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Abstract

The thesis addresses a novel representation learning framework, combining neural and sym-
bolic text representations, and demonstrates its utility for tackling diverse natural language
processing problems. The proposed approach, avoiding the deficiencies of purely symbolic
and purely neural methods, can be applied for the generation of efficient text represen-
tations. Its usefulness is demonstrated on three use cases: author profiling, readability
detection and keyword extraction.

First, we focus on the problem of author profiling and argue that semantic modelling
of existing state-of-the-art approaches, which still in most cases rely on extensive feature
engineering, could be improved by employing two strategies. The first one involves adding
symbolic semantic features based on word taxonomies to bag-of-n-grams features. This
approach shows good results when tested on a number of author profiling tasks, that is,
predicting the gender, age and personality of the author of the text. The second strategy
consists of combining the bag-of-n-grams features with neural features derived from the
convolutional neural network and is tested on the task of language variety detection. While
both approaches manage to outperform state-of-the-art methods, we argue that the second
hybrid neuro-symbolic strategy is preferred since it does not require external resources and
is therefore easier to employ on less resourced languages other than English.

We next shift our focus to the problem of readability prediction, where we propose
a novel Ranked Sentence Readability Score, in which statistics derived from the neural
language model are combined with shallow symbolic readability indicators that consider
simple text statistics. The main novelty of the approach is the use of a neural language
model in an unsupervised way, as a standalone unsupervised readability predictor. We
argue this is possible since neural language models tend to capture much more information
than traditional n-gram models and also model long-term dependencies. Through language
model statistics, the proposed readability formula also considers background knowledge and
discourse cohesion and therefore avoids the reductionism of traditional readability formulas.
And since neural language models can be trained, the formula can also be adapted to a
specific language and domain. We show that this results in a robust performance of the
formula, which offers good correlation with gold standard readability scores across different
genres and languages.

The final task we tackle is keyword extraction. We propose a transfer learning tech-
nique, in which a transformer-based keyword tagger is first pretrained as a language model
on a large corpus and then fine-tuned on a small-sized corpus with manually labelled key-
words in order to decrease the amount of required labelled data for successful training of
the model. We propose several modifications to the transformer architecture in order to
adapt it to task at hand and improve performance. We show that the proposed model
offers performance comparable to the state-of-the-art neural models while requiring only a
fraction of manually labelled data. Finally, we combine the neural model with a symbolic
unsupervised TF-IDF-based keyword detector in order to improve the recall and make the
system appropriate for usage as a recommendation system in the media house environment.
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Povzetek

Disertacija predstavi novo strategijo kombiniranja nevronskih in simbolnih reprezentacij, s
katero želimo preseči omejitve pristopov, ki temeljijo le na eni vrsti reprezentacij. S pomo-
čjo predlaganega pristopa nam uspe razviti množico novih metod in tekstovnih reprezen-
tacij za reševanje nalog s področja procesiranja naravnega jezika. Uporabnost strategije
je prikazana na treh primerih, profiliranju avtorjev, detekciji berljivosti teksta in luščenju
ključnih besed.

Najprej se posvetimo problemu profiliranja avtorjev besedil in postavimo tezo, da se da
obstoječe pristope, ki v veliki meri še vedno temeljijo na ročni izdelavi značilk, izboljšati s
pomočjo dveh metod. Prva metoda vključuje dodajanje simbolnih značilk, ki temeljijo na
besednih taksonomijah, tradicionalnim značilkam, ki temeljijo na pristopu vreče n-gramov.
Pristop je preizkušen na treh nalogah profiliranja avtorjev (določanje spola, starosti in
osebnosti avtorjev besedila) in nudi dobre rezultate. Druga metoda temelji na kombiniranju
značilk, ki temeljijo na pristopu vreče n-gramov, z nevronskimi značilkami, zgeneriranimi s
pomočjo konvolucijske nevronske mreže, in je preizkušena na nalogi zaznavanja jezikovnih
različic in dialektov. Medtem ko obe metodi izboljšata modeliranje semantike in nudita
boljše rezultate kot ostale najsodobnejše metode, se v nadaljevanju disertacije osredotočimo
le na drugo, saj za razliko od prve ne zahteva zunanjih jezikovnih virov in jo je zato lažje
uporabiti v jezikih z manj jezikovnimi viri.

Nato se osredotočimo na problem določanja berljivosti teksta, pri čemer predlagamo
novo mero z imenom Ranked Sentence Readability Score, v kateri so statistične značilke,
pridobljene s pomočjo nevronskega jezikovnega modela, združene s plitkimi simbolnimi
kazalniki berljivosti. Glavna novost pristopa je uporaba nevronskega jezikovnega modela
na nenadzorovan način. Predlagana formula za berljivost s pomočjo statistik, ki jih pridobi
iz jezikovnega modela, upošteva tudi semantiko in kohezivnost teksta ter se tako izogne
redukcionizmu tradicionalnih formul za določanje berljivosti. Z eksperimenti pokažemo, da
formula nudi dobre rezultate na množici korpusov, ki vsebujejo tekste iz različnih jezikov in
žanrov. Dodatna prednost pristopa je, da je predlagano mero berljivosti mogoče prilagoditi
posameznim jezikom in žanrom, saj je mogoče nevronske jezikovne modele natrenirati na
jezikovno in žanrsko specifičnih besedilih.

Zadnja predstavljena naloga je luščenje ključnih besed. Ker želimo zmanjšati količino
podatkov, potrebnih za treniranje, nevronski model, ki temelji na arhitekturi transformer,
natreniramo s pomočjo tehnike transfernega učenja. Pri tej tehniki se sistem najprej tre-
nira na velikem korpusu na nenadzorovan način, kot jezikovni model, nato pa šele kot
klasifikator na majhnem korpusu z ročno označenimi ključnimi besedami. Predlagamo
tudi več arhitekturnih sprememb za prilagoditev modela specifični nalogi luščenja ključnih
besed, ki izboljšajo njegovo delovanje. S predlaganim pristopom dosežemo rezultate, ki
so primerljivi z najsodobnejšimi nevronskimi metodami, a hkrati potrebujemo veliko manj
ročno označenih podatkov. Na koncu nevronski model združimo s simbolnim modelom, ki
ključne besede išče s pomočjo statistike TF-IDF. Na ta način izboljšamo priklic sistema in
ga prilagodimo za uporabo kot priporočilni sistem v medijskem okolju.
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Chapter 1

Introduction

In the introductory chapter, we first describe the problem addressed in the thesis (Sec-
tion 1.1) and propose the goals we aim to achieve (Section 1.2). We present the initial
hypotheses on which the thesis is based in Section 1.3. Finally, we conclude by explaining
the scientific contributions the thesis offers in Section 1.4 and by presenting the structural
overview in Section 1.5.

1.1 Background and Problem Definition

Recently, deep neural networks (Goodfellow et al., 2016) have shown an impressive per-
formance on many language-related tasks. In fact, they have achieved the state-of-the-art
performance in most semantic tasks where sufficient amounts of data were available (Col-
lobert et al., 2011a; X. Zhang et al., 2015). These tasks include diverse problems, such
as text classification, sequence labeling, language modelling and text generation. For ex-
ample, Mikolov et al. (2011) have shown that neural language models outperform n-gram
language models by a high margin on large and also relatively small (less than 1 million
tokens) data sets. When it comes to sequence labeling tasks of named entity recognition
(NER) and part of speech tagging (POS), all state-of-the-art approaches leverage some
type of neural architecture, ranging from convolutional neural networks (CNN) used in
(Baevski et al., 2019) to recurrent neural networks (RNN) used in (Bohnet et al., 2018),
and transformers used in (Heinzerling & Strube, 2019). Similar applies when it comes to a
set of language understanding tasks known as the General Language Understanding Eval-
uation (GLUE) (Wang et al., 2019) benchmark, which includes problems like sentiment
analysis, question answering and textual entailment: 30 best ranked systems are neural.1

This boost in performance can be to a large extent explained by the fact that neu-
ral architectures have become very successful at grasping the semantics of the text and
can model semantic relations much more efficiently than algorithms based on simpler
word frequency statistics, such as term frequency-inverse document frequency (TF-IDF)
(Chowdhury, 2010). The main advancement enabling this superiority of neural nets is
due to embeddings (Mikolov et al., 2013), which became a prevalent way to build repre-
sentations for texts. Text embeddings use a large corpus of documents to extract vector
representations for words, sentences, and documents. The first neural word embeddings
like Word2vec (Mikolov et al., 2013) produced one vector for each word, irrespective of its
polysemy. These so-called static embeddings have been further developed and the most
popular static embeddings currently in use, besides Word2Vec, are GloVe (Global vectors
for word representation) (Pennington et al., 2014) and FastText (Bojanowski et al., 2017).

1https://gluebenchmark.com/leaderboard, last accessed 24.8.2021

https://gluebenchmark.com/leaderboard
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Recent developments, like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019),
take a context of a sentence into account and produce different word vectors for different
contexts of each word, i.e. the so-called contextual embeddings. Another novelty of these
approaches is the employment of the unsupervised language model pretraining, which has
recently become a well-established procedure in the field of natural language processing
(NLP). The procedure relies on pretraining of the model as a masked or autoregressive
language model on very large unlabeled textual resources and the transfer of knowledge
obtained by the language model onto a specific downstream task by fine-tuning the model.

On the other hand, neural approaches also have some deficiencies. First, despite lan-
guage model pretraining, they can be resource demanding and require vast amounts of
labeled data for successful training, which means that their usage in domains and lan-
guages with scarce manually labeled resources is limited. The lack of data affects almost
all NLP tasks, from text generation, language modeling to several text classification tasks.
For example, the study by Zidarn (2020), in the scope of which the first abstractive sum-
marizer for Slovenian was created, reports that there was not enough training data avail-
able for the system to offer performance comparable to systems trained on English. The
study by Ulčar and Robnik-Šikonja (2020b) that covers the development of two trilingual
transformer-based language models, one for Croatian, Slovenian, and English, and the
other for Finnish, Estonian, and English, claims that one of the reasons for not opting
to develop monolingual models instead was the lack of data. The possible downside of
training the models on several languages to compensate for the lack of data is the so-called
curse of multilinguality (Conneau et al., 2020), i.e. a trade-off between the number of
languages the model supports and the overall decrease in performance on monolingual and
cross-lingual benchmarks. Finally, the lack of data is not problematic just for some less
resourced languages but also for some less resourced domains. An example of this would
be some medical domains: to train a classifier to be able to distinguish between tran-
scripts of patient with dementia and patients from the control group, very few datasets
are available and these datasets are generally too small to train neural models that would
outperform more traditional models such as random forest, SVM or logistic regression
(Martinc, Haider, et al., 2021). To conclude, development of neural models that would
require less resources would benefit a large set of diverse NLP tasks.

Another problem posed by neural networks is interpretability and making the neural
models more interpretable would once again benefit a large set of diverse tasks. While
the elimination of work required for manual feature engineering is generally a desirable
quality of neural networks, on the downside this tends to decrease the interpretability and
explainability, which are important for some applications, e.g. for medical and health care
applications (Vellido, 2020), and for automatic determination of text readability employed
in education (Sheehan et al., 2014), where the users of such technology (educators, teachers,
researchers, etc.) need to understand what causes one text to be judged as more readable
than the other and according to which dimensions. While several techniques that improve
the overall interpretability of neural networks have been proposed (e.g., SHAP (Lundberg &
Lee, 2017), the analysis and visualization of the attention mechanism (Vaswani et al., 2017),
etc.), the interpretability of neural networks is still not comparable to the interpretability
of approaches based on symbolic feature engineering.

The research described in this thesis went on for several years and in this time we wit-
nessed a radical shift towards the usage of neural networks. At the beginning of our work,
there were still some fields of NLP research, where neural networks were scarcely used due
to their somewhat uncompetitive performance or other limitations. One of them is author
profiling (AP), which deals with prediction of demographics for a person based on the text
she or he produced. Tasks such as age, gender and language variety prediction (automatic
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distinction between similar dialects or languages) are becoming increasingly popular, in
part because of the marketing potential of this research. AP research communities are
centered around a series of scientific events and shared tasks on digital text forensics,
the two most popular being the evaluation campaign VarDial (Varieties and Dialects)2

(Zampieri et al., 2014a), which started in 2014 and is focused on tasks related to the study
of linguistic variation, and an event called PAN (Uncovering Plagiarism, Authorship, and
Social Software Misuse) (http://pan.webis.de/), which first took place in 2011, and was
followed by a series of shared tasks organized since 2013 (Rangel et al., 2013a), with the
focus on predicting user’s age and gender.

The best approaches to AP still use traditional classifiers, such as Support Vector
Machines (SVM), and are based on extensive feature engineering (Rangel et al., 2017a).
This fact can be clearly seen if we look at the architectures used by the teams winning the
AP shared tasks in recent years, more specifically the winning approaches to the VarDial
DSL (discriminating between similar languages) shared tasks and PAN AP (gender, age,
personality and language variety prediction) tasks between 2014 and 2017. In fact, six
out of eight winning teams used one or an ensemble of SVM classifiers and bag-of-n-
grams (BON) features for classification (two other winning teams used a LIBLINEAR
classifier3 and BON features (López-Monroy et al., 2014)), and when it comes to the task
of discriminating between similar languages (all VarDial DSL tasks and the PAN 2017 AP
task), SVM classifiers with BON features have been used by all the winning teams (Martinc
& Pollak, 2019). The best ranked system that employed a deep learning architecture until
2017 was developed by Miura et al. (2017a) and ranked fourth in the PAN 2017 AP shared
task. Nevertheless, this is changing and 2019 VarDial competition (Zampieri et al., 2019)
was the first in which a neural model won. We should, however, mention that four out
of five best ranked systems in the competition were based on SVMs and extensive feature
engineering. When it comes to the 2019 and 2020 PAN events (Rangel et al., 2020; Rangel
& Rosso, 2019), all the best ranked approaches still employed manually crafted feature sets
and SVM, logistic regression or random forest classifiers.

Another NLP field where neural architectures are not yet widely adopted is automatic
text readability prediction. Readability is concerned with the relation between a given text
and the cognitive load of a reader to comprehend it. This complex relation is influenced by
many factors, such as a degree of lexical and syntactic sophistication, discourse cohesion,
and background knowledge (Crossley et al., 2017). Traditional readability formulas focused
only on lexical and syntactic features expressed with statistical measurements, such as
word length, sentence length, and word difficulty (Davison & Kantor, 1982). While these
approaches have been criticized because of their reductionism and weak statistical bases
(Crossley et al., 2017), they are still widely used since no alternative for unsupervised
readability prediction has yet been proposed.

When it comes to supervised readability estimation, recently some neural approaches
towards readability prediction have been proposed (Filighera et al., 2019; Nadeem & Os-
tendorf, 2018). These types of studies are relatively scarce and state-of-the-art approaches
towards supervised readability prediction still employ a large set of manually engineered
features (Xia et al., 2016). Furthermore, language model features designed to measure lex-
ical and semantic properties of text, which can be found in many of the readability studies
(Petersen & Ostendorf, 2009; Schwarm & Ostendorf, 2005; Vajjala & Meurers, 2012; Xia
et al., 2016), are generated with traditional n-gram language models, even though language
modelling has been drastically improved with the introduction of neural language models

2http://corporavm.uni-koeln.de/vardial/sharedtask.html
3It is unclear from the paper by López-Monroy et al. (2014) whether SVM or logistic regression from

the LIBLINEAR library was used.

http://corporavm.uni-koeln.de/vardial/sharedtask.html
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(Mikolov et al., 2011).
For the third prominent NLP task, sequence labeling, neural networks have been widely

adopted due to large performance increases offered by these systems. The achieved differ-
ences in the performance are in most cases attributed to a richer contextual information
available to neural networks, which are not limited to a usually much smaller contextual
window (of up to five previous words) as is the case for previous systems modelling se-
quential information (Mikolov et al., 2011). The problem arises when a neural system
for sequence labeling needs to be employed on the less resourced language or task for
which large manually labeled datasets, which are generally needed for successful training
of neural systems, are not available. While for the most popular sequence labeling tasks,
such as NER and POS tagging, sufficient language resources generally exist even for the
under-resourced languages, some less prominent tasks are not well covered. An example
is keyword identification, which deals with automatic extraction of words that represent
crucial semantic aspects of the text and summarize its content. The supervised neural al-
gorithms (Meng et al., 2019; Yuan et al., 2020) achieve excellent performance on this task
if training conditions are satisfactory, that is, if vast amounts of language and domain-
specific data for training are available. In practice this means that most of these neural
systems cannot be used in domains and languages that lack (manually) labeled resources
of sufficient size.

For these languages and domains, novel unsupervised approaches, such as RaKUn (Škrlj
et al., 2019) and YAKE (Campos et al., 2020) can be used. They generally work fairly
well and have advantages over supervised approaches, as they are language and genre
independent, do not require any training, and are computationally undemanding. On the
other hand, they also have a couple of crucial deficiencies. First, TF-IDF and graph-based
features, such as PageRank, used by these systems to detect the importance of each word in
the document, are based only on simple statistics like word occurrence and co-occurrence,
and are therefore unable to grasp the entire semantic information of the text. Second, since
these systems cannot be trained, they cannot be adapted to the specifics of the syntax,
semantics, content, genre, and keyword assignment regime of a specific text (e.g., a variance
in a number of keywords). These deficiencies result in a much worse performance when
compared to the state-of-the-art neural supervised approaches, which have direct access
to the gold standard keyword set for each text during the training phase, enabling more
efficient adaptation.

1.2 Purpose and Goals of the Dissertation

As mentioned above, traditional statistical approaches towards NLP do not model semantic
relations well, which makes them uncompetitive on some NLP tasks. Neural approaches
tend to perform better but only when enough training data is available. One solution to
improve the performance of traditional approaches is to include symbolic semantic features
based on word taxonomies, for which we have shown before (Škrlj et al., 2021) that they
may improve the performance and robustness of the classifiers. Another solution, which
is the main goal of this dissertation, is to demonstrate that it is possible to build hybrid
systems leveraging both neural and symbolic text representations.

Before diving further into the proposed strategy of combining symbolic and neural
representations, to avoid confusion, we should clearly define what we mean by symbolic
representations. We should warn the reader that this term is used, in contrast to some
related work, to encompass a large set of representations that a.) work on the level of
symbols representing entities or concepts understandable to humans, and b.) are eas-
ily interpretable by providing full transparency into how they work; therefore avoiding
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the “black box” problem endemic to neural networks. In some cases, the representations
are indeed what the related literature would anonymously define as symbolic (e.g., the
taxonomy-based features used in the tax2vec methodology (see section 2.4). Nevertheless,
referring to some representations we employ in this thesis as symbolic might be confusing
to some readers. An example of these would be TF-IDF weighted word/ngram features,
for which one could argue that they do not represent higher-level abstract concepts (e.g.
logic-based representations and rule-based reasoning (Susskind et al., 2021)). We opted
to consider these features as symbolic since they directly relate to human understandable
concepts and entities (represented by words), and since the bag-of-words/ngrams matrix
is interpretable (i.e. there is a clear formula that explains what each weight for a specific
word is suppose to mean)4. On the other hand, we consider word embedding represen-
tations, even though they also directly relate to words, as nonsymbolic due to limited
interpretability, i.e. it is not clear what each numerical value (dimension) inside the vector
is suppose to represent. On the other hand, if these vector dimensions would be clearly
defined, we would also consider word embeddings symbolic. While we understand that
this somewhat non-conventional use of the concept “symbolic” might be a source of some
confusion, we opted to use it anyway due to lack of a more appropriate term, and since
there exist a fast growing corpus of work on neuro-symbolic approaches in NLP (Q. Chen
et al., 2021; Ferrone & Zanzotto, 2020; Ma et al., 2019; Škvorc et al., 2022), in which we
wish to position this thesis.

By achieving synergy between the neural and symbolic representations, we aim to
alleviate the aforementioned deficiencies of neural and symbolic approaches and improve
the performance of the methods by improving semantic modelling. Where feasible, we
also aim at improving the overall transferability and adaptability of the approaches, by
either proposing techniques that can be adapted to specific languages and domains through
training, or by developing models that require less data for successful training.

To achieve the above general goals, we experiment with several types of combinations
between neural and symbolic text representations, which can be roughly divided into dis-
tinct types according to two criteria:

• Fusion time: The related literature usually distinguishes between early and late
fusion (Ebersbach et al., 2017; Li, 2018). The early fusion refers to the combination
of representations on the feature level, that is, before applying a prediction model. In
this case, distinct features are in most cases simply concatenated and the combined
representation is fed to the model responsible for the final predictions. On the other
hand, late fusion (or decision-level fusion) refers to the type of combination, where
prediction scores of at least two prediction models, in our case relying on distinct
presentations, are combined to derive a final prediction. The most popular procedures
for combining presentations at the late stage are majority voting, averaging, or taking
the prediction with the highest probability (Ebersbach et al., 2017).

• Fusion type: While we were unable to find an exhaustive typology of fusion types
in the related work, we distinguish between a simple and complex fusion. With the
simple fusion we refer to straight-forward ways of combining the symbolic and neural
representations, such as concatenation and averaging. Complex fusion indicates a
somewhat more sophisticated procedure employed to fuse the representations. This
is usually necessary when representations to be fused appear in different formats,
which renders the simple fusion unfeasible. When the complex fusion is used, it is

4Note that this is in line with some of the related work that considers probabilistic statistical methods
as symbolic, e.g. the study by De Raedt et al. (2019).
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harder to disentangle the influences of distinct symbolic and neural representations
on the overall performance of the model.

We experiment with different combination strategies according to the applicability of
a specific fusion type to a specific use case.

The dissertation focuses on three areas of NLP research:

• Author profiling, with the focus on language variety and gender classification,

• Readability prediction, with the focus on a novel algorithm for unsupervised read-
ability prediction,

• Keyword detection, with the focus on settings with small amounts of training data.

For these three use cases, the dissertation aims to achieve the following goals:

• G1 : In the field of AP, the goal is to improve semantic modeling by employing two
techniques. The first strategy involves inclusion of word taxonomies as background
knowledge and the second strategy relies on a hybrid neuro-symbolic architecture,
which combines sophisticated feature engineering techniques used in traditional ap-
proaches to text classification with the newer neural automatic feature construction.

• G2 : For the task of readability prediction, the goal is to propose a new readability
formula that offers state-of-the-art performance and can be easily adapted to spe-
cific domains and languages. The strategy involves a novel approach to unsupervised
readability measurement based both on shallow readability indicators and on deep
neural network-based language models that takes into account background knowl-
edge and discourse cohesion, two readability indicators missing from the traditional
readability formulas.

• G3 : For the task of keyword detection, the goal is to develop a novel keyword extrac-
tor capable of overcoming the deficiencies of current neural supervised and symbolic
unsupervised approaches. More specifically, the goal is to build a keyword extractor
that requires only a fraction of manually labeled data required by current state-of-
the-art neural approaches, yet is capable of achieving performance comparable to
state-of-the-art. Another goal is to improve the recall of the neural keyword extrac-
tion system by combining it with an unsupervised TF-IDF-based symbolic model.

1.3 Hypotheses

The general hypothesis (Hg) that we try to confirm or deny in this research is the following:
Hg. Combining different representations, which carry information about distinct aspects

of the text, and establishing synergy between these representations, can lead to a boost in
the performance of a NLP system.

This general hypothesis can nevertheless be deconstructed into several specific hypothe-
ses according to each specific use case that we deal with.

First, word frequency statistics, such as TF-IDF, employed in traditional NLP ap-
proaches cannot model semantic relations as effectively as neural networks. This obser-
vation opens several options for the improvement of semantic modelling. The first option
is the improvement of symbolic semantic modelling by proposing novel symbolic semantic
features capable of modelling information not covered by the word frequency statistics.
This leads to the first specific hypothesis of this thesis:
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H1. Semantic modelling can be improved by combining traditional TF-IDF BON fea-
tures with purely semantic features based on word taxonomies.

While we show in Section 2.4 that the above framework of improving semantic modelling
is successful, it nevertheless requires external resources (i.e., taxonomies), which are not
always available. This makes the approach less transferable to less resourced languages
or specialized domains. To solve this deficiency of the taxonomy-based approach, we
explore other options for improvements in semantic modelling that do not require external
resources.

When it comes to text classification, neural network approaches tend to have an ad-
vantage over more traditional approaches, since they can effectively model the sequential
information, which is to a large extent ignored in the BON presentations. On the other
hand, the main disadvantage of the neural approaches could be the lack of an effective
weighting scheme that would be capable of determining how specific each word is for every
input document. The data is fed into a neural network in small batches, therefore it is
impossible for it to obtain a global view on the data and its structure, which is encoded in
the traditional TF-IDF weighted input matrix. A model that is an effective hybrid between
a traditional feature engineering approach, which relies on different kinds of BON features,
and a newer neural feature engineering approach would be capable of leveraging both the
sequential word/character level information and the more global document/corpus-level
information. By achieving synergy between these two data flows, the model could be able
to outperform current state-of-the-art systems in the field of AP. These observations lead
to the second specific hypothesis:

H2. Combining neural and symbolic text representations can advance the state-of-the-
art on a variety of different NLP document classification tasks.

The shallow lexical sophistication indicators (e.g., length of a sentence, average word
length etc.), which are still extensively used for unsupervised readability prediction cor-
relate well with the readability of a text. On the other hand, two readability indicators
missing from the traditional readability formulas are background knowledge (i.e., seman-
tic information) and discourse cohesion, which can be measured with the employment of
neural language models. This observation leads to the third specific hypothesis of this
thesis:

H3. A novel readability measure, which would include background knowledge and dis-
course cohesion indicators obtained from neural language models besides the standard shal-
low symbolic lexical sophistication indicators, offers better readability estimations than tra-
ditional readability formulas.

Supervised neural approaches towards keyword detection tend to outperform other
non-neural and unsupervised approaches by a large margin, when sufficient amounts of
language- and domain-specific training resources are available. These systems cannot be
used in less resourced domains and languages, where training data is scarce. Therefore,
for these domains and languages, symbolic unsupervised models, which offer worse perfor-
mance, are generally used. This observation leads to the fourth specific hypothesis:

H4. A system for sequence labeling, which combines neural and symbolic text represen-
tations, would achieve performance comparable to state-of-the-art, while requiring only a
fraction of manually labeled data required by neural approaches.

1.4 Scientific Contributions

By exploring the deficiencies of semantics in feature engineering-based models and by ex-
ploring the hypothesis that combining neural and symbolic text representation can advance
the state-of-the-art on a variety of different NLP tasks, we propose new efficient methods
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for text mining and text representation. We also gain relevant insights into whether the
proposed novel methodology can contribute to the general advancement of the NLP field.
Considering the three use cases, on which we test the above hypothesis, the scientific
contributions of the thesis are as follows:

• A novel method for deriving new taxonomy-based symbolic features that can model
semantic relations in the text and improve the performance of traditional feature
engineering-based classifiers that are still widely used in the field of AP. The novel
methodology is covered in detail in Chapter 2 and was published in the following
publication:

Škrlj, B., Martinc, M., Kralj, J., Lavrač, N., & Pollak, S. (2021). Tax2vec: Construct-
ing interpretable features from taxonomies for short text classification. Computer
Speech & Language, 65, 101104.

• Besides presenting a state-of-the-art approach for AP tasks, such as language vari-
ety and gender classification, which relies on extensive feature engineering, we also
propose a novel methodology that relies on combining neural and symbolic repre-
sentations and leads to further advancement of the state-of-the-art in the field. We
evaluate how different components of the system (i.e., symbolic and neural) con-
tribute to the overall performance of the system with an ablation study, which offers
insights into advantages and disadvantages of different types of presentations. The
proposed approaches are covered in Chapter 2 and were published in the following
publications:

Martinc, M., & Pollak, S. (2019). Combining n-grams and deep convolutional
features for language variety classification. Natural Language Engineering, 25(5),
607–632.

Martinc, M., Škrjanec, I., Zupan, K., & Pollak, S. (2017). PAN 2017: Author
profiling - gender and language variety prediction. Working Notes of CLEF 2017 -
Conference and Labs of the Evaluation Forum, Dublin, Ireland, 1866. http://ceur-
ws.org/Vol-1866/paper_78.pdf

• A novel method for unsupervised readability prediction allows more reliable and
more robust automatic readability determination, with possible application of the
method in several educational fields, such as primary and secondary school teaching,
and foreign language teaching. One of the deficiencies of the existing readability
formulas is that most of them were designed for the specific use on English texts. On
the other hand, the proposed novel method is based on neural language models and
its trainable nature allows for customisation and personalisation for specific tasks,
topics and languages. The proposed methodology is covered in Chapter 3 and was
published in the following publication:

Martinc, M., Pollak, S., & Robnik-Šikonja, M. (2021). Supervised and unsupervised
neural approaches to text readability. Computational Linguistics, 47(1), 141–179.

• A novel supervised keyword detection system that can be employed for less resourced
languages and domains, where labeled resources for model training are scarce. Unlike
most existing neural supervised methods for keyword extraction, the system offers a
good compromise between performance and required resources for training. It also
offers much better performance than unsupervised algorithms that are currently used
for languages and domains without sufficient training resources. We show that due
to good precision and recall, the system could also be employed as a recommendation
system in news media environment, when combined with a symbolic unsupervised

http://ceur-ws.org/Vol-1866/paper_78.pdf
http://ceur-ws.org/Vol-1866/paper_78.pdf
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TF-IDF-based keyword extractor. The system and the methodology employed are
covered in detail in Chapter 4 and were published in the following publications:

Martinc, M., Škrlj, B., & Pollak, S. (2020). TNT-KID: Transformer-based neural
tagger for keyword identification. Natural Language Engineering, 1–40.

Koloski, B., Pollak, S., Škrlj, B., & Martinc, M. (2021). Extending neural key-
word extraction with TF-IDF tagset matching. Proceedings of the EACL Hackashop
on News Media Content Analysis and Automated Report Generation, online, 22–29.
https://aclanthology.org/2021.hackashop-1.4

1.5 Organization of the Thesis

The thesis is structured as follows. In Chapter 2, we cover several approaches proposed for
AP. After briefly describing the main characteristics and tasks in Section 2.1, we present
related work on the topic in Section 2.2, by covering existing approaches towards AP tasks
that either employ extensive feature engineering or neural architectures. While in Section
2.3 we propose our own approach for tackling AP tasks with classifiers based on extensive
feature engineering, in Section 2.4 we explain our methodology for improving semantic
modelling by leveraging taxonomies. Finally, in Section 2.5 we cover our methodology for
combining neural and symbolic representations and present experiments and results of the
approach. Final remarks on the topic of AP are presented in Section 2.6.

In Chapter 3, we cover our work on the topic of readability detection. After the
quick introduction into the field of readability in Section 3.1, we cover the related work in
Section 3.2. The methodology, experiments and results of the proposed approach towards
readability detection that focuses on an unsupervised method combining neural language
model statistics with shallow symbolic readability indicators are presented in Section 3.3.
Final remarks on the topic of readability are presented in Section 3.4.

Chapter 4 covers our research on the topic of keyword detection. We briefly present
the task of keyword extraction in Section 4.1 and related work on the topic in Section
4.2. After that, we present a novel neural approach towards keyword extraction named
TNT-KID (Transformer-based Neural Tagger for Keyword Identification) in Section 4.3.
Finally, in Section 4.4, we explain how the proposed neural architecture can be combined
with an unsupervised symbolic TF-IDF-based approach towards keyword extraction, in
order to further improve the recall of the system. Final remarks on the topic of keyword
extraction are presented in Section 4.5.

We conclude the thesis in Chapter 5, where we first summarize the work and the
contributions in Section 5.1. We discuss the strengths and weaknesses of the proposed
methods in Section 5.2. We finish the thesis by presenting the planned future work in
Section 5.3 and by giving instructions on how to reproduce the experiments in Section 5.4.

https://aclanthology.org/2021.hackashop-1.4
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Chapter 2

Author Profiling

This chapter presents two novel methodologies for document classification in the field of
author profiling (AP). First, in Section 2.1, we define the problem of AP and the most
common tasks in the field. Next, Section 2.2 covers how these tasks have been solved in the
past, by either employing classifiers based on Support Vector Machines (SVM) leveraging
symbolic TF-IDF features or by employing neural methods. In Section 2.3, we present our
successful approach for tackling the author profiling task by employing extensive feature
engineering and traditional classifiers. This section also contains an enclosed conference
paper titled PAN 2017: Author profiling - gender and language variety prediction (Mar-
tinc et al., 2017). In Section 2.4, we first focus on how the feature engineering-based
approach can be improved upon by including novel features based on taxonomies capable
of effective semantic modelling. This section contains condensed highlights of the proposed
approach and an enclosed journal publication containing the details, Tax2vec: Construct-
ing interpretable features from taxonomies for short text classification (Škrlj et al., 2021).
Section 2.5 presents our state-of-the-art approach of combining symbolic features with neu-
ral features. This section contains an enclosed journal paper Combining n-grams and deep
convolutional features for language variety classification (Martinc & Pollak, 2019).

2.1 Introduction

Recently, learning about the demographics, psychological characteristics and (mental)
health of a person based on the text she or he produced has become an established subfield
of natural language processing (NLP). This type of research is generally referred to as au-
thor profiling (AP) and has various applications in marketing, forensics, social psychology,
and medical diagnosis. The most commonly addressed tasks in AP are the prediction of
an author’s gender, language variety, age, native language, personality, region of origin, or
mental health.

The first AP task that has received a lot of attention from the NLP community was
gender prediction, which became a mainstream research topic with the influential work by
Koppel et al. (2002). Based on experiments on the subset of the British National Corpus,
authors found that women have a more relational writing style (e.g., using more pronouns)
and men have a more informational writing style (e.g., using more determiners). Later
gender prediction research remained focused on English, yet the attention shifted to social
media applications (Burger et al., 2011; Plank & Hovy, 2015; Schwartz et al., 2013).

In the last few years, the focus has been extended to other AP tasks and to languages
other than English (Rangel et al., 2015; Rangel et al., 2016a) and the AP community
has grown in size significantly. Another task that gained prominence is language variety
identification, a task of classifying different varieties of the same language by determining
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lexical and semantic variations between them (Franco-Salvador et al., 2015). First studies
performed classification on newspaper corpora, e.g., in Portuguese (Zampieri & Gebre,
2012) and Spanish (Zampieri et al., 2013). After that, social media became another popular
resource for this task, e.g., Spanish Twitter messages (Maier & Gómez-Rodríguez, 2014)
or online comments in Arabic (Tillmann et al., 2014; Zaidan & Callison-Burch, 2014).

In the last few years, a series of scientific events and shared tasks on the topic of digital
text forensics have been organized within the AP community. The first prominent event
is the evaluation campaign VarDial (Varieties and Dialects)1 (Zampieri et al., 2014b),
which focuses on the study of linguistic variation. The second is an event called PAN
(Uncovering Plagiarism, Authorship, and Social Software Misuse)2, which covers several
AP tasks ranging from gender and age classification to prediction of language variety and
personality of the authors. The first PAN event took place in 2011 and was followed by a
series of shared tasks organized since 2013 (Rangel et al., 2013b).

2.2 Related Work

We can divide the approaches towards author profiling into two distinct groups. The first
group consists of approaches that leverage extensive feature engineering and employ some-
what more traditional non-neural classifiers. These approaches are presented in subsection
2.2.1. The second group of approaches employ neural architectures for the task at hand
and they are presented in subsection 2.2.2.

2.2.1 Author Profiling Approaches Leveraging Extensive Feature Engi-
neering

As was already stated in Chapter 1, the majority of best performing approaches to AP
still use more traditional classifiers and require extensive feature engineering (Rangel et
al., 2017b), in spite of significant advances in semantic modelling offered by deep learning
approaches. They usually rely on bag-of-n-grams (BON) features and SVM classifiers. For
example, the winner of the VarDial 2017 DSL task, Bestgen (2017), used an SVM classi-
fier with character n-grams, capitalized word character n-grams, n-grams of part-of-speech
(POS) tags and global statistics (proportions of capitalized letters, punctuation marks,
spaces, etc.) features. The novelty of this approach was the use of the BM25 weighting
scheme (Robertson & Zaragoza, 2009) instead of the traditional term frequency-inverse doc-
ument frequency (TF-IDF). The experiments conducted by Bestgen (2017) indicate that
the choice of the appropriate weighting scheme affects the performance of the model. More
generally, the fact that almost all best performing systems in past shared tasks (Zampieri
et al., 2017) used some kind of feature weighting suggests that the use of weighting regimes
might be positively correlated with gains in classification performance.

SVM-based systems with somewhat simpler features (just word and character n-grams)
were used by the winners of the PAN 2017 and 2019 competitions (A. Basile et al., 2017;
Pizarro, 2019), by the winners of the VarDial 2016 ADI task (Malmasi & Zampieri, 2016)
and the winners of the VarDial 2016 DSL competition (Çöltekin & Rama, 2016). In the
VarDial evaluation campaign 2020 (Gaman et al., 2020), the participants were required to
build systems capable of discriminating between Moldavian and Romanian dialects in the
scope of the Romanian Dialect Identification (RDI) task. The winning system consisted
of multiple linear SVM classifiers based on character and word n-gram features (Çöltekin,
2020). An ensemble of linear classifiers with simple n-gram and statistical features was

1http://corporavm.uni-koeln.de/vardial/sharedtask.html
2http://pan.webis.de/

http://corporavm.uni-koeln.de/vardial/sharedtask.html
http://pan.webis.de/
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also employed by the winners of the PAN 2020 event (Katona et al., 2021), which dealt
with profiling of fake news spreaders.

In the PAN AP 2016 task, the goal was to build an age and gender classifier for
English and Spanish. The team achieving the best score for gender classification in English
was Modaresi et al. (2016), who employed word and character n-grams, and the average
spelling error as features. They used logistic regression learner for classification. The
overall winners for English (Bougiatiotis & Krithara, 2016) (e.g., best overall approach for
age and gender classification), trained an SVM model with na RBF kernel and a SVM
model with a linear kernel for age and gender, respectively. Their feature set comprised
of word n-grams and second-order attributes. Busger op Vollenbroek et al. (2016) were
the overall winners of the competition (i.e., they achieved the best average result across
both languages and both tasks) and employed a variety of features: word, character and
POS n-grams, capitalization, punctuation, word and text length, vocabulary richness and
hapax legomena, emoticons and topic-related words.

We should also mention two rare occasions when an SVM-based system did not win
in a language variety classification shared task. They occurred at VarDial 2018 German
Dialect Identification (GDI) and Indo-Aryan Language Identification (ILI) tasks, where a
system called Helsinki language identification (HeLI) described in T. S. Jauhiainen et al.
(2018a) and T. S. Jauhiainen et al. (2018b) won the competitions by a large margin. The
non-neural system employs adaptive language modelling on character four-grams. The
system was nevertheless outperformed by an SVM-based system described in Çöltekin et
al. (2018) at the VarDial 2018 Discriminating between Dutch and Flemish in Subtitles task
by a comfortable margin.

2.2.2 Neural Approaches for Author Profiling

While neural networks are still not the default approach for some author profiling tasks,
there have been some quite successful attempts to tackle AP tasks with neural approaches
in the past. In the PAN 2017 shared task, Miura et al. (2017b) ranked fourth on language
variety prediction and gender classification tasks, by applying a network with a recurrent
neural network layer, a CNN layer, and an attention mechanism. Another milestone was
achieved in a set of VarDial 2018 evaluation campaign tasks, where a system based on
character-level CNNs and recurrent networks ranked second on the task of distinguishing
between four different Swiss German dialects (M. Ali, 2018b) and on the task of distinguish-
ing between five Arabic dialects (M. Ali, 2018a), and fourth on the task of distinguishing
five closely-related languages from the Indo-Aryan language family (M. Ali, 2018c).

While in VarDial DSL 2017 (Zampieri et al., 2017) neural networks were scarce and
achieved uncompetitive results, in the scope of VarDial DSL 2016 shared task (Malmasi
et al., 2016) three systems based on CNNs were proposed for language variety prediction.
Belinkov and Glass (2016) ranked sixth out of seven teams by employing a vanilla character-
level CNN. Bjerva (2016), on the other hand, combined CNN with recurrent units and
added residual layers. The network was fed sentences represented at a byte level as an
input and ranked fifth in the competition.

In the VarDial evaluation campaign 2020 Romanian Dialect Identification (RDI) task
(Gaman et al., 2020), the second-ranked team employed fine-tuned Romanian BERT mod-
els pre-trained on Romanian corpora (Dumitrescu et al., 2020). They tested three strate-
gies, employing cased BERT with document classification head, uncased BERT with doc-
ument classification head, and an SVM ensemble, which was fed embeddings produced by
five different BERT models, some multilingual and some trained on Romanian corpora.
The last strategy proved the best in terms of performance.

Even though neural networks showed considerable capability to model semantics of the
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text, they are still outperformed by SVM-based BON approaches on most author profiling
tasks. A hypothesis why this might be the case was proposed in Martinc and Pollak (2019),
where we claimed that the main disadvantage of neural networks is its lack of an effective
weighting scheme capable of determining how specific are character or word sequences for
each document. Since the data is fed into neural networks in small batches, we claim that
it is harder for the neural system to obtain a global view on the data and its structure,
which is encoded in weighting schemes such as TF-IDF. We discuss one option of how this
deficiency of neural networks can be alleviated in Section 2.5.

2.3 BON-based Classifier for Author Profiling

For the PAN 2017 competition, in which language variety and gender of authors of tweets
in four languages (English, Spanish, Arabic and Portuguese) needed to be determined,
our approach (Martinc et al., 2017) relied on extensive feature engineering and a logistic
regression classifier. While most of the features used in the model were different types of
n-grams, we also used POS-tag sequences and features that depend on the use of external
resources (an emoji list and several word lists). More specifically, the following n-gram
features were used in our final model:

• word unigrams calculated on lowercased tweets with removed stopwords;

• word bigrams calculated on lowercased tweets with removed punctuation;

• word bound character tetragrams calculated on lowercased tweets;

• punctuation trigrams, the so-called beg-puncts (Sapkota et al., 2015), in which the
first character is punctuation but other characters are not, were calculated on lower-
cased tweets;

• suffix character tetragrams, the last four letters of every word that is at least four
characters long (Sapkota et al., 2015), were calculated on lowercased tweets;

Other features used in the study are presented below:

• POS trigrams, i.e. sequences of three POS tags;

• emoji counts, i.e. the number of emojis in the document, counted by using the list
of emojis created by Novak et al. (2015)3;

• document sentiment : the above mentioned emoji list also contains the sentiment of
a specific emoji, which allowed us to calculate the sentiment of the entire document
by simply adding the sentiment of all the emojis in the document;

• character flood counts: we counted the number of times that three or more identical
character sequences appear in the document;

• language variety specific word lists: the lists contain words specific for three distinct
English language varieties (United States, Canada and Australia), which enabled us
to count how many words from a specific language variety appear in a document and
use these counts as features for the English variety classification task.

3http://kt.ijs.si/data/Emoji_sentiment_ranking/
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With the proposed approach, we managed to achieve accuracies for gender and language
variety tasks on four languages presented in Table 2.1. In terms of PAN 2017 competition
ranking, we were placed second in terms of joint accuracy achieved on both tasks, second
in gender classification and third in language variety classification out of 22 participating
teams. Our model won on the task of gender classification in Arabic. The study is enclosed
below.

Table 2.1: Accuracy results on the official PAN 2017 AP test set.

Gender Language Variety Both
Arabic 0.8031 0.8288 0.6825
Portuguese 0.8600 0.9838 0.8463
Spanish 0.8193 0.9525 0.7850
English 0.8071 0.8688 0.7042



PAN 2017: Author Profiling - Gender and Language
Variety Prediction

Notebook for PAN at CLEF 2017

Matej Martinc1,2, Iza Škrjanec2, Katja Zupan1,2, and Senja Pollak1

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

matej.martinc@ijs.si,skrjanec.iza@gmail.com,
katja.zupan@ijs.si,senja.pollak@ijs.si

Abstract We present the results of gender and language variety identification
performed on the tweet corpus prepared for the PAN 2017 Author profiling shared
task. Our approach consists of tweet preprocessing, feature construction, feature
weighting and classification model construction. We propose a Logistic regres-
sion classifier, where the main features are different types of character and word
n-grams. Additional features include POS n-grams, emoji and document senti-
ment information, character flooding and language variety word lists. Our model
achieved the best results on the Portuguese test set in both—gender and language
variety—prediction tasks with the obtained accuracy of 0.8600 and 0.9838, re-
spectively. The worst accuracy was achieved on the Arabic test set.

Keywords: author profiling, gender, language variety, Twitter

1 Introduction

Recent trends in natural language processing (NLP) have shown a great interest in learn-
ing about the demographics, psychological characteristics and (mental) health of a per-
son based on the text she or he produced. This field, generally known as author profiling
(AP), has various applications in marketing, security (forensics), research in social psy-
chology, and medical diagnosis. A thriving subfield of AP is computational stylometry,
which is concerned with how the content and genre of a document contribute to its
style [4].

One of the commonly addressed tasks in AP is the prediction of an author’s gender,
but other tasks include the prediction of language variety, age, native language, person-
ality, region of origin or mental health of an author. Within this lively AP community,
a series of scientific events and shared tasks on digital text forensic called PAN (Un-
covering Plagiarism, Authorship, and Social Software Misuse)3 have been organized.
The first PAN event took place in 2011, while the first AP shared task was organized in
2013 [18].

3 http://pan.webis.de/
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In this paper, we describe our approach to the shared task of PAN AP for 2017 [20],
which involves the construction of a model for gender and language variety identifi-
cation of Twitter users. The rest of the paper is structured as follows: in Section 2 the
findings from related work are presented. Section 3 describes the corpus and how it was
preprocessed. In Section 4 we present the methodology, while Section 5 presents the
results. In Section 6, we conclude the paper and present ideas for future work.

2 Related work

The earliest attempts in author profiling cover gender identification, starting with [8],
who used parts of the British National Corpus. Other genres include literary texts [1],
scientific papers [27], and emails [15].

The focus of AP has settled much on the social media, including languages other
than English. Besides age and gender identification, the PAN shared task has addressed
the prediction of personality type [16], setting the task into a cross-lingual [17,16,21,19]
and cross-genre [17,21] environment. Since this year the corpus does not contain Dutch
tweets, we only describe the findings of PAN AP 2016 task winners for English and
Spanish. The goal was to built an age and gender classifier, whereby the model was
trained on tweets and tested on blogs without the contestants knowing in advance the
genre of the test set. The performance of contestants was evaluated by observing the
classification accuracy for gender and age separately, and additionally taking into ac-
count the joint identification of both dimensions.

The team achieving the best score for gender classification (0.7564) in English was
[11], who used the following features: word uni- and bigrams, character tetragrams, and
the average spelling error, and logistic regression for learning. For gender classification
in Spanish, the best result was obtained by Deneva [21], who achieved 0.7321 accuracy;
a description of the system was not provided. For some contestants, the second order
representation has proven useful. This was also the case with the overall winners for
English [3], who trained a SVM model with RBF kernel and a SVM model with a
linear kernel for age and gender, respectively. Their feature set comprised of unigrams
and trigrams, employing also second order attributes and achieving a joint accuracy
of 0.3974. The team [28] were the overall winners of the competition. Their linear
SVM model performed with the overall accuracy of 0.5258 by employing a variety of
features: word, character and POS n-grams, capitalization (of words and sentences),
punctuation (final and per sentence), word and text length, vocabulary richness and
hapax legomena, emoticons and topic-related words.

Language variety identification is a task of classifying different varieties of the
same language by determining lexical and semantic variations between them [6]. Sev-
eral studies performed classification on newspaper corpora, e.g. in Portuguese [30] and
Spanish [32]. Data from social media is another popular resource for this task, e.g. in
Spanish Twitter messages [10] or online comments in Arabic [25,29]. For the classifi-
cation based on language variety several types of features have been considered. Lex-
ical variation is explored with character and/or word n-grams [30,10,31,29,25], gram-
matical characteristics and syntax are represented in POS n-grams or their distribution
[32,25,9]. Variation in orthography was used as a feature by employing a list of spelling
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variants [9]. Not only linguistic, but also historical and cultural differences were exam-
ined in [23] by observing the share of loan words in Brazilian and European Portuguese,
while [24] used a so called ’black list’ of terms unwanted in Serbian, but accepted and
used in Croatian.

3 Data set description and preprocessing

PAN 2017 training set consists of tweets in four different languages grouped by tweet
authors, who are labeled by gender and language variety (Table 1). The number of
authors for both categories (gender and variety) is balanced in every language. This
training set was used for feature engineering, parameter tuning and training of the clas-
sification model.

Table 1. PAN 2017 training set structure

Language Varieties Authors Tweets

English
Canada, Ireland, United States,

Australia, New Zealand, Great Britain
3,600 360,000

Spanish
Argentina, Colombia, Venezuela,

Spain, Chile, Mexico, Peru
4,200 419,998

Portuguese Brazil, Portugal 1,200 120,000
Arabic Egypt, Maghrebi, Gulf, Levantine 2,400 240,000

The following preprocessing steps were performed:

– nonsense tweet removal: on the English data set we discarded all tweets in which
more than 90% of all tokens contain mistakes detected by a spell checker [7];

– text reversal: we reversed tweets in the Arabic data set since they are written from
right-to-left.

Other preprocessing steps depend on feature construction and three data set transfor-
mations can be considered:

– Tweets-cleaned: replacing all hashtags, mentions and URLs with specific place-
holders #HASHTAG, @MENTION, HTTPURL, respectively. Tweets-cleaned is
also POS tagged (we used Averaged perceptron tagger from NLTK library[2] trained
on POS tagged corpora for different languages found in NLTK);

– Tweets-no punctuation: removing punctuation from Tweets-cleaned;
– Tweets-no stopwords: stopwords are removed from Tweets-no punctuation. This

preprocessing step is not used on Arabic language (Tweets-no stopwords transfor-
mation in Arabic is therefore identical to Tweets-cleaned transformation).

Finally, all tweets belonging to the same author are concatenated and used as one doc-
ument in further processing.
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4 Feature construction and classification model

The usefulness of character n-grams in authorship profiling has been proven before
[16,17,26], as they contain information on punctuation, morphology and the lexis [4].
The setting with word uni- and bigrams, and character tri- and tetragrams was applied
for gender and personality identification in [26]. For this reason most of the features
used in our model were different types of n-grams. We also used other features, such
as POS-tag sequences and features that depend on the use of external resources (an
emoji list and word lists). We performed several different parameter tuning experiments
(either manually or using the Scikit-learn grid search4 to find best values) to try to
find the best feature combination and parameters. All features were normalized with
MinMaxScaler from the Scikit-learn library [13].

4.1 Features

The following n-gram features were used in our final model:

– word unigrams: calculated on lower-cased Tweets-no stopwords, TF-IDF weight-
ing (parameters: minimum document frequency = 10, maximum document fre-
quency = 80%);

– word bigrams: calculated on lower-cased Tweets-no punctuation, TF-IDF weight-
ing (parameters: minimum document frequency = 20, maximum document fre-
quency = 50%);

– word bound character tetragrams: calculated on lower-cased Tweets-cleaned, TF-
IDF weighting (parameters: minimum document frequency = 4, maximum docu-
ment frequency = 80%);

– punctuation trigrams (the so-called beg-punct [22], in which the first character
is punctuation but other characters are not): calculated on lower-cased Tweets-
cleaned, TF-IDF weighting (parameters: minimum document frequency = 10%,
maximum document frequency = 80%);

– suffix character tetragrams (the last four letters of every word that is at least four
characters long [22]): calculated on lower-cased Tweets-cleaned, TF-IDF weight-
ing (parameters: minimum document frequency = 10%, maximum document fre-
quency = 80%).

Other features used in the experiments were calculated on Tweets-cleaned data set
transformation:

– POS trigrams: sequences of three POS tags, TF-IDF weighting (parameters: mini-
mum document frequency = 10%, maximum document frequency = 60%);

– emoji counts: the number of emojis in the document, counted by using the list of
emojis created by [12]5;

4 http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
5 http://kt.ijs.si/data/Emoji_sentiment_ranking/
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– document sentiment: the above-mentioned emoji list also contains the sentiment of
a specific emoji, which allowed us to calculate the sentiment of the entire document
by simply adding the sentiment of all the emojis in the document (as it turns out, this
feature works better without normalizing the resulting sentiment with the number
of all emojis in the document);

– character flood counts: we counted the number of times that three or more identical
character sequences appear in the document;

– language variety specific word lists: according to [14] there are words that are spe-
cific for different language varieties. We managed to find an English spell checker
dictionary6 containing three different word list for three different English language
varieties (United States, Canada and Australia). We calculated the intersection of
these three word lists and removed the resulting common words from all three lists.
In this way we obtained three language variety specific word lists, which enabled us
to count the number of words appearing in a specific language variety list in every
document. These features were only used in the English variety classification task.

We also experimented with TruncatedSVD topic modelling and Word2Vec embed-
dings but these features failed to improve the performance of our model so they were not
included in the final model. Many different word count features (e.g., how many times
a specific type of word appears in the document), punctuation count features and statis-
tical features such as document length and average word length were also tested. All of
these features were evaluated with chi2 feature selection utility from Scikit-learn7 and
proved statistically insignificant in relation to gender and variety target values. More-
over, they did not improve the performance of the model in the 10-fold cross-validation
experiments on the training set, which is why they are not included in the final model.

4.2 Classification model

We tested several classifiers and different parameter sets. The following classifiers from
Scikit-learn were tested:

– Linear SVM
– Logistic regression
– Random forest
– XGBoost (Extreme gradient boosting)

We also tested some classifier combinations:

– Logistic regression bagging
– Voting classifier with majority vote between Logistic regression, linear SVM and

Random forest

Best results were obtained with Logistic regression. Bagging and voting did not improve
the results. Logistic regression gave best results with C=1e2 and fit_intercept= False

6 http://wordlist.aspell.net/dicts/
7 http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html
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parameters. With the help of Scikit-learn FeatureUnion8, we were also able to specify
the weights for different types of features we used. The weights were adjusted with the
help of the following procedure:

1. Initialize all feature weights to 1.0.
2. Iterate the list of features. For every feature repeat adding or subtracting 0.1 to the

weight until the accuracy of a 10-fold cross-validation is improving. When the best
weight is found, move to the next feature on the list.

3. Repeat step 2 until the accuracy cannot be improved anymore.

The weights in our final Logistic regression model were the following:

– word unigrams and word bound character tetragrams: 0.8
– suffix character tetragrams: 0.4
– emoji and character flood counts, document sentiment and language variety specific

word lists: 0.3
– POS trigrams: 0.2
– word bigrams and punctuation trigrams: 0.1

We considered adjusting weights for every task and language separately but initial
experiments showed that no significant gains in accuracy can be achieved by doing
this. This weight configuration proved optimal for both classification tasks and all the
languages, which gave us some indication that no significant overfitting was taking
place. Our classification model was therefore almost identical for all the languages and
both tasks, with the exception of using language variety specific word lists as features
in the English language variety task and using no POS trigrams as features in Arabic
language.

5 Results

We present the accuracy of our model on the 10-fold cross-validation test as well as the
accuracy of the model on the PAN 2017 official test set. The results of a 10-fold cross-
validation test are shown in Table 2. All classes are balanced, so for gender the majority
classifier’s accuracy is 0.50. For language variety, the majority classifier would achieve
0.25 for Arabic, 0.50 for Portuguese, 0.143 for Spanish and 0.167 for English. As can
be seen, the model performs best on Portuguese, where it achieved 0.8441 accuracy for
gender and 0.9883 for the language variety prediction. The model reaches the lowest
gender classification accuracy on Spanish and the lowest language variety classification
accuracy on Arabic.

Accuracy results from the PAN 2017 official test set are presented in Table 3. The
official PAN 2017 evaluator also measures the accuracy of the model in terms of pre-
dicting gender and language variety together (i.e., how many out of all the documents
were correctly classified by both the gender and language variety), which is a mea-
surement that was not employed in the 10-fold cross-validation experiments. Again, the
model reached the best results on Portuguese, where it achieved 0.8600 accuracy for

8 http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html
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Table 2. Accuracy results of 10-fold cross-validation

Gender Language Variety
Arabic 0.8137 0.8345
Portuguese 0.8441 0.9883
Spanish 0.8059 0.9461
English 0.8280 0.8663

gender, 0.9838 accuracy for language variety prediction and 0.8463 accuracy for both.
The model had the worst results for joint gender and language variety prediction on
Arabic.

Table 3. Accuracy results on the official PAN 2017 AP test set

Gender Language Variety Both
Arabic 0.8031 0.8288 0.6825
Portuguese 0.8600 0.9838 0.8463
Spanish 0.8193 0.9525 0.7850
English 0.8071 0.8688 0.7042

If we compare results from the 10-fold cross validation experiment and results from
the official PAN 2017 test set, we can see that there are some differences. Surprisingly,
Arabic is the only language where the results of the 10-fold cross-validation are bet-
ter than the results on the official PAN 2017 test set on both classification tasks. On
the contrary, the model achieved higher accuracy in both of these tasks on the Span-
ish official PAN 2017 test set. When it comes to English, higher accuracy for gender
classification was achieved on the 10-fold cross-validation test and higher accuracy for
language variety classification was reached on the official PAN 2017 test set (although
the difference in accuracy is very small in this case). For Portuguese, higher accuracy
for gender classification was achieved on the official PAN 2017 test set, while higher
accuracy for language variety classification was obtained in the 10-fold cross-validation
setting.

In general, we can conclude that differences in the accuracy measured on 10-fold
cross-validation and official PAN 2017 test sets are not that large, meaning that our
model did not overfit in most of the tasks in all the languages. The biggest differ-
ence in accuracy measurements is in English gender classification, where 10-fold cross-
validation accuracy is more than 2% higher than on the official PAN 2017 test set. This
suggests that some overfitting might have occurred in this case.

6 Conclusion and future work

In this paper we have presented our approach to the PAN 2017 author profiling task.
We presented findings from the related work that were taken into consideration during
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the planning phase of our approach. We have also described the preprocessing tech-
niques used, the methodology of our approach and the conducted experiments. Finally,
we have presented the results achieved in the 10-fold cross-validation setting and on the
official PAN 2017 test set. Our best results for the gender and language variety classifi-
cation tasks in terms of accuracy were achieved for the Portuguese language and stand
at 0.8600 and 0.9838, respectively. If we compare our performance with the results
of other participants of PAN 2017, we were placed second in terms of joint accuracy
achieved on both tasks, second in gender classification and third in language variety
classification. Our model won on the task of gender classification in Arabic.

In our experience, the most difficult part of the task was finding the right features
and properly weighting their combination. Our approach confirms the results from re-
lated work [22] that determined character n-grams as the most successful features in the
AP tasks. Other n-grams, such as word unigrams and bigrams, also work well. The re-
maining features we used, i.e. POS tag sequences, emoji counts, character flood counts,
language variety specific word lists and document sentiments, do not substantially con-
tribute to the classification model accuracy but do, however, offer some new information
to the classifier, so they can be considered as useful when combined with other features.

In the future, we plan to evaluate the model on different data sets to test and try
to improve the cross-genre performance of the model. We will also consider a deep
learning approach to gender and language variety classification. We also plan to address
the gender classification task for other languages, such as Slovenian (there is a data set
of Slovenian tweets and blogs with labeled gender [5]), Croatian and Serbian. We will
also test our language variety classification model on the task of distinguishing between
very similar languages, such as Serbian and Croatian.
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vsebin. Slovenščina 2.0 4(2), 67–99 (2016)

2.3. BON-based Classifier for Author Profiling 23



6. Franco-Salvador, M., Rangel, F., Rosso, P., Taulé, M., Martít, M.A.: Language variety
identification using distributed representations of words and documents. In: Experimental
IR Meets Multilinguality, Multimodality, and Interaction. Lecture Notes in Computer
Science. pp. 28–40. Springer International Publishing Switzerland (2015)

7. Kelly, R.: Pyenchant: A spellchecking library for python.
http://pythonhosted.org/pyenchant/api/enchant.html, [Online; accessed 15-January-2017]

8. Koppel, M., Argamon, S., Shimoni, A.R.: Automatically categorizing written texts by
author gender. Literary and Linguistic Computing 17(4), 401–412 (2002)

9. Lui, M., Cook, P.: Classifying English documents by national dialect. In: Proceedings of
Australasian Language Technology Association Workshop. pp. 5–15. Association for
Computational Linguistics (2013)

10. Maier, W., Gómez-Rodríguez, C.: Language variety identification in Spanish tweets. In:
Language Technology for Closely Related Languages and Language Variants. pp. 25–35.
Association for Computational Linguistics (2014)

11. Modaresi, P., Liebeck, M., Conrad, S.: Exploring the effects of cross-genre machine
learning for author profiling in PAN 2016. CLEF 2016 Evaluation Labs and Workshop –
Working Notes Papers (2016)
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2.4 Leveraging Taxonomies For Modelling Semantics

The main deficiency of AP approaches based on extensive feature engineering is their
inability to model sequential information, which is ignored in the BON presentation, and
their limited grasp of semantic information, since the usual TF-IDF-based features used
by these systems to detect the importance of each word and also relationships between
words are based only on simple frequency-based statistics like word occurrence and co-
occurrence. We discuss in detail how to build systems for AP that also consider sequential
information by incorporating neural features in Section 2.5. In this section, we focus on
another option for improving semantic modelling of a TF-IDF-based system, that is, by
leveraging taxonomies. More specifically, in this section we aim to achieve the
stated goal G1 and confirm the hypothesis H1.

