) that is used to redirect
to the location of the requested web resource (the latest stable version of the ontology).

https://github.com/lidija-jovanovska/ontologies
https://bioportal.bioontology.org/ontologies/ONTODM-ALGORITHM
https://bioportal.bioontology.org/ontologies/ONTODM-ALGORITHM
https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator
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Chapter 4

Web-Based Application for
Annotating, Storing and Querying
ML/DM Algorithms

In this chapter, we present a web-based application we designed and implemented that
enables the semantic annotation of ML/DM algorithms, storage of the annotated metadata,
and querying of the repository. The infrastructure of the application is divided into two
functional units — the semantic annotation tool and the semantic querying tool. Here,
we first describe the system architecture by focusing on the system requirements and the
technologies used to build the system. Next, we focus on the implementation details where
we describe the developed services and the user interface (UI). Finally, we discuss the
population of the graph database with semantic annotations of a selection of algorithms.

4.1 System Architecture of the Web-based Application

In this section, we will describe the main technologies and software used to build the web
application. The key parts of the system are the database where we store the annotations
created by the users, the back-end framework which handles how data is accessed and
written in the database as well as the front-end framework, which is used for developing
the UI, through which the user interacts with the system. The proposed architecture of
the system is presented in Figure 4.1, where one can see the technologies that are used
at each level; from the graph database (Neo4j), the back-end technologies (Django and
Django REST Framework), the front-end technologies (React, MaterialUI, etc.), as well as
the technologies which enable the communication between the system layers (Axios and
Neomodel).

4.1.1 Software requirements

Before we move to the implementation, we must first define the software requirements
which define the functional units of the system. The first requirement is that the system
should include an annotation tool used to semantically annotate ML/DM algorithms. The
tool should contain input fields defined using an annotation schema based on the OntoDM-
algorithms ontology extension. Using this annotation tool the user is supposed to input
information related to an ML/DM algorithm and be able to store the algorithm metadata
in the repository. The second requirement of the system is a querying tool, which should
contain input fields that serve as constraints to the repository search. Using the querying
tool, the user is supposed to retrieve relevant information regarding ML/DM algorithms
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Frontend

Backend

Database

Figure 4.1: The architecture of the system for semantic annotation and querying.

that are stored in the repository. After the development process, the application will be
evaluated through several annotation scenarios and querying use cases described in Section
4.4 and Chapter 5.

4.1.2 Database management system: Neo4j and Cypher

Neo4j (“NEO4J Graph Data Platform,” 2022) is a graph database management system,
implemented in Java and accessible from software written in other languages using the
Cypher query language through a traditional HTTP endpoint, or through the binary "Bolt"
protocol (“Bolt protocol,” 2015).

The Neo4j architecture is designed for optimal management, storage, and traversal of
nodes and relationships. The graph database takes a property graph approach, which is
beneficial for both traversal performance and operations runtime. The main elements in a
property graph database model are nodes which describe entities of a domain of interest
and relationships which describes a connection between a source node and a target node.
What is more, nodes and relationships can have properties (key-value pairs), which further
describe them. An example Neo4j schema consisting of several node types and relationships
can be seen in Figure 4.2.

Cypher (“Cypher query language,” 2022) is a declarative query language for property
graphs. It was created for Neo4j to allow users to store and retrieve data from the graph
database. It is a declarative, SQL-inspired language for describing visual patterns in graphs
using ASCII-art syntax. The syntax provides a visual and logical way to match patterns
of nodes and relationships in the graph. An example Cypher query is shown in Figure 4.3.
The query is used to retrieve all the nodes that are connected to the Person node with the
name property set to ’Dan’, via the LOVES relationship.
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Figure 4.2: An example Neo4j graph schema.

Figure 4.3: An example Cypher query.

4.1.3 Back-end technologies: Django and Neomodel

In essence, the developed application is a Django application. Django is a free and open-
source web development framework written in Python. The framework follows the Model-
View-Controller (MVC) architecture. It consists of an object-relational mapper (ORM)
that mediates between data models (defined as Python classes) and a relational database
(Model), a system for processing HTTP requests with a web templating system (View),
and a regular-expression-based URL dispatcher (Controller). The native format for the
Model aspect of a Django application is a relational database, which although well-suited
for transactional data, is not the chosen data model in our scenario.

Hence, since we store the data in a graph database, we need an external library to handle
the communication between the back-end and the graph database. For this purpose, we
utilize Neomodel, a library that serves as an Object Graph Mapper (OGM) for the Neo4j
graph database (“NEO4J Graph Data Platform,” 2022), built on the Neo4j driver. It uses
Django model style definitions and boasts a powerful query API, schema expressivity with
cardinality restrictions, full transaction support, hooks, and most importantly integration
with the Django application.



42 Chapter 4. Web-Based Application

4.1.4 Front-end technologies: React and MaterialUI

While Django templates can be useful in cases where data is merely presented to the
user, the large degree of interactivity in our application made us opt for a more powerful
tool in the form of a front-end framework instead. We chose to use React (“React –
A JavaScript library for building user interfaces,” 2022), a free and open-source library
written in JavaScript, which is mainly used for building UIs based on UI components.
It follows the declarative programming paradigm — where the structure and elements of
computer programs are written so that the logic of computation is expressed, without
describing its control flow. So, developers design views for each state of an application,
and React updates and renders components when data changes. Its main feature is that its
code is made of entities called components, which can be rendered to a particular element
in the Document Object Model (DOM) using the React DOM library.

The two primary ways of declaring components in React are via function components
and class-based components. Function components are declared with a function that then
returns some JavaScript XML (JSX). Class-based components are declared using ES6
classes and unlike function components, they have an internal state. An interesting feature
of React is hooks – functions that let developers “hook into” React state and life cycle
features from function components. React components can communicate with the back-
end through an HTTP client, such as Axios (“Axios — Promise based HTTP client for the
browser and node.js,” 2020).

The design of the UI was created using Material UI — a library of React components
that implements Material Design principles (“Material UI,” 2022). Material Design is a
design language that was first introduced by Google in 2014 (“Material design,” 2022).
It is a visual language that makes use of grid-based layouts, responsive animations and
transitions, padding, and depth effects such as lighting and shadows. These components
work in isolation, which means they are self-supporting and will inject only the styles they
need to display.

4.1.5 Graph-like data models: property graphs and the RDF data model

While the relational model can handle simple cases of many-to-many relationships, as the
connections in the data grow more complex, it becomes more natural to model the data
as a graph. Graph-based schemas are also good for extension: as more features are added
to the application, a graph schema can easily be extended to accommodate changes in the
application’s data structure.

A graph consists of two kinds of objects: vertices (also known as nodes or entities) and
edges (also known as relationships or arcs). Many kinds of data can be modeled as a graph.
Typical examples include social graphs (vertices are people, and edges indicate which people
know each other), the web graph (vertices are web pages, and edges indicate HTML links
to other pages), road or rail networks (vertices are junctions, and edges represent the roads
or railway lines between them). While all the provided examples represent homogeneous
graphs, the modeling domain usually consists of different kinds of objects, which are better
modeled using heterogeneous graphs. There exist several models which structure data in
graphs, the most prominent of them being property graphs and the RDF data model.
Examples of both models and the syntax used to describe the same graph in both models
can be seen in Figure 4.4.

In the property graph model, each vertex consists of a unique identifier, a set of outgoing
edges, a set of incoming edges, and a collection of properties (key-value pairs). Each edge
consists of a unique identifier, the vertex at which the edge starts (the tail vertex), the
vertex at which the edge ends (the head vertex), a label to describe the kind of relationship
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(a) An example of a Property Graph described using the Cypher syntax.

(b) An example of RDF data serialized using the Turtle syntax.

Figure 4.4: The data is described using the two data models: property graphs (Cypher
syntax) and RDF (Turtle syntax). Adapted from (Howard, 2017).
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between the vertices, and a collection of properties (key-value pairs). Some important
aspects of this model are: Given any vertex, you can efficiently find both its incoming
and its outgoing edges, and thus traverse the graph both forward and backward; By using
different labels for different kinds of relationships, you can store several different kinds of
information in a single graph, while still maintaining a clean data model.

RDF is closely tied to the vision of the semantic web, which is fundamentally a simple
and reasonable idea: websites already publish information as text and pictures for humans
to read, so why do they not also publish information as machine-readable data for com-
puters to read (Matthews, 2005)? The Resource Description Framework (RDF) (“RDF —
Semantic Web Standards,” 2022) was intended as a mechanism to address this challenge,
allowing data from different websites to be automatically combined into a web of data
– a form of internet-wide “database of everything”. Triples can serve as a good internal
data model for applications, even when there is no interest in publishing RDF data on the
semantic web.

RDF statements can be written in a Turtle language syntax, which is more human-
readable, or in an XML format, which does the same thing much more verbosely. RDF
has a few quirks because it is designed for internet-wide data exchange. The subject,
predicate, and object of a triple are often Universal Resource Identifiers (URIs). For
example, a predicate might be a URI such as http://myapp.com/namespace#has_part
or http://myapp.com/namespace#solves, rather than just HAS_PART or SOLVES. The
reasoning behind this design is that you should be able to combine your data with someone
else’s data, and if they attach a different meaning to the word has_part or solves, you will
not get a conflict because their predicates are stored as part of a different namespace, for
example, http://other.org/foo#has_part and http://other.org/foo#solves.

The RDF data model is identical to the property graph model. Some of the main dif-
ferences are that the RDF data model does not uniquely identify instances of relationships
of the same type, i.e., it does not support the addition of attributes to the relationships.
These shortcomings are commonly handled via modeling workarounds. In RDF, all infor-
mation is stored in the form of very simple three-part statements named triples: (subject,
predicate, object). For example, in the triple (Jim, likes, bananas), Jim is the subject, likes
is the predicate (verb), and bananas is the object. The subject of a triple is equivalent to
a vertex in a graph. The object is one of two things:

1. A value in a primitive datatype, such as a string or a number. In that case, the
predicate and object of the triple are equivalent to the key and value of a property
on the subject vertex. For example (Lucy, age, 33) is identical to having a vertex
Lucy with properties “age”: 33.

