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Abstract 

Text mining involves text preprocessing, modeling, knowledge discovery, visualization, and eval-
uation techniques to discover, present, and evaluate knowledge from large collections of text 
documents (text corpora). This thesis addresses the problem of discovering knowledge from large 
text corpora enriched with relational links between the texts. If different relations are involved, 
such relational data can be described in the form of a heterogeneous information network, a 
generalization of the standard information network involving a single relation between the net-
work nodes. If viewed from the network analysis perspective, the same problem can be interpreted 
as the problem of discovering knowledge from heterogeneous information networks enriched with 
texts. We call such networks text-enriched heterogeneous information networks or TEHINs for 
short.  

The main hypothesis researched in the thesis is that structural/relational data, often available 
in real-world scenarios, can be exploited to improve the performance of algorithms employed for 
solving text mining tasks such as text classification and ranking. To support this hypothesis, the 
developed methodology should be applicable to a wide range of data analysis problems, and to 
large corpora of text documents accompanied with relatively large heterogeneous information 
networks. The main motivation for this work is due to the fact that the current general-purpose 
text mining tools are unable to handle texts and relational information in a common knowledge 
discovery setting. The goal of this thesis is thus to develop a general-purpose methodology for 
mining TEHINs in a typical text mining framework. 

The main contribution of this thesis is the developed methodology for mining text-enriched 
heterogeneous information networks, named TEHmINe. It is designed as an easy-to-understand 
workflow, composed of well-established data and text mining components. The main functionality 
of the developed workflow is the projection of texts and structures into a common vector space 
in which knowledge discovery is performed. The methodology can be applied to a wide range of 
data mining problems that involve heterogeneous networks, texts, or a combination of the two 
data types. As an example, we show how a set of methodology building blocks can be used for 
very efficient centroid-based classification of vertices in heterogeneous networks and for drawing 
relatively large graphs and networks. 

We showcase the developed methodology in two real-world use cases. In the video lecture 
categorization use case, we employ the TEHmINe methodology to mine a TEHIN formed out of 
textual data and structured information. We show that the TEHIN contains a lot of useful infor-
mation and that by employing the methodology, we are able to significantly outperform the 
standard text mining approach. Furthermore, in the ontology querying use case, the general idea 
is to rank ontology entities with respect to a search query. To this end, we have adapted the 
proposed methodology for the task of ontology querying. We refer to the derived approach as the 
OntoBridge methodology. It is shown that by combining textual data and relational structure, 
we can significantly improve the performance of the developed ranking system over the baseline 
achieved with a standard text mining approach.   
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Povzetek 

Znanstveno področje rudarjenja besedil združuje postopke predobdelave besedil, izgradnje 
modelov, vizualizacije in evalvacije s ciljem odkrivanja, predstavitve in evalvacije znanja v velikih 
zbirkah (korpusih) besedil. To doktorsko delo naslavlja problem odkrivanja znanja v velikih 
zbirkah besedil, obogatenih z relacijskimi povezavami med besedili. Kadar so te relacije različnih 
tipov, lahko tak podatkovni nabor opišemo s heterogenim informacijskim omrežjem, tj. 
posplošitvijo standardnega modela omrežja z enim samim tipom relacije med vozlišči. Če 
pogledamo na ta problem z vidika analize omrežij, ga lahko interpretiramo kot problem 
odkrivanja znanja v heterogenih informacijskih omrežjih, obogatenih z besedili. Takim 
heterogenim omrežjem rečemo tekstovno obogatena heterogena informacijska omrežja.  

Glavna hipoteza tega doktorskega dela je, da lahko strukturni (relacijski) podatki, ki so 
večkrat na voljo v realnih scenarijih rudarjenja besedil, pripomorejo k izboljšanju delovanja 
algoritmov za reševanje problemov, kot sta klasifikacija in rangiranje besedil. Da bi podprli to 
hipotezo, smo razvili metodologijo, s katero se da nasloviti različne analitske probleme in 
relativno velike podatkovne nabore. Glavni motiv za to delo je dejstvo, da obstoječa splošna 
orodja za tekstovno rudarjenje ne obravnavajo informacij o relacijah med besedili v nekem 
enotnem, skupnem okolju za odkrivanje znanja. Cilj tega doktorskega dela je torej razviti splošno 
metodologijo za rudarjenje v tekstovno obogatenih omrežjih v tipičnem okolju za tekstovno 
rudarjenje. 

Glavni doprinos tega doktorskega dela je razvita metodologija za rudarjenje heterogenih 
informacijskih omrežij, obogatenih z besedili, poimenovana TEHmINe. Osnovana je kot 
enostavno razumljiv delotok, sestavljen iz uveljavljenih gradnikov za podatkovno in tekstovno 
rudarjenje. Osnovna funkcionalnost izdelanega delotoka je projekcija besedil in pripadajoče 
strukture v skupen vektorski prostor, v katerem lahko odkrivamo znanje. Metodologijo lahko 
uporabimo za reševanje različnih problemov, ki vključujejo heterogena omrežja, zbirke besedil ali 
kombinacijo obojega. Kot primer pokažemo, da lahko gradnike predlaganega delotoka uporabimo 
za izredno učinkovito klasifikacijo vozlišč omrežja z metodo najbližjih centroidov in za risanje 
relativno velikih grafov in omrežij. 

Izdelano metodologijo preizkusimo na dveh realnih primerih. Pri primeru kategorizacije 
videoposnetkov predavanj uporabimo metodologijo TEHmINe za rudarjenje besedil, vključenih v 
heterogeno strukturno omrežje podatkov. Pokažemo, da vsebuje heterogeno omrežje veliko 
koristnih informacij in da dobimo z uporabo predlagane metodologije boljše rezultate kot s 
standardnim postopkom rudarjenja besedil. 

Naslednji primer uporabe je iskanje entitet v ontologiji, kjer je osnovna ideja rangiranje entitet 
glede na uporabnikovo poizvedbo. V ta namen smo metodologijo TEHmINe prilagodili za potrebe 
iskanja ontoloških entitet. Izvedeno metodologijo smo poimenovali OntoBridge. Pokazali smo, da 
lahko s kombiniranjem besedil in strukturnih podatkov izboljšamo delovanje algoritma, ki je 
prvotno uporabljal samo informacije, vsebovane v besedilih.
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1 Introduction 

This thesis proposes a new methodology for mining text-enriched heterogeneous information net-
works (TEHINs). The main challenge is to effectively and efficiently handle two types of data, 
texts and heterogeneous information networks, in a common knowledge discovery framework. In 
this chapter, we provide the motivation and problem statement, hypotheses, and objectives of 
this work. In addition, we summarize the scientific contributions, list the main publications re-
sulting from this thesis, and present the structure of the thesis. 

1.1 Problem description 
In this thesis we address the problem of discovering knowledge in large document corpora, known 
as text mining. Given a corpus of labeled documents in a computer readable text format, one of 
the most standard text mining problems is to build a classifier with the best classification accu-
racy on new, unlabeled text documents. Other text mining tasks include, for example, clustering 
of unlabeled documents, document ranking, and document corpora visualization.  

Text mining (Feldman and Sanger, 2006), which aims at extracting useful information from 
collections of text documents, is a well-developed field of computer science. In the last decade, 
the research in this field was driven by the growth of the size and the number of document 
collections available in companies and organizations and especially by the rapid growth of the 
web. Text mining is an interdisciplinary field, adopting tools and methodologies mainly from data 
mining, machine learning, natural language processing, and information retrieval. Text mining is 
typically performed in several steps, including data preprocessing, modeling, and evaluation. The 
data preprocessing step plays a crucial role. In this step, documents are transformed into feature 
vectors according to a certain representational model and then processed with the available ma-
chine learning algorithms that can handle sparse vector collections with high feature dimension-
ality and continuous or binary features such as k-Nearest Neighbors (k-NN), k-Means, Support 
Vector Machine (SVM), and Naive Bayes (Mitchell, 1997). 

This thesis addresses a more complex text mining scenario where the input is not only a set 
of text documents, but also relational data which implicitly or explicitly provides relations be-
tween these documents. Such relational data can be described in the form of a heterogeneous 
information network (Sun and Han, 2012), a generalization of the standard information network. 
A heterogeneous information network is a weighted directed graph in which each vertex is of a 
certain type and each edge can be of several different types. This kind of data structure allows 
us to describe relatively complex relationships in which different actors interact or are interrelated 
in different ways. Some examples of heterogeneous information networks are communication and 
computer networks, transportation networks, epidemic networks, social networks, e-mail networks, 
citation networks, and biological networks. Such networks can also be formed from data in rela-
tional databases and ontologies. In heterogeneous information networks, knowledge discovery is 
usually performed by resorting to approaches from the fields of social network analysis, link 
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analysis, and graph mining, or to approaches, dedicated to mining heterogeneous information 
networks. The latter explicitly address heterogeneity in networks which can lead to better results. 

Looking at this problem from another perspective, we could argue that we address knowledge 
discovery scenarios in which heterogeneous information networks are enriched with texts. This 
basically means that in such networks, some or all objects are associated with sets of text docu-
ments. Examples of such networks include the web (interlinked HTML documents), multimedia 
repositories (interlinked multimedia descriptions, subtitles, slide titles, etc.), social networks of 
professionals (interlinked CVs), citation networks (interlinked publications), and even software 
code (heterogeneously interlinked code comments). From this perspective, we aim at developing 
a methodology for mining text-enriched heterogeneous information networks (TEHINs). Moreo-
ver, we do not approach the problem from the network mining perspective but rather extend a 
text mining framework to solve this complex problem. To this end, we consider a TEHIN as a 
data structure, holding both the structural and textual data.  

The main motivation behind this work comes from the fact that the current general-purpose 
text mining toolsets are unable to handle relational information in a common data mining setting. 
The goal of this thesis is thus to develop a general-purpose methodology for mining TEHINs in 
a typical text mining framework. This would enable a skillful text miner to incorporate structural 
data into his or her existing experimental setups. The main challenge is to find a way to fuse 
textual and structural data in a seamless, effective, and efficient way. This entails at least the 
following requirements: (i) the user should not need to have an extensive knowledge of network 
mining techniques, (ii) the methodology should be applicable to a wide variety of data analysis 
problems, (iii) the combination of the two types of data should usually give better results than a 
standard text mining approach, and (iv) the developed approach needs to be applicable to rela-
tively large datasets.  

1.2 Hypothesis 

The main hypothesis tested in the thesis is that structural data can be exploited to improve the 
performance of algorithms employed for solving text mining tasks, such as text classification and 
ranking. 

The methodology developed with the goal to support this hypothesis should also conform to 
certain other requirements. Most notably, it should handle heterogeneous structural and textual 
data in a common text mining framework and it should be applicable to a wide range of data 
analysis problems. Moreover, it should be conceived as an easy-to-understand data analysis work-
flow, employing well-established data analysis techniques, applicable to relatively large datasets.  

We confirm this hypothesis in two real-world use cases. In Chapter 7, we present a use case in 
categorizing video lectures hosted at VideoLectures.net, one of the largest web sites hosting video-
recorded scientific and educational lectures and presentations (Online reference [15]). We employ 
the devised methodology to combine textual data and structure from a TEHIN formed out of 
the available VideoLectures.net data. We show that the TEHIN contains a lot of useful infor-
mation and that by employing the devised methodology, we are able to significantly outperform 
the standard text mining approach. Furthermore, in Chapter 8, we present an approach to on-
tology querying where the general idea is to rank ontology entities with respect to a query. The 
baselines were set with a standard text mining approach. We show that combining textual data 
and structure significantly improves the performance of the developed ranking system over the 
baselines. 



Introduction 3 

 

1.3 Objectives and contributions 
The main goal of this thesis is to develop a methodology for mining text-enriched heterogeneous 
information networks (TEHINs). This main goal consists of a set of objectives. In the following, 
we summarize the main objectives and the contributions that were made within each of these 
objectives. 
Objective 1: Provide motivation, requirements, and background for mining text-enriched hetero-
geneous information networks. The contributions made in the scope of this objective are the 
following:  
• We introduce the concept of a text-enriched heterogeneous information network (TEHIN). 

We argue that in many real-life data mining scenarios involving document analysis, the ac-
companying data can be represented in the form of heterogeneous information networks. This 
kind of a dataset can be represented as a TEHIN and serve as a source of data in a data 
analysis process. We address such a data analysis setting by proposing a methodology that 
takes advantage of both types of data. 

• We provide an overview of the related work from the fields of text mining, link analysis, data 
fusion, and heterogeneous information network mining. Furthermore, we thoroughly describe 
the selected text mining framework. We discuss the routine for representing texts as bag-of-
words (BOW) vectors and present several classification and clustering algorithms suited for 
working with BOW vectors. We also thoroughly discuss several approaches to embedding 
graphs and networks into vector spaces. 

Objective 2: Devise a conceptual workflow-based view of the methodology. The contributions made 
in the scope of this objective are the following:  
• We provide a conceptual workflow-based overview of the proposed methodology for mining 

TEHINs. By setting a range of requirements to narrow down the space of possible method-
ologies, we provide an initial view on the methodology relatively early in the process. The 
proposed methodology is based on a text mining framework. It consists of two separate 
pipelines, one for processing texts and the other for processing the structure of a TEHIN. 
The texts are projected into a BOW space. The structure, on the other hand, is projected 
into a set of BOW-like spaces with the use of a vector-space embedding technique. The 
resulting vector spaces are in the end fused together, resulting in a common vector space in 
which knowledge discovery is performed in a standard way. 

• We argue for projecting graphs into vector spaces by using the Personalized PageRank (PPR) 
algorithm. The structure-processing pipeline of the methodology workflow employs a vector-
space embedding technique based on PPR. We provide intuitive interpretations of similarity 
metrics based on dot product and cosine similarity in PPR spaces. We also show a relation-
ship between PPR vectors and BOW vectors by providing an analogy based on the random 
writer principle.  

• We present (and argue for) a technique for decomposing a heterogeneous information network 
into a set of graphs. Since PPR originally works on weighted directed graphs, we present an 
approach for decomposing a heterogeneous information network into a set of (weighted di-
rected) derived graphs. We provide and argue for several desirable properties of the relation 
represented by the edges in a derived graph. Specifically, we claim that such relation needs 
to model an aspect of similarity and needs to show properties of symmetry, transitivity, and 
reflexivity. 
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• We present a technique for combining BOW vectors and (several sets of) PPR vectors into 
combined BOW-like vectors. We present a simple and pragmatic data fusion model that we 
use as a building block in the proposed methodology. From a general perspective, we propose 
to concatenate the vectors and apply a feature weighting scheme to account for the different 
types of data. To explain the theoretical background, we establish a relationship between 
vectors and linear kernels. Furthermore, we show several desirable properties of such com-
bined vectors. 

• We present a very efficient way of computing graph-based centroids. In our TEHIN mining 
framework, the nearest centroid classifier offers very good performance and is much more 
efficient than many other classifiers. This motivates the development of a new graph-based 
nearest centroid classifier that uses PPR to compute the centroids very efficiently. We call 
the devised algorithm the PageRank-based nearest centroid classifier (PRNCC). The algo-
rithm was evaluated both in terms of its efficiency and accuracy in the VideoLectures.net 
use case. It outperforms the other two tested classification algorithms (i.e., 𝑘𝑘-NN and SVM) 
from both these two aspects. 

Objective 3: Implement the developed components. We implement the developed techniques as a 
software library and/or a set of workflow components. The contributions made in the scope of 
this objective are the following:  
• We implement the devised components as a software library called LATINO (Link Analysis 

and Text mINing toolbOx). LATINO implements a typical text preprocessing routine in which 
it offers a range of algorithms and language resources for tokenization, stop word removal, 
stemming, lemmatization, term extraction, and term weighting. In addition, the library pro-
vides a collection of algorithms for supervised and unsupervised learning, most notably for 
classification and clustering, including the nearest centroid classifier, support vector machine, 
naive Bayes, and 𝑘𝑘-means clustering. LATINO is publicly available under the MIT open 
source license.  

• We provide some of the functionality of LATINO as a set of components in a web-based data 
mining workflow construction and execution framework called ClowdFlows. We implement a 
set of wrappers that expose some of the functionality of LATINO as a set of ClowdFlows 
components. Instead of discussing the underlying software library, we present these compo-
nents in this thesis. We present workflows and their components for text preprocessing, clas-
sification, clustering, and for preprocessing TEHINs.  

Objective 4: Showcase the methodology in real-life use cases. We employ the developed method-
ology in two separate real-life use cases. The contributions made in the scope of this objective 
are the following:  
• We develop an automatic categorization tool for video lectures hosted at VideoLectures.net. 

We employ the devised methodology to combine textual data and structure from a TEHIN 
formed out of the available VideoLectures.net data. We compare the methodology-based 
classifiers with a standard text mining routine and diffusion kernels (DK), which set relatively 
high accuracy standards. Our approach manages to beat these standards. It outperforms the 
standard text mining routine for 19% on the top-1 metric and for 10.4% on the top-10 metric. 
This confirms our claim that a lot of useful information is available in the structure of a 
TEHIN. 

• We devise an approach to drawing relatively large graphs by using our vector-space embedding 
technique and provide means for visualization-based exploration of graphs and vector spaces. 
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In the scope of the VideoLectures.net use case, we visualize the graphs extracted from the 
TEHIN by using a distance-preserving projection of PPR vectors onto a 2-dimensional plane. 
This technique was originally developed for visualizing collections of texts (i.e., collections of 
BOW vectors). We thus showed that our vector-space embedding technique can also be used 
for drawing relatively large graphs. Furthermore, it can also be used for visualizing collections 
of vectors from a fused vector space produced by our methodology. 

• We devise an approach to representing ontologies as graphs. In the scope of the ontology 
querying use case, we design two different approaches to representing ontologies as graphs 
(called the graph-of-concepts and graph-of-triples, respectively). This replaces two steps in 
the proposed methodology: the TEHIN decomposition step and the data fusion step. The 
development of these new steps was required due to a very high level of heterogeneity in an 
ontology-based TEHIN. 

• We devise and evaluate an approach to ontology querying. We develop a system for retrieving 
entities (i.e., concepts and domain-relation-range triples) from an ontology. The general idea 
is to rank ontology entities according to a user’s query. The baselines are set with a standard 
text mining approach. We show that combining textual data and structure—by using the 
developed ontology-querying methodology—improves the performance of the developed que-
rying system over the baselines. The concept ranking is improved for 5.47% over the baseline 
area-under-curve (AUC) and the triple ranking for 3.18%. 

• We implement Visual OntoBridge (VOB), a software application for supporting the user in 
semantic annotation tasks. On one hand, VOB provides functionality to annotate resource 
schemas manually. This means that the user has the ability to browse the domain ontology, 
select concepts relevant for the annotation at hand, and interconnect them as appropriate. 
On the other hand, the user can enter a set of Google-like queries to retrieve concepts and 
domain-relation-range triples potentially relevant for the annotation. This search functional-
ity is based on the devised approach to ontology querying. 

1.4 Main publications related to the thesis 

The methodology for mining TEHINs outlined in Chapter 5, together with the video lecture 
categorization use case presented in Chapter 7, was presented at the Discovery Science conference 
in Espoo, Finland (Grčar and Lavrač, 2011). An extended version of this work was subsequently 
published in The Computer Journal (Grčar et al., 2013). Some of the research, leading to these 
publications, was first published as a project report in the course of the EU project TAO, Tran-
sitioning Applications to Ontologies (Online reference [16]). In addition, the specific implemen-
tation of the least-squares meshes algorithm, employed in the lecture categorization use case for 
drawing graphs, was presented at the Discovery Science conference in Canberra, Australia (Grčar 
et al., 2010). The video lecture categorization software prototype was also presented at ECML-
PKDD in Bled, Slovenia (Grčar et al., 2009a). 

The methodology for ontology querying was presented at the Pacific Rim International Con-
ference on Artificial Intelligence (PRICAI) in Kuching, Malaysia (Grčar et al., 2012). The pre-
liminary research, leading to this publication, was published as a project report in the course of 
the EU project SWING, Semantic Web Services Interoperability for Geospatial Decision Making 
(Andrei et al., 2008). A related paper on term matching in semantic networks was subsequently 
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published by Springer (Grčar et al., 2009b). The ontology querying software prototype was also 
presented at ECML-PKDD in Bled, Slovenia (Grčar and Mladenić, 2009). 

The following author’s publications are related to this thesis: 
• Grčar, M.; Trdin, N.; Lavrač, N. A Methodology for Mining Document-Enriched Heteroge-

neous Information Networks. The Computer Journal 56(3), 321–335, SCI IF 0.888 (2013). 
• Grčar, M.; Lavrač, N. A Methodology for Mining Document-Enriched Heterogeneous In-

formation Networks. In: Proceedings of the 14th International Conference on Discovery 
Science, Lecture Notes in Computer Science 6926, 107–121 (Springer, Berlin, Heidelberg, 
New York, 2011). 

• Grčar, M.; Podpečan, V.; Juršič, M.; Lavrač, N. Efficient Visualization of Document 
Streams. In: Proceedings of the 13th International Conference on Discovery Science, Lecture 
Notes in Computer Science 6332, 174–188 (Springer, Berlin, Heidelberg, New York, 2010). 

• Grčar, M.; Mladenić, D.; Keše, P. Semi-Automatic Categorization of Videos on VideoLec-
tures.net. In: Proceedings of the European Conference on Machine Learning and Principles 
and Practice of Knowledge Discovery in Databases (ECML-PKDD), Lecture Notes in Com-
puter Science 5782, 726–729 (Springer, Berlin, Heidelberg, New York, 2009). 

• Grčar, M.; Podpečan, V.; Sluban, B.; Mozetič, I. Ontology Querying Support in Semantic 
Annotation Process. In: Proceedings of the 12th Pacific Rim International Conference on 
Artificial Intelligence (PRICAI), Lecture Notes in Computer Science 7458, 76–87 (Springer, 
Berlin, Heidelberg, New York, 2012a). 

• Andrei, M.; Berre, A.; Costa, L.; Duchesne, P.; Fitzner, D.; Grčar, M.; Hoffmann, J.; Klien, 
E.; Langlois, J.; Limyr, A.; Maue, P.; Schade, S.; Steinmetz, N.; Tertre, F.; Vasiliu, L.; 
Zaharia, R.; N, Z. SWING: An Integrated Environment for Geospatial Semantic Web Ser-
vices. In: Proceedings of the 6th European Semantic Web Conference (ESWC), Lecture 
Notes in Computer Science 5021, 767–771 (Springer, Berlin, Heidelberg, New York, 2008). 

• Grčar, M.; Klien, E.; Novak, B. Using Term-Matching Algorithms for the Annotation of 
Geo-services. In: Berendt, B. et al. (eds) Knowledge Discovery Enhanced with Semantic and 
Social Information, Studies in Computational Intelligence 220, 127–143 (Springer, Berlin, 
Heidelberg, New York, 2009b). 

• Grčar, M.; Mladenić, D. Visual OntoBridge: Semi-Automatic Semantic Annotation Soft-
ware. In: Proceedings of the European Conference on Machine Learning and Principles and 
Practice of Knowledge Discovery in Databases (ECML-PKDD), Lecture Notes in Computer 
Science 5782, 726–729 (Springer, Berlin, Heidelberg, New York, 2009). 

1.5 Thesis structure 
After setting grounds for this thesis by presenting the motivation, hypotheses, goals, contribu-
tions, and thesis structure in Chapter 1, we provide an overview of the related work in Chapter 
2. Discovering knowledge in a heterogeneous setup envisioned in this thesis requires us to address 
two different fields of computer science, (i) text mining and (ii) mining heterogeneous information 
networks. In Chapter 2, we thus briefly discuss the related work from these two fields of science. 
We also touch upon some other fields (such as data mining, machine learning, and data fusion) 
that we explore to devise the necessary parts of our methodology. 