In Škrlj et al. (2021), we propose to use word taxonomies as means for semantic en-
richment that would improve the performance of the SVM-based BON classifiers. We
claim that the use of additional semantic features derived from taxonomies is useful for
classification of short documents, where the amount of semantic data is especially limited.
Classification of short documents is common in AP, where the data is frequently gathered
online and consists of short texts, such as tweets or social media posts (Chu et al., 2010,
2012). Our approach, named tax2vec, builds interpretable semantic features automatically
and we show that feeding these additional features together with BON features improves
the performance of the model.

More specifically, tax2vec requires a corpus of documents and a word taxonomy (for
English, we use the WordNet taxonomy (Miller, 1995)) as an input, and returns a matrix,
in which each row represents a semantic vector representation of an input document in
the corpus (see Figure 2.1). In the next step, the semantic features are concatenated
with the traditional TF-IDF-based features, which means that we employ an early simple
fusion according to the taxonomy explained in Chapter 1. We opted for this type of
fusion mainly due to its simplicity, since it does not require a development of an additional
classification model based purely on taxonomy-based features and since this fusion allows
further optimization of the combination framework by exploring different feature selection
mechanisms (see below).

When it comes to the production of semantic features, in the first step, a document-
based taxonomy is constructed by mapping each sense of a word in the document to the
hypernyms in the WordNet taxonomy. Lesk algorithm (P. Basile et al., 2014) is used for
word sense disambiguation and at the end of this procedure, each word in the document is
associated with a hypernym path in the taxonomy, ranging from the direct hypernym to
the root of the taxonomy. After obtaining a taxonomy for each document in the corpus,
which consists of all hypernyms of all words in the document, these taxonomies are joined
into a corpus-based taxonomy.

In the next step, we construct semantic features by counting the number of times the
word or one of its hypernyms appeared in a document and use these values to obtain a
TF-IDF weight for each word and hypernym. In this way, each document is represented by
a vector consisting of TF-IDF weights for words and hypernyms appearing in the document
or document’s taxonomy.

After that, feature selection is conducted by employing several selection criteria:

• Term count: only a predefined number of rarest words and hypernyms are selected.

• Betweenness centrality (Brandes, 2001): measures graph-theoretic properties of
individual terms within the corpus-based taxonomy. Again, only a predefined number
of best ranked terms according to this measure are kept.
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Figure 2.1: Schematic representation of tax2vec, combined with standard TF-IDF repre-
sentation of documents. Note that darker nodes in the taxonomy represent more general
terms.

• Personalized PageRank (Kralj et al., 2019): this measure considers graph-theoretic
properties for node ranking. Only a predefined number of best ranked nodes are kept.

• Mutual information (Shannon, 1948): here, a mutual information metric between
each term in the taxonomy and a specific class label is calculated, and only a pre-
defined number of best ranked terms are kept. Note that in contrast to other three
metrics, this metric is supervised, since it requires class labels for calculation.

The approach was tested on three author profiling datasets, namely:

• PAN 2017 (Gender) data set, where the task is to predict the user’s gender from
a set of user’s tweets4 (Rangel et al., 2017a);

• PAN 2016 (Age) data set, where the task is to predict tweet authors’s age range5

(Rangel et al., 2016b).

• MBTI (Meyers-Briggs personality type) data set, where the task is to predict
user’s personality from a set of user’s tweets6;

Additionally, the algorithm was also tested on a news article data set (more specifically,
BBC news data set7) and two biomedical data sets (namely, Drug side effects 8 and Drug
effectiveness (Grässer et al., 2018) datasets), to determine how well does the algorithm
generalise across domains.

Results in Table 2.2 show what happens if a predefined number of semantic features (see
column #Semantic, 0 means no features are added) is added to three classifiers, namely

4https://pan.webis.de/clef17/pan17-web
5https://pan.webis.de/clef18/pan18-web
6https://www.kaggle.com/datasnaek/mbti-type/kernels
7https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/

dataset.csv
8http://archive.ics.uci.edu/ml/datasets

https://pan.webis.de/clef17/pan17-web
https://pan.webis.de/clef18/pan18-web
https://www.kaggle.com/datasnaek/mbti-type/kernels
https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv
https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv
http://archive.ics.uci.edu/ml/datasets
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the SVM-based approach proposed in Martinc et al. (2017) and described in Section 2.2,
a generic linear SVM classifier (Chang & Lin, 2011), trained on a predefined number of
word and character level n-grams, and a standard feed forward neural network architecture
(LeCun et al., 2015; Schmidhuber, 2015).

Besides using these algorithms without added semantic features as a baseline, we also
compare the proposed approach to a hierarchical attention network (Yang et al., 2016)
and compare the proposed semantic enrichment method to the doc2vec-based semantic
enrichment, in which we concatenate doc2vec embeddings (Le & Mikolov, 2014) of size 256
to the features of the overall best performing classifier SVM (Martinc et al.). This is a
semantic enrichment framework that is of central focus of this thesis, since symbolic BON
features are combined with neural doc2vec features, and its performance can therefore
serve as an indicator of how promising is the research of neuro-symbolic hybrid classifiers,
on which we focus in the thesis.

Adding semantic features (tax2vec or doc2vec) to BON features improves the perfor-
mance in five out of six cases (MBTI being the only dataset where semantic enrichment
is not working). Tax2vec performs better than doc2vec-based enrichment on three out of
five data sets and in most cases works the best when only a small number of semantic
features is added (10 or 25). Unsurprisingly, the biggest improvement can be observed on
the smallest dataset, PAN 2016 (Age), where 10 semantic features improved the classifiers’
performance by about 7% for SVM (generic). The results from Table 2.2 also indicate that
the employment of neuro-symbolic hybrid classifier might be beneficial, since the addition
of doc2vec features to the BON features outperforms all other configurations on two (PAN
(Gender) and Drugs (side)) out of five datasets.

We present the results of a different feature selection strategy in the form of critical
distance diagrams (see Figure 2.2), which show average ranks of algorithms across all
datasets. Friedman multiple test comparisons followed by the Nemenyi post-hoc correction
(Demšar, 2006) were calculated to determine whether performance of different classifiers
differs significantly. This is indicated with a red line that connects classifiers that are not
statistically significantly different from each other at a confidence level of 95%.

On average, the best performance was achieved using the rarest terms heuristic for

Table 2.2: Effect of the added semantic features to classification performance of different
algorithms on six evaluation sets in terms of micro F1 score. The results in the table
correspond to the best performing combination of a classifier and feature selection heuristic,
which was in the majority of cases “rarest terms” or “Closeness centrality”.

# Semantic Learner PAN (Age) PAN (Gender) MBTI BBC News Drugs (effect) Drugs (side)
0 HILSTM 0.422 0.752 0.407 0.833 0.443 0.514
0 SVM (Martinc et al.) 0.417 0.814 0.682 0.983 0.468 0.503
0 SVM (generic) 0.424 0.751 0.556 0.967 0.445 0.462

256 (doc2vec) SVM (Martinc et al.) 0.422 0.817 0.675 0.979 0.416 0.523
30 (tax2vec) DNN 0.400 0.511 0.182 0.353 0.400 0.321
10 (tax2vec) SVM (Martinc et al.) 0.445 0.815 0.679 0.996 0.47 0.506

SVM (generic) 0.502 0.781 0.556 0.972 0.445 0.469
25 (tax2vec) SVM (Martinc et al.) 0.454 0.814 0.681 0.984 0.468 0.500

SVM (generic) 0.484 0.755 0.554 0.967 0.449 0.466
50 (tax2vec) SVM (Martinc et al.) 0.439 0.814 0.681 0.983 0.462 0.499

SVM (generic) 0.444 0.751 0.554 0.963 0.446 0.463
100 (tax2vec) SVM (Martinc et al.) 0.424 0.816 0.678 0.984 0.466 0.496

SVM (generic) 0.422 0.749 0.551 0.958 0.443 0.46
500 (tax2vec) SVM (Martinc et al.) 0.383 0.797 0.662 0.975 0.45 0.477

SVM (generic) 0.400 0.724 0.532 0.909 0.424 0.438
1000 (tax2vec) SVM (Martinc et al.) 0.368 0.783 0.647 0.964 0.436 0.466

SVM (generic) 0.373 0.701 0.512 0.851 0.407 0.420



2.4. Leveraging Taxonomies For Modelling Semantics 29

1 2 3 4 5 6 7 8 9 1011

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Rarest terms (SVM (Martinc et al.))

Closeness centrality (SVM (Martinc et al.))

Mutual information ( SVM (Martinc et al.)

PPR ( SVM (Martinc et al.)

Rarest terms (SVM (this work))

DNN

PPR ( SVM (this work))

Mutual information ( SVM (this work))

HiLSTM

Closeness centrality ( SVM (this work))

SVM (Martinc et al.) + doc2vec

critical distance: 5.5302

(SVM (generic)

(SVM (generic)

(SVM (generic))

(SVM (generic)) )

)

))

)

)

)

)

)

Figure 2.2: Average ranks of different classifiers employing different feature selection algo-
rithms.

feature selection with an SVM (Martinc et al.) classifier. Mutual information and Person-
alized PageRank heuristic worked the worst on average. While it is worth noting that on
average, using doc2vec semantic enrichment performs worse than tax2vec semantic enrich-
ments employing the SVM (Martinc et al.) classifier, the results still indicate that the type
of semantic enrichment, in which BON symbolic features are combined with neural embed-
ding features, does outperform purely neural (HiLSTM and DNN) baselines. The results
presented in Table 2.2 and Figure 2.2 therefore encourage further development of hybrid
approaches. The entire study with all the details about the methodology, experiments and
results is enclosed below.
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A B S T R A C T

The use of background knowledge is largely unexploited in text classification tasks. This paper
explores word taxonomies as means for constructing new semantic features, which may improve
the performance and robustness of the learned classifiers. We propose tax2vec, a parallel algo-
rithm for constructing taxonomy-based features, and demonstrate its use on six short text classi-
fication problems: prediction of gender, personality type, age, news topics, drug side effects and
drug effectiveness. The constructed semantic features, in combination with fast linear classifiers,
tested against strong baselines such as hierarchical attention neural networks, achieves compara-
ble classification results on short text documents. The algorithm’s performance is also tested in a
few-shot learning setting, indicating that the inclusion of semantic features can improve the per-
formance in data-scarce situations. The tax2vec capability to extract corpus-specific semantic
keywords is also demonstrated. Finally, we investigate the semantic space of potential features,
where we observe a similarity with the well known Zipf’s law.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY
license. (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

In text mining, document classification refers to the task of classifying a given text document into one or more categories
based on its content (Sebastiani 2002). Given an input set of labeled text documents, a text classifier is expected to learn to associ-
ate the patterns appearing in the documents to the document labels. Deep learning approaches (Devlin et al. 2019) have recently
become a standard in natural language-related learning tasks, demonstrating good performance on a variety of different classifi-
cation tasks, including sentiment analysis of tweets (Tang et al. 2015) and news categorization (Kusner et al. 2015). Despite
achieving state-of-the-art performance on many tasks, deep learning is not yet optimized for situations, where the number of
documents in the training set is low or when the documents contain very little text (Rangel et al. 2017).

Semantic data mining denotes a data mining approach where domain ontologies are used as background knowledge in the
data mining process (ºawrynowicz 2017). Semantic data mining approaches have been successfully applied to association rule
learning (Angelino et al. 2017), semantic subgroup discovery (Vavpeti�c and Lavra�c 2013); (Perov�sek et al. 2015), data visualiza-
tion (Adhikari et al. 2016) and text classification (Scott and Matwin 1998). Provision of semantic information allows the learner
to use features on a higher semantic level, possibly enabling better data generalizations. The semantic information is commonly
represented as relational data in the form of taxonomies or ontologies. Development of approaches that leverage such
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information remains a lively research topic in several fields, including biology (Kim et al. 2018); (Chang et al. 2015), sociology
(Freeman 2017) and natural language processing (Wang et al. 2017).

This paper contributes to semantic data mining by using word taxonomies as means for semantic enrichment by constructing new
features, with the goal to improve the performance and robustness of the learned classifiers. In particular, it addresses classification of
short or incomplete documents, which is useful in a large variety of text classification tasks. Short text is characterized by shortness in
the text length, and sparsity in the terms presented, which results in the difficulty in managing and analyzing them based on the bag-
of-words representation only. Short texts can be found everywhere, such as search snippets, product reviews and similar (Chen et al.
2011). For example, in author profiling, the task is to recognize the author’s characteristics such as age or gender (Rangel et al. 2014),
based on a collection of author’s text samples. Here, the effect of data size is known to be an important factor, influencing classification
performance (Rangel et al. 2016). A frequent text type for this task are tweets, where a collection of tweets from the same author is
considered a single document, to which a label must be assigned. The fewer instances (tweets) per user we need, the more powerful
and useful the approach. Learning from only a handful of tweets can lead to preliminary detection of bots in social networks, and is
hence of practical importance (Chu et al. 2012, 2010). In a similar way, this holds true for nearly any kind of text classification task. For
example, for classifying news into a specific topic, using only snippets or titles may be preferred due to non-availability of entire news
texts or for increasing the processing speed. Moreover, in biomedical applications, (Gr€asser et al. 2018) tried to predict drug’s side
effects and effectiveness from patients’ short commentaries, while (Boyce et al. 2012) investigated the use of short user comments to
assess drug-drug interactions.

It has been demonstrated that deep neural networks in general need a large amount of information in order to learn complex
classifiers, i.e. they require a large training set of documents. For example, the recently introduced BERT neural network architec-
ture (Devlin et al. 2019) consisting of many hidden layers was trained on the whole Wikipedia. It was also shown that the state-
of-the-art models do not perform well when incomplete (or scarce) information is used as input (Cho et al. 2015). On the other
hand, promising results regarding zero-shot (Socher et al. 2013) and few-shot (Snell et al. 2017) learning were recently achieved.

This paper proposes a novel approach named tax2vec, where semantic information available in taxonomies is used to con-
struct semantic features that can improve classification performance on short texts. In the proposed approach, features are con-
structed automatically and remain interpretable. We believe that tax2vec could help explore and understand how external
semantic information can be incorporated into existing (black-box) machine learning models, as well as help to explain what is
being learned.

This work is structured as follows. Following the theoretical preliminaries and the related work necessary to understand how
semantic background knowledge can be used in learning, presented in Section 2, we continue with the description of the pro-
posed tax2vec methodology in Section 3. In Section 4, we describe the experimental setting used to test the methodology. In Sec-
tion 5, we present the results of experiments, including the evaluation of the qualitative properties of features constructed using
tax2vec, and extensive classification benchmark tests. Section 6 discusses the properties of the resulting semantic space and the
explainability of the proposed tax2vec algorithm. Implementation and availability of tax2vec is addressed in Section 7. The paper
concludes with a summary and prospects for further work in Section 8. For completeness, Appendix A includes a detailed descrip-
tion of the Personalized PageRank algorithm, while Appendix B presents an example segmentation of news articles into para-
graphs, forming short documents of interest for this study. Finally, Appendix C contains an additional ablation study regarding
the impact of feature numbers on the classifier performance.

2. Background and related work

In this section we present the theoretical preliminaries and selected related work, which served as the basis for the proposed
tax2vec approach. We begin by explaining different levels of semantic context and the rationale behind the proposed approach.

2.1. Semantic context

Document classification is highly dependent on document representation. In simple bag-of-words representations, the fre-
quency (or a similar weight such as term frequency-inverse document frequency—tf-idf) of each word or n-gram is considered as
a separate feature. More advanced representations group words with similar meaning together. Such approaches include Latent
Semantic Analysis (Landauer 2006), Latent Dirichlet Allocation (Blei et al. 2003), and more recently word embeddings (Mikolov
et al. 2013). It has been previously demonstrated that context-aware algorithms significantly outperform the naive learning
approaches (Cagliero and Garza 2013). We refer to such semantic context as the first-level context.

Second-level context can be introduced by incorporating background knowledge (e.g., ontologies) into a learning task, which can
lead to improved interpretability and performance of classifiers, learned e.g., by rule learning (Vavpeti�c and Lavra�c 2013) or ran-
dom forests (Xu et al. 2018). In text mining, Elhadad et al. (2018) present an ontology-based web document classifier, while
Kaur and Kumar (2018) propose a clustering-based algorithm for document classification that also benefits from knowledge
stored in the underlying ontologies. Cagliero and Garza (2013) present a custom classification algorithm that can leverage taxon-
omies and demonstrate on a case study of geospatial data that such information can be used to improve the learner’s classifica-
tion performance. Use of hypernym-based features for classification tasks has been considered previously. For example,
hypernym-based features were used in rule learning by the Ripper rule learning algorithm (Scott and Matwin 1998). Moreover,
it was also demonstrated that the use of hypernym-based features constructed from WordNet significantly impacts the classifier
performance (Mansuy and Hilderman 2006).
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2.2. Feature construction and selection

When unstructured data is used as input, it is common to explore the options of feature construction. Even though recently
introduced deep neural network based approaches operate on simple word indices (or byte-pair encoded tokens) and thus elimi-
nate the need for manual construction of features, such alternatives are not necessarily the optimal approach when vectorizing
the background knowledge in the form of taxonomies or ontologies. Features obtained by training a neural network are inher-
ently non-symbolic and as such do not present any added value to the developer’s understanding of the (possible) causal mecha-
nisms underlying the learned classifier (Bunge 2017); (Pearl 2009). In contrast, understanding the semantic background of a
classifier’s decision can shed light on previously not observed second-level context vital to the success of learning, rendering oth-
erwise incomprehensible models easier to understand.

Definition 1 (Feature construction). Given an unstructured input consisting of n documents, a feature construction algorithm out-
puts a matrix F 2Rn�a; where a denotes the predefined number of features to be constructed.

In practical applications, features are constructed from various data sources, including texts (Sta�nczyk and Jain 2015), graphs
(Kakisim and Sogukpinar 2019); (�Skrlj et al. 2019b), audio recordings and similar data (Toma�sev et al. 2015). With the increasing
computational power at one’s disposal, automated feature construction methods are becoming prevalent. Here, the idea is that
given some criterion, the feature constructor outputs a set of features selected according to the criterion. For example, the tf-idf
feature construction algorithm, applied to a given document corpus, can automatically construct hundreds of thousands of n-
gram features in a matter of minutes on an average of-the-shelf laptop.

Many approaches can thus output too many features to be processed in a reasonable time, and can introduce additional noise,
which renders the task of learning even harder. To solve this problem, one of the known solutions is feature selection.

Definition 2 (Feature selection). Let F 2Rn�a represent the feature matrix (as defined above), obtained during automated feature
construction. A feature selection algorithm transforms matrix F to a matrix F 0 2Rn�d; where d represents the number of desired fea-
tures after feature selection.

Feature selection thus filters out the (unnecessary) features, with the aim of yielding a compact, information-rich representa-
tion of the unstructured input. There exist many approaches to feature selection. They can be based on the individual feature’s
information content, correlation, significance etc. (Chandrashekar and Sahin 2014). Feature selection is, for example, relevant in
biological data sets, where only a handful of the key gene markers are of interest, and can be identified by assessing the impact of
individual features on the target space (Hira and Gillies 2015).

2.3. Learning from graphs and relational information

In this section we briefly discuss the works that influenced the development of the proposed approach. One of the most elegant
ways to learn from graphs is by transforming them into propositional tables, which are a suitable input for many down-stream
learning algorithms. Recent attempts to vectorization of graphs include the node2vec (Grover and Leskovec 2016) algorithm for
constructing features from homogeneous networks; its extension metapath2vec (Dong et al. 2017) for heterogeneous networks; its
symbolic version SGE (�Skrlj et al. 2019b); the mol2vec (Jaeger et al. 2018) vectorization algorithm for molecular data; the struc2vec
(Ribeiro et al. 2017) graph vectorization algorithm based on homophily relations between nodes, and more. All these approaches
(apart from SGE) are sub-symbolic, as the obtained vectorized information (embeddings) are not interpretable. Similarly, recently
introduced graph-convolutional neural networks also yield local node embeddings, which take node feature vectors into account
(Kipf andWelling 2017); (Hamilton et al. 2017).

In parallel to graph-based vectorization, approaches which tackle the problem of learning from relational databases have also
been developed. Symbolic (interpretable) approaches for this vectorization task, known under the term propositionalization,
include RSD (�Zeleznỳ and Lavra�c 2006), a rule-based algorithm which constructs relational features; and wordification
(Perov�sek et al. 2015), an approach for unfolding relational databases into bag-of-words representations. The approach, described
in the following sections, relies on some of the key ideas initially introduced in the mentioned works on propositionalization, as tax-
onomies are inherently relational data structures.

3. The tax2vec approach

In this section we outline the proposed tax2vec approach. We begin with a general description of classification from short
texts, followed by the key features of tax2vec, which offer solutions to some of the currently not well explored issues in text min-
ing.

3.1. The rationale behind tax2vec

In general text classification tasks, deep learning approaches have outperformed other classifiers (Devlin et al. 2019). How-
ever, in classification tasks involving short documents (tweets, opinions, etc.), particularly where the number of instances is low,
deep learners are still outperformed by simpler classifiers, such as SVMs (Rangel et al. 2019). This observation was a motivation
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for the development of the tax2vec algorithm, proposed in this paper. Compared to non-symbolic node vectorization algorithms
discussed in the previous section, tax2vec uses hypernyms as potential features directly and thus makes the process of feature
construction and selection possible without the loss of classifier’s interpretability.

We present the proposed tax2vec algorithm for semantic feature vector construction that can be used to enrich the feature
vectors constructed by the established text processing methods such as tf-idf. The tax2vec algorithm takes as input a labeled or
unlabeled corpus of n documents and a word taxonomy. It outputs a matrix of semantic feature vectors in which each row repre-
sents a semantics-based vector representation of one input document. Example use of tax2vec in a common language processing
pipeline is shown in Figure 1. Note that the obtained semantic feature vectors serve as additional features in the final, vectorized
representation of a given corpus.

Let us first explore how parts of the WordNet taxonomy (Miller 1995; Fellbaum 1998) related to the training corpus can be
used for the construction of novel features, as such background knowledge can be applied in virtually every English text-based
learning setting, as well as for many other languages (Gonzalez-Agirre et al. 2012).

3.2. Deriving semantic features

The tax2vec approach implements a two-step semantic feature construction process. First, a document-specific taxonomy is
constructed, then a term-weighting scheme is used for feature construction.

3.2.1. Document-based and corpus-based taxonomy construction
In the first step of the tax2vec algorithm, a corpus-based taxonomy is constructed from the input document corpus. In this

section we describe how the words from individual documents of a corpus are mapped to terms of the WordNet taxonomy to
construct a document-based taxonomy by focusing on semantic structures, derived exclusively from the hypernymy relation
between words. Individual document-based taxonomies are then merged into a joint corpus-based taxonomy.

When constructing a document-based taxonomy, each word is mapped to the hypernymWordNet taxonomy. This results in a
tree-like structure, which spans from individual words to higher-order semantic concepts. For example, given the word monkey,
one of its mappings in the WordNet hypernym taxonomy is the term mammal, which can be further mapped to e.g., animal etc.,
eventually reaching the most general term, i.e. entity.

In order to construct the mapping, the first problem to be solved is word-sense disambiguation. For example, the word bank
has two different meanings, when considered in the following two sentences:

Fig. 1. Schematic representation of tax2vec, combined with standard tf-idf representation of documents. Note that darker nodes in the taxonomy represent more
general terms.
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River bank was enforced:
���� National bank was robbed:

There are many approaches to word-sense disambiguation (WSD). We refer the reader to Navigli (2009) for a detailed over-
view of the WSD methodology.

In tax2vec, we use Lesk (Basile et al. 2014), a standard WSD algorithm, to map each disambiguated word to the corresponding
term in the WordNet taxonomy. The identified term is then associated with a path in the WordNet taxonomy leading from the
given term to the root of the taxonomy. Example hypernym path (with WordNet-style notation), extracted for word “astatine”, is
shown in Figure 2.

By finding a hypernym path to the root of the taxonomy for all words in the input document, a document-based taxonomy is
constructed, which consists of all hypernyms of all words in the document. After constructing the document-based taxonomy for
all the documents in the corpus, the taxonomies are joined into a corpus-based taxonomy.

Note that processing each document and constructing the document-based taxonomy is entirely independent from other
documents, allowing us to process the documents in parallel and join the results only when constructing the joint corpus-based
taxonomy.

3.2.2. Semantic feature construction
During the construction of a document-based taxonomy, document-level term counts are calculated for each term. For each

word t and document D, we count the number ft,D of times the word or one of its hypernyms appeared in a given document D.
The obtained counts can be used for feature construction directly: each term t from the corpus-based taxonomy is associated

with a feature, and a document-level term count is used as the feature value. The current implementation of tax2vec weights the
feature values using the double normalization tf-idf metric. For term t, document D and user-selected normalization factor K, fea-
ture value tf-idf(t,D,K) is calculated as follows (Manning et al. 2008):

tf � idfðt;D;KÞ¼ Kþð1�KÞ ft;D
maxft0 2Dgft0 ;D

� �
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where ft,D is the term frequency, normalized by maxft0 2Dgf ðt0;DÞ; which corresponds to the raw count of the most common
hypernym of words in the document; value N represents the total number of documents in the corpus, nt denotes the number of
document-based taxonomies the hypernym appears in (i.e. the number of documents that contain a hyponym of t). Note that the
term frequencies are normalized with respect to the most frequently occurring term to prevent a bias towards longer documents.
In the experiments the normalization constant Kwas set to 0.5.

3.3. Feature selection

The problem with the above presented approach is that all hypernyms from the corpus-based taxonomy are considered, and
therefore, the number of columns in the feature matrix can grow to tens of thousands of terms. Including all these terms in the
learning process introduces unnecessary noise, and unnecessarily increases the spatial complexity. This leads to the need of fea-
ture selection (see Definition 2 in Section 2.2) to reduce the number of features to a user-defined number (a free parameter speci-
fied as part of the input). We next describe the scoring functions of feature selection approaches considered in this work.

Fig. 2. Example hypernym path extracted for word “astatine”, where the ! corresponds to the “hypernym of” relation (the majority of hypernym paths end
with the “entity” term, as it represents one of the most general objects in the taxonomy).
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As part of tax2vec, we implemented both supervised (Mutual Information - MI and Personalized PageRank - PPR), as well as
unsupervised (Betweenness centrality - BC and term count-based selection) feature selection methods, discussed below. Note
that the feature selection process is conducted exclusively on the semantic space (i.e. on the mapped WordNet terms).

Feature selection by term counts. Intuitively, the rarest terms are the most document-specific and could provide additional
information to the classifier. This is addressed in tax2vec by the simplest heuristic, used in the algorithm: a term-
count based heuristic that simply takes overall counts of all hypernyms in the corpus-based taxonomy, sorts them in
ascending order according to their frequency of occurrence and takes the top d.

Feature selection using term betweenness centrality. As the constructed corpus-specific taxonomy is not necessarily the
same as the WordNet taxonomy, the graph-theoretic properties of individual terms within the corpus-based taxon-
omy could provide a reasonable estimate of a term’s importance. The proposed tax2vec implements the between-
ness centrality (BC) (Brandes 2001) measure of individual terms as the scoring measure. The betweenness centrality
is defined as:

BCðtÞ¼
X
u 6¼v6¼t

suvðtÞ
suv

; ð2Þ

where suv corresponds to the number of shortest paths (see Figure 3) between nodes u and v, and suv(t) corresponds
to the number of paths that pass through term (node) t. Intuitively, betweenness measures the t’s importance in the
corpus-based taxonomy. Here, the terms are sorted in a descending order according to their betweenness centrality,
and again, the top d terms are used for learning.

Feature selection using mutual information.The third heuristic, mutual information (MI) (Peng et al. 2005), aims to exploit
the information from the labels, assigned to the documents used for training. The MI between two random discrete
variables represented as vectors Fi and Y (i.e. the i-th hypernym feature and a target binary class) is defined as:

MIðFi;YÞ¼
X

x;y2 f0;1g
pðFi¼x;Y¼yÞ ¢ log2 pðFi¼x;Y¼yÞ

pðFi¼xÞ ¢ pðY¼yÞ
� �

ð3Þ

where pðFi¼xÞ and pðY¼yÞ correspond to marginal distributions of the joint probability distribution of Fi and Y. Note
that for this step, tax2vec uses the binary feature representation, where the tf-idf features are rounded to the closest
integer value (either 0 or 1). This way, only well represented features are taken into account. Further, tax2vec uses
one-hot encodings of target classes, meaning that each target class vector consists exclusively of zeros and ones. For
each of the target classes, tax2vec computes the mutual information (MI) between all hypernym features (i.e. matrix
X) and a given class. Hence, for each target class, a vector of mutual information scores is obtained, corresponding to
MI between individual hypernym features and a given target class.
Finally, tax2vec sums the MI scores obtained for each target class to obtain the final vector, which is then sorted in
descending order. The first d hypernym features are used for learning. At this point tax2vec yields the selected features as
a sparse matrix, maintaining the spatial complexity amounting to the number of float-valued non-zero entries.

Personalized PageRank-based hypernym ranking. Advances by Kralj et al. (2019) and Kralj (2017) in learning using exten-
sive background knowledge for rule induction explored the use of Personalized PageRank (PPR) algorithm for node
subset selection in semantic search space exploration. In tax2vec, we use the same idea to prioritize (score) hyper-
nyms in the corpus-based taxonomy. In this section, we first briefly describe the Personalized PageRank algorithm
and then describe how it is applied in tax2vec.

Fig. 3. An example shortest path. The path colored red represents the smallest number of edges needed to reach node C from node A.
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The PPR algorithm takes as an input a network and a set of
starting nodes in the network and returns a vector assigning a score to each node in the input network. The scores of
nodes are calculated as the stationary distribution of the positions of a random walker that starts its walk on one of
the starting nodes and, in each step, either randomly jumps from a node to one of its neighbors (with probability p,
set to 0.85 in our experiments) or jumps back to one of the starting nodes (with probability 1�p). Detailed descrip-
tion of the PPR used in tax2vec is given in Appendix A. The PPR algorithm is used in tax2vec as follows:

(a) Identify a set of hypernyms in the corpus-based taxonomy, to which the words in the input corpus map to in the
first step of tax2vec (described in Section 3.2.1).

(b) Run the PPR algorithm on the corpus-based taxonomy, using the hypernyms identified in step 1 as the starting
set.

(c) Use the top d best ranked hypernyms as candidate features.

Note that this heuristics offers global node ranks with respect to the corpus used.

3.4. The tax2vec algorithm

All the aforementioned steps form the basis of tax2vec, outlined in Algorithm 1. First, tax2vec iterates through the given
labeled document corpus in parallel (lines 3�7). For each document, MaptoTaxonomy method identifies a set of disambiguated
words and determines their corresponding terms in taxonomy T (i.e. WordNet) using method m (i.e. Lesk). Term counts are
stored for later use (storeTermCounts), and the taxonomy, derived from a given document (doc) is added to the corpus taxonomy
TCORPUS . Once traversed, the terms present in TCORPUS represent potential features. Term counts, stored for each document are
aggregated into n vectors, where n is the number of documents in the corpus. The result of this step is a real-valued, sparse
matrix (vecSpace), where columns represent all possible terms from TCORPUS . In the following step, feature selection is conducted.
Here, graph-based methods (e.g., BC and PPR) identify top d terms based on TCORPUS ’s properties (lines 9�12), and non-graph
methods (e.g., MI) is used directly on the sparse matrix to select which d features are the most relevant (lines 13�15). Finally,
selectedFeatures, a matrix of selected semantic features is returned.

Note that in practice, tax2vec also stores the inverse document frequencies. We omit the description of this step for readabil-
ity purposes.

Algorithm 1. tax2vec
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3.5. Handling noise

Numerous data sets, including contemporary social media data sets, can be noisy and as such hard to handle by a learning sys-
tem. We next discuss how distinct parts of tax2vec potentially handle noise in the data, including typos, incomplete and missing
words and uncommon characters.

During the initial step of the semantic space construction, tax2vec conducts document-level word disambiguation in order to
semantically characterize a given token (word). During this step, any tokens that are not present in the taxonomy will be ignored.
Further, as word disambiguation requires a certain word window to operate, this hyperparameter can be used to control the size
of context considered by tax2vec. In this work, however, we did not explicitly address the problem of invalid tokens in a given
token’s neighborhood, yet observed that small window sizes (two and three) offered reasonably robust performance.

Even though disambiguation with Lesk offers the initial semantic pruning capabilities, the tax2vec algorithm can further
address potential noise as follows. As the user can determine the depth in the WordNet taxonomy that will be considered as the
starting point for semantic space construction, potentially too specific terms can be avoided if necessary.

Finally, in the third step, tax2vec conducts feature selection. This part of the algorithm is responsible for filtering redundant and
non-informative terms that could be considered as noise. We tested both supervised, as well as unsupervised feature selection
methods, exploring whether additional information about class labels helps with term pruning. Apart from the semantic pruning
and selection strategies discussed above, links, mentions and hashtags can be removed to further reduce the noise in social media
texts (as mentioned in the description of the SVM implementation by Martinc et al. (2017) in Section 4.2).

We believe all three steps to some extent address how noise is being handled. However, it is expected that additional grammar cor-
rection and text normalization could serve as a complementary step to offer improved performance on social media texts.

4. Experimental setting

This section presents the experimental setting used in testing the performance of tax2vec in document classification tasks. We
begin by describing the data sets on which the method was tested. Next, we describe the classifiers used to assess the use of fea-
tures constructed using tax2vec, along with the baseline approaches. We continue by describing the metrics used to assess classi-
fication performance, and the description of the experiments.

4.1. Data sets

We tested the effects of features produced with tax2vec on six different class labeled text data sets summarized in Table 1,
intentionally chosen from different domains.

The first three data sets are composed of short documents from social media, where we consider classification of tweets.

PAN 2017 (Gender) data set.Given a set of tweets per user, the task is to predict the user’s gender1 (Rangel et al. 2017).
MBTI (Myers-Briggs personality type) data set. Given a set of tweets per user, the task is to predict to which personality class

a user belongs2, first discussed in (Myers 1962).
PAN 2016 (Age) data set.Given a set of tweets per user, the classifier should predict the users’s age range3 (Rangel et al. 2016).

Next, we consider a news articles data set by which we test the potential of the method also on longer documents, while for
few shot learning experiments (Section 5.3), we transform the setting to short text documents by using only few paragraphs per
article and test whether competitive performance to full-text-based classification can be obtained.

BBC news data set. Given a news article (composed of a number of paragraphs)4, the goal is to assign to it a topic from a list of
topic categories5 (Greene and Cunningham 2006).

We also consider two biomedical data sets related to drug consumption. Here, the same training instances in the form of short
user commentaries were used to predict two different targets.

Drug side effects. This data set links user opinions to side effects of a drug they are taking as treatment. The goal is to predict
the side effects prior to experimental measurement (Gr€asser et al. 2018).6

Drug effectiveness. Similarly to side effects (previous data set), the goal of this task is to predict drug effectiveness (Gr€asser et al.
2018).

1 https://pan.webis.de/clef17/pan17-web
2 https://www.kaggle.com/datasnaek/mbti-type/kernels
3 https://pan.webis.de/clef18/pan18-web
4 Split to paragraphs according to the double new line is presented in Appendix B.
5 https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv
6 http://archive.ics.uci.edu/ml/datasets

8 B. �Skrlj et al. / Computer Speech & Language 65 (2021) 101104

2.4. Leveraging Taxonomies For Modelling Semantics 37



4.2. The classifiers used

As tax2vec serves as a preprocessing method for data enrichment with semantic features, arbitrary classifiers can use the
resulting semantic features for learning. Note that in the experiments, the final feature space is composed of both semantic and
non-semantic (original) features, i.e., the final feature set used for learning is formed after the semantic features have been con-
structed and selected, by concatenating the original features and the semantic features. We use the following learners:

PAN 2017 approach. An SVM-based approach that relies heavily on the method proposed by Martinc et al. (2017) for the
author profiling task in the PAN 2017 shared task (Rangel et al. 2017). This method is based on sophisticated hand-
crafted features calculated on different levels of preprocessed text including optional social media text cleaning (e.g.,
Twitter hashtag, mentions, url replacement with filler tokens). The following features were used:
tf-idf weighted word unigrams calculated on lower-cased text with stopwords removed;
tf-idf weighted word bigrams calculated on lower-cased text with punctuation removed;
tf-idf weighted word bound character tetragrams calculated on lower-cased text;
tf-idf weighted punctuation trigrams (the so-called beg-punct (Sapkota et al. 2015), in which the first character is

punctuation but other characters are not) calculated on lower-cased text;
tf-idf weighted suffix character tetragrams (the last four letters of every word that is at least four characters long

(Sapkota et al. 2015)) calculated on lower-cased text;
emoji counts of the number of emojis in the document, counted by using the list of emojis created by Novak et al.

(2015),7; this feature is only useful if the data set in question contains emojis;
document sentiment using the above-mentioned emoji list that contains the sentiment of a specific emoji, used to cal-

culate the sentiment of the entire document by simply adding the sentiment of all the emojis in the document; this
feature is only useful if the data set in question contains emojis;

character flood counts calculated by the number of times that three or more identical character sequences appear in the
document;

In contrast to the original approach proposed (Martinc et al. 2017), we do not use POS tag sequences as features and a Logistic
regression classifier is replaced by a Linear SVM. Here, we experimented with the regularization parameter C, for which values in
range {1, 20, 50, 100, 200} were tested. This SVM variant is from this point on referred to as “SVM (Martinc et al.)”. As this feature
construction pipeline consists of too many parameters, we were not able to perform extensive grid search due to computational
complexity. Thus, we did not experiment with feature construction parameters, and kept the configuration proposed in the origi-
nal study.

Linear SVM with automatic feature construction. The second learner is a libSVM linear classifier (Chang and Lin 2011),
trained on a predefined number of word and character level n-grams, constructed using Scikit-learn’s TfidfVectorizer
method. To find the best setting, we varied the SVM’s C parameter in range {1, 20, 50, 100, 200}, the number of word
features between {10000, 50000, 100000, 200000} and character features between {0, 30}8. Note that the word fea-
tures were sorted by decreasing frequency. Here, we considered (word) n-grams of lengths between two and six. This SVM
variation is from this point on referred to as “SVM (generic)”. The main difference between “SVM (generic)” and “SVM (Mar-
tinc et al.)” is that the latter approach also considers punctuation-based and suffix-based features. Further, it is capable of
constructing features that represent document sentiment, which was proven to work well for social media data sets (e.g.,
tweets). Finally, Martinc’s approach also accounts for character repetitions and has a parameter for social-media text clean-
ing in preprocessing. Note that for both SVM approaches we fine-tuned the hyperparameter C, as is commonwhen employ-
ing SVMs. The hyperparameter’s values govern how penalized the learner is for a miss-classified instance, which is a
property that was shown to vary across data sets (see for example (Meyer et al. 2003)).

Table 1
Data sets used for experimental evaluation of tax2vec’s impact on learning. Note that MNS corresponds to the maximum
number of text segments (max. number of tweets or comments per user or number of news paragraphs as presented in
Appendix B).

Data set (target) Classes Words Unique words Documents MNS Average tokens per segment

PAN 2017 (Gender) 2 5169966 607474 3600 102 14.23
MBTI (Personality) 16 11832937 372811 8676 89 27.98
PAN 2016 (Age) 5 943880 178450 402 202 13.17
BBC news 5 902036 58128 2225 76 70.39
Drugs (Side effects) 4 385746 27257 3107 3 41.47
Drugs (Overall effect) 4 385746 27257 3107 3 41.47

7 http://kt.ijs.si/data/Emoji_sentiment_ranking/
8 In Figure C1 (Appendix C), the reader can observe the results of the initial experiments on the number of word features that led to selection of this hyperpara-

meter range.
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Hierarchical attention networks (HILSTM). The first neural network baseline is the recently introduced hierarchical attention
network (Yang et al. 2016). Here, we performed a grid search over {64, 128, 256} hidden layers sizes, embedding sizes of
{128, 256, 512}, batch sizes of {8, 24, 52} and number of epochs {5, 15, 20, 30}. For detailed explanation of the architecture,
please refer to the original contribution (Yang et al. 2016). We discuss the best-performing architecture in Section 5 below.

Deep feedforward neural networks. As tax2vec constructs feature vectors, we also attempted to use them as inputs for a
standard feedforward neural network architecture (LeCun et al. 2015); (Schmidhuber 2015). Here, we performed a
grid search across hidden layer settings: {(128, 64), (10, 10, 10)} (where for example (128,64) corresponds to a two
hidden layer neural network, where in the first hidden layer there are 128 neurons and 64 in the second), batch sizes
{8, 24, 52} and the number of training epochs {5, 15, 20}.9

4.3. Semantic features

In addition to the semantic features constructed by tax2vec, doc2vec-based semantic features (Le and Mikolov 2014) were
used as a baseline in order to allow for a simple comparison between two semantic feature construction approaches. They were
concatenated with the features constructed by Martinc et al.’s SVM approach described in Section 4.2, in order to compare the
benefits merging the BoW-based representations with a different type of semantic features (embedding-based ones). We set the
embedding dimension to 256, as it was shown that lower dimensional embeddings do not perform well (Pennington et al. 2014).

4.4. Description of the experiments

The experiments were set up as follows. For the drug-related data sets, we used the splits given in the original paper (Gr€asser
et al. 2018). For other data sets, we trained the classifiers using stratified 90%: 10% splits. For each classifier, 10 such splits were
obtained. The measure used in all cases is F1, where for the multiclass problems (e.g., MBTI), we use the micro-averaged F1. All
experiments were repeated five times using different random seeds. The features obtained using tax2vec are used in combination
with SVM classifiers, while the other classifiers are used as baselines.10

5. Classification results

In this section we provide the results obtained by conducting the experiments outlined in the previous section. We begin by
discussing the overall classification performance with respect to different heuristics used. Next, we discuss how tax2vec aug-
ments the learner’s ability to classify when the number of text segments per user is reduced.

5.1. Classification performance evaluation

The F1 results are presented in Table 2. The first observation is that combining BoW-based representations with semantic fea-
tures (tax2vec or doc2vec) leads to performance improvements in five out of six cases (MBTI being the only data set where no
improvement is detected). Tax2vec outperforms doc2vec-based vectors in three out of five data sets (PAN 2016 (Age), BBC News
and Drugs (effect)), while doc2vec-based features outperform tax2vec on two data sets (PAN 2017 (gender) and Drugs (Side)).

When it comes to tax2vec, up to 100 semantic features aid the SVM learners to achieve better accuracy. The most apparent
improvement can be observed for the case of PAN 2016 (Age) data set, where the task was to predict age. Here, 10 semantic fea-
tures notably improved the classifiers’ performance (up to approximately 7% for SVM (generic)). Further, a minor improvement
over the state-of-the-art was also observed on the PAN 2017 (Gender) data set and the BBC news categorization (see results for
SVM (Martinc et al.)). Hierarchical attention networks outperformed all other learners for the task of side effects prediction, yet
semantics-augmented SVMs outperformed neural models when general drug effects were considered as target classes. Similarly,
no performance improvements were offered by tax2vec on the MBTI data set.

We now present the classification results in the form of critical distance diagrams, shown in Figures 4, 5 and 6. The diagrams
show average ranks of different algorithms according to the (micro) F1 measure. A red line connects groups of classifiers that are
not statistically significantly different from each other at a confidence level of 5%. The significance levels are computed using
Friedman multiple test comparisons followed by Nemenyi post-hoc correction (Dem�sar 2006). For each data set, we selected the
best performing parametrization (hyperparameter settings). The best (on average) performing C parameter for both SVM models
was 50. The number of features that performed the best for all hyperparameter settings of the SVM (generic) considered in this
study is 100,000. The HILSTM architecture’s topology varied between data sets, yet we observed that the best results were
obtained when more than 15 epochs of training were conducted, combined with the hidden layer size of 64 neurons, where the
size of the attention layer was of the same dimension.

9 The two deep architectures were implemented using TensorFlow (Abadi et al. 2015), and trained using a Nvidia Tesla K40 GPU. We report the best result for
top 30 semantic features with the rarest terms heuristic.

10 Note that simple feedforward neural networks could also be used in combination with hypernym features—we leave such computationally expensive
experiments for further work.
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Table 2
Effect of the added semantic features to classification performance, where all text segments (tweets/comments per user or segments
per news article) are used. The best performing feature selection heuristic for the majority of top performing classifiers was “rarest
terms” or “Closeness centrality”, indicating that only a handful of hypernyms carry added value, relevant for classification. Note that
the results in the table correspond to the best performing combination of a classifier and a given heuristic.

# Semantic Learner PAN (Age) PAN (Gender) MBTI BBC News Drugs (effect) Drugs (side)

0 HILSTM 0.422 0.752 0.407 0.833 0.443 0.514
0 SVM (Martinc et al.) 0.417 0.814

0.682
0.983 0.468 0.503

0 SVM (generic) 0.424 0.751 0.556 0.967 0.445 0.462
256 (doc2vec) SVM (Martinc et al.) 0.422

0.817
0.675 0.979 0.416

0.523

30 (tax2vec) DNN 0.400 0.511 0.182 0.353 0.400 0.321
10 (tax2vec) SVM (Martinc et al.) 0.445 0.815 0.679

0.996 0.47
0.506

SVM (generic)
0.502

0.781 0.556 0.972 0.445 0.469

25 (tax2vec) SVM (Martinc et al.) 0.454 0.814 0.681 0.984 0.468 0.500
SVM (generic) 0.484 0.755 0.554 0.967 0.449 0.466

50 (tax2vec) SVM (Martinc et al.) 0.439 0.814 0.681 0.983 0.462 0.499
SVM (generic) 0.444 0.751 0.554 0.963 0.446 0.463

100 (tax2vec) SVM (Martinc et al.) 0.424 0.816 0.678 0.984 0.466 0.496
SVM (generic) 0.422 0.749 0.551 0.958 0.443 0.460

500 (tax2vec) SVM (Martinc et al.) 0.383 0.797 0.662 0.975 0.450 0.470
SVM (generic) 0.400 0.724 0.532 0.909 0.424 0.438

1000 (tax2vec) SVM (Martinc et al.) 0.368 0.783 0.647 0.964 0.436 0.466
SVM (generic) 0.373 0.701 0.512 0.851 0.407 0.420

Fig. 4. Average overall classifier ranks. The top (on average) performing classifier is an SVM (Martinc et al.) classifier augmented with semantic features, selected
using either simple frequency counts or closeness centrality.

1 2 3 4 5 6 7

Number of features: 50
Number of features: 25
Number of features: 10

Number of features: 1000
Number of features: 500
Number of features: 0

Number of features: 100

critical distance: 3.0780

Fig. 5. Effect of semantic features on average classifier rank. Up to 100 semantic features positively affects the classifiers’ performance.
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In terms of feature selection, the following can be observed (Figure 4). On average, the best performance was obtained when
rarest terms heuristic was considered (first and fifth rank). Further, rarest terms, as well as the Personalized PageRank performed
better (on average) than mutual information, which can be considered as a baseline in this comparison. The results indicate that
myopic feature selection is not optimal when considering novel semantic features. We can also observe that on average the con-
figuration with doc2vec semantic features (SVM (Martinc et al.) + doc2vec) performs worse (ranked as sixth) than all other con-
figurations with SVM (Martinc et al.).

In Figure 5, the reader can observe the performances of all learners, averaged w.r.t. to the number of semantic features. The
drawn diagram indicates that adding 10, 25 or 50 features to a classifier perform similarly well, however, as also discussed in the
previous paragraph, the performance drops when larger semantic space is considered.

Finally, in Figure 6 it can be observed that the overall performance of Martinc et al.’s SVMs is the best, followed by generic
SVMs, as well as HILSTMs. We believe such performance drop with deep neural networks in general is due to concatenation of
documents prior to learning, and as only a fixed sequence length can be considered, potentially large parts of the token space
were neglected during learning. A similar result was, for example observed in the most recent PAN competition (Martinc et al.
2019).

5.2. Few-shot (per instance) learning

As discussed in the introductory sections, one of the goals of this paper was also to explore the setting, where only a handful of
text segments per user are considered. Even though such setting is not strictly a few-shot learning (Snell et al. 2017), reducing the
number of text segments per instance (e.g., user) aims to simulate a setting where there is limited information available. In
Table 3, we present the results for the setting, where only (up to) 10 text segments (e.g., tweets or paragraphs in a given news
article) were used for training.

The segments were sampled randomly. Only a single text segment per user was considered for the medical texts, as they con-
sist of at max of three commentaries. Similarly, as the BBC news data set consists of news article-genre pairs, we split the news

Fig. 6. Overall model performance. SVMs dominate the short text classification. The diagram shows performance averaged over all data sets, where the best
model parameterizations (see Table 2) were used for comparison.

Table 3
Effect of added semantic features to classification performance—few shot learning.

Semantic (tax2vec) Learner PAN (Age) PAN (Gender) MBTI BBC News Drugs (effect) Drugs (side)

0 SVM (Martinc et al.) 0.378 0.617 0.288 0.977 0.468 0.503
SVM (generic) 0.429 0.554 0.225 0.936 0.445 0.462

10 SVM (Martinc et al.) 0.39 0.616
0.292 0.981

0.47 0.503

SVM (generic) 0.429 0.557 0.225 0.948 0.444 0.464
25 SVM (Martinc et al.) 0.429

0.618
0.288 0.979 0.465 0.5

SVM (generic)
0.439

0.562 0.226 0.933 0.445 0.458

50 SVM (Martinc et al.) 0.402 0.617 0.288 0.974 0.474
0.504

SVM (generic) 0.42 0.557 0.225 0.919 0.442 0.46
100 SVM (Martinc et al.) 0.382 0.614 0.286 0.974

0.476
0.493

SVM (generic) 0.411 0.552 0.223 0.906 0.437 0.457
500 SVM (Martinc et al.) 0.359 0.604 0.276 0.959 0.465 0.471

SVM (generic) 0.365 0.548 0.22 0.8 0.419 0.435
1000 SVM (Martinc et al.) 0.34 0.59 0.266 0.925 0.442 0.46

SVM (generic) 0.359 0.535 0.213 0.704 0.412 0.417
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article to paragraphs, which we randomly sampled. The rationale for such sampling is to be able to evaluate tax2vec’s perfor-
mance when, for example, only a handful of paragraphs are available (e.g., only the lead).

We observe that tax2vec based features improve the learners’ performance on all of the data sets, albeit by a small margin.
The results indicate that adding semantic information improves the performance as only a handful of text segments does not nec-
essarily contain the relevant information.

5.3. Few-shot learning results

We next discuss the results of few-shot learning, as to our knowledge this type of experiments were not conducted before in
combination with semantic feature construction methods. The first observation is, semantic features indeed offer more consis-
tent performance improvements than those observed in Table 2, where incremental improvements were not observed on all
data sets. In a few-shot learning scenario, however, on all data sets, the inclusion of semantic space either resulted in similar or
better performance, indicating a consistent positive effect on the learning in a limited setting. The differences in learner’s perfor-
mance vary around 1% improvement. For example, a 1% improvement was observed for PAN 2016 (Age), BBC News and MBTI
data sets.

We finally comment on the classification performance when considering the BBC data set when comparing to reported state-
of-the-art. The observed results (� 98%) are competitive to neural approaches, such as for example as reported in Asim et al.
(2019), where similar span of accuracy was observed. Furthermore, doc2vec-based models have been observed to perform simi-
larly (Trieu et al. 2017). The results of this work indicate that by considering smaller number of paragraphs (instead of whole
documents), competitive performance can be observed on the BBC data set.

5.4. Interpretation of results

In this section we explain the intuition behind the effect of semantic features on the classifier’s performance. Note that the
best performing SVM models consisted of thousands of tf-idf word and character level features, yet only up to 100 semantic fea-
tures, when added, notably improved the performance. This effect can be understood via the way SVMs learn from high-dimen-
sional data. With each new feature, we increase the dimensionality of the feature space. Even a single feature, when added,
potentially impacts the hyperplane construction. Thus, otherwise problem-irrelevant features can become relevant when novel
features are added. We believe that adding semantic features to (raw) word tf-idf vector space introduces new information, cru-
cial for successful learning, and potentially aligns the remainder of features so that the classifier can better separate the points of
interest.

Table 4
Most informative features with respect to the target class (ranked by MI)—Classes represent news topics (BBC) and different age intervals (PAN
2016 (Age)). Individual target classes are sorted according to a descending mutual information with respect to a given feature.

Sorted target class-mutual information pairs

Semantic feature Average MI Class 1 Class 2 Class 3 Class 4 Class 5

BBC News data set
tory.n.03 0.057 politics:0.14 entertainment:0.05 business:0.03 sport:0.01 x
movie.n.01 0.059 business:0.14 politics:0.04 entertainment:0.04 sport:0.02 x
conservative.n.01 0.061 politics:0.15 entertainment:0.05 business:0.03 sport:0.01 x
vote.n.02 0.061 business:0.15 entertainment:0.04 politics:0.04 sport:0.02 x
election.n.01 0.063 entertainment:0.16 business:0.05 politics:0.04 sport:0.0 x
topology.n.04 0.063 entertainment:0.16 business:0.05 politics:0.04 sport:0.0 x
mercantile_establishment.n.01 0.068 politics:0.17 business:0.07 entertainment:0.03 sport:0.01 x
star_topology.n.01 0.069 politics:0.17 business:0.07 entertainment:0.03 sport:0.01 x
rightist.n.01 0.074 politics:0.18 business:0.06 entertainment:0.04 sport:0.01 x
marketplace.n.02 0.087 entertainment:0.22 business:0.06 politics:0.05 sport:0.01 x
PAN (Age) data set
hippie.n.01 0.007 25-34:0.01 35-49:0.01 18-24:0.0 65-xx:0.0 50-64:0.0
ceremony.n.03 0.007 25-34:0.01 35-49:0.01 18-24:0.01 65-xx:0.0 50-64:0.0
resource.n.02 0.008 50-64:0.02 18-24:0.01 25-34:0.0 65-xx:0.0 35-49:0.0
draw.v.07 0.008 25-34:0.02 35-49:0.01 50-64:0.01 65-xx:0.0 18-24:0.0
observation.n.02 0.008 25-34:0.02 35-49:0.01 50-64:0.01 65-xx:0.0 18-24:0.0
wine.n.01 0.008 35-49:0.02 25-34:0.01 18-24:0.01 50-64:0.01 65-xx:0.0
suck.v.02 0.008 25-34:0.02 50-64:0.02 35-49:0.0 65-xx:0.0 18-24:0.0
sleep.n.03 0.008 25-34:0.02 50-64:0.02 35-49:0.0 65-xx:0.0 18-24:0.0
recognize.v.09 0.009 25-34:0.02 35-49:0.02 18-24:0.0 50-64:0.0 65-xx:0.0
weather.v.04 0.009 25-34:0.02 50-64:0.02 35-49:0.0 18-24:0.0 65-xx:0.0
invention.n.02 0.009 25-34:0.02 35-49:0.01 18-24:0.01 50-64:0.0 65-xx:0.0
yankee.n.03 0.01 50-64:0.02 18-24:0.01 25-34:0.01 35-49:0.0 65-xx:0.0
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The other explanation for the notable differences in predictive performance is possibly related to small data set sizes, where
only a handful of features can be of relevance and thus notably impact a given classifier’s performance. We next discuss the
impact of the number of selected semantic features on performance.

5.5. How large semantic space should be considered?

Tables 3 and 4 show that a relatively small number of semantic features are needed for potential performance gains. Note that
the number of semantic features that need to be considered is around � 100 in most of the cases. The results indicate that a rela-
tively small proportion of the semantic space carries relevant (additional) information, whereas the remainder potentially intro-
duces noise that degrades the performance. Note that in the limit every term from the taxonomy derived from a given corpus
could be considered. In such a scenario, many terms would be irrelevant and would only introduce noise. The experiments con-
ducted in this paper indicate that the threshold for the number of features is in the order of hundreds, yet not more features.

6. Qualitative assessment and explainability of tax2vec

This section discusses the properties of the resulting semantic space in Section 6.1, which is followed by a discussion on the
explainability of the proposed tax2vec algorithm in Section 6.2.

6.1. Analysis of the resulting semantic space

In this section we discuss the qualitative properties of the obtained corpus-based taxonomies. We present the results con-
cerning hypernym frequency distributions, as well as the overall structure of an example corpus-based taxonomy.

As the proposed approach is entirely symbolic—each feature can be traced back to a unique hypernym—we explored the fea-
ture space qualitatively by exploring the statistical properties of the induced taxonomy using graph-statistical approaches. Here,
we modeled hypernym frequency distributions to investigate possible similarity with the Zipf’s law (Piantadosi 2014). The analy-
sis was performed using the Py3plex library (�Skrlj et al. 2019a). We also visualized the document-based taxonomy of the PAN
2016 (Age) data set using Cytoscape (Shannon et al. 2003).

The examples in this section are all based on the corpus-based taxonomy, constructed from the PAN 2016 (Age) data set. The
results of fitting various heavy-tailed distributions to the hypernym frequencies are given in Figure 7.

We fitted power law, truncated normal, log-normal and exponential distributions to the hypernym frequency data. For
detailed overview of the distributions we refer the reader to (Foss et al. 2011). One of the key properties we researched was
whether the underlying hypernym distribution is exponential or not, as non-exponential distributions indicate similarity with
the well known Zipf’s law (Piantadosi 2014). The hypernym corpus-based taxonomy is visualized in Figure 8.

Here, each node represents a hypernym obtained in word-to-hypernym mapping phase of tax2vec. The edges represent the
hypernymy relation between a given pair of hypernyms.

We next present the results of modeling the corpus-based hypernym frequency distributions. The two functions representing
the best fit to hypernym frequency distributions are indeed the power law and the truncated power law. As similar behavior is
observed for word frequency in documents (Piantadosi 2014), we believe hypernym distributions are a natural extension, as nat-
urally, if a high-frequency word maps to a given hypernym, the hypernym will be relatively more common with respect to the
occurrence of other hypernyms.

We observe that multiple connected components of varying sizes emerge. There exists only a single largest connected compo-
nent, which consists of more general noun hypernyms, such as entity and similar. Interestingly, many smaller components also
emerged, indicating parts of the word vector space could be mapped to very specific, disconnected parts of the WordNet taxon-
omy. Some examples of small disconnected components include (one component per line), indicating also verb-level semantics
can be captured and taken into account:

0spot.v.020, 0discriminate.v.030 0homestead.v.010, 0settle.v.210
0smell.v.050, 0perceive.v.020, 0understand.v.020
0dazzle.v.010, 0blind.v.010
0romance:v:020;0adore:v:010;0care_for:v:020;0love:v:030;0love:v:010
0surrender.v.010, 0yield.v.120, 0capitulate.v.010

6.2. Explainability of tex2vec

As discussed in the previous sections, tax2vec selects a set of hypernyms according to a given heuristic and uses them for
learning. One of the key benefits of such approach is that the selected semantic features can easily be inspected, hence potentially
offering interesting insights into the semantics, underlying the problem at hand.
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We discuss here a set of 30 features which emerged as relevant according to the “mutual information” heuristic when the BBC
News and PAN 2016 (Age) data sets were considered. Here, tax2vec was trained on 90% of the data, the rest was removed (test
set). The features and their corresponding mutual information scores are shown in Table 4.

We can observe that the “sport” topic (BBC data set) is not well associated with the prioritized features. On the contrary, terms
such as “rightist” and “conservative” emerged as relevant for classifying into the “politics” class. Similarly, “marketplace” for
example, appeared relevant for classifying into the “entertainment” class. Even more interesting associations emerged when the
same feature ranking was conducted on the PAN 2016 (Age) data set. Here, terms such as “resource” and “wine” were relevant
for classifying middle-aged (“wine”) and older adult (“resource”) populations. Note that the older population (65-xx class) was
not associated with any of the hypernyms. We believe the reason for this is that the number of available tweets decreases with
age.

We repeated a similar experiment (BBC data set) using the “rarest terms” heuristic. The terms which emerged are:

’problem.n.02’, ’question.n.02’, ’riddle.n.01’, ’salmon.n.04’, ’militia.n.02’, ’orphan.n.04’, ’taboo.n.01’, ’desertion.n.01’, ’dearth.
n.02’, ’outfitter.n.02’, ’scarcity.n.01’, ’vasodilator.n.01’, ’dilator.n.02’, ’fluoxetine.n.01’, ’high blood pressure.n.01’, ’amlodipine
besylate.n.01’, ’drain.n.01’, ’imperative mood.n.01’, ’fluorescent.n.01’, ’veneer.n.01’, ’autograph.n.01’, ’oak.n.02’, ’layout.n.01’,
’wall.n.01’, ’firewall.n.03’, ’workload.n.01’, ’manuscript.n.02’, ’cake.n.01’, ’partition.n.01’, ’plasterboard.n.01’

Even if the feature selection method is unsupervised (not directly associated to classes), we can immediately observe that the
features correspond to different topics, raging from medicine (e.g., high blood presure), politics (e.g., militia), food (e.g., cake) and
more, indicating that the rarest hypernyms are indeed diverse and as such potentially useful for the learner.

Fig. 7. Hypernym frequency distribution for the PAN 2016 (Age) data set. The equation above the upper plot denotes the coefficients of a power law distribution
(C is a constant). In real world phenomena, the exponent of the rightmost expression was observed to range between � 2 and � 3, indicating the hypernym
structure of the feature space is subject to a heavy-tailed (possibly best fit—power law) distribution. The Xmin denotes the hypernym count, after which notable
differences in hypernym counts—scale free behavior is observed. Such distribution is to some extent expected, as some hypernyms are more general than others,
and thus present in more document-hypernym mappings.
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The results suggest that tax2vec could potentially also be used to inspect the semantic background of a given data set directly,
regardless of the learning task. We believe there are many potential uses for the obtained features, including the following, to be
addressed in further work.