2. Another vertex in the graph. In that case, the predicate is an edge in the graph, the
subject is the tail vertex, and the object is the head vertex. For example, in (Lucy,
marriedTo, Alan) the subject and object Lucy and Alan are both vertices, and the
predicate marriedTo is the label of the edge that connects them.

4.2 Implementation of the Services for Annotation and Query-
ing

4.2.1 Service setup

First, using the Neo4j Desktop Application we created a new project instance and a
Database Management System (DBMS), where we created our graph database. After
setting the required database access credentials (username and password), the IP address

http://myapp.com/namespace#has_part
http://myapp.com/namespace#solves
http://other.org/foo#has_part
http://other.org/foo#solves
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and the corresponding ports are provided (i.e., Bolt, HTTP, and HTTPS ports). By de-
fault, Neo4j uses the Bolt application protocol, which is generally carried over a regular
TCP or WebSocket connection (Forouzan, 2002). The database URL through which we
can set up the connection between the application and the database has the following for-
mat: ’bolt://username:password@localhost:7687’. This URL is added to the settings file
in the Django application using the neomodel config utility.

Additionally, in the settings file, we make use of the neomodel install_labels script,
which installs the indexes and constraints for the entire schema at compile time. This
should increase the memory overhead, however, it would reduce the time overhead to
query the database. We use the default settings for the remaining Django configuration.
For rendering the views, we rely on the Django REST Framework class APIView which,
like Django’s native View class, handles Requests from the front-end and returns adequate
Responses.

4.2.2 Database conceptual model design

The database conceptual model design was based on the ontology annotation schema. The
design followed an object-oriented approach, where we modeled ontology entities as classes
by instantiating the neomodel StructuredNode class (i.e., nodes in the graph database),
while relationships were created by instantiating the neomodel Relationship class. Note
that we model the entities explicitly by setting node-level properties, while for the relation-
ships we only define the head and tail nodes, although the property graph model allows
for the definition of relationship-level properties. It is important to note that Neo4j reuses
its internal ids when nodes and relationships are deleted. This means that applications
using, and relying on internal Neo4j ids, are brittle or at risk of making mistakes. Because
of this, we use application-generated ids by using neomodel utilities (UniqueIdProperty).

Since the web application was not designed to have a user administration system,
we represent each annotation session with the Annotation class. Some of the properties
which are defined and explicitly input by the user are the Annotator name and surname,
affiliation, and email. Each annotation object has a connection to the algorithm which was
annotated in the session. An inverse relationship is also added in the DataMiningAlgorithm
class, allowing for bi-directional traversal.

4.2.3 Email validation

The Annotation class also includes internal properties used by the application to validate
the annotation. This validation step was essential to provide accountability for the quality
of the annotation and to ensure that the personal information input by the user is accurate
and verifiable. Once the e-mail is entered by the user, it is passed through a validation
scheme using Django’s built-in Email Validator. The validation operates by matching the
email string to several regular expression patterns, such as the domain, the existence, and
position of the “@” character, etc. If the e-mail is not valid, the annotation is not stored in
the database and a HTTP_412_PRECONDITION_FAILED response is returned. If the
e-mail is valid, and all annotation quality validation criteria are satisfied (i.e., algorithm
name is input), the annotation is saved, however, an Annotation object is instantiated with
the is_verified property set to False. Meanwhile, a unique token is generated, along with a
link, which is sent to the user via the provided e-mail. Once the user opens the link, they
are redirected to the main page, and the is_verified property is set to True. The e-mails
which are not validated, along with the corresponding annotations, can then be removed
collectively using a scheduled script on a specific time frame.
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4.2.4 Annotation service

We essentially have two main services in the application, implemented through two APIView
objects — the Annotation service (which validates and stores the annotation), and the
Querying service (which retrieves the queried data). Several composite services retrieve
data from the database and display the data as selection options in the Annotation service.
These composite services are mainly used when annotating ensemble algorithms. The An-
notation service receives a request from the front-end, through which the annotation data
is passed as a payload. An example of the annotation data can be seen in Figure 4.5.

Figure 4.5: The annotation metadata for the LinearRegression algorithm.

To ensure a baseline for sufficient annotation information, we define a set of required
fields; i.e., fields that must have user input, so that the annotation can be processed and
stored. These fields include key aspects of an algorithm— the name, the dataset type which
can be processed by the algorithm, the task it addresses, as well as the generalization
it produces. Furthermore, the email of the annotator has to be input, for the e-mail
verification procedure to be run in the next step. Since the annotator is not obliged to fill
out every field in the annotation form, some of the information may be missing. This is
verified for every node to avoid adding blank nodes in the database. Another verification
procedure covers duplicate handling.

For some entities, like the Document entity, we check if an instance with the same
information (document name and document id) already exists in the database. If not, we
add a new Document instance, along with a connection between the DataMiningAlgorithm
instance and the Document instance, while if it exists, we only add the connection. The
duplicate handling procedure is not run for other entities, like the Parameter entity. This
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decision seems intuitive since Parameter names are descriptive and often serve different
purposes for different algorithms.

An important design pattern is that not all nodes are instantiated in the same way.
For example, the Dataset taxonomy is defined in the ontology-based annotation schema,
and the user can only specify the type of dataset that the annotated algorithm can take
as input, and not specify a dataset instance of the type which is selected. In other words,
in this scenario we do not instantiate the Dataset class, but rather just add a connection
between the algorithm and the selected Dataset type. Specifying a Dataset instance can
be easily implemented, however, it is a matter beyond the specification level of algorithm
design we are covering. In the end, once all the information from the Request is processed
and validated, the annotation is stored in the database.

4.2.5 Querying service

Unlike the Annotation service, the Querying service does not cover any validation proce-
dures, because the user does not input new data, but merely specifies several filters based
on several entities. In this case, we implemented the options to query with respect to the
type of task that the algorithm addresses, the type of optimization problem it solves, as
well as the training time complexity.

The queries can be done either through the Neomodel querying API, which ultimately
gets compiled into a Cypher query or by simply writing Cypher queries as strings and
executing them using the Neomodel Cypher utilities. The latter option is in theory much
faster, since it skips the compilation step, and despite the database being too small for
computation time to be seriously considered, it is wise to have the scaling factor in mind.
The three available filters relate to the task, the optimization problem, and the training
time complexity. The user can specify any combination of the filters (i.e., one, none, all),
and each scenario is handled by the service accordingly.

For each filter, we run one query based on the condition if the filter is specified or not.
So, for example, if the Task type is specified, we filter all the algorithms that are connected
to the corresponding Task type. If it is not specified, we simply retrieve all the algorithms
in the database which have a connection to any Task type. For example, the Cypher query
that retrieves the DataMiningAlgorithm instances that address a specific Task (as set by
the user) is presented in Figure 4.6.

MATCH (n:DataMiningAlgorithm)-[:ADDRESSES]->(t:Task)
WHERE t.name="{task}"

RETURN n

Figure 4.6: A Cypher query used in the application. The query is used to retrieve all the
DataMiningAlgorithm instances that address a Task type specified by the user.

The process is repeated for each filter. The results from all the queries are aggregated
via an intersect operation, i.e., we retrieve only the algorithms that satisfy all of the filters.
We define which properties are passed back to the front-end in a function defined for the
DataMiningAlgorithm class tagged with a property decorator which returns a dictionary
of the necessary properties and the corresponding values.

4.2.6 Semantics

In Chapter 3, we described how the ontology was built, and in Section 4.2.2, we described
the graph database conceptual model. Here, we explain how these two could be bridged
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to allow the storage of the annotated data in a semantic format, as well as utilizing the
logic defined in the ontology to infer new knowledge. For this we turn to Neosemantics,
a plugin that enables the use of RDF and its associated languages and schemas (e.g.,
OWL (“OWL — Semantic Web Standards,” 2012) and RDFS (“RDFS — Semantic Web
Standards,” 2004)) in Neo4j. Its functionalities include the import and export of RDF in
multiple formats, model mapping on import/export of ontologies and taxonomies, graph
validation based on SHACL constraints, and inferencing utilities (“SHACL — Semantic
Web Standards,” 2017). Here, we overview each of the functionalities we utilized, pre-
sented textually and using the Cypher syntax in Table 4.1.

Importing the OntoDM-algorithms ontology. Before the ontology is imported, we
must set up some configuration parameters. First, we have to create a constraint that
the Unique Resource Identifier (URI) property of each entity in the ontology is unique.
Next, we have to initialize the graph configuration. An example of one parameter which
can be set covers defining how to handle the vocabulary URIs (i.e., if we select shorten,
’<http://www.ontodm.com/OntoDM-core/algorithms>’ is mapped to ’algorithms’, which
makes the imported data more readable). An extended description of all the configuration
parameters is presented at the following link https://neo4j.com/labs/neosemantics/4.0/
reference/.

In our case, we use the default parameter configuration. After the configuration is done,
we import the ontology as an RDF graph. This fetches the ontology from the provided
link, which requires an internet connection, but is also handy since it is publicly available,
and consistency is ensured. The ontology is imported in the Turtle format which repre-
sents information using semantic triples that comprise a subject, predicate, and object.
Upon inspection, the ontology is imported as expected, with one remark. Namely, when
developing an ontology, it is common practice to include a small set of instances, which
provide an annotation guide to anyone who would be using the ontology. However, when
we instantiated individuals externally (in Protégé), they were correctly imported as nodes
in Neo4j, whereas the instantiation relationship (rdfs_type) was not present between the
ontology entities and the instances.

Exporting the graph database conceptual model as an ontology. It is possible to
export the Graph database conceptual model in the form of an OWL Ontology. The same
output produced by the db.schema() procedure can be generated as RDF/OWL through
the /onto method. The /onto method will run db.schema() on your Neo4j graph and will
generate owl:Class definitions for each label found, and owl:ObjectProperty definitions for
each relationship along with rdfs:domain and rdfs:range based on the labels of their start
and end nodes. It is possible to set the serialization format by setting corresponding pa-
rameters.