In Chapter 3, we first present two motivating examples. The first one is based on a network 
of scientific publications and the second one on a simple ontology used in a semantic annotation 
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process. In addition, we set several requirements to narrow down the infinite space of all possible 
methodologies. Most importantly, these requirements define the scope of the methodology in 
terms of input data and applicability. Specifically, it is required that (i) the methodology is able 
to handle both texts and structure of a TEHIN, (ii) it is able to handle heterogeneity in the 
structure of a TEHIN, and (iii) it is generally applicable (i.e., to the extent of a typical data 
mining framework). The latter and also a set of other requirements suggest basing the method-
ology on an existing data mining framework. The framework of our choice is a text mining 
framework based on the bag-of-words (BOW) representation of texts. This choice enables us to 
provide an initial workflow-based view on the methodology. To demonstrate the versatility of the 
methodology, we also present a methodology for ontology querying (related to the second moti-
vating example), which we construct from the building blocks of the proposed methodology. 

The two proposed methodologies—the general-purpose TEHIN mining methodology named 
TEHmINe and the ontology querying methodology named OntoBridge—are based on a text 
mining framework. In Chapter 4, we present this framework—specifically the text preprocessing 
routine and several suitable machine learning algorithms—and discuss the related theoretical 
background. The described text mining techniques are implemented as part of this thesis as a 
software library called LATINO (Link Analysis and Text Mining Toolbox). A large part of 
LATINO is also made available in the ClowdFlows platform, i.e., a web-based platform for com-
posing and executing data mining workflows by means of visual programming. We present the 
implemented ClowdFlows components in the second part of this chapter. 

In Chapter 5, we develop the structure preprocessing part of TEHmINe. This provides a 
complete specification of the methodology and the grounds for its implementation. To provide 
the basis for devising the structure-preprocessing part of the methodology, we first present several 
approaches from network analysis for embedding networks into vector spaces. We then argue for 
the use of Personalized PageRank (PPR) in the structure preprocessing phase by providing intu-
itive interpretations of similarity metrics in PPR spaces. Moreover, we show a relationship be-
tween PPR vectors and BOW vectors by providing an analogy based on the random writer 
principle. Since PPR originally works on directed weighted graphs, we show how to decompose a 
heterogeneous information network into a set of directed weighted graphs. As the last missing 
piece, we discuss the process of fusing different modalities of a heterogeneous information network 
and the accompanying texts into a common vector space in which knowledge discovery can be 
performed. In addition, we devise an algorithm for an efficient structure-based centroid compu-
tation with PPR. The use of this centroid-computation technique in the classical nearest centroid 
classifier substantially speeds up its training phase. In the last part, we give a specification for 
implementing the structure preprocessing components in ClowdFlows. 

In Chapter 6, we present the ontology querying methodology named OntoBridge. This meth-
odology is derived from the general-purpose TEHIN mining methodology. However, it has certain 
specifics that we thoroughly discuss in this chapter. First, we present two different approaches to 
transforming ontologies into TEHINs (called the graph-of-concepts and graph-of-triples, respec-
tively). These texts were formed from search-result snippets obtained by querying a web search 
engine. We present a different data fusion approach required due to a high level of heterogeneity 
in an ontology-based TEHIN: we use textual data to assign weights to the edges thus forming a 
weighted directed graph. Such a graph can then be used for further analysis. 

In Chapter 7, we present the video lecture categorization use case. The aim of this use case is 
to develop an automatic categorization tool for video lectures hosted at VideoLectures.net, one 
of the world’s largest scientific and educational video web sites. A snapshot of the database 
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provided to us contained 3,520 lectures, 1,156 of which were manually categorized. The taxonomy 
into which the lectures were categorized contained 129 categories. We employed the developed 
methodology to combine textual data and structure from a TEHIN formed out of the available 
VideoLectures.net data. We decomposed the TEHIN into three graphs that we called the viewed-
together, same-author, and same-event graph. We compared our methodology with the standard 
text mining routine and diffusion kernels (DK). Both these two competitors set relatively high 
standards. The proposed methodology managed to beat these baselines. It outperformed the 
standard text mining routine for 19% on the top-1 metric and for 10.4% on the top-10 metric (in 
absolute terms). This confirms our claim that a lot of useful information is available in the 
structure of a TEHIN. In this chapter, we also present a visualization-guided analysis which 
reveals that derived graphs with many disconnected components are unable to perform well when 
not used in a combination with other types of data. For the purpose of this analysis, we use a 
distance-preserving projection of PPR vectors onto a 2-dimensional plane. This technique was 
originally developed for visualizing collections of texts (i.e., collections of BOW vectors). We thus 
show that our methodology can also be used for drawing relatively large graphs. 

In Chapter 8, we present the ontology querying use case. The aim is to develop a system for 
retrieving entities (i.e., concepts and domain-relation-range triples) from an ontology. The general 
idea is to rank ontology entities with respect to a user’s query. The baselines are set with a 
standard text mining approach. We show that combining textual data and structure improves 
the performance of the developed ranking system over the baselines. The concept ranking is 
improved for 5.47% over the baseline area-under-curve (AUC) and the triple ranking for 3.18% 
(in absolute terms). 

In Chapter 9, we first review the TEHmINe methodology with respect to the requirements 
defined in Chapter 3. Finally, we conclude the thesis by presenting several ideas for further work. 
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2 Related Work 

Text-enriched heterogeneous information networks (TEHINs) are data structures that describe 
instances with two different types of data: (i) texts and (ii) heterogeneous information networks. 
Discovering knowledge in such a heterogeneous setup requires to employ two different fields of 
computer science, (i) text mining and (ii) mining heterogeneous information networks. In the 
following, we briefly discuss related work from these two fields of science. We also touch upon 
some other fields (such as data mining, machine learning, and data fusion) that we explore to 
devise all the necessary parts of our methodology. 

2.1 Data mining 
Data mining originally refers to discovering knowledge from large databases (Witten et al., 2011). 
It employs methods mainly from the fields of database systems, artificial intelligence, machine 
learning, and statistics with the goal of extracting information, knowledge, and patterns from 
large amounts of data. 

While data mining borrows its methods from other fields of science, it is itself more applica-
tion-oriented and also defines a high-level process for knowledge discovery. There have been sev-
eral attempts to standardize this process. The most widely known data mining process model 
and an industry standard for applying data mining techniques is CRISP-DM, Cross-Industry 
Standard for Data Mining (Shearer, 2000). It is an iterative process and consists of the following 
six major stages (see Figure 2.1): 

1. Business understanding. This stage focuses on (i) understanding the problem and the re-
quirements from a business perspective, (ii) formulating the problem as a machine learning 
task, and also (iii) devising a plan to solve the task. 

2. Data understanding. In this stage, (i) data acquisition is performed and (ii) the data is 
explored in order for the analyst to get more familiar with the data format, content, and 
properties.  

3. Data preparation. In the data preparation stage, the raw data is prepared for further pro-
cessing. This involves activities such as data selection, cleaning, and transformation. 

4. Modeling. In this stage, (i) various modeling techniques are applied and (ii) the resulting 
models are evaluated from a data analysis perspective. Note that it is often necessary to 
backtrack in order to prepare a more suitable dataset. 

5. Validation. This stage focuses on validating the solution with respect to the business re-
quirements. If the solution fails to reach the business objectives, it is necessary to repeat 
the entire cycle in order to improve the solution or rethink the objectives. 

6. Deployment. The deployment stage focuses on delivering the results (discovered knowledge) 
to the end user (customer). This can be as simple as generating a report or as complex as 
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implementing a repeatable data mining process and integrating it into the customer’s in-
formation system. 

 

Since this process is rather general, it can easily be adapted for analyzing datasets other than 
structured tabular data (database tables), such as texts (text mining) or graphs (graph mining). 
The TEHIN-mining methodology proposed in this thesis can also be aligned with this process. 
We mainly develop components that participate in the data preparation and modeling phase of 
this entire process. 

2.2 Text mining 
Text mining (Feldman and Sanger, 2006) incorporates text preprocessing, modeling (knowledge 
discovery), visualization, and evaluation techniques to discover, present, and evaluate knowledge 
from large collections of text documents (also called text corpora). It adopts methodologies and 
tools most notably from data mining, machine learning, information retrieval, and natural lan-
guage processing. 

In contrast to a typical data mining problem, where data is expected to be in a structured 
tabular form, raw text documents are in general unstructured and first need to be transformed 
into a suitable representation. Two predominant approaches are used in practice.  

In the first approach, documents are converted into high-dimensional vectors in which dimen-
sions are usually terms (i.e., words and phrases) extracted from the corpus. The vectors are 
computed by employing several basic NLP techniques and a feature-weighting scheme (Salton, 
1989). Since the order of terms is discarded in this process, such vectors are also referred to as 

 
Figure 2.1: Cross-Industry Standard for Data Mining (CRISP-DM). 
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bag-of-words vectors or simply bags-of-words (BOW). This approach originates from information 
retrieval, a scientific field concerned with the retrieval of information objects (such as documents) 
relevant to the user’s information needs. Another approach found in the literature is to convert 
texts into graphs of recognized entities (e.g., Feldman and Sanger (2006), Chapter XI) or ex-
tracted triples (e.g., Leskovec et al. (2004)) by employing relatively complex NLP techniques such 
as part-of-speech tagging, chunking, and parsing. Such representation of text is then further 
analyzed with link analysis techniques (Getoor and Diehl, 2005; Nooy et al., 2005). In this thesis, 
we limit ourselves to the case where documents are represented as bag-of-words vectors in which 
features are words and phrases. We provide more details on this kind of BOW model and the 
corresponding text preprocessing routine in Section 4.1.1. 

In the modeling phase of a text mining process, many different techniques to discover, extract, 
and organize knowledge from the preprocessed text documents can be employed. We limit our-
selves to the setting where modeling is performed by the use of machine learning techniques. 
Machine learning is concerned with the development of algorithms that allow computer programs 
to learn from past experience (Mitchell, 1997). In more technical terms, machine learning refers 
to a collection of algorithms that take as input empirical data (e.g., from databases or sensors) 
and try to discover some characteristics (rules, constraints, patterns, features) of the process that 
generated the data. Although there exist many generally recognized categories of machine learn-
ing algorithms, we only discuss supervised and unsupervised learning methods in this thesis. 
Within these two categories, we additionally limit ourselves to the classification and clustering 
algorithms, which leaves out most notably the regression methods.  

Classification and regression are both instances of supervised learning where a training set of 
manually or otherwise correctly labeled observations is available. Classification refers to assigning 
an instance to one or more predefined discrete classes (in this case, the labels correspond to these 
classes). In contrast, regression refers to assigning a numeric value to an instance (in this case, 
the labels are numeric values). In both cases, a training algorithm first builds a model which 
contains knowledge derived from the training set. This model is then applied in the prediction 
phase to label new instances.  

Clustering, on the other hand, is a form of unsupervised learning and is employed when train-
ing labels are not available. The task of a clustering algorithm is to arrange instances into groups 
(i.e., clusters) so that the instances in the same group are more similar to each other than to 
those in the other groups. Sections 4.1.3 and 4.1.4 provide more details on the selected machine 
learning principles and techniques and are focusing on the algorithms that are suitable for pro-
cessing bag-of-words vectors constructed in the text preprocessing phase. 

Text mining techniques can be employed for solving many different tasks such as text catego-
rization (also known as “text classification”), topic ontology construction (Fortuna et al., 2005), 
text corpora visualization (Fortuna et al., 2006; Vieira et al., 2006), and user profiling (Grčar et 
al., 2005; Kim and Chan, 2008). For the use cases presented in this thesis (Chapters 7 and 8), 
the most important tasks are text categorization and text corpus visualization. 

Text categorization is a widely researched area due to its value in real-life applications such 
as indexing of scientific articles, patent categorization, spam filtering, and web page categoriza-
tion (Sebastiani, 2002). In (Mladenić, 1998), the authors present a method for categorizing web 
pages into the Yahoo! taxonomy. They employ a set of Naive Bayes classifiers, one for each 
category in the taxonomy. For each category, the corresponding classifier gives the probability 
that the document belongs to this category. A similar approach is presented in (Grobelnik and 
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Mladenić, 2005), where web pages are being categorized into the DMOZ taxonomy (Online ref-
erence [11]). Each category is modeled with the corresponding centroid BOW vector and a doc-
ument is categorized simply by computing the cosine similarity between the document’s BOW 
vector and each of the computed centroids. Nearest centroid text classification was explored also 
by other researchers (e.g., Han and Karypis, 2000). 

Text corpora visualization techniques can be used for gaining insight into data and thus guid-
ing knowledge discovery processes. Document space visualization techniques are used to provide 
overviews and insights into relatively large document collections. A document space is essentially 
a high-dimensional BOW vector space. To visualize a document space, feature vectors need to be 
projected onto a two-dimensional canvas so that the neighborhoods of points in the planar pro-
jection reflect the neighborhoods of vectors in the original high-dimensional space. In this thesis, 
we employ a document space visualization technique based on least-square meshes (Sorkine and 
Cohen-Or, 2004; Vieira et al., 2006)—more specifically, the implementation presented in (Grčar 
et al., 2010)—to visualize relatively large networks (see Section 7.6). 

2.3 Network analysis and heterogeneous network mining 

Network analysis refers to studying relations or interactions between instances (entities). The 
modern network analysis approaches originate mainly from employing mathematical theories 
about graphs and networks in social sciences. To study human societies, exploring relationships 
between participants, in addition to studying their properties, became increasingly important in 
the early eighties (Burt and Minor, 1983). Since then, network analysis became its own field of 
science, covering many different types of networked data, such as bibliographic networks, online 
social networks, biological networks, computer networks, and transportation networks. In the 
area of network analysis, a different family of data analysis algorithms was devised to perform 
typical machine learning tasks such as ranking, classification, and clustering.  

A relatively common property of network analysis algorithms is the ability to assess similarities 
between vertices in terms of how strongly they are interconnected. Assessing these similarities is 
often used to rank vertices according to how relevant they are either in general or to another 
vertex (or a group of vertices). Such ranking and similarity assessment methods are used in 
information retrieval systems where the general idea is to propagate relevance from query nodes 
into the rest of the network, assigning higher ranks to more relevant objects. The most well-
known relevance assessment algorithm is PageRank (Page et al., 1999) which is a measure of 
relative importance of a vertex in a directed weighted graph. A variation of the original algorithm, 
called “personalized PageRank” (PPR), can be used to measure importance of a vertex with 
respect to another vertex or a group of vertices (Page et al., 1999). Other relevance and similarity 
assessment algorithms include spreading activation (Crestani, 1997), hubs and authorities (HITS) 
(Kleinberg, 1999), SimRank (Jeh and Widom, 2002), and diffusion kernels (DK) (Kondor and 
Lafferty, 2002). We discuss some of these algorithms in more details in Section 5.1. 

In recent years, the concept of heterogeneous information networks (Sun and Han, 2012), a 
generalization of standard information networks, is gaining attention. While a (homogeneous) 
network is a weighted directed graph with one single type of vertices and one single type of edges, 
a heterogeneous information network is a weighted directed graph in which each vertex and each 
edge can be of a specific type. Most approaches, devised for homogeneous information networks, 
can also be applied to heterogeneous information networks by simply ignoring the nature of links 
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and/or vertices. Discarding this information, however, can lead to poorer results as noted in 
(Davis et al., 2011). 

As is the case with standard networks, ranking and similarity assessment are important tools 
when mining heterogeneous information networks. In the area of information retrieval, different 
techniques to rank objects in a heterogeneous setting were developed. ObjectRank (Balmin et al., 
2004) employs global PageRank (importance) and PPR (relevance) to enhance the keyword 
search in databases. Specifically, the authors convert a relational database of scientific papers 
into a graph by constructing two graphs: the data graph (interrelated instances) and the schema 
graph (concepts and relations). Similarly, EntityAuthority (Stoyanovich et al. (2007)) is a ranking 
method which defines a graph-based data model that combines web pages, extracted (named) 
entities, and ontological structure in order to improve the quality of keyword-based retrieval of 
either pages or entities. The authors evaluate three conceptually different methods for determin-
ing relevant pages and/or entities in such graphs. One of the methods is based on mutual rein-
forcement between pages and entities, while the other two approaches are based on PageRank 
and HITS (Kleinberg, 1999), respectively.  

In (Sun and Han, 2012), the authors propose a ranking technique (called “authority ranking”) 
for bipartite bibliographical networks in which authors are linked to their papers. The proposed 
ranking approach is a generalization of PageRank to bipartite networks, assigning ranks to au-
thors and papers separately. Furthermore, the authors propose two algorithms, namely RankClus 
(Sun et al., 2009a) and NetClus (Sun et al., 2009b), which perform ranking-based clustering. The 
general idea behind ranking-based clustering is that highly-ranked objects within a cluster more 
likely belong to that cluster. These two algorithms thus iteratively perform clustering and ranking, 
adjusting the clusters according to the ranking results in each iteration. While RankClus can 
only be employed on bipartite networks, NetClus is designed to work on a more general type of 
networks. 

To address classification problems in heterogeneous information networks, a generalized label 
propagation methodology of Zhou et al. (2003) can be used (Hwang and Kuang, 2010; Sun and 
Han, 2012). Another approach called GNetMine (Ji et al., 2010) is based on the graph regulari-
zation technique originally proposed by Zhou and Schölkopf (2004) and can be used to take 
network heterogeneity into account. Taking the general idea of GNetMine even further, Ji et al. 
(2011) propose a ranking-based classification algorithm called RankClass. The general idea of 
ranking-based classification is that vertices connected to highly-ranked vertices within a class 
likely belong to this same class. RankClass employs an iterative two-step process in which (i) 
labels are assigned to unlabeled vertices and (ii) within-class rankings are recomputed.  

The approach that we propose in this thesis differs from the aforementioned approaches mainly 
because it decouples the “authority propagation” technique from the notion of heterogeneity 
which comes into play later on, in the data fusion stage of the proposed process. 

2.4 Data fusion for mining heterogeneous data 
This section outlines some of the related approaches to fusing heterogeneous data. 

Data fusion refers to combining different types of data (media) in order to perform a data 
analysis task. It is widely studied in the field of multimedia analysis where data is obtained from 
different modalities such as video, audio, text and motion. 
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An extensive survey is presented by Atrey et al. (2010). According to the authors of the survey, 
data fusion can either be performed on the feature level (early fusion) or on the decision level 
(late fusion). Feature-level fusion refers to combining features or feature vectors in the data 
transformation process. Propositionalization (Kramer et al., 2001), an approach well known from 
inductive logic programming (Lavrač and Džeroski, 1994; Muggleton, 1992) and relational data 
mining (Džeroski and Lavrač, 2001), belongs to this category of data fusion techniques. It refers 
to the process of converting a relational knowledge representation into a propositional feature 
vector representation. An extensive survey of propositionalization approaches can be found in 
(Kramer et al., 2001). Feature-level fusion is advantageous in that the employed training algo-
rithm can study correlations between features, which is not possible with the decision-level ap-
proaches.  

On the other hand, decision-level fusion refers to solving the task for each modality separately 
and then combining the results through a fusion model (e.g., Caruana et al., 2006; Getoor and 
Diehl, 2005). One of the simplest late fusion approaches is majority voting which is often used in 
ensembles of machine learning models. If the data mining approach is based on the probabilistic 
framework (e.g., Naive Bayes, logistic regression, maximum entropy model), it is possible to 
perform fusion by using Bayesian inference (e.g., Lu and Getoor, 2003). The decision-level ap-
proaches have the advantages of (i) being more scalable (several smaller models are built instead 
of one large model), (ii) allowing the use of different models in the inference phase and (iii) 
providing a uniform representation of data (i.e. a set of decisions) that is further processed with 
a fusion model.  

We additionally point out that data fusion can also be performed at the kernel level, which 
corresponds to combining kernels over different modalities. The most obvious advantage of this 
type of fusion, similarly to the decision-level approaches, is that the fusion model deals with a 
uniform data representation (i.e. a set of kernels). One of the disadvantages is that only the 
kernel-based data analysis algorithms can be employed after the fusion process. Lanckriet et al. 
(2004) propose a general-purpose methodology for kernel-based data fusion. They represent each 
type of data with a kernel and then compute a weighted linear combination of kernels (which is 
again a kernel). The linear-combination weights are computed through an optimization process 
called Multiple Kernel Learning (MKL) (Rakotomamonjy et al., 2008; Vishwanathan et al., 2010), 
integrated into the SVM’s margin maximization process. The authors define a quadratically con-
strained quadratic program in order to compute the support vectors and linear-combination 
weights that maximize the margin. In the paper, the authors employ their methodology for pre-
dicting protein functions in yeast. They fuse together six different kernels (four of them are 
diffusion kernels based on graph structures). They show that their data fusion approach outper-
forms the SVM trained on any single type of data, as well as the previously advertised method 
based on Markov random fields. In the approach that we employ in our use case (see Section 7), 
we do not employ MKL but rather a stochastic optimizer called differential evolution (DE) (Storn 
and Price, 1997), which enables us to directly optimize the target evaluation metric. 
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3 Requirements and Methodology Overview 

In this chapter, we give an overview of the proposed TEHmINe methodology. We also present a 
methodology for ontology querying which we derive from TEHmINe and thus demonstrate its 
versatility. We provide motivating examples, requirements, and discuss the two methodologies in 
terms of conceptual data mining workflows. 

3.1 Motivating examples 

A data mining task often involves data in the form of heterogeneous information networks in 
which (some) objects are associated with texts (e.g., the web, social networks, e-mail networks, 
text-enriched ontologies, etc.). In the following, we present two examples that motivate us to 
create and mine text-enriched heterogeneous information networks. 

3.1.1 Papers and authors network example 

One of the most typical scenarios involving text-enriched heterogeneous information networks 
(TEHINs) is analyzing a social network of researchers that publish papers, such as the DBLP 
database (Ley, 2002). A very similar situation occurs in almost every social network where the 
participants generate some textual content. For this reason, a small made-up DBLP-like network 
will serve us as a toy example when discussing different aspects of the proposed methodology in 
this chapter (and also later in Chapter 5). 

Figure 3.1 shows this toy TEHIN. Let us first imagine a dataset from which we have built this 
network. Suppose that the dataset contains a collection of conference papers, and that for each 
paper, the following data and meta-data are available: 

• Title, body text (main content) 
• List of authors 
• Conference proceedings in which the paper was published (e.g., Proceedings of Discovery 

Science 2010) 
• Year of publication (e.g., 2010) 
• Citation references  
 

The first thing to note here is that the process of building a network from this dataset is not 
a completely trivial task. The process is as follows. First, we identify the types of objects that 
will be represented as vertices in the resulting network. These are papers, authors, and proceed-
ings. Note that it is sometimes not trivial to tell which data items represent the same network 
object. For example, the author “Nada Lavrač” can appear in the meta-data as “Nada Lavrač”, 
“N. Lavrac”, “N Lavrač”, or in some other form. It is crucial to devise a mapping mechanism 
that resolves this problem and maps different names (references) of the same object to the same 
unique object identifier. 
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Secondly, we identify the types of links that we will establish between these objects. There are 
many different ways to do this and there is no general rule. For example, an author can be linked 
to each of his papers with “author of” links or, the other way around, a paper can be linked to 
each of its authors with “written by” links. The links can even go both ways. In fact, every link 
forming a relation normally has its inverse counterpart. Moreover, an author can be linked to a 
proceedings with a “published a paper in” link or, less directly, an author can first be related to 
a paper and then this paper links to the proceedings in which it was published. In the particular 
case presented in Figure 3.1, we link an author to each of his papers with an “author of” link. 
Furthermore, we link a paper to the corresponding proceedings with a “published in” link. Finally, 
we link two papers with a “cites” link if the first paper cites the second one. We also incorporate 
additional knowledge (background, common knowledge) about how proceedings can be grouped 
into series of annual publications. For example, Proceedings of Discovery Science 2010 (DS 2010) 
and Proceedings of Discovery Science 2011 (DS 2011) are both proceedings of the DS conference 
series. Even though this seems like adding some obvious information, it can make a big difference 
when inferring a structure from these data. Since DS 2010 and DS 2011 are in fact two different 
events, a relationship between a paper presented at DS 2010 and a paper presented at DS 2011 
cannot be drawn without this additional background knowledge.  