� Concept drift detection, i.e. topics change over time; could it be qualitatively detected?
� Topic domination, i.e. what type of topic is dominant with respect to e.g., a geographical region inspected?
� What other learning tasks can benefit by using second level semantics? Can the obtained features be used, for example, for
fast keyword search?

7. Implementation and availability

The tax2vec algorithm is implemented in Python 3, where Multiprocessing11, SciPy (Jones et al. (2001�) and Numpy (Walt
et al. 2011) libraries are used for fast (sparse), vectorized operations and parallelism.

As performing a grid search over several parameters is computationally expensive, the majority of the experiments were con-
ducted using the SLING supercomputing architecture.12

We developed a stand-alone library that relatively seamlessly fits into existing text mining workflows, hence the Scikit-learn’s
model syntax was adopted (Pedregosa et al. 2011). The algorithm is first initiated as an object:

vectorizer¼ tax2vecðheuristic;number of featuresÞ
followed by standard fit and transform calls:

new_features¼vectorizer:fit_transformðcorpus; optional labelsÞ
Such implementation offers fast prototyping capabilities, needed ubiquitously in the development of learning algorithms and

executable NLP and text mining workflows.
The proposed tax2vec approach is freely available as a Python 3 library at https://github.com/SkBlaz/tax2vec, which includes

also the installation instructions.

Fig. 8. Topological structure of the hypernym space, induced from the PAN 2016 (Age) data set. Multiple connected components emerged, indicating not all
hypernyms map to the same high-level concepts. Such segmentation is data set-specific, and can also potentially provide the means to compare semantic spaces
of different data sets. It can be observed that the obtained space is organized in multiple separate components. The largest are drawn at the topmost part of the
figure, whereas the smaller ones at the bottom. Such segmentation corresponds to generalizations based on different parts of speech, e.g., nouns and verbs.

11 https://docs.python.org/2/library/multiprocessing.html
12 http://www.sling.si/sling/
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8. Conclusions and future work

In this work we propose tax2vec, a parallel algorithm for taxonomy-based enrichment of text documents. Tax2vec first
maps the words from individual documents to their hypernym counterparts, which are considered as candidate features
and weighted according to a normalized tf-idf metric. To select only a user-specified number of relevant features, tax2vec
implements multiple feature selection heuristics, which select only the potentially relevant features. The sparse matrix of
constructed features is finally used alongside the bag-of-words document representations for the task of text classification,
where we study its performance on small data sets, where both the number of text segments per user, as well as the
number of overall users considered are small.

The tax2vec approach considerably improves the classification performance especially on data sets consisting of tweets, but
also on the news. The proposed implementation offers a simple-to-use API, which facilitates inclusion into existing text prepro-
cessing workflows.

As the next step, the tax2vec will be tested on SMS spam data (Delany et al. 2012), which is another potentially interesting
short text data set where taxonomy-based features could improve performance and help the user better understand what classi-
fies as spam (and what not).

One of the drawbacks we plan to address is the support for arbitrary directed acyclic multigraphs—structures commonly used
to represent background knowledge. Support for such knowledge would offer a multitude of applications in e.g., biology, where
gene ontology and other resources which annotate entities of interest are freely available.

In this work we focus on BoW representation of documents, yet we believe tax2vec could also be used along Continuous Bag-
of-Words (CBoW) models. We leave such experimentation for further work.

Even though we use Lesk for the disambiguation task, we believe recent advancements in neural disambiguation (Iacobacci
et al. 2016) could also be a “drop-in” replacement for this part of tax2vec. We leave the exploration of such options for further
work.

In this work we explored how WordNet could be adapted for scalable feature construction, however tax2vec is by no means
limited to manually curated relational (hierarchical) structures. As part of the further work, we believe feature construction based
on knowledge graphs could also be an option.

The abundance of neural embedding methods introduced in the recent years can be complementary to tax2vec. Understand-
ing how the performance can be improved by jointly using both tax2vec’s features and neural network-based ones is a potential
interesting research opportunity. Further, in NLP setting, not much attention is devoted to this topic, thus we believe these results
offer new trajectories for few-shot learning research.

Other further work considers joining the tax2vec features with existing state-of-the-art deep learning approaches, such as the
hierarchical attention networks, which are—according to this study—not very suitable for learning on scarce data sets. We believe
that the introduction of semantics into deep learning could be beneficial for both performance, as well as the interpretability of
currently poorly understood black-box models.

Finally, as the main benefit of tax2vec is its explanatory power, we believe it could be used for fast keyword search; here, for
example, new news or articles could be used as inputs, where the ranked list of semantic features could be directly used as candi-
date keywords.
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Appendix A. Personalized PageRank algorithm

The Personalized PageRank (PPR) algorithm is described below. Let V represent the nodes of the corpus-based taxonomy. For
each node u 2 V, a feature vector is computed by calculating the stationary distribution of a random walk, starting at node u. The
stationary distribution is approximated by using power iteration, where the i-th component of the approximation in the k-th iter-
ation is computed as
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guðiÞðkþ1Þ ¼a ¢
X
j! i

guðjÞðkÞ
doutj

þð1�aÞ ¢ vuðiÞ; k¼1;2;⋯ ðA:1Þ

The number of iterations k is increased until the stationary distribution converges to the stationary distribution vector
(PPR value for node i). In the above equation, a is the damping factor that corresponds to the probability that a random
walk follows a randomly chosen outgoing edge from the current node rather than restarting its walk. The summation
index j runs over all nodes of the network that have an outgoing connection toward j, (denoted as j! i in the sum), and
doutj is the out degree of node dj. The term vu(i) is the restart distribution that corresponds to a vector of probabilities for a
walker’s return to the starting node u, i.e. vuðuÞ¼1 and vuðiÞ¼0 for i 6¼ u. This vector guarantees that the walker will jump back
to the starting node u in case of a restart.13

Appendix B. Example document split

While for the data sets consisting of tweets and short comments, the number of segments in a document corresponds to the
number of tweets or comments by a user, in the news data set, we varied the size of the news (to create short documents) by
splitting the news into paragraphs (we denote such paragraph splits with |||). An example of segmentation of a news from the
BBC data set14 is listed below.

The decision to keep interest rates on hold at 4.75% earlier this month was passed 8-1 by the Bank of England’s rate-
setting body, minutes have shown.||| One member of the Bank’s Monetary Policy Committee (MPC) - Paul Tucker - voted
to raise rates to 5%. The news surprised some analysts who had expected the latest minutes to show another unanimous
decision. Worries over growth rates and consumer spending were behind the decision to freeze rates, the minutes
showed. The Bank’s latest inflation report, released last week, had noted that the main reason inflation might fall was
weaker consumer spending.||| However, MPC member Paul Tucker voted for a quarter point rise in interest rates to 5%. He
argued that economic growth was picking up, and that the equity, credit and housing markets had been stronger than
expected.||| The Bank’s minutes said that risks to the inflation forecast were “sufficiently to the downside” to keep rates
on hold at its latest meeting. However, the minutes added: “Some members noted that an increase might be warranted in
due course if the economy evolved in line with the central projection”. Ross Walker, UK economist at Royal Bank of Scot-
land, said he was surprised that a dissenting vote had been made so soon. He said the minutes appeared to be “trying to
get the market to focus on the possibility of a rise in rates”. “If the economy pans out as they expect then they are proba-
bly going to have to hike rates.” However, he added, any rate increase is not likely to happen until later this year, with
MPC members likely to look for a more sustainable pick up in consumer spending before acting.

This news article is split by a parser into the following four segments (and in short document setting only one paragraph is
used to represent the document).

� The decision to keep interest rates on hold at 4.75% earlier this month was passed 8-1 by the Bank of England’s rate-setting
body, minutes have shown.

� One member of the Bank’s Monetary Policy Committee (MPC) - Paul Tucker - voted to raise rates to 5%. The news sur-
prised some analysts who had expected the latest minutes to show another unanimous decision. Worries over growth
rates and consumer spending were behind the decision to freeze rates, the minutes showed. The Bank’s latest inflation
report, released last week, had noted that the main reason inflation might fall was weaker consumer spending.

� However, MPC member Paul Tucker voted for a quarter point rise in interest rates to 5%. He argued that economic growth was
picking up, and that the equity, credit and housing markets had been stronger than expected.

� The Bank’s minutes said that risks to the inflation forecast were“sufficiently to the downside” to keep rates on hold at
its latest meeting. However, the minutes added: “Some members noted that an increase might be warranted in due
course if the economy evolved in line with the central projection.” Ross Walker, UK economist at Royal Bank of Scot-
land, said he was surprised that a dissenting vote had been made so soon. He said the minutes appeared to be “trying
to get the market to focus on the possibility of a rise in rates.” “If the economy pans out as they expect then they are
probably going to have to hike rates.” However, he added, “any rate increase is not likely to happen until later this
year, with MPC members likely to look for a more sustainable pick up in consumer spending before acting.”

Appendix C. Impact of different number of features across data sets

Impact of the number of features on the F1 performance of the SVM (generic) classifier are shown in Figure C1.

13 Note that if the binary vector were instead composed exclusively of ones, the iteration would compute the global PageRank vector, and Equation A.1 would
correspond to the standard PageRank iteration.

14 https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv
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2.5 Combining Symbolic Features with Neural Semantic Fea-
tures

As was already mentioned above, one of the main deficiencies of AP approaches based on
BON features is their inability to model sequential information and their consequential
limited grasp of semantic information. On the other hand, neural approaches are very
successful at modelling semantics of text but lack an effective weighting scheme capable
of determining the importance of specific words (and the information they carry) in the
document.

To alleviate the above-mentioned problems of both methods, in Martinc and Pollak
(2019) we combined sophisticated feature engineering techniques used in traditional ap-
proaches to text classification with the neural automatic feature construction, in order to
achieve synergy between these two feature types. To put it differently, in this section
we aim to achieve the stated goal G1 and confirm the hypothesis H2.

In this study, the focus was on the task of discriminating between similar languages
and the proposed method was tested by distinguishing between varieties of 8 different lan-
guages. According to the research on neural approaches towards author profiling presented
in Section 2.2, we opted to use character-level CNNs, which proved efficient in previous
work on discriminating between similar languages. CNNs are able to extract the most
important character sequences of a text by employing a max-over-time pooling operation
(Collobert et al., 2011b). These sequences resemble character n-grams that were used in
nearly every winning approach in the past shared task, which partially explains the good
performance of CNNs on previous language variety classification tasks. Additionally, CNNs
preserve the order in which the text areas with high predictive power appear in the text.

To compensate for the lack of an effective weighting scheme and global document/corpus-
level information available to the network, besides feeding the network a character sequence,
from which convolutional features are generated, we propose to feed the network an ad-
ditional input in the form of a TF-IDF/BM25 matrix. Same as in the proposed tax2vec
approach above, here we also employ early simple fusion and the TF-IDF/BM25 matrix is
concatenated to the flattened (changed from a two-dimensional to a one dimensional vec-
tor) convolutional features. The resulting concatenation is fed to a set of fully connected
feed forward layers and activation layers responsible for producing the final probability dis-
tribution over language variety classes. The entire architecture of the system is presented
in Figure 2.3.

The proposed architecture is a hybrid between a traditional feature engineering ap-
proach, which relies on different kinds of weighted BON features, and a convolutional
approach to text classification. Combining two distinct text classification methods allows
the architecture to leverage character-level and more global document/corpus-level infor-
mation.

The method was tested on eight languages, each of them containing several varieties.
We report results on the DSL Corpus Collection (DSLCC) v4.0 (Tan et al., 2014) used in
VarDial 2017 (Zampieri et al., 2017), which contains six language groups. We also tested
the methodology on two smaller corpora, the Arabic Dialect Identification Corpus (ADIC)
used in a VarDial 2016 ADI shared task (Malmasi et al., 2016) and the German Dialect
Identification Corpus (GDIC) used in a VarDial 2018 GDI shared task (Zampieri et al.,
2018) in order to determine how dataset size and characteristics affect the competitiveness
of the proposed system.

For experiments on the DSLCC v4.0, we chose to use a two-step approach, as first
proposed by Goutte et al. (2014), where in the first step the general classifier is trained to
identify the language group for every specific document. In the second step, six different
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classification models are trained, one for each language group. After a document is classified
as belonging to a specific language group by the general classifier in the first step, it is
assigned to the appropriate classifier, which generates the final language variety prediction.

The results of the experiments on the DSLCC v4.0 are presented in Table 2.3. While
distinguishing between different language groups (All-language groups (TF-IDF) and All-
language groups (BM25) rows in Table 2.3) is trivial for the system, which achieves almost
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Figure 2.3: Architecture of the proposed neuro-symbolic language variety classifier: layer
names and input parameters are written in bold, layer output sizes are written in normal
text, msl stands for maximum sequence length and csl stands for concatenated sequence
length.
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Table 2.3: Results of the proposed neuro-symbolic language variety classifier on the DSLCC
v4.0 for different language groups, as well as for the discrimination between language groups
(All-language groups). Also the results for all language varieties (All-language varieties) are
provided, for which a comparison with the official VarDial 2017 winners is made. Results
for both weighting schemes, TF-IDF and BM25, are reported separately.

Language group (weighting) F1 (weighted) F1 (micro) F1 (macro) Accuracy
All-language groups (TF-IDF) 0.9981 0.9981 0.9980 0.9981
All-language groups (BM25) 0.9979 0.9979 0.9980 0.9980
Spanish (TF-IDF) 0.9136 0.9140 0.9136 0.9140
Spanish (BM25) 0.9042 0.9047 0.9042 0.9047
Slavic (TF-IDF) 0.8645 0.8650 0.8645 0.8650
Slavic (BM25) 0.8752 0.8753 0.8752 0.8753
Farsi (TF-IDF) 0.9685 0.9685 0.9685 0.9685
Farsi (BM25) 0.9690 0.9690 0.9690 0.9690
French (TF-IDF) 0.9570 0.9570 0.9570 0.9570
French (BM25) 0.9545 0.9545 0.9545 0.9545
Malay and Indonesian (TF-IDF) 0.9855 0.9855 0.9855 0.9855
Malay and Indonesian (BM25) 0.9860 0.9860 0.9860 0.9860
Portuguese (TF-IDF) 0.9480 0.9480 0.9480 0.9480
Portuguese (BM25) 0.9460 0.9460 0.9460 0.9460
All-language varieties (TF-IDF) 0.9310 0.9312 0.9310 0.9312
All-language varieties (BM25) 0.9304 0.9305 0.9304 0.9305

VarDial 2017 winner
(Bestgen, 2017) 0.9271 0.9274 0.9271 0.9274

perfect weighted F1 score, results for the second step of the two-step classification approach
show that the difficulty of distinguishing language varieties within different language groups
varies. The system had most difficulties with distinguishing between different Slavic lan-
guages, where it achieved by far the worst results in terms of weighted F1 no matter the
weighting scheme implemented. The second most difficult were Spanish varieties and the
system had the least problems with distinguishing between Malay and Indonesian lan-
guages.

When it comes to comparing two weighting schemes, the differences are rather small for
all varieties, suggesting that the choice of a weighting regime does not have a large impact
on the performance of the system. Overall (rows All-language varieties (TF-IDF) and All-
language varieties (BM25) in Table 2.3), the neural network outperforms the SVM-based
approach used by the winners of the shared task by about 0.4 percentage points according
to all measures when TF-IDF weighting scheme is used.

The results of the proposed approach on the ADIC and GDIC corpora in comparison
to the winners of the VarDial ADI 2016 and VarDial GDI 2018 shared tasks are presented
in Table 2.4. While the proposed system performs well on the ADIC dataset, which is
much smaller (in terms of number of documents per class) than the corpora in the DSLCC
v4.0.0, beating the state-of-the-art by a narrow margin when TF-IDF weighting is used, it
does not compare favorably to the state-of-the-art on the GDIC dataset, where it performs
almost six percentage points lower than the HeLI method (T. S. Jauhiainen et al., 2018a)
in terms of macro F1 score. This is in line with the hypothesis that neural and hybrid
approaches are more sensitive to the amount of data available and do not perform better
than SVMs and other symbolic approaches on smaller datasets.
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Table 2.4: Results of the proposed neuro-symbolic language variety classifier on the ADIC
and GDIC. Results for both weighting schemes, TF-IDF and BM25, are reported sepa-
rately. The results in bold indicate the best performing system for a specific dataset when
a baseline is available.

Language group (weighting) F1 (weighted) F1 (micro) F1 (macro) Accuracy
ADIC (TF-IDF) 0.5152 0.5123 0.5147 0.5123
ADIC (BM25) 0.5090 0.5097 0.5067 0.5097

VarDial ADI 2016 winner
(Malmasi & Zampieri, 2016) 0.5132 / / 0.5117

GDIC (TF-IDF) 0.6281 0.6294 0.6280 0.6294
GDIC (BM25) 0.6289 0.6311 0.6289 0.6311

VarDial GDI 2018 winner
(T. S. Jauhiainen et al., 2018a) / / 0.6860 /

Table 2.5: Results of the ablation study. Column CNN F1 (weighted) presents performance
of the system in terms of weighted F1 if only CNN-based features are used, column BON
F1 (weighted) presents performance of the system if only TF-IDF-weighted BON features
are used and column All F1 (weighted) presents the performance when these two types of
features are combined.

Language group All F1 (weighted) CNN F1 (weighted) BON F1 (weighted)
DSLCC v4.0
All-language groups 0.9981 0.9971 0.9976
Spanish 0.9136 0.8599 0.8863
Slavic 0.8645 0.8300 0.8594
Farsi 0.9685 0.9465 0.9610
French 0.9570 0.9325 0.9420
Malay and Indonesian 0.9855 0.9560 0.9875
Portuguese 0.9480 0.8994 0.9434
All-language varieties 0.9310 0.8935 0.9199

ADIC 0.5152 0.3971 0.5177
GDIC 0.6281 0.6059 0.6190

In Martinc and Pollak (2019) we also conduct an ablation study to determine the
contribution of the neural and symbolic features. The results of the study are presented
in Table 2.5. For these experiments, we first removed parts of the system dealing with the
convolutional processing of the character sequence input to measure the contribution of
weighted BON features. Second, we removed the symbolic TF-IDF/BM25 matrix input to
measure the contribution of the CNN-generated neural features (only TF-IDF weighting
was employed in the ablation study).

Note that a classifier with symbolic features (BON classifier) in all cases outperforms
the classifier with neural features (CNN classifier). The difference in performance is the
largest in the case of ADIC, where the difference is almost eleven percentage points. The
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difference in performance is the smallest for the French language variety classification in
the DSLCC v4.0. corpus, only around one percentage point. By combining both types of
features, we manage to outperform the BON classifier on all but one language group in the
DSLCC v4.0 and also on the GDIC corpus. The synergy effect between two feature types
is the largest in case of the Spanish language variety. The entire study with all the details
is enclosed below.
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Abstract
This paper presents a novel neural architecture capable of outperforming state-of-the-art systems on the
task of language variety classification. The architecture is a hybrid that combines character-based convo-
lutional neural network (CNN) features with weighted bag-of-n-grams (BON) features and is therefore
capable of leveraging both character-level and document/corpus-level information. We tested the system
on the Discriminating between Similar Languages (DSL) language variety benchmark data set from the
VarDial 2017 DSL shared task, which contains data from six different language groups, as well as on two
smaller data sets (the Arabic Dialect Identification (ADI) Corpus and the German Dialect Identification
(GDI) Corpus, from the VarDial 2016 ADI and VarDial 2018 GDI shared tasks, respectively). We man-
aged to outperform the winning system in the DSL shared task by a margin of about 0.4 percentage
points and the winning system in the ADI shared task by a margin of about 0.2 percentage points in
terms of weighted F1 score without conducting any language group-specific parameter tweaking. An abla-
tion study suggests that weighted BON features contribute more to the overall performance of the system
than the CNN-based features, which partially explains the uncompetitiveness of deep learning approaches
in the past VarDial DSL shared tasks. Finally, we have implemented our system in a workflow, available
in the ClowdFlows platform, in order to make it easily available also to the non-programming members
of the research community.

Keywords: language variety; author profiling; text classification; convolutional neural network; bag-of-n-grams

1. Introduction
Author profiling (AP), which deals with learning about the demographics of a person based on
the text she or he produced, is becoming a strong trend in the field of natural language processing
(NLP). Tasks such as age, gender, and language variety prediction (automatic distinction between
similar dialects or languages) are becoming increasingly popular, in part also because of the mar-
keting potential of this research. Most AP research communities are centered around a series of
scientific events and shared tasks on digital text forensics, the two most popular being the evalu-
ation campaign VarDial (Varieties and Dialects)a (Zampieri et al. 2014), focused on tasks related
to the study of linguistic variation, and an event called PAN (Uncovering Plagiarism, Authorship,
and Social Software Misuse)b, which first took place in 2011 and was followed by a series of shared
tasks organized since 2013 (Rangel et al. 2013).

ahttp://corporavm.uni-koeln.de/vardial/sharedtask.html
bhttp://pan.webis.de/
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Table 1. Winning systems for AP classification tasks in PAN AP and VarDial DSL shared tasks
(language variety tasks in bold)

Year VarDial (DSL – closed track) PAN (AP)

2014 SVM+ BON (Goutte, Léger, and Carpuat (2014)) LIBLINEAR5 + BON
(López-Monroy et al. 2014)

2015 SVM+ BON (Malmasi and Dras 2015) LIBLINEAR5 + BON
(Alvarez-Carmona et al. 2015)

2016 SVM+ BON (Çöltekin and Rama 2016) SVM+ BON
(Vollenbroek et al. 2016)

2017 SVM+ BON (Bestgen 2017) SVM+ BON (Basile et al. 2017)

While deep learning approaches are gradually taking over different areas of NLP, the best
approaches to AP still use more traditional classifiers and require extensive feature engineering
(Rangel, Rosso, Potthast et al. 2017). This fact can be clearly seen if we look at the architectures
used by the teams winning the AP shared tasks in recent years. Table 1 presents the winning
approaches to the VarDial Discriminating between Similar Languages(DSL) shared tasks and PAN
AP (gender, age, personality, and language variety prediction) tasks between 2014 and 2017c. In
fact, six out of eight winning teams used one or an ensemble of Support Vector machine (SVM)
classifiers and bag-of-n-grams (BON) featuresd for classification (two other winning teams used a
LIBLINEAR classifiere and BON features), and when it comes to the task of DSL (all VarDial DSL
tasks and PAN 2017 AP task), SVM classifiers with BON features have been used by all of the win-
ning teams. The best ranking system that employed a deep learning architecture was developed by
Miura et al. (2017) and ranked fourth in the PAN 2017 AP shared task.

The main contribution of this paper is to demonstrate that it is possible to build a neural
architecture capable of achieving state-of-the-art results in the field of AP, and more specifically
on the task of DSL. The proposed neural system is unique in a sense that it combines sophis-
ticated feature engineering techniques used in traditional approaches to text classification with
the newer neural automatic feature construction in order to achieve synergy between these two
feature types. Experiments were conducted on eight distinct language varieties. First, we report
results on the DSL Corpus Collection (DSLCC) v4.0 (Tan et al. 2014) used in VarDial 2017
(Zampieri et al. 2017), which was chosen because of its size (with 294,000 documents it is by far the
largest corpus used in the presented shared tasks) and because it contains six different language
groups, which also allows to explore the possibility of building a generic architecture that would
discriminate well between languages in many different language groups without any language-
group-specific parameter tweaking. Second, we report results on two much smaller corpora, the
Arabic Dialect Identification Corpus (ADIC) used in a VarDial 2016 ADI shared task (Malmasi
et al. 2016b) and the German Dialect Identification Corpus (GDIC) used in a VarDial 2018 GDI
shared task (Zampieri et al. 2018) in order to determine how data set size and characteristics affect
the competitiveness of the proposed system. Finally, we want to encourage the reproducibility of
results and offer a larger research community (including linguists and social scientists) an easy
out-of-the-box way of using our system. Therefore, we have not only published our code online
(http://source.ijs.si/mmartinc/NLE_2017) but also implemented the architecture in the
clowd-based visual programming system ClowdFlows (Kranjc, Podpečan, and Lavrač (2012)).

cVarDial evaluation campaign 2018 was not included because there was no DSL shared task. PAN 2018 gender classification
task is not included because the gender classification task dealt with determining the gender of the author from both text and
image data.

dThe term BON features is used in a broader sense here, covering features such as bag-of-words, character, and word BON
and bag-of-part-of-speech tags.

eIt is unclear from the system description papers by López-Monroy et al. (2014) and Alvarez-Carmona et al. (2015) whether
linear SVM or logistic regression classifier was used.
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The paper is structured as follows. Section 2 addresses the related work on text classifica-
tion in the field of AP. Section 3 describes the architecture of the proposed neural classification
system in detail, while in Section 4 we report on our experimental setup. Results of the experi-
ments and an error analysis are presented in Section 5, followed by an ablation study in Section 6.
Section 7 presents the implementation of our approach in the ClowdFlows platform and finally,
the conclusions and directions for further work are presented in Section 8.

2. Related work
The most popular approach to language variety classification usually relies on BON features and
SVM classifiers (see Table 1). Bestgen (2017), the winner of the VarDial 2017 DSL task, used an
SVM classifier with character n-grams, capitalized word character n-grams, n-grams of part-of-
speech (POS) tags, and global statistics (proportions of capitalized letters, punctuation marks,
spaces, etc.) features. N-grams had sizes from one to seven and different feature configurations
were used for different language groups. The novelty of this approach was the use of the BM25
weighting scheme (Robertson and Zaragoza 2009) instead of the traditional term frequency-
inverse document frequency (TF-IDF). BM25 (also called Okapi BM25) is a version of TF-IDF
with some modifications made to each of the two components (term frequency and inverse docu-
ment frequency) that, most importantly, allow it to take into account the length of the document.
The classical TF-IDF formula is

TF − IDF = tf ∗ log(
N
df

)

where tf is the number of terms in the document, N is the number of documents in the corpus,
and df the number of documents that contain the term. On the other hand, the formula for BM25
is the following:

BM25= tf
tf + k1 ∗ (1− b+ b ∗ dl

dl−avgdl
)
∗ log(

N − df + 0.5
df + 0.5

)

where k1 is a free parameter for tuning the asymptotic maximum of the term frequency compo-
nent of the equation, dl is a document length, avgdl an average length of a document in the corpus,
and b a free parameter for fine-tuning the document length normalization part of the equation.
While Bestgen (2017) showed in his experiments that the choice of the weighting scheme does
impact the performance of the classifier, the general employment of different weighting schemes
by the best performing systems in past shared tasks (Zampieri et al. 2017) suggests that feature
weighting in general is positively correlated with gains in classification performance.

A very similar SVM-based system but with simpler features (just word unigrams, bigrams and,
character three- to five-grams) was used by the winners of the PAN 2017 competition Basile et
al. (2017). The authors of the paper also discovered that adding more complex features into the
model actually negatively affected its performance. An SVM ensemble with almost identical fea-
tures (word unigrams and character one- to six-grams) was also used by the winners of the VarDial
2016 ADI task Malmasi et al. (2016a). An even more minimalistic SVM-based approach was pro-
posed by the winners of the VarDial 2016 DSL competition (Çöltekin and Rama 2016), who used
only character three- to seven-grams as features. The authors also report on the failed attempt to
build two neural networks capable of beating the results achieved by the SVM, first one being the
FastText model proposed by Joulin et al. (2016) and the second one a hierarchical model based
on character and word embeddings. Another attempt of tackling the task with a neural approach
was reported by Criscuolo and Aluisio (2017). They ranked ninth with a hybrid configuration
composed of a word-level multi-layer-perceptron model and a character-level Naive Bayes model.
They also experimented with a word-level convolutional neural network (CNN), which performed
slightly worse than their hybrid classifier.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324919000299
Downloaded from https://www.cambridge.org/core. IP address: 213.250.20.225, on 03 Mar 2021 at 12:19:29, subject to the Cambridge Core terms of use, available at

58 Chapter 2. Author Profiling



610 M. Martinc and S. Pollak

There have also been some quite successful attempts of tackling the language variety prediction
with neural networks. Miura et al. (2017) ranked fourth in the PAN 2017 shared task by using a
system consisting of a recurrent neural network layer, a CNN layer, and an attention mechanism.
In a set of VarDial 2018 evaluation campaign tasks, Ali tackled the tasks of distinguishing between
four different Swiss German dialects (Ali 2018a), five Arabic dialects (Ali 2018b), and five closely
related languages from the Indo-Aryan language family (Ali 2018c), ranking second in the first and
second task and fourth in the third task, respectively. The system is based on character-level CNNs
and recurrent networks. The one-hot encoded input sequence of characters enters the network
through the recurrent GRU layer used as an embedding layer. Next is the convolutional layer with
different filter sizes, ranging from two to seven, which is followed by a batch normalization, max-
pooling, dropout, and finally a softmax layer used for calculating the probability distribution over
the labels.

While neural networks were not a frequent choice in VarDial DSL 2017 (Zampieri et al. 2017),
in the VarDial DSL 2016 shared task (Malmasi et al. 2016b) three teams used some form of CNN.
Belinkov and Glass (2016) used a character-level CNN and ranked sixth out of seven teams,
achieving more than six percentage points lower accuracy than the winning system. A somewhat
more sophisticated system was employed by Bjerva (2016), who combined CNN with recurrent
units, developing a so-called residual network that takes as input sentences represented at a byte
level. He ranked fifth in the competition. A third team called Uppsala used a word-level CNN but
did not submit a report about their approach.

Two rear occasions when an SVM-based system did not win in a language variety classifica-
tion shared task occurred at VarDial 2018 GDI and Indo-Aryan Language Identification (ILI)
tasks, where Jauhiainen et al. beat the nearest competition by a large margin of four percent-
age points (Jauhiainen, Jauhiainen, and Lindén (2018a)) and more than five percentage points
(Jauhiainen, Jauhiainen, and Lindén (2018b)), respectively. Their Helsinki language identification
(HeLI) method with adaptive language modeling was in both cases calculated on character four-
grams. The HeLI system was, however, outperformed by a margin of almost five percentage points
at the VarDial 2018 Discriminating between Dutch and Flemish in Subtitles task by an SVM-based
system proposed by Çöltekin, Rama, and Blaschke (2018).

3. System architecture
Research presented in Section 2 indicates that using character-level CNNs might be the most
promising neural approach to the task of DSL. CNNs are able to identify important parts of a text
sequence by employing a max-over-time pooling operation (Collobert et al. 2011), which keeps
only the character sequences with the highest predictive power in the text. These sequences of pre-
defined lengths resemble character n-grams, which were used in nearly every winning approach
in the past shared task, but the CNN approach also has the advantage over the traditional BON
approaches that it preserves the order in which these text areas with high predictive power appear
in the text.

On the other hand, its main disadvantage could be the lack of an effective weighting scheme
that would be capable of determining how specific these character sequences are for every input
document. The data are fed into a neural classifier in small batches; therefore, it is impossible for
it to obtain a somewhat global view on the data and its structure, which is encoded in the more
traditional TF-IDF (or BM25) weighted input matrix. Another intuition that might explain the
usefulness of weighting schemes for the specific task of language variety classification is related
to named entities, for which it was shown in the past shared tasks that they in many cases reflect
the origin of the text (Zampieri et al. 2015). The hypothesis is that these entities are quite rare
and somewhat document specific and are therefore given large weights by different weighting
schemes, encouraging the classifier to pay attention to them. The importance of choosing an
effective weighting scheme on the task of DSL is also emphasized in the research by Bestgen
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Figure 1. System architecture: layer names
and input parameters are written in bold,
layer output sizes are written in normal text,
msl stands for maximum sequence length,
and csl stands for concatenated sequence
length.

(2017), the winner of the VarDial 2017 DSL task, who managed to gain some performance boost
by replacing the TF-IDF weighting scheme with BM25.

Our architecture (visualized in Figure 1) builds on these findings from the literature and is in
its essence an effective hybrid between a traditional feature engineering approach, which relies
on different kinds of BON features, and a newer neural feature engineering approach to text
classification. This combination of two distinct text classification architectures is capable of lever-
aging character-level and more global document/corpus-level information and achieving synergy
between these two data flows. The main idea is to improve on standard CNN approaches by
adding an additional input to the network that would overcome the lack of an effective weighting
scheme. Therefore, the text is fed to the network in the form of two distinct inputs (as presented
in Figure 1):

• Char input: Every document is converted into a numeric character sequence (every character
is represented by a distinct integer) of length corresponding to the number of characters in
the longest document in the train set (zero value padding is added after the document char-
acter sequence and truncating is also performed at the end of the sequence if the document
in the validation or test set is too long).

• TF-IDF/BM25 matrix: We explore the effect of two distinct weighting schemes on the perfor-
mance of the classifier; therefore, input data set is converted into a matrix of either TF-IDF
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or BM25 weighted features with a TfidfVectorizer from ScikitLearn (Pedregosa et al. 2011)
or our own implementation of the BM25Vectorizer. The matrix is calculated on character
n-grams of sizes three, four, five, and six with a minimum document frequency of five and
appearing in at most 30% of the documents in the train set. Sublinear term frequency scal-
ing is applied in the term frequency calculation when TfidfVectorizer is used and for BM25
weighting parameters b and k1 are set to 0.75 and 1.2, respectively, same as in Bestgen (2017).

The architecture for processingChar input is a relatively shallow character-level CNNwith ran-
domly initialized embeddings of size msl× 200, where msl stands for maximum sequence length.
Assuming that w is a convolutional filter, b is a bias, and f a nonlinear function (a rectified lin-
ear unit (ReLU) in our case), a distinct character n-gram feature ci is produced for every possible
window of h characters xi:i+h−1 in the document according to the convolutional equation:

ci = f (w · xi:i+h−1 + b)
In the first step, we employ two parallel convolutional layers (one having a window of size four
and the other of size five), each of them having 172 convolutional filters. These layers return two
feature maps of size (msl−ws+ 1)× 172, where ws is the window size. Batch normalization and
max-over-time pooling operations (Collobert et al. 2011) are applied on both feature maps in
order to filter out features with low predictive power. These operations produce two matrices of
size (msl−ws+ 1)/mws× 172, where sizes of max-pooling windows (mws) correspond to con-
volution window sizes. Output matrices are concatenated and the resulting matrix is fed into a
second convolutional layer with 200 convolutional filters and window size five. Batch normaliza-
tion and max-over-time pooling are applied again and after that we conduct a dropout operation
on the output of the layer, in which 40% of input units are dropped in order to reduce overfitting.
Finally, the resulting output is flattened (changed from a two-dimensional to a one-dimensional
vector) and passed to a Concatenation layer, where it is concatenated with the input TF-IDF/BM25
matrix. The resulting concatenation is passed on to a fully connected layer (Dense) with a ReLU
activation layer and dropout is conducted again, this time on the concatenated vectors. A final
step is passing the resulting vectors to a dense layer with a Softmax activation, responsible for
producing the final probability distribution over language variety classes.

4. Experimental setup
This section describes the data sets and the methodology used in our experiments.

4.1 Data
All experiments were conducted on three corpora described in Table 2:

• DSLCC v4.0 (Tan et al. 2014)f: the corpus used in the VarDial 2017 DSL shared task. The
corpus contains 294,000 short excerpts of news texts divided into 6 distinct language groups
(Slavic, Indonesian and Malay, Portuguese, Spanish, French, and Farsi) and covering 14
language varieties in total: Bosnian, Croatian and Serbian; Malay and Indonesian; Persian
and Dari; Canadian and Hexagonal French; Brazilian and European Portuguese; Argentine,
Peninsular, and Peruvian Spanish. Each language contains 20,000 documents for training
(out of which 2000 are to be used as a validation set) and 1000 for testing.

• ADIC (Ali et al. 2015)g: the corpus used in the VarDial 2016 ADI shared task. It contains
transcribed speech inModern Standard Arabic, Egyptian, Gulf, Levantine, andNorth African

fThe corpus is publicly available at http://ttg.uni-saarland.de/resources/DSLCC/
gThe corpus is publicly available at http://alt.qcri.org/resources/ArabicDialectIDCorpus/

varDial_DSL_shared_task_2016_subtask2/
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Table 2. DSLCC v4.0, ADIC and GDIC corpora

DSLCC v4.0

Language/Variety Class Train inst. Train tokens Test inst. Test tokens

Bosnian bs 20,000 716,537 1000 35,756
Croatian hr 20,000 845,639 1000 42,774
Serbian sr 20,000 777,363 1000 39,003
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indonesian id 20,000 800,639 1000 39,954
Malay my 20,000 591,246 1000 29,028
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brazilian Portuguese pt-BR 20,000 907,657 1000 45,715
European Portuguese pt-PT 20,000 832,664 1000 41,689
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Argentine Spanish es-AR 20,000 939,425 1000 42,392
Castilian Spanish es-ES 20,000 1,000,235 1000 50,134
Peruvian Spanish es-PE 20,000 569,587 1000 28,097
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Canadian French fr-CA 20,000 712,467 1000 36,121
Hexagonal French fr-FR 20,000 871,026 1000 44,076
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Persian fa-IR 20,000 824,640 1000 41,900
Dari fa-AF 20,000 601,025 1000 30,121
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 280.000 8,639,459 14,000 546,790
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADIC
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Egyptian EGY 1578 85,000 315 13,000
Gulf GLF 1672 65,000 256 14,000
Levantine LAV 1758 66,000 344 14,000
Modern Standard MSA 999 49,000 274 14,000
North African NOR 1612 52,000 351 12,000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 7619 317,000 1540 67,000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GDIC
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bern BE 4956 35,962 1191 12,013
Basel BS 4921 36,965 1200 9802
Lucerne LU 4593 38,328 1186 11,372
Zurich ZH 4834 36,919 1175 9610
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 19,304 148,174 4,752 42,797

dialects. Speech excerpts were taken from a multi-dialectical corpus containing broadcast,
debate and discussion programs from Al Jazeera. Altogether 7619 documents were used for
training (out of which 10% were used for validation) and 1540 documents for testing.

• GDIC (Samardzic, Scherrer, and Glaser (2016)): the corpus used in the VarDial 2018 GDI
shared task. Texts were extracted from the ArchiMob corpus of Spoken Swiss Germanh,
which contains 34 oral interviews with people speaking Bern, Basel, Lucerne, and Zurich
Swiss German dialects. A total of 19,304 documents were used for training (out of which
10% were used for validation) and 4752 for testing.

hThe ArchiMob corpus is publicly available at https://www.spur.uzh.ch/en/departments/research/
textgroup/ArchiMob.html
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4.2 Methodology
For experiments in the DSLCC v4.0 we chose to use a two-step approach, as first proposed by
Goutte, Léger, and Carpuat (2014):

(1) The general classifier is trained to identify the language group for every specific document.
For this step, the input TF-IDF/BM25 matrix is calculated only on the word bound charac-
ter n-gramsi of sizes three, four, and five with a minimum document frequency of five and
appearing in at most 30% of the documents in the train set. This configuration produces
a TF-IDF/BM25 matrix of smaller size than if the configuration for the TF-IDF/BM25
matrix, described in Section 3, was used. This size reduction was chosen because dis-
tinguishing between different language groups is not a difficult problem, therefore, this
parameter reduction does not influence performance but it reduces the execution time.

(2) We train six different classification models, one for each language group. After being clas-
sified as belonging to a specific language group by the general classifier in Step 1, the docu-
ments are assigned to the appropriate classifier for predicting the final language variety.

Since NLP tools and resources such as POS taggers, pretrained word embeddings, word dictio-
naries, and tokenizers might not exist for some underresourced languages, we also believe that an
architecture which does not require language-specific resources and tools, apart from the training
corpus, might be more useful and easier to use in real-life applications. For this reason, our system
does not require any additional resources and the conducted preprocessing procedure is lightj.

We show (see Section 5) that the proposed architecture is generic enough to outperform the
winning approach of VarDial 2017 on all of the language groups without any language-group-
specific parameter or architecture tweaking. In contrast, most of the approaches of the VarDial
2017 DSL shared task resorted to language-group-specific optimization, as getting even the slight-
est possible performance boost by employing this tactic was important due to the competitive
nature of shared tasks.

For the experiments on the smaller ADIC andGDIC data sets, we use the same hyperparameter
configuration and TD-IDF/BM25 features as for the six classification models for specific language
groups in the DSLCC v4.0 corpus because we want to explore the relation between model perfor-
mance and data set size. The hypothesis is that the performance of traditional SVM approaches
would be less affected by smaller data set size than neural approaches.

We conducted an extensive grid search on the DSLCC v4.0 in order to find the best hyper-
parameters for the model. All combinations of the following hyperparameter values were tested
before choosing the best combination, which is written in bold in the list below and presented in
Section 3:

• Learning rates: 0.001, 0.0008, 0.0006, 0.0004, 0.0002
• Number of parallel convolutions with different filter sizes: [3] [4], [3,4], [4,5], [5,6], [6,7],
[3,4,5], [4,5,6], [5,6,7], [3,4,5,6], [4,5,6,7], [3,4,5,6,7]

• Character embedding sizes: 100, 200, 400
• Dense layer sizes: 128, 256, 512
• Dropout values: 0.2, 0.3, 0.4, 0.5
• Number of convolutional filters in the first convolution step: 156, 172, 200
• Number of convolutional filters in the second convolution step: 156, 172, 200

iWord-bound character n-grams are made only from text inside word boundaries, for example, a sequence this is great
would produce a word-bound character 4-gram sequence this, is__, grea, reat, in which _ stands for empty space character.

jWe only replace all email addresses in the text with EMAIL tokens and all URLs with HTTPURL tokens by employing
regular expressions. Even if this might not be relevant to all of the corpora, we keep the preprocessing unchanged for all the
settings.
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• Size of a max-pooling window in the second convolution step: 10, 20, 40, 60
• BON n sizes: [3] [4] [3,4], [4,5], [5,6], [6,7], [3,4,5], [4,5,6], [5,6,7], [3,4,5,6], [4,5,6,7],
[3,4,5,6,7]

• Minimum document frequency of an n-gram in the TF-IDF/BM25 matrix: [2], [5], [10]
• BM25 b parameter: 0.5, 0.75, 1.0
• BM25 k1 parameter: 1.0, 1.2, 1.4

The hyperparameters, which influenced the performance of the network the most, were the
learning rate, CNN filter sizes, size of the max-pooling window, BON n size, and a minimum
document frequency of n-grams. Too many parallel convolutions, small sizes of the max-pooling
window, and lowminimum document frequency of n-grams showed tendency toward overfitting,
especially when used together in combination. In general, we noticed quite a strong tendency
toward overfitting no matter the hyperparameter combination, which could be to some extent the
consequence of feeding a high-dimensional TF-IDF/BM25 matrix to the network, which greatly
increases the number of network parameters. We noticed that a combination of a relatively small
learning rate and a large dropout worked best to counter this tendency.

Another thing we noticed is that using exactly the same configurations of convolutional filter
sizes and n-gram sizes negatively affected the performance, which was slightly improved when
the configurations did not completely overlap. The hypothesis is that synergy between two data
flows is less effective if the information in these two data flows is too similar. The validation set
results did however show that configurations containing 4- and 5-grams and filter sizes of 4 and 5
in general worked better than other configurations for DSLCC v4.0 classification; therefore, these
configurations were used in both data flows despite the overlap.

We use the Python Keras library (Chollet 2015) for the implementation of the system. For
optimization, we use an Adam optimizer (Kingma and Ba 2015) with a learning rate of 0.0008.
For each language variety in the DSLCC v4.0, the model is trained on the train set for 20 epochs
and tested on the validation set after every epoch. The models trained on the ADIC and GDIC
data sets are trained for 80 epochs due to longer convergence time on less data. The model with
the best performance on the validation set is chosen for the test set predictions.

5. Results
First we present results on the DSLCC v4.0, which is (as it is the largest and covers the largest
number of language varieties) the main focus of this study, then we present results on ADIC and
GDIC and finally, we present findings of the error analysis conducted on the misclassified Slavic
documents of the DSLCC v4.0 corpus.

5.1 Results on the DSLCC v4.0
Table 3 presents the results achieved by our neural classifier in comparison to the winner of the
VarDial 2017 DSL shared task (Bestgen 2017) in terms of weighted F1, micro F1, macro F1, and
accuracy measures.

The first step of the two-step classification approach, distinguishing between different lan-
guage groups (All-language groups (TF-IDF) and All-language groups (BM25) rows in Table 3),
proved trivial for the system, which achieved almost perfect weighted F1 score and misclassified
only 27 documents out of 14,000 in the test set when TF-IDF weighting scheme was used and
29 documents when BM25 weighting scheme was used. If we look at the confusion matrices for
language group classification (Figures 2 and 3), both models had most difficulties distinguish-
ing between Spanish and Portuguese language groups. Ten Spanish texts were misclassified as
Portuguese but on the other hand, only one Portuguese document was misclassified as Spanish
when TF-IDF weighting scheme was used. With BM25 weights, the classifier misclassified nine
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Table 3. Results of the proposed language variety classifier on theDSLCC v4.0 for different
language groups, aswell as for the discrimination between language groups (All-language
groups). Also the results for all language varieties (All-language varieties) are provided,
for which a comparison with the official VarDial 2017 winners is made. Results for both
weighting schemes, TF-IDF and BM25, are reported separately

Language group (weighting) F1 (weighted) F1 (micro) F1 (macro) Accuracy

All-language groups (TF-IDF) 0.9981 0.9981 0.9980 0.9981
All-language groups (BM25) 0.9979 0.9979 0.9980 0.9980
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spanish (TF-IDF) 0.9136 0.9140 0.9136 0.9140
Spanish (BM25) 0.9042 0.9047 0.9042 0.9047
Slavic (TF-IDF) 0.8645 0.8650 0.8645 0.8650
Slavic (BM25) 0.8752 0.8753 0.8752 0.8753
Farsi (TF-IDF) 0.9685 0.9685 0.9685 0.9685
Farsi (BM25) 0.9690 0.9690 0.9690 0.9690
French (TF-IDF) 0.9570 0.9570 0.9570 0.9570
French (BM25) 0.9545 0.9545 0.9545 0.9545
Malay and Indonesian (TF-IDF) 0.9855 0.9855 0.9855 0.9855
Malay and Indonesian (BM25) 0.9860 0.9860 0.9860 0.9860
Portuguese (TF-IDF) 0.9480 0.9480 0.9480 0.9480
Portuguese (BM25) 0.9460 0.9460 0.9460 0.9460
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All-language varieties (TF-IDF) 0.9310 0.9312 0.9310 0.9312
All-language varieties (BM25) 0.9304 0.9305 0.9304 0.9305
VarDial 2017 winner
Bestgen (2017) 0.9271 0.9274 0.9271 0.9274

Figure 2. Confusion matrix for language group classification (TF-IDF
weighting scheme).

Spanish documents as Portuguese and four Portuguese documents as Spanish. The analysis also
reveals some surprising mistakes, such as that three Slavic documents and two documents from
the Indonesian and Malay language group were misclassified as French with TF-IDF weighting
and four documents from the Indonesian and Malay language group, three Spanish, and three
French documents were classified as Slavic with BM25 weighting. A closer inspection of misclas-
sified documents also reveals that these documents are in general much shorter (average word
length is 9.74 and 10.17 when TF-IDF and BM25 are used respectively) than an average document
in the Slavic sub-corpus (39.06 words long) and very likely contain some misleading named enti-
ties (e.g., a Slavic document, which was misclassifed as Spanish when TF-IDF weighting was used,
contains the following text: Caffe - Pizzeria ""BELLA DONNA"" u DOC-u).
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Figure 3. Confusion matrix for language group classification (BM25
weighting scheme).

Figure 4. Confusion matrix for Spanish language varieties classification
(TF-IDF weighting scheme).

Results for the second step of the two-step classification approach indicate that the difficulty
of distinguishing language varieties within different language groups varies. The system had most
difficulties with distinguishing between different Slavic languages, where it achieved by far the
worst results with an weighted F1 of 0.8645 when TF-IDF weighting scheme was employed and
about one percentage point better results when BM25 weighting was used. The second most dif-
ficult were Spanish varieties. We should point out that this comes as no surprise, since Slavic and
Spanish languages groups were the only two groups that contained three varieties, while the other
groups in DSLCC v4.0 contained two varieties. The system had least problems with distinguishing
between Malay and Indonesian languages.

When it comes to comparing two weighting schemes, there is no clear overall winner. The
biggest differences in performance are on Spanish varieties, where TF-IDF weighting outperforms
BM25 by about one percentage point according to every measure, and on Slavic varieties, where
BM25 weighting outperforms TF-IDF by a very similar margin. The differences on other vari-
eties are smaller, ranging from 0.005 on Farsi and Malay and Indonesian varieties to 0.020 on
Portuguese varieties.

Confusion matrices for specific language varieties enable a more thorough analysis of the
results. For Spanish varieties (Figures 4 and 5), the system had most problems distinguishing
between Argentine and Castilian Spanish. The second most common mistake no matter the
weighting scheme was classifying Argentine Spanish as the Peruvian variety of Spanish. On the
other hand, Peruvian Spanish was the easiest to classify by the system, with altogether only 36
(TF-IDF weighting) and 37 (BM25 weighting) misclassified instances.
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Figure 5. Confusion matrix for Spanish language varieties classification
(BM25 weighting scheme).

Figure 6. Confusion matrix for Farsi language varieties classification
(TF-IDF weighting scheme).

Figure 7. Confusion matrix for Farsi language varieties classification
(BM25 weighting scheme).

The system performed well for all binary predictions (Figures 6 and 7, Figures 8 and 9, Figures
10 and 11, Figures 12 and 13) and the difference in performance between two weighting schemes
are small. Out of these confusion matrices, the most unbalanced with regard to false predic-
tions is the confusion matrix for Indonesian and Malay variety (Figure 10), where twice as many
Indonesian documents were classified as Malay than the other way around when TF-IDF weight-
ing was used. Although, as mentioned before, distinguishing between Indonesian and Malay was
the least difficult task for the classifier and altogether only 29 and 28 instances were misclassified
when TF-IDF and BM25 weighting were used, respectively.

For Slavic languages (Figures 14 and 15), the hardest problem for the systemwas distinguishing
between Croatian and Bosnian, with 113 Bosnian documents being classified as Croatian and 112
Croatian documents being classified as Bosnian when TF-IDF weighting was used and with 113
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Figure 8. Confusion matrix for French language varieties classification
(TF-IDF weighting scheme).

Figure 9. Confusion matrix for French language varieties classification
(BM25 weighting scheme).

Figure 10. Confusion matrix for Indonesian and Malay variety classifica-
tion (TF-IDF weighting scheme).

Bosnian documents being classified as Croatian and 99 Croatian documents being classified as
Bosnian when BM25 weighting was employed. Distinguishing between Bosnian and Serbian was
also not trivial for the classifier no matter the weighting scheme, with 94 Bosnian documents
being misclassified as Serbian and 66 Serbian documents misclassified as Bosnian when TF-IDF
weighting scheme was deployed and 73 Bosnian documents being misclassified as Serbian and
vice versa when BM25 weighting was used. On the other hand, distinguishing between Serbian
and Croatian is a much easier problem, with altogether only 20 (TF-IDF weighting) and 16 (BM25
weighting) documents being misclassified.
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Figure 11. Confusion matrix for Indonesian and Malay variety classifica-
tion (BM25 weighting scheme).

Figure 12. Confusion matrix for Portuguese language varieties classifica-
tion (TF-IDF weighting scheme).

Figure 13. Confusionmatrix for Portuguese language varieties classifica-
tion (BM25 weighting scheme).

Overall (rows All-language varieties (TF-IDF) and All-language varieties (BM25) in Table 3),
the neural network outperforms the SVM-based approach used by the winners of the shared task
by about 0.4 percentage points according to all measures when TF-IDF weighting scheme is used.
BM25 weighting performs slightly worse but still outperforms state of the art by about 0.35 per-
centage points margin. Our results therefore differ from the study conducted by Bestgen (2017),
the winner of the shared task, where he reported improvement in performance for all but one lan-
guage group when TF-IDF weighting is replaced by BM25. It should, however, be noted that these
improvements were only reported on the validation set and no comparison between weighting
schemes was done on the official test set.

There were no available reported results for individual language groups on the official test set,
therefore we provide a comparison with the VarDial 2017 DSL winning team on the validation set,
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Table 4. Accuracy comparison of our system to the VarDial 2017 DSL winners on validation
sets

Language group (weighting) Our system VarDial 2017 winner Improvement (%)

Spanish (TF-IDF) 0.9180 0.8970 2.10
Spanish (BM25) 0.9202 0.9030 1.72
Slavic (TF-IDF) 0.8663 0.8445 2.18
Slavic (BM25) 0.8670 0.8506 1.64
Farsi (TF-IDF) 0.9685 0.9598 0.87
Farsi (BM25) 0.9720 0.9632 0.88
French (TF-IDF) 0.9588 0.9396 1.92
French (BM25) 0.9590 0.9472 1.18
Malay and Indonesian (TF-IDF) 0.9863 0.9835 0.28
Malay and Indonesian (BM25) 0.9875 0.9827 0.48
Portuguese (TF-IDF) 0.9440 0.9299 1.41
Portuguese (BM25) 0.9428 0.9355 0.73

Figure 14. Confusion matrix for Slavic language varieties classification
(TF-IDF weighting scheme).

Figure 15. Confusion matrix for Slavic language varieties classification
(BM25 weighting scheme).

as the author (Bestgen 2017) reports them when presenting the benefits of the weighting scheme
BM25 (in their Table 3 on p. 119). Note, however, that the results report on a slightly simplified
system, as for the weighting scheme comparison, the author used only character n-grams features.
Comparison results are presented in Table 4.
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Table 5. Results of the proposed language variety classifier on the ADIC and GDIC.
Results for both weighting schemes, TF-IDF and BM25, are reported separately

Language group (weighting) F1 (weighted) F1 (micro) F1 (macro) Accuracy

ADIC (TF-IDF) 0.5152 0.5123 0.5147 0.5123
ADIC (BM25) 0.5090 0.5097 0.5067 0.5097

VarDial ADI 2016 winner
Malmasi et al. (2016a) 0.5132 / / 0.5117

GDIC (TF-IDF) 0.6281 0.6294 0.6280 0.6294
GDIC (BM25) 0.6289 0.6311 0.6289 0.6311

VarDial GDI 2018 winner
Jauhiainen et al. (2018a) / / 0.6860 /

Our system performs better than the simplified version of the VarDial 2017 DSL shared task
winning system on all language groups.When TF-IDweighting is used by both systems, the differ-
ences vary from around two percentage points on Spanish, Slavic, and French language groups, to
about 1.5 percentage point difference on the Portuguese language group, and finally, to only 0.28
percentage point difference on Malay and Indonesian, which are the easiest languages to distin-
guish for both of the classifiers. When BM25 weighting scheme is used, the differences are smaller,
ranging from about 1.5 percentage point on Spanish and Slavic to about 0.5 percentage point on
Malay and Indonesian.

Interestingly, when it comes to comparing both weighting schemes only on validation sets, the
influence on the performance of our system when BM25 weighting is used is quite consistent with
the influence reported by Bestgen (2017). By using BM25 weighting, the performance is improved
on five out of six language groups, same as in Bestgen (2017), although the language groups are not
the same: in Bestgen (2017) performance is not improved on the Malay and Indonesian language
group while we report no improvement on Portuguese. However, these improvements at least in
our case do not translate well to performance improvements on the official test set.

5.2 Results on ADIC and GDIC
Table 5 presents the results achieved by our neural classifier on the ADIC and GDIC corpora in
comparison to the winners of the VarDial ADI 2016 and VarDial GDI 2018 shared tasks. The
system manages to improve on the state of the art on the ADIC by a small margin of about 0.2
percentage point according to the weighted F1 score when TF-IDF weighting is used, even though
the ADIC contains more than 10 times less documents per class than the language varieties in
the DSLCC v4.0. By using BM25 weighting, the performance of the classifier is about 0.6 and
0.2 percentage points worse in terms of accuracy and weighted F1 score. On the other hand, the
results on the GDIC are almost six percentage points lower than the current state-of-the-art HeLI
method (Jauhiainen et al. 2018a) in terms of macro F1 score. Our system also performed worse
than the SVM-based system proposed by Çöltekin et al. (2018) and a recurrent neural network
proposed by Ali (2018a), which achieved macro F1 scores of 0.646 and 0.645, respectively. We can
also observe that BM25 weighting slightly improves the performance according to all the criteria.
Results on ADIC and GDIC corpora are somewhat in line with the initial hypothesis that neural
approaches are more affected by a small data set size than more traditional SVM approaches.
Previous SVM-based state of the art on the ADIC corpora is outperformed by a smaller margin
than the DSLCC v4.0 state of the art and the proposed system performs worse than the second
ranked SVM system (2018) on the GDIC corpus.
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Figure 16. Confusion matrix for Arabic language varieties classification
(TF-IDF weighting scheme).

Figure 17. Confusion matrix for Arabic language varieties classification
(BM25 weighting scheme).

Figure 18. Confusion matrix for German language varieties classification
(TF-IDF weighting scheme).

Confusion matrices for the ADIC (Figures 16 and 17) show that the Modern Standard Arabic
is the easiest to classify no matter the weighting scheme. We can also see that if BM25 weighting is
used, the classifier struggles much more with the Gulf dialect, correctly classifying only 99 out of
256 instances, than if TF-IDF weighting is used, in which case it correctly classifies 119 instances.

Confusion matrices for the GDIC (Figures 18 and 19) show that the choice of the weighting
scheme does not have as big of an influence on the performance of the classifier as in the case of
ADIC. No matter the weighting scheme, by far the most common mistake was misclassifying the
Lucerne dialect as a Bern dialect. Interestingly, the opposite mistake of misclassifying Bern dialect
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Table 6. Results of the error analysis on 405 misclassified Slavic documents

Group Num. doc. Prop. of doc. Avg. doc. length

No named entities 144 0.36 26.94
Misleading named entities 70 0.17 40.96
Clarifying named entities 41 0.10 34.96
Unrelated named entities 150 0.37 33.17
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All misclassified 405 1.00 32.48

Figure 19. Confusion matrix for German language varieties classification
(BM25 weighting scheme).

as Lucerne dialect is much rarer, which might be connected to some extent to the fact that the
train set contains 328 more documents for the Bern dialect than for the Lucerne dialect.

5.3 Error analysis
We conducted a manual error analysis on the misclassified Slavic documentsk in order to get a
clearer picture about what kind of documents are the hardest to classify. Misclassified documents
were manually grouped into four classes according to the number and type of named entities
found in the document:

• No named entities: Documents without any named entities.
• Misleading named entities: Documents containing any named entities (e.g., names of
regions, cities, public figures) originating from a country with the official language vari-
ety corresponding to one of the two possible incorrect language varieties (e.g., a document
labeled as Serbian containing the word Zagreb, which is the capital of Croatia, would be put
into this class).

• Clarifying named entities: Documents containing named entities originating from a coun-
try with the official language variety being the correct language variety and containing no
misleading entities.

• Unrelated named entities: Documents containing only named entities that are not originat-
ing from any of the countries speaking target language varieties (e.g., a document containing
only the named entity Budapest would be classified into this category).

Results of the analysis are presented in Table 6. Results show that a large portion of misclassified
documents (73%) either contain no named entities (36%) or contain only unrelated named entities
(37%), whichmight make them harder to classify, although we cannot claim that for sure, since we

kError analysis was conducted on documents misclassified by the system that employed TF-IDF weighting scheme.
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Table 7. Results of the ablation study. Column CNN F1 (weighted) presents performance
of the system in terms of weighted F1 if only CNN-based features are used, column BON
F1 (weighted) presents performance of the system if only TF-IDF-weighted BON features
are used and column All F1 (weighted) presents the performance when these two types
of features are combined

Language group All F1 (weighted) CNN F1 (weighted) BON F1 (weighted)

DSLCC v4.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All-language groups 0.9981 0.9971 0.9976
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spanish 0.9136 0.8599 0.8863
Slavic 0.8645 0.8300 0.8594
Farsi 0.9685 0.9465 0.9610
French 0.9570 0.9325 0.9420
Malay and Indonesian 0.9855 0.9560 0.9875
Portuguese 0.9480 0.8994 0.9434
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All-language varieties 0.9310 0.8935 0.9199
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADIC 0.5152 0.3971 0.5177
GDIC 0.6281 0.6059 0.6190

do not know the distribution of these classes across the entire test set. About 17% of the documents
on the other hand contain misleading named entities that could influence the classifier prediction.
There are also 41 documents (10%) containing only clarifying named entities that would be easily
classified correctly by any human annotator with some basic background knowledge about Serbia,
Bosnia, and Croatia. This suggests that there is still some room for improvement for the developed
classifier.

Another finding is that misclassified documents are in average shorter (32.48 words long) than
an average document from a Slavic language group (39.18 words long), suggesting that shorter
documents are harder to classify by the classifier due to less available information. We can also see
that the only group containing documents with similar length as the whole test set are documents
containing misleading named entities (40.96 words long), which suggests that the classifier does
somewhat rely on named entities during the prediction process.

6. Ablation study
The main novelty of our approach is the combination of weighted BON features with CNN-
generated character features in the neural architecture. We carried out an ablation study in order
to determine the contribution of these two types of features in the overall performance. To mea-
sure the contribution of weighted BON features, we removed the part of the system that deals with
the convolutional processing of the character sequence input (the left side of the feature engineer-
ing part sketched in Figure 1). On the other hand, we removed the TF-IDF/BM25 matrix input
in order to determine the contribution of the CNN-generated character features. Only TF-IDF
weighting was used in the ablation study. The results of the study are presented in Table 7.