Exporting the populated graph database in RDF. Besides exporting the graph
database conceptual model, we can also export the populated database in the RDF for-
mat. Neosemantics implements different ways to specify what we want to export, i.e., by
using a node id or URI, or by label and property value, etc. Finally, the most powerful
way of selecting the portion of the graph that we want to serialize as RDF would be to
use Cypher. In this case, it is a POST request that takes as payload a JSON map with
at least one cypher key having as its value the query returning the graph objects (nodes
with their properties and relationships) to be serialized. We can also specify the format
by specifying the "format" key in the JSON map.

https://neo4j.com/labs/neosemantics/4.0/reference/
https://neo4j.com/labs/neosemantics/4.0/reference/
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Setting the annotations as instances of the ontology. To harvest the possibili-
ties of inference using the imported ontology, we have to connect the annotated data to
the corresponding entities in the ontology. In RDF, this is done by using the ’rdf:type’
(www.w3.org/1999/02/22-rdf-syntax-ns#type) property which ties an individual to a class
of which it is a member. It is an instance of the ’rdf:Property’ and it represents a triple
of the form ’R rdf:type C’, i.e., C is an instance of rdfs:Class, and R is an instance of
C. The ’rdfs:domain’ of ’rdf:type’ is ’rdfs:Resource’, while the ’rdfs:range’ of ’rdf:type’ is
’rdfs:Class’. We manually define which entity from the graph database conceptual model
gets mapped to which ontology entity by writing a Cypher query for each entity type. This
mapping is performed after an annotation is added to the graph database.

4.3 Implementation of the Graphical User Interface for
ML/DM Algorithm Annotation and Search

The initial Graphical User Interface (GUI) was implemented as a one-page annotation
form that contained the selected set of entities from the ontology-based annotation schema.
The GUI design was presented in our paper published at the MIPRO conference in 2021
(Jovanovska & Panov, 2021). The Annotation tool was initially implemented as a single
class component that contained multiple MaterialUI-native components, such as Grid,
TextField, Select, Button, etc. For the case when there was a hierarchy of options, and
selecting an option at one level, meant also including all the descendants of the selected
option, coupled with the possibility for multiple selections, we made use of an external
component. The first version of the Annotation GUI can be seen in Figure 4.7.

While the initial GUI design served its purpose of providing a proof-of-concept design,
it was lacking interactivity, and some other design patterns, such as a more semantically
organized interface, delineated sections, and navigation. These aspects were key to improv-
ing the user experience. In the following iteration, we opted for a more modular design,
where similar-themed inputs would be grouped into sections and visually separated from
each other, progressing from more general (high-level) information to a more in-depth de-
scription. For this purpose, we settled on a horizontal tab navigation design, located in the
top part of the screen, as can be seen in Figure 4.8. Each tab consisted of information that
referred to a specific aspect of an algorithm description. For example, the Complexity tab
contained input fields related to the time and space complexity, while the Parameters tab
comprised of fields related to the type, name, and datatype of the parameters related to
the algorithm. Another notable addition in this version was the MaterialTable component
which allowed us to better structure and manipulate the Documents and Parameters as-
pects. With the use of this component, multiple attributes could be specified for the given
entity, each entry being simultaneously added to a table presented in the same tab. The
table component came packed with navigation features such as a search bar, a page view,
multiple selections, and removal functionality, as well as exporting into several supported
formats.

In this iteration, we switched from using mostly class components to using only func-
tional components. Class components are "stateful" components as they tend to imple-
ment logic and state. React lifecycle methods (i.e., componentDidMount) can be used
inside class components. A Class-based development is considered outdated in the React
developers community because they become unreadable if the logic is stored in several
places and scaling is not trivial, as testing becomes harder. Today, the mainstream de-
velopment practice relies on functional components, which are basic JavaScript functions.
They are sometimes referred to as "stateless" components as they simply accept data and

www.w3.org/1999/02/22-rdf-syntax-ns#type
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Figure 4.7: The first version of the GUI for the annotation tool.

display them in some form; that is, they are mainly responsible for rendering UI and are
typically presentational only. Additionally, the introduction of hooks in React 16.8 made
it significantly easier to manage variable and component states, like with for example the
useState hook. Hooks let you split one component into smaller functions based on what
pieces are related (such as setting up a subscription or fetching data), rather than forcing
a split based on lifecycle methods. They essentially let you use more of React’s features
without classes while allowing for code reuse and better code organization.

In the third and final iteration of the GUI design, we included a vertical side menu, an
improved single-page layout, and card sections, as can be seen in Figure 4.9. In this phase,
we also implemented the Querying tool which allowed the user to retrieve information
from the database, based on specific filters. The addition of the querying tool required a
reorganization of the GUI.

First, the user navigates to the main page where there is a brief introduction to the tools
and their usage. From there the user could navigate to the Annotation page or the Querying
page via the ’Annotate’ and ’Search’ buttons, respectively. While the tabs navigation was
a convenient pattern for smooth navigation, there was room for improvement. And so,
instead of a horizontal menu positioned at the top of the screen, we implemented a vertical
side menu using the Stepper component from the MaterialUI library. This component
clearly showed the sections, and by clicking on a specific section name it immediately
repositioned the user to the desired section. This way, the user could navigate from the
end of the annotation form to its beginning instantaneously. Whereas the vertical side menu
accounted for the navigation aspect, the one-page design left the content unstructured. To
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Figure 4.8: A snippet of the second version of the GUI for the annotation tool.

retain the semantic segmentation of the content, we made use of the Card component.
Each section was implemented as a functional component, where the corresponding

variables and methods were defined. The sections were implemented as children functional
components of the Annotation page. The connection between the Annotation page and
the section components was made through multiple useState hooks which were passed
as parameters to the child components, where the state was updated. In this way, the
design was modular in the sense that each functional component served a single function
— to store and present data related to a given aspect of an algorithm. The control was
delegated to the parent component which had the role to pass the input data to its children
components. The communication from the front-end to the back-end is done using the
Axios HTTP client.

In this version, we also added the support for ensemble algorithms, which typically
make use of single generalization algorithms in specific ways. In the UI, this is handled
by a selection field that lets the user specify if the algorithm is a single generalization
algorithm or an ensemble algorithm. We further distinguish between four types of ensemble
algorithms, namely bagging, boosting, voting, and stacking ensembles. Based on the user
selection, for each ensemble type, a corresponding view is rendered that contains all the
necessary input fields.

Bi-directional communication between the user and the system allows for a richer user
experience and utilization of the services. To address this, a Querying GUI (shown in
Figure 4.10) was designed and implemented in the application. In the interface, the user can
specify three filters (described in Section 4.2.5), which constrain the algorithm annotations
that are retrieved. These filters were selected based on discussions with domain experts,
where it was concluded that from a user perspective these filters are intuitive and useful.
Sorted in a decreasing level of generality, the filters are designed with flexibility in mind,
allowing the user to specify one, multiple, or none for a given query. For example, if a
user only wishes to constrain the task that the algorithm addresses, one can set that filter,
leaving the rest empty. If one wishes to retrieve all the algorithms in the database, it is
also possible to leave all the filters empty. At the moment, all the filters support only
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Figure 4.9: The final GUI for the annotation tool.

single-selection constraints, which means that the user cannot retrieve algorithms that
address two or more different tasks in a single query. After specifying the filters, using
identical UI elements used in the annotation tool, the user submits the query by clicking
on the Filter button. This sets the values for each of the filters using the React useState
hook and triggers a request to the back-end via Axios. After the request is handled in the
back-end and the requested data is retrieved, the state of the results table is updated using
the useState hook and the requested data is presented to the user. We also implemented a
Clear Data button which resets the state of the results table, enabling the user to execute
a different query without having to remove the results manually.

4.4 Population of the Graph Database

The most effective way to assess the quality of the developed resources is to see how well
they achieve their purposes. This can be assessed through the process of annotating an
ML/DM algorithm using the web application. On one hand, the ontology’s capacity to en-
capsulate relevant information will be assessed, whereas its complexity will be measured by
looking at the amount of effort required to produce one complete annotation. On the other
hand, the quality of the annotation resource will be assessed by running the annotation
process through the developed web application. Ultimately, this would result in not only
the quality verification of the developed resources but also a populated graph database
which would in turn represent a meaningful contribution to this work. A populated graph
database would mean that the querying component of the web application could be used
immediately upon deployment so that users can retrieve information even before anno-
tating some ML/DM algorithm. Additionally, considering the complexity of the ML/DM
domain, it would be a welcome guide to how the annotation process was conceptualized
by the developers.
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Figure 4.10: The Querying GUI where the task is specified; the retrieved results are shown
in the table.

4.4.1 The Scikit-learn library

Scikit-learn (sklearn) is a free software machine learning library for Python. It features var-
ious classification, regression and clustering algorithms including support-vector machines,
random forests, k-means, etc (Pedregosa et al., 2011). It is one of the most popular ma-
chine learning libraries on GitHub due to its utility and robustness. Its documentation is
comprehensible (although not comprehensive), and it features diverse information related
to the ML/DM algorithm. It provides documentation in the form of a user guide, where
a short description of the algorithm is presented, along with optionally the optimization
problem it solves, useful tips about the parameters, and practical examples of how to use
the algorithm. Besides having more user-friendly documentation, more technical details
on the implementation of the algorithm are also supplied in the API section. Here, one
can inspect each of the parameters (information that is passed to the algorithm), and the
attributes (parameters that represent the state of the algorithm) related to the algorithm.
Unlike the user guide documentation, here we have a more structured and comprehensive
approach, where for each parameter the name, accepted datatypes, optional values (or a
range of values), default value, as well as a brief description of the parameter function are
listed. Additional information related to the methods that can be called on the algorithm
object is supplied (i.e., fit, predict, score, etc.), as well as usage notes and examples.