Thirdly, we explore the available textual data and attach texts to certain objects in the net-
work. In our case, we first form a textual representation of a paper by joining (concatenating) its 
title and its body text. This gives us a collection of texts, each corresponding to a particular 
paper. We attach each text to the vertex representing the corresponding paper, which finally 
gives us a TEHIN. 

The resulting network represents the source of data in a data mining process. In this process, 
the main “driving force” is the task at hand. The video lecture categorization use case that we 
present in Chapter 7 also deals with a very similar heterogeneous information network: a social 
network of authors who present their work at conferences, workshops, and similar scientific events. 
In this particular use case, the task is to develop a method that can be used to support the 
categorization of video lectures hosted by VideoLectures.net, one of the world’s largest scientific 
and educational video web sites. 

 
Figure 3.1: Toy heterogeneous information network of conference papers. 
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3.1.2 Ontology querying example 

Semantic annotations are formal, machine-readable descriptions that enable efficient search and 
browse through resources, as well as efficient composition and execution of web services. In this 
work, the semantic annotation is defined as a set of interlinked ontology elements related to the 
resource in question. For example, let us assume that our resource is a database table. We want 
to annotate its fields in order to provide compatibility with databases from other systems. Further 
on, let us assume that this table has a field called “employee_name” that contains employee 
names (as given in Figure 3.2, left side). On the other hand, we have a domain ontology containing 
knowledge and vocabulary about companies (an excerpt is given in Figure 3.2, right side). In 
order to state that the table field in fact contains employee names, we first create a variable of 
type Name (Name is a domain-ontology concept) and associate it with the field. We then create 
a variable of type Person and link it to the variable of type Name via the hasName relation. 
Finally, we create a variable of type Company and link it to the variable of type Person via the 
hasEmployee relation. Such annotation (shown in the middle in Figure 3.2) indeed holds the 
desired semantics: the annotated field contains names of people which some company employs 
(i.e., names of employees).  

Note that it is possible to replace any of the variables with an actual instance representing a 
real-world entity. For example, the variable ?c could be replaced with an instance representing 
an actual company such as, for example, Microsoft ∈ Company. The annotation would then refer 
to “names of people employed at Microsoft”.  

The annotation of a resource is a process in which the user (i.e., the domain expert) creates 
and interlinks domain-ontology instances and variables (concepts) in order to create a semantic 
description for the resource in question. Formulating annotations in one of the formal languages, 
such as WSML (Online reference [1]), is not a trivial task and requires specific expertise. 

For this reason, we propose a methodology for querying ontologies. We derive it from the 
TEHmINe methodology and adapt it to certain specifics of the ontology querying task. We im-
plement this methodology as part of Visual OntoBridge (VOB) (Grčar and Mladenić, 2009; Grčar 
et al., 2012), a system that provides a graphical user interface and a set of machine learning 
algorithms that support the user in the annotation tasks. VOB provides the functionality for 
querying the domain ontology with the purpose of finding the appropriate concepts and triples. 
A triple in this context represents two interlinked instance variables (e.g., ?Com-
pany hasEmployee ?Person) and serves as a more complex building block for defining semantic 
annotations.  

In Chapter 6, we present the ontology querying workflow and discuss how a grounded ontology 
can be transformed into a TEHIN. The term “grounded” in this context means that every ontol-
ogy entity of interest is enriched with a set of documents describing, talking about, or otherwise 
being related to this entity. Such a TEHIN can then be used in a typical feature-ranking setting 
in which features (ontology entities) are ranked according to a search query. 

3.2 Requirements  
In this section, we define and discuss requirements for a general-purpose methodology for mining 
TEHINs. With these requirements, we narrow down the space of possibilities both for the entire 
methodology and for its main ingredients. The complete list of requirements is as follows: 
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1. Bimodality. The methodology (and the corresponding toolkit) needs to enable us to exploit 
both textual and structural aspect of a network in order to improve the performance of the 
developed solution over using just one or the other. 

2. Heterogeneity. The methodology needs to provide facilities to handle the fact that different 
types of objects and different types of links are used to form the network that represents 
the source of data. We should be able to improve the performance of a devised solution by 
carefully choosing (or weighting) which types of information (links, objects) to take into 
account (or emphasize) and which to ignore (or suppress). 

3. Applicability. The methodology needs to be applicable to a wide range of data mining 
problems involving text corpora, (heterogeneous) information networks, or TEHINs. 

4. Uniformity. The purpose of the methodology is to join the two worlds, text mining and 
network analysis, in a seamless way. The same modeling (analysis) tools should be able to 
handle both textual and structural data from a network. Furthermore, the same toolkit 
needs to be applicable in the scenarios when there is only text or only structure available. 

5. Maturity. The methodology should employ well-established and well-developed building 
blocks from the fields of text mining and network analysis. It should employ approaches 
that researchers are familiar with and that are known to perform well for their specific 
purposes. 

6. Modularity. The methodology needs to be formed of a set of components arranged into a 
data mining workflow. This requirement accommodates the implementation of the meth-
odology in a workflow-based data mining environment.  

7. Efficiency. The devised methodology needs to support efficient implementation. The im-
plemented toolkit needs to process small networks of up to several 10,000 vertices (and text 
corpora of that same size) on an ordinary (inexpensive) desktop computer in a reasonable 
time.  

 

 
Figure 3.2: Annotation as a ‘bridge’ between a resource and the domain ontology. 
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Following these requirements, we have developed the general-purpose TEHmINe methodology. 
Furthermore, we have reused its components in an ontology querying workflow, addressing the 
specifics of the ontology querying problem. 

3.3 Overview of the methodology for mining text-enriched 
information networks 

In this section, we present a conceptual view on the TEHmINe methodology and discuss its main 
steps. We also present the reasoning behind the devised workflow in terms of the requirements 
presented in Section 3.2.  

The methodology is devised as an extension of our text mining framework called LATINO. 
LATINO stands for Link Analysis and Text Mining Toolbox and is a light-weight framework for 
building text mining applications. The framework consists of the core software library, several 
third party open source libraries, a collection of language resources, and a range of models for 
tokenization, lemmatization, and language detection. In addition, a large part of LATINO func-
tionality has been made available in ClowdFlows, a web-based platform for composing and exe-
cuting data mining workflows by means of visual programming (Kranjc et al., 2012). 

The decision to extend an existing framework is mainly based on Requirement 3 which states 
that the methodology needs to be widely applicable. This is a reasonable requirement for any 
general-purpose methodology. It is not easy to define “widely applicable” more specifically as the 
universe of data mining problems is enormous. The problems range from very general (e.g., cat-
egorization, community identification, user profiling) to very specific (e.g., specific business pro-
cess optimization). Therefore, we interpret Requirement 3 as follows. The methodology needs to 
cover the kinds of problems that other “general-purpose” data mining frameworks (e.g., Weka, 
Orange, ClowdFlows, LATINO, etc.) are able to address. This normally boils down to using 
machine learning principles and techniques (e.g., feature selection and weighting, clustering, clas-
sification, ranking, regression, etc.). In addition to this, Requirement 5 (maturity) also implies 
that we should base the methodology on an existing framework for data mining. Since we have 
a strong background in text mining and our own implementation of a text mining framework at 
hand, we chose LATINO as the basis for designing the proposed methodology.  

 
Figure 3.3: A workflow-based overview of the TEHmINe methodology.  

(4) Structure preprocessing

(3) Text preprocessing

Graph 
extractor

Personalized 
PageRank

Graph 
extractor

Graph 
extractor

Personalized 
PageRank

Personalized 
PageRank

Stop word 
identifica-

tion

Stemming 
/ lemmati-

zation

Term 
extraction

Term 
weighting

Tokeniza-
tion

(2)
TE/HIN 
splitter

(5)
Data
fusion

(6)
Knowledge 
discoveryCommon vector 

space definition,
vector representations

of input instances

(1)
TEHIN 
loader

TEHIN



20 Requirements and Methodology Overview 

 

LATINO is based on the bag-of-words (BOW) representation of texts. It provides, on the one 
hand, a text preprocessing routine that converts texts into BOW vectors and, on the other, a 
range of machine learning algorithms that are suited to work with BOW vectors (𝑘𝑘-means, 𝑘𝑘-NN, 
Naive Bayes, SVM, etc.). This already determines a part of the workflow topology presented in 
Figure 3.3.  

To use the standard text preprocessing routine, we first need to detach the texts from the 
network (denoted with (2) in the figure). The texts then travel through the text preprocessing 
pipeline (3) and end up represented as BOW vectors. Knowledge discovery is then performed 
with the aforementioned machine learning algorithms (6).  

Since we want to employ the same knowledge discovery algorithms also for mining the struc-
ture, we need to project the structure into the same vector space. Therefore, the idea is to form 
a second preprocessing pipeline as follows. When the texts are detached from the network (2), 
the network is preprocessed and projected into a vector space (4). The two vector spaces, the 
textual vector space and the structural vector space are then combined into a single BOW-like 
space (5). This new space needs to be such that it allows for the use of existing machine learning 
algorithms that normally work with BOW vectors (6). 

The workflow devised with respect to these requirements already envisions two data prepro-
cessing pipelines and a data fusion component. Even though we did not yet discuss the specific 
steps of the two pipelines, we already show them in Figure 3.3 to give the reader a complete 
overview of the methodology. The complete methodology workflow can be summarized as follows: 

1. The workflow starts with loading or otherwise creating a TEHIN (denoted with (1) in the 
figure).  

2. The second component (2) splits the TEHIN into two parts: (i) a text corpus and (ii) a 
heterogeneous information network.  

3. The “upper pipeline” (3) follows a typical text preprocessing approach. It employs several 
basic natural language processing techniques and a term weighting scheme. We present 
these steps more thoroughly in Section 4.1.1. At the end of this pipeline, each text is 
represented as a BOW vector and the corresponding BOW space is built.  

4. The “lower pipeline” (4), on the other hand, is responsible for transforming structural data 
into a set of BOW-like vectors. This pipeline consists of the following stages: 

(a) The heterogeneous information network is decomposed into a set of graphs as dis-
cussed in Section 5.2.3. 

(b) Each of the graphs is embedded into a vector space by employing Personalized Pag-
eRank (PPR) as discussed in 5.2.1 and 5.2.2. 

5. The two pipelines end up in a data fusion component (5) which merges the two vector 
spaces, the textual and the structural vector space, into a single BOW-like vector space. 
The specifics of this component are discussed in Section 5.2.4. 

6. The existing machine learning algorithms are used to perform knowledge discovery (6) in 
the resulting vector space (see Sections 4.1.3 and 4.1.4). 
 

We thoroughly discuss the specific steps of the two data preprocessing pipelines in Chapters 
4 and 5, respectively.  
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3.4 Overview of the methodology for ontology querying 
In this section, we present the workflow for the ontology querying methodology and discuss its 
main steps. In contrast to the TEHmINe methodology, this methodology is not a general-purpose 
data mining methodology but rather facilitates a specific application of retrieving relevant ontol-
ogy elements. We derive the ontology querying methodology from the general-purpose TEHmINe 
methodology by adapting it to the specifics of ontology-based TEHINs. 

The methodology workflow is presented in Figure 3.4 and can be summarized as follows: 
1. The workflow starts with loading a TEHIN (denoted with (1) in the figure). This TEHIN 

is created from a grounded ontology. The term “grounded” in this context means that every 
ontology entity of interest (concept or triple) is enriched with a set of documents describing, 
talking about, or otherwise being related to this entity. For more information on grounding 
ontologies and creating TEHINs from grounded ontologies, see Section 6.1, respectively. 

2. The following component (2) splits the loaded TEHIN into two parts: (i) a text corpus and 
(ii) a heterogeneous information network. 

3. The text preprocessing pipeline (3) follows a typical text mining approach. It employs 
several basic natural language processing techniques and a term weighting scheme. We 
present these steps more thoroughly in Section 4.1.1. At the end of this pipeline, each text 
is represented as a BOW vector and the corresponding BOW space is built. 

4. The structure preprocessing pipeline (4) is responsible for projecting a user query into a 
vector space. Note that the two pipelines are connected serially. The structure preprocessing 
pipeline consists of the following stages: 

(a) The heterogeneous information network is converted into a graph. This process is 
explained in Section 6.2.2. 

(b) The user query is projected into a vector space by employing Personalized PageRank 
(PPR) as discussed in Section 6.2.1. 

5. The recommender (5) produces a ranked list of ontology entities according to the query 
vector (i.e., according to the user query). 

 

By comparing the two workflows in Figures 3.3 and 3.4, we can study the similarities and 
differences between the two methodologies. The following are the most notable similarities: 

 
Figure 3.4: A workflow-based overview of the proposed ontology querying methodology. 
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1. If we view a grounded ontology as a TEHIN, both workflows start in the same way: by 
loading a TEHIN (1) and splitting it into a text corpus and a heterogeneous information 
network (2). 

2. The two workflows include the same text preprocessing pipeline (3). In both cases, at the 
end of this pipeline, a BOW space is defined and the texts, extracted from the TEHIN, are 
projected into this space. 

3. Both workflows include a structure preprocessing pipeline (4). Even though this part is 
where the two workflows differ the most, they both convert a heterogeneous network into 
a graph and employ Personalized PageRank to project graph nodes into a vector space. 

3.5 Relating the two methodologies 
Apart from the aforementioned similarities between the two methodologies (see the previous 
section), there are also several key differences, introduced when modifying the original TEHmINe 
methodology for the purpose of ontology querying. The following are the most notable differences 
between the general-purpose TEHmINe methodology and the modified ontology querying meth-
odology: 

1. Unlike in the TEHmINe workflow, in the workflow for ontology querying, the text prepro-
cessing pipeline and the structure preprocessing pipeline do not run in parallel; they are 
connected serially. The output of the text preprocessing pipeline is used by the structure 
preprocessing pipeline, specifically by the Graph Creator component. 

2. The Graph Creator component is fundamentally different from the Graph Extractor com-
ponent from the TEHmINe workflow. It takes as input the BOW vectors created by the 
text preprocessing pipeline, the heterogeneous network representing the ontology, and a 
user query. These inputs are used to construct a graph as thoroughly discussed in Section 
6.2. 

3. The output of the TEHmINe workflow is a BOW-like vector space and a set of vectors 
(corresponding to the nodes in the graphs), which enables the application of different 
knowledge discovery techniques. In contrast, the structure preprocessing pipeline in the 
ontology querying workflow outputs a vector space, into which it projects one single graph 
node (i.e., the query node). Even though it is possible to compute vector representations 
of the other nodes as well, there is no need for that as the final component in the workflow, 
the Recommender component, only requires the weights from the query vector. 

 

The details of the ontology querying methodology are presented in Chapter 6. We discuss a 
concrete application in more details in Chapter 8. 
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4 Text Mining Framework 

The two methodologies presented in Chapter 3 are based on a text mining framework. In this 
chapter, we present this framework—specifically the text preprocessing routine and several suit-
able machine learning algorithms—and discuss the related theoretical background. The described 
text mining technologies are implemented as part of this thesis as a software library called 
LATINO (Link Analysis and Text Mining Toolbox). A large part of LATINO is also made available 
in ClowdFlows, a web-based platform for composing and executing data mining workflows by 
means of visual programming. We present the implemented ClowdFlows components in the sec-
ond part of this chapter. 

4.1 Text mining background 
In this section, we present the text mining framework that represents the basis for our method-
ology. We first discuss the routine for representing texts as bag-of-words (BOW) vectors. This 
preprocessing routine consists of several basic natural language processing techniques and a term-
weighting scheme. We then discussed several classification and clustering algorithms suited for 
working with BOW vectors (including the nearest centroid classifier, support vector machine, 
naive Bayes, and 𝑘𝑘-means clustering). 

4.1.1 Bag-of-words representation of texts 

In this section, we discuss a routine for projecting texts into a vector space. A vector representa-
tion of a text is also called a bag-of-words vector or simply a bag-of-words (BOW). Similarly, the 
resulting vector space is also called a bag-of-words space (BOW space). With “bag-of-words”, we 
wish to explicitly state that the vectors were obtained from texts and emphasize two character-
istics of such text representation: (i) the word order was discarded in the transformation process 
(hence the term “bag”) and (ii) the dimensions of BOW vectors correspond to words (terms) 
occurring in the original text collection. 

A BOW space is built from a collection of texts that serve as the basis for defining the dimen-
sions of the space. The input is thus a collection of texts, 𝐓𝐓 = (𝐭𝐭1, 𝐭𝐭2, … , 𝐭𝐭𝑚𝑚), where 𝐭𝐭𝑖𝑖 denotes 
a text. The output is the definition of the dimensions of the corresponding BOW space. Each 
dimension is equipped with (i) the information on the corresponding term (its stem or lemma 
and its most frequent form) and (ii) the inverse document frequency (IDF) value corresponding 
to that term. As part of the process, texts 𝐭𝐭𝑖𝑖, 𝑖𝑖 ∈ 1. .𝑚𝑚, are projected into the BOW space, which 
results in a collection of BOW vectors, 𝐗𝐗𝐓𝐓 = (𝐱𝐱1, 𝐱𝐱2,… , 𝐱𝐱𝑚𝑚). A BOW vector is a tuple of real 
numbers, 𝐱𝐱𝑖𝑖 = (𝑤𝑤1,𝑤𝑤2,… , 𝑤𝑤𝑛𝑛), 𝑤𝑤𝑖𝑖 ∈ ℝ, which can also be written as 𝐱𝐱𝑖𝑖 ∈ ℝ𝑛𝑛.  

A typical BOW space construction routine is shown in Figure 4.1. It consists of the following 
main steps: (i) tokenization, (ii) stop word removal, (iii) stemming or lemmatization, (iv) term 



24 Text Mining Framework 

 

extraction, and (v) term weighting. We discuss these steps more thoroughly in the following 
subsections. 

Tokenization 
Tokenization is the process of decomposing a text into tokens, which generally correspond to 
separate words, numbers, punctuation marks, parentheses, and quotation marks. In alphabetic 
languages, words are usually separated by spaces, which makes the tokenization process relatively 
straightforward. The two key issues that tokenizers need to resolve are the correct handling of 
ambiguous punctuations (e.g., the period at the end of a sentence is its own token, while the 
period after an abbreviation belongs to the same token) and multi-word expressions (e.g., dates, 
URLs, e-mail addresses, etc.) (Schmid, 2008). A tokenizer is either based on handcrafted rules 
(e.g., Hassler and Fliedl, 2006; Krek, 2010; Silla and Kaestner, 2004) or employs a machine 
learning model (e.g., Fu and Luke, 2003; Goh et al., 2005; Xue and Shen, 2003). 

When applying tokenization for building a BOW space, one usually discards the punctuation 
marks and other symbols. In practice, we often use a simple tokenizer that uses all non-alphanu-
meric characters as delimiters between tokens. Therefore, after this stage of the process, each 
text has been converted into a list of words. 

Stop word removal 
Stop words (e.g., Lo et al., 2005; Zaman et al., 2011) are very frequent words and as such do not 
discriminate well between texts. A stop word list is normally complemented with some less fre-
quent words that have the same (lexical) properties as stop words. For example, in English, the 
word yourselves is relatively rare but other pronouns such as I, we, and our are very frequent and 
thus treated as stop words which should be removed from the text. Nevertheless, the word your-
selves is also included into the English stop word list for the sake of completeness. In general, the 
English stop word list consists of articles (a, an, and the), pronouns (I, we, our...), forms of be 
(am, is, are...), forms of have (have, has, had, having), forms of do (do, does, did...), auxiliaries 
(would, should, could, ought), contracted verb forms (m, re, s, ve...), and several other word forms 
(mostly prepositions, conjunctions, and adverbs: and, but, if, or, because, as, not...).  

Sometimes a stop word list needs to be adapted for a specific application. For analyzing Twit-
ter streams, for example, the acronym RT (which stands for retweet) should be included in the 
stop word list as well. 

This stage of the text preprocessing process takes a list of words (including stop words) as 
input and removes the stop words by employing the provided list of stop words. 

Stemming or lemmatization 
Both stemming and lemmatization refer to the process of unifying different inflected and/or de-
rived word forms so they can be treated as a single item in the subsequent stages of the process. 

 

Figure 4.1: A typical text preprocessing workflow (pipeline).  
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The purpose of this step is to reduce the dimensionality of the resulting BOW space and to 
establish explicit relationships between words with roughly the same meaning and lexical form.  

Stemming refers to transforming a word into a stem which corresponds to the root of the word. 
The root of a word, in the strictest sense, is the primary lexical unit of the word which cannot 
be reduced into smaller constituents. It is obtained by stripping the word of all its inflectional 
and derivational affixes. For example, the root of the word friendships, in the strictest sense, is 
friend (in this case, -s is an inflectional suffix and -ship is a derivational suffix). However, stem-
ming normally does not produce roots in the strictest sense but rather removes inflections and 
some (but not all) derivational suffixes. One of the most well-known stemmers for English is the 
Porter stemmer (Porter, 1980) which implements a set of rules for suffix stripping. By employing 
the Porter stemmer, the word friendships is transformed into friendship (rather than friend), so 
in this case, only the inflection is removed. On the other hand, the word connections is trans-
formed into connect. In this case, not only the inflection -s but also the derivational suffix -ion 
are removed. 

While there is no strict definition of what a stem is, other than being a lexical unit of a word 
with certain affixes removed, the lemma is the canonical form, dictionary form, or citation form 
of a set of words (sometimes also called a headword or catchword). It is the word under which a 
set of related dictionary or encyclopedia entries appear. Lemmatization thus refers to transform-
ing a word into its base dictionary form. While a stemmer normally consists of a relatively simple 
set of rules for handling affixes, a lemmatizer needs to respect the conventions by which diction-
aries are organized for a certain language. This makes its implementation more difficult. Lemma-
tization algorithms are based on lexicons such as WordNet (Fellbaum, 1998; Miller, 1995), and 
on rules or models induced from language corpora by the use of machine learning (e.g., Juršič et 
al., 2010). 

After this stage of text preprocessing, each text has been converted into a list of words where 
stop words have been removed, and each word in the list has been assigned its stem or lemma. 

Term extraction 
Terminology extraction is normally a two-step process: (i) a linguistic processor is employed to 
extract typical terminological structures, and (ii) the resulting list of candidate terms is filtered 
according to various rules (Sclano and Velardi, 2007). When transforming texts into BOWs, a 
very simple term extractor is usually employed. It is based on a simple Apriori-like approach 
(Rakesh and Ramakrishnan, 1994) to discovering frequent (short) sequences of words (tokens) of 
length of 𝑛𝑛 words. Such sequences are called 𝑛𝑛-grams and are often used to complement the single 
words when constructing a BOW space (Cavnar and Trenkle, 1994).  

The 𝑛𝑛 -gram extractor is configured with two important parameters: (i) maximum 𝑛𝑛 -gram 
length and (ii) minimum (required) term frequency. The first parameter determines the maximum 
length of terms (in the number of words) that should be extracted. The second parameter denotes 
the minimum number of times a particular stem or lemma needs to appear in the corpus so that 
the corresponding occurrences (in different forms) are annotated as terms. In the frequent-item-
sets terminology, this is called “support”. If the minimum term frequency is set to greater than 
1, the term extraction process can be optimized in terms of memory usage, which makes it 
applicable to extremely large corpora. 

Technically, this step of the process converts a list of words, corresponding to a particular text 
in the corpus, into a list of terms. The single words are normally included in the resulting list 
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and complemented with multi-word terms (e.g., bigrams and trigrams). A multi-word term nor-
mally “inherits” the stems or lemmas from the words from which it was created.  

Term weighting 
A term-weighting scheme defines how the components of a BOW vector are computed. In other 
words, it defines how a list of terms is converted into a BOW vector. Note that when we use the 
word “term” in this section, we in fact refer to a stem or lemma (unless neither stemming nor 
lemmatization was applied).  