In all cases, classifier with only TF-IDF-weighted BON features (BON classifier) performs bet-
ter than the classifier with only CNN-based features (CNN classifier), which also raises questions
about the established deep learning paradigm that in a large majority of cases relies only on the
automatically generated neural features. In DSLCC v4.0, the difference in performance is the
largest in the case of Portuguese language variety classification, measuring more than four per-
centage points. If we ignore the language group classification, which is apparently trivial for all
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Table 8. Results of the error analysis on Slavic documents misclassified by
the BON classifier and correctly classified by the CNN classifier and on Slavic
documents misclassifed by the CNN classifier and correctly classified by the
BON classifier

Group Num. doc. Prop. of doc. Avg. doc. length

BONmisclassifed
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No named entities 57 0.31 27.14
Misleading named entities 17 0.09 38.18
Clarifying named entities 28 0.15 33.14
Unrelated named entities 83 0.45 35.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All 185 1.00 32.61
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNNmisclassifed
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No named entities 81 0.30 31.43
Misleading named entities 36 0.13 45.67
Clarifying named entities 58 0.21 35.53
Unrelated named entities 99 0.36 34.98
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All 274 1.00 35.45

three versions of the system, the difference in performance is the smallest for the French language
variety classification, only around one percentage point.

By combining both types of features, we manage to surpass the performance of the BON classi-
fier on all language groups in the DSLCC v4.0 but the Malay and Indonesian pair. Here, the BON
classifier beats the classifier with the combination of both types of features by a small margin of
0.2 percentage points. The synergy effect is the largest in case of Spanish language variety, where
we improve the performance of the BON classifier by almost three percentage points. Overall
performance of the classifier on all the languages is improved by about one percentage point in
comparison to the BON classifier.

Results on smaller data sets are somewhat hard to generalize. In the case of ADIC, the per-
formance gap between BON and CNN is almost 11 percentage points. The bad performance of
the CNN classifier in this case also most likely outweighs any positive synergy effect, causing the
classifier that uses a combination of both feature types to perform slightly (by about 0.3 percentage
points) worse than the BON classifier (which is therefore a new state-of-the-art classifier for the
ADIC data set). In the case of GDIC, the performance gap is smaller (about 1.3 percentage points)
and there is some synergy effect between the two classifiers.

In order to determine what types of texts are better predicted with the BON classifier and what
types of text are better predicted with the CNN classifier, we performed the same error analysis
as in Section 5.3 on 185 Slavic documents, which were correctly classified by the CNN classifier
and misclassified by the BON classifier, and on 274 documents which were correctly classified by
the BON classifier and misclassified by the CNN classifier. Results are presented in Table 8. We
can see that on average both of these documents are shorter (32.61 and 35.45 words long) than
an average document in the Slavic sub-corpus (39.18 words long). Similar share of documents
with no named entities was misclassified by both classifiers but there are differences in shares
when it comes to other classes. Both BON and CNN classifiers performed the worst on docu-
ments containing only unrelated named entities but the share of these documents in the overall
distribution of misclassified documents is much bigger for the BON classifier (0.45 vs. 0.36). On
the other hand, documents containing clarifying named entities represent a smaller share in the
distribution of documents misclassified by the BON classifier (0.15 vs. 0.21). These results are in
accordance with the hypothesis that the BON classifier relies to a larger extent on named entities
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than the CNN classifier. The share of documents with misleading named entities is the smallest
in distributions for both classifiers, which was not the case in the error analysis in Section 5.3 (see
Table 6), where the smallest share presented documents with only clarifying named entities. This
suggests that both classifiers struggle with these documents and are in most cases misclassified by
both classifiers; therefore (as this ablation study is focused on the differences between the BON
and CNN classifiers), these documents were not manually analyzed.

7. Workflow for language variety classification
The AP—and larger NLP—community encourages reproducibility of results and code sharingl;
therefore, our source code is published at http://source.ijs.si/mmartinc/NLE_2017/.
Since AP is also a very interdisciplinary field, we also believe it is important to make our tools
available to the users outside of the programming community (e.g., linguists or social scientists)
with lower level of technical skills.

In our previous work (Martinc and Pollak 2018), we have already implemented a set of pre-
trained gender classificationmodels into a cloud-based visual programming platformClowdFlows
(http://clowdflows.org) (Kranjc et al. 2012). These tools can be used out-of-the-box and are
therefore appropriate for the less tech savy members of the AP community. The ClowdFlows
platform employs a visual programming paradigm in order to simplify the representation of com-
plex data mining procedures into visual arrangements of their building blocks. Its graphical user
interface is designed to enable the users to connect processing components (i.e., widgets) into
executable pipelines (i.e., workflows) on a design canvas, reducing the complexity of composi-
tion and execution of these workflows. The platform also enables online sharing of the composed
workflows.

We took all our pretrained models for language variety classification (six models for six lan-
guage groups and the general model for distinguishing between different language groups from
the DSLCC v4.0, and German and Arabic models used for ADIC and GDIC classification)
and packed them in a widget Language Variety Classifier. The widget takes a Pandas dataframe
(McKinney 2011) containing the corpus as an input and returns a dataframe with an additional
column with predicted language/language variety labels. The user needs to define the name of the
column containing text documents as a parameter and choose the language group (or language
parameter value all in order to use the general classifier) according to the input text.

Workflow in Figure 20 (available at http://clowdflows.org/workflow/13322/) is a
ClowdFlows implementation of the two-step approach described in Section 4.2 for the language
variety classification, illustrated on the DSLCC v4.0 test set. The corpus is loaded from a CSV file
with two columns (one for texts and one for true labels) with the help of the Load corpus from
CSV widget and passed on to the Language variety classifier widget, which predicts general lan-
guage groups for all the texts. The Filter corpus widgets are used to split the corpus according
to the predicted language group labels. Each of the slices is then fed into six different Language
variety classifier widgets responsible for intra-language group classification. They output a Pandas
dataframe with an additional column containing the predicted variety labels for each corpus slice.
The corpus is reassembled with the help of the Concatenate corpora widget. The reassembled cor-
pus and the six sub-corpora are then fed into seven Calculate F1 and accuracy widgets, which
are in fact subprocess widgetsm, each of them containing a subprocess for calculating the accu-
racy and weighted F1 scoren of the classification. The results of the classification are written to a
table with the help of an Evaluation results to table widget. We have presented a repeatable and

lFor example, this is the Github repository for the PAN shared task: https://github.com/pan-webis-de
mMore information about the different types of widgets in the ClowdFlows platform is available at the ClowdFlows

documentation page https://clowdflows.readthedocs.io/en/latest/.
nThe results produced by the workflow vary very slightly from the results reported in Section 4 because Theano (Bergstra

et al. 2011) is used as Keras backend in the ClowdFlows platform instead of Tensorflow (Abadi et al. 2016), which is used for
producing the results reported in Section 4.
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Figure 20. ClowdFlows implementation of the two-step approach for the language variety classification on the DSLCC v4.0.
Workflow is publicly available at http://clowdflows.org/workflow/13322/.

transparent evaluation workflow, which can be easily tested on novel test sets, but note that the
Language variety classifier widget can also be used in novel workflows, for assigning the language
of unlabeled text segments. The simplest use would be to input a file with text that user wants to
label in a CSV format and connect it to the two-step language classification widgets in order to
obtain the labeled corpus (http://clowdflows.org/workflow/13670/).

8. Discussion and conclusions
In this paper, we present an original neural language variety classifier. The main novelty is the
architecture that is capable of leveraging character-level and more global document/corpus-level
information by combining weighted BON features with character-based CNN features. The sys-
tem was tested on the DSLCC v4.0, ADIC and GDIC corpora, used in the VarDial shared tasks,
and managed to outperform state-of-the-art approaches developed in the scope of the shared task
on two (including on the benchmark DSLCC v4.0) out of three corpora. An ablation study shows
that weighted BON features generally contribute more than CNN-based features. This is in accor-
dance with the previous results in the AP shared tasks where BON-based classification systems
were always the winners. On the other hand, our experiments showed that replacing TF-IDF
weighting with BM25 weighting in most cases does not improve performance, which is not in
accordance with the previous research (Bestgen 2017). Our system is also openly available as a
workflow in the ClowdFlows platform for less tech savy members of the AP community.

The experiments on the DSLCC v4.0 have shown that building a neural architecture outper-
forming the popular SVMBON classification combination on the language variety task is possible,
although the performance gains are not very large. With some additional language-group-specific
parameter tweaking the performance could be improved, but we decided against this idea in
order to preserve the generic nature of the common architecture, which is currently capable of
producing state-of-the-art predictions for six different language groups.
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The system also proved to be competitive on the much smaller ADIC corpus (minimally out-
performing state of the art) but failed to achieve competitive performance on GDIC (where the
winning system HeLI was proposed by Jauhiainen et al. (2018a)).

We can speculate why this is the case. The results of the error analysis indicate a deteriora-
tion in performance of the proposed system on shorter documents. On the other hand, results
of the VarDial 2018 shared tasks suggest that the performance of the HeLI system deteriorates
less on shorter texts in comparison to other systems participating in shared tasks, since it ranked
first on GDIC, where the documents are on average nine words long, and in the Vardial 2018 ILI
shared task, where the task was to classify sentenceso, but only ranked fifth in the VarDial 2018
Discriminating between Dutch and Flemish in Subtitles task where the average document was
34.64 words long. Another hypothesis is that the proposed system is more reliant on named enti-
ties than the HeLI system, and therefore performs worse on GDIC, since this is the only corpus
that does not contain news excerpts or news channel transcripts but transcripts of interviews with
the dialect speakers and supposedly contains less named entities. We plan to test these hypotheses
in the future work. We might also be able to boost the performance of our system on the GDIC
data set by adjusting hyperparameters in order to make the network better suited for the classifi-
cation of much shorter documents in the GDIC corpus, since currently a lot of data (e.g., n-grams
that appear in less than five documents, character sequences filtered out by an aggressive max
pooling ...) is discarded.

Small performance gains over the current state of the art also raise a question, howmuch better
can automatic discrimination between similar languages actually get? The only study about the
theoretical limit of the classification performance on the DSLCC that we are aware off was con-
ducted by Goutte et al. (2016) on the DSLCC v2.0 used in the Vardial 2015 DSL shared task, which
partially overlaps with the DSLCC v4.0 (Slavic, Malay and Indonesian, and Portuguese parts of
the corpus are the same). First, they measured the upper bound on accuracy by taking all the pre-
dictions generated by all the systems which participated in the shared task and combining them
using ensemble fusion methods such as plurality voting and Oracle. In the plurality voting, the
label with most votes (i.e., the label predicted by most systems) is selected as correct and the con-
ducted experiments showed that small improvements (of about 0.5 percentage point) over the best
single system can be achieved. The Oracle method for determining the upper-bound performance
on the other hand assigns the correct class label for an instance if at least one system classified the
instance correctly. This gave them a very optimistic potential accuracy upper boundary of 99.83%.

In order to determine if the instancesmisclassified by the Oraclemethod can be correctly classi-
fied by humans, they conducted additional evaluation experiments. As it turns out, the difficulty of
classification varies across different language groups. Discriminating between the three Slavic lan-
guages (Bosnian, Croatian, and Serbian) proved to be the most difficult. For 5 out of 12 instances
misclassified by the Oracle method, none of the 6 annotators was able to correctly classify them.
On these 12 examples the mean annotator accuracy was 16.66%, which is in fact 16.67% below the
random baseline of 33.33%. On the other hand, discriminating between Brazilian and European
Portuguese proved more feasible and the mean annotator accuracy on the misclassified instances
was 67.50%, 17.50% above the 50% baseline.

This suggests that, at least for some varieties, the upper bound of automatic variety classifica-
tion has not yet been reached, since our method achieved only 94.80% accuracy on the Portuguese
language group. The conducted error analysis (see Section 5.3) on Slavic language varieties also
showed that 10% of misclassified documents contained only clarifying named entities; there-
fore, any human annotator with some basic knowledge about Serbia, Bosnia, and Croatia would
be able to classify them correctly without too much difficulty. This would suggest that further
improvements on automatic language variety classification are possible, perhaps by employing

oWe were unable to obtain the average document length for this data set since the number of tokens in the data set is not
published in the Vardial 2018 report (Zampieri et al. 2018).
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transfer learning techniques (Devlin et al. 2018) that would provide the classifier with the needed
background information. We plan to test the transfer learning approach in the future.

CNNs have been so far the most successful neural architecture for language variety classifica-
tion but the conducted ablation study shows that the produced features do have some deficiencies
that make them less successful than weighted BON features. As shown, the proposed approach of
feeding an additional weighted BON matrix into the network does partially compensate for these
deficiencies on the language variety classification tasks but further work of exploring the synergy
effects of combining automatically generated neural features and weighted features on a number
of different NLP tasks and neural architectures is still needed. Feeding the sparse weighted BON
matrix into the network does, however, have a drawback of drastically increasing the number of
network parameters, which tends to lead to overfitting and increased computational costs. We
managed to minimize these negative side effects mostly by an extensive use of dropout and by
removing n-grams with low document frequencies from the input matrix, but perhaps a some-
what more efficient solution would be to avoid feeding the BON matrix to the neural classifier
altogether. Therefore in future work, we plan to propose methods by which we would inject global
document/corpus-level information into CNN-based features directly, in order to fix their current
deficiencies. In that way combining them with the features that are the result of the more tradi-
tional feature engineering would no longer be required. Another option we also plan to explore is
building heterogeneous ensembles of traditional SVM BOW-based models and CNNs and see if
the performance gains are comparable to the proposed system.

Another line of future research will deal with building better and more useful tools for users
with lower level of technical skills. Currently, the ClowdFlows platform does not support training
of new neural classification models due to high level of resource consumption of these operations
which would negatively affect the scalability of the platform, and since it does not yet support
graphics processing unit (GPU) acceleration, which would allow for training of the models in a
more reasonable time. The newer version of the ClowdFlows platform, on which the work has
already begun, will address all these deficiencies and will allow for training of neural classification
models on new varieties and therefore increase the overall usefulness of the system.
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Zampieri, M., Tan, L., Ljubešić, N. and Tiedemann, J. (2014). A report on the DSL shared task 2014. In Proceedings of the
first workshop on applying NLP tools to similar languages, varieties and dialects, pp. 58–67. Dublin, Ireland: Association for
Computational Linguistics and Dublin City University.
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2.6 Final Remarks

As was already stated in Section 1, the AP research described in this chapter started several
years ago, when neural networks were scarcely used due to deficiencies, such as the lack of
interpretability, high resource demand, and a lack of an efficient weighting scheme. In this
chapter, we have shown that some of these limitations of purely neural approaches can be
avoided by using a hybrid neuro-symbolic approach, which improves semantic modelling
and potentially, by feeding the neural network BON-based symbolic features, which are
easy to interpret, also interpretability9. The high resource demand was not addressed in
our work in AP, and, as we explain in section 5.2, this remains an important deficiency of
the proposed strategy.

The recent trends in the field of AP go towards the usage of purely neural approaches
due to several important improvements presented by the novel architectures and learning
paradigms. The transformer architecture (Vaswani et al., 2017) improved semantic mod-
elling by leveraging the transfer learning paradigm and by proposing the novel multi-head
attention mechanism that determines the attention the model should pay to a specific word
and therefore works as an efficient weighting scheme, and, as we show in Section 4.3, can
also offer some insights into the inner workings of the model, improving interpretability.
Transformers, which are these days massively employed for a range of different NLP tasks,
improved the deficiencies of neural approaches that we tried to tackle with our proposed
approach, therefore it is not surprising that they have been recently employed in several AP
shared tasks (Chakravarthi et al., 2021; Gaman et al., 2020). Interestingly though, they
are not dominating in these competitions. In the latest VarDial competition (Chakravarthi
et al., 2021), non-neural symbolic models won both language (Romanian and Dravidian)
identification tasks, and a team, which experimented with both types of models (a sym-
bolic Naive Bayes classifier and two types of transformers, multilingual BERT (Devlin et
al., 2019) and XLM-RoBERTa (Conneau et al., 2020)), reported that the symbolic model
outperformed transformers.

This indicates that at least for some AP tasks and languages state-of-the-art neural
architectures should not be the default choice, since simple symbolic models still offer
comparable performance. We can therefore conclude that while the trends towards neural
models is clear, these models should be further improved and adapted for some specific
tasks and languages, perhaps by employing some of the strategies that we present in this
thesis, e.g. by feeding these models additional BON or taxonomy-based features.

9Although, admittedly, the interpretation aspect was not the main focus of our studies in AP.
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Chapter 3

Unsupervised Readability Prediction
With a Combination of Neural
Language Model Statistics and
Shallow Lexical Indicators

In this chapter, we present a novel methodology for determining the readability of texts. In
Section 3.1, we explain what is the readability of a text and how to measure it, and in Sec-
tion 3.2, we discuss existing approaches to text readability. Section 3.3 constitutes the core
of the chapter, in which we summarize our approach towards readability prediction that
combines statistics derived from neural language models and symbolic lexical indicators.
This chapter also contains enclosed journal publication Supervised and unsupervised neural
approaches to text readability (Martinc, Pollak, & Robnik-Šikonja, 2021), which describes
the proposed readability approach in detail.

3.1 Introduction

Readability represents a relation between a text and the cognitive load of a reader to
comprehend it. It is a complex phenomenon that is not only influenced by text properties,
such as syntactic and lexical complexity, and discourse cohesion, but also by the background
knowledge of a reader (Crossley et al., 2017). Nevertheless, this complexity tends to be
ignored by traditional measures for readability detection, which in most cases focus only
on shallow lexical and syntactic features, such as word and sentence length (Davison &
Kantor, 1982).

These formulas work quite well in practice but have faced harsh criticism concerning
their reductionism, weak statistical basis, subjectivity and cultural specificity (Crossley
et al., 2017). To face this criticism, more recently unsupervised approaches for readability
detection based on newer NLP techniques have been devised. These approaches also lever-
age high-level textual features for readability modelling, such as semantic and discursive
properties of texts, and therefore address some of the deficiencies of traditional measures.
Nevertheless, they tend to perform worse than much simpler traditional readability formu-
las (Todirascu et al., 2016).

Another option is to tackle the readability in a supervised way and consider it as a
classification or regression task. These approaches in most cases still rely on extensive
feature engineering (Petersen & Ostendorf, 2009; Schwarm & Ostendorf, 2005; Vajjala &
Meurers, 2012) and generally yield better results than unsupervised approaches. They
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nevertheless require labelled readability datasets for training, which are scarce. It has
also been shown that the transferability of these approaches between different corpora and
languages is limited (Filighera et al., 2019; Xia et al., 2016).

Interestingly, tackling the readability of the text with neural methods is still quite
rare, even though some approaches do exist (Filighera et al., 2019; Nadeem & Ostendorf,
2018). Furthermore, while features for readability detection based on traditional n-gram
language models can be found in many of the readability studies (Petersen & Ostendorf,
2009; Schwarm & Ostendorf, 2005; Xia et al., 2016), no study employs neural language
models for the task at hand, even though language modelling has been drastically improved
with these types of models (Mikolov et al., 2011).

In our study (Martinc, Pollak, & Robnik-Šikonja, 2021), we propose a novel unsuper-
vised approach to readability measurement that combines symbolic features, i.e., shallow
lexical and syntactic indicators of readability, with neural language model statistics. The
main advantage of this approach is that it requires no labelled training set and can there-
fore also be used in languages without labelled resources. We show that the approach is
transferable across different languages and domains since it is capable of contextualizing
the readability due to the trainable nature of the neural language model. We also demon-
strate that the proposed measure of readability, which we named RSRS (ranked sentence
readability score), has good correlation with true readability scores.

3.2 Related Work

In this section we focus on the work related to the proposed unsupervised approach towards
readability detection. For a more comprehensive overview of methods for readability detec-
tion, which also covers supervised approaches, we refer the reader to our paper (Martinc,
Pollak, & Robnik-Šikonja, 2021), which is encapsulated below.

Traditional readability formulas try to construct an interpretable statistical formulation
with a good correlation to human understanding of readability. The simplest example of
this type of formula would be average sentence length (ASL). Other more comprehensible
formulas also consider other statistical factors, such as word length and word difficulty.
For example, the Gunning fog index (Gunning, 1952) (GFI) tries to estimate the years of
formal education a person needs to understand the text. It is calculated according to the
following equation:

GFI = 0.4(
totalWords

totalSentences
+ 100

longWords

totalSentences
),

where longWords are words longer than 7 characters. Higher values of the index indicate
lower readability.

Other formulas, such as Flesch reading ease (Kincaid et al., 1975) (FRE), Flesch-
Kincaid grade level (Kincaid et al., 1975) (FKGL), Automated readability index (Smith
& Senter, 1967) (ARI), Dale-Chall readability formula (Dale & Chall, 1948) (DCRF) and
SMOG grade (Simple Measure of Gobbledygook) (Mc Laughlin, 1969) consider very similar
statistics and are also in most cases employed for educational purposes.

Another distinct group of readability features are the so-called discourse cohesion fea-
tures, which are either related to the notion of coherence, defined as the “semantic prop-
erty of discourse, based on the interpretation of each sentence relative to the interpretation
of other sentences” (Van Dijk, 1977) or to the notion of cohesion, defined as “a property
of text represented by explicit formal grammatical ties (discourse connectives) and lexical
ties that signal how utterances or larger text parts are related to each other”. Studies that
focus on coherence investigate if a specific text can be interpreted as a coherent message
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(and not as a set of unconnected words) by for example analysing words that express con-
nectives (e.g., because, consequently, as a result, etc.) (Sheehan et al., 2014). On the other
hand, studies that focus on the notion of cohesion focus on co-reference and anaphoric
chain properties, entity density and entity cohesion features, lexical cohesion measures,
and POS tag-based cohesion features (Todirascu et al., 2016). Proposed measures of co-
hesion are for example average length of reference chains, the total number of all/unique
entities per document, frequency of content word repetition across adjacent sentences, or
the ratio of pronoun and article parts-of-speech.

Lexico-semantic features have also been employed in many studies, since knowledge
about the difficulty of a specific vocabulary, which these features measure, is an important
aspect of reading comprehension (Collins-Thompson, 2014). The common features in this
group are Type-token ratio (TTR), which measures the ratio between the number of
unique words and the total number of words in a text, and word and character n-grams
(Vajjala & Meurers, 2012; Xia et al., 2016), which are used as features in many supervised
approaches towards readability detection.

Another important feature group are syntactic features, which measure the grammatical
complexity of the text. Most used features are the so-called parse tree features, such as
for example average parse tree height, and grammatical relations features, such as for
example the longest distance in the grammatical relation sets generated by the parser.

Finally, the features most relevant for our study are language model features. Language
models try to predict a probability distribution of words from the fixed size vocabulary V ,
for word wt+1, given the historical sequence w1:t = [w1, ..., wt]. A metric called perplexity
(PPL) is usually used to measure the performance of the language model, i.e, the lower
the perplexity score, the better the language model predicts the words in a document.
Perplexity is defined in the equation below:

PPL = 2−
1
N

∑N
i=1 log2 m(wi), (3.1)

where N is the length of the sequence and m(wi) is the probability assigned to word wi

by the language model m.
Neural language models tend to outperform n-gram language models by a high margin,

since they employ much larger contextual window than n-gram language, which are limited
to a small contextual window usually of up to five previous words (Mikolov et al., 2011).
Nevertheless, even though they have this clear advantage in terms of performance, we are
unaware of any approach that would use neural language models for measuring readability
of a text. N-gram language models are on the other hand employed in several studies.
In the study by Schwarm and Ostendorf (2005), one n-gram language model was trained
for each readability class c in the training dataset. Statistics derived from these language
models, such as perplexity and likelihood ratio, are used as features in the supervised
classification approach towards readability detection. This approach of training distinct
n-gram language models on each readability class and then using language model statistics
for classification was also proposed in Petersen and Ostendorf (2009) and Xia et al. (2016).

3.3 Combining Neural Language Model Statistics and Shal-
low Lexical Indicators

The main question we investigate in our research is whether we can develop a robust new
readability formula that will outperform traditional readability formulas by combining
symbolic lexical sophistication indicators with neural language model statistics. To put
it differently, in this section we aim to achieve the stated goal G2 and confirm
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the hypothesis H3.
In contrast to the approach proposed in Chapter 2, here we employ late complex fu-

sion. The main reason for this decision lies in the fact that the proposed approach is
unsupervised, therefore strictly speaking there is no prediction model to which we could
feed the (readability) features, as in the case of early fusion. We also refer to the proposed
combination as complex, since symbolic and neural readability indicators are combined
within a complex readability formula, and not just by a simple concatenation of distinct
representations. The latter would be unfeasible, since neither the neural nor the symbolic
readability indicators are in the vector format appropriate for concatenation.

In the proposed readability formula, a neural language model is used as a standalone
unsupervised readability predictor. This differs from a procedure proposed in the related
work, where separate language model is trained for each readability class (Petersen &
Ostendorf, 2009; Xia et al., 2016), and allows us to exploit language model statistics in
an unsupervised setting. We claim that this is possible when n-gram language model
is replaced with a neural one with a much larger contextual window that spans across
sentences, allowing the model to learn high-level textual properties, such as long-distance
dependencies (Jawahar et al., 2019), in order to minimize negative log loss (NLL) during
training. We also propose to train the language model on a large corpus, exposing it to
chunks of text with different levels of complexity. We hypothesize that the model will to
some extent be able to distinguish between these levels and return a lower perplexity for
more readable text and a higher perplexity for text containing complex and rare language
structures and unusual vocabulary.

The proposed new readability formula Ranked Sentence Readability Score (RSRS)
relies on two assumptions:

• Shallow indicators of text complexity, such as the length of a sentence, have a good
correlation with the readability of a text. Combining them with neural language
model statistics could improve the unsupervised readability prediction.

• The perplexity scores returned by a language model for each text are an unweighted
sum of perplexities of words in the predicted sequence. Using this sum directly
might result in low correlation with text readability, since in reality a small amount
of unreadable words might have a big impact on the overall readability of the text.
The correlation of language model obtained statistics with the readability might
therefore be improved by assigning larger weights to such unreadable words.

The procedure for calculating the RSRS is described below. First, we employ the
default sentence tokenizer from the NLTK library (Bird & Loper, 2004) to split a text into
sentences. We leverage a neural language model to obtain a readability estimation for each
word in a specific context, i.e., by computing the word negative log-likelihood (WNLL) for
each word in the sentence:

WNLL = −(yt log yp + (1− yt) log (1− yp))

In the formula above, yp denotes the probability predicted by the neural language
model that a word in a text occurs after a specific historical sequence, and yt denotes the
empirical distribution for a specific position in the sentence. Since yt is always one, the
WNLL formula can be simplified into:

WNLL = log yp
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After that, the words in the sentence are sorted in an ascending order according to their
WNLL scores, and the ranked sentence readability score (RSRS) is calculated accordingly:

RSRS =

∑S
i=1

√
i ·WNLL(i)
S

(3.2)

S denotes the sentence length and i represents the rank of a word in a sentence according
to its WNLL value. In order to obtain the best balance between allowing all words to
contribute equally to the overall readability of the sentence and allowing only the least
readable words to affect the overall readability of the sentence, the word rank is put under
the square root. We calculate the average of all the RSRS scores in the text to get the
readability score for an entire text.

RSRS leverages symbolic lexical sophistication indicators through index weighting,
which determines the contribution of each word to the overall readability score and as-
sures that less readable words contribute more. This is similar to the counts of long and
difficult words in some traditional readability formulas, for example in GFI. Longer sen-
tences also influence the value of RSRS, since the square roots of the word rank weights
become larger with increased sentence length. In traditional formulas such as GFI, FRE,
FKGL, ARI, and DCRF, the same effect is achieved by calculating the ratio between the
total number of words and the total number of sentences.

RSRS score also avoids the reductionism of traditional readability formulas by con-
sidering neural language model statistics, which carry high-level structural and semantic
information. The WNLL score computed for each word depends on the context in which the
word appears in, and the assumption is that words appearing in more complex grammat-
ical and lexical contexts will have a higher WNLL. Presumably, WNLL will also consider
semantics of the text, since documents with semantics dissimilar to the documents in the
language model training set will likely have a negative effect on the performance of the lan-
guage model. This means that by training the language model on a text from appropriate
language and genre, one can customize and personalize the RSRS for a specific task.

We employ three neural architectures for language modelling, a recurrent language
model (RLM) based on long short-term memory (LSTM) architecture proposed by Y. Kim
et al. (2016), a temporal convolutional network (TCN) proposed by Bai et al. (2018), and
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019),
which employs a masked language model objective for training, where a predefined percent-
age of randomly chosen words from the input word sequence is masked, and the objective
is to predict these masked words from the unmasked context.

For English, we train language models on three datasets with different readabilities,
Wiki-normal (containing articles from English Wikipedia), Wiki-simple (containing articles
from Simple Wikipedia), and Wiki-balanced (containing a balanced amount of articles from
English Wikipedia and Simple Wikipedia). See Table 3.1 for dataset statistics. For Slove-
nian, we only train the language model on a KRES-balanced corpus (Logar et al., 2012),
containing a balanced amount of text from children magazines, teenager magazines, and
magazines targeting adult audiences. We also test the viability of using a language model
trained on a large general corpus for readability prediction. For English, we employ the
English BERT language model, trained on large corpora (Google Books Corpus (Goldberg
& Orwant, 2013) and Wikipedia) of about 3300M words containing mostly texts for adult
English speakers and for Slovenian, we employ the CroSloEngual BERT model trained
on corpora from three languages, Slovenian (1.26G words), Croatian (1.95G words), and
English (2.69G words) (Ulčar & Robnik-Šikonja, 2020a).

We test the proposed approach on three English (Newsela (Xu et al., 2015), On-
eStopEnglish (Vajjala & Lučić, 2018) and WeeBit (Vajjala & Meurers, 2012)) and one
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Table 3.1: Readability classes, number of documents, tokens per specific readability class
and average tokens per document in each readability corpus.

Readability class #documents #tokens #tokens per doc.
Wikipedia

simple 130,000 10,933,710 84.11
balanced 130,000 10,847,108 83.44
normal 130,000 10,719,878 82.46

OneStopEnglish
beginner 189 100,800 533.33
intermediate 189 127,934 676.90
advanced 189 155,253 820.49
All 567 383,987 677.23

WeeBit
age 7-8 600 77,613 129.35
age 8-9 600 100,491 167.49
age 9-10 600 159,719 266.20
age 10-14 600 89,548 149.25
age 14-16 600 152,402 254.00
All 3,000 579,773 193.26

Newsela
2nd grade 224 74,428 332.27
3rd grade 500 197,992 395.98
4th grade 1,569 923,828 588.80
5th grade 1,342 912,411 679.89
6th grade 1,058 802,057 758.09
7th grade 1,210 979,471 809.48
8th grade 1,037 890,358 858.59
9th grade 750 637,784 850.38
10th grade 20 19,012 950.60
11th grade 2 1,130 565.00
12th 1,853 1,833,781 989.63
All 9,565 7,272,252 760.30

KRES-balanced
balanced / 2,402,263 /

Slovenian SB
1st-ps 69 12,921 187.26
2nd-ps 146 30,296 207.51
3rd-ps 268 62,241 232.24
4th-ps 1,007 265,242 263.40
5th-ps 1,186 330,039 278.28
6th-ps 959 279,461 291.41
7th-ps 1,470 462,551 314.66
8th-ps 1,844 540,944 293.35
9th-ps 2,154 688,149 319.47
1st-hs 1,663 578,694 347.98
2nd-hs 590 206,147 349.40
3rd-hs 529 165,845 313.51
4th-hs 45 14,313 318.07
All 11,930 3,636,843 304.85
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Table 3.2: Ranking (lower is better) of measures on English and Slovenian datasets sorted
by the average rank on all datasets for which the measure is available.

Measure WeeBit OneStopEnglish Newsela Slovenian SB
RLM RSRS-simple 4 4 4 /
TCN RSRS-balanced 11 2 2 1
RLM RSRS-balanced 5 5 5 3
GFI 1 6 10 4
TCN RSRS-simple 12 1 3 /
ASL 3 12 1 7
FKGL 2 8 9 5
RLM RSRS-normal 6 7 6 /
TCN RSRS-normal 13 3 7 /
ARI 7 9 8 8
SMOG 8 11 11 2
DCRF 10 13 13 6
FRE 9 14 12 9
TCN perplexity-simple 16 10 15 /
TCN perplexity-balanced 15 15 16 11
BERT RSRS 14 18 14 12
RLM perplexity-balanced 18 17 17 10
RLM perplexity-simple 19 16 18 /
TCN perplexity-normal 17 19 20 /
BERT perplexity 20 21 21 13
RLM perplexity-normal 21 20 19 /

Slovenian school books (SB) test dataset. Besides differing in language, the corpora also
differ in terms of semantic differences between different readability classes (Newsela and
OneStopEnglish datasets are parallel corpora and WeeBit and Slovenian SB datasets are
not), length of documents (Newsela and OneStopEnglish datasets on average contain much
longer documents than other two datasets), genre (OneStopEnglish and Newsela datasets
contain news articles, WeeBit is made of educational articles, and the Slovenian SB dataset
is composed of school books), and target audience (OneStopEnglish targets adult English
as a second language (ESL) learners and other datasets target children of different ages).

The ranking of different measures on English and Slovenian datasets are presented
in Table 3.2. Besides ranking for the proposed RSRS score, we also report ranking for
several traditional readability measures (GFI, FRE, FKGL, ARI, DCRF, SMOG, and
average sentence length (ASL)) and investigate how the measured perplexities of language
models correlate with the readability labels in the gold-standard corpora. The correlation
is measured with the Pearson correlation coefficient (ρ) and a larger positive correlation
denotes a better performance for all measures except the FRE readability measure. Here, a
larger negative correlation suggests a better performance, since this formula assigns higher
scores to more readable texts.

The results in terms of ranking of measures across different datasets are presented in Ta-
ble 3.2. In general, RSRS measures with different language models trained on datasets with
different readabilites offer competitive performance. RSRS-simple and RSRS-balanced
measures offer the most robust performance across datasets from different genres and lan-
guages. On average the best ranked measure, RSRS-simple, ranked fourth on all English
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corpora. The second best measure, TCN RSRS-balanced, which was also employed on
Slovenian SB, ranked first on Slovenian SB and second on OneStopEnglish and Newsela,
but did not do well on WeeBit, where the discrepancy in readability between the language
model train and test sets was too large. A bit more consistent was RLM RSRS-balanced
measure, ranking fifth on all English corpora and third on Slovenian SB.

The results suggest that the readability of the language model training set is impor-
tant. If the training set on average contains more complex texts than the majority of
texts in the test set, as in the case of language models trained just on the Wiki-normal
corpus (and also BERT), the correlation between readability and perplexity worsens, since
language models trained on more complex language structures learn how to handle these
difficulties. According to these results, the average readability of the training corpus should
fit somewhere in the middle or even slightly below the middle of the readability range of
the testing corpus. On the other hand, the choice of a neural architecture for language
modelling (RLM or TCN) does not appear to have a big influence on the results.

Table 3.2 also shows that shallow readability predictors can give inconsistent results on
datasets from different genres and languages, as can be seen on the example of AVS, which
ranked first on Newsela and twelfth on OneStopEnglish. Another example is the SMOG
measure, which performed very well on the Slovenian SB corpus (rank 2) but ranked twice
as eleventh and once as eighth on the English corpora. On average, GFI measure ranked
the best, ranking first on WeeBit, sixth on OneStopEnglish, tenth on Newsela, and fourth
on Slovenian SB.

The perplexity-based measures show low correlation with the ground truth readability
scores and perform even worse than the traditional readability measures. Perplexity is
therefore not a good indicator of readability and should therefore not be used alone for
readability prediction. Nevertheless, neural language model statistics do contain quite
useful information when combined with other symbolic indicators of lexical sophistication.
This is shown by the good performance of TCN RSRS and RLM RSRS and is especially
useful when readability analysis needs to be conducted on a variety of different datasets.

The journal paper covering the methodology, experiments and results in detail is en-
closed below.



Supervised and Unsupervised Neural
Approaches to Text Readability

Matej Martinc
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We present a set of novel neural supervised and unsupervised approaches for determining the
readability of documents. In the unsupervised setting, we leverage neural language models,
whereas in the supervised setting, three different neural classification architectures are tested. We
show that the proposed neural unsupervised approach is robust, transferable across languages,
and allows adaptation to a specific readability task and data set. By systematic comparison of
several neural architectures on a number of benchmark and new labeled readability data sets in
two languages, this study also offers a comprehensive analysis of different neural approaches to
readability classification. We expose their strengths and weaknesses, compare their performance
to current state-of-the-art classification approaches to readability, which in most cases still rely
on extensive feature engineering, and propose possibilities for improvements.

1. Introduction

Readability is concerned with the relation between a given text and the cognitive load
of a reader to comprehend it. This complex relation is influenced by many factors, such
as a degree of lexical and syntactic sophistication, discourse cohesion, and background
knowledge (Crossley et al. 2017). In order to simplify the problem of measuring read-
ability, traditional readability formulas focused only on lexical and syntactic features
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expressed with statistical measurements, such as word length, sentence length, and
word difficulty (Davison and Kantor 1982). These approaches have been criticized
because of their reductionism and weak statistical bases (Crossley et al. 2017). Another
problem is their objectivity and cultural transferability, since children from different en-
vironments master different concepts at different ages. For example, a word television is
quite long and contains many syllables but is well-known to most young children who
live in families with a television.

With the development of novel natural language processing (NLP) techniques,
several studies attempted to eliminate deficiencies of traditional readability formulas.
These attempts include leveraging high-level textual features for readability modeling,
such as semantic and discursive properties of texts. Among them, cohesion and co-
herence received the most attention, and several readability predictors based on these
text features have been proposed (see Section 2). Nevertheless, none of them seems to
predict the readability of the text as well as much simpler readability formulas men-
tioned above (Todirascu et al. 2016).

With the improvements in machine learning, the focus shifted once again, and most
newer approaches consider readability as being a classification, regression, or a ranking
task. Machine learning approaches build prediction models to predict human assigned
readability scores based on several attributes and manually built features that cover
as many text dimensions as possible (Schwarm and Ostendorf 2005; Petersen and
Ostendorf 2009; Vajjala and Meurers 2012). They generally yield better results than the
traditional readability formulas and text cohesion–based methods but require addi-
tional external resources, such as labeled readability data sets, which are scarce. Another
problem is the transferability of these approaches between different corpora and lan-
guages, because the resulting feature sets do not generalize well to different types of
texts (Xia, Kochmar, and Briscoe 2016; Filighera, Steuer, and Rensing 2019).

Recently, deep neural networks (Goodfellow, Bengio, and Courville 2016) have
shown impressive performance on many language-related tasks. In fact, they have
achieved state-of-the-art performance in all semantic tasks where sufficient amounts of
data were available (Collobert et al. 2011; Zhang, Zhao, and LeCun 2015). Even though
very recently some neural approaches toward readability prediction have been pro-
posed (Nadeem and Ostendorf 2018; Filighera, Steuer, and Rensing 2019), these types
of studies are still relatively scarce, and further research is required in order to establish
what type of neural architectures are the most appropriate for distinct readability tasks
and data sets. Furthermore, language model features designed to measure lexical and
semantic properties of text, which can be found in many of the readability studies
(Schwarm and Ostendorf 2005; Petersen and Ostendorf 2009; Xia, Kochmar, and Briscoe
2016), are generated with traditional n-gram language models, even though language
modeling has been drastically improved with the introduction of neural language mod-
els (Mikolov et al. 2011).

The aim of the present study is two-fold. First, we propose a novel approach to read-
ability measurement that takes into account neural language model statistics. This ap-
proach is unsupervised and requires no labeled training set but only a collection of
texts from the given domain. We demonstrate that the proposed approach is capable
of contextualizing the readability because of the trainable nature of neural networks
and that it is transferable across different languages. In this scope, we propose a new
measure of readability, RSRS (ranked sentence readability score), with good correlation
with true readability scores.

Second, we experiment to find how different neural architectures with automa-
tized feature generation can be used for readability classification and compare their
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Martinc, Pollak, and Robnik-Šikonja Neural Approaches to Text Readability

performance to state-of-the-art classification approaches. Three distinct branches of neu-
ral architectures—recurrent neural networks (RNN), hierarchical attention networks
(HAN), and transfer learning techniques—are tested on four gold standard readability
corpora with good results.

The article is structured as follows. Section 2 addresses the related work on readabil-
ity prediction. Section 3 offers a thorough analysis of data sets used in our experiments,
and in Section 4, we present the methodology and results for the proposed unsupervised
approach to readability prediction. The methodology and experimental results for the
supervised approach are presented in Section 5. We present conclusions and directions
for further work in Section 6.

2. Related Work

Approaches to the automated measuring of readability try to find and assess factors that
correlate well with human perception of readability. Several indicators, which measure
different aspects of readability, have been proposed in the past and are presented in
Section 2.1. These measures are used as features in newer approaches, which train ma-
chine learning models on texts with human-annotated readability levels so that they can
predict readability levels on new unlabeled texts. Approaches that rely on an extensive
set of manually engineered features are described in Section 2.2. Finally, Section 2.3
covers the approaches that tackle readability prediction with neural classifiers. Besides
tackling the readability as a classification problem, several other supervised statistical
approaches for readability prediction have been proposed in the past. They include
regression (Sheehan et al. 2010), Support Vector Machine (SVM) ranking (Ma, Fosler-
Lussier, and Lofthus 2012), and graph-based methods (Jiang, Xun, and Qi 2015), among
many others. We do not cover these methods in the related work because they are not
directly related to the proposed approach.

2.1 Readability Features

Classical readability indicators can be roughly divided into five distinct groups: tradi-
tional, discourse cohesion, lexico-semantic, syntactic, and language model features. We
describe them below.

2.1.1 Traditional Features. Traditionally, readability in texts was measured by statistical
readability formulas, which try to construct a simple human-comprehensible formula
with a good correlation to what humans perceive as the degree of readability. The sim-
plest of them is average sentence length (ASL), though they take into account various
other statistical factors, such as word length and word difficulty. Most of these formulas
were originally developed for the English language but are also applicable to other
languages with some modifications (Škvorc et al. 2019).

The Gunning fog index (Gunning 1952) (GFI) estimates the years of formal educa-
tion a person needs to understand the text on the first reading. It is calculated with the
following expression:

GFI = 0.4
(

totalWords
totalSentences + 100

longWords
totalSentences

)

where longWords are words longer than 7 characters. Higher values of the index indicate
lower readability.
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Flesch reading ease (Kincaid et al. 1975) (FRE) assigns higher values to more read-
able texts. It is calculated in the following way:

FRE = 206.835− 1.015
(

totalWords
totalSentences

)
− 84.6

(
totalSyllables
totalWords

)

The values returned by the Flesch-Kincaid grade level (Kincaid et al. 1975) (FKGL)
correspond to the number of years of education generally required to understand the
text for which the formula was calculated. The formula is defined as follows:

FKGL = 0.39
(

totalWords
totalSentences

)
+ 11.8

(
totalSyllables
totalWords

)
− 15.59

Another readability formula that returns values corresponding to the years of edu-
cation required to understand the text is the Automated Readability Index (Smith and
Senter 1967) (ARI):

ARI = 4.71
(

totalCharacters
totalWords

)
+ 0.5

(
totalWords

totalSentences

)
− 21.43

The Dale-Chall readability formula (Dale and Chall 1948) (DCRF) requires a list of
3,000 words that fourth-grade US students could reliably understand. Words that do
not appear in this list are considered difficult. If the list of words is not available, it is
possible to use the GFI approach and consider all the words longer than 7 characters as
difficult. The following expression is used in calculation:

DCRF = 0.1579
(

difficultWords
totalWords ∗ 100

)
+ 0.0496

(
totalWords

totalSentences

)

The SMOG grade (Simple Measure of Gobbledygook) (McLaughlin 1969) is a read-
ability formula originally used for checking health messages. Similar to FKGL and ARI,
it roughly corresponds to the years of education needed to understand the text. It is
calculated with the following expression:

SMOG = 1.0430
√

numberOfPolysyllables 30
totalSentences + 3.1291

where the numberOfPolysyllables is the number of words with three or more syllables.
We are aware of one study that explored the transferability of these formulas across

genres (Sheehan, Flor, and Napolitano 2013), and one study that explored transferability
across languages (Madrazo Azpiazu and Pera 2020). The study by Sheehan, Flor, and
Napolitano (2013) concludes that, mostly due to vocabulary specifics of different genres,
traditional readability measures are not appropriate for cross-genre prediction, because
they underestimate the complexity levels of literary texts and overestimate that of
educational texts. The study by Madrazo Azpiazu and Pera (2020), on the other hand,
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concludes that the readability level predictions for translations of the same text are
rarely consistent when using these formulas.

All of the above-mentioned readability measures were designed for the specific use
on English texts. There are some rare attempts to adapt these formulas to other lan-
guages (Kandel and Moles 1958) or to create new formulas that could be used on lan-
guages other than English (Anderson 1981).

To show a multilingual potential of our approach, we address two languages in this
study, English and Slovenian, a Slavic language with rich morphology and orders of
magnitude fewer resources compared to English. For Slovenian, readability studies are
scarce. Škvorc et al. (2019) researched how well the above statistical readability formulas
work on Slovenian text by trying to categorize text from three distinct sources: children’s
magazines, newspapers and magazines for adults, and transcriptions of sessions of
the National Assembly of Slovenia. Results of this study indicate that formulas that
consider the length of words and/or sentences work better than formulas that rely
on word lists. They also noticed that simple indicators of readability, such as percent-
age of adjectives and average sentence length, work quite well for Slovenian. To our
knowledge, the only other study that employed readability formulas on Slovenian texts
was done by Zwitter Vitez (2014). In that study, the readability formulas were used as
features in the author recognition task.

2.1.2 Discourse Cohesion Features. In the literature, we can find at least two distinct
notions of discourse cohesion (Todirascu et al. 2016). First is the notion of coherence,
defined as the “semantic property of discourse, based on the interpretation of each
sentence relative to the interpretation of other sentences” (Van Dijk 1977). Previous
research that investigates this notion tries to determine whether a text can be interpreted
as a coherent message and not just as a collection of unrelated sentences. This can
be done by measuring certain observable features of the text, such as the repetition
of content words or by analysis of words that explicitly express connectives (because,
consequently, as a result, etc.) (Sheehan et al. 2014). A somewhat more investigated notion,
due to its easier operationalization, is the notion of cohesion, defined as “a property of
text represented by explicit formal grammatical ties (discourse connectives) and lexical
ties that signal how utterances or larger text parts are related to each other.”

According to Todirascu et al. (2016), we can divide cohesion features into five
distinct classes, outlined below: co-reference and anaphoric chain properties, entity
density and entity cohesion features, lexical cohesion measures, and part of speech
(POS) tag-based cohesion features. Co-reference and anaphoric chain properties were
first proposed by Bormuth (1969), who measured various characteristics of anaphora.
These features include statistics, such as the average length of reference chains or the
proportion of various types of mention (noun phrases, proper names, etc.) in the chain.
Entity density features include statistics such as the total number of all/unique entities
per document, the average number of all/unique entities per sentence, and so forth.
These features were first proposed in Feng, Elhadad, and Huenerfauth (2009) and Feng
et al. (2010), who followed the theoretical line from Halliday and Hasan (1976) and
Williams (2006). Entity cohesion features assess relative frequency of possible tran-
sitions between syntactic functions played by the same entity in adjacent sentences
(Pitler and Nenkova 2008). Lexical cohesion measures include features such as the
frequency of content word repetition across adjacent sentences (Sheehan et al. 2014),
a Latent Semantic Analysis (LSA)-based feature for measuring the similarity of words
and passages to each other proposed by Landauer (2011), or a measure called Lexical
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Tightness (LT), suggested by Flor, Klebanov, and Sheehan (2013), defined as the mean
value of the Positive Normalized Pointwise Mutual Information (PMI) for all pairs of
content-word tokens in a text. The last category is POS tag-based cohesion features,
which measure the ratio of pronoun and article parts-of-speech, two crucial elements of
cohesion (Todirascu et al. 2016).

Todirascu et al. (2016), who analyzed 65 discourse features found in the readability
literature, concluded that they generally do not contribute much to the predictive power
of text readability classifiers when compared with the traditional readability formulas
or simple statistics such as sentence length.

2.1.3 Lexico-semantic Features. According to Collins-Thompson (2014), vocabulary knowl-
edge is an important aspect of reading comprehension, and lexico-semantic features
measure the difficulty of vocabulary in the text. A common feature is Type-token ratio
(TTR), which measures the ratio between the number of unique words and the total
number of words in a text. The length of the text influences TTR; therefore, several
corrections, which produce a more unbiased representation, such as Root TTR and
Corrected TTR, are also used for readability prediction.

Other frequently used features in classification approaches to readability are n-gram
lexical features, such as word and character n-grams (Vajjala and Meurers 2012; Xia,
Kochmar, and Briscoe 2016). While POS-based lexical features measure lexical vari-
ation (i.e., TTR of lexical items such as nouns, adjectives, verbs, adverbs, and preposi-
tions) and density (e.g., the percentage of content words and function words), word list-
based features use external psycholinguistic and Second Language Acquisition (SLA)
resources, which contain information about which words and phrases are acquired at
the specific age or English learning class.

2.1.4 Syntactic Features. Syntactic features measure the grammatical complexity of the
text and can be divided into several categories. Parse tree features include features
such as an average parse tree height or an average number of noun- or verb-phrases per
sentence. Grammatical relations features include measures of grammatical relations
between constituents in a sentence, such as the longest/average distance in the gram-
matical relation sets generated by the parser. Complexity of syntactic unit features
measure the length of a syntactic unit at the sentence, clause (any structure with a
subject and a finite verb), and T-unit level (one main clause plus any subordinate clause).
Finally, coordination and subordination features measure the amount of coordination
and subordination in the sentence and include features such as a number of clauses per
T-unit or number of coordinate phrases per clause, and so on.

2.1.5 Language Model Features. The standard task of language modeling can be formally
defined as predicting a probability distribution of words from the fixed size vocabulary
V, for word wt+1, given the historical sequence w1:t = [w1, . . . , wt]. To measure its perfor-
mance, traditionally a metric called perplexity is used. A language model m is evaluated
according to how well it predicts a separate test sequence of words w1:N = [w1, . . . , wN].
For this case, the perplexity (PPL) of the language model m() is defined as:

PPL = 2−
1
N
∑N

i=1 log2 m(wi ) (1)

where m(wi) is the probability assigned to word wi by the language model m, and N is
the length of the sequence. The lower the perplexity score, the better the language model
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predicts the words in a document—that is, the more predictable and aligned with the
training set the text is.

All past approaches for readability detection that use language modeling leverage
older n-gram language models rather than the newer neural language models. Schwarm
and Ostendorf (2005) train one n-gram language model for each readability class c in the
training data set. For each text document d, they calculate the likelihood ratio according
to the following formula:

LR(d, c) =
P(d|c)P(c)∑

c̄ 6=c P(d|c̄)P(c̄)

where P(d|c) denotes the probability returned by the language model trained on texts
labeled with class c, and P(d|c̄) denotes probability of d returned by the language model
trained on the class c̄. Uniform prior probabilities of classes are assumed. The likelihood
ratios are used as features in the classification model, along with perplexities achieved
by all the models.

In Petersen and Ostendorf (2009), three statistical language models (unigram, bi-
gram and trigram) are trained on four external data resources: Britannica (adult), Bri-
tannica Elementary, CNN (adult), and CNN abridged. The resulting 12 n-gram language
models are used to calculate perplexities of each target document. It is assumed that low
perplexity scores calculated by language models trained on the adult level texts and
high perplexity scores of language models trained on the elementary/abridged levels
would indicate a high reading level, and high perplexity scores of language models
trained on the adult level texts and low perplexity scores of language models trained on
the elementary/abridged levels would indicate a low reading level.

Xia, Kochmar, and Briscoe (2016) train 1- to 5-gram word-based language models on
the British National Corpus, and 25 POS-based 1- to 5-gram models on the five classes
of the WeeBit corpus. Language models’ log-likelihood and perplexity scores are used
as features for the classifier.

2.2 Classification Approaches Based on Feature Engineering

The above approaches measure readability in an unsupervised way, using the described
features. Alternatively, we can predict the level of readability in a supervised way. These
approaches usually require extensive feature engineering and also leverage many of the
features described earlier.

One of the first classification approaches to readability was proposed by Schwarm
and Ostendorf (2005). It relies on a SVM classifier trained on a WeeklyReader corpus,1

containing articles grouped into four classes according to the age of the target audi-
ence. Traditional, syntactic, and language model features are used in the model. This
approach was extended and improved upon in Petersen and Ostendorf (2009).

Altogether, 155 traditional, discourse cohesion, lexico-semantic, and syntactic fea-
tures were used in an approach proposed by Vajjala and Lučić (2018), tested on a
recently published OneStopEnglish corpus. Sequential Minimal Optimization (SMO)
classifier with the linear kernel achieved the classification accuracy of 78.13% for three
readability classes (elementary, intermediate, and advanced reading level).

1 http://www.weeklyreader.com.
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A successful classification approach to readability was proposed by Vajjala and
Meurers (2012). Their multilayer perceptron classifier is trained on the WeeBit corpus
(Vajjala and Meurers 2012) (see Section 3 for more information on WeeBit and other men-
tioned corpora). The texts were classified into five classes according to the age group
they are targeting. For classification, the authors use 46 manually crafted traditional,
lexico-semantic, and syntactic features. For the evaluation, they trained the classifier
on a train set consisting of 500 documents from each class and tested it on a balanced
test set of 625 documents (containing 125 documents per each class). They report 93.3%
accuracy on the test set.2

Another set of experiments on the WeeBit corpus was conducted by Xia, Kochmar,
and Briscoe (2016), who conducted additional cleaning of the corpus because it con-
tained some texts with broken sentences and additional meta-information about the
source of the text, such as copyright declaration and links, strongly correlated with the
target labels. They use similar lexical, syntactic, and traditional features as Vajjala and
Meurers (2012) but add language modeling (see Section 2.1.5 for details) and discourse
cohesion-based features. Their SVM classifier achieves 80.3% accuracy using the 5-
fold crossvalidation. This is one of the studies where the transferability of the classi-
fication models is tested. The authors used an additional CEFR (Common European
Framework of Reference for Languages) corpus. This small data set of CEFR-graded
texts is tailored for learners of English (Council of Europe 2001) and also contains 5
readability classes. The SVM classifier trained on the WeeBit corpus and tested on the
CEFR corpus achieved the classification accuracy of 23.3%, hardly beating the majority
classifier baseline. This low result was attributed to the differences in readability classes
in both corpora, since WeeBit classes are targeting children of different age groups, and
CEFR corpus classes are targeting mostly adult foreigners with different levels of En-
glish comprehension. However, this result is a strong indication that transferability of
readability classification models across different types of texts is questionable.

Two other studies that deal with the multi-genre prospects of readability prediction
were conducted by Sheehan, Flor, and Napolitano (2013) and Napolitano, Sheehan, and
Mundkowsky (2015). Both studies describe the problem in the context of the TextEvalu-
ator Tool (Sheehan et al. 2010), an online system for text complexity analysis. The system
supports multi-genre readability prediction with the help of a two-stage prediction
workflow, in which first the genre of the text is determined (as being informational, lit-
erary, or mixed) and after that its readability level is predicted with an appropriate
genre-specific readability prediction model. Similarly to the study above, this work also
indicates that using classification models for cross-genre prediction is not feasible.

When it comes to multi- and crosslingual classification, Madrazo Azpiazu and Pera
(2020) explore the possibility of a crosslingual readability assessment and show that
their methodology called CRAS (Crosslingual Readability Assessment Strategy), which
includes building a classifier that uses a set of traditional, lexico-semantic, syntactic,
and discourse cohesion-based features works well in a multilingual setting. They also
show that classification for some low resource languages can be improved by including
documents from a different language into the train set for a specific language.

2 Later research by Xia, Kochmar, and Briscoe (2016) called the validity of the published experimental
results into question; therefore, the reported 93.3% accuracy might not be the objective state-of-the-art
result for readability classification.
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2.3 Neural Classification Approaches

Recently, several neural approaches for readability prediction have been proposed.
Nadeem and Ostendorf (2018) tested two different architectures on the WeeBit cor-
pus regression task, namely, sequential Gated Recurrent Unit (GRU) (Cho et al. 2014)
based RNN with the attention mechanism and hierarchical RNNs (Yang et al. 2016)
with two distinct attention types: a more classic attention mechanism proposed by
Bahdanau, Cho, and Bengio (2014), and multi-head attention proposed by Vaswani
et al. (2017). The results of the study indicate that hierarchical RNNs generally perform
better than sequential. Nadeem and Ostendorf (2018) also show that neural networks
can be a good alternative to more traditional feature-based models for readability pre-
diction on texts shorter than 100 words, but do not perform that competitively on longer
texts.

Another version of a hierarchical RNN with the attention mechanism was proposed
by Azpiazu and Pera (2019). Their system, named Vec2Read, is a multi-attentive RNN
capable of leveraging hierarchical text structures with the help of word and sentence
level attention mechanisms and a custom-built aggregation mechanism. They used
the network in a multilingual setting (on corpora containing Basque, Catalan, Dutch,
English, French, Italian, and Spanish texts). Their conclusion was that although the
number of instances used for training has a strong effect on the overall performance of
the system, no language-specific patterns emerged that would indicate that prediction
of readability in some languages is harder than in others.

An even more recent neural approach for readability classification on the cleaned
WeeBit corpus (Xia, Kochmar, and Briscoe 2016) was proposed by Filighera, Steuer, and
Rensing (2019), who tested a set of different embedding models, word2vec (Mikolov
et al. 2013), the uncased Common Crawl GloVe (Pennington, Socher, and Manning
2014), ELMo (Peters et al. 2018), and BERT (Devlin et al. 2019). The embeddings were
fed to either a recurrent or a convolutional neural network. The BERT-based approach
from their work is somewhat similar to the BERT-based supervised classification ap-
proach proposed in this work. However, one main distinction is that no fine-tuning is
conducted on the BERT model in their experiments (i.e., the extraction of embeddings
is conducted on the pretrained BERT language model). Their best ELMo-based model
with a bidirectional LSTM achieved an accuracy of 79.2% on the development set,
slightly lower than the accuracy of 80.3% achieved by Xia, Kochmar, and Briscoe (2016)
in the 5-fold crossvalidation scenario. However, they did manage to improve on the
state of the art by an ensemble of all their models, achieving the accuracy of 81.3%,
and the macro averaged F1-score of 80.6%.

A somewhat different neural approach to readability classification was proposed
by Mohammadi and Khasteh (2019), who tackled the problem with deep reinforcement
learning, or more specifically, with a deep convolutional recurrent double dueling Q
network (Wang et al. 2016) using a limited window of 5 adjacent words. GloVe embed-
dings and statistical language models were used to represent the input text in order to
eliminate the need for sophisticated NLP features. The model was used in a multilingual
setting (on English and Persian data sets) and achieved performance comparable to the
state of the art on all of the data sets, among them also on the Weebit corpus (accuracy
of 91%).

Finally, a recent study by Deutsch, Jasbi, and Shieber (2020) used predictions of
HAN and BERT models as additional features in their SVM model that also utilized a
set of syntactic and lexico-semantic features. Although they did manage to improve the
performance of their SVM classifiers with the additional neural features, they concluded
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that additional syntactic and lexico-semantic features did not generally improve the
predictions of the neural models.

3. Data Sets

In this section, we first present the data sets used in the experiments (Section 3.1) and
then conduct their preliminary analysis (Section 3.2) in order to assess the feasibility of
the proposed experiments. Data set statistics are presented in Table 1.

3.1 Data Set Presentation

All experiments are conducted on four corpora labeled with readability scores:

• The WeeBit corpus: The articles from WeeklyReader3 and BBC-Bitesize4

are classified into five classes according to the age group they are
targeting. The classes correspond to age groups 7–8, 8–9, 9–10, 10–14, and
14–16 years. Three classes targeting younger audiences consist of articles
from WeeklyReader, an educational newspaper that covers a wide range of
nonfiction topics, from science to current affairs. Two classes targeting
older audiences consist of material from the BBC-Bitesize Web site,
containing educational material categorized into topics that roughly match
school subjects in the UK. In the original corpus of Vajjala and Meurers
(2012), the classes are balanced and the corpus contains altogether
3,125 documents, 625 per class. In our experiments, we followed
recommendations of Xia, Kochmar, and Briscoe (2016) to fix broken
sentences and remove additional meta information, such as copyright
declaration and links, strongly correlated with the target labels. We
reextracted the corpus from the HTML files according to the procedure
described in Xia, Kochmar, and Briscoe (2016) and discarded some
documents because of the lack of content after the extraction and cleaning
process. The final corpus used in our experiments contains altogether
3,000 documents, 600 per class.

• The OneStopEnglish corpus (Vajjala and Lučić 2018) contains aligned
texts of three distinct reading levels (beginner, intermediate, and
advanced) that were written specifically for English as Second Language
(ESL) learners. The corpus was compiled over the period 2013–2016 from
the weekly news lessons section of the language learning resources
onestopenglish.com. The section contains articles sourced from the
Guardian newspaper, which were rewritten by English teachers to target
three levels of adult ESL learners (elementary, intermediate, and
advanced). Overall, the document-aligned parallel corpus consists of 189
texts, each written in three versions (567 in total). The corpus is freely
available.5

3 http://www.weeklyreader.com.
4 http://www.bbc.co.uk/bitesize.
5 https://zenodo.org/record/1219041.
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• The Newsela corpus (Xu, Callison-Burch, and Napoles 2015): We use
the version of the corpus from 29 January 2016 consisting of altogether
10,786 documents, out of which we only used 9,565 English documents.
The corpus contains 1,911 original English news articles and up to four
simplified versions for every original article, that is, each original news
article has been manually rewritten up to 4 times by editors at Newsela, a
company that produces reading materials for pre-college classroom use, in
order to target children at different grade levels and help teachers prepare
curricula that match the English language skills required at each grade
level. The data set is a document-aligned parallel corpus of original and
simplified versions corresponding to altogether eleven different
imbalanced grade levels (from 2nd to 12th grade).