To populate the database we needed a fairly large source where ML/DM algorithm
information is publicly available and accessible. For this purpose we found sklearn to
be an adequate source. One of the drawbacks of sklearn is that the documentation is
not comprehensive, and structured enough, i.e., there is no format for specifying ML/DM
algorithm information. For example, it is often the case that the time complexity for one
algorithm is specified, while in another case it is not mentioned at all. In such cases, we
turned to related sources to find the required information. If the documentation referred to
the paper where the algorithm was first presented or some related paper, this was the first
place to look for the required information. In a sense, the sklearn documentation served
as a higher level of abstraction for ML/DM algorithm information, in comparison to the
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original papers where the algorithms are described. It would require an extensive amount
of effort to go through each original paper, as this is not a straightforward task. An added
benefit of using sklearn was that the documentation was tied to a specific implementation,
allowing us to extract additional information related not only to the specification of an
algorithm but also to its implementation, including information related to its parameters,
their datatypes, etc.

4.4.2 Setting up the population engine

The best way to test the database conceptual model’s ability to describe our domain of in-
terest is to annotate a representative data sample. First, we need to populate the database
with ontology instances which are offered as selection options in the annotation tool. For
example, our schema defines common algorithm assumptions, optimization problems, and
complexity instances. We can populate the database either via the Neo4j Desktop Appli-
cation, by manually typing Cypher queries and executing them through Neomodel or by
using Neomodel database commands. While using the Neo4j GUI is the easiest and most
interactive way, it does not scale well, as we must manually populate the database every
time we make changes in the schema, or to the instances. Since our schema is experimen-
tal and iteratively modified, it is essential to populate the database in an automated and
efficient way. Using Cypher queries would be more efficient, however their execution would
have to be done via the Neomodel library so that we can execute them on demand. A
nifty way to handle these operations is by writing custom Django management commands.
Namely, our actions can be registered with the manage.py script, which links our settings
file where we define, among other things, our database settings. In this way, we can create
several management commands which would perform our CRUD operations in the Neo4j
database when the application is starting. Initially, we created three separate management
commands:

• populate_db_taxonomies: Populates the database with the necessary taxonomies
(optimization problems, complexity specifications, and algorithm assumptions).

• populate_db_algorithms: Populates the database with algorithm annotations for
the selected representative algorithms (i.e., Decision Tree Classifier).

• delete_db: Deletes the entire populated database.

The first two commands allow us to create the schema and the annotations separately.
So, for example, when we want to add an algorithm annotation, we can just run the
second command, while the schema remains intact. The third script enables us to delete
the whole database with a single Cypher query, which is very useful when we make changes
to the schema since changes in the schema mean that the annotations need to be adjusted
appropriately. The management script for deleting the database can be seen in Figure
4.11.

4.4.3 Annotation of specific ML/DM algorithms

We annotated both single generalization and ensemble algorithms which address different
tasks and operate differently internally. To ensure consistency we will refer to them using
their names as presented in the sklearn documentation, while the name in the brackets
represents their original naming. These algorithms are: LinearRegression (Ordinary Least
Squares), SVC (Support Vector Machine) (Cortes & Vapnik, 1995), KNeighborsClassifier
(K Nearest Neighbors) (Keller et al., 1985), DecisionTreeClassifier (CART) (Breiman et al.,
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Figure 4.11: The Django management script for deleting the graph database.

2017), GaussianNB (Gaussian Naive Bayes) (H. Zhang, 2004), BaggingClassifier (Bagging)
(Breiman, 1996), GradientBoostingRegressor (Gradient Tree Boosting) (Friedman, 2001),
VotingClassifier, StackingClassifier and MLPClassifier (Multi-layer Perceptron) (Hinton,
2009). The annotated algorithms can be seen in Table 4.2, where almost full annotation
information is presented. For presentational purposes, the problem text description is not
included, as it can be lengthy, and some of the assumptions are not included, as well as
the types and the datatypes of the parameters.

4.4.4 Lessons learned

First, it is obvious to say that the annotation process was extremely difficult due to several
reasons: the complexity of the ML/DM domain, the lack of a well-structured information
source, and the potential lack of expressiveness in the annotation schema. The first reason
cannot be argued since the field of ML/DM is relatively young in comparison with other
sciences and is still evolving at a fast pace. Next, as we mentioned that sklearn is not
comprehensive, many times we had to turn to different information sources to gather some
information. Sometimes not even the authors specify this information in a structured way
and so there is the potential of having information related to different implementations of
the same algorithm.

Notable examples of entities that were hard to annotate were the time complexity
entity, as well as the computational problem entity. Additionally, the computational prob-
lem for some algorithms could not be easily described. While it is clear that SVC and
MLPClassifier are designed to solve an optimization problem, for KNeighborsClassifier
and GaussianNB the choice was not straightforward. Perhaps, practitioners with more
expertise would be able to provide complete annotations, or the annotation schema needs
to be adjusted in the following iteration to address these situations.

Another notable finding is that since not all algorithms produce a model as output,
they do not have a ’training time complexity, but rather compute the predictions directly,
and so the time complexity refers to the prediction (or test) time complexity. An example
of this is the vanilla KNeighborsClassifier algorithm. In ensemble algorithms, much of the
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information is inherited from the base estimator, i.e., the single generalization algorithm
which is used in the ensemble. Information like the dataset type, the task type, the
assumptions, and the computational problem are the same for the DecisionTreeClassifier
and the BaggingClassifier. Although there can be more assumptions for the ensemble
algorithm (when compared to the base estimator) and the computational problem can be
different for the remaining ensemble algorithms, the dataset type and the task type rarely
change, since they are defined solely based on the input and output type.

Finally, the stacking and voting ensemble algorithms were unique in the sense that
they are not described in some document, i.e., a paper, because they are more conceptual
— operating by combining the outputs of different algorithms to produce a single, less
biased output. The information related to the documents, optimization problems, and time
complexities can be represented with a dictionary where each of the constituent algorithm
information will be added. However, this can also be inferred since the information is
already described for the single generalization algorithms.

Table 4.2: Complete annotations for a selection of ML/DM algorithms.

Algorithm: LinearRegression
Document: Christopher M. Bishop: Pattern Recognition and Machine

Learning, Chapter 4.3.4, id: 0387310738
Dataset: regression dataset
Task: supervised regression task

Computational
Problem:

Optimization Problem (Quadratic Programming)
minw ||Xw − y||22

Generalization: regression model

Assumption:
Independence of observations
No hidden or missing variables
Homoscedasticity

Time complexity: quadratic time
O(nsamplesn

2
features)

Parameters:

fit_intercept
normalize
copy_X
n_jobs
positive

Estimators: none

Algorithm: SVC
Document: Probabilistic Outputs for Support Vector Machines and Com-

parisons to Regularized Likelihood Methods (1999) id: /
Dataset: flat classification dataset
Task: supervised flat classification task

Computational
Problem:

Optimization Problem (Quadratic Programming)
minw,b,ζ

1
2w

Tw + C
∑n

i=1 ζi
subject to yi(wTφ(xi) + b) ≥ 1− ζi,
ζi ≥ 0, i = 1, ..., n

Continued on next page
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Continued from previous page
Generalization: classification model
Assumption: none

Time complexity:
cubic time
O(nfeatures × n3samples)

Parameters:

C
kernel
degree
gamma
coef0
shrinking
probability
tol
cache_size
class_weight
verbose
max_iter
decision_function_shape
break_ties
random_state

Estimators: none
Algorithm: KNeighborsClassifier
Document: Discriminatory Analysis — Nonparametric Discrimination:

Small Sample Performance, id: ADA800391
Dataset: flat classification dataset
Task: supervised flat classification task

Computational
Problem:

Optimization Problem (Integer Programming)
y = argmaxcj

∑
xi∈Nk(x) I(yi = cj),

i = 1, 2, · · · , n; j = 1, 2, · · · ,m
Generalization: classification model
Assumption: Similar things exist in close proximity

Time complexity: constant time
O(1)

Parameters:

C n_neighbors
algorithm
weights
leaf_size
p
metric
metric_params
n_jobs

Estimators: none
Algorithm: DecisionTreeClassifier
Document: L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classifica-

tion and Regression Trees”, Wadsworth, Belmont, CA, 1984, id:
9781315139470

Dataset: flat classification dataset
Task: supervised flat classification task

Continued on next page
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Continued from previous page

Computational
Problem:

Search Problem
θ∗ = argminθG(Qm, θ)

G(Qm, θ) =
nleftm
nm

H(Qleftm (θ)) + nrightm
nm

H(Qrightm (θ))

Generalization: classification model
Assumption: none

Time complexity: linearithmic time
O(nsamplesnfeatures log(nsamples))

Parameters:

criterion
splitter
max_depth
min_samples_split
min_samples_leaf
min_weight_fraction_leaf
max_features
random_state
min_impurity_decrease
class_weight
ccp_alpha

Estimators: none
Algorithm: GaussianNB
Document: Updating Formulae and a Pairwise Algorithm for Computing

Sample Variances, id: STAN-CS-79-773
Dataset: multi-class classification dataset
Task: supervised multi-class classification task

Computational
Problem:

Optimization Problem (Maximum Likelihood Estimation)
ŷ = argmaxy P (y)

∏n
i=1 P (xi|y)

Generalization: probability distribution specification

Assumption:
Conditional independence between every pair of features given the
value of the class variable
The likelihood of the features is assumed to be Gaussian

Time complexity: linear time
O(nsamplesnfeatures)

Parameters: priors
var_smoothing

Estimators: none
Algorithm: BaggingClassifier

Document: Bagging predictors, Machine Learning, 24(2), 123-140, 1996,
id: https://doi.org/10.1007/BF00058655

Dataset: Same as base estimator’s
Task: Same as base estimator’s
Computational
Problem:

Same as base estimator’s

Generalization: predictive models ensemble specification
Assumption: none
Time complexity: O(n_estimators ∗ complexity(base_estimator)

Continued on next page
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Continued from previous page

Parameters:

n_estimators
max_samples
max_features
bootstrap
bootstrap_features
oob_score
warm_start
n_jobs
random_state
verbose

Estimators: DecisionTreeClassifier
Algorithm: GradientBoostingRegressor

Document:
Friedman, J.H. (2001). Greedy function approximation:
A gradient boosting machine. Annals of Statistics,
29, 1189-1232, id: 10.1214/aos/1013203451