Let us denote the collection of preprocessed texts, produced by the term extraction step, with 
𝐓𝐓′ = (𝐭𝐭1

′ , 𝐭𝐭2
′ , … , 𝐭𝐭𝑚𝑚

′ ). Technically, each 𝐭𝐭𝑖𝑖
′ can be viewed as a list of extracted terms. Suppose that 

each unique term that can be found in 𝐓𝐓′ is mapped to a positive integer identifier between (and 
including) 1 and 𝑛𝑛 (𝑛𝑛 is the number of different terms in the corpus), so that no two different 
terms are assigned the same identifier. Let us now denote the BOW vector resulting from a 
particular text 𝐭𝐭𝑖𝑖

′ with 𝐱𝐱𝑖𝑖 = �𝑤𝑤𝑖𝑖,1, 𝑤𝑤𝑖𝑖,2, … , 𝑤𝑤𝑖𝑖,𝑛𝑛�. Here, 𝑤𝑤𝑖𝑖,𝑘𝑘 represents the weight of the term 𝑘𝑘.  
The weights 𝑤𝑤𝑖𝑖,𝑘𝑘 can be computed in several different ways, some of which are the following: 

• Binary weights. A binary weight is either 0 or 1. It is computed according to the following 
simple rule: 𝑤𝑤𝑖𝑖,𝑘𝑘 is 1 if the term 𝑘𝑘 occurs in 𝐭𝐭𝑖𝑖

′. Otherwise, it is 0. 
• Term-frequency (TF) weights. A TF weight is simply the number of times the term 𝑘𝑘 occurs 

in 𝐭𝐭𝑖𝑖
′. Let us denote it with 𝑇𝑇𝑇𝑇𝑖𝑖,𝑘𝑘. 

• TF-IDF weights (Salton, 1989). This is the most widely used weighting scheme in text 
mining. A TF-IDF weight is a combination of the TF value (see above) and IDF value, 
where IDF stands for inverse document frequency. IDF is computed as follows: 

 𝐼𝐼𝐼𝐼𝑇𝑇𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙 |𝐓𝐓′|
𝑚𝑚𝑘𝑘

 (?) 

where 𝑚𝑚𝑘𝑘 is the number of texts in 𝐓𝐓′ that contain the term 𝑘𝑘. A TF-IDF weight is simply 
the TF weight multiplied by the IDF weight: 

 𝑇𝑇𝑇𝑇-𝐼𝐼𝐼𝐼𝑇𝑇𝑖𝑖,𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑖𝑖,𝑘𝑘𝐼𝐼𝐼𝐼𝑇𝑇𝑘𝑘 (?) 

A TF-IDF scheme weights a term higher if it occurs often in the same text (the TF com-
ponent) and at the same time lower if it occurs in many texts from the corpus (the IDF 
component). 
 

The output of this stage of the process depends on the setting in which the text preprocessing 
pipeline is employed. Normally, the pipeline constructs a BOW space and projects the initial text 
collection into this BOW space. It equips each dimension of the BOW space with (i) the infor-
mation on the corresponding term (its stem or lemma and its most frequent form) and (ii) the 
IDF value corresponding to that term. In supervised learning (see Section 4.1.3), however, the 
preprocessing pipeline can also be used to project a text or a collection of texts into an existing 
BOW space. In this case, the information about the dimensions, including the set of IDF values, 
is adopted from this BOW space. The list of terms of a new text is thus filtered according to 
which terms are available in the existing BOW space. Furthermore, when computing TF-IDF 
weights, the IDF component for a particular term is not assessed from the new collection of 
documents but rather inherited from the original BOW space. 
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4.1.2 Basic operations in BOW spaces 

In this section, we present several basic techniques that are often used when working with BOW 
vectors. We will refer to these techniques from various parts of this thesis, most notably when 
discussing selected machine learning techniques (Sections 4.1.3 and 4.1.4).  

Dot product 
A vector space can be “equipped” with an inner product. Such vector space is called an inner 
product space. We normally assume that a BOW space is a ℝ𝑛𝑛 space equipped with the standard 
inner product also called the dot product (in the following, we use the term Euclidean space to 
refer to such type of space). The dot product of two vectors, 𝐱𝐱1, 𝐱𝐱2 ∈ ℝ𝑛𝑛, is defined as: 

 𝐱𝐱1 · 𝐱𝐱2 = �𝑤𝑤1,1, 𝑤𝑤1,2 …𝑤𝑤1,𝑛𝑛� · �𝑤𝑤2,1, 𝑤𝑤2,2 …𝑤𝑤2,𝑛𝑛� = (?) 

 = 𝑤𝑤1,1𝑤𝑤2,1 + 𝑤𝑤1,2𝑤𝑤2,2 + ⋯ + 𝑤𝑤1,𝑛𝑛𝑤𝑤2,𝑛𝑛 = ∑ 𝑤𝑤1,𝑘𝑘𝑤𝑤2,𝑘𝑘
𝑛𝑛
𝑘𝑘=1  (?) 

Unit-length normalization 
A BOW vector is generally of an arbitrary length. The length of a vector in a Euclidean space 
(i.e., its Euclidean norm) is computed as follows: 

 ‖𝐱𝐱𝑖𝑖‖ = �𝑤𝑤𝑖𝑖,1
2 + 𝑤𝑤𝑖𝑖,2

2 + ⋯+ 𝑤𝑤𝑖𝑖,𝑛𝑛
2 = �∑ 𝑤𝑤𝑖𝑖,𝑘𝑘

2𝑛𝑛
𝑘𝑘=1  (?) 

A BOW vector resulting from a longer text tends to be longer (i.e., its Euclidean norm is 
greater). In order to compensate for this, we usually normalize BOW vectors to unit lengths. 
This means that their length becomes 1. The normalization is done by simply dividing the vector 
by its length: 

 𝐱𝐱𝑖𝑖
′ = 𝐱𝐱𝑖𝑖

‖𝐱𝐱𝑖𝑖‖
= �𝑤𝑤𝑖𝑖,1

‖𝐱𝐱𝑖𝑖‖
, 𝑤𝑤𝑖𝑖,2

‖𝐱𝐱𝑖𝑖‖
,… , 𝑤𝑤𝑖𝑖,𝑛𝑛

‖𝐱𝐱𝑖𝑖‖
� (?) 

Cosine similarity 
The cosine similarity is a measure of similarity between two vectors in a Euclidean space 
(Manning et al., 2008; Salton and McGill, 1986; Singhal, 2001). It is the cosine of the angle 
between the two vectors. Let us denote the two vectors with 𝐱𝐱1 and 𝐱𝐱2 and the angle between 
them with 𝜃𝜃. Then, the cosine similarity measure is defined as follows: 

 cos(𝜃𝜃) = 𝐱𝐱1·𝐱𝐱2
‖𝐱𝐱1‖‖𝐱𝐱2‖ = ∑ 𝑤𝑤1,𝑘𝑘𝑤𝑤2,𝑘𝑘

𝑛𝑛
𝑘𝑘=1

�∑ 𝑤𝑤1,𝑘𝑘
2𝑛𝑛

𝑘𝑘=1 �∑ 𝑤𝑤2,𝑘𝑘
2𝑛𝑛

𝑘𝑘=1

 (1) 

Note that the cosine of the angle between two vectors does not depend on their lengths. This 
is a very desirable property when comparing texts as the comparison focuses on the content, 
disregarding text lengths. Another notable property of cosine similarity is that it is always 
bounded between 0 and 1. 

From Equation 1, we can see that if the two vectors are normalized to unit lengths, i.e., ‖𝐱𝐱1‖ =
1 and ‖𝐱𝐱2‖ = 1, the cosine similarity is equivalent to the dot product (see Figure 4.2): 

 cos(𝜃𝜃) = 𝐱𝐱1·𝐱𝐱2
‖𝐱𝐱1‖‖𝐱𝐱2‖ = 𝐱𝐱1·𝐱𝐱2

1·1 = 𝐱𝐱1 · 𝐱𝐱2 = ∑ 𝑤𝑤1,𝑘𝑘𝑤𝑤2,𝑘𝑘
𝑛𝑛
𝑘𝑘=1  (?) 
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Moreover, we can see that if any of 𝑤𝑤1,𝑘𝑘 and 𝑤𝑤2,𝑘𝑘 is 0, the corresponding product is also 0. These 
two observations can be turned into a recipe for a more efficient cosine similarity computation. 
First, BOW vectors should be normalized before provided as a dataset. This allows us to use dot 
product instead of cosine similarity and achieve the same results without the need to compute 
vector lengths. Secondly, when computing a dot product, only the overlapping non-zero values 
need to be considered. Due to the fact that BOW vectors are normally highly sparse, the number 
of such values is relatively low. 

Centroids 
Intuitively, the term centroid refers to the gravitational point (or the average point) of a set of 
points in a Euclidean space (Han and Karypis, 2000). In a ℝ𝑛𝑛 vector space, the endpoints (heads, 
tips) of the vectors correspond to these points.  

Let us denote a collection of vectors with 𝐂𝐂 = {𝐱𝐱1,… , 𝐱𝐱𝑛𝑛}. The centroid of this collection of 
vectors in a vector space is computed as follows: 

 𝑐𝑐(𝐂𝐂) = 1
|𝐂𝐂| ∑ 𝐱𝐱𝑖𝑖𝐱𝐱𝑖𝑖∈𝐂𝐂  (?) 

As noted earlier, we usually normalize BOW vectors in order to speed up the similarity com-
putation process. The endpoints of such normalized vectors always lie on a hyper-sphere with 
radius 1 and in the part of the space with non-negative coordinates. A centroid is expected to 
have this same property in order to be compatible with BOW vectors. For this reason, we usually 
normalize BOW centroids: 

 𝑐𝑐(̂𝐂𝐂) = 𝑐𝑐(𝐂𝐂)
‖𝑐𝑐(𝐂𝐂)‖ =

∑ 𝐱𝐱𝑖𝑖𝐱𝐱𝑖𝑖∈𝐂𝐂

�∑ 𝐱𝐱𝑖𝑖𝐱𝐱𝑖𝑖∈𝐂𝐂 �
 (2) 

 
Figure 4.2: The cosine similarity measure. The figure shows two vectors, 𝐱𝐱1 and 𝐱𝐱2, and the 
corresponding two normalized representations, 𝐱𝐱1

′  and 𝐱𝐱2
′ . The cosine similarity (i.e., the cosine 

of the angle 𝜃𝜃) between 𝐱𝐱1 and 𝐱𝐱2 is equivalent to the dot product of 𝐱𝐱1
′  and 𝐱𝐱2

′ . 
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Extracting keywords from BOWs and centroids  
As discussed earlier, a weighting scheme determines the importance of a term in a text. In the 
corresponding BOW vector, the weight 𝑤𝑤𝑘𝑘 denotes the importance of the 𝑘𝑘-th term. In order to 
obtain a human-readable representation of a BOW vector, we normally rank the terms according 
to their weights and display the 𝑀𝑀 top-ranked terms (e.g., 𝑀𝑀 = 5) to the user. We either display 
terms’ lemmas or their most frequent forms found in the texts from which the BOW space was 
built. This same procedure can also be applied to centroids. It is used to “describe” or “name” a 
centroid that corresponds to a set (cluster) of texts.  

4.1.3 Selected classification techniques 

In this section, we describe a selection of classification algorithms suitable for working with BOW 
vectors. This section presents the theoretical foundations of the implemented components, which 
are discussed in Section 4.2. 

Classification is the most widely used technique of supervised learning. Supervised learning is 
a two-step process, consisting of the training (learning) phase and application phase. In the train-
ing phase, a learning algorithm (also called a learner or a training algorithm) is given a set of 
examples with the corresponding outcomes (also called labels). These labeled examples are also 
called a training set or a labeled dataset. The learner explores the labeled dataset and builds a 
generalized function that is able to map an example to an outcome. In the application phase, this 
function is used to assign a label to an unlabeled example. 

Let us denote an example with 𝐱𝐱 ∈ 𝐗𝐗 and an outcome (label) with 𝑦𝑦 ∈ 𝐘𝐘, where 𝐗𝐗 and 𝐘𝐘 
are the sets of all possible examples (often infinite) and all possible labels, respectively. Let us 
denote a finite collection of examples with 𝐃𝐃 = {𝐱𝐱1,… , 𝐱𝐱𝑚𝑚}, where 𝐱𝐱𝑖𝑖 ∈ 𝐗𝐗. Let us now define a 
function that assigns a label to each example from 𝐃𝐃: 𝑓𝑓(𝐱𝐱𝑖𝑖) = 𝑦𝑦, where 𝑦𝑦 ∈ 𝐘𝐘. A supervised 
learner 𝐿𝐿 is given examples 𝐃𝐃, a label-assignment function 𝑓𝑓 , and a set of parameters 𝐩𝐩, and 
outputs a classification function 𝑓𝑓  ̂that maps from 𝐗𝐗 to 𝐘𝐘: 

 𝐿𝐿(𝐃𝐃, 𝑓𝑓, 𝐩𝐩) = 𝑓𝑓,̂   𝑓𝑓 ̂∈ 𝐇𝐇,   𝑓𝑓 :̂𝐗𝐗 → 𝐘𝐘 (?) 

The induced function is also called a hypothesis and belongs to a hypothesis space 𝐇𝐇 which 
contains all possible functions that 𝐿𝐿 is able to induce. It is sometimes also called a prediction 
function or a predictor (in the case of numeric labels), or a classification function or a classifier 
(in the case of nominal labels). 

The specific characteristic that distinguishes classification from other supervised methods is 
that the set of all possible labels, 𝐘𝐘, is finite and discrete (most often nominal). For example, if 
the task is to predict the weather, 𝐘𝐘 could be defined as {sunny, cloudy, rainy}. If the task is to 
categorize news articles, 𝐘𝐘 could be defined as {politics, economy, sports, culture, technology, 
entertainment}.  

In the following subsections, we discuss several classification techniques suitable for working 
with BOW vectors.  

𝒌𝒌-nearest neighbor (𝒌𝒌-NN) 
The 𝑘𝑘-nearest neighbor classifier (𝑘𝑘-NN) classifies examples based on the closest training exam-
ples in the vector space (Cover and Hart, 2006; Mitchell, 1997). It belongs to the class of lazy 
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learners because it does not build a model in the training phase. Instead, it explores the training 
set in the classification phase and performs the following steps: 

1. Find 𝑘𝑘 labeled examples most similar to the unlabeled example (according to a similarity 
measure 𝑠𝑠). Let us denote the 𝑘𝑘 nearest neighbors with 𝐍𝐍 = {𝐧𝐧1,… , 𝐧𝐧𝑘𝑘}. 

2. Explore the labels of these 𝑘𝑘 labeled examples and count the number of times each partic-
ular label occurs. 

3. Classify the unlabeled example into the class corresponding to the label with the largest 
count. This can be formally written as follows: 

 𝑓𝑓(̂𝐱𝐱) = argmax𝑦𝑦∈𝐘𝐘 ∑ 𝛿𝛿�𝑦𝑦, 𝑓𝑓(𝐧𝐧𝑖𝑖)�
𝑘𝑘
𝑖𝑖=1  (?) 

where 𝛿𝛿(𝑎𝑎, 𝑏𝑏) = 1 if 𝑎𝑎 = 𝑏𝑏 and 0 otherwise. 
A slightly modified 𝑘𝑘-NN algorithm also incorporates similarity scores into the target class 

computation. Such algorithm is called the similarity-weighted nearest neighbor algorithm. The 
classification is performed in the following way: 

 𝑓𝑓(̂𝐱𝐱) = argmax𝑦𝑦∈𝐘𝐘 ∑ 𝑠𝑠(𝐱𝐱, 𝐧𝐧𝑖𝑖)𝛿𝛿�𝑦𝑦, 𝑓𝑓(𝐧𝐧𝑖𝑖)�
𝑘𝑘
𝑖𝑖=1  (?) 

where 𝑠𝑠 denotes a similarity measure. In a BOW-based text-mining setting, 𝑠𝑠 normally corre-
sponds to cosine similarity. 

Nearest centroid classifier 
The nearest centroid classifier or nearest prototype classifier classifies an example into the class 
with the nearest centroid (Han and Karypis, 2000).  

Let us denote the set of training examples that correspond to the label 𝑦𝑦 ∈ 𝐘𝐘 with 𝐃𝐃𝑦𝑦 =
{𝐱𝐱𝑖𝑖: 𝑖𝑖 ∈ 1. . 𝑚𝑚, 𝑓𝑓(𝐱𝐱𝑖𝑖) = 𝑦𝑦}. Let us further denote the normalized centroid vector computed from 
𝐃𝐃𝑦𝑦, according to Equation 2, with 𝑐𝑐(𝐃𝐃𝑦𝑦). The nearest centroid classifier is relatively straightfor-
ward. In the training phase, it computes a centroid 𝑐𝑐(𝐃𝐃𝑦𝑦) for each class 𝑦𝑦. In the classification 
phase, it classifies a test example 𝐱𝐱 into the class with the nearest centroid according to the 
following equation: 

 𝑓𝑓(̂𝐱𝐱) = argmax𝑦𝑦∈𝐘𝐘{𝑠𝑠�𝐱𝐱, 𝑐𝑐(𝐃𝐃𝑦𝑦)�} (?) 

where s is a similarity measure. In a BOW-based text-mining setting, 𝑠𝑠 normally corresponds to 
cosine similarity. When applied to BOW vectors, the nearest centroid classifier is extremely effi-
cient and tends to be highly accurate. 

Support vector machine (SVM) 
In general, support vector machine (SVM) refers to a family of kernel methods for supervised 
learning. The most widely used algorithm is the SVM classifier, which is often simply referred to 
as SVM (Joachims, 1998, 1999, 2002; Vapnik, 1995). SVM is a binary classifier, which means 
that it can map an unlabeled input example to one of two classes often referred to as the positive 
and negative class. In the training phase, the SVM learner constructs a hyperplane (i.e., a plane 
in a high-dimensional space), which separates positive from negative examples.  

A hyperplane in a Euclidean space can be written as 𝐰𝐰 ⋅ 𝐱𝐱 − 𝑏𝑏 = 0, where 𝐰𝐰 is the normal 
vector to the hyperplane and 𝑏𝑏 denotes the hyperplane bias (𝑏𝑏 ‖𝐰𝐰‖⁄  is the distance from the hy-
perplane to the origin in the direction of 𝐰𝐰). In the original SVM formulation, the hyperplane is 
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positioned by maximizing the margin around it under the constraint that no example lies within 
the margin. The margin boundaries are defined as 𝐰𝐰 ⋅ 𝐱𝐱 − 𝑏𝑏 = 1 and 𝐰𝐰 ⋅ 𝐱𝐱 − 𝑏𝑏 = −1. The width 
of such margin is 2 ‖𝐰𝐰‖⁄ , which means that if we want to maximize the margin, we need to 
minimize ‖𝐰𝐰‖. The SVM problem can thus be formulated as follows: 

Find 𝒘𝒘 and 𝑏𝑏 which minimize ‖𝒘𝒘‖ and in addition, for any 𝒙𝒙𝑖𝑖 from the 
training set, the following condition holds: 

 𝑦𝑦𝑖𝑖(𝐰𝐰 ⋅ 𝐱𝐱𝑖𝑖 − 𝑏𝑏) ≥ 1 (?) 

where yi is the label of xi and is 1 for positive examples and −1 for negative examples. This 
condition basically states that every xi needs to lie outside or on the boundary of the margin. 

Since not every dataset is perfectly linearly separable and thus the above optimization problem 
does not have a solution, the SVM problem can be reformulated so that it has a solution even if 
some training examples are misclassified or lie within the margin. It is based on the idea of soft 
margin where each example that is either misclassified or lies within the margin is penalized in 
the optimization function. We introduce a non-negative slack variable ξ𝑖𝑖 for each example 𝐱𝐱𝑖𝑖. If 
ξ𝑖𝑖 is positive, 𝐱𝐱𝑖𝑖 either lies on the correct side of the hyperplane but within the margin or it lies 
on the incorrect side of the hyperplane (i.e., is misclassified). The distance between such 𝐱𝐱𝑖𝑖 and 
the margin boundary on the correct side of the hyperplane is ξ𝑖𝑖 ‖𝐰𝐰‖⁄ . We want to minimize the 
sum of ξ𝑖𝑖 and at the same time maximize the margin. Since these two conditions are contradictory, 
we introduce the trade-off parameter 𝐶𝐶 which allows us to control which of the two conditions 
has a larger influence in the optimization function. The soft-margin problem is formulated as 
follows: 

Find 𝒘𝒘, 𝑏𝑏, and (consequently) ξ𝑖𝑖 which minimize 12 ‖𝒘𝒘‖2 + 𝐶𝐶 ∑ ξ𝑖𝑖𝑖𝑖  and 
in addition, for any 𝒙𝒙𝑖𝑖  from the training set, the following condition 
holds: 

 𝑦𝑦𝑖𝑖(𝐰𝐰 ⋅ 𝐱𝐱𝑖𝑖 − 𝑏𝑏) ≥ 1 − ξ𝑖𝑖,   ξ𝑖𝑖 ≥ 0 (?) 

If 𝐱𝐱𝑖𝑖 lies outside the margin or on the boundary, then ξ𝑖𝑖 = 0. If it lies on the correct side of the 
hyperplane but within the margin, then 0 < ξ𝑖𝑖 < 1. If it lies on the hyperplane, then ξ𝑖𝑖 = 1. If 
it lies on the incorrect side of the hyperplane, then ξ𝑖𝑖 > 1. 

In the classification phase, an unlabeled example 𝐱𝐱 is classified according to its position with 
respect to the hyperplane. If it lies on the positive side of the hyperplane, it is labeled as positive 
and if it lies on the negative side, as negative. If it lies directly on the hyperplane, its label cannot 
be determined. In general, the SVM classifier returns a score that is proportional to the distance 
between the unlabeled (test) example and the hyperplane: 

 𝑐𝑐(𝐱𝐱) = 𝐰𝐰 ⋅ 𝐱𝐱 − 𝑏𝑏 (?) 

 𝑓𝑓(̂𝐱𝐱) = sgn�𝑐𝑐(𝐱𝐱)� (?) 

The Euclidean distance between 𝐱𝐱 and the hyperplane (in the direction of 𝐰𝐰) is 𝑐𝑐(𝐱𝐱) ‖𝐰𝐰‖⁄ . 
The SVM optimization problem can be rewritten into a form that can be solved by standard 

quadratic programming techniques. This formulation reveals that the resulting hyperplane can 
be defined as a linear combination of training examples. In this combination, only a relatively 
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small number of training examples have non-zero weights. These examples are called support 
vectors. 

The SVM optimization problem can be rewritten into its dual form. The dual formulation 
reveals that knowing inner products between all pairs of training examples is enough to compute 
the hyperplane and express it as a linear combination of support vectors. Similarly, in the classi-
fication phase, it is enough to know the inner products between the test example and the support 
vectors in order to classify the example. It is thus possible to feed SVM with a matrix of inner 
products instead of explicitly providing training examples. Such matrix is called a kernel matrix. 

A special property of the kernel-based methods such as SVM is that we can define a kernel by 
using a non-standard inner product function. This can be interpreted as projecting the dataset 
into a different high-dimensional vector space (with possibly infinite dimensionality), in which 
the standard dot product behaves according to the kernel matrix. Effectively, SVM exhibits non-
linear properties in the original vector space. Furthermore, this allows us to use SVM with data 
that does not come in the form of vectors. In Section 5.1.3, we discuss diffusion kernels, which 
can be computed directly from graphs. 

As already said, SVM is a binary (i.e., two-class) classifier. Multi-class SVM variants are 
normally implemented as combinations of binary classifiers (Hsu and Lin, 2002). A different 
approach to multi-class SVM classification is to use the formulation for predicting complex (struc-
tured) outputs (Crammer and Singer, 2002). 

Naive Bayes classifier 
The Naive Bayes (NB) classifier is a relatively straightforward probabilistic classifier based on 
the Bayes’ theorem and a strong independence assumption (Mitchell, 1997). The strong inde-
pendence assumption means that terms occur in a text independently from each other. Because 
this assumption normally does not hold in practice, the classifier is said to be “naive”. 