• Corpus of Slovenian school books (Slovenian SB): In order to test the
transferability of the proposed approaches to other languages, a corpus of
Slovenian school books was compiled. The corpus contains 3,639,665
words in 125 school books for nine grades of primary schools and four
grades of secondary school. It was created with several aims, like studying
different quality aspects of school books, extraction of terminology, and
linguistic analysis. The corpus contains school books for 16 distinct
subjects with very different topics ranging from literature, music, and
history to math, biology, and chemistry, but not in equal proportions, with
readers being the largest type of school books included.

Whereas some texts were extracted from the Gigafida reference corpus
of written Slovene (Logar et al. 2012), most of the texts were extracted from
PDF files. After the extraction, we first conduct some light manual
cleaning on the extracted texts (removal of indices, copyright statements,
references, etc.). Next, in order to remove additional noise (tips, equations,
etc.), we apply a filtering script that relies on manually written rules for
sentence extraction (e.g., a text is a sentence if it starts with an uppercase
and ends with an end-of-sentence punctuation) to obtain only passages
containing sentences. Final extracted texts come without structural
information (where does a specific chapter end or start, which sentences
constitute a paragraph, where are questions, etc.), since labeling the
document structure would require a large amount of manual effort;
therefore we did not attempt it for this research.

For supervised classification experiments, we split the school books
into chunks 25 sentences long, in order to build a train and test set with a
sufficient number of documents.6 The length of 25 sentences was chosen
due to size limitations of the BERT classifier, which can be fed documents
that contain up to 512 byte-pair tokens (Kudo and Richardson 2018),7

which on average translates to slightly less than 25 sentences.

6 Note that this chunking procedure might break the text cohesion and that topical similarities between
chunks from the same chapter (or paragraphs) might have a positive effect on the performance of the
classification. However, because the corpus does not contain any high-level structural information
(e.g., the information about paragraph or chapter structure of a specific school book), no other more
refined chunking method is possible.

7 Note that the BERT tokenizer uses byte-pair tokenization (Kudo and Richardson 2018), which in some
cases generates tokens that correspond to sub-parts of words rather than entire words. In the case of
Slovenian SB, 512 byte-pair tokens correspond to 306 word tokens on average.
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Table 1
Readability classes, number of documents, tokens per specific readability class, and average
tokens per document in each readability corpus.

Readability class #documents #tokens #tokens per doc.

Wikipedia

simple 130,000 10,933,710 84.11
balanced 130,000 10,847,108 83.44
normal 130,000 10,719,878 82.46

OneStopEnglish

beginner 189 100,800 533.33
intermediate 189 127,934 676.90
advanced 189 155,253 820.49
All 567 383,987 677.23

WeeBit

age 7–8 600 77,613 129.35
age 8–9 600 100,491 167.49
age 9–10 600 159,719 266.20
age 10–14 600 89,548 149.25
age 14–16 600 152,402 254.00
All 3,000 579,773 193.26

Newsela

2nd grade 224 74,428 332.27
3rd grade 500 197,992 395.98
4th grade 1,569 923,828 588.80
5th grade 1,342 912,411 679.89
6th grade 1,058 802,057 758.09
7th grade 1,210 979,471 809.48
8th grade 1,037 890,358 858.59
9th grade 750 637,784 850.38
10th grade 20 19,012 950.60
11th grade 2 1,130 565.00
12th 1,853 1,833,781 989.63
All 9,565 7,272,252 760.30

KRES-balanced

balanced / 2,402,263 /
Slovenian SB

1st-ps 69 12,921 187.26
2nd-ps 146 30,296 207.51
3rd-ps 268 62,241 232.24
4th-ps 1,007 265,242 263.40
5th-ps 1,186 330,039 278.28
6th-ps 959 279,461 291.41
7th-ps 1,470 462,551 314.66
8th-ps 1,844 540,944 293.35
9th-ps 2,154 688,149 319.47
1st-hs 1,663 578,694 347.98
2nd-hs 590 206,147 349.40
3rd-hs 529 165,845 313.51
4th-hs 45 14,313 318.07
All 11,930 3,636,843 304.85
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Martinc, Pollak, and Robnik-Šikonja Neural Approaches to Text Readability

Language models are trained on large corpora of texts. For this purpose, we used
the following corpora.

• Corpus of English Wikipedia and Corpus of Simple Wikipedia articles:
We created three corpora for the use in our unsupervised English
experiments:8

– Wiki-normal contains 130,000 randomly selected articles from the
Wikipedia dump, which comprise 489,976 sentences and 10,719,878
tokens.

– Wiki-simple contains 130,000 randomly selected articles from the
Simple Wikipedia dump, which comprise 654,593 sentences and
10,933,710 tokens.

– Wiki-balanced contains 65,000 randomly selected articles from the
Wikipedia dump (dated 26 January 2018) and 65,000 randomly
selected articles from the Simple Wikipedia dump. Altogether the
corpus comprises 571,964 sentences and 10,847,108 tokens.

• KRES-balanced: The KRES corpus (Logar et al. 2012) is a 100 million word
balanced reference corpus of Slovenian language: 35% of its content is
books, 40% periodicals, and 20% Internet texts. From this corpus we took
all the available documents from two children’s magazines (Ciciban and
Cicido), all documents from four teenager magazines (Cool, Frka, PIL
plus, and Smrklja), and documents from three magazines targeting adult
audiences (Življenje in tehnika, Radar, City magazine). With these texts,
we built a corpus with approximately 2.4 million words. The corpus is
balanced in a sense that about one-third of the sentences come from
documents targeting children, one-third is targeting teenagers, and the last
third is targeting adults.

3.2 Data Set Analysis

Overall, there are several differences between our data sets:

• Language: As already mentioned, we have three English (Newsela,
OneStopEnglish and WeeBit), and one Slovenian (Slovenian SB) test data
set.

• Parallel corpora vs. unaligned corpora: Newsela and OneStopEnglish
data sets are parallel corpora, which means that articles from different
readability classes are semantically similar to each other. On the other
hand, WeeBit and Slovenian SB data sets contain completely different
articles in each readability class. Although this might not affect traditional
readability measures, which do not take semantic information into
account, it might prove substantial for the performance of classifiers and
the proposed language model-based readability measures.

8 English Wikipedia and Simple Wikipedia dumps from 26 January 2018 were used for the corpus
construction.
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• Length of documents: Another difference between Newsela and
OneStopEnglish data sets on one side, and WeeBit and Slovenian SB data
set on the other, is the length of data set documents. Newsela and
OneStopEnglish data sets contain longer documents, on average about 760
and 677 words long, and documents in the WeeBit and Slovenian SB
corpora are on average about 193 and 305 words long, respectively.

• Genre: OneStopEnglish and Newsela data sets contain news articles,
WeeBit is made of educational articles, and the Slovenian SB data set is
composed of school books. For training of the English language models,
we use Wikipedia and Simple Wikipedia, which contain encyclopedia
articles, and for Slovene language model training, we use the
KRES-balanced corpus, which contains magazine articles.

• Target audience: OneStopEnglish is the only test data set that specifically
targets adult ESL learners and not children, as do other test data sets.
When it comes to data sets used for language model training,
KRES-balanced corpus is made of articles that target both adults and
children. The problem with Wikipedia and Simple Wikipedia is that no
specific target audience is addressed because articles are written by
volunteers. In fact, using Simple Wikipedia as a data set for the training of
simplification algorithms has been criticized in the past because of its lack
of specific simplification guidelines, which are based only on the
declarative statement that Simple Wikipedia was created for “children and
adults who are learning the English language” (Xu, Callison-Burch, and
Napoles 2015). This lack of guidelines also contributes to the decrease in
the quality of simplification according to Xu, Callison-Burch, and Napoles
(2015), who found that the corpus can be noisy and that half of its
sentences are not actual simplifications but rather copied from the original
Wikipedia.

This diversity of the data sets limits ambitions of the study to offer general con-
clusions true across genres, languages, or data sets. On the other hand, it offers an op-
portunity to determine how the specifics of each data set affect each of the proposed
readability predictors and also to determine the overall robustness of the applied
methods.

Although many aspects differ from one data set to another, there are also some
common characteristics across all the data sets, which allow using the same prediction
methods on all of them. These are mostly connected to the common techniques used
in the construction of the readability data sets, no matter the language, genre, or target
audience of the specific data set. The creation of parallel simplification corpora (i.e.,
Newsela, OneStopEnglish, and Simple Wikipedia) generally involves three techniques,
splitting (breaking a long sentence into shorter ones), deletion (removing unimportant
parts of a sentence), and paraphrasing (rewriting a text into a simpler version via
reordering, substitution, and occasionally expansion) (Feng 2008). Even though there
might be some subtleties involved (because what constitutes simplification for one
type of user may not be appropriate for another), how these techniques are applied is
rather general. Also, although there is no simplification used in the non-parallel corpora
(WeeBit, Slovenian SB), the contributing authors were nevertheless instructed to write
the text for a specific target group and adapt the writing style accordingly. In most
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cases, this leads to the same result (e.g., shorter, less complex sentences and simpler
vocabulary used in texts intended for younger or less fluently speaking audiences).

The claim of commonality between data sets can be backed up by the fact that even
traditional readability indicators correlate quite well with human assigned readability,
no matter the specific genre, language, or purpose of each data set. Results in Table 2
demonstrate this point by showcasing readability scores of traditional readability for-
mulas from Section 2.1.1. We can see that the general pattern of increased difficulty
on all data sets and for all indicators—larger readability scores (or in the case of FRE,
smaller) are assigned to those classes of the data set that contain texts written for older
children or more advanced ESL learners. This suggests that multi-data set, multi-genre,
and even multilingual readability prediction is feasible on the set of chosen data sets,
even if only the shallow traditional readability indicators are used.

However, the results do indicate that cross-genre or even cross-data set readability
prediction might be problematic because the data sets do not cover the same readability
range according to the shallow prediction formulas (and also ground truth readabil-
ity labels). For example, documents in the WeeBit 14–16 age group have scores very
similar to the Newsela 6th grade documents, which means that a classifier trained on
the WeeBit corpus might have a hard time classifying documents belonging to higher
Newsela grades since the readability of these documents is lower than for the most
complex documents in the WeeBit corpus according to all of the shallow readability
indicators. For this reason, we opted not to perform any supervised cross-data set or
cross-genre experiments. Nevertheless, the problem of cross-genre prediction is im-
portant in the context of the proposed unsupervised experiments, because the genre
discrepancy between the data sets used for training the language models and the data
sets on which the models are used might influence the performance of the proposed lan-
guage model-based measures. A more detailed discussion on this topic is presented in
Section 4.2.

The analysis in Table 2 also confirms the findings by Madrazo Azpiazu and Pera
(2020), who have shown that crosslingual readability prediction with shallow read-
ability indicators is problematic. For example, if we compare the Newsela corpus and
Slovenian SB corpus, which both cover roughly the same age group, we can see that
for some readability indicators (FRE, FKGL, DCRF, and ASL) the values are on entirely
different scales.

4. Unsupervised Neural Approach

In this section, we explore how neural language models can be used for determining
the readability of the text in an unsupervised way. In Section 4.1, we present the neural
architectures used in our experiments; in Section 4.2, we describe the methodology of
the proposed approach; and in Section 4.3, we present the conducted experiments.

4.1 Neural Language Model Architectures

Mikolov et al. (2011) have shown that neural language models outperform n-gram
language models by a high margin on large and also relatively small (less than 1 million
tokens) data sets. The achieved differences in perplexity (see Equation (1)) are attributed
to a richer historical contextual information available to neural networks, which are not
limited to a small contextual window (usually of up to 5 previous words) as is the case
of n-gram language models. In Section 2.1.5, we mentioned some approaches that use
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Table 2
Scores of traditional readability indicators from Section 2.1.1 for specific classes in the readability
data sets.

Class GFI FRE FKGL ARI DCRF SMOG ASL

Wikipedia

simple 11.80 62.20 8.27 14.08 11.40 11.40 16.90
balanced 13.49 56.17 9.70 15.86 12.53 12.53 19.54
normal 15.53 49.16 11.47 18.06 13.89 13.89 23.10

WeeBit

age 7–8 6.91 83.41 3.82 8.83 7.83 7.83 10.23
age 8–9 8.45 76.68 5.34 10.33 8.87 8.87 12.89
age 9–10 10.30 69.88 6.93 12.29 10.01 10.01 15.69
age 10–14 9.94 75.35 6.34 11.20 9.67 9.67 16.64
age 14–16 11.76 66.61 8.09 13.56 10.81 10.81 18.86

OneStopEnglish

beginner 11.79 66.69 8.48 13.93 11.05 11.05 20.74
intermediate 13.83 59.68 10.19 15.98 12.30 12.30 23.98
advanced 15.35 54.84 11.54 17.65 13.22 13.22 26.90

Newsela

2nd grade 6.11 85.69 3.27 8.09 7.26 7.26 9.26
3rd grade 7.24 80.92 4.27 9.30 7.94 7.94 10.72
4th grade 8.58 76.05 5.40 10.50 8.88 8.88 12.72
5th grade 9.79 71.76 6.47 11.73 9.68 9.68 14.81
6th grade 11.00 67.46 7.53 12.99 10.47 10.47 16.92
7th grade 12.11 62.71 8.54 14.12 11.26 11.26 18.46
8th grade 13.05 60.37 9.38 15.19 11.83 11.83 20.81
9th grade 14.20 55.00 10.46 16.37 12.70 12.70 22.17
10th grade 14.15 55.70 10.60 16.50 12.83 12.83 23.33
11th grade 15.70 56.41 11.05 16.96 12.77 12.77 24.75
12th grade 14.52 55.58 10.71 16.70 12.79 12.79 23.69

KRES-balanced

balanced 12.72 29.20 12.43 14.88 14.08 14.08 15.81
Slovenian SB

1st-ps 9.54 31.70 10.38 11.72 11.12 11.12 7.63
2nd-ps 9.49 34.90 10.11 11.34 11.26 11.26 8.37
3rd-ps 10.02 32.89 10.61 11.78 11.80 11.80 9.31
4th-ps 10.96 30.29 11.18 12.84 12.39 12.39 10.40
5th-ps 11.49 28.13 11.62 13.33 12.79 12.79 11.02
6th-ps 13.20 20.10 12.84 14.57 13.61 13.61 11.45
7th-ps 12.94 22.97 12.61 14.52 13.64 13.64 12.24
8th-ps 13.48 18.12 13.09 14.78 13.71 13.71 11.32
9th-ps 13.69 19.26 13.13 15.07 13.94 13.94 12.27
1st-hs 15.12 12.66 14.33 16.22 14.96 14.96 13.62
2nd-hs 15.13 15.13 13.90 15.83 14.67 14.67 13.49
3rd-hs 14.76 13.09 14.00 15.62 14.44 14.44 12.57
4th-hs 14.66 14.39 13.64 15.54 14.03 14.03 11.62
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n-gram language models for readability prediction. However, we are unaware of any
approach that would use deep neural network language models for determining the
readability of a text.

In this research, we utilize three neural architectures for language modeling. First
are RNNs, which are suitable for modeling sequential data. At each time step t, the
input vector xt, and hidden state vector ht−1 are fed into the network, producing the
next hidden vector state ht with the following recursive equation:

ht = f (Wxt + Uht−1 + b)

where f is a nonlinear activation function, W and U are matrices representing weights
of the input layer and hidden layer, and b is the bias vector. Learning long-range input
dependencies with plain RNNs is problematic because of vanishing gradients (Bengio,
Simard, and Frasconi 1994); therefore, in practice, modified recurrent networks, such as
Long Short-Term Memory networks (LSTMs) are used. In our experiments, we use the
LSTM-based language model proposed by Kim et al. (2016). This architecture is adapted
to language modeling of morphologically rich languages, such as Slovenian, by utilizing
an additional character-level convolutional neural network (CNN). The convolutional
level learns a character structure of words and is connected to the LSTM-based layer,
which produces predictions at the word level.

Bai, Kolter, and Koltun (2018) introduced a new sequence modeling architecture
based on convolution, called temporal convolutional network (TCN), which is also used
in our experiments. TCN uses causal convolution operations, which make sure that
there is no information leakage from future time steps to the past. This and the fact
that TCN takes a sequence as an input and maps it into an output sequence of the same
size makes this architecture appropriate for language modeling. TCNs are capable of
leveraging long contexts by using a very deep network architecture and a hierarchy
of dilated convolutions. A single dilated convolution operation F on element s of the
1-dimensional sequence x can be defined with the following equation:

F(s) = (x ∗ d f )(s) =
k−1∑

i=0

f (i) · xs−d·i

where f : 0, . . . k− 1 is a filter of size k, d is a dilation factor, and s− d · i accounts for the
direction of the past. In this way, the context taken into account during the prediction
can be increased by using larger filter sizes and by increasing the dilation factor. The
most common practice is to increase the dilation factor exponentially with the depth of
the network.

Recently, Devlin et al. (2019) proposed a novel approach to language modeling.
Their BERT uses both left and right context, which means that a word wt in a sequence
is not determined just from its left sequence w1:t−1 = [w1, . . . , wt−1] but also from its
right word sequence wt+1:n = [wt+1, . . . , wt+n]. This approach introduces a new learning
objective, a masked language model, where a predefined percentage of randomly chosen
words from the input word sequence is masked, and the objective is to predict these
masked words from the unmasked context. BERT uses a transformer neural network
architecture (Vaswani et al. 2017), which relies on the self-attention mechanism. The
distinguishing feature of this approach is the use of several parallel attention layers, the
so-called attention heads, which reduce the computational cost and allow the system to
attend to several dependencies at once.
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All types of neural network language models, TCN, LSTM, and BERT, output
softmax probability distribution calculated over the entire vocabulary, and present the
probabilities for each word given its historical (and in the case of BERT also future) se-
quence. Training of these networks usually minimizes the negative log-likelihood (NLL)
of the training corpus word sequence w1:n = [w1, . . . , wn] by backpropagation through
time:

NLL = −
n∑

i=1

log P(wi|w1:i−1) (2)

In the case of BERT, the formula for minimizing NLL also uses the right-hand word
sequence:

NLL = −
n∑

i=1

log P(wi|w1:i−1, wi+1:n)

where wi are the masked words.
The following equation, which is used for measuring the perplexity of neural

language models, defines the relationship between perplexity (PPL, see Equation (1))
and NLL (Equation (2)):

PPL = e( NLL
N )

4.2 Unsupervised Methodology

Two main questions we wish to investigate in the unsupervised approach are the
following:

• Can standalone neural language models be used for unsupervised
readability prediction?

• Can we develop a robust new readability formula that will outperform
traditional readability formulas by relying not only on shallow lexical
sophistication indicators but also on neural language model statistics?

4.2.1 Language Models for Unsupervised Readability Assessment. The findings of the related
research suggest that a separate language model should be trained for each readability
class in order to extract features for successful readability prediction (Petersen and
Ostendorf 2009; Xia, Kochmar, and Briscoe 2016). On the other hand, we test the pos-
sibility of using a neural language model as a standalone unsupervised readability
predictor.

Two points that support this kind of usage are based on the fact that neural language
models tend to capture much more information compared to the traditional n-gram
models. First, because n-gram language models used in the previous work on readabil-
ity detection were in most cases limited to a small contextual window of up to five
words, their learning potential was limited to lexico-semantic information (e.g., in-
formation about the difficulty of vocabulary and word n-gram structures in the text),
and information about the text syntax. We argue that due to much larger contextual
information of the neural models (e.g., BERT leverages sequences of up to 512 byte-
pair tokens), which spans across sentences, the neural language models also learn
high-level textual properties, such as long-distance dependencies (Jawahar, Sagot, and
Seddah 2019), in order to minimize NLL during training. Second, n-gram models in
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past readability research have only been trained on the corpora (or, more specifically, on
parts of the corpora) on which they were later used. In contrast, by training the neural
models on large general corpora, the model also learns semantic information, which
can be transferred when the model is used on a smaller test corpus. The success of this
knowledge transfer is, to some extent, dependent on the genre compatibility of the train
and test corpora.

A third point favoring greater flexibility of neural language models relies on the fact
that no corpus is a monolithic block of text made out of units (i.e., sentences, paragraphs,
and articles) of exactly the same readability level. This means that a language model
trained on a large corpus will be exposed to chunks of text with different levels of
complexity. We hypothesize that, due to this fact, the model will to some extent be able
to distinguish between these levels and return a lower perplexity for more standard,
predictable (i.e., readable) text. Vice versa, complex and rare language structures and vo-
cabulary of less readable texts would negatively affect the performance of the language
model, expressed via larger perplexity score. If this hypothesis is correct, then ideally,
the average readability of the training corpus should fit somewhere in the middle of the
readability spectrum of the testing corpus.

To test these statements, we train language models on Wiki-normal, Wiki-simple,
and Wiki-balanced corpora described in Section 3. All three Wiki corpora contain
roughly the same amount of text, in order to make sure that the training set size does
not influence the results of the experiments. We expect the following results:

• Hypothesis 1: Training the language models on a corpus with a readability
that fits somewhere in the middle of the readability spectrum of the testing
corpus will yield the best correlation between the language model’s
performance and readability. According to the preliminary analysis of
our corpora conducted in Section 3.2 and results of the analysis in Table 2,
this ideal scenario can be achieved in three cases: (i) if a language model
trained on the Wiki-simple is used on the Newsela corpora, (ii) if a
language model trained on the Wiki-balanced corpus is used on
the OneStopEnglish corpus, and (iii) if the model trained on the
KRES-balanced corpus is used on the Slovenian SB corpus, despite the
mismatch of genres in these corpora.

• Hypothesis 2: The language models trained only on texts for adults
(Wiki-normal) will show higher perplexity on texts for children (WeeBit
and Newsela) because their training set did not contain such texts;
this will negatively affect the correlation between the language model’s
performance and readability.

• Hypothesis 3: Training the language models only on texts for children
(Wiki-simple corpus) will result in a higher perplexity score of the
language model when applied to adult texts (OneStopEnglish). This
will positively affect the correlation between the language model’s
performance and readability. However, this language model will not be
able to reliably distinguish between texts for different levels of adult ESL
learners, which will have a negative effect on the correlation.

To further test the viability of the unsupervised language models as readability pre-
dictors and to test the limits of using a single language model, we also explore the pos-
sibility of using a language model trained on a large general corpus. The English BERT
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language model was trained on large corpora (Google Books Corpus [Goldberg and
Orwant 2013] and Wikipedia) of about 3,300M words containing mostly texts for adult
English speakers. According to hypothesis 2, this will have a negative effect on the
correlation between the performance of the model and readability.

Because of the large size of the BERT model and its huge training corpus, the se-
mantic information acquired during training is much larger than the information ac-
quired by the models we train on our much smaller corpora, which means that there is
a greater possibility that the BERT model was trained on some text semantically similar
to the content in the test corpora and that this information can be successfully trans-
ferred. However, the question remains, exactly what type of semantic content does the
BERT’s training corpus contain? One hypothesis is that its training corpus contains more
content specific for adult audiences and less content found in the corpora for children.
This would have a negative effect on the correlation between the performance of the
model and readability on the WeeBit corpus. Contrarily, because the two highest read-
ability classes in the WeeBit corpus contain articles from different scientific fields used
for the education of high school students, which can contain rather specific and tech-
nical content that is unlikely to be common in the general training corpus, this might
influence a positive correlation between the performance of the model and readability.
Newsela and OneStopEnglish, on the other hand, are parallel corpora, which means
that the semantic content in all classes is very similar; therefore the success or failure of
semantic transfer will most likely not affect these two corpora.

4.2.2 Ranked Sentence Readability Score. Based on the two considerations below, we pro-
pose a new Ranked Sentence Readability Score (RSRS) for measuring the readability
with language models.

• The shallow lexical sophistication indicators, such as the length of a
sentence, correlate well with the readability of a text. Using them besides
statistics derived from language models could improve the unsupervised
readability prediction.

• The perplexity score used for measuring the performance of a language
model is an unweighted sum of perplexities of words in the predicted
sequence. In reality, a small number of unreadable words might drastically
reduce the readability of the entire text. Assigning larger weights to such
words might improve the correlation of language model scores with the
readability.

The proposed readability score is calculated with the following procedure. First, a
given text is split into sentences with the default sentence tokenizer from the NLTK
library (Bird and Loper 2004). In order to obtain a readability estimation for each word
in a specific context, we compute, for each word in the sentence, the word negative
log-likelihood (WNLL) according to the following formula:

WNLL = −(yt log yp + (1− yt) log (1− yp))

where yp denotes the probability (from the softmax distribution) predicted by the lan-
guage model according to the historical sequence, and yt denotes the empirical distri-
bution for a specific position in the sentence, that is, yt has the value 1 for the word in
the vocabulary that actually appears next in the sequence and the value 0 for all the
other words in the vocabulary. Next, we sort all the words in the sentence in ascending
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order according to their WNLL score, and the ranked sentence readability score (RSRS)
is calculated with the following expression:

RSRS =

∑S
i= 1

√
i ·WNLL(i)
S (3)

where S denotes the sentence length and i represents the rank of a word in a sentence ac-
cording to its WNLL value. The square root of the word rank is used for proportionally
weighting words according to their readability because initial experiments suggested
that the use of a square root of a rank represents the best balance between allowing all
words to contribute equally to the overall readability of the sentence and allowing only
the least readable words to affect the overall readability of the sentence. For out-of-
vocabulary words, square root rank weights are doubled, because these rare words are,
in our opinion, good indicators of non-standard text. Finally, in order to obtain the
readability score for the entire text, we calculate the average of all the RSRS scores in the
text. An example of how RSRS is calculated for a specific sentence is shown in Figure 1.

The main idea behind the RSRS score is to avoid the reductionism of traditional
readability formulas. We aim to achieve this by including high-level structural and
semantic information through neural language model–based statistics. The first as-
sumption is that complex grammatical and lexical structures harm the performance of
the language model. Since WNLL score, which we compute for each word, depends
on the context in which the word appears in, words appearing in more complex
grammatical and lexical contexts will have a higher WNLL. The second assumption
is that the semantic information is included in the readability calculation: Tested docu-
ments with semantics dissimilar to the documents in the language model training set
will negatively affect the performance of the language model, resulting in the higher
WNLL score for words with unknown semantics. The trainable nature of language
models allows for customization and personalization of the RSRS for specific tasks,

WNLL 
calculation

This  could  make  social  interactions  easier  for  them   .

Sort WNLL 
scores

1.24e-04  1.52e-04  1.09e-04  2.10e-04  1.76e-04  2.40e-04  8.25e-05  8.75e-05  1.19e-04

Calculate 
RSRS

[8.25e-05, 8.75e-05, 1.09e-04, 1.19e-04, 1.24e-04, 1.52e-04, 1.76e-04, 2.10e-04, 2.40e-04]

RSRS
( 1x8.25e-05 + 2x8.75e-05 + 3x1.09e-04 + 4x1.19e-04 + 5x1.24e-04 + 6x1.52e-04 +

7x1.76e-04 + 8x2.10e-04 + 9x2.40e-04)/9

0.0034

Figure 1
The RSRS calculation for the sentence This could make social interactions easier for them.
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topics, and languages. This means that RSRS will alleviate the problem of cultural non-
transferability of traditional readability formulas.

On the other hand, the RSRS also leverages shallow lexical sophistication indicators
through the index weighting scheme, which ensures that less readable words contribute
more to the overall readability score. This is somewhat similar to the counts of long and
difficult words in the traditional readability formulas, such as GFI and DCRF. The value
of RSRS also increases for texts containing longer sentences, since the square roots of the
word rank weights become larger with increased sentence length. This is similar to the
behavior of traditional formulas such as GFI, FRE, FKGL, ARI, and DCRF, where this
effect is achieved by incorporating the ratio between the total number of words and the
total number of sentences into the equation.

4.3 Unsupervised Experiments

For the presented unsupervised readability assessment methodology based on neural
language models, we first present the experimental design followed by the results.

4.3.1 Experimental Design. Three different architectures of language models (described
in Section 4.1) are used for experiments: a temporal convolutional network (TCN)
proposed by Bai, Kolter, and Koltun (2018), a recurrent language model (RLM) using
character-level CNN and LSTM proposed by Kim et al. (2016), and an attention-based
language model, BERT (Devlin et al. 2019). For the experiments on the English language,
we train TCN and RLM on three Wiki corpora.

To explore the possibility of using a language model trained on a general corpus
for the unsupervised readability prediction, we use the BERT-base-uncased English lan-
guage model, a pretrained uncased language model trained on BooksCorpus (0.8G
words) (Zhu et al. 2015) and English Wikipedia (2.5G words). For the experiments on
Slovenian, the corpus containing just school books is too small for efficient training of
language models; therefore TCN and RLM were only trained on the KRES-balanced
corpus described in Section 3. For exploring the possibility of using a general language
model for the unsupervised readability prediction, a pretrained CroSloEngual BERT
model trained on corpora from three languages, Slovenian (1.26G words), Croatian
(1.95G words), and English (2.69G words) (Ulčar and Robnik-Šikonja 2020), is used.
The corpora used in training the model are a mix of news articles and a general Web
crawl.

The performance of language models is typically measured with the perplexity
(see Equation (1)). To answer the research question of whether standalone language
models can be used for unsupervised readability prediction, we investigate how the
measured perplexity of language models correlates with the readability labels in the
gold-standard WeeBit, OneStopEnglish, Newsela, and Slovenian SB corpora described
in Section 3. The correlation to these ground truth readability labels is also used to eval-
uate the performance of the RSRS measure. For performance comparison, we calculate
the traditional readability formula values (described in Section 2) for each document
in the gold-standard corpora and measure the correlation between these values and
manually assigned labels. As a baseline, we use the average sentence length (ASL) in
each document.

The correlation is measured with the Pearson correlation coefficient (ρ). Given a pair
of distributions X and Y, the covariance cov, and the standard deviation σ, the formula
for ρ is:

ρx,y =
cov(x, y)
σxσy
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A larger positive correlation signifies a better performance for all measures except
the FRE readability measure. As this formula assigns higher scores to better-readable
texts, a larger negative correlation suggests a better performance of the FRE measure.

4.3.2 Experimental Results. The results of the experiments are presented in Table 3. The
ranking of measures on English and Slovenian data sets are presented in Table 4.

The correlation coefficients of all measures vary drastically between different cor-
pora. The highest ρ values are obtained on the Newsela corpus, where the best perform-
ing measure (surprisingly this is our baseline—the average sentence length) achieves
the ρ of 0.906. The highest ρ on the other two English corpora are much lower. On
the WeeBit corpus, the best performance is achieved by GFI and FKGL measures (ρ of
0.544), and on the OneStopEnglish corpus, the best performance is achieved with the
proposed TCN RSRS-simple (ρ of 0.615). On the Slovenian SB, the ρ values are higher,
and the best performing measure is TCN RSRS score-balanced with ρ of 0.789.

The perplexity-based measures show a much lower correlation with the ground
truth readability scores. Overall, they perform the worst of all the measures for both
languages (see Table 4), but we can observe large differences in their performance
across different corpora. Although there is either no correlation or low negative corre-
lation between perplexities of all three language models and readability on the WeeBit
corpus, there is some correlation between perplexities achieved by RLM and TCN on
OneStopEnglish and Newsela corpora (the highest being the ρ of 0.566 achieved by
TCN perplexity-simple on the Newsela corpus). The correlation between RLM and

Table 3
Pearson correlation coefficients between manually assigned readability labels and the readability
scores assigned by different readability measures in the unsupervised setting. The highest
correlation for each corpus is marked with bold typeface.

Measure/Data set WeeBit OneStopEnglish Newsela Slovenian SB

RLM perplexity-balanced −0.082 0.405 0.512 0.303
RLM perplexity-simple −0.115 0.420 0.470 /
RLM perplexity-normal −0.127 0.283 0.341 /
TCN perplexity-balanced 0.034 0.476 0.537 0.173
TCN perplexity-simple 0.025 0.518 0.566 /
TCN perplexity-normal −0.015 0.303 0.250 /
BERT perplexity −0.123 −0.162 −0.673 −0.563

RLM RSRS-balanced 0.497 0.551 0.890 0.732
RLM RSRS-simple 0.506 0.569 0.893 /
RLM RSRS-normal 0.490 0.536 0.886 /
TCN RSRS-balanced 0.393 0.601 0.894 0.789
TCN RSRS-simple 0.385 0.615 0.894 /
TCN RSRS-normal 0.348 0.582 0.886 /
BERT RSRS 0.279 0.384 0.674 0.126

GFI 0.544 0.550 0.849 0.730
FRE −0.433 −0.485 −0.775 −0.614
FKGL 0.544 0.533 0.865 0.697
ARI 0.488 0.520 0.875 0.658
DCRF 0.420 0.496 0.735 0.686
SMOG 0.456 0.498 0.813 0.770
ASL 0.508 0.498 0.906 0.683
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Table 4
Ranking (lower is better) of measures on English and Slovenian data sets sorted by the average
rank on all data sets for which the measure is available.

Measure WeeBit OneStopEnglish Newsela Slovenian SB

RLM RSRS-simple 4 4 4 /
TCN RSRS-balanced 11 2 2 1
RLM RSRS-balanced 5 5 5 3
GFI 1 6 10 4
TCN RSRS-simple 12 1 3 /
ASL 3 12 1 7
FKGL 2 8 9 5
RLM RSRS-normal 6 7 6 /
TCN RSRS-normal 13 3 7 /
ARI 7 9 8 8
SMOG 8 11 11 2
DCRF 10 13 13 6
FRE 9 14 12 9
TCN perplexity-simple 16 10 15 /
TCN perplexity-balanced 15 15 16 11
BERT RSRS 14 18 14 12
RLM perplexity-balanced 18 17 17 10
RLM perplexity-simple 19 16 18 /
TCN perplexity-normal 17 19 20 /
BERT perplexity 20 21 21 13
RLM perplexity-normal 21 20 19 /

TCN perplexity measures and readability classes on the Slovenian SB corpus is low,
with RLM perplexity-balanced showing the ρ of 0.303 and TCN perplexity-balanced
achieving ρ of 0.173.

BERT perplexities are negatively correlated with readability, and the negative corre-
lation is relatively strong on Newsela and Slovenian school books corpora (ρ of −0.673
and −0.563, respectively), and weak on WeeBit and OneStopEnglish corpora. As BERT
was trained on corpora that are mostly aimed at adults, the strong negative correlation
on Newsela and Slovenian SB corpora seem to suggest that BERT language models
might actually be less perplexed by the articles aimed at adults than the documents
aimed at younger audiences. This is supported by the fact that the negative correlation
is weaker on the OneStopEnglish corpus, which is meant for adult audiences, and for
which our analysis (see Section 3.2) has shown that it contains more complex texts
according to the shallow readability indicators.

Nevertheless, the weak negative correlation on the WeeBit corpus is difficult to
explain as one would expect a stronger negative correlation because the same analysis
showed that WeeBit contains the least complex texts out of all the tested corpora.
If this result is connected with the successful transfer of the semantic knowledge, it
supports the hypothesis that the two classes containing the most complex texts in the
WeeBit corpus contain articles with rather technical content that perplex the BERT
model. However, the role of the semantic transfer should also dampen the negative
correlation on the Slovenian SB, which is a non-parallel corpus and also contains rather
technical educational content meant for high-school children. Perhaps the transfer is
less successful for Slovenian since the Slovenian corpus on which the CroSloEngual
BERT was trained is smaller than the English corpora used for training of English BERT.

164

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/47/1/141/1911429/coli_a_00398.pdf by guest on 20 July 2021

114 Chapter 3. Readability Prediction
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Although further experiments and data are needed to pinpoint the exact causes for the
discrepancies in the results, we can still conclude that using a single language model
trained on general corpora for unsupervised readability prediction of texts for younger
audiences or English learners is, at least according to our results, not a viable option.

Regarding our expectations that performance of the language model trained on a
corpus with average readability that fits somewhere in the middle of the readability
spectrum of the testing corpus would yield the best correlation with manually labeled
readability scores, it is interesting to look at the differences in performance between
TCN and RLM perplexity measures trained on Wiki-normal, Wiki-simple, and Wiki-
balanced corpora. As expected, the correlation scores are worse on the WeeBit corpus,
since all classes in this corpus contain texts that are less complex than texts in any of the
training corpora. On the OneStopEnglish corpus, both Wiki-simple perplexity measures
perform the best, which is unexpected, since we would expect the balanced measure to
perform better. On the Newsela corpus, RLM perplexity-balanced outperforms RLM
perplexity-simple by 0.042 (which is unexpected), and TCN perplexity-simple outper-
forms TCN perplexity-balanced by 0.029, which is according to the expectations. Also,
according to the expectation is the fact, that both Wiki-normal perplexity measures are
outperformed by a large margin by Wiki-simple and Wiki-balanced perplexity measures
on the OneStopEnglish and the Newsela corpora. Similar observations can be made
with regard to RSRS, which also leverages language model statistics. On all corpora,
the performance of Wiki-simple RSRS measures and Wiki-balanced RSRS measures is
comparable, and these measures consistently outperform Wiki-normal RSRS measures.

These results are not entirely compatible with hypothesis 1 in Section 4.2.1 that
Wiki-balanced measures would be most correlated with readability on the OneStop-
English corpus and that Wiki-simple measures would be most correlated with readabil-
ity on the Newsela corpus. Nevertheless, training the language models on the corpora
with readability in the middle of the readability spectrum of the test corpus seems to
be an effective strategy, because the differences in performance between Wiki-balanced
and Wiki-simple measures are not large. On the other hand, the good performance of
the Wiki-simple measures supports our hypothesis 3 in Section 4.2.1, that training the
language models on texts with the readability closer to the bottom of the readability
spectrum of the test corpus for children will result in a higher perplexity score of the
language model when applied to adult texts, which will have a positive effect on the
correlation with readability.

The fact that positive correlation between readability and both Wiki-simple and
Wiki-balanced perplexity measures on the Newsela and OneStopEnglish corpora is
quite strong supports the hypothesis that more complex language structures and vo-
cabularies of less readable texts would result in a higher perplexity on these texts.
Interestingly, strong correlations also indicate that the genre discrepancies between the
language model train and test sets do not appear to have a strong influence on the
performance. Whereas the choice of a neural architecture for language modeling does
not appear to be that crucial, the readability of the language model training set is of
utmost importance. If the training set on average contains more complex texts than
the majority of texts in the test set, as in the case of language models trained just
on the Wiki-normal corpus (and also BERTs), the correlation between readability and
perplexity disappears or even gets reverted, since language models trained on more
complex language structures learn how to handle these difficulties.

The low performance of perplexity measures suggests that neural language model
statistics are not good indicators of readability and should therefore not be used
alone for readability prediction. Nevertheless, the results of TCN RSRS and RLM RSRS
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suggest that language models contain quite useful information when combined with
other shallow lexical sophistication indicators, especially when readability analysis
needs to be conducted on a variety of different data sets.

As seen in Table 4, shallow readability predictors can give inconsistent results on
data sets from different genres and languages. For example, the simplest readability
measure, the average sentence length, ranked first on Newsela and twelfth on One-
StopEnglish. It also did not do well on the Slovenian SB corpus, where it ranked sev-
enth. SMOG, on the other hand, ranked very well on the Slovenian SB corpus (rank 2)
but ranked twice as eleventh and once as eighth on the English corpora. Among the
traditional measures, GFI presents the best balance in performance and consistency,
ranking first on WeeBit, sixth on OneStopEnglish, tenth on Newsela, and fourth on
Slovenian SB.

On the other hand, RSRS-simple and RSRS-balanced measures offer more robust
performance across data sets from different genres and languages according to ranks in
Table 4. For example, the RLM RSRS-simple measure ranked fourth on all English cor-
pora. The TCN RSRS-balanced measure, which was also used on Slovenian SB, ranked
first on Slovenian SB and second on OneStopEnglish and Newsela. However, it did not
do well on WeeBit, where the discrepancy in readability between the language model
train and test sets was too large. RLM RSRS-balanced was more consistent, ranking fifth
on all English corpora and third on Slovenian SB. These results suggest that language
model statistics can improve the consistency of predictions on a variety of different data
sets. The robustness of the measure is achieved by training the language model on a
specific train set, with which one can optimize the RSRS measure for a specific task and
language.

5. Supervised Neural Approach

As mentioned in Section 1, recent trends in text classification show the domination of
deep learning approaches that internally use automatic feature construction. Existing
neural approaches to readability prediction (see Section 2.3) tend to generalize better
across data sets and genres (Filighera, Steuer, and Rensing 2019), and therefore solve
the problem of classical machine learning approaches relying on an extensive feature
engineering (Xia, Kochmar, and Briscoe 2016).

In this section, we analyze how different types of neural classifiers can predict text
readability. In Section 5.1, we describe the methodology, and in Section 5.2 we present
experimental scenarios and results of conducted experiments.

5.1 Supervised Methodology

We tested three distinct neural network approaches to text classification:

• Bidirectional long short-term memory network (BiLSTM). We use the
RNN approach proposed by Conneau et al. (2017) for classification. The
BiLSTM layer is a concatenation of forward and backward LSTM layers
that read documents in two opposite directions. The max and mean
pooling are applied to the LSTM output feature matrix in order to get the
maximum and average values of the matrix. The resulting vectors are
concatenated and fed to the final linear layer responsible for predictions.
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• Hierarchical attention networks (HAN). We use the architecture of Yang
et al. (2016) that takes hierarchical structure of text into account with the
two-level attention mechanism (Bahdanau, Cho, and Bengio 2014; Xu et al.
2015) applied to word and sentence representations encoded by BiLSTMs.

• Transfer learning. We use the pretrained BERT transformer architecture
with 12 layers of size 768 and 12 self-attention heads. A linear classification
head was added on top of the pretrained language model, and the whole
classification model was fine-tuned on every data set for three epochs. For
English data sets, the BERT-base-uncased English language model is used,
while for the Slovenian SB corpus, we use the CroSloEngual BERT model
trained on Slovenian, Croatian, and English (Ulčar and Robnik-Šikonja
2020).9

We randomly shuffle all the corpora, and then Newsela and Slovenian SB corpora
are split into a train (80% of the corpus), validation (10% of the corpus), and test (10%
of the corpus) sets. Because of the small number of documents in OneStopEnglish and
WeeBit corpora (see description in Section 3), we used five-fold stratified crossvalidation
on these corpora to get more reliable results. For every fold, the corpora were split
into the train (80% of the corpus), validation (10% of the corpus), and test (10% of the
corpus) sets. We employ Scikit StratifiedKFold,10 both for train-test splits and five-fold
crossvalidation splits, in order to preserve the percentage of samples from each class.

BiLSTM and HAN classifiers were trained on the train set and tested on the val-
idation set after every epoch (for a maximum of 100 epochs). The best performing
model on the validation set was selected as the final model and produced predictions
on the test sets. BERT models are fine-tuned on the train set for three epochs, and the
resulting model is tested on the test set. The validation sets were used in a grid search
to find the best hyperparameters of the models. For BiLSTM, all combinations of the
following hyperparameter values were tested before choosing the best combination,
which is written in bold in the list below:

• Batch size: 8, 16, 32

• Learning rates: 0.00005, 0.0001, 0.0002, 0.0004, 0.0008

• Word embedding size: 100, 200, 400

• LSTM layer size: 128, 256

• Number of LSTM layers: 1, 2, 3, 4

• Dropout after every LSTM layer: 0.2, 0.3, 0.4

For HAN, we tested all combinations of the following hyperparameter values (the
best combination is written in bold):

• Batch size: 8, 16, 32

• Learning rates: 0.00005, 0.0001, 0.0002, 0.0004, 0.0008

9 Both models are available through the Transformers library https://huggingface.co/transformers/.
10 https://scikit-learn.org/stable/modules/generated/sklearn.model selection.StratifiedKFold

.html.,
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• Word embedding size: 100, 200, 400

• Sentence embedding size: 100, 200, 400

For BERT fine-tuning, we use the default learning rate of 0.00002. The input se-
quence length is limited to 512 byte-pair tokens, which is the maximum supported input
sequence length.

We used the same configuration for all the corpora and performed no corpus
specific tweaking of classifier parameters. We measured the performance of all the clas-
sifiers in terms of accuracy (in order to compare their performance to the performance
of the classifiers from the related work), weighted average precision, weighted average
recall, and weighted average F1-score.11 Since readability classes are ordinal variables
(in our case ranging from 0 to n = number of classes−1), not all mistakes of classifiers are
equal; therefore we also utilize the Quadratic Weighted Kappa (QWK) measure, which
allows for mispredictions to be weighted differently, according to the cost of a specific
mistake. Calculation of the QWK involves three matrices containing observed scores,
ground truth scores, and the weight matrix scores, which in our case correspond to the
distance d between the classes ci and cj and is defined as d = |ci − cj|. QWK is therefore
calculated as:

QWK = 1−
∑c

i=1
∑c

j=1 wijxij∑c
i=1
∑c

j=1 wijmij
(4)

where c is the number of readability classes and wij, xij, and mij are elements in the
weight, observed, and ground truth matrices, respectively.

5.2 Supervised Experimental Results

The results of supervised readability assessment using different architectures of deep
neural networks are presented in Table 5, together with the state-of-the-art baseline
results from the related work (Xia, Kochmar, and Briscoe 2016; Filighera, Steuer, and
Rensing 2019; Deutsch, Jasbi, and Shieber 2020). We only present the best result reported
by each of the baseline studies; the only exception is Deutsch, Jasbi, and Shieber (2020),
for which we present two results, SVM-BF (SVM with BERT features) and SVM-HF
(SVM with HAN features) that proved the best on the WeeBit and Newsela corpora,
respectively.

On the WeeBit corpus, by far the best performance according to all measures was
achieved by BERT. In terms of accuracy, BERT outperforms the second-best BiLSTM
by about 8 percentage points, achieving the accuracy of 85.73%. HAN performs the
worst on the WeeBit corpus according to all measures. BERT also outperforms the
accuracy result reported by Xia, Kochmar, and Briscoe (2016), who used the five-fold
crossvalidation setting and the accuracy result on the development set reported by
Filighera, Steuer, and Rensing (2019).12 In terms of weighted F1-score, both strategies

11 We use the Scikit implementation of the metrics (https://scikit-learn.org/stable/modules/classes
.html#module-sklearn.metrics) and set the “average” parameter to “weighted.”

12 For the study by Filighera, Steuer, and Rensing (2019), we report accuracy on the development set instead
of accuracy on the test set, as the authors claim that this result is more comparable to the results achieved
in the crossvalidation setting. On the test set, Filighera, Steuer, and Rensing (2019) report the best
accuracy of 74.4%.
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Table 5
The results of the supervised approach to readability in terms of accuracy, weighted precision,
weighted recall, and weighted F1-score for the three neural network classifiers and methods
from the literature.

Measure/Data set WeeBit OneStopEnglish Newsela Slovenian SB

Filighera et al. (2019) accuracy 0.8130 – – –
Xia et al. (2016) accuracy 0.8030 – – –
SVM-BF (Deutsh et al., 2020) F1 0.8381 – 0.7627 –
SVM-HF (Deutsh et al., 2020) F1 – – 0.8014 –
Vajjala et al. (2018) accuracy – 0.7813 – –

BERT accuracy 0.8573 0.6738 0.7573 0.4545
BERT precision 0.8658 0.7395 0.7510 0.4736
BERT recall 0.8573 0.6738 0.7573 0.4545
BERT F1 0.8581 0.6772 0.7514 0.4157
BERT QWK 0.9527 0.7077 0.9789 0.8855

HAN accuracy 0.7520 0.7872 0.8138 0.4887
HAN precision 0.7534 0.7977 0.8147 0.4866
HAN recall 0.7520 0.7872 0.8138 0.4887
HAN F1 0.7520 0.7888 0.8101 0.4847
HAN QWK 0.8860 0.8245 0.9835 0.8070

BiLSTM accuracy 0.7743 0.6875 0.7111 0.5277
BiLSTM precision 0.7802 0.7177 0.6910 0.5239
BiLSTM recall 0.7743 0.6875 0.7111 0.5277
BiLSTM F1 0.7750 0.6920 0.6985 0.5219
BiLSTM QWK 0.9060 0.7230 0.9628 0.7980

that use BERT (utilizing the BERT classifier directly or feeding BERT features to the
SVM classifier as in Deutsch, Jasbi, and Shieber [2020]) seem to return similar results.
Finally, in terms of QWK, BERT achieves a very high score of 95.27% and the other two
tested classifiers obtain a good QWK score close to 90%.

The best result on Newsela is achieved by HAN, achieving the F1-score of 81.01%
and accuracy of 81.38%. This is similar to the baseline SVM-HF result achieved by
Deutsch, Jasbi, and Shieber (2020), who fed HAN features to the SVM classifier. BERT
performs less competitively on the OneStopEnglish and Newsela corpora. On One-
StopEnglish, it is outperformed by the best performing classifier (HAN) by about 10
percentage points, and on Newsela, it is outperformed by about 6 percentage points
according to accuracy and F1 criteria. The most likely reason for the bad performance
of BERT on these two corpora is the length of documents in these two data sets. On
average, documents in the OneStopEnglish and Newsela corpora are 677 and 760 words
long. On the other hand, BERT only allows input documents of up to 512 byte-pair
tokens, which means that documents longer than that need to be truncated. This results
in the substantial loss of information on the OneStopEnglish and Newsela corpora but
not on the WeeBit and Slovenian SB corpora, which contain shorter documents, 193 and
305 words long.

The results show that BiLSTM also has problems when dealing with longer texts,
even though it does not require input truncation. This suggests that the loss of con-
text is not the only reason for the non-competitive performance of BERT and BiLSTM,
and that the key to the successful classification of long documents is the leveraging of
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hierarchical information in the documents, for which HAN was built for. The assump-
tion is that this is particularly important in parallel corpora, where the simplified ver-
sions of the original texts contain the same message as the original texts, which forces
the classifiers not to rely as much on semantic differences but rather focus on structural
differences.

While F1-scores and accuracies suggest large discrepancies in performance between
HAN and two other classifiers on the OneStopEnglish and Newsela corpora, QWK
scores draw a different picture. Although the discrepancy is still large on OneStop-
English, all classifiers achieve almost perfect QWK scores on the Newsela data set.
This suggests that even though BERT and BiLSTM make more classification mistakes
than HAN, these mistakes are seldom costly on the Newsela corpus (i.e., documents are
classified into neighboring classes of the correct readability class). QWK scores achieved
on the Newsela corpus by all classifiers are also much higher than the scores achieved
on other corpora (except for the QWK score achieved by BERT on the WeeBit corpus).
This is in line with the results in the unsupervised setting, where the ρ values on the
Newsela corpus were substantially larger than on other corpora.

The HAN classifier achieves the best performance on the OneStopEnglish corpus
with an accuracy of 78.72% in the five-fold crossvalidation setting. This is comparable
to the state-of-the-art accuracy of 78.13% achieved by Vajjala and Lučić (2018) with their
SMO classifier using 155 hand-crafted features. BiLSTM and BERT classifiers perform
similarly on this corpus, by about 10 percentage points worse than HAN, according to
accuracy, F1-score, and QWK.

The results on the Slovenian SB corpus are also interesting. In general, the perfor-
mance of classifiers is the worst on this corpus, with the F1-score of 52.19% achieved
by BiLSTM being the best result. BiLSTM performs by about 4 percentage points better
than HAN according to F1-score and accuracy, while both classifiers achieve roughly the
same QWK score of about 80%. On the other hand, BERT achieves lower F1-score (about
45.45%) and accuracy (41.57%), but performs much better than the other two classifiers
according to QWK, achieving QWK of almost 90%.

Confusion matrices for classifiers give us a better insight into what kind of mistakes
are specific for different classifiers. For the WeeBit corpus, confusion matrices show
(Figure 2) that all the tested classifiers have the most problems distinguishing between
texts for children 8–9 years old and 9–10 years old. The mistakes where the text is
falsely classified into an age group that is not neighboring the correct age group are rare.
For example, the best performing BERT classifier misclassified only 16 documents into
non-neighboring classes. When it comes to distinguishing between neighboring classes,
the easiest distinction for the classifiers was the distinction between texts for children
9–10 years old and 10–14 years old. Besides fitting into two distinct age groups, the
documents in these two classes also belong to two different sources (texts for children
9–10 years old consist of articles from WeeklyReader and texts for children 10–14 years
old consist of articles from BBC-Bitesize), which suggests that the semantic and writing
style dissimilarities between these two neighboring classes might be larger than for
other neighboring classes, and that might have a positive effect on the performance
of the classifiers.

On the OneStopEnglish corpus (Figure 3), the BERT classifier, which performs the
worst on this corpus according to all criteria but precision, had the most problems
correctly classifying documents from the advanced class, misclassifying about half of
the documents. HAN had the most problems with distinguishing documents from the
advanced and intermediate class, while the BiLSTM classifier classified a disproportion-
ate amount of intermediate documents into the beginner class.
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a) BERT b) HAN c) BiLSTM
Figure 2
Confusion matrices for BERT, HAN, and BiLSTM on the WeeBit corpus.

a) BERT b) HAN c) BiLSTM
Figure 3
Confusion matrices for BERT, HAN, and BiLSTM on the OneStopEnglish corpus.

a) BERT b) HAN c) BiLSTM
Figure 4
Confusion matrices for BERT, HAN, and BiLSTM on the Newsela corpus.

Confusion matrices of all classifiers for the Newsela corpus (Figure 4) follow a simi-
lar pattern. Unsurprisingly, no classifier predicted any documents to be in two minority
classes (10th and 11th grade) with minimal training examples. As the QWK score has
already shown, all classifiers classified a large majority of misclassified instances into
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a) BERT b) HAN c) BiLSTM
Figure 5
Confusion matrices for BERT, HAN, and BiLSTM on the Slovenian school books corpus.

neighboring classes, and costlier mistakes are rare. For example, the best performing
HAN classifier altogether misclassified only 13 examples into non-neighboring classes.

Confusion matrices for the Slovenian SB corpus (Figure 5) are similar for all clas-
sifiers. The biggest spread of misclassified documents is visible for the classes in the
middle of the readability range (from the 4th-grade of primary school to the 1st-grade
of high school). The mistakes, which cause BERT to have lower F1-score and accuracy
scores than the other two classifiers, are most likely connected to the misclassification
of all but two documents belonging to the school books for the 6th class of the primary
school. Nevertheless, a large majority of these documents were misclassified into two
neighboring classes, which explains the high QWK score achieved by the classifier.
What negatively affected the QWK scores for HAN and BiLSTM is that the frequency
of making costlier mistakes of classifying documents several grades above or below
the correct grade is slightly higher for them than for BERT. Nevertheless, even though
F1-score results are relatively low on this data set for all classifiers (BiLSTM achieved
the best F1-score of 52.19%), the QWK scores around or above 80% and the confusion
matrices clearly show that a large majority of misclassified examples were put into
classes close to the correct one, suggesting that classification approaches to readability
prediction can also be reliably used for Slovenian.

Overall, the classification results suggest that neural networks are a viable option
for the supervised readability prediction. Some of the proposed neural approaches man-
aged to outperform state-of-the-art machine learning classifiers that leverage feature
engineering (Xia, Kochmar, and Briscoe 2016; Vajjala and Lučić 2018; Deutsch, Jasbi, and
Shieber 2020) on all corpora where comparisons are available. However, the gains are
not substantial, and the choice of an appropriate architecture depends on the properties
of the specific data set.

6. Conclusion

We presented a set of novel unsupervised and supervised approaches for determining
the readability of documents using deep neural networks. We tested them on several
manually labeled English and Slovenian corpora. We argue that deep neural networks
are a viable option both for supervised and unsupervised readability prediction and
show that the suitability of a specific architecture for the readability task depends on
the data set specifics.
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We demonstrate that neural language models can be successfully used in the un-
supervised setting, since they, in contrast to n-gram models, capture high-level textual
properties and can successfully leverage rich semantic information obtained from the
training data set. However, the results of this study suggest that unsupervised ap-
proaches to readability prediction that only take these properties of text into account
cannot compete with the shallow lexical sophistication indicators. This is somewhat in
line with the findings of the study by Todirascu et al. (2016), who also acknowledged
the supremacy of shallow lexical indicators when compared with higher-level discourse
features. Nevertheless, combining the components of both neural and traditional read-
ability indicators into the new RSRS (ranked sentence readability score) measure does
improve the correlation with human readability scores.

We argue that the RSRS measure is adaptable, robust, and transferable across lan-
guages. The results of the unsupervised experiments show the influence of the language
model training set on the performance of the measure. While the results indicate that
an exact match between the genres of the train and test sets is not necessary, the text
complexity of a train set (i.e., its readability), should be in the lower or middle part of
the readability spectrum of the test set for the optimal performance of the measure.
This indicates that out of the two high-level text properties that the RSRS measure
uses for determining readability, semantic information and long-distance structural
information, the latter seems to have more effect on the performance. This is further
confirmed by the results of using the general BERT language model for the readability
prediction, which show a negative correlation between the language model perplexity
and readability, even though the semantic information the model possesses is extensive
due to the large training set.

The functioning of the proposed RSRS measure can be customized and influenced
by choice of the training set. This is the desired property because it enables personal-
ization and localization of the readability measure according to the educational needs,
language, and topic. The usability of this feature might be limited for under-resourced
languages because a sufficient amount of documents needed to train a language model
that can be used for the task of readability prediction in a specific customized setting
might not be available. On the other hand, our experiments on the Slovenian language
show that a relatively small 2.4 million word training corpus for language models is
sufficient to outperform traditional readability measures.

The results of the unsupervised approach to readability prediction on the corpus
of Slovenian school books are not entirely consistent with the results reported by the
previous Slovenian readability study (Škvorc et al. 2019), where the authors reported
that simple indicators of readability, such as average sentence length, performed quite
well. Our results show that the average sentence length performs very competitively on
English but ranks badly on Slovenian. This inconsistency in results might be explained
by the difference in corpora used for the evaluation of our approaches. Whereas Škvorc
et al. (2019) conducted experiments on a corpus of magazines for different age groups
(which we used for language model training), our experiments were conducted on a
corpus of school books, which contains items for sixteen distinct school subjects with
very different topics ranging from literature, music, and history to math, biology, and
chemistry. As was already shown in Sheehan, Flor, and Napolitano (2013), the variance
in genres and covered topics has an important effect on the ranking and performance
of different readability measures. Further experiments on other Slovenian data sets are
required to confirm this hypothesis.

In the supervised approach to determining readability, we show that the pro-
posed neural classifiers can either outperform or at least compare with state-of-the-art
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approaches leveraging extensive feature engineering as well as previously used neural
models on all corpora where comparison data is available. While the improved perfor-
mance and elimination of work required for manual feature engineering are desirable,
on the downside, neural approaches tend to decrease the interpretability and explain-
ability of the readability prediction. Interpretability and explainability are especially
important for educational applications (Sheehan et al. 2014; Madnani and Cahill 2018),
where the users of such technology (educators, teachers, researchers, etc.) often need
to understand what causes one text to be judged as more readable than the other and
according to which dimensions. Therefore in the future, we will explore the possibilities
of explaining the readability predictions of the proposed neural classifier with the
help of general explanation techniques such as SHAP (Lundberg and Lee 2017), or the
attention mechanism (Vaswani et al. 2017), which can be analyzed and visualized and
can offer valuable insights into inner workings of the system.

Another issue worth discussing is the trade-off between performance gains we can
achieve by employing computationally demanding neural networks on the one side and
the elimination of work on the other. For example, on the OneStopEnglish corpus, we
report the accuracy of 78.72% when HAN is used, while Vajjala and Lučić (2018) report
an accuracy of 78.13% with their classifier employing 155 hand-crafted features. While it
might be worth opting for a neural network in order to avoid extensive manual feature
engineering, on the other hand, the same study by Vajjala and Lučić (2018) also reports
that just by employing generic text classification features, 2–5 character n-grams, they
obtained the accuracy of 77.25%. Considering this, one might argue that, depending
on the use case, it might not be worth dedicating significantly more time, work, or
computational resources for an improvement of slightly more than 1%, especially if this
also decreases the overall interpretability of the prediction.

The performance of different classifiers varies across different corpora. The major
factor proved to be the length of documents in the data sets. The HAN architecture,
which tends to be well equipped to handle long-distance hierarchical text structures,
performs the best on these data sets. On the other hand, in terms of QWK measure, BERT
offers significantly better performance on data sets that contain shorter documents, such
as WeeBit and Slovenian SB. As was already explained in Section 5.2, a large majority
of OneStopEnglish and Newsela documents need to be truncated in order to satisfy
the BERT’s limitation of 512 byte-pair tokens. Although it is reasonable to assume
that the truncation and the consequential loss of information do have a detrimental
effect on the performance of the classifier, the extent of this effect is still unclear. The
problem of truncation also raises the question of what is the minimum required length
of a text for a reliable assessment of readability and if there exists a length threshold,
above which having more text does not influence the performance of a classifier in a
significant manner. We plan to assess this in future work thoroughly. Another related
line of research we plan to pursue in the future is the use of novel algorithms, such
as Longformer (Beltagy, Peters, and Cohan 2020) and Linformer (Wang et al. 2020),
in which the attention mechanism scales linearly with the sequence length, making it
feasible to process documents of thousands of tokens. We will check if applying these
two algorithms on the readability data sets with longer documents can further improve
the state of the art.

The other main difference between WeeBit and Slovenian SB data sets on the one
hand, and Newsela and OneStopEnglish data sets on the other, is that they are not par-
allel corpora, which means that there can be substantial semantic differences between
the readability classes in these two corpora. It seems that pretraining BERT as a lan-
guage model allows for better exploitation of these differences, which leads to better
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performance. However, this reliance on semantic information might badly affect the
performance of transfer learning based models on parallel corpora, since the semantic
differences between classes in these corpora are much more subtle. We plan to assess
the influence of available semantic information on the performance of different classifi-
cation models in the future.