Dataset: regression dataset
Task: supervised regression task

Computational
Problem:

Search Problem
hm = argminh Lm = argminh

∑n
i=1 l(yi, Fm−1(xi) + h(xi))

Generalization: predictive models ensemble specification
Assumption: none
Time complexity: O(n_trees ∗ n_samples ∗ log(n_samples ∗ n_features))

Parameters:

loss
learning_rate
n_estimators
subsample
criterion
min_samples_split
min_samples_leaf
min_weight_fraction_leaf
max_depth
min_impurity_decrease
init
random_state
max_features
alpha
verbose
max_leaf_nodes
warm_start
validation_fraction
n_iter_no_change
tol
ccp_alpha

Estimators: DecisionTreeRegressor
Algorithm: VotingClassifier
Document: /
Dataset: flat classification dataset

Continued on next page
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Continued from previous page
Task: supervised flat classification task
Computational
Problem:

/

Generalization: ensemble specification
Assumption: /
Time complexity: /

Parameters:

voting
weights
n_jobs
flatten_transform
verbose

Estimators:
DecisionTreeClassifier
KNeighborsClassifier
SVC

Algorithm: StackingClassifier
Document: /
Dataset: binary classification dataset
Task: supervised binary classification task
Computational
Problem:

/

Generalization: ensemble specification
Assumption: /
Time complexity: /

Parameters:

stack_method
n_jobs
passthrough
verbose

Estimators:

BaggingClassifier
KNeighborsClassifier
GaussianNB
final_estimator: LogisticRegression

Algorithm: MLPClassifier
Document: Rumelhart, D., Hinton, G. & Williams, R. Learn-

ing representations by back-propagating errors, id:
https://doi.org/10.1038/323533a0

Dataset: flat classification dataset
Task: supervised flat classification task

Computational
Problem:

Optimization Problem
argminLoss(ŷ, y,W )

Loss(ŷ, y,W ) = − 1

n

∑n
i=0(yi ln ŷi + (1− yi) ln (1− ŷi)) +

α

2n
||W ||22

W i+1 =W i − ε∇LossiW
Generalization: classification model
Assumption: /
Time complexity: O(n_epochs ∗ n_samples ∗ n_features ∗ n_neurons)

Continued on next page
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Continued from previous page

Parameters:

hidden_layer_sizes
activation
solver
alpha
batch_size
learning_rate
learning_rate_init
power_t
max_iter
shuffle
random_state
tol
verbose
warm_start
momentum
nesterovs_momentum
early_stopping
validation_fraction
beta_1
beta_2
epsilon
n_iter_no_change
max_fun

Estimators: none
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Chapter 5

Use Cases

In this chapter, we present two use cases that exemplify the functionalities of the developed
web-based system. Upon launching the web application, the user is presented with the main
page where a short description of the functionalities of the application is provided. The
user can then either navigate to the annotation tool — to annotate an ML/DM algorithm,
or the querying tool — to query the populated repository, i.e., to obtain information related
to the ML/DM algorithms that are stored in the repository.

5.1 Annotation Use Case

In this section, we present the procedure for annotating ML/DM algorithms. To illustrate
the capabilities of the annotation tool we annotate two ML/DM algorithms: the Deci-
sionTreeClassifier (single generalization algorithm), and the BaggingClassifier (ensemble
algorithm). To do so, we refer to the sklearn documentation, described in Section 4.4.1,
as we focus on annotating algorithms present in that toolkit. The information is gathered
from the sklearn documentation, which covers specification information, and the API sec-
tion, which covers implementation information. The documentation snippets of the sources
are presented in Figure 5.1.

5.1.1 Annotation of a single generalization algorithm:
DecisionTreeClassifier

The annotation interface consists of several sections which cover different aspects of infor-
mation related to the algorithm. Most of the sections apply to both single generalization
and ensemble algorithms. Hence, in this section, by following an example algorithm — the
DecisionTreeClassifier, we will cover information that is mutual for both algorithm types,
while in the next section, we will describe the information that is exclusively used for the
annotation of ensemble algorithms.

The first section in the annotation tool is the Metadata section, seen in Figure 5.2a.
Here, the ML/DM algorithm name and type are input, as well as the documents in which
the algorithm is described. Each document has a name and an identifier, and the user can
input multiple documents, as well as remove them in the case of typing mistakes.

The next section is the Input/Output section (see Figure 5.2b). Here, the user can
input the type of task, the type of dataset that can be used as input, and the type of
output the algorithm produces through the generalization specification type and general-
ization language fields. Next, the user can specify the assumptions of the algorithm in the
Assumptions section, presented in Figure 5.2c. Here, the user can select from assumptions,
added as instances in the ontology, or specify custom assumptions using a text field.
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(a) Sklearn user guide documentation

(b) Sklearn API guide documentation

Figure 5.1: Snippets from the sklearn documentation for the DecisionTreeClassifier algo-
rithm.
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(a) Metadata section

(b) Input/Output section

(c) Assumptions section

Figure 5.2: The Metadata, Input/Output, and Assumptions sections of the user interface.
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Following this, we have the Complexity section (see Figure 5.3a), where information
related to the type of computational problem the ML/DM algorithm solves and its compu-
tational complexity is to be input. In this section, the type of the computational problem is
selected, and additional information about the problem using both the textual description
and a mathematical notation (latex notation). Additionally, the (train) time complexity
of the algorithm can be specified by selecting from the time complexities described earlier.
The user can also represent the time complexity in more detail with mathematical notation
(latex notation), to specify the parameters that determine the computational time com-
plexity. Afterwards comes the Parameters section shown in Figure 5.3b. Using the already
familiar table functionality, the user can input the name and datatype of each parameter
that is a part of the annotated ML/DM algorithm. Finally, the annotation is concluded
in the Annotator Information section (Figure 5.3c) by adding personal information related
to the annotator, such as the name, affiliation, and email.

5.1.2 Annotation of an ensemble algorithm: BaggingClassifier

As we mentioned in the previous section, the annotation tool follows the same layout for
both single generalization and ensemble algorithms, barring one difference. In fact, after
inputting the name of the ML/DM algorithm in the annotation form, the user can specify
if the algorithm is a single generalization or an ensemble algorithm. If the annotated
algorithm is an ensemble algorithm, the user can further specify the type. Namely, the
user is presented with four options based on our differentiation of ensemble algorithms into
four groups: Bagging, Boosting, Voting, and Stacking (described in Chapter 3).

If the user is unsure of the specific ensemble type, they can just select the ensemble
algorithm type and no additional section will be rendered. However, if the type of the
ensemble algorithm is specified, an additional section corresponding to each of the types is
rendered (see Figure 5.4). The selection options that include ML/DM algorithms (such as
the Base Estimator, the Estimators, and the Final Estimator fields) are fetched from the
populated database. This allows for the connection between ML/DM algorithms (for which
annotation data is already available and validated), and ensemble algorithms, leading to
greater data inter-linking.

In the case of the annotation of a Bagging ensemble algorithm, additional information
such as the sampling type and the base estimator can be input (see Figure 5.4a). If the
user selects the Boosting type, they can input the base estimator of the ensemble algorithm
(see Figure 5.4b). In the Voting type case (see Figure 5.4c, the user can select multiple
ML/DM algorithms that are constituent parts of the Voting ensemble algorithm. Finally, if
the Stacking type is chosen (Figure 5.4d), the user can select multiple ML/DM algorithms
and the final algorithm that produces the final output.

Here, we present an end-to-end annotation scenario for an ensemble ML/DM algorithm,
the BaggingClassifier. We must note that some of the information related to an ensemble
algorithm, such as the dataset type, the task type, as well as potentially the optimization
problem and the assumptions can be inherited from the base ML/DM algorithm. However,
for the scope of this research, we did not manage to verify if this applies to all ensemble
algorithms, and consequently, we decided this information should be specified explicitly by
the user. The complete annotation for the BaggingClassifier is shown in Figures 5.5 and
5.6.
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(a) Complexity section

(b) Parameters section

(c) Annotator information section

Figure 5.3: The Complexity, Parameters, and Annotator Information sections of the user
interface.
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(a) Bagging section (b) Boosting section

(c) Voting section (d) Stacking section

Figure 5.4: The Bagging, Boosting, Voting, and Stacking sections of the user interface.
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(a) Metadata section

(b) Bagging section

(c) Input/Output section

Figure 5.5: BaggingClassifier pt. 1/3: Complete end-to-end annotation of an ensemble
ML/DM algorithm.
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(a) Assumptions section

(b) Complexity section

Figure 5.6: BaggingClassifier pt. 2/3: Complete end-to-end annotation of an ensemble
ML/DM algorithm.
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(a) Parameters section

(b) Annotator information section

Figure 5.7: BaggingClassifier pt. 3/3: Complete end-to-end annotation of an ensemble
ML/DM algorithm.
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5.2 Querying Use Case

In the querying use case, the user can retrieve relevant information from the ML/DM
algorithms database. The querying process is done by specifying the values of three filters
that constrain the database search operation. These filters include the type of task, the
type of computational problem, and the time complexity specification. The querying tool
enables the user to run a query, export the results in a format of their choice, and repeat
the process quickly and easily.

For each filter, we run one query based on the condition if the filter is specified or not.
This means that if the filter is not specified, we simply return all the ML/DM algorithms
in the database, i.e., there is no filtering at all. Otherwise, if the filter is specified, only
the ML/DM algorithms that have the specified filter value are retrieved. The process is
repeated for each of the filters. Then, the results from all the queries are aggregated via
an intersect operation, i.e., we retrieve only the algorithms that satisfy all of the filters.
Finally, the results are presented to the user in a table view. In Table 5.1, we present all
the queries that can be posed to the system using the querying tool. For a more intuitive
understanding, the queries are described in natural language and the Cypher querying
language.

The table element used is searchable, editable, and exportable. Natively, the table
supports exporting the results in CSV and PDF formats. Given that the user chooses the
CSV export, they can use the data to perform analysis, or, even formulate ML problems and
training algorithms using the dataset. The PDF format can be used for more presentational

Table 5.1: A complete list of the queries that the user can pose to the system. The queries
are displayed in a natural language form, as well as in the Cypher querying language.