The probability of an example 𝐱𝐱 belonging to class 𝑦𝑦, P(𝑦𝑦|𝐱𝐱), under the strong independence 
assumption, can be expressed as: 

 P(𝑦𝑦|𝐱𝐱) = (1 𝑍𝑍⁄ )P(𝑦𝑦)∏ P(𝑘𝑘|𝑦𝑦)𝑘𝑘  (?) 

where 1/𝑍𝑍 is the normalization factor, P(𝑦𝑦) is the probability of an example belonging to the 
class 𝑦𝑦, and P(𝑘𝑘|𝑦𝑦) is the probability of the term 𝑘𝑘 belonging to the class 𝑦𝑦.  

The classification of an unlabeled example 𝐱𝐱 is carried out in the following way: 

 𝑓𝑓(̂𝐱𝐱) = argmax𝑦𝑦∈𝐘𝐘�(1 𝑍𝑍⁄ )P(𝑦𝑦)∏ P(𝑘𝑘|𝑦𝑦)𝑘𝑘 � (?) 

Note that 𝑍𝑍 = P(𝐱𝐱) = ∑ P(𝑦𝑦)P(𝐱𝐱|𝑦𝑦)𝑦𝑦∈𝐘𝐘 = ∑ P(𝑦𝑦)∏ P(𝑘𝑘|𝑦𝑦)𝑘𝑘𝑦𝑦∈𝐘𝐘  . This reveals that 1/𝑍𝑍  is a 
constant in the context of a given unlabeled example x and can thus be removed from the clas-
sification equation.  

In the training phase, the NB learner thus needs to assess the probabilities P(𝑦𝑦) and P(𝑘𝑘|𝑦𝑦). 
P(𝑦𝑦)  can be assessed as a relative frequency of examples belonging to the class 𝑦𝑦 in the dataset: 
P(𝑦𝑦) = 𝑁𝑁𝑦𝑦/𝑁𝑁 , where 𝑁𝑁𝑦𝑦 stands for the number of examples belonging to the class 𝑦𝑦 and 𝑁𝑁  for 
the number of examples in the dataset. On the other hand, the conditional probabilities P(𝑘𝑘|𝑦𝑦) 
can be assessed in several different ways (McCallum and Nigam, 1998). In text mining, the 
multinomial model is often used because it works with TF-based BOW vectors (in practice, it 
also performs well with TF-IDF vectors). In this case, P(𝑘𝑘|𝑦𝑦) is computed as follows: 
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 P(𝑘𝑘|𝑦𝑦) = 𝑇𝑇𝑡𝑡𝑘𝑘,𝑦𝑦/𝑇𝑇𝑦𝑦 (?) 

where 𝑇𝑇𝑡𝑡𝑘𝑘,𝑦𝑦 stands for the number of times the term 𝑡𝑡𝑘𝑘 occurs in the text that is the concatena-
tion of all texts labeled as 𝑦𝑦 and 𝑇𝑇𝑦𝑦 stands for the length (in the number of words) of such 
concatenated text. Since 𝑇𝑇𝑡𝑡𝑘𝑘,𝑦𝑦  can be 0, which undesirably causes the entire expression 
P(𝑦𝑦)∏ P(𝑘𝑘|𝑦𝑦)𝑘𝑘  to be 0, a smoothed form of probability estimation such as the rule of succession 
or 𝑚𝑚-estimate (Cestnik, 1991) is normally used. 

The factors in the expression ∏ P(𝑘𝑘|𝑦𝑦)𝑘𝑘  tend to be relatively small. Multiplying many small 
numbers together can result in an underflow. For this reason, the log-sum-exp trick can be used. 
By using the fact that 𝑎𝑎𝑏𝑏 = exp(log𝑎𝑎 + log𝑏𝑏), we can derive the following equations which are 
more robust to underflows: 

 P(𝑦𝑦|𝐱𝐱) = exp�(1/𝑍𝑍)logP(𝑦𝑦) + ∑ logP(𝑡𝑡𝑘𝑘|𝑦𝑦)𝑘𝑘 � (?) 

 𝑓𝑓(̂𝐱𝐱) = argmax𝑦𝑦∈𝐘𝐘�logP(𝑦𝑦)∑ logP(𝑘𝑘|𝑦𝑦)𝑘𝑘 � (?) 

4.1.4 Selected clustering techniques 

In this section, we describe two different clustering algorithms suitable for working with BOW 
vectors. This section presents the theoretical foundation of the implemented clustering compo-
nents (the implemented components are discussed in Section 4.2). 

In contrast to classification, clustering is a form of unsupervised learning. Unsupervised learn-
ing refers to a set of methods that aim at finding a hidden structure in an unlabeled dataset. A 
clustering algorithm is given a set of unlabeled examples which it arranges into groups (i.e., 
clusters) so that the examples in the same group are more similar to each other than to those in 
the other groups.  

Let us denote an unlabeled dataset with 𝐃𝐃 = {𝐱𝐱1,… ,𝐱𝐱𝑚𝑚}. A clustering algorithm 𝐶𝐶 is given 
an unlabeled dataset 𝐃𝐃 and a set of parameters 𝐩𝐩 and outputs a set of clusters: 

 𝐶𝐶(𝐃𝐃, 𝐩𝐩) = {𝐂𝐂1, 𝐂𝐂2,… , 𝐂𝐂𝑘𝑘} (3) 

The output of a clustering algorithm can either be a flat list of clusters (as suggested by Equation 
3) or a hierarchy of clusters. The number of clusters 𝑘𝑘 is normally specified in advance but can 
also be determined from the dataset (Pelleg and Moore, 2000). An example x𝑖𝑖 usually belongs to 
exactly one cluster, but clustering algorithms that allow the same example to belong to several 
clusters at the same time (potentially with different membership degrees) also exist (e.g., fuzzy 
𝑐𝑐-means (Cannon et al., 1986)). 

In general, the clustering algorithms can be divided into centroid-based algorithms (e.g., 𝑘𝑘-
means), connectivity-based algorithms (e.g., agglomerative hierarchical clustering), distribution-
based algorithms (e.g., Gaussian mixture models (Dempster et al., 1977)), or density-based algo-
rithms (e.g., DBSCAN (Martin et al., 1996)). 

𝒌𝒌-means clustering 
𝑘𝑘-means clustering refers to a group of unsupervised methods aimed at partitioning a set of 
examples into 𝑘𝑘 groups (clusters). The most widely used algorithm is based on iterative refine-
ment (Lloyd, 2006).  
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The algorithm starts by randomly selecting 𝑘𝑘 examples as the initial centroids. Then, it enters 
the main loop in which it iteratively repeats two steps: assign and update. In the assign step, it 
assigns each example to the nearest centroid. In the update step, it recomputes the centroids. In 
this process, the centroids move around in the space. When they reach a local optimum, they 
stop moving and the main loop ends. More formally, the iterative 𝑘𝑘-means clustering algorithm 
is as follows: 

Input: an unlabeled dataset of normalized BOW vectors 𝐃𝐃 = {𝐱𝐱1,… , 𝐱𝐱𝑚𝑚} 
 

1. Initialization. Randomly select 𝑘𝑘 different examples from 𝐃𝐃. Let us denote these examples 
with 𝐳𝐳1,… , 𝐳𝐳𝑘𝑘. Create the initial clusters out of these examples 𝐂𝐂𝑖𝑖 ← {𝐳𝐳𝑖𝑖}, 𝑖𝑖 ∈ 1. . 𝑘𝑘, and 
compute their initial centroids 𝐜𝐜𝑖𝑖 ← 𝑐𝑐(𝐂𝐂𝑖𝑖) = 𝐳𝐳𝑖𝑖, 𝑖𝑖 ∈ 1. . 𝑘𝑘.  

2. Assign step. For each example 𝐱𝐱𝑖𝑖, 𝑖𝑖 ∈ 1. . 𝑚𝑚, find the cluster 𝐂𝐂∗ with the most similar cen-
troid: 

 𝐂𝐂∗ = argmax𝐂𝐂𝑗𝑗:𝑗𝑗∈1..𝑘𝑘{cossim�𝐜𝐜𝑗𝑗, 𝐱𝐱𝑖𝑖�} (*) 

3. Add 𝐱𝐱𝑖𝑖 to this cluster: 𝐂𝐂∗ ← 𝐂𝐂∗ ∪ {𝐱𝐱𝑖𝑖} 
4. Update step. Recompute the cluster centroids 𝐜𝐜𝑖𝑖 ← 𝑐𝑐(𝐂𝐂𝑖𝑖), 𝑖𝑖 ∈ 1. . 𝑘𝑘. The variable 𝐜𝐜𝑖𝑖 now 

holds the centroid corresponding to the cluster 𝐂𝐂𝑖𝑖. 
5. If the assignments did not change from the previous loop, end the algorithm. 
6. Empty the clusters 𝐂𝐂𝑖𝑖 ← ∅, 𝑖𝑖 ∈ 1. . 𝑘𝑘. 
7. Repeat from Step 2. 

 

Output: Clusters 𝐂𝐂𝑖𝑖 and their centroids 𝐜𝐜𝑖𝑖, 𝑖𝑖 ∈ 1. . 𝑘𝑘. 

Agglomerative hierarchical clustering 
Hierarchical clustering refers to a range of clustering algorithms that organize examples into a 
hierarchy of clusters (rather than a “flat” set of clusters). Agglomerative hierarchical clustering is 
a bottom-up approach, which means that at the beginning, each example represents a small cluster 
(Manning et al., 2008). These clusters then merge into bigger clusters at different levels of the 
hierarchy until there is only one cluster that contains all the examples (i.e., the root cluster). 

Suppose that we have an unlabeled dataset of normalized BOW vectors 𝐃𝐃 = {𝐱𝐱1,… , 𝐱𝐱𝑚𝑚}. 
The agglomerative clustering process is as follows: 

1. Initialization. Put each example into its own cluster 𝐂𝐂𝑖𝑖 = {𝐱𝐱𝑖𝑖}, 𝑖𝑖 ∈ 1. . 𝑚𝑚, and put these 
clusters into a list 𝐋𝐋 = {𝐂𝐂1,𝐂𝐂2, … , 𝐂𝐂𝑚𝑚}. 

2. Main loop. Compute centroids corresponding to clusters 𝐂𝐂1,𝐂𝐂2, … , 𝐂𝐂𝑚𝑚. Put these cen-
troids into a list 𝐋𝐋′ = {𝐜𝐜1, 𝐜𝐜2, … , 𝐜𝐜𝑚𝑚}. 

3. Find the two most similar clusters 𝐂𝐂1
∗  and 𝐂𝐂2

∗ : 

 (𝐂𝐂1
∗,𝐂𝐂2

∗) = argmax�𝐂𝐂𝑖𝑖,𝐂𝐂𝑗𝑗�:𝐂𝐂𝑖𝑖∈𝐋𝐋,𝐂𝐂𝑗𝑗∈𝐋𝐋,𝑖𝑖≠𝑗𝑗{cossim�𝐜𝐜𝑖𝑖, 𝐜𝐜𝑗𝑗�} (*) 

4. Merge the two clusters 𝐂𝐂∗ = 𝐂𝐂1
∗ ∪ 𝐂𝐂2

∗ and compute the corresponding centroid 𝐜𝐜∗. 
5. Remove 𝐂𝐂1

∗  and 𝐂𝐂2
∗ from 𝐋𝐋. Add the new cluster 𝐂𝐂∗ to 𝐋𝐋. Also, at this point make note 

that the cluster 𝐂𝐂∗ is the parent of the clusters 𝐂𝐂1
∗  and 𝐂𝐂2

∗  in the resulting hierarchy. 
6. Let 𝐜𝐜1

∗  and 𝐜𝐜2
∗  bet the centroids corresponding to 𝐂𝐂1

∗  and 𝐂𝐂2
∗ , respectively. Remove 𝐜𝐜1

∗  and 
𝐜𝐜2

∗  from 𝐋𝐋′. Add the new centroid 𝐜𝐜∗ to 𝐋𝐋′.  
7. If there is only one cluster in 𝐋𝐋, end the algorithm. 
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8. Repeat from Step 3. 
 

The algorithm is normally implemented by maintaining a (symmetric) matrix of centroid-centroid 
similarities. In Step 3, the algorithm thus avoids computing cosine similarity for each pair of 
centroids but rather explores the similarity matrix. The matrix is updated in Step 5, where the 
two rows and two columns corresponding to 𝐂𝐂1

∗  and 𝐂𝐂2
∗  are removed from the matrix and a new 

row and column, representing the new cluster 𝐂𝐂∗, are added. In this process, only the values 
cossim(𝐜𝐜∗, 𝐜𝐜𝑖𝑖), for each 𝐜𝐜𝑖𝑖 ∈ 𝐋𝐋′, need to be computed, which makes the described algorithm more 
efficient. 

4.2 Implementation of selected text mining techniques in the 
ClowdFlows platform 

The described text mining background technologies are implemented as part of this thesis in a 
text mining framework called LATINO. LATINO stands for Link Analysis and Text Mining 
Toolbox and is primarily a light-weight framework for building text mining applications. A large 
part of LATINO text mining functionality has been made available also in ClowdFlows, a web-
based platform for composing and executing data mining workflows by means of visual program-
ming (Kranjc et al., 2012). 

In this section, we present the developed LATINO components which are available in Clowd-
Flows. We first discuss the text preprocessing workflows which are used for representing texts as 
BOW vectors. Later on, we also discuss several workflows for performing classification and clus-
tering in BOW spaces. 

A prototypical ClowdFlows component is shown in Figure 4.3. It has a name (Dummy), input 
stubs (in1, in2) through which it receives (consumes) data, and output stubs (out1, out2) through 
which it sends (outputs, emits) data. It also has a configuration panel where the user is able to 
reconfigure the default behavior of the component. With respect to how a component behaves in 
a workflow, we distinguish between the following types of components: 
Data sources  A data source is a component that “produces” data (datasets, models, reports...) 

by, for example, loading it from a file or a database. It normally does not have input stubs 
and is triggered when the workflow is started. LATINO implements several data sources that 
produce annotated document corpora (ADCs). Specifically, it implements a component for 
loading an ADC from an XML file, from a simple plain text file (containing one text per line), 
from a collection of text files, etc. 

Data sinks  A data sink is a component that normally does not have any output stubs. It 
“consumes” data by either storing it or visualizing it to the user. LATINO currently imple-
ments a sink for storing an ADC into an XML file and a sink for displaying an ADC as a set 
of HTML pages. 

Hubs  A hub is a component that executes a processing component but by itself does not perform 
any (data) processing. For example, a Tokenizer Hub receives an ADC, executes one of the 
tokenizers, and outputs the ADC with additional annotations corresponding to tokens. The 
component that a hub executes is attached to one of the hub’s input stubs. The existence of 
hubs is motivated by the following two reasons: 
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• When a processing component is replaced with another component, the topology and the 
hub settings are retained. This makes large and complicated workflows more resilient to 
changes. 

• A hub provides an infrastructure for executing a processing component of a particular 
type. For example, a hub receives a corpus, iterates over documents in a corpus, extracts 
text blocks of a certain type, and executes the algorithm provided by the processing 
component for each of these text blocks. From this perspective, a hub acts as a kind of 
an “abstract base class” for the processing component. This makes it easier and less time-
consuming to implement new processing components. 

Processing components  Processing components are of two different types: 

• A hub-based processing component is always executed by a hub. It normally has no input 
stubs and only one output stub. The output stub is used to attach a processing component 
to the appropriate hub.  

• A stand-alone processing component does not depend on a hub. It receives data by itself, 
processes it, and outputs the results. 

 

In Figure 4.5, we show a typical LATINO text preprocessing workflow constructed in Clowd-
Flows. It starts with an ADC Loader which loads a document corpus and continues with a series 
of hub-based components that perform natural language processing. These steps correspond to 
the steps discussed in Section 4.1 (tokenization, stop word tagging, stemming or lemmatization, 
and term extraction). In the end, the workflow creates a BOW space (notice a BOW Space 
Builder) and writes the definition into a file (notice a BOW Space Writer).  

In the second presented workflow (Figure 4.6), the Bow Space Builder was replaced with a 
BOW Space Projector (also, the BOW Space Writer was replaced with a BOW Space Reader). 
This workflow corresponds to the supervised-learning scenario discussed in Section 4.1.1, in which 
the preprocessing workflow is used to project a text or a collection of texts into an existing BOW 
space. In the workflow, the existing BOW space is loaded from a file by the BOW Space Reader. 

The third workflow (Figure 4.7) demonstrates a typical classification scenario. The training 
procedure of a classifier (a K-NN Classifier is employed in the example) is executed by a Classifier 
Trainer Hub. In the training phase, this hub receives a labeled dataset and a classifier and pro-
duces a trained classifier on its output stub. In the classification phase, this trained classifier is 
executed by a Classifier Hub. This hub receives an unlabeled dataset and the trained classifier 
on its input stubs and outputs the predicted labels of all the examples in the dataset. The 
workflows that use the outputs of a Classifier Hub include workflows for exploring or saving 
predictions and workflows for assessing the performance of the employed classifier. We do not 
discuss these aspects in this thesis. 

 
Figure 4.3: A prototypical ClowdFlows component. 

out1in1

in2 out2

Dummy
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The last workflow that we discuss (given in Figure 4.8), demonstrates a typical clustering 
scenario. The workflow is relatively straightforward. A Clusterer Hub receives a clustering algo-
rithm (in our case, a K-Means Clusterer) and produces a set of clusters on the output stub. The 
workflows that use the output from a Clusterer Hub mainly include workflows for visualizing, 
exploring, or saving the clustering results. We do not present these workflows in this thesis. 

In the following text, we discuss the components used in the presented workflows. In some 
situations, when a component is executed through a hub, we also present several alternatives to 
that particular component. 

ADC Loader 
A LATINO text mining process starts with loading or creating an annotated document corpus 
(ADC). In short, an ADC contains one or more documents and is described with features. A 
document itself is also described with features and in addition contains (named) annotations. An 
annotation gives either a syntactic or a semantic meaning to a text segment (e.g., a text segment 
can represent token, sentence, named entity). An annotation can further be described with fea-
tures.  

An ADC can be represented in an XML format. This allows us to save and load it to/from a 
file. It also enables us to manually edit ADCs but it is often more convenient to do this in a 
programming environment through the ADC interface. An ADC can also be serialized into a set 
of HTML pages for viewing and exploration. This allows us to understand and improve the 
preprocessing stage of a text mining workflow. Figure 4.4 shows a document rendered as an 
HTML page. 

The basic idea of using ADCs is that after an ADC has been loaded or somehow otherwise 
created, each subsequent component in the text-preprocessing part of the workflow receives this 
ADC as an input, adds additional annotations and/or features, and provides it as an output. For 

 
Figure 4.4: An annotated document represented as HTML. 

 
Figure 4.5: LATINO text preprocessing workflow (building a new BOW space). 

ADC Loader Tokenizer Hub

Simple Tokenizer

Stop Word Tagger 
Hub

Stemmer/Lemmatizer 
Hub

Term Extractor Hub BOW Space Builder

Default
Stop Word Tagger

Lemmatizer
(LemmaGen)

N-Gram Extractor

bow

BOW Space Writer

adc adc
adc

tkn

tkn

adc
adc

tgr
adc

adc

tgr
adc

adc

tex
adc

ds

tgr tgr tex

bow



38 Text Mining Framework 

 

example, a tokenizer first identifies tokens in the text and includes annotations defining these 
tokens. A stop word tagger then attaches a feature to each token (more accurately, to the corre-
sponding annotation) denoting whether the token is considered a stop word or not. 

LATINO toolkit offers the ADC Loader component, which is able to load an ADC from an 
XML file, a text file (in which each line corresponds to one text), or a collection of text files, each 
representing one document, from a specified folder. It is important to note that a document can 
be either labeled or unlabeled. The label of a document is specified in the document’s feature-set 
(normally named Label). The labels travel together with the documents through the preprocessing 
pipeline and are in the end attached to the corresponding BOW vectors. 

Tokenizers 
A tokenizer is executed by a Tokenizer Hub. The hub receives an ADC and a tokenizer on its 
input stubs (adc and tkn, respectively) and outputs an ADC on its output stub (adc). The 
resulting ADC is complemented with annotations corresponding to the identified tokens. The 
default name for these annotations is Token (this can be changed in the hub’s settings).  

A tokenizer (hub-based processing component) has only one output stub (tkn), through which 
it sends its interface to a Tokenizer Hub. The following tokenizers are currently available in 
LATINO: 
Unicode Tokenizer  A Unicode Tokenizer is based on the Unicode rules for splitting lines of 

text (Online reference [3]). By following these rules, it identifies all the places where a text 
can be split and produces a list of candidate tokens. It then filters this list according to two 
additional rules specified by the user. First, it filters out the tokens that do not contain a 
sufficient number of characters (e.g., 2). Second, it filters out the tokens that do not conform 
to the chosen character-range constraint. The following are the available character-range con-
straints: 

 
Figure 4.6: LATINO text preprocessing workflow (projecting texts into an existing BOW space). 

 
Figure 4.7: LATINO classification workflow (both the training and classification phase). 
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• None. Accept all tokens. 
• AplphaNumLoose. Accept all the tokens that contain at least one alphanumeric character. 
• AlphaNumStrict. Accept all the tokens that contain only alphanumeric characters. 
• AlphaLoose. Accept all the tokens that contain at least one alphabetic character. 
• AlphaStrict. Accept all the tokens that contain only alphabetic characters. 

Regex Tokenizer  This tokenizer is configured with a single regular expression. It then traverses 
a text and finds all substrings that match the regular expressions. These matches correspond 
to the resulting tokens. By default, the regular expression is set to \p{L}{2,}, which means 
that all substrings of length at least 2 and containing only alphabetic characters will be iden-
tified as tokens.  

Simple Tokenizer  The simple tokenizer implements three different modes: 

• Default. In this mode, the tokenizer simply splits a text on every whitespace or series of 
whitespaces.  

• Alphabetic. In the alphabetic mode, the tokenizer splits a text on every non-alphabetic 
character or series of non-alphabetic characters. 

• Alphanumeric. In the alphanumeric mode, the tokenizer splits a text on every non-alpha-
numeric character or series of non-alphanumeric characters.  

Maximum Entropy Tokenizer  This is the most sophisticated tokenizer currently included in 
the LATINO toolkit. It employs a maximum entropy model to detect boundaries between 
tokens in English texts. This tokenizer was originally developed in the open source project 
SharpNLP (Online reference [4]).  

Stop word taggers 
A stop word tagger is executed by a Stop Word Tagger Hub. The hub receives an ADC and a 
tagger on its input stubs (adc and tgr, respectively) and outputs an ADC on its output stub 
(adc). In the resulting ADC, the annotations corresponding to tokens are complemented with an 
additional feature (named StopWord by default) which is either set to true or false.  

A stop word tagger (hub-based processing component) has only one output stub (tgr), through 
which it sends its interface to a Stop Word Tagger Hub. LATINO currently implements only one 
stop word tagger, the Default Stop Word Tagger. This stop word tagger contains a set of stop 
word lists, one list for each supported language. It traverses the tokens in an ADC and identifies 
(marks) stop words according to the selected stop word list.  

Most of the stop word lists used by this component were developed in the Snowball project 
(Online reference [5]). The following languages are currently supported: Bulgarian, Czech, Danish, 

 
Figure 4.8: LATINO clustering workflow. 
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Dutch, English, Finnish, French, German, Hungarian, Italian, Norwegian, Portuguese, Romanian, 
Russian, Serbian, Slovene, Spanish, and Swedish. The component also allows the user to extend 
an existing list by loading or manually entering additional stop words. 

Stemmers and lemmatizers 
A stemmer or lemmatizer is executed by a Stemmer/Lemmatizer Hub. The hub receives an ADC 
and a stemmer or lemmatizer on its input stubs (adc and tgr, respectively) and outputs an ADC 
on its output stub (adc). In the resulting ADC, the annotations corresponding to tokens are 
complemented with an additional feature (named Stem by default) containing the token’s stem 
or lemma. A stemmer or lemmatizer (hub-based processing component) has only one output stub 
(tgr), through which it sends its interface to a Stemmer/Lemmatizer Hub.  