The differences in performance between classifiers on different corpora suggest that
tested classifiers take different types of information into account. Provided that this hy-
pothesis is correct, some gains in performance might be achieved if the classifiers are
combined. We plan to test a neural ensemble approach for the task of predicting read-
ability in the future.

While this study mostly focused on multilingual and multi-genre readability predic-
tion, in the future, we also plan to test the cross-corpus, cross-genre, and cross-language
transferability of the proposed supervised and unsupervised approaches. This requires
new readability data sets for different languages and genres that are currently rare
or not publicly available. On the other hand, this type of research will be capable of
further determining the role of genre in the readability prediction and might open an
opportunity to improve the proposed unsupervised readability score further.
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3.4 Final Remarks

Same as in the field of AP, recently the trends go towards employment of neural models
for readability detection. Our study (Martinc, Pollak, & Robnik-Šikonja, 2021) was one of
the first that proposed to use transformers to tackle readability detection in a supervised
way, i.e. by modelling it as a multi-class classification problem, instead of using more
traditional classifiers with several types of hand-crafted features. Very much in line with
our own research, some novel approaches also consider combining these two approaches.
For example, in the study by Lee et al. (2021) they test several combinations of neural
transformer models and non-neural random forest models and report improvements in
performance achieved by this hybrid model on all test datasets.

On the other hand, novel approaches that would tackle readability in an unsupervised
way are rare and these new unsupervised approaches usually consider only symbolic fea-
tures (Ehara, 2021). This might be connected with the fact that other studies confirmed
our findings that the correlation between readability and neural language model statistics,
such as perplexity, is weak (Miaschip et al., 2020), and that traditional readability for-
mulas, despite their deficiencies, work sufficiently well by just considering shallow lexical
indicators. Nevertheless, as we show in our study, language models do carry informa-
tion that, when meaningfully combined with shallow indicators of readability, can increase
performance, robustness and adaptability of the unsupervised measures.

This is especially important for readability detection for less resourced languages with-
out readability datasets on which you could train supervised approaches. Traditional
readability formulas have limited applicability, when it comes to less resourced languages,
since most of them have been designed specifically for the use on English. And as far as we
are aware, for most languages there exist no specific language adapted readability formulas.
Further development and employment of unsupervised hybrid approaches is therefore, at
least in our opinion, still one of the most perspective strategies for bridging this research
gap.
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Chapter 4

Keyword Extraction with
Transformer-Based Neural Network
and Symbolic TF-IDF Statistics

In contrast with the tasks of author profiling and readability prediction, where neural ap-
proaches are still not massively employed and tend to perform worse than other approaches
based on extensive feature engineering, sequence labelling is a field dominated by neural
approaches, which showcased superior performance in comparison to other symbolic ap-
proaches on several tasks with a sufficient amount of data, such as NER and POS tagging.
Nevertheless, for some sequence labelling tasks and also for some languages, the amount
of training data is still insufficient. One of these tasks is keyword extraction, which we
explore in this chapter. In Section 4.1, we describe the problem of keyword extraction
and outline the proposed approach of tackling the task with a combination of neural and
symbolic approaches. In Section 4.2, we describe existing approaches for keywords extrac-
tion, in Section 4.3, we describe the proposed neural architecture for the task at hand that
requires less labelled resources for training and in Section 4.4, we show how the proposed
neural approach can be combined with a symbolic TF-IDF-based approach for keyword
extraction in order to improve the recall of the method. In this chapter, there are two
enclosed publications, namely a journal paper TNT-KID: Transformer-based neural tagger
for keyword identification (Martinc, Škrlj, et al., 2021), which describes the proposed neu-
ral approach towards keyword extraction in detail, and a workshop paper Extending neural
keyword extraction with TF-IDF tagset matching (Koloski et al., 2021), which describes
how the proposed neural approach can be combined with a symbolic approach.

4.1 Introduction

With keyword extraction, we refer to the automatic extraction of words and phrases that
represent crucial semantic aspects of the text and summarize its content. This task is cur-
rently gaining traction due to exponential growth in the amount of raw unlabelled textual
data which lack metadata that would help with its organization. Therefore, development
of algorithms capable of efficient organization, categorization, and summarization of large
amounts of text documents has become a necessity (Firoozeh et al., 2020).

While first methods for automated keyword extraction have been developed more than
a decade ago (Mihalcea & Tarau, 2004; Witten et al., 2005), the progress has been steady
and novel unsupervised approaches, such as YAKE (Campos et al., 2018) and RaKUn (Škrlj
et al., 2019) have been proven quite useful and transferable across domains and languages,
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since they tend to be language agnostic and do not require any training data. On the
other hand, there is still a large performance gap between unsupervised approaches and
supervised, with the latter being much more efficient due to better semantic modelling and
the capability to adapt to the syntax, semantics, content, genre and keyword assignment
regime of a specific text. The novel neural algorithms for keyword extraction (J. Chen et
al., 2018; Meng et al., 2019; Yuan et al., 2020) achieve excellent performance but require
vast amounts of training data and are therefore not transferable to domains and languages
lacking large manually labelled resources.

The main foci of our research on the topic of keyword extraction are the following:

• We propose a Transformer-based Neural Tagger for Keyword IDentification (TNT-
KID) that requires far less labelled data than other neural approaches and still
achieves performance comparable to the state-of-the-art supervised approaches in
settings with plenty of training data. We also show that the proposed neural model
outperforms other approaches by a large margin when training data is scarce.1

• By combining the proposed TNT-KID approach with a more traditional symbolic TF-
IDF-based approach towards keyword extraction we manage to drastically improve
the recall of the proposed system, which makes the system more usable in news
media setting, in which a preferred output is a predefined number of keywords for
each input news article.

4.2 Related Work

Related work on keyword detection can be divided into supervised and unsupervised ap-
proaches. Traditionally, the task consisted of two steps, extracting keyword candidates
from the text according to a number of syntactic and lexical features and ranking these
candidates according to different heuristics and selecting the top candidates as keywords
(Yuan et al., 2020).

When it comes to supervised approaches, first approaches employed frequency-based
statistics such as TF-IDF and the term’s position in the text as features for term identifica-
tion (Medelyan et al., 2009; Witten et al., 2005). These features are fed to the Naive Bayes
classifier, which determines for each word or phrase in the text if it is a keyword or not.
More recently, the keywords extraction task began to be modelled as sequence labelling
(Gollapalli et al., 2017). Some approaches of this type employed Conditional Random
Fields (CRF) tagger for keyword extraction, while most relied on neural architectures, in
most cases RNNs (Luan et al., 2017).

Recent state-of-the-art approaches decided to tackle the problem as a sequence-to-
sequence generation task. They employ a generative model with a recurrent encoder-
decoder framework, which is, besides keyword extraction, also capable of finding keywords
that do not appear in the text (Meng et al., 2017). Several variants of this approach
have been proposed, namely the original CopyRNN method (Meng et al., 2019), CatSeqD
proposed by Yuan et al. (2020), who incorporated two diversity mechanisms into the model,
a Semi-supervised CopyRNN proposed by Ye and Wang (2018), which, besides the labelled
samples, also leverages unlabelled samples, and a so-called CorrRNN proposed by J. Chen
et al. (2018), who proposed additional mechanisms that handle repetitions and increase
keyphrase diversity.

On the other hand, at least one study employed transformers (Vaswani et al., 2017) for
keyword detection. Sahrawat et al. (2020) used several transformer and recurrent archi-
tectures (BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), GPT-2 (Radford et al.,

1Code is available under the MIT license at https://gitlab.com/matej.martinc/tnt_kid/.

https://gitlab.com/matej.martinc/tnt_kid/
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2019), ELMo (Peters et al., 2018), etc.) to generate contextual embeddings that were
fed into a bidirectional long short-term memory (BiLSTM) network with an additional
conditional random fields layer (BiLSTM-CRF). They also experimented with SciBERT
(Beltagy et al., 2019), a BERT version pretrained on a large multi-domain corpus of sci-
entific publications. They observed that this genre-specific pretraining on texts of the
same genre as the texts in the keyword datasets used in their experiments improves the
performance of the model.

Unsupervised keyword extraction methods can be divided into four main categories,
namely statistical, graph-based, embeddings-based, and language model-based methods.
Statistical methods use statistical characteristics of text to capture keywords. A state-
of-the-art algorithm of this type is YAKE (Campos et al., 2018) that considers features
such as casing, position, frequency, relatedness to context and dispersion of a specific
term to identify keywords. Graph-based methods, such as TextRank (Mihalcea & Tarau,
2004), Single Rank (Wan & Xiao, 2008) or TopicRank (Bougouin et al., 2013), construct
graphs to rank words based on their position in the graph. The most recent graph-based
keyword detector is RaKUn (Škrlj et al., 2019) that uses several novel techniques, such as
for example expanding the initial lexical graph with the introduction of meta-vertices and
employment of graph redundancy filters.

Another branch of unsupervised methods for keyword extraction are embedding-based
methods, which consider embedding representations for identifying keywords. These meth-
ods can rely on building direct graphs based on embedding-based measures, such as cosine
distance between embeddings, where candidate keyphrases are represented as vertices, as
in the case of the Key2Vec method proposed by Mahata et al. (2018). Another option is
the so-called EmbedRank approach proposed by Bennani-Smires et al. (2018). Here, part
of speech (POS)-based patterns are used to extract initial candidate keyphrases and after
that each candidate is ranked according to the cosine distance between the candidate and
the embedding of the document in which it appears. For representing candidate phrases
and documents, Sent2Vec embeddings (Pagliardini et al., 2018) are used.

Language model-based methods, which use language model-derived statistics to extract
keywords from text, are less common. An interesting approach was proposed by Tomokiyo
and Hurst (2003), who extracted keyphrases by measuring Kullback–Leibler divergence
(Vidyasagar, 2010) between several unigram and n-gram language models. This system
used two features, namely phraseness, which measures if a given word sequence is in fact a
phrase, and informativeness, which measures if the most important ideas in the document
are captured in a specific keyphrase.

4.3 Transformer-Based Sequence Labelling Approach to Key-
word Extraction

As mentioned above, unsupervised approaches, which in the majority of cases (the ex-
ception being embedding-based approaches) rely on symbolic frequency-based features,
lack the effectiveness of the neural supervised approaches that nevertheless require a large
amount of labelled data for successful training. We propose Transformer-based Neural
Tagger for Keyword IDentification (TNT-KID) (Martinc, Škrlj, et al., 2021) that tries to
alleviate the problems of neural approaches that require a lot of data and unsupervised
symbolic approaches that are less effective (i.e. in this section we aim to achieve
the stated goal G3). The proposed approach achieves performance comparable to the
state-of-the-art supervised approaches while requiring only a fraction of manually labelled
data required by other neural approaches. This allows the model to be employed for less
resourced languages and domains.
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Figure 4.1: TNT-KID’s architecture overview.

This is possible due to the transfer learning technique (Howard & Ruder, 2018; Peters
et al., 2018), where a model is first trained in an unsupervised way as a language model on
a large unlabelled corpus and then fine-tuned on a smaller corpus with manually labelled
keywords for keyword detection. While this approach has recently become a well estab-
lished procedure in the field of NLP, it was rarely tested in the domain-specific setting. In
fact, the standard paradigm is that the model should be pretrained on a very large general
corpus (e.g., the English BERT model (Devlin et al., 2019) was pretrained on the corpus
containing 3,300 million tokens). In contrast, in this work we propose a pretraining on
a much smaller unlabelled domain-specific corpora, allowing easier transfer of the model
to languages with less textual resources and reducing the time and computer resources
required for training. We show that this type of pretraining is sufficient for the system
to grasp the semantic information inside the text and adapt to a specific domain, which
results in the reduced amount of labelled data required for training.

TNT-KID relies on a modified transformer encoder architecture (Vaswani et al., 2017).
This encoder consists of a normalization layer that is followed by a multi-head attention
mechanism, another normalization layer and the fully connected feed-forward and dropout
layers, same as in the GPT-2 architecture proposed by Radford et al. (2019). The encoder
also contains a residual connection around the attention mechanism. During language
model pretraining, a language model head consisting of a dropout layer, a feed forward
layer and the adaptive softmax layer (Grave et al., 2017) is added on top of the encoder.
The language model head is replaced with a token classification head during fine-tuning.
This head contains a ReLu non-linearity, a dropout layer, a feed forward classification layer
and softmax layer, which returns probability for each token that it is either a keyword (or
part of the keyphrase) or not.

We hypothesise that token position is especially important in the keyword identifi-
cation task (e.g., the probability of the first word in the text being a keyword is much
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larger than the probability that the last word is a keyword), therefore we propose modifi-
cations of the Transformer architecture to better tackle the importance of relation between
each token and each position. First, we propose a re-parametrization of the attention
mechanism (see Figure 4.1b), which allows the model to better distinguish between the
semantic/grammatical and purely positional information and therefore assign attention
to some tokens just on the basis of their position. Another modification that affects the
modelling of positional information, is the addition of the two-layer randomly initialised
encoder, consisting of dropout and two bidirectional long short-term memory (BiLSTM)
layers, during the fine-tuning token classification step of the model training.

The third modification aims to decrease the time complexity of the model’s pretraining
and involves replacing the standard input embedding layer and softmax function with
adaptive input representations (Baevski & Auli, 2019) and an adaptive softmax (Grave
et al., 2017) during the pretraining language modelling phase. Another design choice that
affects the computational complexity of the model is the usage of the Sentencepiece byte-
pair encoding tokenization scheme (Kudo & Richardson, 2018), with which the vocabulary
is limited to about 32,000 tokens, which has a positive effect on the efficiency of the
language model head softmax layer, since the probability distribution only needs to be
derived across 32,000 subwords and not an entire word vocabulary.

During language model pretraining, we employ the autoregressive language modelling
objective, where the task can be defined as predicting a probability distribution of words
from the fixed size vocabulary V , for word wt, given the historical sequence w1:t-1 =
[w1, ..., wt−1]. We show in the ablation study (Martinc, Škrlj, et al., 2021), that this
objective results in much bigger performance gains than the masked language modelling
objective, first proposed by Devlin et al. (2019), when the size of corpus used for pretraining
is limited.

During fine-tuning, we model the keyword tagging task as a binary classification task
and the model is trained to predict if a word in the sequence is a keyword or not. Due
to the imbalance between two classes (i.e. majority of words in the text tend not to be
keywords), we propose a custom classification loss function that considers this imbalance.
Probabilities for words in the sequence are aggregated into two distinct sets, one for each
class and two negative log losses (NLL) are calculated, one for each probability set. The
two NLLs are normalized with the size of the set and summed (see Martinc, Škrlj, et al.
(2021) for details). To produce the final set of keywords for each document, tagged words
are extracted from the text and duplicates are removed. Note that a sequence of two
or more sequential keywords is always interpreted as a multi-word keyphrase. From the
resulting set, keyphrases longer than four words and keyphrases containing punctuation
(with the exception of dashes and apostrophes) are discarded. The final output is a ranked
list, in which the keywords are arranged according to the softmax probability assigned by
the model in a descending order.

The proposed approach was tested on seven English datasets with manually labelled
keywords from two distinct genres, scientific papers about computer science and news. For
the computer science domain we tested the model on KP20k (Meng et al., 2017), Inspec
(Hulth, 2003), Krapivin (Krapivin et al., 2009), NUS (Nguyen & Kan, 2007), and SemEval
(S. N. Kim et al., 2010) datasets. The model was also tested on three datasets from the
news domain, namely KPTimes (Gallina et al., 2019), JPTimes (Gallina et al., 2019) and
DUC (Wan & Xiao, 2008) datasets. The statistics about the datasets that are used for
training and testing of our models are presented in Table 4.1.

In the pretraining phase, two language models were trained, one on the concatenation
of all the texts from the computer science domain and the other on the concatenation of
all the texts from the news domain. After that, the trained language models were fine-
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Table 4.1: Datasets used for empirical evaluation of keyword extraction algorithms.
No.docs stands for the number of documents, Avg. doc. length stands for average document
length in the corpus (in terms of number of words, i.e., we split the text by white-space),
Avg. kw. stands for average number of keywords per document in the corpus, % present
kw. stands for the percentage of keywords that appear in the corpus (i.e., percentage
of document’s keywords that appear in the text of the document) and Avg. present kw.
stands for the average number of keywords per document that actually appear in the text
of the specific document.

Dataset No. docs Avg. doc. length Avg. kw. % present kw. Avg. present kw.
Computer science papers
KP20k-train 530,000 156.34 5.27 62.43 3.29
KP20k-valid 20,000 156.55 5.26 62.30 3.28
KP20k-test 20,000 156.52 5.26 62.55 3.29
Inspec-valid 1500 125.21 9.57 76.92 7.36
Inspec-test 500 121.82 9.83 78.14 7.68
Krapivin-valid 1844 156.65 5.24 54.34 2.85
Krapivin-test 460 157.76 5.74 55.66 3.20
NUS-test 211 164.80 11.66 50.47 5.89
SemEval-valid 144 166.86 15.67 45.43 7.12
SemEval-test 100 183.71 15.07 44.53 6.71
News articles
KPTimes-train 259,923 783.32 5.03 47.30 2.38
KPTimes-valid 10,000 784.65 5.02 46.78 2.35
KPTimes-test 10,000 783.47 5.04 47.59 2.40
JPTimes-test 10,000 503.00 5.03 76.73 3.86
DUC-test 308 683.14 8.06 96.62 7.79

tuned on each dataset’s validation sets (see Table 4.1) for a maximum of 10 epochs and
then tested on the test set. We compare the TNT-KID approach to several systems for
keyword extraction mentioned in Section 4.2 by measuring the F1@k score, precision@k
and recall@k with k ∈ {5, 10} to asses the performance of each model2. We use a simple
TF-IDF-based keyword extraction (i.e., extraction of k words with the highest TF-IDF
from each document) as an unsupervised baseline. For KEA and Maui, we only report
results that were available in the related work (KPTimes, JPTimes and DUC corpus) due
to bad performance of the algorithms on all the corpora for which results are available.
For a supervised baseline, we report results for the unmodified pretrained GPT-2 (Radford
et al., 2019) model with a standard feed forward token classification head. The results are
presented in Table 4.2.

On average, TNT-KID offers the best performance on the test datasets according to
F1@5 and F1@10 and is closely followed by GPT-2 + BiLSTM. The different generative
approaches towards keyword extraction (CopyRNN, CatSeqD, Semi-supervised CopyRNN
and CorrRNN) offer similar performance according to all criteria. Similar could be said for
all the unsupervised approaches, which on average offer a surprisingly homogeneous per-
formance. Overall, supervised neural network approaches outperform all other approaches
by a large margin.

TNT-KID performs the best on four datasets in terms of F1@10 but only on one dataset
in terms of F1@5. This can be explained by the fact that TNT-KID generally detects more

2Note that several measures exist that could be used for the evaluation of keyword extractors. Arguably,
measures which also consider the ranking of keywords in a retrieved list, such as mean average precision
and mean reciprocal rank, would be more suitable. Nevertheless, we opted to evaluate our approach by
measuring F1@k score, precision@k and recall@k in order to be able to compare our results to a large set
of other methods, since these are the three most common evaluation metrics applied in the related work.
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Table 4.2: Evaluation of supervised and unsupervised keyword extractors. Results marked
with * were obtained by our implementation or reimplementation of the algorithm and
results without * were reported in the related work.

KP20k Inspec Krapivin NUS SemEval KPTimes JPTimes DUC Average
Unsupervised algorithms

TfIdf
F1@5 0.072 0.160 0.067 0.112 0.088 0.179* 0.266* 0.098* 0.130
F1@10 0.094 0.244 0.093 0.140 0.147 0.151* 0.229* 0.120* 0.152

TextRank
F1@5 0.181 0.286 0.185 0.230 0.217 0.022* 0.012* 0.120* 0.157
F1@10 0.151 0.339 0.160 0.216 0.226 0.030* 0.026* 0.181* 0.166

YAKE
F1@5 0.141* 0.204* 0.215* 0.159* 0.151* 0.105* 0.109* 0.106* 0.149
F1@10 0.146* 0.223* 0.196* 0.196* 0.212* 0.118* 0.135* 0.132* 0.170

RaKUn
F1@5 0.177* 0.101* 0.127* 0.224* 0.167* 0.168* 0.225* 0.189* 0.172
F1@10 0.160* 0.108* 0.106* 0.193* 0.159* 0.139* 0.185* 0.172* 0.153

Key2Vec
F1@5 0.080* 0.121* 0.068* 0.109* 0.081* 0.126* 0.158* 0.062* 0.101
F1@10 0.090* 0.181* 0.082* 0.121* 0.126* 0.116* 0.145* 0.078* 0.117

EmbedRank
F1@5 0.135* 0.345* 0.149* 0.173* 0.189* 0.063* 0.081* 0.219* 0.169
F1@10 0.134* 0.394* 0.158* 0.190* 0.217* 0.057* 0.074* 0.246* 0.184

Supervised algorithms
KEA

F1@5 0.046 0.022 0.018 0.073 0.068 / / / /
F1@10 0.044 0.022 0.017 0.071 0.065 / / / /

Maui
F1@5 0.005 0.035 0.005 0.004 0.011 / / / /
F1@10 0.005 0.046 0.007 0.006 0.014 / / / /

Semi-supervised CopyRNN
F1@5 0.308 0.326 0.296 0.356 0.322 / / / /
F1@10 0.245 0.334 0.240 0.320 0.294 / / / /

CopyRNN
F1@5 0.317 0.244 0.305 0.376 0.318 0.406* 0.256* 0.083 0.288
F1@10 0.273 0.289 0.266 0.352 0.318 0.393 0.246 0.105 0.280

CatSeqD
F1@5 0.348 0.276 0.325 0.374 0.327 0.424* 0.238* 0.063* 0.297
F1@10 0.298 0.333 0.285 0.366 0.352 0.424* 0.238* 0.063* 0.295

CorrRNN
F1@5 / / 0.318 0.361 0.320 / / / /
F1@10 / / 0.278 0.335 0.320 / / / /

GPT-2
F1@5 0.275* 0.413* 0.253* 0.318* 0.257* 0.421* 0.331* 0.298* 0.321
F1@10 0.278* 0.469* 0.253* 0.323* 0.278* 0.423* 0.336* 0.312* 0.334

GPT-2 + BiLSTM-CRF
F1@5 0.355* 0.462* 0.287* 0.329* 0.246* 0.478* 0.386* 0.333* 0.360
F1@10 0.360* 0.524* 0.288* 0.336* 0.274* 0.479* 0.389* 0.371* 0.378

TNT-KID
F1@5 0.336* 0.460* 0.310* 0.350* 0.283* 0.485* 0.359* 0.318* 0.363
F1@10 0.338* 0.536* 0.320* 0.358* 0.337* 0.485* 0.361* 0.373* 0.389

keywords than other neural algorithms due to the proposed custom loss function. While
this results in better recall and consequentially also in better performance when up to
10 keywords need to be predicted, it also hurts precision of the system, which negatively
affects the F1 score in a setting where only up to 5 keywords need to be predicted.

The performances of TNT-KID and GPT-2 + BiLSTM-CRF are comparable on a large
majority of datasets according to both criteria, with the difference being the biggest on
the SemEval dataset. It should be noted that TNT-KID employs only 8 attention layers, 8
attention heads and an embedding size of 512 instead of the standard 12 attention layers,
12 attention heads and an embeddings size of 768, which the pretrained GPT-2 model
employs. While GPT-2 + BiLSTM-CRF employs a computationally demanding CRF
layer, TNT-KID employs an additional BiLSTM encoder during the classification phase,
which makes it slower than the unmodified GPT-2. If the BiLSTM-CRF layer is not used,
as in the case of the vanilla GPT-2 model with a standard token classification head, the
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performance of the GPT-2 model becomes much less competitive, even though it still on
average manages to outperform all non-transformer-based algorithms.

The journal paper containing the details about the study is enclosed below.
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Abstract
With growing amounts of available textual data, development of algorithms capable of automatic analy-
sis, categorization, and summarization of these data has become a necessity. In this research, we present a
novel algorithm for keyword identification, that is, an extraction of one or multiword phrases represent-
ing key aspects of a given document, called Transformer-Based Neural Tagger for Keyword IDentification
(TNT-KID). By adapting the transformer architecture for a specific task at hand and leveraging language
model pretraining on a domain-specific corpus, the model is capable of overcoming deficiencies of both
supervised and unsupervised state-of-the-art approaches to keyword extraction by offering competitive
and robust performance on a variety of different datasets while requiring only a fraction of manually
labeled data required by the best-performing systems. This study also offers thorough error analysis with
valuable insights into the inner workings of the model and an ablation study measuring the influence of
specific components of the keyword identification workflow on the overall performance.

Keywords: Keyword extraction; Transfer learning; Transformer architecture

1. Introduction
With the exponential growth in the amount of available textual resources, organization, catego-
rization, and summarization of these data presents a challenge, the extent of which becomes even
more apparent when it is taken into account that a majority of these resources do not contain any
adequate meta information. Manual categorization and tagging of documents is unfeasible due
to a large amount of data, therefore, development of algorithms capable of tackling these tasks
automatically and efficiently has become a necessity (Firoozeh et al. 2020).

One of the crucial tasks for organization of textual resources is keyword identification, which
deals with automatic extraction of words that represent crucial semantic aspects of the text and
summarize its content. First automated solutions to keyword extraction have been proposed more
than a decade ago (Witten et al. 1999; Mihalcea and Tarau 2004) and the task is currently again
gaining traction, with several new algorithms proposed in the recent years. Novel unsupervised
approaches, such as RaKUn (Škrlj, Repar, and Pollak 2019) and YAKE (Campos et al. 2018), work
fairly well and have some advantages over supervised approaches, as they are language and genre
independent, do not require any training and are computationally undemanding. On the other
hand, they also have a couple of crucial deficiencies:

• Term frequency–inverse document frequency (TfIdf) and graph-based features, such as
PageRank, used by these systems to detect the importance of each word in the document,
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are based only on simple statistics like word occurrence and co-occurrence, and are therefore
unable to grasp the entire semantic information of the text.

• Since these systems cannot be trained, they cannot be adapted to the specifics of the syntax,
semantics, content, genre and keyword assignment regime of a specific text (e.g., a variance
in a number of keywords).

These deficiencies result in a much worse performance when compared to the state-of-the-art
supervised algorithms (see Table 2), which have a direct access to the gold-standard keyword set
for each text during the training phase, enablingmore efficient adaptation.Most recent supervised
neural algorithms (Chen et al. 2018; Meng et al. 2019; Yuan et al. 2020), therefore, achieve excel-
lent performance under satisfactory training conditions and can model semantic relations much
more efficiently than algorithms based on simpler word frequency statistics. On the other hand,
these algorithms are resource demanding, require vast amounts of domain-specific data for train-
ing, and can therefore not be used in domains and languages that lack manually labeled resources
of sufficient size.

In this research, we propose Transformer-Based Neural Tagger for Keyword IDentification
(TNT-KID)a that is capable of overcoming the aforementioned deficiencies of supervised and
unsupervised approaches. We show that while requiring only a fraction of manually labeled data
required by other neural approaches, the proposed approach achieves performance comparable to
the state-of-the-art supervised approaches on test sets for which a lot of manually labeled training
data are available. On the other hand, if training data that is sufficiently similar to the test data are
scarce, our model outperforms state-of-the-art approaches by a large margin. This is achieved by
leveraging the transfer learning technique, where a keyword tagger is first trained in an unsuper-
vised way as a language model on a large corpus and then fine-tuned on a (usually) small-sized
corpus with manually labeled keywords. By conducting experiments on two different domains,
computer science articles and news, we show that the language model pretraining allows the algo-
rithm to successfully adapt to a specific domain and grasp the semantic information of the text,
which drastically reduces the needed amount of labeled data for training the keyword detector.

The transfer learning technique (Peters et al. 2018; Howard and Ruder 2018), which has
recently become a well-established procedure in the field of natural language processing (NLP), in
a large majority of cases relies on very large unlabeled textual resources used for language model
pretraining. For example, a well-known English BERT model (Devlin et al. 2019) was pretrained
on the Google Books Corpus (Goldberg and Orwant 2013) (800 million tokens) and Wikipedia
(2500 million tokens). On the other hand, we show that smaller unlabeled domain-specific cor-
pora (87 million tokens for computer science and 232 million tokens for news domain) can be
successfully used for unsupervised pretraining, which makes the proposed approach easily trans-
ferable to languages with less textual resources and also makes training more feasible in terms of
time and computer resources available.

Unlike most other proposed state-of-the-art neural keyword extractors (Meng et al. 2017,
2019; Chen et al. 2018; Ye and Wang 2018; Yuan et al. 2020), we do not employ recurrent neural
networks but instead opt for a transformer architecture (Vaswani et al. 2017), which has not been
widely employed for the task at hand. In fact, the study by Sahrawat et al. (2020) is the only study
we are aware of that employs transformers for the keyword extraction task. Another difference
between our approach and most very recent state-of-the-art approaches from the related work
is also task formulation. While Meng et al. (2017), (2019) and Yuan et al. (2020) formulate a
keyword extraction task as a sequence-to-sequence generation task, where the classifier is trained
to generate an output sequence of keyword tokens step by step according to the input sequence
and the previous generated output tokens, we formulate a keyword extraction task as a sequence

aCode is available under the MIT license at https://gitlab.com/matej.martinc/tnt_kid/.
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labeling task, similar as in Gollapalli, Li, and Yang (2017), Luan, Ostendorf, and Hajishirzi (2017)
and Sahrawat et al. (2020).

Besides presenting a novel keyword extraction procedure, the study also offers an extensive
error analysis, in which the visualization of transformer attention heads is used to gain insights
into inner workings of the model and in which we pinpoint key factors responsible for the dif-
ferences in performance of TNT-KID and other state-of-the-art approaches. Finally, this study
also offers a systematic evaluation of several building blocks and techniques used in a keyword
extraction workflow in the form of an ablation study. Besides determining the extent to which
transfer learning affects the performance of the keyword extractor, we also compare two different
pretraining objectives, autoregressive language modeling and masked language modeling (Devlin
et al. 2019), and measure the influence of transformer architecture adaptations, a choice of input
encoding scheme and the addition of part-of-speech (POS) information on the performance of
the model.

The paper is structured as follows. Section 2 addresses the related work on keyword identifi-
cation and covers several supervised and unsupervised approaches to the task at hand. Section 3
describes the methodology of our approach, while in Section 4 we present the datasets, conducted
experiments and results. Section 5 covers error analysis, Section 6 presents the conducted ablation
study, while the conclusions and directions for further work are addressed in Section 7.

2. Related work
This section overviews selected methods for keyword extraction, supervised in Section 2.1 and
unsupervised in Section 2.2. The related work is somewhat focused on the newest keyword extrac-
tion methods, therefore, for a more comprehensive survey of slightly older methods, we refer the
reader to Hasan and Ng (2014).

2.1 Supervised keyword extractionmethods
Traditional supervised approaches to keyword extraction considered the task as a two step process
(the same is true for unsupervised approaches). First, a number of syntactic and lexical features
are used to extract keyword candidates from the text. Second, the extracted candidates are ranked
according to different heuristics and the top n candidates are selected as keywords (Yuan et al.
2020). One of the first supervised approaches to keyword extraction was proposed byWitten et al.
(1999), whose algorithm named KEA uses only TfIdf and the term’s position in the text as fea-
tures for term identification. These features are fed to the Naive Bayes classifier, which is used
to determine for each word or phrase in the text if it is a keyword or not. Medelyan, Frank, and
Witten (2009) managed to build on the KEA approach and proposed the Maui algorithm, which
also relies on the Naive Bayes classifier for candidate selection but employs additional semantic
features, such as, for example, node degree, which quantifies the semantic relatedness of a candi-
date to other candidates, and Wikipedia-based keyphraseness, which is the likelihood of a phrase
being a link in the Wikipedia.

Wang, Peng, and Hu (2006) was one of the first studies that applied a feedforward neural net-
work classifier for the task at hand. This approach still relied on manual feature engineering and
features such as TfIdf and appearance of the keyphrase candidate in the title or heading of the
given document. On the other hand, Villmow, Wrzalik, and Krechel (2018) applied a Siamese
Long Short-Term Memory (LSTM) network for keyword extraction, which no longer required
manual engineering of statistical features.

A more recent supervised approach is the so-called sequence labeling approach to keyword
extraction by Gollapalli et al. (2017), where the idea is to train a keyword tagger using token-based
linguistic, syntactic and structural features. The approach relies on a trained Conditional Random
Field (CRF) tagger and the authors demonstrated that this approach is capable of working on-par
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with slightly older state-of-the-art systems that rely on information from the Wikipedia and
citation networks, even if only within-document features are used. In another sequence labeling
approach proposed by Luan et al. (2017), a sophisticated neural network is built by combing
an input layer comprising a concatenation of word, character and part-of-speech embeddings,
a bidirectional Long Short-Term Memory (BiLSTM) layer and, a CRF tagging layer. They also
propose a new semi-supervised graph-based training regime for training the network.

Some of the most recent state-of-the-art approaches to keyword detection consider the prob-
lem as a sequence-to-sequence generation task. The first research leveraging this tactic was
proposed by Meng et al. (2017), employing a generative model for keyword prediction with a
recurrent encoder–decoder framework with an attention mechanism capable of detecting key-
words in the input text sequence and also potentially finding keywords that do not appear in the
text. Since finding absent keywords involves a very hard problem of finding a correct class in a
set of usually thousands of unbalanced classes, their model also employs a copying mechanism
(Gu et al. 2016) based on positional information, in order to allow the model to find important
keywords present in the text, which is a much easier problem.

The approach was further improved by Chen et al. (2018), who proposed additional mecha-
nisms that handle repetitions and increase keyphrase diversity. In their system named CorrRNN,
the so-called coverage vector is employed to check whether the word in the document has been
summarized by previous keyphrases. Also, before the generation of each new keyphrase, preceding
phrases are taken into account to eliminate generation of duplicate phrases.

Another improvement was proposed by Ye and Wang (2018), who tried to reduce the amount
of data needed for successful training of the model proposed by Meng et al. (2017). They pro-
pose a semi-supervised keyphrase generation method (in Section 4, we refer to this model as a
Semi-supervised CopyRNN), which, besides the labeled samples, also leverages unlabeled samples,
that are labeled in advance by syntetic keyphrases obtained with unsupervised keyword extraction
methods or by employing a self-learning algorithms. The novel keyword extraction approach pro-
posed byWang et al. (2018) also tries to reduce the amount of needed labeled data. The employed
Topic-Based Adversarial Neural Network (TANN) is capable of leveraging the unlabeled data in
the target domain and also data from the resource-rich source domain for the keyword extraction
in the target domain. They propose a special topic correlation layer, in order to incorporate the
global topic information into the document representation, and a set of domain-invariant fea-
tures, which allow the transfer from the source to the target domain by adversarial training on the
topic-based representations.

The study byMeng et al. (2019) tried to improve the approach proposed in their previous study
(Meng et al. 2017) by investigating different ways in which the target keywords can be fed to a clas-
sifier during the training phase. While the original system used the so-called one-to-one approach,
where a training example consists of an input text and a single keyword, the improved model
employs a one-to-seq approach, where an input text is matched with a concatenated sequence
made of all the keywords for a specific text. The study also shows that the order of the keywords
in the text matters. The best-performing model from Meng et al. (2019), named CopyRNN, is
used in our experiments for the comparison with the state of the art (see Section 4). A one-to-seq
approach has been further improved by Yuan et al. (2020), who incorporated two diversity mech-
anisms into the model. The mechanisms (called semantic coverage and orthogonal regularization)
constrain the overall inner representation of a generated keyword sequence to be semantically
similar to the overall meaning of the source text, and therefore force the model to produce diverse
keywords. The resulting model leveraging these mechanisms has been named CatSeqD and is also
used in our experiments for the comparison between TNT-KID and the state of the art.

A further improvement of the generative approach towards keyword detection has been pro-
posed by Chan et al. (2019), who integrated a reinforcement learning (RL) objective into the
keyphrase generation approach proposed by Yuan et al. (2020). This is done by introducing an
adaptive reward function that encourages the model to generate sufficient amount of accurate
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keyphrases. They also propose a newWikipedia-based evaluation method that can more robustly
evaluate the quality of the predicted keyphrases by also considering name variations of the ground
truth keyphrases.

We are aware of one study that tackled keyword detection with transformers. Sahrawat et al.
(2020) fed contextual embeddings generated using several transformer and recurrent architec-
tures (BERT Devlin et al. 2019, RoBERTa Liu et al. 2019, GPT-2 Radford et al. 2019, ELMo Peters
et al. 2018, etc.) into two distinct neural architectures, a bidirectional Long Short-Term Memory
Network (BiLSTM) and a BiLSTM network with an additional conditional random fields layer
(BiLSTM-CRF). Same as in Gollapalli et al. (2017), they formulate a keyword extraction task as
a sequence labeling approach, in which each word in the document is assigned one of the three
possible labels: kb denotes that the word is the first word in a keyphrase, ki means that the word is
inside a keyphrase, and ko indicates that the word is not part of a keyphrase.

The study shows that contextual embeddings generated by transformer architectures gener-
ally perform better than static (e.g., FastText embeddings Bojanowski et al. 2017) and among
them, BERT showcases the best performance. Since all of the keyword detection experiments are
conducted on scientific articles, they also test SciBERT (Beltagy, Lo, and Cohan 2019), a version
of BERT pretrained on a large multi-domain corpus of scientific publications containing 1.14M
papers sampled from Semantic Scholar. They observe that this genre-specific pretraining on texts
of the same genre as the texts in the keyword datasets slightly improves the performance of the
model. They also report significant gains in performance when the BiLSTM-CRF architecture is
used instead of BiLSTM.

The neural sequence-to-sequence models are capable of outperforming all older supervised
and unsupervised models by a large margin, but do require a very large training corpora with tens
of thousands of documents for successful training. This means that their use is limited only to
languages (and genres) in which large corpora with manually labeled keywords exist. On the other
hand, the study by Sahrawat et al. (2020) indicates that the employment of contextual embeddings
reduces the need for a large dataset with manually labeled keywords. These models can, therefore,
be deployed directly on smaller datasets by leveraging semantic information already encoded in
contextual embeddings.

2.2 Unsupervised keyword extractionmethods
The previous section discussed recently emerged methods for keyword extraction that operate in
a supervised learning setting and can be data-intensive and time consuming. Unsupervised key-
word detectors can tackle these two problems, yet at the cost of the reduced overall performance.

Unsupervised approaches need no training and can be applied directly without relying on a
gold-standard document collection. In general, they can be divided into four main categories,
namely statistical, graph-based, embeddings-based, and language model-based methods:

• Statistical methods, such as KP-MINER (El-Beltagy and Rafea 2009), RAKE (Rose et al. 2010),
and YAKE (Campos et al. 2018), use statistical characteristics of the texts to capture key-
words. An extensive survey of these methods is presented in the study by Merrouni, Frikh,
and Ouhbi (2020).

• Graph-based methods, such as TextRank (Mihalcea and Tarau 2004), Single Rank (Wan and
Xiao 2008) and its extension ExpandRank (Wan and Xiao 2008), TopicRank (Bougouin,
Boudin, andDaille 2013), Topical PageRank (Sterckx et al. 2015), KeyCluster (Liu et al. 2009),
and RaKUn (Škrlj et al. 2019) build graphs to rank words based on their position in the graph.
A survey by Merrouni et al. (2020) also offers good coverage of graph-based algorithms.

• Embedding-based methods such as the methods proposed by Wang, Liu, and McDonald
(2015a), Key2Vec (Mahata et al. 2018), and EmbedRank (Bennani-Smires et al. 2018)
employ semantic information from distributed word and sentence representations
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(i.e., embeddings) for keyword extraction. Thes methods are covered in more detail in the
survey by Papagiannopoulou and Tsoumakas (2020).

• Language model-based methods, such as the ones proposed by Tomokiyo and Hurst (2003)
and Liu et al. (2011), on the other hand use language model-derived statistics to extract
keywords from text. The methods are well covered in surveys by Papagiannopoulou and
Tsoumakas (2020) and Çano and Bojar (2019).

Among the statistical approaches, the state-of-the-art keyword extraction algorithm is YAKE
(Campos et al. 2018). It defines a set of features capturing keyword characteristics, which are
heuristically combined to assign a single score to every keyword. These features include casing,
position, frequency, relatedness to context, and dispersion of a specific term. Another recent sta-
tistical method proposed by Won, Martins, and Raimundo (2019) shows that it is possible to
build a very competitive keyword extractor by using morpho-syntactic patterns for the extraction
of candidate keyphrases and afterward employ simple textual statistical features (e.g., term fre-
quency, inverse document frequency, position measures etc.) to calculate ranking scores for each
candidate.

One of the first graph-based methods for keyword detection is TextRank (Mihalcea and Tarau
2004), which first extracts a lexical graph from text documents and then leverages Google’s
PageRank algorithm to rank vertices in the graph according to their importance inside a graph.
This approach was somewhat upgraded by TopicRank (Bougouin et al. 2013), where candidate
keywords are additionally clustered into topics and used as vertices in the graph. Keywords
are detected by selecting a candidate from each of the top-ranked topics. Another method that
employs PageRank is PositionRank (Florescu and Caragea 2017). Here, a word-level graph that
incorporates positional information about each word occurence is constructed. One of the most
recent graph-based keyword detectors is RaKUn (Škrlj et al. 2019) that employs several new tech-
niques for graph construction and vertice ranking. First, the initial lexical graph is expanded and
adapted with the introduction of meta-vertices, that is, aggregates of existing vertices. Second, for
keyword detection and ranking, a graph-theoretic load centrality measure is used along with the
implemented graph redundancy filters.

Besides employing PageRank on document’s words and phrases, there are other options for
building a graph. For example, in the CommunityCluster method proposed by Grineva, Grinev,
and Lizorkin (2009), a single document is represented as a graph of semantic relations between
terms that appear in that document. On the other hand, the CiteTextRank approach (Gollapalli
and Caragea 2014), used for extraction of keywords from scientific articles, leverages additional
contextual information derived from a citation network, in which a specific document is refer-
enced. Finally, SGRank (Danesh, Sumner, and Martin 2015) and KeyphraseDS (Yang et al. 2017)
methods belong to a family of the so-called hybrid statistical graph algorithms. SGRank ranks
candidate keywords extracted from the text according to the set of statistical heuristics (posi-
tion of the first occurrence, term length, etc.) and the produced ranking is fed into a graph-based
algorithm, which conducts the final ranking. In the KeyphraseDS approach, keyword extraction
consists of three steps: candidates are first extracted with a CRF model and a keyphrase graph is
constructed from the candidates; spectral clustering, which takes into consideration knowledge
and topic-based semantic relatedness, is conducted on the graph; and final candidates are selected
through the integer linear programming (ILP) procedure, which considers semantic relevance and
diversity of each candidate.

The first keyword extraction method that employed embeddings was proposed by Wang et al.
(2015a). Here, a word graph is created, in which the edges have weights based on the word
co-occurrence and the euclidean distance between word embeddings. A weighted PageRank algo-
rithm is used to rank the words. This method is further improved in Wang, Liu, and McDonald
(2015b), where a personalized weighted PageRank is employed together with the pretrained word
embeddings. (Mahata et al. 2018) suggested further improvement to the approach by introducing
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domain-specific embeddings, which are trained on multiword candidate phrases extracted from
corpus documents. Cosine distance is used to measure the distance between embeddings and a
direct graph is constructed, in which candidate keyphrases are represented as vertices. The final
ranking is derived by using a theme-weighted PageRank algorithm (Langville and Meyer 2004).

An intriguing embedding-based solution was proposed by Papagiannopoulou and Tsoumakas
(2018). Their Reference Vector Algorithm (RVA) for keyword extraction employs the so-called
local word embeddings, which are embeddings trained on the single document from which
keywords need to be extracted.

Yet, another state-of-the-art embedding-based keyword extraction method is EmbedRank
(Bennani-Smires et al. 2018). In the first step, candidate keyphrases are extracted according to
to the part-of-speech (POS)-based pattern (phrases consisting of zero or more adjectives fol-
lowed by one or more nouns). Sent2Vec embeddings (Pagliardini, Gupta, and Jaggi 2018) are used
for representation of candidate phrases and documents in the same vector space. Each phrase is
ranked according to the cosine distance between the candidate phrase and the embedding of the
document in which it appears.

Languagemodel-based keyword extraction algorithms are less common than other approaches.
Tomokiyo and Hurst (2003) extracted keyphrases by employing several unigram and n-gram lan-
guage models, and by measuring KL divergence (Vidyasagar 2010) between them. Two features
are used in the system: phraseness, whichmeasures if a given word sequence is a phrase, and infor-
mativeness, which measures how well a specific keyphrase captures the most important ideas in
the document. Another interesting approach is the one proposed by Liu et al. (2011), which relies
on the idea that keyphrasing can be considered as a type of translation, in which documents are
translated into the language of keyphrases. Statistical machine translation word alignment tech-
niques are used for the calculation of matching probabilities between words in the documents and
keyphrases.

3. Methodology
This section presents the methodology of our approach. Section 3.1 presents the architecture of
the neural model, Section 3.2 covers the transfer learning techniques used, Section 3.3 explains
how the final fine-tuning phase of the keyword detection workflow is conducted, and Section 4.3
covers evaluation of the model.

3.1 Architecture
Themodel follows an architectural design of an original transformer encoder (Vaswani et al. 2017)
and is shown in Figure 1(a). Same as in the GPT-2 architecture (Radford et al. 2019), the encoder
consists of a normalization layer that is followed by a multi-head attention mechanism. A residual
connection is employed around the attention mechanism, which is followed by another layer nor-
malization. This is followed by the fully connected feedforward and dropout layers, around which
another residual connection is employed.

For two distinct training phases, language model pretraining and fine-tuning, two distinct
“heads” are added on top of the encoder, which is identical for both phases and therefore allows for
the transfer of weights from the pretraining phase to the fine-tuning phase. The language model
head predicts the probability for each word in the vocabulary that it appears at a specific position
in the sequence and consists of a dropout layer and a feedforward layer, which returns the output
matrix of size SL ∗ |V|, where SL stands for sequence length (i.e., a number of words in the input
text) and |V| stands for the vocabulary size. This is followed by the adaptive softmax layer (Grave
et al. 2017) (see description below).

During fine-tuning, the language model head is replaced with a token classification head, in
which we apply ReLu nonlinearity and dropout to the encoder output, and then feed the output
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Figure 1. TNT-KID’s architecture overview. (a) Model architecture. (b) The attention mechanism.

to the feedforward classification layer, which returns the output matrix of size SL ∗NC, where NC
stands for the number of classes (in our case 2, since we model keyword extraction as a binary
classification task, see Section 3.3 for more details). Finally, a softmax layer is added in order to
obtain probabilities for each class.

We also propose some significant modifications of the original GPT-2 architecture. First, we
propose a re-parametrization of the attention mechanism (see Figure 1(b)). In the original trans-
former architecture, positional embedding is simply summed to the input embedding and fed to
the encoder. While this allows the model to learn to attend by relative positions, the positional
information is nevertheless fed to the attention mechanism in an indirect aggregated manner. On
the other hand, we propose to feed the positional encoding to the attention mechanism directly,
since we hypothesize that this would not only allow modeling of the relative positions between
tokens but would also allow the model to better distinguish between the positional and seman-
tic/grammatical information and therefore make it possible to assign attention to some tokens
purely on the basis of their position in the text. The reason behind this modification is connected
with the hypothesis that token position is especially important in the keyword identification task
and with this re-parametrization the model would be capable of directly modeling the importance
of relation between each token and each position. Note that we use relative positional embeddings
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for representing the positional information, same as in Dai et al. (2019), where the main idea is to
only encode the relative positional information in the hidden states instead of the absolute.

Standard scaled dot-product attention (Vaswani et al. 2017) requires three inputs, a so-called
query, key, valuematrix representations of the embedded input sequence and its positional infor-
mation (i.e., element wise addition of input embeddings and positional embeddings) and the idea
is to obtain attention scores (in a shape of an attention matrix) for each relation between tokens
inside these inputs by first multiplying query (Q) and transposed key (K) matrix representations,
applying scaling and softmax functions, and finally multiplying the resulting normalized matrix
with the value (V) matrix, or more formally,

Attention(Q,K,V)= softmax
(
QKT√
dk

)
V

where dk represents the scaling factor, usually corresponding to the first dimension of the key
matrix. On the other hand, we propose to add an additional positional input representationmatrix
Kposition and model attention with the following equation:

Attention(Q,K,V ,Kpos)= softmax
(QKT +QKT

position√
dk

)
V

Second, besides the text input, we also experiment with the additional part-of-speech (POS)
tag sequence as an input. This sequence is first embedded and then added to the word embedding
matrix. Note that this additional input is optional and is not included in the model for which the
results are presented in Section 4.4 due to marginal effect on the performance of the model in the
proposed experimental setting (see Section 6).

The third modification involves replacing the standard input embedding layer and softmax
function with adaptive input representations (Baevski and Auli 2019) and an adaptive softmax
(Grave, Joulin, Cissé, Grangier and Jégou 2017). While the modifications presented above affect
both training phases (i.e., the languagemodel pretraining and the token classification fine-tuning),
the third modification only affects the language model pretraining (see Section 3.2). The main
idea is to exploit the unbalanced word distribution to form word clusters containing words with
similar appearance probabilities. The entire vocabulary is split into a smaller cluster containing
words that appear most frequently, a second (usually slightly bigger) cluster that contains words
that appear less frequently and a third (and also optional fourth) cluster that contains all the other
words that appear rarely in the corpus. During language model training, instead of predicting an
entire vocabulary distribution at each time step, the model first tries to predict a cluster in which
a target word appears in and after that predicts a vocabulary distribution just for the words in that
cluster. Since in a large majority of cases, the target word belongs to the smallest cluster containing
most frequent words, the model in most cases only needs to generate probability distribution for
less than a tenth of a vocabulary, which drastically reduces the memory requirements and time
complexity of the model at the expense of a marginal drop in performance.

We experiment with two tokenization schemes, word tokenization and Sentencepiece (Kudo
and Richardson 2018) byte pair encoding (see Section 4 for details) and for these two schemes, we
employ two distinct cluster distributions due to differences in vocabulary size. When word tok-
enization is employed, the vocabulary size tends to be bigger (e.g., reaching up to 600,000 tokens
in our experiments on the news corpora), therefore in this setting, we employ four clusters, first
one containing 20,000 most frequent words, second one containing 20,000 semi-frequent words,
third one containing 160,000 less frequent words, and the fourth cluster containing the remaining
least frequent words in the vocabulary.b When byte pair encoding is employed, the vocabulary is

bThe proposed cluster distribution was derived from the distribution proposed by Dai et al. (2019), who limited the vocab-
ulary size to about 260,000 tokens and proposed a three-cluster distribution with clusters of size 20,000, 40,000, and 200,000
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notably smaller (i.e., containing about 32,000 tokens in all experiments) and the clustering proce-
dure is strictly speaking no longer necessary. Nevertheless, since the initial experiments showed
that the performance of the model does not worsen if the majority of byte pair tokens is kept in the
first cluster, we still employ the clustering procedure in order to reduce the time complexity of the
model, but nevertheless adapt the cluster distribution. We only apply three clusters: the first one
contains 20,000 most frequent byte pairs, same as when word tokenization is employed; the sec-
ond cluster is reduced to contain only 10,000 semi-frequent byte pairs; the third cluster contains
only about 2000 least frequent byte pairs.

We also present the modification, which only affects the fine-tuning token classification
phase (see Section 3.3). During this phase, a two layer randomly initialized encoder, consisting
of dropout and two bidirectional Long Short-Term Memory (BiLSTM) layers, is added (with
element-wise summation) to the output of the transformer encoder. The initial motivation behind
this adaptation is connected with findings from the related work, which suggest that recurrent lay-
ers are quite successful at modeling positional importance of tokens in the keyword detection task
(Meng et al. 2017; Yuan et al. 2020) and by the study of Sahrawat et al. (2020), who also reported
good results when a BiLSTM classifier and contextual embeddings generated by transformer
architectures were employed for keyword detection. Also, the results of the initial experiments
suggested that some performance gains can in fact be achieved by employing this modification.

In terms of computational complexity, a self-attention layer complexity is O(n2 ∗ d) and the
complexity of the recurrent layer isO(n ∗ d2), where n is the sequence length and d is the embed-
ding size (Vaswani et al. 2017). This means that the complexity of the transformer model with
an additional BiLSTM encoder is therefore O(n2 ∗ d2). In terms of the number of operations
required, the standard TNT-KID model encoder employs the sequence size of 512, embedding
size of 512 and 8 attention layers, resulting in altogether 5122 ∗ 512 ∗ 8= 1, 073, 741, 824 oper-
ations. By adding the recurrent encoder with two recurrent bidirectional layers (which is the
same as adding four recurrent layers, since each bidirectional layer contains two unidirectional
LSTM layers), the number of operations increases by 512 ∗ 5122 ∗ 4= 536, 870, 912. In practice,
this means that the model with the additional recurrent encoder conducts token classification
roughly 50% slower than the model without the encoder. Note that this addition does not affect
the language model pretraining, which tends to be the more time demanding task due to larger
corpora involved.

Finally, we also experiment with an employment of the BiLSTM-CRF classification head on
top of the transformer encoder, same as in the approach proposed by Sahrawat et al. (2020)
(see Section 6 for more details about the results of this experiment). For this experiment, dur-
ing the fine-tuning token classification phase, the token classification head described above is
replaced with a BiLSTM-CRF classification head proposed by Sahrawat et al. (2020), contain-
ing one BiLSTM layer and a CRF (Lafferty, McCallum, and Pereira 2001) layer.c Outputs of the
BiLSTM f = f1, ..., fn are fed as inputs to a CRF layer, which returns the output score s(f ,y) for each
possible label sequence according to the following equation:

s(f , y)=
n∑

t=1
τyt−1,yt + ft,yt

tokens. To avoid limiting the vocabulary size, we added an additional cluster for very rare tokens. This is still in line with the
recommendation by Grave et al. (2017), who proposed three–five clusters as an optimal trade-off between the improvement
in time complexity and reduction in performance. Since the initial experiments suggested that the reduction in size of the
second and third cluster does not hurt the performance of the model (in contrast, reduction of the first cluster does have a
detrimental effect on the performance), but does slightly improve the time complexity, second cluster was reduced to 20,000
tokens and the third cluster to 160,000 tokens.

cNote that in the experiments in which we employ BiLSTM-CRF, we do not add an additional two layer BiLSTM encoder
described above to the output of the transformer encoder.
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τyt−1,yt is a transition matrix representing the transition score from class yt−1 to yt . The final
probability of each label sequence score is generated by exponentiating the scores and normalizing
over all possible output label sequences:

p(y|f )= exp(s(f , y))∑
y′ exp(s(f

′, y′))

To find the optimal sequence of labels efficiently, the CRF layer uses the Viterbi algorithm
(Forney 1973).

3.2 Transfer learning
Our approach relies on a transfer learning technique (Howard and Ruder 2018; Devlin et al. 2019),
where a neural model is first pretrained as a language model on a large corpus. This model is then
fine-tuned for each specific keyword detection task on each specific manually labeled corpus by
adding and training the token classification head described in the previous section. With this
approach, the syntactic and semantic knowledge of the pretrained language model is transferred
and leveraged in the keyword detection task, improving the detection on datasets that are too
small for the successful semantic and syntactic generalization of the neural model.

In the transfer learning scenario, two distinct pretraining objectives can be considered. First, is
the autoregressive language modeling where the task can be formally defined as predicting a prob-
ability distribution of words from the fixed size vocabulary V , for word wt , given the historical
sequence w1:t−1 = [w1, ...,wt−1]. This pretraining regime was used in the GPT-2 model (Radford
et al. 2019) that we modified. Since in the standard transformer architecture self-attention is
applied to an entire surrounding context of a specific word (i.e., the words that appear after a
specific word in each input sequence are also used in the self-attention calculation), we employ
obfuscation masking to the right context of each word when the autoregressive language model
objective is used, in order to restrict the information only to the prior words in the sentence (plus
the word itself) and prevent target leakage (see Radford et al. (2019) for details on the masking
procedure).

Another option is a masked language modeling objective, first proposed by Devlin et al. (2019).
Here, a percentage of words from the input sequence is masked in advance, and the objective is
to predict these masked words from an unmasked context. This allows the model to leverage both
left and right context, or more formally, the token wt is also determined by sequence of tokens
wt+1:n = [wt+1, ...,wt+n]. We follow the masking procedure described in the original paper by
Devlin et al. (2019), where 15% of words are randomly designated as targets for prediction, out of
which 80% are replaced by a masked token (<mask>), 10% are replaced by a random word and
10% remain intact.

The final output of the model is a softmax probability distribution calculated over the entire
vocabulary, containing the predicted probabilities of appearance (P) for each word given its left
(and in case of the masked language modeling objective also right) context. Training, therefore,
consists of the minimization of the negative log loss (NLL) on the batches of training corpus word
sequences by backpropagation through time:

NLL= −
n∑
i=1

log P(wi|w1:i−1) (1)

While the masked language modeling objective might outperform autoregressive language
modeling objective in a setting where a large pretraining corpus is available (Devlin et al. 2019)
due to the inclusion of the right context, these two training objectives have at least to our knowl-
edge never been compared in a setting where only a relatively small domain-specific corpus is
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Input text

The advantage of this is to introduce distributed interactions between the UDDI clients .

Input (X)
1  123  12 43 4 8 1011 12027  8300  74 1 7237 412 32

Target (Y)

0  0  0  0  0  0  0  1  1 0  0  1 0  0

Figure 2. Encoding of the input text “The advantage of this is to introduce distributed interactions between the UDDI clients.”
with keywords distributed interactions and UDDI. In the first step, the text is converted into a numerical sequence, which is
used as an input to the model. The model is trained to convert this numerical sequence into a sequence of zeroes and ones,
where the ones indicate the position of a keyword.

available for the pretraining phase. For more details about the performance comparison of these
two pretraining objectives, see Section 6.

3.3 Keyword identification
Since each word in the sequence can either be a keyword (or at least part of the keyphrase) or
not, the keyword tagging task can be modeled as a binary classification task, where the model is
trained to predict if a word in the sequence is a keyword or not.d Figure 2 shows an example of
how an input text is first transformed into a numerical sequence that is used as an input of the
model, which is then trained to produce a sequence of zeroes and ones, where the positions of
ones indicate the positions of keywords in the input text.

Since a large majority of words in the sequence are not keywords, the usage of a standard NLL
function (see Equation (1)), which would simply calculate a sum of log probabilities that a word is
either a keyword or not for every input word sequence, would badly affect the recall of the model
since the majority negative class would prevail. To solve this problem and maximize the recall of
the system, we propose a custom classification loss function, where probabilities for each word in
the sequence are first aggregated into two distinct sets, one for each class. For example, text “The
advantage of this is to include distributed interactions between the UDDI clients.” in Figure 2 would
be split into two sets, the first one containing probabilities for all the words in the input example
which are not keywords (The, advantage, of, this, is, to, include, between, the, clients,.), and the
other containing probabilities for all the words in the input example that are keywords or part
of keyphrases (distributed, interactions, UDDI). Two NLLs are calculated, one for each probability
set, and both are normalized with the size of the set. Finally, the NLLs are summed.More formally,
the loss is computed as follows. LetW = {wi}ni=1 represent an enumerated sequence of tokens for
which predictions are obtained. Let pi represent the predicted probabilities for the ith token that
it either belongs or does not belong to the ground truth class. The oi represents the output weight
vector of the neural network for token i and j corresponds to the number of classes (two in our

dNote that this differs from the sequence labeling approach proposed by Sahrawat et al. (2020), where each word in the
document is assigned one of three possible labels (see Section 2 for details).
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case as the word can be a keyword or not). Predictions are in this work obtained via a log-softmax
transform (first), defined as follows (for the ith token):

pi = lst(oi)= log
exp (oi)∑
j exp (oj)

.

The loss function is comprised from two main parts. Let K+ ⊆W represent tokens that are
keywords and K− ⊆W the set of tokens that are not keywords. Note that |K− ∪K+| = n, that is,
the two sets cover all considered tokens for which predictions are obtained. During loss compu-
tation, only the probabilities of the ground truth class are considered. We mark them with p+

i or
p−
i . Then the loss is computed as

L+ = − 1
|K+|

∑
wi∈K+

p+
i and L− = − 1

|K−|
∑

wi∈K−
p−
i .

The final loss is finally computed as

Loss= L+ + L−.

Note that even though all predictions are given as an argument, the two parts of the loss address
different token indices (i).

In order to produce final set of keywords for each document, tagged words are extracted from
the text and duplicates are removed. Note that a sequence of ones is always interpreted as a multi-
word keyphrase and not as a combination of one-worded keywords (e.g., distributed interactions
from Figure 2 is considered as a single multiword keyphrase and not as two distinct one word
keywords). After that, the following filtering is conducted:

• If a keyphrase is longer than four words, it is discarded.
• Keywords containing punctuation (with the exception of dashes and apostrophes) are
removed.

• The detected keyphrases are ranked and arranged according to the softmax probability
assigned by the model in a descending order.

4. Experiments
We first present the datasets used in the experiments. This is followed by the experimental design,
evaluation, and the results achieved by TNT-KID in comparison to the state of the art.

4.1 Keyword extraction datasets
Experiments were conducted on seven datasets from two distinct genres, scientific papers about
computer science and news. The following datasets from the computer science domain are used:

• KP20k (Meng et al. 2017): This dataset contains titles, abstracts, and keyphrases of 570,000
scientific articles from the field of computer science. The dataset is split into train set
(530,000), validation set (20,000), and test set (20,000).