Natural Language Query Cypher Query
Filter
Speci-
fied

Give me all the algorithms
that address a task

MATCH (n:DataMiningAlgorithm)
-[:ADDRESSES]->(t:Task)
RETURN n

No

Give me all the algo-
rithms that address the
’supervised flat classifica-
tion task’

MATCH (n:DataMiningAlgorithm)
-[:ADDRESSES]->(t:Task)
WHERE t.name="supervised flat classification task"
RETURN n

Yes

Give me all the algo-
rithms that solve a com-
putational problem

MATCH(n:DataMiningAlgorithm)
-[:SOLVES]->(cp:ComputationalProblem)
RETURN n

No

Give me all the algorithms
that solve the ’Linear Pro-
gramming’ problem

MATCH(n:DataMiningAlgorithm)
-[:SOLVES]->(cp:OptimizationProblem)
WHERE cp.name="Linear Programming"
RETURN n

Yes

Give me all the algorithms
that have a train time
complexity

MATCH(n:DataMiningAlgorithm)
-[:HAS_TRAIN_TIME_COMPLEXITY]->(c:Complexity)
RETURN n

No

Give me all the algorithms
that have a Linearithmic
complexity

MATCH(n:DataMiningAlgorithm)
-[:HAS_TRAIN_TIME_COMPLEXITY]->(c:Complexity)
WHERE c.name="Linearithmic complexity"
RETURN n

Yes
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purposes. Additionally, there is the option to override the exporting functionality allowing
the export to be done in a semantic format, such as OWL or RDF.

Examples of use case scenarios for the querying tool are presented in Figure 5.8. A
querying use case with none of the filters specified is presented in Figure 5.8a, where
information related to all the ML/DM algorithms in the repository is retrieved. In Figure
5.8b, the type of the task is specified, and set to be ’supervised flat classification task’ and
the corresponding algorithms that match the condition are retrieved.

(a) Querying view — no filters specified

(b) Querying view — the task type filter is specified

Figure 5.8: The GUI for the querying tool. The first figure shows the default view, while
the second shows the results retrieved when the task filter is specified.
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Chapter 6

Evaluation

In this thesis, we have presented a complete methodology for a bottom-up ontology design
approach and a developed web-based application to semantically annotate, store, and query
information related to ML/DM algorithms. While we presented multiple examples of
annotation and querying scenarios, which validate our developed system, it is important to
evaluate the developed resources more coherently. To do so, we turn to the FAIR principles
which are commonly used as guidelines for developing digital resources, with a focus on
the resource being findable, accessible, interoperable, and reusable. In addition, we assess
the developed ontology extension by using OBO Foundry principles. The evaluation of the
developed resources is the topic of this chapter.

In the literature, there are many ontology evaluation approaches, which can be divided
into several categories: 1) gold standard-based (by comparing the developed ontology
with a reference, "gold standard" ontology), 2) corpus-based (by evaluating how well the
developed ontology covers the content of a text corpus in the given domain), 3) task-based
(by measuring how much the ontology helps with improving the results of a certain task), 4)
criteria-based (by measuring how much the ontology adheres to certain desirable criteria)
(Raad & Cruz, 2015).

In the previous chapter, we presented several ML/DM algorithm annotations which
have been created using an annotation schema based on the developed ontology. By doing
so, we followed a corpus-based ontology evaluation approach, carried out manually, rather
than by automatically extracting terms from the corpus. The choice of evaluating manually
rather than automatically was based on the fact that automatic term extraction from a
text corpus is an extremely difficult task in the domain of ML/DM. This will be discussed
in more detail in the next chapter.

6.1 Assessment Using the FAIR Guiding Principles

The FAIR guiding principles for scientific data management and stewardship were con-
ceived to serve as guidelines for those who wish to enhance the reusability and invaluable-
ness of their data holdings (Wilkinson et al., 2016). The power of these principles lies in
the fact that they are related but independent and separable. They are also simple and
minimalistic in design and as such can be adapted to various application scenarios. We
will now present the principles in more detail:

• Findability ensures that a globally unique and persistent identifier is assigned to the
data and the metadata which describes the data. Also, both resources are registered
or indexed in a searchable resource.
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• Accessibility ensures that the data and the metadata can be retrieved by their iden-
tifier using a standardized communications protocol. The protocol must be open
and free or in other cases, it must allow for an authentication and authorization
procedure. Also, metadata should be accessible, even when the data is no longer
available.

• Interoperability ensures that data, as well as metadata, use a formal, accessible, and
shared language for knowledge representation. The data and metadata must use and
reference qualified vocabularies that follow FAIR principles.

• Reusability ensures that data and metadata are described with accurate and relevant
attributes, released with a clear and accessible license, have detailed provenance, and
meet domain-relevant community standards.

Let us now describe the compliance with the FAIR guidelines presented in Table 6.1.
We will go over each of the principle groups in more detail.

Table 6.1: Assessment of the developed repository using The FAIR principles.

# Principle Compliance
F1. (Meta)data are assigned a globally unique and persistent identifier Yes
F2. Data are described with rich metadata Partial

F3. Metadata clearly and explicitly include the identifier of the data
they describe Yes

F4. (Meta)data are registered or indexed in a searchable resource Yes

A1. (Meta)data are retrievable by their identifier using a standardized
communications protocol No

A1.1 The protocol is open, free, and universally implementable Yes

A1.2 The protocol allows for an authentication and authorization pro-
cedure, where necessary Yes

A2. Metadata are accessible, even when the data are no longer avail-
able Yes

I1. (Meta)data use a formal, accessible, shared and broadly applicable
language for knowledge representation Yes

I2. (Meta)data use vocabularies that follow FAIR principles Yes
I3. (Meta)data include qualified references to other (meta)data Yes

R1. (Meta)data are richly described with a plurality of accurate and
relevant attributes Partial

R1.1. (Meta)data are released with a clear and accessible data usage
license Yes

R1.2. (Meta)data are associated with detailed provenance Partial
R1.3. (Meta)data meet domain-relevant community standards Yes

Findability. The developed resources comply with F1 because each entity in the graph
database is assigned an application-generated identifier using neomodel utilities (UniqueI-
dProperty). Though this identifier is not globally unique, once the graph database is
exported in an RDF format, the identifier combined with the ontology URI makes the
data globally unique. Additionally, the developed ontology has a persistent URI which
is registered in the BioPortal repository. We also rely on previously defined identifiers,
such as the Digital Object Identifier (DOI), used to identify documents where a given
ML/DM algorithm is described. As for F2, the developed resources comply to a certain
extent. While metadata related to the annotator is stored, along with a time stamp, other
metadata can also be stored, based on their further potential usage. The metadata is

http://www.doi.org
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usually stored as node or relationship properties in the graph database, i.e, the DOI is a
property of the Document entity, and the annotation metadata is stored as properties of
the Annotation entity. Because of this, the metadata is explicitly linked with the data
they describe, complying with F3. To comply with the final Fairness criterium — F4, the
metadata and data must be registered in a searchable resource. This was ensured using
the Querying Interface in the web application, where a user can view and export all the
required information from the repository, as well as specify search constraints. A potential
improvement to increase flexibility would be to allow for the user to query the repository
using the repository query language (i.e., Cypher), however, this would mean that the user
would have to know how to formulate such queries.

Accessibility. Closely related to F4 is the A1 criterium. While the user can in principle
retrieve all the data in the repository, he cannot do so by merely specifying the identifier
of the data, in this case, the entity identifier. The reason for this is that by design there is
no Search feature, through which the user can specify an identifier and obtain results. Be-
cause of this, the resource does not explicitly comply with the A1 criterium. However, the
protocol is completely free and open-source, i.e., anyone with a computer and an internet
connection can access the complete repository. Hence, it complies with A 1.1. Moreover,
all of the technologies used to develop the application are free (Neo4j), and some are even
open-source (Django, React, neomodel). Since the design of the application is not user-
based, one does not need to log in every time one uses the application. However, a key
protocol for validating the quality of the annotation is the e-mail validation procedure de-
scribed in the previous chapter (A 1.2). The annotation metadata and (meta)data related
to an ML/DM algorithm are retained in the repository even if the ML/DM algorithm is
removed, providing compliance with A2.

Interoperability. For compliance with I1., it is critical to use (1) commonly used con-
trolled vocabularies, ontologies, thesauri, and a good data model (a well-defined framework
to describe and structure (meta)data). This was ensured through our reliance on the de-
veloped ontology — OntoDM-algorithms and the ontology-based annotation schema which
represented the database conceptual model. As for I2., we mainly rely on OntoDM, an
ontology that follows FAIR principles, along with the ontologies which are imported in On-
toDM. In I3., a qualified reference is a cross-reference that explains its intent. The goal is
to create as many meaningful links as possible between (meta)data resources to enrich the
contextual knowledge about the data, balanced against the time/energy involved in making
a good data model. In practice, this guideline has been followed in the database concep-
tual model, where each of the relationships between the entities in the graph database has
semantic meaning.

Reusability. R1. states that the (meta)data should be richly described, including infor-
mation such as the scope, limitations, conditions, versioning, etc. While the data itself is
to a certain extent richly described, there is always room for more explicit data, i.e., more
can be done in this regard. The metadata however is not sufficiently described, since only
the annotator information and the time stamp of the annotation are stored. Much more
can be done to adhere to this guideline. Since this work was aimed to facilitate science, all
the data is public and free to use so there is no data usage license associated with the data.
Clearly stating this fact helps us meet the R 1.1 criterium. The annotator information
ensures data provenance and accountability, however, the data in question is sensitive and
it was not designed to be published, so R 1.2 is met only partially. Finally, since there are
not many data repositories of this form, there are no specific domain-relevant community
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standards to comply with, as stated in R 1.3.

6.2 Assessment Using The OBO Foundry Principles

The OBO Foundry applies the key principles that ontologies should be open, orthogonal,
instantiated in a well-specified syntax, and designed to share a common space of identifiers
(Smith et al., 2007). Open means that the ontologies should be available for use without
any constraint or license and also receptive to modifications proposed by the community.
Orthogonal means that they ensure the additivity of annotations and comply with modular
development. The proper and well-specified syntax is expected to support algorithmic
processing and the common system of identifiers enables backward compatibility with
legacy annotations as the ontologies evolve.