LATINO makes use of two open source projects for stemming and lemmatization. The first 
one is Snowball (Online reference [5]) which implements a set of stemmers. We use the C# port 
of Snowball provided in the scope of the Lucene.Net project (Online reference [6]). The Snowball 
stemmers are based on manually defined (Porter-like) rules for affix stripping. The second open 
source project is LemmaGen, a software library for lemmatization, implemented in C# (Online 
reference [7]). The LemmaGen lemmatizers are based on ripple-down rules (RDR) induced from 
gold-standard language corpora by employing machine learning. 

The component that embodies the Snowball stemmers is called the Snowball Stemmer. It can 
be configured to use the stemming algorithm for a particular language. The following languages 
are currently supported: Danish, Dutch, English, Finnish, French, German, Italian, Norwegian, 
Portuguese, Russian, Spanish, and Swedish.  

The functionality of LemmaGen, on the other hand, is provided by the LemmaGen Lemmatizer 
component. Likewise, it can be configured to use the lemmatization model for a particular lan-
guage. The following languages are currently supported: Bulgarian, Czech, English, Estonian, 
French, German, Hungarian, Italian, Romanian, Serbian, Slovene, and Spanish. 

Term extractors 
A term extractor is executed by a Term Extractor Hub. The hub receives an ADC and a term 
extractor on its input stubs (adc and tex, respectively) and outputs an ADC on its output stub 
(adc). The resulting ADC is complemented with annotations corresponding to the identified 
terms. The default name for these annotations is Term (this can be changed in the hub’s settings).  

A term extractor, which is a hub-based processing component, has only one output stub (tex), 
through which it sends its interface to a Term Extractor Hub. LATINO currently implements 
only one component for term extraction, the N-Gram Term Extractor. It is based on a simple 
Apriori-like approach to discovering (frequent) sequences of words (tokens) of length of at most 
𝑛𝑛 words. Such sequences are called 𝑛𝑛-grams and are often used to complement the single words 
when constructing a BOW space. An N-Gram Term Extractor is configured with two parameters: 
(i) maximum 𝑛𝑛-gram length and (ii) minimum (required) term frequency. The first parameter 
determines the maximum length of terms that should be extracted. The second parameter defines 
the support for discovering frequent sequences.  

BOW Space Builder 
The BOW Space Builder component is a stand-alone processing component. It receives an ADC 
through its input stub (adc) and outputs two objects: (i) the definition of the corresponding 
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BOW space (output stub bow) and (ii) the BOW representations of the input texts in the form 
of an unlabeled dataset (output stub ds).  

A BOW Space Builder is configured with three parameters. The first one is the term weighting 
scheme. It can be either set to binary, Term Frequency, or TF-IDF. The second parameter, the 
cut-off parameter, allows us to cut off the tails of BOW vectors. Finally, the third parameter 
allows us to set whether to normalize the resulting vectors or not. If set to true, the BOW Space 
Builder produces a dataset in which each BOW vector is normalized to the unit length. 

BOW Space Writer and BOW Space Reader 
A BOW space is in its essence a LATINO object. It can serialize itself to a stream of bytes and 
deserialize (instantiate) itself from such a stream. Most LATINO objects have this serialization 
ability. A BOW Space Writer receives a BOW space definition on its input stub (bow) and seri-
alizes it into a file. On the other hand, a BOW Space Reader reads a BOW space from a file and 
instantiates it on its output stub (bow).  

BOW Space Projector 
A BOW Space Projector allows us to project a text or a collection of texts into an existing BOW 
space. It receives an ADC and an existing BOW space through its input stubs (adc and bow, 
respectively). On its output stub (ds), it produces the BOW representation of the input corpus 
in the form of an unlabeled dataset. Note that the ADC needs to be preprocessed with the same 
text-preprocessing routine as when the BOW space was created. Also note that a BOW Space 
Projector inherits the BOW-space settings (such as the weighting scheme) from the BOW space 
that it receives on the input stub. 

Classifiers 
Classification is a two-step process. It consists of the training phase and the classification phase. 
In the training phase, the training procedure of a classifier is executed by a Classifier Trainer 
Hub. This hub receives a labeled dataset and a classifier on its input stubs (ds and csf, respectively) 
and produces a trained classifier on its output stub (csf).  

In the classification phase, this trained classifier is executed by a Classifier Hub. This hub 
receives an unlabeled dataset (if it is labeled, the labels are ignored) and the trained classifier on 
its input stubs (ds and csf, respectively) and outputs, for each classified example, an ordered list 
of labels (output stub prd). Each label in a list is assigned a score provided by the classifier. The 
label with the highest score is normally viewed as the predicted label. In addition to these clas-
sification details, a Classifier Hub also provides a labeled dataset created from the provided 
unlabeled dataset by labeling each example with the corresponding top-ranked label.  

A classifier (hub-based processing component) has only one output stub (csf), through which 
it sends its interface to a Classifier Trainer Hub or Classifier Hub. The following classifiers are 
currently available in LATINO: 
K-NN Classifier  This classifier classifies examples based on the closest training examples in 

the vector space. Its most important configuration parameter is 𝑘𝑘, the number of neighbors. 
The component implements two modes, the normal mode and the similarity-weighted mode.  

Nearest Centroid Classifier  This classifier classifies an example into the class with the nearest 
centroid.  
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SVM Binary Classifier  This classifier constructs a hyperplane that separates positive from 
negative examples. The most important parameters that the user can set are the trade-off 
parameter 𝐶𝐶, kernel type and kernel parameters, hyperplane bias (allow or disallow), and 
convergence conditions. It is also possible to set a wide range of other parameters that are 
described on the SVMlight web page (Online reference [8]). 

SMV Multiclass Classifier  This is a multi-class variant of SVM that uses the formulation for 
predicting structured outputs (Crammer and Singer, 2002; Tsochantaridis et al., 2004). As 
with the binary SVM, it is possible to set a wide range of parameters. The parameters are 
described on the SVMmulticlass web page (Online reference [9]). 

Naive Bayes Classifier  This is an implementation of the Naive Bayes classifier, a relatively 
straightforward probabilistic classifier based on the Bayes’ theorem and a strong independence 
assumption. This implementation employs the Laplace’s rule of succession and m-estimate to 
assess the probabilities. It uses the multinomial model to handle BOW vectors.  

Majority Classifier  This is a simple baseline classifier. In the training phase, it determines the 
label which is the most frequent in the training set. In the classification phase, it then classifies 
a test example into the class corresponding to that label. 

Clusterers 
A Clusterer Hub receives a clustering algorithm and an unlabeled dataset (if the dataset is labeled, 
the labels are ignored) on its input stubs (cls and ds, respectively) and produces a set of clusters 
on the output stub (cr). The resulting clusters can either be flat or arranged into a hierarchy.  

A clusterer (hub-based processing component) has only one output stub (cls), through which 
it sends its interface to a Clusterer Hub. The following two clusterers are currently available in 
LATINO: 
K-Means Clusterer  This centroid-based clustering algorithm aims at partitioning a set of 

examples into 𝑘𝑘 groups (clusters).  

Agglomerative Hierarchical Clusterer  This connectivity-based hierarchical clustering algo-
rithm arranges a set of examples into a hierarchy in a bottom-up manner. 

4.3 Software availability 
The text mining framework LATINO, developed by the author of this thesis, is available as a 
software library in a publicly accessible Git repository (Online reference [19]).  

Based on LATINO, Matjaž Juršič (Department of Knowledge Technologies, Jožef Stefan 
Institute) developed a set of components for text mining in the ClowdFlows platform. His source 
code is publicly available in a Git repository (Online reference [20]). 

Matic Perovšek (Department of Knowledge Technologies, Jožef Stefan Institute) included 
LATINO ClowdFlows components into the TextFlows platform. TextFlows is a fork of 
ClowdFlows with a focus on text mining applications. TextFlows source code is publicly available 
(Online reference [21]). An instance of TextFlows is also deployed on the web (Online reference 
[22]). 
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5 TEHmINe Methodology for Mining Text-Enriched 
Heterogeneous Information Networks 

The workflow devised in Section 3.3 envisions projecting texts and structure into a common 
vector space. The text-preprocessing part of the workflow employs a typical text mining approach 
based on the BOW representation of texts (see Chapter 4). In contrast to the text-preprocessing 
pipeline, we did not yet discuss the specifics of the structure-preprocessing pipeline. In this chap-
ter, we thus develop the missing parts for preprocessing the structure of a heterogeneous infor-
mation network. With this, we provide a complete specification of the methodology and thus the 
grounds for its implementation. 

5.1 Network mining background  
In the following sections, we present several approaches from network analysis for embedding 
networks into vector spaces. These techniques provide the basis for devising the structure-pre-
processing part of the two methodologies. 

5.1.1 Basic concepts and notations 

This section presents several basic concepts and notations related to graphs and networks (Steen, 
2010). These are used throughout the rest of the chapter. 

A graph is a mathematical structure for modeling pairwise relations between objects. In a 
graph, the objects are represented with vertices (also called nodes). The relations are represented 
with edges (also called links). A graph 𝐆𝐆 therefore consists of vertices 𝐕𝐕 and edges 𝐄𝐄, which we 
denote as: 

 𝐆𝐆 = (𝐕𝐕,𝐄𝐄) (?) 

We can always assign an integer identifier to each object (vertex) and thus define the set of 
vertices as 𝐕𝐕 = 1. . 𝑛𝑛, where 𝑛𝑛 is the total number of vertices. On the other hand, the way we 
define the edges distinguishes between directed and undirected graphs. 

A directed graph is a graph in which the edges are modeled as ordered pairs of vertices: 

 𝐄𝐄 = {(𝑎𝑎, 𝑏𝑏): 𝑎𝑎, 𝑏𝑏 ∈ 𝐕𝐕} (?) 

On the other hand, an undirected graph is a graph in which the edges are modeled as unordered 
pairs of vertices: 

 𝐄𝐄 = {{𝑎𝑎, 𝑏𝑏}: 𝑎𝑎, 𝑏𝑏 ∈ 𝐕𝐕} (?) 
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A weighted graph is a graph in which a weight is assigned to each edge. We formalize this in 
terms of a weighting function w(·) which takes an edge as input and outputs a weight which is 
in general a real number: 

 w(𝐞𝐞) = 𝑤𝑤𝐞𝐞;    𝐞𝐞 ∈ 𝐄𝐄,   𝑤𝑤𝐞𝐞 ∈ ℝ (?) 

or, written differently: 

 w: 𝐄𝐄 → ℝ (?) 

A weighted graph is thus defined as: 

 𝐆𝐆 = (𝐕𝐕,𝐄𝐄,w) (?) 

Note that the range of the weighting function can also be defined as a specific subset of real 
numbers. For example, we will often assign reference counts to edges, which means that the range 
of the weighting function will be positive integers (ℕ+). Weighted graphs are sometimes called 
networks. We will rather use the term “weighted graph” to avoid confusing it with a heterogene-
ous information network.  

In the scope of this work, a heterogeneous information network is understood as a weighted 
directed graph in which each node is of a certain type and each edge can be of several different 
types. To formalize this, we first define a type-assignment function for vertices: 

 tV:𝐕𝐕 → 𝐓𝐓V (?) 

The set of possible vertex types 𝐓𝐓V is discrete and finite. For the DBLP-like toy example given 
in Section 3.1, 𝐓𝐓V is defined as {paper, author, proceeding}. Note that each vertex can be of 
exactly one type. Effectively, this breaks the set of vertices into several disjoint sets of vertices 
(or one single set if all vertices are of the same type). Furthermore, let us define a type-assignment 
function for edges: 

 tE: 𝐄𝐄 → {𝑞𝑞: 𝑞𝑞 ∈ 𝐓𝐓E} (?) 

Similar to the vertex type-assignment function, the set of possible edge types 𝐓𝐓E is discrete and 
finite. For the example given in Section 3.1, 𝐓𝐓E is defined as {author of, published in, cites}. In 
contrast to a vertex, an edge can be of several different types. For example, in a DBLP-like social 
network, two persons can be at the same time co-workers and co-authors.  

Given the two type-assignment functions, the definition of a (weighted, directed) heterogene-
ous information network is as follows: 

 𝐍𝐍 = (𝐕𝐕,𝐄𝐄,w, tV, tE) (?) 

With this formalism, it is now easy to describe other relevant concepts such as the set of all 
vertices of a specific type (e.g., the set of all authors): 

 𝐕𝐕author = {𝐯𝐯 ∈ 𝐕𝐕: tV(𝐯𝐯) = author} (?) 

It is also easy to describe edge constraints such as “a link of the type ‘cites’ can only link a paper 
to another paper”: 

 ∀𝐞𝐞 ∈ 𝐄𝐄, 𝐞𝐞 = (𝑥𝑥, 𝑦𝑦): cites ∈ tE(𝐞𝐞) ⇒ tV(𝑥𝑥) = tV(𝑦𝑦) = paper (?) 
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5.1.2 Iterative classification  

Iterative classification is a well-known method for classifying graph vertices (Bhagat et al., 2011; 
Neville, 2000). This approach is relevant for two reasons. First, it embeds graph vertices into a 
vector space, which is the property that we are primarily interested in. Second, it allows us to 
combine structural features (structural vectors) and the so-called vertex features (non-structural 
vectors, e.g., BOW vectors). 

Let us first look at the case where non-structural features (in our case, BOW vectors repre-
senting documents) are not available. Suppose we only have a (directed) graph 𝐆𝐆 = (𝐕𝐕,𝐄𝐄) with 
a set of vertices 𝐕𝐕 = 1. . 𝑛𝑛. Some of the vertices are labeled (categorized), which we denote with 
c(𝑖𝑖) ∈ 0. . 𝑝𝑝 for each 𝑖𝑖 ∈ 1. . 𝑛𝑛. If c(𝑖𝑖) is 0 for a particular vertex, this means that the vertex is 
unlabeled. Suppose that the task is to label all the unlabeled vertices in the graph by observing 
the labeled vertices. The general idea is to describe a vertex with a feature vector that describes 
how the vertices in its immediate neighborhood are labeled. Most often, a 𝑝𝑝-dimensional struc-
tural feature vector is “attached” to a vertex. Each component (dimension) corresponds to a 
particular label (category). Let us denote the 𝑗𝑗-th vector component (i.e., the component corre-
sponding to the label 𝑗𝑗) with 𝑠𝑠𝑖𝑖,𝑗𝑗, where 𝑗𝑗 ∈ 1. . 𝑝𝑝 and 𝑖𝑖 denotes the corresponding vertex. Most 
often, 𝑠𝑠𝑖𝑖,𝑗𝑗 is simply the number of neighbors of the vertex 𝑖𝑖 which are labeled with 𝑗𝑗. More for-
mally: 

 𝑠𝑠𝑖𝑖,𝑗𝑗  =  |{𝑘𝑘 ∈ 𝐄𝐄𝑖𝑖: c(𝑘𝑘) = 𝑗𝑗}| (4) 

where 𝐄𝐄𝑖𝑖 represents the set of neighbors of 𝑖𝑖 regardless of whether they are connected to 𝑖𝑖 as in- 
or out-links, 𝐄𝐄𝑖𝑖 = {𝑗𝑗: (𝑖𝑖, 𝑗𝑗) ∈ 𝐄𝐄 ∨ (𝑗𝑗, 𝑖𝑖) ∈ 𝐄𝐄}. Other options such as counting only the in- or out-
links are also possible. 

In the next step, we collect all the labeled structural feature vectors and form a training set. 
We can then employ a machine learning algorithm to build a classification model. After that, we 
collect all the unlabeled non-zero structural feature vectors and classify the corresponding vertices 
by using the classification model. Since a vertex might not have a labeled vertex in its neighbor-
hood, it can remain unlabeled after this step. It thus makes sense to repeat the labeling process, 
this time with a larger collection of unlabeled nodes. Note that in this iterative process, the 
structural feature vectors change from iteration to iteration because either new vertices are la-
beled or some already labeled vertices are assigned different labels. The process is terminated 
after a certain number of steps or when there is no substantial change in the assigned labels.  

Lu and Getoor (2003) employ iterative classification for link-based text categorization. They 
construct structural feature vectors in several different ways. In addition to the scheme given in 
Equation 4 (which they call “Count-Link”), they experiment with binary features and “mode” 
features (see the original paper for more details). They also distinguish between features based 
on in-links, out-links, and co-links. They define their iterative classification loop as a two-step 
process. In the first step, they use a classifier (logistic regression) trained only on the labeled 
BOW vectors. With this, they assign initial labels to all the objects in the graph, thus countering 
the cold start problem. In the second step, they perform the classical iterative classification loop, 
employing a classifier trained on both BOW vectors and structural feature vectors. Specifically, 
they employ a combination (an ensemble) of two logistic-regression classifiers: one trained on the 
textual features and the other on the structural features. This approach exhibits several proper-
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ties related to our methodology: (i) it combines textual and structural data, (ii) it embeds struc-
tural data into a vector space, and (iii) it performs a data fusion step for combining the two 
different types of data. 

5.1.3 Diffusion kernels 

Kernels are structures that implicitly project a set of objects into a high-dimensional vector space 
by providing, for each pair of objects, the value of the dot product in that vector space. The 
algorithms that perform knowledge discovery with kernels (called the kernel methods), do not 
rely on explicit descriptions (i.e., vectors) of objects but rather perform all the necessary compu-
tation by using the dot product values provided in a kernel matrix. 

Kernels often model a notion of similarity between objects and therefore knowledge discovery 
is performed in an implicit vector space where the dot product corresponds to a similarity meas-
ure between the vector representations of the objects. Diffusion kernels (Gärtner, 2003; Kondor 
and Lafferty, 2002) also fall into this category and model similarities between vertices in a 
weighted graph.  

For our purpose, diffusion kernels are interesting because every kernel matrix 𝐊𝐊, by definition, 
can be represented as 𝐊𝐊 = 𝐕𝐕𝐕𝐕T, where the rows of 𝐕𝐕 can be viewed as vectors, effectively em-
bedding the objects into a vector space in which the dot product between these objects behaves 
according to the definition in the kernel matrix.  

Diffusion kernels are best explained with an analogy of diffusing randomly generated values 
across the network. Let us consider attaching a random variable 𝑍𝑍𝑖𝑖 to each vertex 𝑖𝑖 in an undi-
rected weighted graph 𝐆𝐆 = (𝐕𝐕,𝐄𝐄,w). Now let each variable send some of its value (fraction 𝛼𝛼) 
to each of the immediate neighbors at discrete time steps 𝑡𝑡 = 1,2,3,… according to the following 
formula: 

 𝑍𝑍𝑖𝑖(𝑡𝑡 + 1) = 𝑍𝑍𝑖𝑖(𝑡𝑡) + 𝛼𝛼∑ 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑍𝑍𝑗𝑗(𝑡𝑡) − 𝑍𝑍𝑖𝑖(𝑡𝑡))𝑗𝑗:∃{𝑖𝑖,𝑗𝑗}∈𝐄𝐄  (5) 

where 𝑤𝑤𝑖𝑖,𝑗𝑗 denotes the weight (nonnegative) of the edge between 𝑖𝑖 and 𝑗𝑗. It turns out that the 
covariance matrix of such random field is a kernel reflecting similarities between vertices: the 
more two vertices 𝑖𝑖 and 𝑗𝑗 are interconnected in a graph, the more of 𝑍𝑍𝑖𝑖 is transitioned to 𝑍𝑍𝑗𝑗 and 
vice versa. Covariance between 𝑖𝑖 and 𝑗𝑗 is consequently increased. It is also possible to draw sim-
ilarities between diffusion kernels and random walks (see Kondor and Lafferty, 2002). 

A diffusion kernel is defined as follows: 

 𝐊𝐊𝐆𝐆 = lim
𝑛𝑛→∞

∑ (𝛽𝛽𝐇𝐇)𝑡𝑡

𝑖𝑖!
𝑛𝑛
𝑖𝑖=0  (?) 

 𝐇𝐇 = −𝐋𝐋 = �
ℎ1,1 … ℎ1,𝑛𝑛

⋮ ⋱ ⋮
ℎ𝑛𝑛,1 … ℎ𝑛𝑛,𝑛𝑛

�,   ℎ𝑖𝑖,𝑗𝑗 =
⎩�
⎨
�⎧𝑤𝑤𝑖𝑖,𝑗𝑗 ∃{𝑖𝑖, 𝑗𝑗} ∈ 𝐄𝐄

− ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘𝑘𝑘:∃{𝑖𝑖,𝑘𝑘}∈𝐄𝐄 𝑖𝑖 = 𝑗𝑗
0 otherwise

 (?) 

where 𝑛𝑛 is the number of vertices in the graph, 𝐇𝐇 is the negative graph Laplacian −𝐋𝐋 (used as 
a generator), and 𝛽𝛽 is the diffusion parameter incorporating both 𝛼𝛼 and 𝑡𝑡 from Equation 5. A 
diffusion kernel can be relatively efficiently computed by first performing eigenvalue decomposi-
tion of the negative Laplacian and thus obtaining 𝐇𝐇 = 𝐓𝐓𝐃𝐃𝐓𝐓T, and then computing the following 
(Gärtner, 2003): 
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 𝐊𝐊𝐆𝐆 = 𝐓𝐓e𝛽𝛽𝐃𝐃𝐓𝐓T (6) 

Note that eβ𝐃𝐃 can be computed component-wise as 𝐃𝐃 is diagonal. Other matrix operations 
are trivial as well because the matrix in the middle is diagonal. Since the eigenvalue decomposi-
tion is the most time consuming task in this process, a diffusion kernel can be computed in 
O(𝑑𝑑𝑛𝑛2) time, 𝑛𝑛 being the number of matrix rows or columns (i.e., the number of vertices in the 
graph), 𝑑𝑑 being the average number of values in a matrix row or column. This is the time com-
plexity of the Lanczos eigenvalue decomposition algorithm (Cullum and Willoughby, 2002) which 
is designed for sparse matrices such as our Laplacians where 𝑑𝑑 ≪ 𝑛𝑛. 

To embed the vertices from 𝐆𝐆 into a vector space, we first rewrite Equation 6 into: 

 𝐊𝐊𝐆𝐆 = 𝐓𝐓
√

e𝛽𝛽𝐃𝐃�𝐓𝐓
√

e𝛽𝛽𝐃𝐃�
T
 (?) 

From this formulation, we can see that the matrix which contains vectors as rows can be com-
puted as 𝐕𝐕 = 𝐓𝐓

√
e𝛽𝛽𝐃𝐃. This embedding, however, lacks a clear interpretation of the dimensions 

in the resulting vector space. 

5.1.4 Spectral clustering 

Spectral clustering refers to identifying clusters of data instances by examining the eigenvalues 
(i.e., spectrum) and eigenvectors of a Laplacian matrix derived from the data (Luxburg, 2007). 
It can be applied to any dataset in which a measure of similarity (symmetric, non-negative) is 
defined. It can also be used directly on graphs. One of its properties is that it embeds graph 
vertices into a vector space and then employs a standard clustering algorithm such as the 𝑘𝑘-
means clustering. This is similar to how we want to process networks in our data mining frame-
work. 

The spectral clustering algorithm performs as follows: 
Input: number of clusters 𝑘𝑘, unlabeled dataset 𝐃𝐃 = (𝐯𝐯1, 𝐯𝐯2 …𝐯𝐯𝑛𝑛), similarity measure 𝑠𝑠 
 

1. Construct an undirected similarity graph 𝐆𝐆 in which vertices correspond to data instances 
𝐯𝐯𝑘𝑘. There are numerous ways to do this. The most widely used are the following: 
- Create an unweighted graph by connecting all vertices whose pairwise similarities are 

greater than a predefined threshold. 
- Connect each vertex with its 𝑘𝑘-nearest neighbours. Weight the edges according to the 

similarity measure 𝑠𝑠. 
- Connect all vertices whose pairwise similarities are greater than 0. This usually results 

in a fully-connected graph. Weight the edges according to the similarity measure 𝑠𝑠. 
Let 𝐀𝐀 be the adjacency matrix of this similarity graph. 

2. From 𝐀𝐀, compute a graph Laplacian. Several different ways of doing this can be found in 
the literature: 
- Non-normalized Laplacian (Shi and Malik, 2000): 𝐋𝐋 = 𝐃𝐃 − 𝐀𝐀, where 𝐃𝐃 is a diagonal 

degree matrix with elements 𝑑𝑑𝑖𝑖,𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛
𝑗𝑗=1 . 