• Inspec (Hulth 2003): The dataset contains 2000 abstracts of scientific journal papers in com-
puter science collected between 1998 and 2002. Two sets of keywords are assigned to each
document, the controlled keywords that appear in the Inspec thesaurus, and the uncon-
trolled keywords, which are assigned by the editors. Only uncontrolled keywords are used
in the evaluation, same as by Meng et al. (2017), and the dataset is split into 500 test papers
and 1500 train papers.
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• Krapivin (Krapivin, Autaeu, and Marchese 2009): This dataset contains 2304 full scien-
tific papers from computer science domain published by ACM between 2003 and 2005 with
author-assigned keyphrases. Four-hundred and sixty papers from the dataset are used as
a test set and the others are used for training. Only titles and abstracts are used in our
experiments.

• NUS (Nguyen and Kan 2007): The dataset contains titles and abstracts of 211 scientific
conference papers from the computer science domain and contains a set of keywords
assigned by student volunters and a set of author-assigned keywords, which are both used in
evaluation.

• SemEval (Kim et al. 2010): The dataset used in the SemEval-2010 Task 5, Automatic
Keyphrase Extraction from Scientific Articles, contains 244 articles from the computer sci-
ence domain collected from the ACM Digital Library. One-hundred articles are used for
testing and the rest are used for training. Again, only titles and abstracts are used in our
experiments, the article’s content was discarded.

From the news domain, three datasets with manually labeled gold-standard keywords
are used:

• KPTimes (Gallina, Boudin, and Daille 2019): The corpus contains 279,923 news articles
containing editor-assigned keywords that were collected by crawling New York Times news
website.e After that, the dataset was randomly divided into training (92.8%), development
(3.6%) and test (3.6%) sets.

• JPTimes (Gallina et al. 2019): Similar as KPTimes, the corpus was collected by crawling
Japan Times online news portal.f The corpus only contains 10,000 English news articles
and is used in our experiments as a test set for the classifiers trained on the KPTimes
dataset.

• DUC (Wan and Xiao 2008): The dataset consists of 308 English news articles and contains
2488 hand-labeled keyphrases.

The statistics about the datasets that are used for training and testing of our models are
presented in Table 1. Note that there is a big variation in dataset sizes in terms of number of
documents (column No. docs), and in an average number of keywords (column Avg. kw.) and
present keywords per document (columns Avg. present kw.), ranging from 2.35 present keywords
per document in KPTimes-valid to 7.79 in DUC-test.

4.2 Experimental design
We conducted experiments on the datasets described in Section 4.1. First, we lowercased and
tokenized all datasets. We experimented with two tokenization schemes, word tokenization and
Sentencepiece (Kudo and Richardson 2018) byte pair encoding (see Section 6 for more details on
how these two tokenization schemes affect the overall performance). During both tokenization
schemes, a special < eos> token is used to indicate the end of each sentence. For the best-
performing model, for which the results are presented in Section 4.4, byte pair encoding was used.
For generating the additional POS tag sequence input described in Section 3.1, which was not
used in the best-performing model, Averaged Perceptron Tagger from the NLTK library (Bird and
Loper 2004) was used. The neural architecture was implemented in PyTorch (Paszke et al. 2019).

In the pretraining phase, two languagemodels were trained for up to 10 epochs, one on the con-
catenation of all the texts from the computer science domain and the other on the concatenation

ehttps://www.nytimes.com.
fhttps://www.japantimes.co.jp.
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Table 1. Datasets used for empirical evaluation of keyword extraction algorithms. No.docs stands for number of doc-
uments, Avg. doc. length stands for average document length in the corpus (in terms of number of words, that is, we
split the text by white space), Avg. kw. stands for average number of keywords per document in the corpus,% present
kw. stands for the percentage of keywords that appear in the corpus (i.e., percentage of document’s keywords that
appear in the text of the document), and Avg. present kw. stands for the average number of keywords per document
that actually appear in the text of the specific document

Dataset No. docs Avg. doc. length Avg. kw. % present kw. Avg. present kw.

Computer science papers

KP20k-train 530,000 156.34 5.27 62.43 3.29


KP20k-valid 20,000 156.55 5.26 62.30 3.28


KP20k-test 20,000 156.52 5.26 62.55 3.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inspec-valid 1500 125.21 9.57 76.92 7.36


Inspec-test 500 121.82 9.83 78.14 7.68


Krapivin-valid 1844 156.65 5.24 54.34 2.85
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Krapivin-test 460 157.76 5.74 55.66 3.20


NUS-test 211 164.80 11.66 50.47 5.89


SemEval-valid 144 166.86 15.67 45.43 7.12


SemEval-test 100 183.71 15.07 44.53 6.71

News articles

KPTimes-train 259,923 783.32 5.03 47.30 2.38


KPTimes-valid 10,000 784.65 5.02 46.78 2.35


KPTimes-test 10,000 783.47 5.04 47.59 2.40


JPTimes-test 10,000 503.00 5.03 76.73 3.86
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DUC-test 308 683.14 8.06 96.62 7.79

of all the texts from the news domain. Overall the language model train set for computer sci-
ence domain contained around 87 million tokens and the news train set about 232 million tokens.
These small sizes of the language model train sets enable relatively fast training and smaller model
sizes (in terms of number of parameters) due to the reduced vocabulary.

After the pretraining phase, the trained language models were fine-tuned on each dataset’s
validation sets (see Table 1), which were randomly split into 80% of documents used for fine-
tuning and 20% of documents used for hyperparameter optimization and test set model selection.
The documents containing more than 512 tokens are truncated. Next, the documents are sorted
according to the token length and split into batches. The documents in each batch are padded
with a special < pad > token to the length of the longest document in the batch. Each model was
fine-tuned for a maximum of 10 epochs and after each epoch, the trained model was tested on the
documents chosen for hyperparameter optimization and test set model selection. The model that
showed the best performance (in terms of F1@10 score) was used for keyword detection on the
test set. All combinations of the following hyperparameter values were tested before choosing the
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best combination, which is written in bold in the list below and on average worked best for all the
datasets in both domainsg:

• Learning rates: 0.00005, 0.0001, 0.0003, 0.0005, 0.001.
• Embedding size: 256, 512.
• Number of attention heads: 4, 8, 12.
• Sequence length: 128, 256, 512.
• Number of attention layers: 4, 8, 12.

Note that in our experiments, we use the same splits as in related work (Meng et al. 2019;
Meng et al. 2017; Gallina et al. 2019) for all datasets with predefined splits (i.e., all datasets with
train and validation sets, see Table 1). The exceptions are NUS, DUC and JPTimes datasets with
no available predefined validation-test splits. For NUS and DUC, 10-fold cross-validation is used
and the model used for keyword detection on the JPTimes-test dataset was fine-tuned on the
KPTimes-valid dataset. Another thing to consider is that in the related work by Yuan et al. (2020),
Meng et al. (2017), Gallina et al. (2019), Chen et al. (2018) and Ye and Wang (2018), to which
we are comparing, large datasets KPTimes-train and KP20k-train with 530,000 documents and
260,000 documents, respectively, are used for the classification model training and these trained
models are applied on all test sets from the matching domain. On the other hand, we do not
train our classification models on these two large train sets but instead use smaller KPTimes-valid
and KP20k-valid datasets for training, since we argue that, due to language model pretraining,
fine-tuning the model on a relatively small labeled dataset is sufficient for the model to achieve
competitive performance. We do however conduct the language model pretraining on the con-
catenation of all the texts from the computer science domain and the news domain as explained
above, and these two corpora also contain texts from KPTimes-train and KP20k-train datasets.

4.3 Evaluation
To asses the performance of the model, we measure F1@k score, a harmonic mean between
Precision@k and Recall@k.

In a ranking task, we are interested in precision at rank k. This means that only the keywords
ranked equal to or better than k are considered and the rest are disregarded. Precision is the ratio
of the number of correct keywords returned by the system divided by the number of all keywords
returned by the system,h or more formally:

precision= |correct returned keywords@k|
|returned keywords|

Recall@k is the ratio of the number of correct keywords returned by the system and ranked
equal to or better than k divided by the number of correct ground truth keywords:

recall= |correct returned keywords@k|
|correct keywords|

Due to the high variance of a number of ground truth keywords, this type of recall becomes
problematic if k is smaller than the number of ground truth keywords, since it becomes impossible
for the system to achieve a perfect recall. Similar can happen to precision@k, if the number of

gNote that the same set of hyperparameters are also used in the pretraining phase.
hNote that the number of returned keywords does not necessarily equal K for some of the systems used in our experiments,

namely Semi-supervised CopyRNN, CopyRNN, CatSeqD, CorrRNN, GPT-2, GPT-2 with a BiLSTM-CRF classification head
and TNT-KID.
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keywords in a gold standard is lower than k, and the returned number of keywords is fixed at k.
We shall discuss how this affects different keyword detection systems in Section 7.

Finally, we formally define F1@k as a harmonic mean between Precision@k and Recall@k:

F1@k= 2 ∗ P@k ∗ R@k
P@k+ R@k

In order to compare the results of our approach to other state-of-the-art approaches, we use
the same evaluation methodology as Yuan et al. (2020) andMeng et al. (2019), and measure F1@k
with k being either 5 or 10. Note that F1@k is calculated as a harmonic mean of macro-averaged
precision and recall, meaning that precision and recall scores for each document are averaged
and the F1 score is calculated from these averages. Same as in the related work, lowercasing and
stemming are performed on both the gold standard and the predicted keywords (keyphrases)
during the evaluation and the predicted keyword is considered correct only if the stemmed and
lowercased forms of predicted and gold-standard keywords exactly match (i.e., partial matches
are considered incorrect). Only keywords that appear in the text of the documents (present key-
words)i were used as a gold standard and the documents containing no present keywords were
removed, in order to make the results of the conducted experiments comparable with the reported
results from the related work.

As is pointed out in the study by Gallina, Boudin, and Daille (2020), evaluation and compar-
ison of keyphrase extraction algorithms is not a trivial task, since keyphrase extraction models
in different studies are evaluated under different, not directly comparable experimental setups.
To make the comparison fair, they recommend the testing of the models on the same datasets,
using identical gold-standard keyword sets and employing the same preprocessing techniques
and parameter settings. We follow these guidelines strictly, when it comes to the use of identical
datasets and gold-standard keyword sets, but somewhat deviate from them when it comes to the
employment of identical preprocessing techniques and parameter settings employed for different
approaches. Since all unsupervised approaches operate on a set of keyphrase candidates, extracted
from the input document, Gallina et al. (2020) argues that the extraction of these candidates and
other parameters should be identical (e.g., they select the sequences of adjacent nouns with one or
more preceding adjectives of length up to five words in order to extract keyword candidates) for
a fair comparison between algorithms. On the other hand, we are more interested in comparison
between keyword extraction approaches instead of algorithms alone and argue that the distinct
keyword candidate extraction techniques are inseparable from the overall approach and should
arguably be optimized for each distinct algorithm. Therefore, we employ the original preprocess-
ing proposed by the authors for each specific unsupervised approach and apply hyperparameters
recommended by the authors. For the supervised approaches, we again employ preprocessing
and parameter settings recommended by the authors (e.g., we employ word tokenization pro-
posed by the authors of the systems for CopyRNN and CatSeqD, and employ GPT-specific byte
pair tokenizer for GPT-2 and GPT-2 + BiLSTM-CRF approaches).

Instead of reimplementing each specific keyword extraction approach, we report results from
the original studies whenever possible, that is, whenever the original results were reported for the
same datasets, gold-standard keyword sets, and evaluation criteria, in order to avoid any possible
biased decisions (e.g., the choice of hyperparameter settings not clearly defined in the original
paper) and reimplementation mistakes. The results of the reimplementation are only reported for
evaluation on datasets missing in the original studies and for algorithms with the publicly available
code with clear usage instructions. If that is not the case, or if we were not able to obtain the source
code from the original authors, the reimplementation was not attempted, since it is in most cases

iNote that scientific and news articles often list keywords that do not appear in the text of the article. For example, an NLP
paper would often list “Text mining” as a keyword of the paper, even though the actual phrase does not appear in the text of
the paper.
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almost impossible to reimplement an algorithm accurately just by following the description in the
paper (Repar, Martinc, and Pollak 2019).

4.4 Keyword extraction results and comparison to the state of the art
In Table 2, we present the results achieved by TNT-KID and a number of algorithms from the
related work on the datasets presented in Table 1. Note that TfIdf, TextRank, YAKE, RaKUn,
Key2Vec, and EmbedRank algorithms are unsupervised and do not require any training. KEA,
Maui, GPT-2, GPT-2 + BiLSTM-CRF, and TNT-KID were trained on the different validation
set for each of the datasets, and CopyRNN and CatSeqD were trained on the large KP20k-train
dataset for keyword detection on computer science domain, and on the KPTimes-train dataset
for keyword detection on the news domain, since they require a large train set for competitive
performance. For two other CopyRNN variants, CorrRNN and Semi-supervised CopyRNN, we
only report results on science datasets published in Chen et al. (2018) and Ye and Wang (2018)
respectively, since the code for these two systems is not publicly available. The published results
for CorrRNN were obtained by training the model on the KP20k-train dataset. On the other
hand, Semi-supervised CopyRNNwas trained on 40,000 labeled documents from the KP20k-train
dataset and 400,000 documents without labels from the same dataset.

For RaKUn (Škrlj et al. 2019) and YAKE (Campos et al. 2020), we report results for default
hyperparameter settings, since the authors of RaKUn, as well as YAKE’s authors claim that a sin-
gle hyperparameter set can offer sufficient performance across multiple datasets. We used the
author’s official github implementationsj in the experiments. For Key2Vec (Mahata et al. 2018),
we employ the github implementation of the algorithm k to generate results for all datasets, since
the results in the original study are not comparable due to different set of keywords used (i.e., the
keywords are not limited to only the ones that appear in text). Since the published code does not
contain a script for the training of domain-specific embeddings trained on multiword candidate
phrases, GloVe embeddings (Pennington, Socher, and Manning 2014) with the dimension of 50
are used instead. l The EmbedRank results in the original study (Bennani-Smires et al. 2018) are
also not comparable (again, the keywords in the study are not limited to only the ones that appear
in text); therefore, we once again use the official github implementationm of the approach to gen-
erate results for all datasets and employ the recommended Sent2Vec embeddings (Pagliardini et al.
2018) trained on English Wikipedia with the dimension of 700.

For KEA and Maui, we do not conduct additional testing on corpora for which results are not
available in the related work (KPTimes, JPTimes, and DUC corpus) due to bad performance of the
algorithms on all the corpora for which results are available. Finally, for TfIdf and TextRank, we
report results from the related work where available (Yuan et al. 2020) and use the implementation
of the algorithms from the Python Keyphrase Extraction (PKE) libraryn to generate unavailable
results. Same as for RaKUn and YAKE, default hyperparameters are used.

For KEA, Maui, CopyRNN, and CatSeqD, we report results for the computer science domain
published in Yuan et al. (2020) and for the news domain we report results for CopyRNN published
in Gallina et al. (2019). The results that were not reported in the related work are results for
CatSeqD on KPTimes, JPTimes, and DUC, since this model was originally not tested on these
three datasets, and the F1@5 score results for CopyRNN on KPTimes and JPTimes. Again, the
author’s official github implementationso were used for training and testing of both models. The
models were trained and tested on the large KPTimes-train dataset with a help of a script supplied

jhttps://github.com/SkBlaz/rakun and https://github.com/LIAAD/yake.
k https://github.com/MarkSecada/key2vec.
l Note that this might have significant impact on the results.
mhttps://github.com/swisscom/ai-research-keyphrase-extraction.
nhttps://github.com/boudinfl/pke.
ohttps://github.com/memray/OpenNMT-kpg-release.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324921000127
Downloaded from https://www.cambridge.org/core. IP address: 213.250.20.225, on 20 Jul 2021 at 15:51:42, subject to the Cambridge Core terms of use, available at

156 Chapter 4. Keyword Extraction



Natural Language Engineering 19

Table 2. Empirical evaluation of state-of-the-art keyword extractors. Results marked with ∗ were obtained by our imple-
mentation or reimplementation of the algorithm and results without ∗were reported in the related work

KP20k Inspec Krapivin NUS SemEval KPTimes JPTimes DUC Average

Unsupervised algorithms

TfIdf
F1@5 0.072 0.160 0.067 0.112 0.088 0.179∗ 0.266∗ 0.098∗ 0.130


F1@10 0.094 0.244 0.093 0.140 0.147 0.151∗ 0.229∗ 0.120∗ 0.152

TextRank
F1@5 0.181 0.286 0.185 0.230 0.217 0.022∗ 0.012∗ 0.120∗ 0.157


F1@10 0.151 0.339 0.160 0.216 0.226 0.030∗ 0.026∗ 0.181∗ 0.166

YAKE
F1@5 0.141∗ 0.204∗ 0.215∗ 0.159∗ 0.151∗ 0.105∗ 0.109∗ 0.106∗ 0.149


F1@10 0.146∗ 0.223∗ 0.196∗ 0.196∗ 0.212∗ 0.118∗ 0.135∗ 0.132∗ 0.170

RaKUn
F1@5 0.177∗ 0.101∗ 0.127∗ 0.224∗ 0.167∗ 0.168∗ 0.225∗ 0.189∗ 0.172


F1@10 0.160∗ 0.108∗ 0.106∗ 0.193∗ 0.159∗ 0.139∗ 0.185∗ 0.172∗ 0.153

Key2Vec
F1@5 0.080∗ 0.121∗ 0.068∗ 0.109∗ 0.081∗ 0.126∗ 0.158∗ 0.062∗ 0.101


F1@10 0.090∗ 0.181∗ 0.082∗ 0.121∗ 0.126∗ 0.116∗ 0.145∗ 0.078∗ 0.117

EmbedRank
F1@5 0.135∗ 0.345∗ 0.149∗ 0.173∗ 0.189∗ 0.063∗ 0.081∗ 0.219∗ 0.169


F1@10 0.134∗ 0.394∗ 0.158∗ 0.190∗ 0.217∗ 0.057∗ 0.074∗ 0.246∗ 0.184

Supervised algorithms

KEA
F1@5 0.046 0.022 0.018 0.073 0.068 / / / /
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1@10 0.044 0.022 0.017 0.071 0.065 / / / /

Maui
F1@5 0.005 0.035 0.005 0.004 0.011 / / / /


F1@10 0.005 0.046 0.007 0.006 0.014 / / / /

Semi-supervised CopyRNN
F1@5 0.308 0.326 0.296 0.356 0.322 / / / /


F1@10 0.245 0.334 0.240 0.320 0.294 / / / /
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Table 2. Continued

KP20k Inspec Krapivin NUS SemEval KPTimes JPTimes DUC Average

CopyRNN
F1@5 0.317 0.244 0.305 0.376 0.318 0.406∗ 0.256∗ 0.083 0.288


F1@10 0.273 0.289 0.266 0.352 0.318 0.393 0.246 0.105 0.280

CatSeqD
F1@5 0.348 0.276 0.325 0.374 0.327 0.424∗ 0.238∗ 0.063∗ 0.297


F1@10 0.298 0.333 0.285 0.366 0.352 0.424∗ 0.238∗ 0.063∗ 0.295

CorrRNN
F1@5 / / 0.318 0.361 0.320 / / / /


F1@10 / / 0.278 0.335 0.320 / / / /

GPT-2
F1@5 0.275∗ 0.413∗ 0.253∗ 0.318∗ 0.257∗ 0.421∗ 0.331∗ 0.298∗ 0.321


F1@10 0.278∗ 0.469∗ 0.253∗ 0.323∗ 0.278∗ 0.423∗ 0.336∗ 0.312∗ 0.334

GPT-2+ BiLSTM-CRF
F1@5 0.355∗ 0.462∗ 0.287∗ 0.329∗ 0.246∗ 0.478∗ 0.386∗ 0.333∗ 0.360
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1@10 0.360∗ 0.524∗ 0.288∗ 0.336∗ 0.274∗ 0.479∗ 0.389∗ 0.371∗ 0.378

TNT-KID
F1@5 0.336∗ 0.460∗ 0.310∗ 0.350∗ 0.283∗ 0.485∗ 0.359∗ 0.318∗ 0.363


F1@10 0.338∗ 0.536∗ 0.320∗ 0.358∗ 0.337∗ 0.485∗ 0.361∗ 0.373∗ 0.389

by the authors of the papers. Same hyperparameters that were used for KP20k training in the
original papers (Meng et al. 2019; Yuan et al. 2020) were used.

We also report results for the unmodified pretrained GPT-2 (Radford et al. 2019) model with
a standard feedforward token classification head, and a pretrained GPT-2 with a BiLSTM-CRF
token classification head, as proposed in Sahrawat et al. (2020) and described in Section 3.1.p Note
that a pretrained GPT-2 model with a BiLSTM-CRF token classification head in this experiment
does not conduct binary classification, but rather employs the sequence labeling procedure from
Sahrawat et al. (2020) described in Section 2, which assigns words in the text sequence into
three classes. For the unmodified pretrained GPT-2 (Radford et al. 2019) model and a pretrained
GPT-2 with a BiLSTM-CRF token classification head, we apply the same fine-tuning regime as
for TNT-KID, that is we fine-tune the models for up to 10 epochs on each dataset’s validation
sets (see Table 1), which were randomly split into 80% of documents used for training and 20% of
documents used for the test set model selection. The model that showed the best performance on
this set of documents (in terms of F1@10 score) was used for keyword detection on the test set.
We use the default hyperparameters (i.e., sequence length of 512, embedding size of 768, learning

pWe use the implementation of GPT-2 from the Transformers library (https://github.com/huggingface/transformers) and
use the Pytorch-crf library (https://pytorch-crf.readthedocs.io/en/stable/) for the implementation of the BiLSTM-CRF token
classification head.
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rate of 0.00003, 12 attention heads, and a batch size of 8) for both models and the original GPT-2
tokenization regime.

Overall, supervised neural network approaches drastically outperform all other approaches.
Among them, TNT-KID performs the best on four datasets in terms of F1@10. It is outper-
formed by CatSeqD (on NUS and SemEval) or GPT-2+ BiLSTM-CRF (on JPTImes and DUC) on
the other four datasets. CatSeqD also performs competitively on KP20k, Krapivin, and KPTimes
datasets, but is outperformed by a large margin on three other datasets by both GPT-2+ BiLSTM-
CRF and TNT-KID. To be more specific, in terms of F1@10, TNT-KID outperforms the CatSeqD
approach by about 20% points on the Inspec dataset, on the DUC dataset, it outperforms CatSeqD
by about 30% points, and on JPTimes it outperforms CatSeqD by about 12% points.

The results of CopyRNN, Semi-supervised CopyRNN, and CorrRNN are in a large majority
of cases very consistent with CatSeqD. For example, CopyRNN performs slightly better than
CatSeqD on DUC and JPTimes, and slightly worse on the other six datasets. Semi-supervised
CopyRNN performs slightly worse than CopyRNN on the majority of datasets for which the
results are available according to both criteria. On the other hand, CorrRNN slightly outperforms
CopyRNN on two out of the three datasets for which the results are available according to both
criteria, but is nevertheless still outperformed by CatSeqD on both of these datasets.

Results of TNT-KID are comparable to the results of GPT-2+ BiLSTM-CRF according to both
criteria on a large majority of datasets. The difference is the biggest on the SemEval dataset, where
the GPT-2 + BiLSTM-CRF is outperformed by TNT-KID by a margin of about 6% points in
terms of F1@10. On the other hand, a GPT-2 model with a standard token classification head does
perform less competitively on most datasets but still on average outperforms all non-transformer-
based algorithms.

In terms of F1@5, GPT-2 + BiLSTM-CRF outperforms TNT-KID on four datasets (KP20k,
Inspec, JPTimes, and DUC) and CatSeqD on three (Krapivin, NUS, and SemEval). Nevertheless,
in terms of F1@5, TNT-KID offers consistently competitive performance on all datasets and
on average still outperforms both of these algorithms. The performances of GPT-2 + BiLSTM-
CRF and TNT-KID are comparable on most datasets, with TNT-KID outperforming GPT-2
+ BiLSTM-CRF by a relatively small margin on four out of the eight datasets, and GPT-2 +
BiLSTM-CRF outperforming TNT-KID on the other four. On average, the performance of these
two algorithms in terms of F1@5 is almost identical, with TNT-KID outperforming GPT-2 +
BiLSTM-CRF by a very small margin of 0.3% point.

The difference in performance between TNT-KID and the best-performing sequence-to-
sequence generation approach towards keyword extraction, CatSeqD, can be partially explained by
the difference in training regimes and the fact that our systemwas designed tomaximize recall (see
Section 3). Since our system generally detects more keywords than CatSeqD, it tends to achieve
better recall, which offers a better performance when up to 10 keywords need to be predicted. On
the other hand, a more conservative system that generally predicts less keywords tends to achieve
a better precision, which positively affects the F1 score in a setting where only up to five keywords
need to be predicted. This phenomenon will be analyzed in more detail in Section 5, where we
also discuss the very low results achieved by CatSeqD on the DUC dataset.

When it comes to two other supervised approaches, KEA and Maui, they perform badly on all
datasets they have been tested on and are outperformed by a large margin even by all unsupervised
approaches. When we compare just unsupervised approaches, EmbedRank and TextRank achieve
much better results than the other approaches according to both measures on the Inspec dataset.
This is the dataset with the on average shortest documents. On the other hand, both of these
algorithms perform uncompetitively in comparison to other unsupervised approaches on two
datasets with much longer documents, KPTimes and JPTimes, where RaKUn and TfIdf are the
best unsupervised approaches, respectively. Interestingly, EmbedRank and TextRank also achieve
the highest F1@10 score out of all unsupervised keyword detectors on the DUC dataset, which
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TNT-KID (1.5)
GPT-2+BiLSTM-CRF (2.4)
GPT-2 (3.9)
CatSeqD (4.1)
CopyRNN (5.0)
TextRank (7.2)
EmbedRank (7.6)
YAKE (7.8)
RaKUn (7.9)
TfIdf (8.5)
Key2Vec (10.1)

CD = 5.34

11 10 9 8 7 6 5 4 3 2 1

MEASURE = F1@10

Figure 3. Critical distance diagram showing the results of the Nemenyi test. Two keyword extraction approaches are statis-
tically significantly different in terms of F1@10 if a difference between their ranks (shown in brackets next to the keyword
extraction approach name) is larger than the critical distance (CD). If two approaches are connected with a horizontal line,
the test did not detect statistically significant difference between the approaches. For the Nemenyi test α = 0.05 was used.

also contains long documents. Perhaps, this could be explained by the average number of present
keywords, which is much higher for DUC-test (7.79) than for KPTimes-test (2.4) and JPTimes-test
(3.86) datasets.

Overall (see row average), TNT-KID offers the most robust performance on the test datasets
and is closely followed by GPT-2 + BiLSTM. CopyRNN and CatSeqD are very close to each
other according to both criteria. Out of unsupervised approaches, on average all of them offer
surprisingly similar performance. Even though graph-based and statistical approaches toward
unsupervised keyword extraction are more popular than embedding-based approaches, the best
overall performance in terms of F1@10 is offered by the embeddings-based approach EmbedRank.
On the other hand, the other embedding-based method Key2Vec performs the worst out of all
unsupervised approaches according to both criteria. According to the F1@10 score, the second
ranked YAKE on average works slightly better than the third ranked TextRank and also in general
offers more steady performance, since it gives the most consistent results on a variety of different
datasets. Similar could be said for RaKUn, the best ranked unsupervised algorithm according to
the F1@5 score.

Statistical comparison of classifiers over multiple datasets (according to the achieved F1@10
score) is conducted according to the procedure proposed in Demšar (2006), that is, with the
Friedman test (Friedman 1937), and we were able to reject the null hypothesis, which states
that there are no statistically significant differences between the tested keyword extraction
approaches. This allowed us to proceed with the post hoc Nemenyi test (Nemenyi 1963) to
find out which keyword extractors achieve statistically significantly different results. Note that
only keyword extraction approaches employed on all the datasets are compared. The results are
shown in Figure 3. We can see that the Nemenyi test has detected a significant difference in
performance between TNT-KID and unsupervised keyword extractors (Key2Vec, TfIdf, RaKUn,
Yake, EmbedRank, and TextRank), but was not strong enough to detect statistically significant
differences between the five best supervised approaches.

Examples of the TNT-KID keyword detection are presented in the Appendix.
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Figure 4. (a) Relation between the average number of present keywords per document for each test dataset and the differ-
ence in performance ( F1@10TNT-KID − F1@10CatSeqD). (b) Relation between the percentage of keywords that appear in the
train set for each test dataset and the difference in performance ( F1@10TNT-KID − F1@10CatSeqD).

5. Error analysis
In this section, we first analyze the reasons why transformer-based TNT-KID is capable of outper-
forming other state-of-the-art neural keyword detectors, which employ a generative model, by a
large margin on some of the datasets. Second, we gather some insights into the inner workings of
the TNT-KID by a visual analysis of the attention mechanism.

5.1 Comparison between TNT-KID and CatSeqD
As was observed in Section 4.4, transformer-based TNT-KID and GPT-2 + BiLSTM-CRF out-
perform generative models CatSeqD and CopyRNN by a large margin on the Inspec, JPTimes,
and DUC datasets. Here, we try to explain this discrepancy by focusing on the difference in per-
formance between the best transformer-based model, TNT-KID, and the best generative model,
CatSeqD. The first hypothesis is connected with the statistical properties of the datasets used for
training and testing, or more specifically, with the average number of keywords per document
for each dataset. Note that CatSeqD is trained on the KP20k-train, when employed on the com-
puter science domain, and on the KPTimes-train dataset, when employed on news. Table 1 shows
that both of these datasets do not contain many present keywords per document (KP20k-train
3.28 and KPTimes-train 2.38), therefore, training the model on these datasets conditions it to be
conservative in its predictions and to assign less keywords to each document than a more liberal
TNT-KID. This gives the TNT-KID a competitive advantage on the datasets with more present
keywords per document.

Figure 4(a) shows a correlation between the average number of present keywords per document
for each dataset and the difference in performance in terms of F1@10, measured as a difference
between an F1@10 score achieved by TNT-KID and an F1@10 score achieved by CatSeqD. The
difference in performance is the biggest for the DUC dataset (about 30% points) that on average
has the most keywords per document, 7.79, and second biggest for Inspec, in which an average
document has 7.68 present keywords.

The above hypothesis explains why CatSeqD offers competitive performance on the KP20k-
test, Krapivin-test, NUS-test, and KPTimes-test datasets with similar number of keywords per
document than its two train sets, but does not explain the competitive performance of CatSeqD
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on the SemEval-test set that has 6.71 present keywords per document. Even more importantly,
it does not explain the large difference in performance between TNT-KID and CatSeqD on the
JPTimes-test. This suggests that there is another factor influencing the performance of some
keyword detectors.

The second hypothesis suggests that the difference in performance could be explained by the
difference in training regimes and the different tactics used for keyword detection by the two
systems. While TNT-KID is fine-tuned on each of the datasets, no fine-tuning is conducted for
CatSeqD that needs to rely only on the information obtained during training on the large KP20k-
train and KPTimes-train datasets. This information seems sufficient when CatSeqD is tested on
datasets that contain similar keywords than the train sets. On the other hand, this training regime
does not work for datasets that have less overlapping keywords.

Figure 4(b) supports this hypothesis by showing strong correlation between the difference in
performance in terms of F1@10 and the percentage of keywords that appear both in the CatSeqD
train sets (KP20k-train and KPTimes-train for computer science and news domain, respectively)
and the test datasets. DUC and Inspec datasets have the smallest overlap, with only 17% of key-
words in DUC appearing in the KPTimes-train and with 48% of keywords in Inspec appearing
in the KP20k-train set. On the other hand, Krapivin, NUS, KP20k and KPTimes, the test sets on
which CatSeqD performs more competitively, are the datasets with the biggest overlap, reaching
up to 95% for KPTimes-test.

Figure 4(b) also explains a relatively bad performance of CatSeqD on the JPTimes corpus (see
Table 2) despite the smaller average number of keywords per document. Interestingly, despite the
fact that no dataset-specific fine-tuning for TNT-KID is conducted on the JPTimes corpus (since
there is no validation set available, fine-tuning is conducted on the KPTimes-valid), TNT-KID
manages to outperform CatSeqD on this dataset by about 13% points. This suggests that a smaller
keyword overlap between train and test sets has less of an influence on the TNT-KID and could
be explained with the fact, that CatSeqD considers keyword extraction as a generation task and
tries to generate a correct keyword sequence, while TNT-KID only needs to tag an already existing
word sequence, which is an easier problem that perhaps requires less specific information gained
during training.

According to the Figure 4(b), the SemEval-test set is again somewhat of an outlier. Despite
the keyword overlap that is quite similar to the one in the JPTimes-test set and despite having a
relatively large set of present keywords per document, CatSeqD still performs competitively on
this corpus. This points to a hypothesis that there might be another unidentified factor, either
negatively influencing the performance of TNT-KID and positively influencing the performance
of CatSeqD, or the other way around.

5.2 CatSeqD fine-tuning
According to the results in Section 4.4, supervised approaches to the keyword extraction task tend
to outperform unsupervised approaches, most likely due to their ability to adapt to the specifics of
the syntax, semantics and keyword labeling regime of the specific corpus. On the other hand, the
main disadvantage of most supervised approaches is that they require a large dataset with labeled
keywords for training, which are scarce at least in some languages. In this paper, we argue that the
main advantage of the proposed TNT-KID approach is that due to its language model pretraining,
the model only requires a small labeled dataset in order to fine-tune the language model for the
keyword classification task. This fine-tuning allows the model to adapt to each dataset and leads
to a better performance of TNT-KID in comparison to CatSeqD, for which no fine-tuning was
conducted.

Even though no fine-tuning was conducted in the original CatSeqD study (Yuan et al. 2020),
one might hypothesize that the performance of CatSeqD could be further improved if the model
would be fine-tuned on each dataset, same as TNT-KID. To test this hypothesis, we take the
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Figure 5. Performance of the KP20k trained CatSeqDmodel fine-tuned on SemEval, Krapivin and Inspec validation sets and
tested on the corresponding test sets, in correlation with the length of the fine-tuning in terms of number of train steps. Zero
train steps means that the model was not fine-tuned.

CatSeqD model trained on KP20k, conduct additional training on the SemEval, Krapivin and
Inspec validation sets (i.e., all datasets besides KP20k and KPTimes with a validation set), and
test these fine-tuned models on the corresponding test sets. Fine-tuning was conducted for up to
100,000 train stepsq and the results are shown in Figure 5.

Only on one of the three datasets, the Inspec-test set, the performance can be improved by
additional fine-tuning. Though the improvement on the Inspec-test set of about 10% points (from
33.5% to 44%) in terms of F1@10 is quite substantial, the model still performs worse than TNT-
KID, which achieves F1@10 of 53.6%. The improvement is most likely connected with the fact that
the Inspec-test set contains more keywords that do not appear in the KP20k than SemEval and
Krapivin-test sets (see Figure 4(b)). Inspec-test set also contains more keywords per document
than the other two test sets (7.68 present keywords on average, in comparison to 6.71 present
keywords per document in the SemEval-test set and 3.2 in the Krapivin-test set). Since the KP20k
train set on average contains only 3.29 present keywords per document, the fine-tuning on the
Inspec dataset most likely also adapts the classifier to a more liberal keyword labeling regime.

On the other hand, fine-tuning does not improve the performance on the Krapivin and
SemEval datasets. While there is no difference between the fine-tuned and original model on the
Krapivin-test set, fine-tuning negatively affects the performance of the model on the SemEval
dataset. The F1@10 score drops from about 35% to about 30% after 20,000 train steps. Further
fine-tuning does not have any effect on the performance. The hypothesis is that this drop in
performance is somewhat correlated with the size of the SemEval validation set, which is much
smaller (it contains only 144 documents) than Inspec and Krapivin validation sets (containing
1500 and 1844 documents, respectively), and this causes the model to overfit. Further tests would,
however, need to be conducted to confirm or deny this hypothesis.

Overall, 20,000 train steps seem to be enough for model adaptation in each case, since the
results show that additional fine-tuning does not have any influence on the performance.

5.3 Dissecting the attention space
One of the advantages of the transformer architecture is its employment of the attention mech-
anism, that can be analyzed and visualized, offering valuable insights into inner workings of the
system and enabling interpretation of how the neural net tackles the keyword identification task.

qSame hyperparameters that were used for KP20k training in the original paper (Yuan et al. 2020) were used for fine-tuning.
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Figure 6. Average attention for each token position in the SemEval corpus across eight attention heads. Distinct peaks can
be observed for tokens appearing at the beginning of the document in all eight attention heads.

The TNT-KID attention mechanism consists of multiple attention heads (Vaswani et al. 2017)—
square matrices linking pairs of tokens within a given text—and we explored how this (activated)
weight space can be further inspected via visualization and used for interpretation.

While square attention matrices show importance of the correlations between all tokens in the
document for a keyword identification task, we focused only on the diagonals of the matrices,
which indicate how much attention the model pays to the “correlation” a specific word has with
itself, that is, how important is a specific word for the classification of a specific token as either
being a keyword or not. We extracted these diagonal attention scores for eight attention heads
of the last out of eight encoders, for each of the documents in the SemEval-test and averaged the
scores across an entire dataset by summing together scores belonging to the same position in each
head and dividing this sum with the number of documents. Figure 6 shows the average attention
score of each of the eight attention heads for each token position. While there are differences
between heads, a distinct peak at the beginning of the attention graph can be observed for all
heads, which means that heads generally pay more attention to the tokens at the beginning of the
document. This suggests that the system has learned that tokens appearing at the beginning of
the document are more likely to be keywords (Figure 7 shows the actual keyword count for each
position in the SemEval corpus) and once again shows the importance of positional information
for the task of keyword identification.

Another insight into how the system works can be gained by analyzing how much attention
was paid to each individual token in each document. Figure 8 displays attentions for individual
tokens, as well as marks them based on predictions for an example document from the SemEval-
test. Green tokens were correctly identified as keywords, red tokens were incorrectly identified
as keywords, and less transparency (more color) indicates that a specific token received more
attention from the classifier.

Figure 8 shows that at least for this specific document, many tokens that were either correctly
or incorrectly classified as keywords did receive more attention than an average token, especially
if they appeared at the beginning of the document. There are also some tokens that received a lot
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Figure 7. Number of keywords for each token position in the SemEval corpus. Distinct peaks can be observed for positions
at the beginning of the document.

of attention and were not classified as keywords, for example, eos (end of sentence signs) and also
words like on, is, has, this, etc. Another interesting thing to notice is the fact that the amount of
attention associated with individual tokens that appear more than once in the document varies
and is somewhat dependent on the position of the token.r

6. Ablation study
In this section, we explore the influence of several technique choices and building blocks of the
keyword extraction workflow on the overall performance of the model:

• Languagemodel pretraining: assessing whether pretraining positively affects the performance
of the keyword extraction and if the improvements are dataset or domain specific.

• Choice of pretraining regime: comparison of two pretraining objectives, autoregressive
language modeling and masked language modeling are described in Section 3.2.

• Choice of input tokenization scheme: comparison of two tokenization schemes, word
tokenization and Sentencepiece (Kudo and Richardson 2018) byte pair encoding.

• Part-of-speech(POS) tags: assessment whether adding POS tags as an additional input
improves the performance of the model.

• Transformer architecture adaptations: as was explained in Section 3.1, we propose a
re-parametrization of the attention mechanism and in the fine-tuning stage, we add an addi-
tional BiLSTM encoder to the output of the transformer encoder. We also experiment with the
addition of the BiLSTM+CRF token classification head on top of the model, as was proposed in

rNote that Figure 8 is just a motivating example. Amore thorough statistical analysis of muchmore than just one document
would be required in order to draw proper conclusions about the behavior of the attention mechanism during keyword
identification.
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Figure 8. Attention-colored tokens. Underlined phrases were identified as keywords by the system and bold font indicates
that the identification was correct (i.e., the keyphrase appears in the gold standard). Less color transparency indicates
stronger attention for the token and the color itself designates that the token was correctly identified as keyword (green),
incorrectly identified as keyword (red) or was not identified as keyword by the system (blue).

Sahrawat et al. (2020) and described in Section 3.1. Here we assess the influence of these additions
on the performance of the model.

Table 3 presents results on all datasets for several versions of the model, a model with no lan-
guage model pretraining (noLM), a model pretrained with an autoregressive language model
objective (LM), a model pretrained with a masked language model objective (maskedLM), a
model pretrained with an autoregressive language model objective and leveraging byte pair
encoding tokenization scheme (LM+BPE), a model pretrained with an autoregressive language
model objective and leveraging additional POS tag sequence input (LM+POS), a model pre-
trained with an autoregressive language model objective and a BiLSTM encoder (LM+BiLSTM),
a model pretrained with an autoregressive language model objective leveraging byte pair encod-
ing tokenization scheme and a BiLSTM encoder, but without the proposed attention mechanism
re-parametrization (LM+BPE+BiLSTM+noAR), a model pretrained with an autoregressive lan-
guage model objective leveraging byte pair encoding tokenization scheme and a BiLSTM encoder
(LM+BPE+BiLSTM), and a model pretrained with an autoregressive language model objective
leveraging byte pair encoding tokenization scheme and a BiLSTM+CRF token classification head
(LM+BPE+BiLSTM+CRF).

On average (see last two rows in Table 3), by far the biggest boost in performance is gained
by employing the autoregressive language model pretraining (column LM), improving the F1@5
score by about 11% points and the F1@10 score by 12% points in comparison to no language
model pretraining (column noLM). As expected, the improvements are substantial on two small-
est corpora, which by themselves do not contain enough text for the model to obtain sufficient
syntactic and semantic knowledge. Large gains are achieved on the NUS test set, where almost an
70% improvement in terms of the F1@10 score can be observed (from 20.98% to 35.59%), and
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Table 3. Results of the ablation study. Column LM+BPE+BiLSTM represents the results for the model that was used for
comparison with other methods from the related work in Section 4.4

LM+BPE+ LM+BPE+ LM+BPE+
noLM LM maskedLM LM+BPE LM+POS LM+BiLSTM BiLSTM+noAR BiLSTM BiLSTM+CRF

KP20k
F1@5 0.2490 0.2914 0.2392 0.2919 0.2923 0.3203 0.3301 0.3355 0.3398


F1@10 0.2226 0.2876 0.2238 0.2921 0.2866 0.3174 0.3338 0.3378 0.3443

Inspec
F1@5 0.2833 0.4105 0.2850 0.4122 0.4171 0.4427 0.4389 0.4595 0.4514


F1@10 0.3528 0.4959 0.3610 0.5006 0.5028 0.5149 0.5091 0.5356 0.5169

Krapivin
F1@5 0.1922 0.2559 0.1757 0.2582 0.2611 0.2918 0.3058 0.3097 0.2874


F1@10 0.1837 0.2546 0.1859 0.2638 0.2583 0.3006 0.3145 0.3202 0.2882

NUS
F1@5 0.2034 0.3366 0.2194 0.3443 0.3135 0.3260 0.3319 0.3498 0.3530


F1@10 0.2098 0.3559 0.2479 0.3640 0.3481 0.3567 0.3691 0.3579 0.3602

SemEval
F1@5 0.1565 0.3018 0.1643 0.2954 0.2812 0.2957 0.2812 0.2825 0.2580


F1@10 0.2032 0.3374 0.2248 0.3251 0.3399 0.3351 0.3057 0.3365 0.3145

KPTimes
F1@5 0.2744 0.4433 0.2984 0.4302 0.4389 0.4830 0.4691 0.4852 0.4407
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1@10 0.2244 0.4409 0.2555 0.4281 0.4348 0.4810 0.4692 0.4852 0.4416

JPTimes
F1@5 0.2321 0.3393 0.2405 0.3315 0.3547 0.3880 0.3507 0.3590 0.3088


F1@10 0.2272 0.3430 0.2291 0.3349 0.3587 0.3855 0.3547 0.3613 0.3102

DUC
F1@5 0.2081 0.2751 0.1341 0.2831 0.2912 0.3135 0.2965 0.3179 0.2986


F1@10 0.2431 0.3391 0.1751 0.3323 0.3421 0.3706 0.3540 0.3730 0.3484

Average
F1@5 0.2249 0.3317 0.2196 0.3309 0.3312 0.3576 0.3505 0.3624 0.3422


F1@10 0.2334 0.3568 0.2379 0.3551 0.3589 0.3827 0.3763 0.3884 0.3655

on the SemEval-test set, where the improvement of 93% in terms of F1@5 can be observed. Not
surprisingly, for the KP20k dataset, which has a relatively large validation set used for fine-tuning,
we can observe a smaller improvement of about 29% in terms of F1@10. On the other hand, we
observe the largest improvement of roughly 96% in terms of F1@10 on the KPTimes-test set,
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even though the KPTimes validation set used for fine-tuning is quite large. This means that in
the language modeling phase the model still manages to obtain knowledge that is not reachable
in the fine-tuning phase and can perhaps be partially explained by the fact that all documents are
truncated into 512 tokens long sequences in the fine-tuning phase. The KPTimes-valid dataset,
used both for language modeling and fine-tuning, has on average of 784.65 tokens per document,
which means that more than a third of the document’s text is discarded during the fine-tuning
phase. This is not the case in the language modeling phase, where all of the text is leveraged.

On the other hand, using the masked language modeling pretraining (column maskedLM)
objective on average yields a negligible improvement of about 0.5% points in terms of F1@10
score and worsening of about 0.5% points in terms of F1@10 score in comparison to no language
model pretraining. It does, however, improve the performance on the two smallest datasets, NUS
(by about 4% points in terms of F1@10) and SemEval (by about 2% points in terms of F1@10).
More surprisingly, improvement is also substantial on the KPTimes dataset (about 3% points).
The large discrepancy in performance between the two different language model objectives can
be partially explained by the sizes of the pretraining corpora. By using autoregressive language
modeling, the model learns to predict the next word probability distribution for each sequence
in the corpus. By using the masked language modeling objective, 15% of the words in the corpus
are randomly masked and used as targets for which the word probability distributions need to be
predicted from the surrounding context. Even though each training epoch a different set of words
is randomly masked, it is quite possible that some words are never masked due to small sizes of
the corpora and since we only train the model for up to 10 epochs.

Results show that adding POS tags as an additional input (column LM+POS) leads to only
marginal performance improvements. Some previous studies suggest that transformer-based
models that employ transfer learning already capture sufficient amount of syntactic and other
information about the composition of the text (Jawahar, Sagot, and Seddah 2019). Our results
therefore support the hypothesis that additional POS tag inputs are somewhat unnecessary in the
transfer learning setting but additional experiments would be needed to determine whether this is
task/language specific or not.

Another adaptation that does not lead to any significant improvements when compared to the
column LM is the usage of the byte pair encoding scheme (column LM+BPE). The initial hypoth-
esis that motivated the usage of byte pair encoding was that it might help the model’s performance
by introducing some knowledge about the word composition and by enabling the model to better
understand that different forms of the word can represent the same meaning. However, the usage
of byte pair encoding might on the other hand also negatively affect the performance, since split-
ting up words inside a specific keyphrase would make these keyphrases longer in terms of number
of words and detecting a longer continuous word sequence as a keyword might represent a harder
problem for the model than detecting a shorter one. Nevertheless, usage of byte pair encoding
does have an additional positive effect of drastically reducing the vocabulary of the model (e.g.,
for news articles, this means a reduction from almost 600,000 tokens to about 32,000) and with it
also the number of parameters in the model (from about 630 million to about 80 million).

Adding an additional BiLSTM encoder in the fine-tuning stage of a pretrained model (column
LM+BiLSTM) leads to consistent improvements on almost all datasets and to an average improve-
ment of about 3% points in terms of both F1@5 and F1@10 scores. This confirms the findings from
the related work that recurrent neural networks work well for the keyword detection task and also
explains why a majority of state-of-the-art keyword detection systems leverage recurrent layers.

We also present a model in which we employed autoregressive language model pretraining,
used byte pair encoding scheme and added a BiLSTM encoder (column LM+BPE+BiLSTM)
that was used for comparison with other methods from the related work in Section 4.4, and
the LM+BPE+BiLSTM+noAR model, which employs the same pretraining and tokenization
regimes, and also has an added BiLSTM encoder, but was nevertheless not adapted for the keyword
extraction task by the re-parametrization of the attention mechanism described in Section 3.1.
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LM+BPE+BiLSTM outperforms the non-adapted model by a small, yet consistent margin on
all but one dataset (on NUS LM+BPE+BiLSTM+noAR performs better in terms of F1@10)
according to both criteria.

Finally, we also evaluate the tactic proposed by Sahrawat et al. (2020), where a BiLSTM+CRF
token classification head is added on top of the transformer encoder, which employs
the byte pair encoding scheme and autoregressive language model pretraining (column
LM+BPE+BiLSTM+CRF). The BiLSTM+CRF performs quite well, outperforming all other
configurations on two (i.e., on KP20k according to both measures and on NUS accroding to
F1@5) datasets. On average, it, however, still performs by more than 2% points worse than
LM+BPE+BiLSTM according to both measures. These results suggests that an additional CRF
layer is not worth adding to the model when a binary sequence labeling regime is employed, but
may nevertheless be useful when classification into more classes needs to be conducted, such as in
the case of the labeling regime proposed by Sahrawat et al. (2020) described in Section 2.

7. Conclusion and future work
In this research we have presented TNT-KID, a novel transformer-based neural tagger for keyword
identification that leverages a transfer learning approach to enable robust keyword identification
on a number of datasets. The presented results show that the proposed model offers a robust per-
formance across a variety of datasets with manually labeled keywords from two different domains.
By exploring the differences in performance between our model and the best-performing genera-
tive model from the related work, CatSeqD by Yuan et al. (2020), we manage to pinpoint strengths
and weaknesses of each keyword detection tactic (i.e., keyword labeling and keyword generation)
and therefore enable a potential user to choose the approach most suitable for the task at hand. By
visualizing the attentionmechanism of themodel, we try to interpret classification decisions of the
neural network and show that efficient modeling of positional information is essential in the key-
word detection task. Finally, we propose an ablation study which shows how specific components
of the keyword extraction workflow influence the overall performance of the model.

The biggest advantage of supervised approaches to keyword extraction task is their ability to
adapt to the specifics of the syntax, semantics, content, genre, and keyword tagging regime of the
specific corpus. Our results show that this offers a significant performance boost and state-of-the-
art supervised approaches outperform state-of-the-art unsupervised approaches on the majority
of datasets. On the other hand, the ability of the supervised models to adapt might become lim-
ited in cases when the train dataset is not sufficiently similar to the dataset on which keyword
detection needs to be performed. This can clearly be seen on the DUC dataset, in which only
about 17% of keywords also appear in the KPTimes train set, used for training the generative
CopyRNN and CatSeqD models. Here, these two state-of-the-art models perform the worst of all
the models tested and as is shown in Section 5.2, this keywordinees generalization problem cannot
be overcome by simply fine-tuning these state-of-the-art systems on each specific dataset.

On the other hand, TNT-KID bypasses the generalization problem by allowing fine-tuning on
very small datasets. Nevertheless, the results on the JPTimes corpus suggest that it also generalizes
better than CopyRNN and CatSeqD. Even though all three algorithms are trained on the KPTimes
dataset (since JPTimes corpus does not have a validation set),s TNT-KID manages to outperform
the other two by about 10% points according to the F1@10 and F1@5 criteria despite the
discrepancy between train and test set keywords. As already mentioned in Section 5.1, this can be
partially explained by the difference in approaches used by the models and the fact that keyword
generation is a much harder task than keyword tagging. For keyword generation task to be suc-
cessful, seeing a sequence that needs to be generated in advance, during training, is perhaps more
important, than for a much simpler task of keyword tagging, where a model only needs to decide if

sNote that TNT-KID is trained on the validation set, while CopyRNN and CatSeqD are trained on the much larger train set.
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a word is a keyword or not. Even though the keyword generators try to ease the task by employing
a copying mechanism (Gu et al. 2016), the experiments suggest that generalizing keywordinees to
unseen word sequences still represent a bigger challenge for these models than for TNT-KID.

While the conducted experiments suggest that TNT-KID works better than other neural net-
works in a setting where previously unseen keywords (i.e., keywords not present in the training
set) need to be detected, further experiments need to be devised to evaluate the competitiveness
of TNT-KID in a cross-domain setting when compared to unsupervised approaches. Therefore,
in order to determine if the model’s internal representation of keywordiness is general enough to
be transferable across different domains, in the future we also plan to conduct some cross-domain
experiments.

Another aspect worth mentioning is the evaluation regime and how it affects the comparison
between the models. By fine-tuning the model on each dataset, the TNT-KID model learns the
optimal number of keywords to predict for each specific dataset. This number is in general slightly
above the average number of present keywords in the dataset, since the loss function was adapted
to maximize recall (see Section 3). On the other hand, CatSeqD and CopyRNN are only trained
on the KP20k-train and KPTimes-train datasets that have less present keywords than a majority
of test datasets. This means our system on average predicts more keywords per document than
these two systems, which negatively affects the precision of the proposed system in comparison
to CatSeqD and CopyRNN, especially at smaller k values. On the other hand, predicting less key-
words hurts recall, especially on datasets where documents have on average more keywords. As
already mentioned in Section 6, this explains why our model compares better to other systems in
terms of F1@10 than in terms of F1@5 and also raises a question how biased these measures of
performance actually are. Therefore, in the future, we plan to use other performance measures to
compare our model to others.

Overall, the differences in training and prediction regimes between TNT-KID and other neural
models imply that the choice of a network is somewhat dependent on the use-case. If a large
training dataset of an appropriate genre with manually labeled keywords is available and if the
system does not need to predict many keywords, then CatSeqD might be the best choice, even
though TNT-KID shows competitive performance on a large majority of datasets. On the other
hand, if only a relatively small train set is available and it is preferable to predict a larger number
of keywords, then the results of this study suggest that TNT-KID is most likely a better choice.

The conducted study also indicates that the adaptation of the transformer architecture and the
training regime for the task at hand can lead to improvements in keyword detection. Both TNT-
KID and a pretrained GPT-2 model with a BiLSTM + CRF token classification head manage
to outperform the unmodified GPT-2 with a default token classification head by a comfortable
margin. Even more, TNT-KID manages to outperform both, the pretrained GPT-2 and the GPT-
2 with BiLSTM + CRF, even though it employs only 8 attention layers, 8 attention heads and
an embedding size of 512 instead of the standard 12 attention layers, 12 attention heads and an
embeddings size of 768, which the pretrained GPT-2 employs. The model on the other hand does
employ an additional BiLSTM encoder during the classification phase, which makes it slower than
the unmodified GPT-2 but still faster than the GPT-2 with the BiLSTM+ CRF token classification
head that employs a computationally demanding CRF layer.

The ablation study clearly shows that the employment of transfer learning is by far the biggest
contributor to the overall performance of the system. Surprisingly, there is a very noticeable differ-
ence between performances of two distinct pretraining regimes, autoregressive languagemodeling
and masked language modeling in the proposed setting with limited textual resources. Perhaps a
masked language modeling objective regime could be improved by a more sophisticated masking
strategy that would not just randomly mask 15% of the words but would employ a more fine-
grained entity-level masking and phrase-level masking, similar as in Zhang et al. (2019). This and
other pretraining learning objectives will be explored in the future work.
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In the future, we also plan to expand the set of experiments in order to also cover other
languages and domains. Since TNT-KID does not require a lot of manually labeled data for
fine-tuning and only a relatively small domain-specific corpus for pretraining, the system is
already fairly transferable to other languages and domains, even to low resource ones. It is
especially useful for languages, for which pretrained transformers such as GPT-2, which also
perform quite well on the keyword extraction task, do not yet exist. Deploying the system to a
morphologically richer language than English and conducting an ablation study in that setting
would also allow us to see, whether byte pair encoding and the additional POS tag sequence input
would lead to bigger performance boosts on languages other than English.

Finally, another line of research we plan to investigate is a cross-lingual keyword detection.
The idea is to pretrain the model on a multilingual corpus, fine-tune it on one language and then
conduct zero-shot cross-lingual testing of the model on the second language. Achieving a satis-
factory performance in this setting would make the model transferable even to languages with no
manually labeled resources.
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Appendix: Examples of keyword identification
Document 1:

Quantum market games. We propose a quantum-like description of markets and economics.
The approach has roots in the recently developed quantum game theory”

Predicted keywords: quantum market games, economics, quantum-like description

True keywords: economics, quantum market games, quantum game theory

Document 2:

Revenue Analysis of a Family of Ranking Rules for Keyword Auctions. Keyword auctions lie
at the core of the business models of today’s leading search engines. Advertisers bid for place-
ment alongside search results, and are charged for clicks on their ads. Advertisers are typically
ranked according to a score that takes into account their bids and potential click-through rates.
We consider a family of ranking rules that contains those typically used to model Yahoo! and
Google’s auction designs as special cases. We find that in general neither of these is necessarily
revenue-optimal in equilibrium, and that the choice of ranking rule can be guided by considering
the correlation between bidders’ values and click-through rates. We propose a simple approach to
determine a revenue-optimal ranking rule within our family, taking into account effects on adver-
tiser satisfaction and user experience. We illustrate the approach using Monte Carlo simulations
based on distributions fitted to Yahoo! bid and click-through rate data for a high-volume keyword.

Predicted keywords: auction, keyword auctions, keyword, ranking rules, ranking, click
through rates, click-through rates, revenue, advertiser, revenue analysis

True keywords: revenue optimal ranking, ranking rule, revenue, advertisement, keyword
auction, search engine

Document 3:

Profile-driven instruction-level parallel scheduling with application to super blocks. Code
scheduling to exploit instruction-level parallelism (ILP) is a critical problem in compiler opti-
mization research in light of the increased use of long-instruction-word machines. Unfortunately,
optimum scheduling is computationally intractable, and one must resort to carefully crafted
heuristics in practice. If the scope of application of a scheduling heuristic is limited to basic blocks,
considerable performance loss may be incurred at block boundaries. To overcome this obstacle,
basic blocks can be coalesced across branches to form larger regions such as super blocks. In the
literature, these regions are typically scheduled using algorithms that are either oblivious to pro-
file information (under the assumption that the process of forming the region has fully utilized
the profile information), or use the profile information as an addendum to classical schedul-
ing techniques. We believe that even for the simple case of linear code regions such as super
blocks, additional performance improvement can be gained by utilizing the profile information
in scheduling as well. We propose a general paradigm for converting any profile-insensitive list
scheduler to a profile-sensitive scheduler. Our technique is developed via a theoretical analysis of
a simplified abstract model of the general problem of profile-driven scheduling over any acyclic
code region, yielding a scoring measure for ranking branch instructions.