We checked the compliance of OntoDM-algorithms to the OBO Foundry principles
which are presented in detail in Table 6.2. Mainly, we comply with most of the OBO
Foundry principles, barring two. Regarding P3, we still do not have a Permanent URL
(PURL), however, the ontology is available on BioPortal and it is linked to the ontology
file in a GitHub repository which has a URL that, unless we edit manually, will persist.
As for P6, definitions are provided for the top-level entities that are reused from other
ontologies, such as OntoDM-core, however, we have not yet added strict definitions for the
newly added entities. This is something we plan to do in future work.

6.3 Statistical Ontology Metrics of the OntoDM-algorithms
Ontology Extension

Here, we refer to the statistical ontology metrics from the Protégé software and the BioPor-
tal web service. This includes metrics such as the number of classes and individuals, the
number of properties, maximum depth, maximum and average number of children, classes
with a single child, classes with more than 25 children, and classes with no definition. The
values of the statistical ontology metrics for OntoDM-algorithms are presented in Table
6.3. Some of the metrics are merely statistical and are used to determine the size of the
ontology (i.e., number of properties, number of classes, etc.). Another part of the metrics
gives some indication of the quality of the ontology. For example, while technically there is
no problem in having only one subclass, (i.e., having multiple Classes with a single child)
this situation often indicates that either the hierarchy is under-specified, or the distinction
between the class and the subclass is not appropriate. Additionally, a class that has more
than 25 subclasses is a candidate for additional distinctions and categorization is needed.
In OntoDM-algorithms, there are no classes with more than 25 children, and the number
of classes with a single child is fairly low (only 13 out of 377 classes).
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Table 6.2: Assessment of OntoDM-algorithms’ compliance with the OBO Foundry princi-
ples.

# Principle Compliance

P1

Open — The ontology MUST be openly available to be used by all
without any constraint other than (a) its origin must be acknowledged
and (b) it is not to be altered and subsequently redistributed in altered
form under the original name or with the same identifiers.

Yes

P2 Common Format — The ontology is made available in a common
formal language in an accepted concrete syntax. Yes

P3 URI/Identifier Space — Each ontology MUST have a unique IRI in
the form of an OBO Foundry permanent URL (PURL). No

P4
Versioning — The ontology provider has documented procedures for
versioning the ontology, and different versions of ontology are marked,
stored, and officially released.

Yes

P5
Scope—The scope of an ontology is the extent of the domain or subject
matter it intends to cover. The ontology must have a specified scope and
content that adheres to that scope.

Yes

P6 Textual Definitions — The ontology has textual definitions for the
majority of its classes and top-level terms in particular. No

P7 Relations — Relations should be reused from the Relations Ontology
(RO). Yes

P8 Documentation— The owners of the ontology should strive to provide
as much documentation as possible. Yes

P9
Documented Plurality of Users — The ontology developers should
document that the ontology is used by multiple independent people or
organizations.

Yes

P10
Commitment To Collaboration — OBO Foundry ontology develop-
ment, in common with many other standards-oriented scientific activi-
ties, should be carried out collaboratively.

Yes

P11

Locus of Authority — There should be a person who is responsible for
communications between the community and the ontology developers,
for communicating with the Foundry on all Foundry-related matters,
for mediating discussions involving maintenance in the light of scientific
advance, and for ensuring that all user feedback is addressed.

Yes

P12

Naming Conventions — The names (primary labels) for elements
(classes, properties, etc.) in an ontology must be intelligible to scientists
and amenable to natural language processing. Primary labels should be
unique among OBO Library ontologies.

Yes

P13 Maintenance — The ontology needs to reflect changes in scientific con-
sensus to remain accurate over time. Yes

Table 6.3: Statistical metrics for the OntoDM-algorithms ontology extension.

Ontology Metric #
Classes 377
Individuals 0
Properties 1
Maximum depth 10
Maximum number of children 20
Average number of children 2
Classes with a single child 13
Classes with more than 25 children 0
Classes with no definition 178
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Chapter 7

Semi-automatic Population of a
Knowledge Base for ML/DM
Algorithms

In the previous chapters, we explored the top-down approach to semantic annotation of
ML/DM algorithms, where we used knowledge-driven (bottom-up) methods to manually
create the annotations. Due to the scaling advantages of semi-automatic annotation, ex-
periments were made by following a bottom-up approach by using data-driven methods.
The findings of these experiments are the topic of this chapter. The task is to explore
the quality of annotations produced by pre-trained language models, as well as to follow a
bottom-to-end approach to training a NER model from scratch. First, we will describe the
data resources that are used in the approach. Then, we will describe how the annotation
process was conducted, as well as the obtained findings. We will then provide a qualita-
tive evaluation of annotations produced by pre-trained language models. Finally, we will
describe the procedure for training a NER model using the manually annotated resources,
as well as present the results in a discussion.

Two automation use cases — knowledge base creation and knowledge base pop-
ulation. Data-driven methods for automatic semantic annotation can be used for two main
use cases. First, the ontology (or the annotation schema) can be created automatically.
This task can be modeled as a joint entity and relation extraction, where we could generate
multiple annotation schemas, which can be ranked and reviewed by experts. Solving the
task would most probably require large pre-trained language models, or fine-tuned on text
data in the domain of ML/DM, like for example theoretical books.

Second, the ontology/annotation schema can be created manually, while the annotation
process can be automated. If the schema is expressive enough to include relation types, the
task can be modeled identically as in the first use case. Otherwise, if the schema consists
of only entities, and potentially relations between entities, which designate hierarchy or
simply a connection indicator, the problem is most commonly modeled as a named entity
recognition task. Large language models would be utilized here as well, although trained,
or fine-tuned on text data like conference and journal paper abstracts or even full papers.
By following this approach, we can automatically create multiple semantic annotations of
ML/DM algorithms.

The second use case is more favorable, as it addresses a less complex problem, i.e.,
identifying entities instead of full networks of entities and relations. Additionally, there
are plenty more data resources that could be used to train the models for this task, making
the data acquisition and processing stage much easier. That is why for the scope of this
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thesis, we will follow the second approach.

7.1 Data Resources

Two data corpora were utilized: the entire SCIERC corpus of scientific paper abstracts
(Luan et al., 2018), and a corpus of scientific paper abstracts published in the Arxiv
repository. The SCIERC corpus will be used to train a NER model from scratch, while
the Arxiv corpus will be used to experiment with the annotation process and qualitatively
evaluate pre-trained language models.

To prepare the Arxiv corpus for the annotation process we needed to obtain a small
random sample of 50 paper abstracts, which we would further manually annotate by label-
ing the entities of interest. We constrain the sampling space to only the Machine Learning
category, a sub-category of the Computer Science category. The annotation schema is a
simplified version of the SCIERC annotation schema. It consists of three main entities:
Method (i.e., Algorithm, Model), Task (i.e., Application, Problem), and Resource (i.e.,
Data, Corpus, Dataset). The idea was that the annotations (if sufficient in quantity)
would be then used to train a neural network model which would optimally generalize well
and recognize entities in unseen paper abstracts.

7.2 Annotation Process

The annotation process consisted of manually reading paper abstracts and selecting the
named entities which occur in the text. This can be carried out either using text annotation
tools such as UBIAI, or Prodigy, or simply with a text editor. The advantage of using
specialized tools is that they support exporting the annotations in common formats such
as spacy, IOB, CSV, etc. (Ramshaw & Marcus, 1999). However, the tools can usually be
accessed only through a paid subscription, which was not in the scope of this research.

Even though there were only three entities, the annotation process turned out to be
extremely difficult. This was largely because annotation of scientific text requires domain
expertise which makes annotation costly with respect to time and effort. Since we only
had a single annotator at our disposal, we were only able to produce 50 annotated paper
abstracts, which is only 10% of the SCIERC corpus. Additionally, inter-annotator agree-
ment, a key metric to assess the quality of the annotations, could not be measured and
analyzed. Despite the modest size of the annotated corpus, we were able to draw several
notable conclusions which could in turn serve other researchers working on the topic.

The interchangeable use of Task, Problem, and Application. The task entity types
as defined in OntoDM-core ontology are rarely used in written text, apart from the leaf
entities like binary classification task or regression task. In reality, the term task is synony-
mous with the term problem, while the term application represents the setting in which the
algorithm is utilized. However, syntactically these three terms are phrased in a very similar
way, for example ’this method was developed for / to address [task/problem/application]’.
Instances include ’representation learning’, ’pose identification’, ’real estate appraisal’, etc.
Due to this ambiguity and the simple annotation schema, we label all the entities belonging
to these vaguely (dis)similar groups, with the Task entity.

Methods are rarely named entities. Most machine learning practitioners do not usu-
ally name the algorithms they invent. More often the novel aspect of a research paper
involves a small contribution in the form of altering or adding some method to the proce-
dure. Instead, algorithms are usually described with more wordy sentences, exposing their
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inner workings, like "learnable data augmentation method that is jointly learned with the
embeddings by leveraging the inherent signal encoded in the graph".

High variability in entity word length. Start and end positions of the entity terms,
are hard to determine, i.e., (highly complex) sequential decision making, or ’predicting the
structure of a protein from its sequence’. Similarly, as the SCIERC annotators, we perform
a greedy annotation for spans and always prefer the longer span whenever ambiguity occurs.

7.3 Pre-trained Language Models for NER

The large variants of the spaCy and sciSpacy English language models were used to evaluate
the quality of pre-trained language models for the NER task in the domain of ML/DM.
Note that these models are not fine-tuned using domain data, rather they are used directly
via the corresponding libraries. If the models proved to recognize entities effectively, judged
by virtue of observance and qualitative analysis, then there would be no need for training
new models from scratch. It was however somewhat expected that the results would not
be ideal. This was more obvious with the spaCy language model since it was trained on
general data, with generic entity labels, which were of no use to us, such as Organization,
Person, Location, etc.