- Symmetric normalized Laplacian (Ng et al., 2001): 𝐋𝐋sym = 𝐈𝐈 − 𝐃𝐃−1
2𝐀𝐀𝐃𝐃−1

2, where 𝐈𝐈 is 
the identity matrix. 

- Random walk normalized Laplacian (Meila and Shi, 2001): 𝐋𝐋rw = 𝐈𝐈 − 𝐃𝐃−1𝐀𝐀. 
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3. Compute the first 𝑘𝑘 eigenvectors 𝐮𝐮1, 𝐮𝐮2,… , 𝐮𝐮𝑘𝑘. By “the first eigenvectors”, we refer to the 
eigenvectors corresponding to the smallest eigenvalues. In (Shi and Malik, 2000), the first 
𝑘𝑘 generalized eigenvectors are computed instead by solving the generalized eigenvalue prob-
lem 𝐋𝐋𝐮𝐮 = 𝜆𝜆𝐃𝐃𝐮𝐮. This makes it equivalent to computing 𝐋𝐋rw and solving the standard ei-
genvalue problem.  

4. Let 𝐔𝐔 be the matrix containing the eigenvectors as columns and let 𝐱𝐱𝑘𝑘 be the vector cor-
responding to the 𝑘𝑘-th row of 𝐔𝐔. In (Ng et al., 2001), the authors normalize the vectors 𝐱𝐱𝑘𝑘 
so that their Euclidean norm is 1. 

5. Cluster the vectors 𝐱𝐱𝑘𝑘 into 𝑘𝑘 clusters. Usually, the 𝑘𝑘-means clustering algorithm is used for 
this purpose. Note that it is also possible to replace 𝑘𝑘-means with some other clustering 
algorithm (e.g., hyperplane-based clustering; Lang, 2005). Either way, it has been shown 
that the Euclidean distance is a meaningful measure for determining clusters in the result-
ing space (Nadler et al., 2005). 
 

Spectral clustering can also be used directly on graphs by simply skipping the first step and 
starting by computing a graph Laplacian. Essentially, this algorithm embeds a graph into a 𝑘𝑘-
dimensional Euclidean space (where 𝑘𝑘 is normally relatively small) in which clustering is per-
formed to determine meaningful groups of vertices. 

It can be shown that for a connected, non-bipartite graph 𝐆𝐆 = (𝐕𝐕,𝐄𝐄) and two disjoint sets 
of vertices 𝐀𝐀,𝐁𝐁 ⊂ 𝐕𝐕, the bisecting 𝐋𝐋rw-based spectral clustering looks for the cut that minimizes 
the probability that a random walker will transition from one set of vertices to another or vice 
versa (Meila and Shi, 2001). 

5.1.5 PageRank and Personalized PageRank 

PageRank is a measure of relative importance of a vertex in a directed weighted graph (Page et 
al., 1999). It is named after one of its inventors, Larry Page (Google), and was originally used to 
rank web pages in the Google search engine (which makes the name PageRank an amusing word 
play). A variant of the algorithm, called Personalized PageRank (PPR), can also be used for 
embedding networks into vector spaces (Page et al., 1999).  

The classical PageRank algorithm takes as input a directed weighted graph and assigns an 
importance weight to each vertex in the graph. A highly weighted vertex is more important in 
the sense that many vertices (that are themselves also relatively highly weighted) point directly 
to it. The algorithm can be intuitively explained with the random walker paradigm as follows: 

1. The random walker starts at an arbitrary vertex.  
2. The random walker decides whether to move or not; it moves with the probability 

P(move) = 𝑑𝑑, where 𝑑𝑑 is the so-called damping factor.  
3. If it decides to move, it chooses one of the outgoing edges to move along. An edge is chosen 

with the probability proportional to the edge weight (with respect to the weights of the 
other outgoing edges).  

4. If it decides not to move, it is “teleported” to a randomly selected vertex.  
5. The process is repeated from Step 2. 

 

The weight assigned to a vertex is intuitively the relative number of times the random walker 
visits the vertex in an infinitely long walk. In other words, it is the probability that such random 
walker will be, at a random point in time, observed at a particular vertex. 
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A PageRank vector 𝐫𝐫 is more formally defined as follows: 

 𝐫𝐫 = (1 − 𝑑𝑑)𝐭𝐭 + 𝑑𝑑(𝐫𝐫𝐫𝐫) (7) 

 𝐭𝐭 = [ 1
𝑁𝑁 , 1

𝑁𝑁 , … , 1
𝑁𝑁] (?) 

where 𝑑𝑑 ∈ [0,1] is the damping factor, 1 − 𝑑𝑑 is the teleport probability, 𝐭𝐭 is the teleport vector, 
and 𝐫𝐫 is the row-normalized adjacency matrix (i.e., right stochastic matrix). Vector 𝐭𝐭 contains 
the probabilities that the random walker will choose a particular vertex when teleporting. In the 
original formulation, these probabilities are all set to 1

𝑁𝑁, where 𝑁𝑁  is the number of vertices (i.e., 
choosing each vertex with equal probability).  

A simple way to show that 𝐫𝐫 is in fact a stationary distribution over a modified adjacency 
matrix is to insert the teleport edges into the underlying graph. This also reveals that the above 
equation is not entirely correct if the graph contains vertices with no out-links (called dangling 
links in the original paper; we will call them dangling vertices instead). Suppose that we have a 
graph 𝐆𝐆 = (𝐕𝐕, 𝐄𝐄,w) in which every vertex has at least one outgoing edge (i.e., no dangling links). 
From 𝐆𝐆, we now construct a graph 𝐆𝐆′ which more explicitly models the behaviour of the random 
walker. We first normalize the weights of the outgoing edges at each vertex so that they sum up 
to 1: 

 ∀𝑖𝑖: ∑ w(𝑖𝑖, 𝑗𝑗)𝑗𝑗:(𝑖𝑖,𝑗𝑗)∈𝐄𝐄 = 1  (8) 

Then, we multiply these weights with 𝑑𝑑 (the probability of continuing the walk). Next, we add 
𝑁𝑁  outgoing teleport edges to each vertex, each weighted with 1−𝑑𝑑

𝑁𝑁 , so that each other vertex can 
be directly reached through a teleport edge. This construction exactly corresponds to Equation 
7. If we now consider the adjacency matrix 𝐀𝐀 (which is row-normalized), we can describe the 
PageRank vector 𝐫𝐫 as 𝐫𝐫 = 𝐫𝐫𝐀𝐀. 

However, suppose that 𝐆𝐆 has at least one vertex with no outgoing edges (i.e., a dangling 
vertex) to which the condition given in Equation 8 clearly cannot be applied. If we apply the 
previously discussed graph reconstruction process, the weights of the outgoing teleport edges at 
a dangling vertex sum up to 1 − 𝑑𝑑. In order to get a stochastic adjacency matrix (with normalized 
rows), we thus need to divide the weights of the teleport edges at dangling vertices with 1 − 𝑑𝑑. 
In other words, at a dangling vertex, the teleport edges should be weighted with 1

𝑁𝑁. This kind of 
construction, which does not entirely correspond to Equation 7, gives us the proper PageRank 
equation 𝐫𝐫 = 𝐫𝐫𝐀𝐀, where 𝐀𝐀 is a row-normalized stochastic matrix even if the graph contains dan-
gling vertices. If 𝑑𝑑 is set to 1, 𝐫𝐫 = 𝐫𝐫𝐀𝐀 becomes 𝐫𝐫 = 𝐫𝐫𝐫𝐫 (see Equation 7). Since the stationary 
distribution does not always exist for an arbitrary graph, the convergence cannot be guaranteed. 
On the other hand, if we set 𝑑𝑑 to 0, we have the solution 𝐫𝐫 = 𝐭𝐭 which does not tell us anything 
about the general importance of vertices. However, if 𝑑𝑑 is greater than 0 and smaller than 1, we 
end up with a Markov chain in which every state is positive recurrent and for which a unique 
stationary distribution is guaranteed to exist (Online reference [2]). In this case, the PageRank 
vector 𝐫𝐫 is essentially the only eigenvector of 𝐀𝐀 (with the corresponding eigenvalue 𝜆𝜆 = 1). 
In practice, PageRank is often computed iteratively as follows: 

1. Initialize PageRank vector: 𝐫𝐫 = [ 1
𝑁𝑁 , 1

𝑁𝑁 , … , 1
𝑁𝑁]. 

2. Set 𝐭𝐭 = [ 1
𝑁𝑁 , 1

𝑁𝑁 , … , 1
𝑁𝑁]. 

3. Compute 𝐫𝐫′ = (1 − 𝑑𝑑)𝐭𝐭 + 𝑑𝑑(𝐫𝐫𝐫𝐫). 
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4. Because of the dangling vertices (if any), the difference 𝑒𝑒 = 1 − ‖𝐫𝐫′‖1 can be greater than 
0. In this case, we distribute it among all the vertices: 𝐫𝐫′′ = 𝐫𝐫′ + 𝑒𝑒𝐭𝐭. Otherwise 𝐫𝐫′′ = 𝐫𝐫′. 

5. Compute 𝛿𝛿 = ‖𝐫𝐫′′ − 𝐫𝐫‖1. If 𝛿𝛿 is greater than some (predefined) small positive 𝜀𝜀, end the 
algorithm and return 𝒓𝒓′′. 

6. Repeat from Step 3 (with 𝐫𝐫 ← 𝐫𝐫′′).  
 

By modifying the teleport vector 𝐭𝐭, it is possible to redefine the teleporting strategy of the 
random walker. If the teleport probability in 𝐭𝐭 is not equally distributed, we call such ranking 
algorithm Personalized PageRank (PPR). The way PPR is normally used is that we define a set 
of 𝑚𝑚 source vertices 𝐒𝐒 ⊆ 𝐕𝐕, |𝐒𝐒| = 𝑚𝑚, and modify the teleport vector (and also the initial PPR 
vector 𝐫𝐫) so that it contains 1

𝑚𝑚 for every vertex 𝑖𝑖 ∈ 𝐒𝐒 and 0 for all other vertices. A special case 
of this kind of PPR is when we select only one vertex as the source, |𝐒𝐒| = 𝑚𝑚 = 1. In this case, 
the corresponding teleport vector component is 1 and all the others are 0. In general, we could 
say that PPR ranks vertices in a graph with respect to a set of source vertices. Even more 
accurately, it ranks vertices with respect to the vertex probability distribution in 𝐭𝐭. PPR can also 
be used for embedding networks into vector spaces. We discuss this aspect of PPR more thor-
oughly later on in Section 5.2. 

5.1.6 SimRank 

As the last algorithm in this section, we discuss SimRank (Jeh and Widom, 2002), a measure of 
similarity between vertices based on their structural contexts. In contrast to the other discussed 
algorithms, SimRank does not embed vertices into a vector space. The reason for presenting it 
here is that it introduces the notion of expected meeting distance, a concept similar to the one 
that we use to provide intuition for the development of a similarity measure in our data mining 
framework (see Section 5.2.2). 

SimRank is also interesting because it does not assume that two directly connected vertices 
are similar to each other. It only assumes that a vertex is similar to itself and that two vertices 
are similar if vertices that are also similar to each other link to them. 

The SimRank measure between two vertices a and b in a graph, s(a, b), is defined recursively 
as follows: 

 s(𝑎𝑎, 𝑎𝑎) = 1  (?) 

 s(𝑎𝑎, 𝑏𝑏) = 𝐶𝐶
|𝐈𝐈𝑎𝑎||𝐈𝐈𝑏𝑏| ∑ ∑ s(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝐈𝐈𝑏𝑏𝑖𝑖∈𝐈𝐈𝑎𝑎

  (?) 

In this equation, 𝐈𝐈𝑎𝑎 and 𝐈𝐈𝑏𝑏 denote the set of vertices directly linked to 𝑎𝑎 and the set of vertices 
directly linked to 𝑏𝑏, respectively. More formally, for any vertex 𝑖𝑖, 𝐈𝐈𝑖𝑖 = {𝑗𝑗: (𝑗𝑗, 𝑖𝑖) ∈ 𝐄𝐄}. Note that 
if either |𝐈𝐈𝑎𝑎| or |𝐈𝐈𝑏𝑏| is 0, the similarity score is defined to be 0. 𝐶𝐶 plays the role of a damping 
factor.  

SimRank over 𝐆𝐆 can also be interpreted in the sense of random walks. Let us define the 
expected distance between vertices 𝑖𝑖 and 𝑗𝑗 in 𝐆𝐆 as: 

 d(𝑖𝑖, 𝑗𝑗) = ∑ P(𝐭𝐭)l(𝐭𝐭)𝐭𝐭:𝑖𝑖→𝑗𝑗   (?) 

where 𝐭𝐭 is a tour from 𝑖𝑖 to 𝑗𝑗, P(𝐭𝐭) is a probability that the random walker will make the tour 𝐭𝐭, 
and l(𝐭𝐭) is the length (in the number of edges) of the tour 𝐭𝐭. The expected distance d(𝑖𝑖, 𝑗𝑗) is in 
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fact the expected number of steps that the random walker needs to take to get from 𝑖𝑖 to 𝑗𝑗. If the 
tours have cycles, the above equation is a convergent infinite sum. 

Let us now derive, from 𝐆𝐆, a graph of vertex pairs 𝐆𝐆2: 

 𝐆𝐆2 = (𝐕𝐕2,𝐄𝐄2)  (?) 

 𝐕𝐕2 = {(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝐕𝐕}  (?) 

 𝐄𝐄2 = {〈(𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙)〉: (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐕𝐕2 ∧ (𝑖𝑖, 𝑘𝑘), (𝑗𝑗, 𝑙𝑙) ∈ 𝐄𝐄}  (?) 

A vertex pair (𝑖𝑖, 𝑗𝑗) points to a pair (𝑘𝑘, 𝑙𝑙) in 𝐆𝐆2 if, in 𝐆𝐆, 𝑖𝑖 points to 𝑘𝑘 and 𝑗𝑗 points to 𝑙𝑙. In this 
derived graph, a random walker starting in (𝑖𝑖, 𝑗𝑗) and ending in (𝑘𝑘, 𝑘𝑘) represents two random 
walkers in 𝐆𝐆, one starting from 𝑖𝑖, the other from 𝑗𝑗, which meet each other in vertex 𝑘𝑘. This 
allows us to elegantly model the concept of the expected meeting distance: 

 m(𝑖𝑖, 𝑗𝑗) = ∑ P(𝐭𝐭)l(𝐭𝐭)𝐭𝐭:(𝑖𝑖,𝑗𝑗)→(𝑘𝑘,𝑘𝑘)   (9) 

m(𝑖𝑖, 𝑗𝑗) gives us the expected number of steps that each of the two random walkers in 𝐆𝐆, one 
starting from 𝑖𝑖, the other from 𝑗𝑗, need to take before they meet. For various reasons (see the 
original paper for details), it is more convenient to turn this equation into a similarity measure 
by mapping the range of l(𝐭𝐭) , i.e., [0,∞) , onto (0,1]  by substituting l(𝐭𝐭)  with 𝑐𝑐l(𝐭𝐭) , where 𝑐𝑐 ∈
(0,1). This maps paths of length 0 to 1 and extremely long paths to a value close to 0. Equation 
9 thus becomes: 

 s′(𝑖𝑖, 𝑗𝑗) = ∑ P(𝐭𝐭)𝑐𝑐l(𝐭𝐭)
𝐭𝐭:(𝑖𝑖,𝑗𝑗)→(𝑘𝑘,𝑘𝑘)  (?) 

It can be shown that: 

 s′(𝑎𝑎, 𝑏𝑏) = 𝑐𝑐
|𝐎𝐎𝑎𝑎||𝐎𝐎𝑏𝑏| ∑ ∑ s′(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝐎𝐎𝑏𝑏𝑖𝑖∈𝐎𝐎𝑎𝑎

 (?) 

In this equation, 𝐎𝐎𝑎𝑎 and 𝐎𝐎𝑏𝑏 denote the set of vertices directly linked from 𝑎𝑎 and the set of ver-
tices directly linked from 𝑏𝑏, respectively. In other words, the similarity score based on the ex-
pected meeting distance is in fact SimRank with a damping factor 𝐶𝐶 = 𝑐𝑐 and focusing on out-
links rather than in-links. If the two random walkers followed in-links rather than out-links in 
their walks, the above equation would turn into the SimRank equation. The two random walkers 
would meet in nodes that represent sources of rank. SimRank is therefore a similarity measure 
closely related to the expected meeting distance of two random walkers in a graph. 

5.2 Embedding networks into BOW-like spaces 

We already provided the rationale for extending an existing text mining framework with network 
analysis capabilities in Chapter 3. As evident from the methodology overview presented in Figure 
3.3, the main missing piece of the methodology workflow is the component for embedding heter-
ogeneous information networks into BOW-like vector spaces that can be combined with a BOW 
space to form a common vector space in which knowledge discovery can be performed. We develop 
this missing piece in this section. 
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5.2.1 Argumentation for choosing Personalized PageRank 

From the approaches, presented in Section 5.1, we have selected Personalized PageRank (PPR) 
for embedding networks into vector spaces. Our choice was mainly guided by the idea of defining 
a common space in which both texts and vertices can be represented. Furthermore, one of the 
requirements states that the same analytical tools need to be able to handle each type of data 
separately and both types of data in combination (the “uniformity” requirement, see Section 3.2). 
Since the functional basis for TEHmINe is LATINO, a text-mining toolkit based on the BOW 
vector representation of texts, the resulting structural vectors are required to demonstrate certain 
properties of BOW vectors. 

In practice, when working with BOW vectors, we can observe the following (relatively obvious) 
properties: 

1. BOW vectors can be constructed regardless of the type of the given data mining task (e.g., 
it can be either a classification or a clustering task). This is the most important property 
because our goal is to devise a general-purpose methodology. 

2. BOW vectors are high-dimensional and sparse. In addition, by removing components with 
low weights (i.e., cutting off tails), it is possible to make the analyses more efficient (lower 
memory consumption, faster similarity computations) without compromising the quality of 
the results. 

3. Cosine similarity is the similarity metric of choice when working with BOW vectors. Intu-
itively, it compares two documents according to content, disregarding their lengths. 

4. The components of a BOW vector (and thus the dimensions of the corresponding BOW 
space) have a clear interpretation. They represent terms from the source text corpus. 
 

Let us now review the approaches presented in Section 5.1 with respect to these properties. The 
iterative classification algorithm (Section 5.1.2) is not suitable for our needs because it requires 
labeled data in order to construct structural feature vectors. This limits the approach to super-
vised learning, which immediately rules it out for using it in a general-purpose framework. In 
addition, the constructed structural feature vectors are normally low-dimensional (the number of 
dimensions is the number of different labels in the training set). They, however, do have a clear 
interpretation and can intuitively be compared with the cosine similarity measure. 

Diffusion kernels (Section 5.1.3) clearly violate the fourth property as the corresponding vec-
tor-space representation does not come with a clear interpretation of the dimensions. By defini-
tion, the dot product represents a well-grounded measure of similarity between two “diffusion 
vectors”. It is however unclear whether applying the cosine similarity makes sense (note that the 
diffusion vectors are not normalized and thus using cosine similarity is not equivalent to using 
dot product). On the other hand, they can be constructed regardless of the type of the data 
mining task at hand, which is a desirable property. 

Spectral clustering (Section 5.1.4) normally constructs low-dimensional vectors, where the 
number of dimensions is equal to the number of target clusters. This implies that the process 
cannot be used in a general-purpose setting. Furthermore, the vectors are constructed from ei-
genvectors of a Laplacian matrix, which makes the process relatively complex. From this per-
spective, it is not clear what the dimensions of the resulting space intuitively mean. Finally, while 
it was shown that the Euclidean distance discriminates well between the resulting clusters (Nadler 
et al., 2005), there is no guarantee that the cosine similarity measure performs equally well. 
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Finally, Personalized PageRank (PPR), when run from a single vertex, produces a structural 
vector for that vertex (see Section 5.1.5). It can be shown that PPR vectors demonstrate many 
properties of BOW vectors. First of all, they can be constructed regardless of the type of the 
subsequent data mining task. They are relatively high-dimensional (the number of dimensions 
equals the number of vertices in the graph) and can be usually made sparse by removing low 
weights (analogous to cutting off tails of BOW vectors). Furthermore, they work well with both 
the dot product and the cosine similarity. For both these two similarity measures, it is also 
possible to provide intuitive interpretations (see Section 5.2.2). Finally, the components of a PPR 
vector do have a clear interpretation (they represent the vertices in the graph). 

From this discussion, we can conclude that, among the discussed approaches, PPR is the most 
suitable choice for embedding networks into BOW-like spaces. We discuss an intuitive interpre-
tation of using cosine similarity with PPR vectors in the following subsection. 

5.2.2 Similarity measure in the PPR vector space 

To embed a network into a vector space, we employ Personalized Page Rank (PPR), discussed 
in Section 5.1.5. The term “personalized” refers to using a predefined set of vertices as the source 
of rank; in our case, PPR is run from a single source vertex in a directed weighted graph 𝐆𝐆 =
(𝐕𝐕,𝐄𝐄,𝑤𝑤). This vertex represents the object for which we want to compute the structural vector.  

The process is equivalent to a random walk that starts at a particular vertex. At each vertex, 
the random walker decides whether to teleport back to the source vertex (this is done with the 
probability 1 − 𝑑𝑑 where 𝑑𝑑 is the so-called damping factor) or to continue its walk along one of 
the edges. The probability of choosing a certain edge is proportional to this edge’s weight with 
respect to the weights of the other edges attached to the vertex. In effect, for a selected source 
vertex 𝑖𝑖 in a graph, PPR computes a vector with components 𝑟𝑟𝑖𝑖,𝑗𝑗, where 𝑗𝑗 is a vertex in the 
graph and 𝑟𝑟𝑖𝑖,𝑗𝑗 is the probability that the random walker starting from vertex 𝑖𝑖 will be observed 
at vertex 𝑗𝑗 at an arbitrary point in time. 

This process projects a node 𝑖𝑖 into a PPR vector space or, in other words, represents the node 
𝑖𝑖 with a PPR vector. We will now show that the dot product of two such vectors represents a 
similarity measure with a clear intuitive interpretation. Let us first define two single-source PPR 
vectors (one starting from 𝑖𝑖 and the other from 𝑗𝑗): 

 𝐱𝐱𝑖𝑖 = �𝑟𝑟𝑖𝑖,1, 𝑟𝑟𝑖𝑖,2, … , 𝑟𝑟𝑖𝑖,𝑚𝑚�,   𝐱𝐱𝑗𝑗 = (𝑟𝑟𝑗𝑗,1, 𝑟𝑟𝑗𝑗,2,… , 𝑟𝑟𝑗𝑗,𝑚𝑚) (?) 

The dot product of the two vectors is defined as follows: 

 𝐱𝐱𝑖𝑖 ⋅ 𝐱𝐱𝑗𝑗 = 𝑟𝑟𝑖𝑖,1𝑟𝑟𝑗𝑗,1 + 𝑟𝑟𝑖𝑖,2𝑟𝑟𝑗𝑗,2 + ⋯+ 𝑟𝑟𝑖𝑖,𝑚𝑚𝑟𝑟𝑗𝑗,𝑚𝑚 (10) 

Because observing one random walker at a particular vertex is independent from observing the 
other at that same vertex, we can interpret a product 𝑟𝑟𝑖𝑖,𝑘𝑘𝑟𝑟𝑗𝑗,𝑘𝑘 as the probability that the random 
walker starting from vertex 𝑖𝑖 will be observed at vertex 𝑘𝑘 and at the same time, the random 
walker starting from 𝑗𝑗 will be observed at 𝑘𝑘 at an arbitrary point in time. In other words, this 
product denotes the probability that the two random walkers meet at vertex 𝑘𝑘 at an arbitrary 
point in time. Furthermore, because the separate meeting events are mutually exclusive (i.e., 
disjoint), we can interpret the dot product given in Equation 10 as “the probability that the two 
random walkers, one starting from 𝑖𝑖 and the other from 𝑗𝑗, meet at vertex 1 or at vertex 2 or ... 
or at vertex 𝑚𝑚 at an arbitrary point in time”. In other words, the presented dot product denotes 
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the probability that the two random walkers meet (at an arbitrary vertex) at an arbitrary point 
in time. This principle is illustrated in Figure 5.1.  