Predicted keywords: scheduling, profile-driven scheduling, instruction-level parallelism,
profile-sensitive scheduler, instruction word machines

True keywords: long-instruction-wordmachines, scheduling heuristic, compiler optimization,
optimum scheduling, abstractmodel, ranking branch instructions, profile-driven instruction-level
parallel scheduling, profile-sensitive scheduler, linear code regions, code scheduling
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Document 4:

Forty Years After War, Israel Weighs Remaining Risks. JERUSALEM. It was 1 p.m. on
Saturday, 6 October 1973, the day of Yom Kippur, the holiest in the Jewish calendar, and Israel’s
military intelligence chief, Maj. Gen. Eli Zeira, had called in the country’s top military journal-
ists for an urgent briefing. He told us that war would break out at sundown, about 6 p.m., said
Nachman Shai, who was then the military affairs correspondent for Israel’s public television chan-
nel and is now a Labor member of Parliament. Forty minutes later he was handed a note and said,
Gentlemen, the war broke out, and he left the room. Moments before that note arrived, accord-
ing to someone else who was at that meeting, General Zeira had been carefully peeling almonds
in a bowl of ice water. The coordinated attack by Egypt and Syria, which were bent on regaining
strategic territories and pride lost to Israel in the 1967 war, surprised and traumatized Israel. For
months, its leaders misread the signals and wrongly assumed that Israel’s enemies were not ready
to attack. Even in those final hours, when the signs were unmistakable that a conflict was immi-
nent, Israel was misled by false intelligence about when it would start. As the country’s military
hurriedly called up its reserves and struggled for days to contain, then repel, the joint assault, a
sense of doom spread through the country. Many feared a catastrophe. Forty years later, Israel is
again marking Yom Kippur, which falls on Saturday, the anniversary of the 1973 war according
to the Hebrew calendar. This year the holy day comes in the shadow of new regional tensions and
a decision by the United States of America to opt, at least for now, for a diplomatic agreement
rather than a military strike against Syria in response to a deadly chemical weapons attack in the
Damascus suburbs on August 21. Israeli newspapers and television and radio programs have been
filled with recollections of the 1973 war, even as the country’s leaders have insisted that the prob-
ability of any new Israeli entanglement remains low and that the population should carry on as
normal. For some people here, though, the echoes of the past have stirred latent questions about
the reliability of intelligence assessments and the risks of another surprise attack. Any Israeli with
a 40-year perspective will have doubts, said Mr. Shai, who was the military’s chief spokesman
during the Persian Gulf War of 1991, when Israelis huddled in sealed rooms and donned gas
masks, shocked once again as Iraqi Scud missiles slammed into the heart of Tel Aviv. Coming
after the euphoria of Israel’s victory in the 1967 war, when 6 days of fighting against the Egyptian,
Jordanian and Syrian Armies left Israel in control of the Sinai Peninsula, the West Bank, Gaza,
East Jerusalem, and the Golan Heights, the conflicts of 1973, 1991, and later years have scarred
the national psyche. But several former security officials and analysts said that while the risks now
may be similar to those of past years in some respects, there are also major differences. In 1991,
for example, the United States of America responded to the Iraqi attack by hastily redeploying
some Patriot antimissile batteries to Israel from Europe, but the batteries failed to intercept a sin-
gle Iraqi Scud, tracking them instead and following them to the ground with a thud. Since then,
Israel, and the United States of America have invested billions of dollars in Israel’s air defenses,
with the Arrow, Patriot and Iron Dome systems now honed to intercept short-, medium-, and
longer range rockets and missiles. Israelis, conditioned by subsequent conflicts with Hezbollah in
Lebanon and Hamas in Gaza and by numerous domestic drills, have become accustomed to the
wail of sirens and the idea of rocket attacks. But the country is less prepared for a major chemical
attack, even though chemical weapons were used across its northern frontier, in Syria, less than
a month ago, which led to a run on gas masks at distribution centers here. In what some people
see as a new sign of government complacency at best and downright failure at worst, officials say
there are enough protective kits for only 60% of the population, and supplies are dwindling fast.
Israeli security assessments rate the probability of any attack on Israel as low, and the chances
of a chemical attack as next to zero. In 1973, the failure of intelligence assessments about Egypt
and Syria was twofold. They misjudged the countries’ intentions and miscalculated their military
capabilities. Our coverage of human intelligence, signals intelligence and other sorts was second
to none, said Efraim Halevy, a former chief of Mossad, Israel’s national intelligence agency. We
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thought we could initially contain any attack or repulse it within a couple of days. We wrongly
assessed the capabilities of the Egyptians and the Syrians. In my opinion, that was the crucial fail-
ure. Israel is in a different situation today, Mr. Halevy said. The Syrian armed forces are depleted
and focused on fighting their domestic battles, he said. The Egyptian Army is busy dealing with its
internal turmoil, including a campaign against Islamic militants in Sinai. Hezbollah, the Lebanese
militant group, is heavily involved in aiding President Bashar al-Assad of Syria, while the Iranians,
Mr. Halevy said, are not likely to want to give Israel a reason to strike them, not as the aggressor
but as a victim of an Iranian attack. Israel is also much less likely to suffer such a colossal fail-
ure in assessment, Mr. Halevy said. We have plurality in the intelligence community, and people
have learned to speak up, he said. The danger of a mistaken concept is still there, because we are
human. But it is much more remote than before. Many analysts have attributed the failure of 1973
to arrogance. There was a disregarding of intelligence, said Shlomo Avineri, a political scientist at
Hebrew University and a director general of Israel’s Ministry of Foreign Affairs in the mid-1970s.
War is a maximization of uncertainties, he said, adding that things never happen the same way
twice, and that wars never end the way they are expected to. Like most countries, Israel has been
surprised by many events in recent years. The two Palestinian uprisings broke out unexpectedly,
as did the Arab Spring and the two revolutions in Egypt. In 1973, logic said that Egypt and Syria
would not attack, and for good reasons, said Ephraim Kam, a strategic intelligence expert at the
Institute for National Security Studies at Tel Aviv University who served for more than 20 years
in military intelligence. But there are always things we do not know. Intelligence is always partial,
Mr. Kam said, its gaps filled by logic and assessment. The problem, he said, is that you cannot
guarantee that the logic will fit with reality. In his recently published diaries from 1973, Uzi Eilam,
a retired general, recalled the sounding of sirens at 2 p.m. on Yom Kippur and his rushing to the
war headquarters. Eli Zeira passed me, pale-faced, he wrote, referring to the military intelligence
chief, and he said: So it is starting after all. They are putting up planes. A fleeting glance told me
that this was no longer the Eli Zeira who was so self-assured.

Predicted keywords: Israel, military, Syria, Egypt

True keywords: Israel, Yom Kippur, Egypt, Syria, military, Arab spring

Document 5:
Abe’s 15-month reversal budget fudges cost of swapping people and butter for concrete and

guns. The government of Shinzo Abe has just unveiled its budget for fiscal 2013 starting in April.
Abe’s stated intention was to radically reset spending priorities. He is indeed a man of his word.
For this is a budget that is truly awesome for its radical step backward into the past a past where
every public spending project would do wonders to boost economic growth. It is also a past where
a cheaper yen would bring unmitigated benefits to Japan’s exporting industries. None of it is really
true anymore. Public works do indeed do wonders in boosting growth when there is nothing there
to begin with. But in a mature and well-developed economy like ours, which is already so well
equipped with all the necessities of modern life, they can at best have only a one-off effect in cre-
ating jobs and demand. And in this globalized day and age, an exporting industry imports almost
as much as it exports. No longer do we live in a world where a carmaker makes everything within
the borderlines of its nationality. Abe’s radical reset has just as much to do with philosophy as
with timelines. Three phrases come to mind as I try to put this budget in a nutshell. They are:
from people to concrete, from the regions to the center, and from butter to guns. The previous
government led by the Democratic Party of Japan declared that it would put people before con-
crete. No more building of ever-empty concert halls and useless multiple amenity centers where
nothing ever happens. More money would be spent on helping people escape their economic dif-
ficulties. They would give more power to the regions so they could decide for themselves what was
really good and worked for the local community. Guns would most certainly not take precedence
over butter. Or rather over the low-fat butter alternatives popular in these more health-conscious
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times. All of this has been completely reversed in Abe’s fiscal 2013 budget. Public works spending
is scheduled to go up by more than 15% while subsistence payments for people on welfare will be
thrashed to the tune of more than 7%. If implemented, this will be the largest cut ever in welfare
assistance. The previous government set aside a lump sum to be transferred from the central gov-
ernment’s coffers to regional municipalities to be spent at their own discretion on local projects.
This sum will now be clawed back into the central government’s own public works program. The
planned increase in spending on guns is admittedly small: a 0.8% increase over the fiscal 2012
initial budget. It is nonetheless the first increase of its kind in 11 years. And given the thrashing
being dealt to welfare spending, the shift in emphasis from butter to guns is clearly apparent. One
of the Abe government’s boasts is that it will manage to hold down the overall size of the budget
in comparison with fiscal 2012. The other one is that it will raise more revenues from taxes rather
than borrowing. True enough on the face of it. But one has to remember the very big supplemen-
tary budget that the government intends to push through for the remainder of fiscal 2012. The
money for that program will come mostly from borrowing. Since the government is talking about
a 15-month budget that seamlessly links up the fiscal 2012 supplementary and fiscal 2013 initial
budgets, they should talk in the same vein about the size of their spending and the borrowing
needed to accommodate the whole 15-month package. It will not do to smother the big reset with
a big coverup.

Predicted keywords: Shinzo Abe, Japan, economy

True keywords: Shinzo Abe, budget

Cite this article: Martinc M, Škrlj B and Pollak S. TNT-KID: Transformer-based neural tagger for keyword identification.
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4.4 Combining Neural Keyword Extraction With Symbolic
TF-IDF Based Keyword Extraction

As is shown in the previous section, neural state-of-the-art supervised approaches in most
cases offer good performance in terms of precision. Nevertheless, the recall of these systems
can be problematic for some use cases, since the system is trained to return a similar
number of keywords per document as the average number of keywords per document in
the train set. For example, in media house environments, automatic keyword extraction
systems are used as a recommendation system, which is expected to return a diverse list
of keyword candidates (preferably of constant length). This list is manually inspected by
a journalist who selects the most suitable candidates. If the train set contains only a few
keywords per document (e.g., the Croatian dataset described in Table 4.3 contains only
1.19 keywords per article), the list of candidates returned by the system will in most cases
not be comprehensive enough for manual selection of best candidates.

We want to improve the recall of the existing neural supervised keyword extraction
system by combining the output of the neural method with an output of the unsupervised
symbolic keyword extraction technique. We also investigate if this hybrid system
achieves performance comparable to state-of-the-art according to several eval-
uation criteria and therefore explore whether the hypothesis H4 should be
confirmed or denied.

The unsupervised symbolic method we opted for is a TF-IDF tagset matching tech-
nique, which considers only words and multi-word expressions in the document that appear
in a predefined tag/keyword set, ranks them according to their TF-IDF score, and returns
the needed amount of best-ranked candidates. The new hybrid system checks the number
of keywords returned by the neural approach and if the number is smaller than needed, the
list is expanded by l best-ranked keyword candidates returned by the symbolic TF-IDF-
based keyword extraction method, where l corresponds to k - m, k = 10 and m corresponds
to the number of keywords returned by the neural TNT-KID method. According to the
typology proposed in Chapter 1, we refer to this combination approach as a late simple
fusion. This fusion type was chosen in this specific use case because there is a large discrep-
ancy in performance between the neural and symbolic keyword extraction methods (see
results in Table 4.5). The proposed approach is appropriate since it allows us to prioritize
the neural method and only add the keywords returned by the TF-IDF-based keyword
extraction method to the final keyword list when needed.

The experiments were conducted on four news corpora from the Embeddia project

Table 4.3: Datasets used for empirical evaluation of keyword extraction algorithms.

Language Total docs Doc. len All keywords % present kw. present kw.
Train sets

Croatian 32,223 438.50 3.54 0.32 1.19
Estonian 10,750 395.24 3.81 0.65 2.77
Russian 13,831 392.82 5.66 0.76 4.44
Latvian 13,133 378.03 3.23 0.53 1.69

Test sets
Croatian 3582 464.39 3.53 0.34 1.26
Estonian 7,747 411.59 4.09 0.69 3.12
Russian 11,475 335.93 5.43 0.79 4.33
Latvian 11,641 460.15 3.19 0.55 1.71
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Table 4.4: Distribution of tags provided per language. The media houses provided tagsets
for Estonian and Russian, while the tags for Latvian and Croatian were extracted from
the train set.

Dataset Unique tags Type of tags
Croatian 21,165 Constructed
Estonian 52,068 Provided
Russian 5,899 Provided
Latvian 4,015 Constructed

Table 4.5: Results on the multi-lingual news datasets.

Model P@5 R@5 F1@5 P@10 R@10 F1@10
Croatian

TF-IDF(tm) 0.2226 0.4543 0.2988 0.1466 0.5888 0.2347
TNT-KID 0.3296 0.5135 0.4015 0.3167 0.5359 0.3981

BERT + BiLSTM-CRF 0.4607 0.4672 0.4640 0.4599 0.4708 0.4654
TNT-KID & TF-IDF(tm) 0.2659 0.5670 0.3621 0.1688 0.6944 0.2716

Estonian
TF-IDF(tm) 0.0716 0.1488 0.0966 0.0496 0.1950 0.0790
TNT-KID 0.5194 0.5676 0.5424 0.5098 0.5942 0.5942

BERT + BiLSTM-CRF 0.5118 0.4617 0.4855 0.5078 0.4775 0.4922
TNT-KID & TF-IDF(tm) 0.3463 0.5997 0.4391 0.1978 0.6541 0.3037

Russian
TF-IDF(tm) 0.1764 0.2314 0.2002 0.1663 0.3350 0.2223
TNT-KID 0.7108 0.6007 0.6512 0.7038 0.6250 0.6621

BERT + BiLSTM-CRF 0.6901 0.5467 0.5467 0.6849 0.5643 0.6187
TNT-KID & TF-IDF(tm) 0.4519 0.6293 0.5261 0.2981 0.6946 0.4172

Latvian
TF-IDF(tm) 0.2258 0.5035 0.3118 0.1708 0.5965 0.2655
TNT-KID 0.6089 0.6887 0.6464 0.6054 0.6960 0.6476

BERT + BiLSTM-CRF 0.6215 0.6214 0.6214 0.6204 0.6243 0.6223
TNT-KID & TF-IDF(tm) 0.3402 0.7934 0.4762 0.2253 0.8653 0.3575

(Latvian, Estonian, Russian, and Croatian)3 described in Table 4.3, which contain news
articles between 2015 and 2019 and were divided into training and test sets. The symbolic
TF-IDF method was constrained to only return keyword candidates from four distinct (one
per each language) tagsets containing keywords, which were either provided by the editors
of a media house, or constructed from the keywords from the training set (see Table 4.4
for details).

We employ two neural methods for the experiments in this study, namely TNT-KID
and BERT + BiLSTM-CRF proposed by Sahrawat et al. (2020). BERT + BiLSTM-CRF
approach is very similar to the GPT-2 + BiLSTM-CRF approach described in Section 4.2,
the only difference being that the English GPT-2 model is replaced with the multilingual
BERT model (more specifically, the ’bert-base-multilingual-uncased’ model was used) pre-
trained on a large corpus consisting of Wikipedias of about 100 languages (Devlin et al.,
2019). TNT-KID on the other hand requires additional language model pretraining on the

3https://www.clarin.si/repository/xmlui/handle/11356/1403
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domain-specific corpus and was therefore first trained as a language model on each training
corpus. Both neural models were after that fine-tuned on the training corpus for a specific
language for a maximum of up to 10 epochs and tested on the matching test corpus from
the same language.

The results of the evaluation on all four languages are presented in Table 4.5. Namely,
we present results for the symbolic TF-IDF tagset matching (tm) method, for two neural
methods, TNT-KID and BERT+BiLSTM-CRF, and the combination of TNT-KID and
TF-IDF(tm).

While the results for TNT-KID and BERT+BiLSTM-CRF neural methods are some-
what comparable, TNT-KID still outperforms BERT+BiLSTM-CRF on three out of four
languages in terms of F1@10. On the other hand, the symbolic TF-IDF tagset matching
method for keyword extraction performs much worse than both neural methods according
to all criteria. Nevertheless, if we combine the output of the TF-IDF tagset matching
method with the output of TNT-KID, we can drastically improve the recall@5 and the re-
call@10 of the keyword extraction system. The improvement is substantial and consistent
across all datasets. However, since the hybrid system always returns 10 keywords, which
is much more than the average number of present gold standard keywords in the media
partner datasets (see Table 4.3), this also means that the overall measured precision (and
consequentially also the F1 score) of the hybrid system is lower than for the neural systems.
Nevertheless, we argue that the improvement in recall at the expanse of the precision is
a good trade off if the system is intended to be used as a recommendation system in the
media house environment, since it does not take much time for a journalist to manually
inspect 10 keyword candidates per article and manually pick the best few candidates (e.g.,
by clicking on them).

The entire study with all the details about methodology, experiments and results is
enclosed below.
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Abstract

Keyword extraction is the task of identifying
words (or multi-word expressions) that best de-
scribe a given document and serve in news
portals to link articles of similar topics. In
this work, we develop and evaluate our meth-
ods on four novel data sets covering less-
represented, morphologically-rich languages
in European news media industry (Croatian,
Estonian, Latvian, and Russian). First, we
perform evaluation of two supervised neu-
ral transformer-based methods, Transformer-
based Neural Tagger for Keyword Identifi-
cation (TNT-KID) and Bidirectional Encoder
Representations from Transformers (BERT)
with an additional Bidirectional Long Short-
Term Memory Conditional Random Fields
(BiLSTM CRF) classification head, and com-
pare them to a baseline Term Frequency - In-
verse Document Frequency (TF-IDF) based
unsupervised approach. Next, we show that
by combining the keywords retrieved by both
neural transformer-based methods and extend-
ing the final set of keywords with an unsuper-
vised TF-IDF based technique, we can drasti-
cally improve the recall of the system, making
it appropriate for usage as a recommendation
system in the media house environment.

1 Introduction

Keywords are words (or multi-word expressions)
that best describe the subject of a document, effec-
tively summarise it and can also be used in several
document categorization tasks. In online news por-
tals, keywords help with efficient retrieval of arti-
cles when needed. Similar keywords characterise
articles of similar topics, which can help editors
to link related articles, journalists to find similar
articles and readers to retrieve articles of interest

when browsing the portals. For journalists manu-
ally assigning tags (keywords) to articles represents
a demanding task, and high-quality automated key-
word extraction shows to be one of components in
news digitalization process that many media houses
seek for.

The task of keyword extraction can generally
be tackled in an unsupervised way, i.e., by relying
on frequency based statistical measures (Campos
et al., 2020) or graph statistics (Škrlj et al., 2019),
or with a supervised keyword extraction tool, which
requires a training set of sufficient size and from
appropriate domain. While supervised methods
tend to work better due to their ability to adapt to
a specifics of the syntax, semantics, content, genre
and keyword assignment regime of a specific text
(Martinc et al., 2020a), their training for some less
resource languages is problematic due to scarcity
of large manually annotated resources. For this
reason, studies about supervised keyword extrac-
tion conducted on less resourced languages are still
very rare. To overcome this research gap, in this pa-
per we focus on supervised keyword extraction on
three less resourced languages, Croatian, Latvian,
and Estonian, and one fairly well resourced lan-
guage (Russian) and conduct experiments on data
sets of media partners in the EMBEDDIA project1.
The code for the experiments is made available on
GitHub under the MIT license2.

In media house environments, automatic key-
word extraction systems are expected to return
a diverse list of keyword candidates (of constant
length), which is then inspected by a journalist who

1http://embeddia.eu/
2https://github.com/bkolosk1/Extendin

g-Neural-Keyword-Extraction-with-TF-IDF-
tagset-matching/
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manually selects appropriate candidates. While
the state-of-the-art supervised approaches in most
cases offer good enough precision for this type of
usage as a recommendation system, the recall of
these systems is nevertheless problematic. Super-
vised systems learn how many keywords should be
returned for each news article on the gold standard
train set, which generally contains only a small
amount of manually approved candidates for each
news article. For example, among the datasets
used in our experiments (see Section 3), the Rus-
sian train set contains the most (on average 4.44)
present keywords (i.e., keywords which appear in
the text of the article and can be used for training
of the supervised models) per article, while the
Croatian test set contains only 1.19 keywords per
article. This means that for Croatian, the model
will learn to return around 1.19 keywords for each
article, which is not enough.

To solve this problem we show that we can im-
prove the recall of the existing supervised keyword
extraction system by:

• Proposing an additional TF-IDF tagset match-
ing technique, which finds additional keyword
candidates by ranking the words in the news
article that have appeared in the predefined
keyword set containing words from the gold
standard train set. The new hybrid system first
checks how many keywords were returned by
the supervised approach and if the number
is smaller than needed, the list is expanded
by the best ranked keywords returned by the
TF-IDF based extraction system.

• Combining the outputs of several state-of-the-
art supervised keyword extraction approaches.

The rest of this work is structured as follows:
Section 2 presents the related work, while Section
3 describes the datasets on which we evaluate our
method. Section 4 describes our proposed method
with all corresponding steps. The experiment set-
tings are described in Section 5 and the evaluation
of the proposed methods is shown in Section 6.
The conclusions and the proposed further work are
presented in Section 7.

2 Related Work

Many different approaches have been developed
to tackle the problem of extracting keywords. The
early approaches, such as KP-MINER (El-Beltagy

and Rafea, 2009) and RAKE (Rose et al., 2010)
rely on unsupervised techniques which employ fre-
quency based metrics for extraction of keywords
from text. Formally, aforementioned approaches
search for the words w from vocabulary V that
maximize a given metric h for a given text t:

kw = argmax
w∈V

h(w, t).

In these approaches, frequency is of high relevance
and it is assumed that the more frequent a given
word, the more important the meaning this word
carries for a given document. Most popular such
metrics are the naı̈ve frequency (word count) and
the term frequency-inverse document frequency
(TF-IDF) (Salton and McGill, 1986).

Most recent state-of-the-art statistical ap-
proaches, such as YAKE (Campos et al., 2020),
also employ frequency based features, but combine
them with other features such as casing, position,
relatedness to context and dispersion of a specific
term in order to derive a final score for each key-
word candidate.

Another line of research models this problem
by exploiting concepts from graph theory. Ap-
proaches, such as TextRank (Mihalcea and Tarau,
2004), Single Rank (Wan and Xiao, 2008), Topi-
cRank (Bougouin et al., 2013) and Topical PageR-
ank (Sterckx et al., 2015) build a graph G, i.e., a
mathematical construct described by a set of ver-
texes V and a set of edges E connecting two ver-
tices. In one of the most recent approaches called
RaKUn (Škrlj et al., 2019), a directed graph is
constructed from text, where vertexes V and two
words wi, wi+1 are linked if they appear following
one another. Keywords are ranked by a shortest
path-based metric from graph theory - the load cen-
trality.

The task of keyword extraction can also be tack-
led in a supervised way. One of the first supervised
approaches was an algorithm named KEA (Wit-
ten et al., 2005), which uses only TF-IDF and the
term’s position in the text as features for term identi-
fication. More recent neural approaches to keyword
detection consider the problem as a sequence-to-
sequence generation task (Meng et al., 2017) and
employ a generative model for keyword predic-
tion with a recurrent encoder-decoder framework
and an attention mechanism capable of detecting
keywords in the input text sequence whilst also po-
tentially finding keywords that do not appear in the
text.
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Finally, the newest branch of models consider
keyword extraction as a sequence labelling task
and tackle keyword detection with transformers.
Sahrawat et al. (2020) fed contextual embeddings
generated by several transformer models (BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
GPT-2 (Radford et al., 2019), etc.) into two types
of neural architectures, a bidirectional Long short-
term memory network (BiLSTM) and a BiLSTM
network with an additional Conditional random
fields layer (BiLSTM-CRF). Sun et al. (2020) on
the other hand proposed BERT-JointKPE that em-
ploys a chunking network to identify phrases and a
ranking network to learn their salience in the doc-
ument. By training BERT jointly on the chunking
and ranking tasks the model manages to establish
balance between the estimation of keyphrase qual-
ity and salience.

Another state-of-the-art transformer based ap-
proach is TNT-KID (Transformer-based Neural
Tagger for Keyword Identification) (Martinc et al.,
2020a), which does not rely on pretrained language
models such as BERT, but rather allows the user to
train their own language model on the appropriate
domain. The study shows that smaller unlabelled
domain specific corpora can be successfully used
for unsupervised pretraining, which makes the pro-
posed approach easily transferable to low-resource
languages. It also proposes several modifications to
the transformer architecture in order to adapt it for a
keyword extraction task and improve performance
of the model.

3 Data Description

We conducted experiments on datasets containing
news in four languages; Latvian, Estonian, Rus-
sian, and Croatian. Latvian, Estonian and Russian
datasets contain news from the Ekspress Group,
specifically from Estonian Ekspress Meedia (news
in Estonian and Russian) and from Latvian Delfi
(news in Latvian and Russian). The dataset statis-
tics are presented in Table 2, and the datasets (Pol-
lak et al., 2021) and their train/test splits3 are pub-
licly available. The media-houses provided news
articles from 2015 up to the 2019. We divided
them into training and test sets. For the Latvian,
Estonian, and Russian training sets, we used the
articles from 2018, while for the test set the articles
from 2019 were used. For Croatian, the articles

3https://www.clarin.si/repository/xml
ui/handle/11356/1403

from 2019 are arranged by date and split into train-
ing and test (i.e., about 10% of the 2019 articles
with the most recent date) set. In our study, we
also use tagsets of keywords. Tagset corresponds
either to a collection of keywords maintained by
editors of a media house (see e.g. Estonian tagset),
or to a tagset constructed from assigned keywords
from articles available in the training set. The type
of tagset and the number of unique tags for each
language are listed in Table 1.

Dataset Unique tags Type of tags
Croatian 21,165 Constructed
Estonian 52,068 Provided
Russian 5,899 Provided
Latvian 4,015 Constructed

Table 1: Distribution of tags provided per language.
The media houses provided tagsets for Estonian and
Russian, while the tags for Latvian and Croatian were
extracted from the train set.

4 Methodology

The recent supervised neural methods are very pre-
cise, but, as was already mentioned in Section 1, in
same cases they do not return a sufficient number of
keywords. This is due to the fact that the methods
are trained on the training data with a low number
of gold standard keywords (as it can be seen from
Table 2). To meet the media partners’ needs, we
designed a method that complements state-of-the-
art neural methods (the TNT-KID method (Martinc
et al., 2020b) and the transformer-based method
proposed by Sahrawat et al. (2020), which are both
described in Section 2) by a tagset matching ap-
proach, returning constant number of keywords
(k=10).

4.1 Transformer-based Keyword Extraction

Both supervised neural approaches employed in
this study are based on the Transformer architec-
ture (Vaswani et al., 2017), which was somewhat
adapted for the specific task at hand. Both models
are fed lowercased text consisting of the title and
the body of the article. Tokenization is conducted
by either using the default BERT tokenizer (when
BERT is used) or by employing Sentencepiece tok-
enizer (Kudo and Richardson, 2018) (when TNT-
KID is used). While the multilingual BERT model
is already pretrained on a large corpus consisting of
Wikipedias of about 100 languages (Devlin et al.,
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Avg. Train Avg. Test
Dataset Total docs Total kw. Total docs Doc len Kw. % present kw. present kw. Total docs Doc len Kw. % present kw. Present kw.
Croatian 35,805 126,684 32,223 438.50 3.54 0.32 1.19 3582 464.39 3.53 0.34 1.26
Estonian 18,497 59,242 10,750 395.24 3.81 0.65 2.77 7,747 411.59 4.09 0.69 3.12
Russian 25,306 5,953 13,831 392.82 5.66 0.76 4.44 11,475 335.93 5.43 0.79 4.33
Latvian 24,774 4,036 13,133 378.03 3.23 0.53 1.69 11,641 460.15 3.19 0.55 1.71

Table 2: Media partners’ datasets used for empirical evaluation of keyword extraction algorithms.

2018), TNT-KID requires an additional language
model pretraining on the domain specific corpus.

4.2 TF-IDF(tm) Tagset Matching

In our approach, we first take the keywords re-
turned by a neural keyword extraction method
and next complement the returned keyword list
by adding the missing keywords to achieve the set
goal of k keywords. The added keywords are se-
lected by taking the top-ranked candidates from the
TF-IDF tagset matching extraction conducted on
the preprocessed news articles and keywords.

4.2.1 Preprocessing

First, we concatenate the body and the title of the
article. After that we lowercase the text and remove
stopwords. Finally, the text is tokenized and lem-
matized with the Lemmagen3 lemmatizer (Juršič
et al., 2010), which supports lemmatization for all
the languages except Latvian. For Latvian we use
the LatvianStemmer 4. For the stopword removal
we used the Stopwords-ISO 5 Python library which
contained stopwords for all four languages. The
final cleaned textual input consists of the concate-
nation of all of the preprocessed words from the
document. We apply the same preprocessing pro-
cedure on the predetermined tagsets for each lan-
guage. The preprocessing procedure is visualized
in Figure 1.

Figure 1: Preprocessing pipeline used for the document
normalization and cleaning.

4https://github.com/rihardsk/LatvianS
temmer

5https://github.com/stopwords-iso

4.2.2 TF-IDF Weighting Scheme
The TF-IDF weighting scheme (Salton and McGill,
1986) assigns each word its weight w based on the
frequency of the word in the document (term fre-
quency) and the number of documents the word
appears in (inverse document frequency). More
specifically, TF-IDF is calculated with the follow-
ing equation:

TF − IDF i = tf i,j · loge(
|D|
dfi

)

The formula has two main components:

• Term-frequency (tf) that counts the number of
appearances of a word in the document (in the
equation above, tf i,j denotes the number of
occurrences of the word i in the document j)

• Inverse-document-frequency (idf) ensures that
words appearing in more documents are as-
signed lower weights (in the formula above
dfi is the number of documents containing
word i and |D| denotes the number of docu-
ments).

The assumption is that words with a higher TF-
IDF value are more likely to be keywords.

4.3 Tagset Matching Keyword Expansion
For a given neural keyword extraction method N,
and for each document d, we select l best ranked
keywords according to the TF-IDF(tm), which ap-
pear in the keyword tagset for each specific dataset.
Here, l corresponds to k - m, where k = 10 and m
corresponds to the number of keywords returned
by a neural method.

Since some of the keywords in the tagsets pro-
vided by the media partners were variations of the
same root word (i.e., keywords are not lemmatized),
we created a mapping from a root word (i.e., a word
lemma or a stem) to a list of possible variations in
the keyword dataset. For example, a word ’riigiek-
sam’ (’exam’) appearing in the article, could be
mapped to three tags in the tagset by the Estonian
media house with the same root form ’riigieksam’:

’riigieksamid’, ’riigieksamide’ and ’riigieksam’.
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We tested several strategies for mapping the oc-
currence of a word in the news article to a specific
tag in the tagset. For each lemma that mapped to
multiple tags, we tested returning a random tag,
a tag with minimal length and a tag of maximal
length. In the final version, we opted to return the
tag with the minimal length, since this tag corre-
sponded to the lemma of the word most often.

5 Experimental Settings

We conducted experiments on the datasets de-
scribed in Section 3. We evaluate the following
methods and combinations of methods:

• TF-IDF(tm): Here, we employ the prepro-
cessing and TF-IDF-based weighting of key-
words described in Section 4 and select the
top-ranked keywords that are present in the
tagset.

• TNT-KID (Martinc et al., 2020b): For each
dataset, we first pretrain the model with an
autoregressive language model objective. Af-
ter that, the model is fine-tuned on the same
train set for the keyword extraction task. Se-
quence length was set to 256, embedding size
to 512 and batch size to 8, and we employ the
same preprocessing as in the original study
(Martinc et al., 2020b).

• BERT + BiLSTM-CRF (Sahrawat et al.,
2020): We employ an uncased multilingual
BERT6 model with an embedding size of 768
and 12 attention heads, with an additional
BiLSTM-CRF token classification head, same
as in Sahrawat et al. (2020).

• TNT-KID & BERT + BiLSTM-CRF: We
extracted keywords with both of the methods
and complemented the TNT-KID extracted
keywords with the BERT + BiLSTM-CRF ex-
tracted keywords in order to retrieve more key-
words. Duplicates (i.e., keywords extracted
by both methods) are removed.

• TNT-KID & TF-IDF: If the keyword set ex-
tracted by TNT-KID contains less than 10 key-
words, it is expanded with keywords retrieved
with the proposed TF-IDF(tm) approach, i.e.,

6More specifically, we use the ’bert-base-multilingual-
uncased’ implementation of BERT from the Transformers
library (https://github.com/huggingface/tra
nsformers).

best ranked keywords according to TF-IDF,
which do not appear in the keyword set ex-
tracted by TNT-KID.

• BERT + BiLSTM-CRF & TF-IDF: If the
keyword set extracted by BERT + BiLSTM-
CRF contains less than 10 keywords, it is ex-
panded with keywords retrieved with the pro-
posed TF-IDF(tm) approach, i.e., best ranked
keywords according to TF-IDF, which do not
appear in the keyword set extracted by BERT
+ BiLSTM-CRF.

• TNT-KID & BERT + BiLSTM-CRF & TF-
IDF: the keyword set extracted with the TNT-
KID is complemented by keywords extracted
with BERT + BiLSTM-CRF (duplicates are
removed). If after the expansion the keyword
set still contains less than 10 keywords, it is
expanded again, this time with keywords re-
trieved by the TF-IDF(tm) approach.

For TNT-KID, which is the only model that
requires language model pretraining, language
models were trained on train sets in Table 2 for
up to ten epochs. Next, TNT-KID and BERT
+ BiLSTM-CRF were fine-tuned on the training
datasets, which were randomly split into 80 percent
of documents used for training and 20 percent of
documents used for validation. The documents con-
taining more than 256 tokens are truncated, while
the documents containing less than 256 tokens are
padded with a special < pad > token at the end.
We fine-tuned each model for a maximum of 10
epochs and after each epoch the trained model was
tested on the documents chosen for validation. The
model that showed the best performance on this set
of validation documents (in terms of F@10 score)
was used for keyword detection on the test set.

6 Evaluation

For evaluation, we employ precision, recall and
F1 score. While F1@10 and recall@10 are the
most relevant metrics for the media partners, we
also report precision@10, precision@5, recall@5
and F1@5. Only keywords which appear in a text
(present keywords) were used as a gold standard,
since we only evaluate approaches for keyword
tagging that are not capable of finding keywords
which do not appear in the text. Lowercasing and
lemmatization (stemming in the case of Latvian)
are performed on both the gold standard and the
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Model P@5 R@5 F1@5 P@10 R@10 F1@10
Croatian

TF-IDF 0.2226 0.4543 0.2988 0.1466 0.5888 0.2347
TNT-KID 0.3296 0.5135 0.4015 0.3167 0.5359 0.3981

BERT + BiLSTM-CRF 0.4607 0.4672 0.4640 0.4599 0.4708 0.4654
TNT-KID & TF-IDF(tm) 0.2659 0.5670 0.3621 0.1688 0.6944 0.2716

BERT + BiLSTM-CRF & TF-IDF(tm) 0.2644 0.5656 0.3604 0.1549 0.6410 0.2495
TNT-KID & BERT + BiLSTM-CRF 0.2940 0.5447 0.3820 0.2659 0.5968 0.3679

TNT-KID & BERT + BiLSTM-CRF & TF-IDF(tm) 0.2648 0.5681 0.3612 0.1699 0.7040 0.2738
Estonian

TF-IDF 0.0716 0.1488 0.0966 0.0496 0.1950 0.0790
TNT-KID 0.5194 0.5676 0.5424 0.5098 0.5942 0.5942

BERT + BiLSTM-CRF 0.5118 0.4617 0.4855 0.5078 0.4775 0.4922
TNT-KID & TF-IDF(tm) 0.3463 0.5997 0.4391 0.1978 0.6541 0.3037

BERT + BiLSTM-CRF & TF-IDF(tm) 0.3175 0.4978 0.3877 0.1789 0.5381 0.2686
TNT-KID & BERT + BiLSTM-CRF 0.4421 0.6014 0.5096 0.4028 0.6438 0.4956

TNT-KID & BERT + BiLSTM-CRF & TF-IDF(tm) 0.3588 0.6206 0.4547 0.2107 0.6912 0.3230
Russian

TF-IDF 0.1764 0.2314 0.2002 0.1663 0.3350 0.2223
TNT-KID 0.7108 0.6007 0.6512 0.7038 0.6250 0.6621

BERT + BiLSTM-CRF 0.6901 0.5467 0.5467 0.6849 0.5643 0.6187
TNT-KID & TF-IDF(tm) 0.4519 0.6293 0.5261 0.2981 0.6946 0.4172

BERT + BiLSTM-CRF & TF-IDF(tm) 0.4157 0.5728 0.4818 0.2753 0.6378 0.3846
TNT-KID & BERT + BiLSTM-CRF 0.6226 0.6375 0.6300 0.5877 0.6707 0.6265

TNT-KID & BERT + BiLSTM-CRF & TF-IDF(tm) 0.4622 0.6527 0.5412 0.2965 0.7213 0.4203
Latvian

TF-IDF 0.2258 0.5035 0.3118 0.1708 0.5965 0.2655
TNT-KID 0.6089 0.6887 0.6464 0.6054 0.6960 0.6476

BERT + BiLSTM-CRF 0.6215 0.6214 0.6214 0.6204 0.6243 0.6223
TNT-KID & TF-IDF(tm) 0.3402 0.7934 0.4762 0.2253 0.8653 0.3575

BERT + BiLSTM-CRF & TF-IDF(tm) 0.2985 0.6957 0.4178 0.1889 0.7427 0.3012
TNT-KID & BERT + BiLSTM-CRF 0.4545 0.7189 0.5569 0.4341 0.7297 0.5443

TNT-KID & BERT + BiLSTM-CRF & TF-IDF(tm) 0.3318 0.7852 0.4666 0.2124 0.8672 0.3414

Table 3: Results on the EMBEDDIA media partner datasets.

extracted keywords (keyphrases) during the eval-
uation. The results of the evaluation on all four
languages are listed in Table 3.

Results suggest, that neural approaches, TNT-
KID and BERT+BiLSTM-CRF offer compara-
ble performance on all datasets but neverthe-
less achieve different results for different lan-
guages. TNT-KID outperforms BERT-BiLSTM-
CRF model according to all the evaluation metrics
on the Estonian and Russian news dataset. It also
outperforms all other methods in terms of precision
and F1 score. On the other hand, BERT+BiLSTM-
CRF performs better on the Croatian dataset in
terms of precision and F1-score. On Latvian TNT-
KID achieves top results in terms of F1, while
BERT+BiLSTM-CRF offers better precision.

Even though the TF-IDF tagset matching method
performs poorly on its own, we can nevertheless

drastically improve the recall@5 and the recall@10
of both neural systems, if we expand the keyword
tag sets returned by the neural methods with the
TF-IDF ranked keywords. The improvement is
substantial and consistent for all datasets, but it
nevertheless comes at the expanse of the lower pre-
cision and F1 score. This is not surprising, since
the final expanded keyword set always returns 10
keywords, i.e., much more than the average num-
ber of present gold standard keywords in the media
partner datasets (see Table 2), which badly affects
the precision of the approach. Nevertheless, since
for a journalist a manual inspection of 10 keyword
candidates per article and manual selection of good
candidates (e.g., by clicking on them) still requires
less time than the manual selection of keywords
from an article, we argue that the improvement of
recall at the expanse of the precision is a good trade
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off, if the system is intended to be used as a recom-
mendation system in the media house environment.

Combining keywords returned by TNT-KID and
BERT + BiLSTM-CRF also consistently improves
recall, but again at the expanse of lower preci-
sion and F1 score. Overall, for all four languages,
the best performing method in terms of recall is
the TNT-KID & BERT + BiLSTM-CRF & TF-
IDF(tm).

7 Conclusion and Future Work

In this work, we tested two state-of-the-art neu-
ral approaches for keyword extraction, TNT-KID
(Martinc et al., 2020a) and BERT BiLSTM-CRF
(Sahrawat et al., 2020), on three less resourced
European languages, Estonian, Latvian, Croatian,
as well as on Russian. We also proposed a tagset
based keyword expansion approach, which drasti-
cally improves the recall of the method, making
it more suitable for the application in the media
house environment.

Our study is one of the very few studies where
supervised keyword extraction models were em-
ployed on several less resourced languages. The
results suggest that these models perform well on
languages other than English and could also be
successfully leveraged for keyword extraction on
morphologically rich languages.

The focus of the study was whether we can im-
prove the recall of the supervised models, in order
to make them more useful as recommendation sys-
tems in the media house environment. Our method
manages to increase the number of retrieved key-
words, which drastically improves the recall for
all languages. For example, by combing all neu-
ral methods and the TF-IDF based approach, we
improve on the recall@10 achieved by the best
performing neural model, TNT-KID, by 16.81 per-
centage points for Croatian, 9.70 percentage points
for Estonian, 9.63 percentage points for Russian
and 17.12 percentage points for Latvian. The re-
sulting method nevertheless offers lower precision,
which we will try to improve in the future work.

In the future we also plan to perform a qualita-
tive evaluation of our methods by journalists from
the media houses. Next, we plan to explore how
adding background knowledge from knowledge
databases - lexical (e.g. Wordnet(Fellbaum, 1998))
or factual (e.g. WikiData(Vrandečić and Krötzsch,
2014)) would benefit the aforementioned methods.
The assumption is that with the linkage of the text

representation and the background knowledge we
would achieve a more representative understanding
of the articles and the concepts appearing in them,
which would result in a more successful keyword
extraction.

In traditional machine-learning setting a com-
mon practice of combining different classifier out-
puts to a single output is referred to as stacking.
We propose further research on this topic by test-
ing combinations of various keyword extraction
models. Finally, we also plan to further improve
our unsupervised TF-IDF based keyword extrac-
tion method. One way to to do this would be to
add the notion of positional encoding, since some
of the keywords in the news-media domain often
can be found at the beginning of the article and the
TF-IDF(tm) does not take this into account while
applying the weighting on the matched terms.
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Linda Freienthal, Silver Traat, Luis Adrián Cabrera-
Diego, Matej Martinc, Nada Lavrač, Blaž Škrlj, Mar-
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4.5 Final Remarks

We have shown that combining supervised neural state-of-the-art keyword extractors with
unsupervised symbolic keyword extractors can be beneficial in some specific use cases. On
the other hand, this strategy would be hard to employ in order to improve the overall per-
formance of the system in terms of F1. The reason for this is the large gap in performance
between supervised and unsupervised keyword extractors, which in most cases results in a
hybrid system performing somewhere in the middle between a high performing supervised
model and a low performing unsupervised model. This means that the development and
employment of hybrid keyword detection systems will most likely not be a thriving research
trend in the future, but rather a limited effort serving some very specific needs.

The development of supervised hybrid keyword extraction approaches capable of out-
performing state-of-the-art neural models is also questionable. As was stated in Section 1,
neural networks tend to outperform symbolic approaches by a large margin on all sequence
labeling tasks, where sufficient amount of data is available. And, as we have showed in this
Chapter, labeled data requirements of the neural system can be reduced by employing the
transfer learning paradigm and train a model on a domain specific corpus.

On the other hand, the development of hybrid unsupervised approaches seems a per-
spective research direction. Novel embedding-based unsupervised keyword extractors that
leverage neural representations (Grootendorst, 2020; Mahata et al., 2018) offer performance
on pair with the state-of-the-art symbolic models. A hybrid system that would efficiently
combine these neural and symbolic representations could therefore push the state-of-the-
art for unsupervised keyword extractors even further. These models would be especially
useful in domains and languages without sufficient resources for the training of supervised
models. Perhaps they could also reduce the gap in performance between supervised and
unsupervised models.
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Chapter 5

Conclusions and Further Work

In this thesis, novel strategies for tackling problems from three distinct NLP research ar-
eas, author profiling, readability detection and keyword extraction, were presented. The
common procedure applied for all presented use cases is to combine neural and symbolic
text representations. The motivation for this methodology comes from the fact that while
neural approaches, which have started to dominate NLP in recent years, have been respon-
sible for major advances in semantic modelling, they still showcase several deficiencies (e.g.,
neural approaches require a lot of data, are computationally expensive, lack an efficient
weighting scheme, etc.) that can be alleviated by combining these methods with symbolic
methods. In this chapter, we first summarize the scientific contributions of the research in
Section 5.1. After that we discuss the strengths and weaknesses of the proposed approach
in Section 5.2 and finally propose several directions for further work in Section 5.3 and
instructions on reproduction of the experiments in Section 5.4.

5.1 Summary of Scientific Contributions

We have proposed novel approaches to combine distinct text representations to solve prob-
lems from three research areas: author profiling (AP), readability detection, and keyword
extraction. By employing this framework, we have managed to improve performance on
several use cases. Therefore, we can confirm the general hypothesis Hg, which stated that
combining different representations, which carry information about distinct aspects of the
text, and establishing synergy between these representations, can lead to a boost in the
performance of the NLP system. While the choice of the fusion between representations
is dependent on the format of each representation and the task at hand, the conducted
experiments indicate several different fusion types can be successfully employed.

First, we managed to achieve goal G1 and improve semantic modelling in the field of
AP by proposing two strategies. The first strategy relied on adding symbolic semantic
features based on word taxonomies (Škrlj et al., 2021) to traditional BON features (see
Section 2.4 for details). In the first step of the algorithm, a document-based taxonomy
was constructed from the input document corpus by mapping the words from individual
documents of a corpus to terms of the WordNet taxonomy (Miller, 1995). These document-
based taxonomies, which model semantic structures derived from the hypernym relation
between words, are then merged into a joint corpus-based taxonomy, relations inside which
can then be used as additional semantic features. With the extensive experimentation on
several datasets we have managed to confirm our hypothesis H1 that semantic modelling
can be improved by including background knowledge, such as taxonomies. The conducted
experiments also showed that the development of neuro-symbolic approaches might be
a viable option for the improvement of semantic modelling, since one of the baselines
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tested during the experiments, which combined symbolic BON features with neural doc2vec
embeddings, showcased good performance.

The second strategy relied on the development of a hybrid algorithm that combines
sophisticated feature engineering techniques from traditional approaches to text classifica-
tion with the newer neural automatic feature construction (Martinc & Pollak, 2019) (see
Section 2.5 for details). The neural part of the proposed hybrid neuro-symbolic approach
is based on character-level CNNs, which are able to identify important parts of a text
sequence by employing a max-over-time pooling operation that keeps only the character
sequences with the highest predictive power in the text. The network was modified to
enable an additional input, which helps to overcome the lack of an effective weighting
scheme. The final architecture requires that the text is fed to the network in the form
of two distinct inputs, a standard sequence of characters and an additional BON matrix
of TF-IDF weighted features. The approach proved successful in beating the state-of-the-
art on the task of language variety prediction, therefore we can confirm the hypothesis
H2, which claimed that combining neural and symbolic representations can advance the
state-of-the-art on text document classification tasks.

When it comes to readability prediction, we first proposed to use neural language
models in an unsupervised way. Traditionally, n-gram language models are employed in the
supervised classification setting by training a separate language model for each readability
class. It is assumed that low perplexity scores calculated by language models trained on
less readable texts and high perplexity scores of language models trained on more readable
texts would indicate a high reading level, and high perplexity scores of language models
trained on less readable texts and low perplexity scores of language models trained on more
readable texts would indicate a low reading level. These language model perplexities are
used as features in a supervised readability classification (Petersen & Ostendorf, 2009; Xia
et al., 2016). On the other hand, we test the possibility of using a neural language model
as a standalone unsupervised readability predictor, since neural language models tend
to capture much more information compared to the traditional n-gram models (Martinc,
Pollak, & Robnik-Šikonja, 2021) (see Section 3.3 for details).

The statistics derived from the language model (i.e., negative log-likelihood) are com-
bined with shallow symbolic readability indicators that consider simple text statistics, such
as sentence length. In this way we obtain a novel readability formula Ranked Sentence
Readability Score (RSRS) that is not only based on shallow statistics but also takes back-
ground knowledge and discourse cohesion into consideration by leveraging language model
statistics. We show that the formula offers good correlation with gold standard readabil-
ity scores across different genres and languages, therefore we can claim that goal G2, i.e.
proposing a new readability formula that offers state-of-the-art performance and can be
easily adapted to specific domains and languages, has been achieved. We can also confirm
hypothesis H3, which stated that a novel readability measure, which would include back-
ground knowledge and discourse cohesion indicators obtained from neural language models
in addition to the standard shallow symbolic lexical sophistication indicators, offers better
readability estimations than traditional readability formulas.

Finally, we propose a novel approach to keyword extraction. In order to decrease the
needed amount of manually labelled data, we propose to leverage the transfer learning tech-
nique, where a keyword tagger is first trained in an unsupervised way as a language model
on a large corpus and then fine-tuned on a (usually) small-sized corpus with manually
labelled keywords. To improve the performance of the model, the transformer architec-
ture was adapted for the specific task at hand by adapting the attention mechanism to
directly model the relation between a token and its position, since positional information
is especially important for keyword detection (see Section 4.3 for details).
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Hypothesis H4 stated that a system for sequence labeling, which combines neural and
symbolic text representations, would achieve performance comparable to state-of-the-art,
while requiring only a fraction of manually labelled data required by neural approaches.
While we did manage to build a system that offers state-of-the-art performance without the
need for a large manually labelled dataset (i.e. we can claim that goal G3 was achieved),
this system nevertheless uses just neural representations, therefore we cannot confirm hy-
pothesis H4. Even more, if we combine this neural approach with a symbolic unsupervised
TF-IDF-based keyword detector, the performance of the system in terms of F1@10 and
F1@5 scores (i.e., the two most common measures of keyword extractor effectiveness) ac-
tually drops. We do show that the proposed neuro-symbolic combination is a good way to
drastically improve the recall of the approach and therefore make it suitable to be used as
a recommendation system in the news media environment (see Section 4.4 for details).

5.2 Discussing the Strength and Weaknesses of the Proposed
Framework

In this thesis, we have compared the proposed neuro-symbolic approach with other state-of-
the-art approaches from the related work across several dimensions. While the performance
of the method (measured in terms of accuracy, F1, precision, recall, etc.) was usually the
main comparison criteria, we have also discussed other important aspects of the approach.
Interpretability was discussed in several places, since it enables the user of a method an
insight into its functioning. This is a crucial aspect, since it allows easier debugging of
a method, transfer of learnings of the method employed into a broader knowledge base
and also offers protection against the bias embedded in the algorithm. In Chapter 4,
we have discussed the computational complexity of different supervised and unsupervised
algorithms for keyword detection, since this aspect affects the ease of usability of a specific
method and is also a dimension, along which there is a clear distinction between supervised
and unsupervised approaches for keyword detection. Finally, ease of adaptability and
transferability was thoroughly discussed in Chapter 3 due to the fact that most readability
formulas in the past have been developed for educational purposes in English speaking
countries and therefore cannot be directly transferred to other languages and domains.
Transferability was also discussed in Chapter 4, where we claimed that state-of-the-art
neural approaches from the related work are hard to transfer to less resourced languages
and domains due to scarce manually labelled resources of sufficient size.

In this section, we compare the strengths and weaknesses of the proposed methods
across the above mentioned dimensions, which reflect different aspects of the methods’
functionality. To be more specific, we compare performance, complexity and scalability,
ease of adaptability and transferability, and interpretability of the developed methods to
the methods that represent state-of-the-art in each specific field (i.e. author profiling,
readability, and keyword extraction).

Performance

We have shown on several use cases that we improved the preexisting state-of-the-art by
employing the proposed approach of combining neural and symbolic representations. Good
performance is therefore a strength of the proposed approach. Nevertheless, in many cases
the gains in performance are not substantial and the method can on some specific datasets
be outperformed by other baseline approaches.

In the author profiling use case, where the language variety classification was tackled
with a combination of CNN and TF-IDF-based features, we have shown that a gain in
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performance is obtained in a large majority of cases when two distinct feature types are
combined (see Table 2.5). Nevertheless, the employment of the method on the ADIC corpus
is a counter example that shows that the synergy between two distinct methods will not
be successful in some specific scenarios. What makes the ADIC example different from
other examples, on which the method works, is the imbalance in the performance of both,
neural and symbolic methods. More specifically, the CNN features perform much worse
(more than 10 percentage points worse) than the TF-IDF features. This indicates that the
synergy can only be achieved if both methods that are combined perform comparably well.
If that is not the case, worse performing features will most likely have a negative effect on
the overall performance.

Another indication of this can be observed on the use case of readability prediction.
Different versions of RSRS scores, which overall offer the best performance, are ranked
badly on the WeeBit corpus. On this specific dataset the perplexity-based scores performed
the worst, in most cases showing no correlation to the gold standard readability scores.
Here, three different traditional readability measures, GFI, ASL and FKGL, outperformed
the best ranked RLM RSRS-simple score, which ranked fourth.

The imbalance effect, which influences the success of synergy between neural and non-
neural features, is harder to confirm on the keyword extraction, since there we only focused
on improving the recall of the keyword extraction method, and the recall cannot be wors-
ened by just expanding the returned list of keyword candidates returned by the TNT-KID
methods with candidates returned by the symbolic TF-IDF-based extraction. Neverthe-
less, the improvement in R@10 in terms of percentage points is the smallest on the Estonian
corpus, where the TF-IDF(tm) method performs the worst.

Complexity and Scalability

When it comes to the computational complexity of the proposed methods, it is in most cases
worse than the baseline methods, since they tend to combine two distinct approaches, which
can be quite complex. This makes the complexity a weakness of the proposed method. In
the case of language variety prediction, feeding the additional sparse TF-IDF weighted bag-
of-n-grams matrix into the network drastically increases the number of network parameters
and consequentially the computational load of the method. The neuro-symbolic approach
is also harder to scale than purely neural methods, since TF-IDF matrix’s proportions
increase linearly with a vocabulary size, meaning that documents coming from very large
corpora with a substantial vocabulary are expensive to represent.

Complexity is also the weakness of the system for readability prediction, since using
language model statistics for determining readability of the text is far more time and com-
putationally demanding than just employing the baseline traditional readability formulas.
On the other hand, applying an additional TF-IDF-based keyword extraction to expand
the list of predictions obtained by a neural method does not add much in terms of time
and computational complexity, since TF-IDF keyword extraction is much less complex
than neural extraction. In the case of keyword extraction, we have also shown that the
proposed TNT-KID neural network has less parameters than the best performing baseline,
GPT + BiLSTM-CRF, and therefore tends to be less computationally demanding.

Interpretability

Despite recent advances (Lundberg & Lee, 2017), neural classifiers are still not completely
interpretable methods. This generally means that if a neural component is added to a
specific symbolic system, the system becomes less interpretable, since insight into some
parts of the system becomes limited. On the other hand, adding a symbolic component
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to a neural system improves the overall interpretability of the system, since some of the
classification rules that the supervised system has learned, or the classification criteria the
unsupervised system has been designed to consider, are easy to inspect and clearly defined.

In the case of language variety classification, we can claim that feeding an additional
TF-IDF weighted n-gram matrix into a neural network increases the overall interpretability
of the system. On the other hand, the proposed approach is less interpretable than most
other state-of-the-art approaches in the field of author profiling, which in most cases rely
on purely symbolic methods. Similar can be said for the approach proposed for readability
detection, since neural language models used in the proposed RSRS formula have limited
interpretability and most baseline methods are symbolic.

When it comes to sequence labelling tasks, where the established approach is the em-
ployment of neural models, the usage of a simple TF-IDF-based keyword extractor does
help with the interpretability. Since the system allows to determine at least for some
keywords why they were chosen, it is more interpretable than most other state-of-the-art
systems. The interpretation is still limited since a large amount of returned keywords is
extracted by a neural TNT-KID method. While we do show that an insight into the system
can be obtained by the visualization of the attention mechanism (Martinc, Škrlj, et al.,
2021), this insight is more restricted than for symbolic methods.

For these reasons, we can conclude that the interpretability can be considered a weak-
ness of the method for at least two out of three use cases presented in the thesis: author
profiling and readability.

Ease of Adaptability and Transferability

Due to the supervised nature of the proposed approaches, we claim that they can be easily
adapted to novel domains and languages. The language variety classification experiments
show that the system works well across eight different language groups without any hyper-
parameter tweaking. There are also no language- or domain-specific features that would
make the transfer problematic.

The readability experiments indicate that the proposed RSRS readability measure offers
robust performance across several languages and domains, which cannot be said for the
traditional readability formulas. This is due to the trainable nature of the language models
the score employs, which can be adapted to each specific readability task, domain and
language.

Finally, keyword extraction experiments show that the proposed transformer-based
approach offers competitive performance across five different languages (English, Croatian,
Estonian, Latvian and Russian). Since the approach relies on language model pretraining,
it requires much less labelled data than most other state-of-the-art neural approaches.
This means that the method can also be employed for keyword extraction in less resourced
languages, where large manually labelled keyword datasets are scarce.

Overall, we can conclude that the proposed methods can be easily adapted and trans-
ferred across different languages and domains. This means that adaptability and transfer-
ability are the strong points of the proposed methods.

5.3 Further Work

While in further work we plan to focus on the weaknesses of the proposed approach, we
will still try to improve the performance and transferability of the methods. For example,
the error analysis that we conducted on Slavic language varieties, as part of the language
variety classification experiments, indicated that the system’s performance could be further
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improved by employing transfer learning techniques (Devlin et al., 2019), since that would
allow the model to obtain some background information useful for language variety clas-
sification. If during pretraining strong semantic connections could be established between
specific named entities and words typical for a specific variety, that would offer a classifier
a strong clue to which variety does a specific document, containing these named entities,
belong.

For readability, we plan to test the RSRS measure on more gold standard readability
corpora from many languages and domains in order to further study the robustness and
transferability of the score. This will require new readability datasets which are currently
rare or not publicly available. The language model training regime could also be improved
by studying how the genre discrepancy between the language model training corpus and
the dataset, for which readability needs to be predicted, affects the performance of the
score. By studying this and also by determining other influencing factors, we could further
improve the performance of the score.

For keyword extraction, we plan to further investigate the influence of language model
pretraining on the system’s performance. We have shown that there is a noticeable dif-
ference between performances of two distinct pretraining regimes, autoregressive language
modelling and masked language modelling, when only limited textual resources are avail-
able. We plan to investigate this line of work further by trying out different pretraining
objectives and by improving the existing objectives (e.g., masking strategy could be further
improved by targeting specific words and phrases for masking in order to maximize the
model’s learning potential). We also plan to test the TNT-KID in a zero-shot cross-lingual
keyword detection setting, where the model would be pretrained on a multilingual cor-
pus, fine-tuned on one language and then tested on the second language. If we managed
to optimize the performance of the model for this specific setting, the model would be-
come transferable even to languages with no manually labelled resources and could replace
unsupervised approaches currently used for these languages.

Another line of experiments we plan to pursue in the scope of further work on the topic
of keyword extraction will be aimed at exactly determining how much domain specific data
is required for the successful pretraining of the TNT-KID model. We will experiment with
training sets of variable sizes and observe the subsequent impact on the performance. Also,
we plan to use other performance measures besides F1@k score, Precision@k and Recall@k
to compare our model to others. Currently, TNT-KID compares better to other systems in
terms of F1@10 than in terms of F1@5, which raises a question how biased these measures
of performance actually are. To make the evaluation more robust, we will apply other
measures, such as for example mean average precision and mean reciprocal rank, which
also consider the ranking of keywords in the retrieved list.

Decreasing the complexity of the models and improving the scalability of the proposed
methods will be one of the two main foci of our further work. For language variety classifi-
cation, we feed the sparse weighted bag-of-n-grams matrix into the neural network, which
drastically increases the number of network parameters and consequentially increases the
computational costs. In the existing study, we managed to minimize the size of the sparse
matrix without compromising the performance of the system by removing n-grams with
low document frequencies from the input matrix but the options for further reducing the
symbolic component of the system are limited. Instead, we plan to avoid feeding the bag-
of-n-grams matrix to the neural classifier altogether and focus on fixing current deficiencies
of CNN neural networks by injecting global document/corpus-level information in a more
efficient manner. One option is the integration of the self-attention mechanism (Vaswani
et al., 2017) into the CNN network. The attention mechanism can be interpreted as an effi-
cient weighting scheme since, among others, it can also determine how much attention the
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model should pay to a specific word. An additional hypothetical advantage of integrating
the attention mechanism into the network would be improved semantic modelling since the
mechanism can also identify important relations between words, which might have been
overlooked in the current implementation of the model.

When it comes to readability and keyword extraction, the time and computational
complexity of the systems could be decreased by the knowledge distillation techniques,
where knowledge encoded in large teacher models can be effectively transferred to a smaller
student model (Sanh et al., 2019). This technique would allow us to decrease the language
models used in the RSRS score and the trained keyword extraction models. For readability,
we also plan to test out novel transformer-based architectures for language modelling (e.g.,
a Transformer-X language model proposed by Dai et al. (2019)) that would be trained
from scratch on corpora with appropriate readability. These models are much faster than
the currently used recurrent and temporal convolutional language models since they allow
more operations to run in parallel.

The other main focus of the further work will be increasing the interpretability of the
models. The easiest way to increase the interpretability and explainability of the models
would be to remove the neural components and rely purely on the symbolic methods, such
as for example tax2vec. This would likely have a detrimental effect on the performance of
the systems for some use cases. Therefore, a preferable option would be to increase the
interpretability of the neural part of the model.

When it comes to language variety classification, the addition of the attention mech-
anism discussed above would improve the interpretability of the network since the mech-
anism can be visualized and offers some insight into the decision process of the network,
as we have shown in Martinc, Škrlj, et al. (2021). Another option we plan to investigate
is the employment of several techniques designed to interpret convolutional networks by
inspecting the convolutional filters and max pooling mechanisms in higher convolutional
layers (Q. Zhang et al., 2018).

Interpretability and explainability are especially important in the readability research,
since systems for determining readability are often used for educational purposes. There,
the users (educators, teachers, etc.) need to understand the cause of the readability pre-
diction. While the RSRS score represents an aggregation of word NLL scores across a
sentence, a more in-depth analysis and visualization of each specific word-level NLL score
would offer a better insight into the system.

Finally, while we have shown that the proposed keyword extraction method is already
explainable through an attention mechanism, which allows to identify words and phrases to
which the classifier paid the most attention, we plan to further improve the interpretability
of the system by employing general explanation techniques such as SHAP (Lundberg &
Lee, 2017).

5.4 Implementation and Availability

The source code for all the experiments presented in this dissertation is publicly available
under the MIT license in order to assure reproducibility of the conducted research. More
specifically, the code is available in the following git repositories:

• Code for experiments presented in Section 2.3 and described in paper ‘PAN 2017:
Author Profiling - Gender and Language Variety Prediction’ (Martinc et
al., 2017): https://github.com/pan-webis-de/martinc17

• Code for experiments presented in Section 2.4 and described in paper ‘tax2vec:

https://github.com/pan-webis-de/martinc17
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Constructing Interpretable Features from Taxonomies for Short Text Clas-
sification’ (Škrlj et al., 2021): https://github.com/SkBlaz/tax2vec

• Code for experiments presented in Section 2.5 and described in paper ‘Combining
N-grams and Deep Convolutional Features for Language Variety Classifi-
cation’ (Martinc & Pollak, 2019): http://source.ijs.si/mmartinc/NLE_2017

• Code for experiments presented in Section 3.3 and described in paper ‘Supervised
and Unsupervised Neural Approaches to Text Readability’ (Martinc, Pol-
lak, & Robnik-Šikonja, 2021): https://gitlab.com/matej.martinc/text_readability

• Code for experiments presented in Section 4.3 and described in paper ‘TNT-KID:
Transformer-based Neural Tagger for Keyword Identification’ (Martinc,
Škrlj, et al., 2021): https://gitlab.com/matej.martinc/tnt_kid/

• Code for experiments presented in Section 4.4 and described in paper ‘Extending
Neural Keyword Extraction with TF-IDF tagset matching’ (Koloski et al.,
2021): https://github.com/bkolosk1/Extending-Neural-Keyword-Extraction-with-
TF-IDF-tagset-matching/

https://github.com/SkBlaz/tax2vec
http://source.ijs.si/mmartinc/NLE_2017
https://gitlab.com/matej.martinc/text_readability
https://gitlab.com/matej.martinc/tnt_kid/
https://github.com/bkolosk1/Extending-Neural-Keyword-Extraction-with-TF-IDF-tagset-matching/
https://github.com/bkolosk1/Extending-Neural-Keyword-Extraction-with-TF-IDF-tagset-matching/
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