The prominent usage of ML/DM methods in the biomedical domain gave sciSpacy
promise for improved results. Indeed, it was able to recognize a large number of entities,
albeit much more than was needed for the specific use case. But, because it was trained on
data from a different domain, with no fine-tuning, the results were acceptable. There were
several issues with the model: the model does not distinguish between entity types; issues
with entity span choice (i.e., instead of being annotated as one entity, the term ’graph
neural networks’ was annotated as having two entities ’graph’ and ’neural networks’); the
model recognizes many terms to be entities (i.e., ’limitation’, ’current’, ’prediction’, etc.).
The annotations produced by each of the models, as well as the one produced manually
by us, can be seen in Figure 7.1.

7.4 Training a NER Model From Scratch

Since the annotations produced by the language models were not of sufficient quality,
we explored the possibility of training a NER model from scratch using the SCIERC
corpus. Initially, we wanted to train a model using the annotations that we produced,
however, because the annotation process proved to be a very time-consuming endeavor,
we ended up using the much bigger SCIERC corpus (Luan et al., 2018). The model
architecture consisted of an Embedding layer, a Transformer block layer, and two pairs
of Fully Connected and Dropout Layers, totaling 133,736 trainable (model) parameters.
The Transformer block layer includes a Multihead Attention Layer, followed by a Fully
Connected Layer, Normalization, and Dropout Layers. The Multihead Attention Layer
allows the model to jointly attend to information from different representation subspaces
(Vaswani et al., 2017).

To train the model we used the sparse categorical cross entropy loss function which
is commonly used for multi-class classification problems because it outputs a probability
distribution over the class labels. The SCIERC corpus was split into 90% training data
(450 paper abstracts) and 10% validation data (50 paper abstracts). We used the Adam
optimization algorithm to train the model over 100 epochs. The results obtained can be
seen in Table 7.1.
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Table 7.1: The performance of the trained NER model for each entity type.

Three key metrics are covered, as well as the support for each entity type.
Precision Recall F-Score Support

Overall 42.02% 42.22% 42.12
Material 92.56% 78.34% 84.86 336
Method 17.51% 14.73% 16.00 457
Task 35.31% 43.06% 38.80 861

7.5 Results and Potential Improvements

As this study was an experimental one, plenty of methods were briefly explored, while
no conclusive result is presented. There is enormous potential for improving every as-
pect of the methodology, from the annotation process (bigger corpora, more annotators,
larger annotation schema) to the model development (fine-tuning pre-trained models, ex-
perimenting with different model architectures, etc.). However, it must be noted that this
task is an extremely difficult one. Essentially, there is not enough in-depth information
in paper abstracts to create a detailed ML/DM algorithm annotation. Perhaps, there is
sufficient information to populate higher-level concepts such as the ones we selected, but
essentially specific algorithm information, such as its computational complexity, parame-
ters, and other similar entities from our ontology-based annotation schema, is rarely found
in a paper abstract. Instead, this information can probably (but not always) be found in
the full paper which in turn introduces a new level of complexity with the need of utilizing
a paper parsing procedure. The annotation process, which is subjected to the limitations
we described previously due to the complexity and the ambiguity of the ML/DM domain,
suggests that perhaps this type of annotation has to be done manually.
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Figure 7.1: Named entity annotations produced using the spaCy and scispaCy libraries,
as well as through manual annotation.
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Chapter 8

Conclusions

8.1 Summary

The main goal of this thesis was to improve the semantic annotation of DM/ML algorithms.
The increasing need for using DM/ML algorithms in our everyday life and consequently
the increase in research in these domains led to the need for better knowledge represen-
tation in these domains. At the beginning of the thesis, we described the motivation for
our work, and we gave an overview of the state of the art in knowledge representation in
the domains of DM/ML. While the related work proved to be a significant foundation for
our work, there was a need for more explicit knowledge representation of DM/ML algo-
rithms. We addressed this need by developing the OntoDM-algorithms ontology extension
which includes entities needed to characterize DM/ML algorithms including the computa-
tional problem taxonomy, the model and algorithm parameter entities, the computational
complexity entity, the assumption specification, the ensemble algorithm taxonomy, and
the sampling entity. Furthermore, an ontology-based annotation schema was designed to
enable semantic annotation of DM/ML algorithms.

The annotation schema provided a basis for the conceptual model of the web-based
application for semantic annotation and querying of DM/ML algorithms. We designed
and implemented the application, using mainly free and open-source technologies, such as
Django, React, and Neo4j. The application itself comprises two distinct functional parts, an
annotation tool, and a querying tool. With the annotation tool, the user can input relevant
information about any DM/ML algorithm through a simple, user-friendly interface. Once
the user submits the annotation and validates their personal details, the annotation is
validated and stored in a Neo4j graph database, which allows for extensive semantics, such
as inference, export in semantic formats, etc. Meanwhile, using the querying tool, the user
can query the database for specific DM/ML algorithms, using several designated filters.
Additionally, the results of the queries can be exported in several formats.

The application was used to annotate a set of different DM/ML algorithms, evaluate
the capability of the ontology to annotate representative data, as well as to test that
the application is working as expected. This resulted in a small repository of DM/ML
algorithms that can serve as a guide to future users of the application. What’s more, the
annotation process was discussed in detail, which paved the way for future work in this
regard. We then evaluated the developed resources, following the FAIR Guiding Principles
for scientific data management and stewardship.

Finally, we followed an approach for a semi-automatic population of a knowledge base
for DM/ML algorithms. On one hand, we evaluated the quality of the annotations pro-
duced by pre-trained language models, while on another, we devised a methodology to
train a NER model from scratch. To do so, we produced a small corpus of 50 annotated
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paper abstracts, as well as the findings from the annotation process and the methods used.
We concluded that this task proved to be very difficult largely due to the nature of the
data and the complexity of the domain, however much can be improved in that regard.

8.2 Contributions of the Thesis

This thesis contributes to the field of knowledge representation in the domains of DM/ML.
More specifically, the contributions of the thesis are listed in the remainder of this section.

• SR1. An ontology schema extension of the OntoDM ontology, named OntoDM-
algorithms for improved knowledge representation with respect to domain algorithms.

We designed OntoDM-algorithms, an ontology extension focusing on improving the
representation of DM/ML algorithms. The extension includes main terms from
OntoDM-core, such as algorithm, dataset, task, and generalization, and novel en-
tities such as the computational problem taxonomy, the model and algorithm pa-
rameter entities, the computational complexity entity, the assumption specification,
the ensemble algorithm taxonomy, and the sampling entity.

• SR2. A web-based tool for manual semantic annotation of DM/ML algorithms.

We designed and implemented a web-based application for manual semantic anno-
tation, storage, and querying of DM/ML algorithms. The application enables users
to contribute to an open repository of DM/ML algorithms. Additionally, the users
can retrieve relevant information about DM/ML algorithms that are stored in the
database, helping them to find an adequate algorithm for a given scenario.

• SR3. A populated domain knowledge base of algorithms.

Using the developed application for manual semantic annotation we annotated a set
of different DM/ML algorithms. This repository is publicly available through the
application and is set to be used by the users to acquire information about DM/ML
algorithms, as well as to serve as a guide for the manual annotation process.

• SR4. A pilot study that demonstrates the use of a semi-automatic approach to create
and populate a domain knowledge base.

We explored a methodology for a bottom-up approach for populating a database of
DM/ML algorithms. This methodology included the evaluation of the capability of
pre-trained language models to automatically annotate paper abstracts describing
DM/ML algorithms. Moreover, text corpora containing DM/ML paper abstracts
were used to train and evaluate a language model from scratch. Although the results
were not exemplary, we used the lessons learned from this approach to formulate
open questions that could be explored in the future.

8.3 Future Work

This thesis touched upon many difficult tasks. The contributions display the importance
of this work and the amount of effort put into the thesis. However, every research begets
potential improvements and undoubtedly opens up many new research questions. We will
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now briefly present the many ways in which we can improve what has been done so far.

Extending the ontology. While several novel entities were added to the ontology,
the design was meant to be on a general level, and not include specifics of the inner work-
ings of each of the DM/ML algorithms (i.e., tree-based, deep learning models, etc.). In the
future, we can expand the ontology to better represent each of these algorithm groups. We
can also increase the number of relationships in the ontology, by defining the relationship
between, for example, the computational complexity and the size of the input dataset.
Moreover, we can extend the Computational Problem taxonomy to define each problem
type at a more granular level.

Improving the web application. Here, more improvements can be done in terms
of the UI, by providing examples for each of the input fields and invaluable references, to
enable a better user experience and ultimately annotations of higher quality. Additionally,
we can define a larger set of validation procedures to ensure annotation correctness, i.e.,
minimize the number of empty fields, and check for logic consistency (e.g., the dataset and
task correspondence). Finally, we can also implement an RDF/OWL export of the query
results in the application.

Improving semantics and inference. The neosemantics module of Neo4j allows
for extensive semantics capabilities. One of the modules that can be used is the inference
module. For example, we can use the inferred version of the ontology to extend the annota-
tion schema, as well as run inference on demand in the querying interface, and retrieve not
only explicit but also implicit knowledge. For example, if we know that a given DM/ML
algorithm solves a binary classification task, while the type of the dataset is not available
in the annotation, if we run a query to retrieve all the algorithms that have a binary clas-
sification dataset as input, we can implicitly reason using the task-dataset correspondence
that we can retrieve also the algorithm that solves the corresponding task.

Improving the semi-automatic annotation approach. This approach was not
explored thoroughly, however many lessons were learned and potential venues for improve-
ment were identified. Namely, every part of the approach can be further improved, starting
from the annotation process to the data selection, and the model selection and training.
First, the annotation process can be expanded to include several annotators which would
enable the evaluation of inter-annotator agreement, and ultimately more consistent an-
notations. Next, large pre-trained language models can be fine-tuned on the annotated
data. These can be further evaluated in depth, both qualitatively and quantitatively. Ad-
ditionally, many model architectures can be explored and tuned to arrive at a satisfactory
performance quality.
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