Although this gives a very nice justification for using dot product as a measure of similarity, 
it does not fulfill our requirement of having an intuitive justification for using the cosine similarity 
measure. We now offer a reinterpretation of similarity between vertices in which we perceive 
random walks as text documents. This reinterpretation also makes an important connection be-
tween bags-of-words and Personalized PageRank thus placing it nicely into our BOW-based 
framework. 

Let us suppose that each node is assigned a random word and that a single random walker, 
staring his walk from a particular vertex, is “writing down” the words that it encounters along 
the way. In other words, we can view the graph as a simple stochastic language model (this 
principle is illustrated in Figure 5.2). This view works if we assume that the clusters in the graph 
(i.e., highly interconnected groups of vertices) correspond to topics. If two random walkers start 
from within the same cluster, they tend to stay within the cluster (because the connectedness 
within the cluster is greater than that between the clusters). For this reason, the resulting two 
random documents will mostly contain words from the same cluster or, in other words, they will 
discuss the same topic. From the “random writer” perspective, a PPR vector is in fact the 𝑙𝑙1-
normalized (i.e., vector components sum up to 1) term-frequency (TF) BOW vector representa-
tion of the corresponding (infinite) random text document. 

This intuitively justifies the use of cosine similarity when comparing two PPR vectors. It also 
relates PPR vectors to bags-of-words and thus nicely fits PPR into our existing text mining 
framework. 

5.2.3 Decomposing heterogeneous networks into homogeneous 
graphs 

As already discussed in Section 5.1.5, PPR is applicable to directed weighted graphs. Heteroge-
neous information networks (HINs) are indeed directed and weighted (see Section 5.1.1) but they 

 
Figure 5.1: Dot product in a PPR space: the meeting probability. The vectors x1 and x7 contain 
PPR weights (visit probabilities) for the random walks starting from the nodes 1 and 7, respec-
tively. The probability that the two walkers meet at an arbitrary node is 7.74%. 

x1 = (0.30, 0.19, 0.23, 0.11, 0.04, 0.06, 0.03, 0.04)

7

8

43

5

62

1

x7 = (0.03, 0.03, 0.06, 0.18, 0.09, 0.19, 0.27, 0.15)
x7·x7 = 0.0774



TEHmINe Methodology for Mining Text-Enriched Heterogeneous Information Networks 55 

 

also come with vertex- and edge-type information. This information is discarded if we feed a HIN 
to the PPR algorithm. We have therefore decided to decompose a HIN into a set of homogeneous 
context graphs with the following properties: 

1. A context graph contains only one type of vertices and one type of edges.  
2. The relation in a context graph models an aspect of similarity.  
3. The relation in a context graph is implicitly reflexive. This means that every vertex is 

related to itself. With respect to the first property, this intuitively makes sense as it states 
that every object is similar to itself. “Implicitly” here means that we do not need to explic-
itly model this property by attaching a loop to each vertex.  

4. The relation in a context graph is implicitly transitive. This means that if 𝑖𝑖 is related to 𝑗𝑗 
and 𝑗𝑗 is related to 𝑘𝑘, then 𝑖𝑖 is also related to 𝑘𝑘. “Implicitly” here means that we do not 
need to explicitly model all the relations in the transitive closure.  

5. The relation in a context graph is symmetric. This means that if vertex 𝑖𝑖 is related to 
vertex 𝑗𝑗, vertex 𝑗𝑗 is also related to vertex 𝑖𝑖. With respect to the second property, this 
intuitively makes sense as it states that if 𝑖𝑖 is similar to 𝑗𝑗, then 𝑗𝑗 is also similar to 𝑖𝑖. Effec-
tively, this means that the context graph is a symmetric directed graph. 
 

To argue for these requirements, let us again resort to the random-writer interpretation of 
PPR. The random writer starting from 𝑖𝑖 eventually visits all the vertices directly or indirectly 
reachable from 𝑖𝑖. This means that it writes down all the words assigned to these vertices but 
with different relative frequencies. Suppose that 𝑘𝑘 is a vertex reachable from 𝑖𝑖. If started from 𝑘𝑘, 
the random writer will undoubtedly write down the word attached to 𝑘𝑘. This means that both 
these two documents (one started from 𝑖𝑖 and the other from 𝑘𝑘) will contain the word attached 
to 𝑘𝑘. This will make the two vertices similar at least to some extent. In general, if 𝑘𝑘 is reachable 
from 𝑗𝑗, then 𝑗𝑗 will be similar to 𝑘𝑘 at least to some extent (transitivity). Furthermore, the cosine 
similarity of a vertex with itself will always be 1 (reflexivity). Finally, cosine similarity is a sym-
metric similarity measure, which means that cossim(𝑎𝑎, 𝑏𝑏) = cossim(𝑏𝑏, 𝑎𝑎). Therefore, the use of 

 
Figure 5.2: Cosine similarity in a PPR space: the random writer analogy. The vector x7 contains 
PPR weights (visit probabilities) for the random walk starting from the node to which the word 
“word7” is assigned. If we imagine that the random walker is “writing down” the words that it 
encounters along the way, then x7 can be seen as the l1-normalized term-frequency bag-of-words 
representation of the random document created by this random walker (hence the term “random 
writer”).  
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x7 = (0.03, 0.03, 0.06, 0.18, 0.09, 0.19, 0.27, 0.15)
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PPR and cosine similarity clearly demonstrates the properties of transitivity, reflexivity, and 
symmetry. The use of these two techniques can thus only be justified and intuitively interpreted 
if the underlying relation also possesses these properties.  

Let us now consider the first toy example presented in Section 3.1.1. In the example, the types 
of vertices are “author”, “paper”, and “proceedings”. The types of relations are “author of”, 
“published in”, “cites”. An author is linked to his papers with the “author of” link. A paper is 
linked to the proceedings in which it was published with the “published in” link. Finally, a paper 
is linked to the papers that it refers to with the “cites” link.  

Let us now assume that our data mining task envisions papers as the objects of interest. This 
means that we need to cluster, classify, or rank papers rather than authors or proceedings to 
solve the problem at hand. For this reason, we construct the context graphs out of the vertices 
corresponding to papers. Several such graphs are the following: 

• Two papers are interlinked (indirectly, through authors) if they were published by at least 
one common author, resulting in the “paper-author-paper” or “P-A-P” graph. 

• Two papers are interlinked (indirectly, through proceedings) if they were published in the 
same proceedings, resulting in the “paper-proceedings-paper” or “P-P-P” graph. At this 
point, we also include the knowledge from the available proceedings taxonomy.  

• Two papers are interlinked if one cites the other, resulting in the “paper-cites-paper” or 
“P-c-P” graph. 
 

The three resulting symmetric directed weighted graphs are shown in Figure 5.3. In this toy 
example, most of the edges in the graphs are weighted equally (their weight is 1). The only 
exception is the P-A-P graph where the weights correspond to the number of authors that two 
papers have in common. Note that in the P-P-P graph, we interlink two papers even if they were 
not published in the same proceedings but rather in the same series of proceedings (e.g., Discovery 
Science proceedings regardless of the year). At this point, we could use higher edge weights for 
pairs of papers that were published in the same proceedings and lower for those that were not 
published in the same year, but we avoid doing so in this toy example for the sake of simplicity. 

Let us now review one of these three graphs with respect to the requirements set forth at the 
beginning of this section. The P-A-P graph intuitively contains the relation of “shared author-
ship”. The relationship is symmetric and can also be interpreted as reflexive (stating that a paper 
always shares an author with itself), but is hard to see the transitivity property. However, if we 
reinterpret the relation as “similar in content [as it was written by the same group of authors]”, 
we can see that it is symmetric, reflexive, and also transitive. Note that not all the (implicitly) 
interrelated papers need to be similar in content to the same extent. If our task is to categorize 

 
Figure 5.3: Decomposition of the toy example from Section 3.1.1. This figure shows the “paper-
author-paper”, “paper-proceedings-paper”, and “paper-cites-paper” graph, respectively. Note 
that these graphs are actually directed, symmetric, and with equal mutual weights, but are shown 
here as undirected for simplicity. 
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or cluster papers according to their content, this relation indeed represents a notion of similarity. 
We can draw similar conclusions for the other two derived graphs.  

Note that while the relation in a derived graph is transitive and reflexive only by interpretation 
(we do not model it explicitly as such), it needs to explicitly model the symmetry property. This 
means that for every edge there exists its reversed counterpart with the same weight. Such graph 
can also be interpreted as an undirected graph but strictly speaking, it is a symmetric directed 
graph. Looking again at our toy example, we can see that the first two derived graphs, the P-A-
P graph and the P-P-P graph, are symmetric by design. The P-c-P graph, however, requires us 
to perform another step in the decomposition process and explicitly complement each edge with 
its reverse counterpart. In the event of already having a mutual edge between two vertices in 
such a graph (e.g., two papers mutually citing each other), we sum the two weights—let us denote 
this sum with 𝑤𝑤—and replace the two existing edges with two new edges, each of them weighted 
with 𝑤𝑤, one being the reversed counterpart of the other. 

5.2.4 Fusing context vectors with BOW vectors 

In Section 5.2.3, we argued for the decomposition of a heterogeneous information network (HIN) 
into a set of homogeneous graphs. In short, this makes it compatible with PPR, the algorithm of 
our choice for embedding networks into vector spaces (see Section 5.2). This decomposition ef-
fectively produces a set of structural vectors for each vertex (one structural vector for each graph). 
Since our workflow (see Section 3.3) already envisions a data fusion component that joins textual 
and structural data, we can handle different network contexts (i.e., different homogeneous graphs) 
in the same data fusion framework to produce in the end one single vector (containing textual 
and heterogeneous structural information) for each object (vertex).   

In this section, we present a simple and pragmatic data fusion model that we use as a building 
block in the proposed methodology. From a high-level perspective, we propose to concatenate the 
vectors (i.e., attaching one after the other) and apply a feature weighting (i.e., component 
weighting) scheme to account for the different types of data. The approach is illustrated in Figure 
5.4. 

To explain the theoretical background, we first establish a relationship between vectors and 
linear kernels. Suppose that, for a given object 𝑖𝑖, the concatenated vector is obtained by “gluing 
together” 𝑚𝑚 vectors (corresponding to the different modalities of data, e.g., one BOW vector and 
𝑚𝑚 − 1 structural PPR vectors). For a given set of 𝑛𝑛 objects, let us denote the 𝑚𝑚 sets of feature 
vectors by 𝐕𝐕1,… , 𝐕𝐕𝑚𝑚, where each 𝐕𝐕𝑘𝑘 is a matrix with 𝑛𝑛 rows, in which the 𝑖𝑖-th row represents 

 
Figure 5.4: Transforming a heterogeneous information network and the corresponding text docu-
ments into a joint feature vector format. Feature vector construction is shown for one particular 
object. 

Feature vector

w0 w1 w2 w3Feature vector

Feature vector

Feature vector



58 TEHmINe Methodology for Mining Text-Enriched Heterogeneous Information Networks 

 

the feature vector corresponding to object 𝑖𝑖. The corresponding kernels, one for each set of feature 
vectors, are computed as 𝐊𝐊𝑘𝑘 = 𝐕𝐕𝑘𝑘𝐕𝐕𝑘𝑘

T. 
This relationship is important because it relates our data fusion approach to Multiple Kernel 

Learning (MKL), which can also be employed for data fusion (Lanckriet et al., 2004). In MKL, 
multiple kernels are combined into a weighted convex combination of kernels which yields a 
combined kernel 𝐊𝐊Σ = ∑ 𝛼𝛼𝑘𝑘𝐊𝐊𝑘𝑘𝑘𝑘  , ∑ 𝛼𝛼𝑘𝑘𝑘𝑘 = 1 , 𝛼𝛼𝑘𝑘 ≥ 0 . Analogously, we derive the following 
equation that shows how the above weights 𝛼𝛼𝑘𝑘 can be used to combine feature vectors: 

 𝐕𝐕Σ =
√

𝛼𝛼1𝐕𝐕1⨁
√

𝛼𝛼2𝐕𝐕2 ⨁ …⨁�𝛼𝛼𝑚𝑚𝐕𝐕𝑚𝑚 (11) 

In this equation, ⨁ represents the concatenation of matrix rows. To prove that the resulting 
combined vectors correspond to the kernel 𝐊𝐊Σ, we have to show that 𝐕𝐕Σ𝐕𝐕Σ

T = 𝐊𝐊Σ: 

 𝐕𝐕Σ𝐕𝐕Σ
T = �

√
𝛼𝛼1𝐕𝐕1 ⨁…⨁�𝛼𝛼𝑚𝑚𝐕𝐕𝑚𝑚��

√
𝛼𝛼1𝐕𝐕1 ⨁…⨁�𝛼𝛼𝑚𝑚𝐕𝐕𝑚𝑚�T = (*) 

 = ∑ 𝛼𝛼𝑘𝑘𝐕𝐕𝑘𝑘𝐕𝐕𝑘𝑘
T

𝑘𝑘 = ∑ 𝛼𝛼𝑘𝑘𝐊𝐊𝑘𝑘𝑘𝑘 = 𝐊𝐊Σ (*) 

Let us denote a particular row (vector) of 𝐕𝐕Σ with 𝐯𝐯Σ and the corresponding rows (vectors) 
from 𝐕𝐕1,… , 𝐕𝐕𝑚𝑚 with 𝐯𝐯1,… , 𝐯𝐯𝑚𝑚. We can now show that if 𝐯𝐯1,… , 𝐯𝐯𝑚𝑚 are normalized to unit 
lengths, 𝐯𝐯Σ has this same property. The fact that ‖𝐯𝐯𝑘𝑘‖ = �∑ 𝑣𝑣𝑘𝑘,𝑖𝑖

2
𝑖𝑖 = 1 implies ∑ 𝑣𝑣𝑘𝑘,𝑖𝑖

2
𝑖𝑖 = 1. By 

taking this into account, we can show the following: 

 ‖𝐯𝐯Σ‖ = �∑ �
√

𝛼𝛼1𝑣𝑣1,𝑖𝑖�2
𝑖𝑖 + ∑ �

√
𝛼𝛼2𝑣𝑣2,𝑖𝑖�2

𝑖𝑖 + ⋯+ ∑ ��𝛼𝛼𝑚𝑚𝑣𝑣𝑚𝑚,𝑖𝑖�2
𝑖𝑖  (?) 

 ‖𝐯𝐯Σ‖ = �𝛼𝛼1 ∑ 𝑣𝑣1,𝑖𝑖
2

𝑖𝑖
�

=1

+ 𝛼𝛼2 ∑ 𝑣𝑣2,𝑖𝑖
2

𝑖𝑖
�

=1

+ ⋯+ 𝛼𝛼𝑚𝑚 ∑ 𝑣𝑣𝑚𝑚,𝑖𝑖
2

𝑖𝑖
�

=1

 (?) 

 ‖𝐯𝐯Σ‖ = �∑ 𝛼𝛼𝑖𝑖
𝑚𝑚
𝑖𝑖=1 =

√
1 = 1 (?) 

In general, the weights 𝛼𝛼𝑘𝑘 can be set in several different ways. We can resort to trial-and-error 
or a greedy heuristic. We can also consider “binary weights” and either include or exclude a 
certain type of vectors. In the presented video lecture categorization use case (see Chapter 7), we 
employ a stochastic optimizer and directly optimize the target evaluation metric. 

5.3 Efficient graph-based classification 
As evident from our real-life use case (see Chapter 7) and also confirmed by other studies 
(Cardoso-Cachopo et al., 2006; Han and Karypis, 2000), the nearest centroid classifier offers very 
good performance and is much more efficient than many other classifiers. This outcome has 
motivated the development of a new graph-based nearest centroid classifier that exploits the 
flexibility of the proposed vector construction process in order to compute the centroids extremely 
efficiently.  

5.3.1 Multi-context nearest centroid classifier 

In text mining, the centroid vector is a vector representing an artificial prototype document of a 
document set which “summarizes” the documents in the set. Given a set of TF-IDF vectors, the 
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normalized sum of vectors is shown to perform best in text classification scenarios (Cardoso-
Cachopo et al., 2006). In this case, given a set of BOW vectors represented as rows in matrix 𝐃𝐃 
(let 𝐃𝐃𝑖𝑖 denote the 𝑖𝑖-th row in matrix 𝐃𝐃) and a set of row indices 𝐑𝐑, identifying documents that 
we want to group into a centroid, the normalized centroid vector 𝐂𝐂 is computed, according to 
Equation 2, as follows: 

 𝐂𝐂′ = 1
|𝐑𝐑| ∑ 𝐃𝐃𝑖𝑖𝑖𝑖∈𝐑𝐑 ,   𝐂𝐂 = 𝐂𝐂′

‖𝐂𝐂′‖ (12) 

Let us now consider a multi-context setting introduced in Section 5.2.4. Suppose we have 𝑚𝑚 
contexts and thus 𝑚𝑚 sets of feature vectors represented as rows in matrices 𝐕𝐕1, . . . , 𝐕𝐕𝑚𝑚. Again, 
let 𝐑𝐑 be the set of row indices identifying objects that we want to group into a centroid. Finally, 
let 𝐕𝐕𝑘𝑘,𝑖𝑖 denote the 𝑖𝑖-th row in matrix 𝐕𝐕𝑘𝑘. In the proposed framework, in order not to invalidate 
the intuition presented in Section 5.2, the centroid needs to be computed as follows (∑ 𝛼𝛼𝑘𝑘𝑘𝑘 = 1, 
𝛼𝛼𝑘𝑘 ≥ 0): 

 𝐂𝐂 =
√

𝛼𝛼1
𝐂𝐂1

‖𝐂𝐂1‖ +
√

𝛼𝛼2
𝐂𝐂2

‖𝐂𝐂2‖ + ⋯+ �𝛼𝛼𝑚𝑚
𝐂𝐂𝑚𝑚

‖𝐂𝐂𝑚𝑚‖ (13) 

 𝐂𝐂𝑘𝑘 = 1
|𝐑𝐑| ∑ 𝐕𝐕𝑘𝑘,𝑖𝑖𝑖𝑖∈𝐑𝐑    1 ≤ 𝑘𝑘 ≤ 𝑚𝑚  

Note that ‖𝐂𝐂‖ = 1.  
Equation 13 is used instead of the classical centroid-computation procedure in the nearest 

centroid classifier (see Section 4.1.3). This results in a context-aware nearest centroid classifier. 

5.3.2 PPR-based nearest centroid classifier  

In this section, we show that the structural part of a centroid vector given by Equation 13 can 
be very efficiently computed. Let us focus on one of the “partial” centroids representing one of 
the structural contexts, 𝐂𝐂𝑘𝑘 (1 ≤  𝑘𝑘 ≤  𝑚𝑚). Equation 12 suggests that, in order to compute 𝐂𝐂𝑘𝑘, 
we should construct |𝐑𝐑| PPR vectors and compute their average. However, it is possible to do 
this computation a lot more efficiently by computing just one PPR vector. Instead of running 
PPR from a single source node, we set 𝐑𝐑 to be the set of source nodes (when the random walker 
teleports, it teleports to any of the nodes in 𝐑𝐑 with equal probability). It turns out that a cen-
troid computed in this way is exactly the same as if it were computed in the “slow way” by 
strictly following Equation 14. In the following, we show this equivalence. 

Let 𝐀𝐀 be the adjacency matrix of the graph representing one of the structural contexts, nor-
malized so that each column sums up to 1. Let 𝐕𝐕 be the matrix in which rows represent the 
corresponding structural-context feature vectors. Let 𝐕𝐕𝑖𝑖 denote the 𝑖𝑖-th row in matrix 𝐕𝐕 (i.e., 
the PPR feature vector of the 𝑖𝑖-th object). Let 𝐑𝐑 be the set of row indices identifying nodes 
(objects) that we want to group into a centroid. Furthermore, let 𝐭𝐭𝑖𝑖 be the “teleport” vector 
defining the 𝑖𝑖-th node as the source node, having the 𝑖𝑖-th element set to 1 and all others to 0, 
𝐭𝐭𝑖𝑖 = [0, . . . , 0, 1, 0, . . . 0]T. The size of this vector is equal to the number of rows in 𝐕𝐕. Finally, let 
𝑑𝑑 be the PageRank damping factor. Then, each row in matrix 𝐕𝐕 is computed by solving the PPR 
equation: 

 𝐕𝐕𝑖𝑖 = (1 − 𝑑𝑑)𝐭𝐭𝑖𝑖 + 𝑑𝑑𝐀𝐀𝐕𝐕𝑖𝑖 (15) 

If we now compute the average over the matrix rows (i.e., PPR vectors) defined by 𝐑𝐑, we get the 
following equation: 
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 1
|𝐑𝐑| ∑ 𝐕𝐕𝑖𝑖𝑖𝑖∈𝐑𝐑 = 1

|𝐑𝐑| ∑ �(1 − 𝑑𝑑)𝐭𝐭𝑖𝑖 + 𝑑𝑑𝐀𝐀𝐕𝐕𝑖𝑖�𝑖𝑖∈𝐑𝐑  (?) 

 1
|𝐑𝐑| ∑ 𝐕𝐕𝑖𝑖𝑖𝑖∈𝐑𝐑 = 1

|𝐑𝐑| ∑ (1 − 𝑑𝑑)𝐭𝐭𝑖𝑖𝑖𝑖∈𝐑𝐑 + 1
|𝐑𝐑| ∑ 𝑑𝑑𝐀𝐀𝐕𝐕𝑖𝑖𝑖𝑖∈𝐑𝐑  (?) 

 1
|𝐑𝐑| ∑ 𝐕𝐕𝑖𝑖𝑖𝑖∈𝐑𝐑 = (1 − 𝑑𝑑)∑ 1

|𝐑𝐑| 𝐭𝐭𝑖𝑖𝑖𝑖∈𝐑𝐑 + 𝑑𝑑𝐀𝐀 1
|𝐑𝐑| ∑ 𝐕𝐕𝑖𝑖𝑖𝑖∈𝐑𝐑  (?) 

If we define 𝐂𝐂′ and 𝐭𝐭′ as: 

 𝐂𝐂′ = 1
|𝐑𝐑| ∑ 𝐕𝐕𝑖𝑖𝑖𝑖∈𝐑𝐑 ,   𝐭𝐭′ = ∑ 1

|𝐑𝐑| 𝐭𝐭𝑖𝑖𝑖𝑖∈𝐑𝐑  (?) 

we finally get: 

 𝐂𝐂′ = (1 − 𝑑𝑑)𝐭𝐭′ + 𝑑𝑑𝐀𝐀𝐂𝐂′ (?) 

We can see that this equation resembles the single-source PPR equation (Equation 15). The 
main difference is the modified teleport vector 𝐭𝐭 which contains values 1

|𝐑𝐑| at locations that denote 
the nodes (objects) that we want to group into a centroid. This is exactly the PPR equation with 
multiple source nodes where 1

|𝐑𝐑| is the probability of choosing a particular source node when 
teleporting. Therefore, instead of computing the average over several single-source PPR vectors, 
we can compute just one multiple-source PPR vector. 

In case of having 𝑟𝑟 classes and 𝑛𝑛 objects, 𝑛𝑛 ≫ 𝑟𝑟, this speeds up the process by factor 𝑛𝑛𝑟𝑟 by 
computing 𝑟𝑟 PPR vectors instead of 𝑛𝑛 PPR vectors in the training phase. Practical implications 
are outlined in Section 7.5. 

5.4 Complete TEHmINe workflow and its components  
Figure 5.5 shows the LATINO workflow (as envisioned in ClowdFlows) for embedding text-en-
riched heterogeneous information networks into vector spaces. Notice that this workflow largely 
resembles the conceptual workflow. It starts by loading a text-enriched heterogeneous information 
network (TEHIN) from a file. The structure is then processed in the “upper” pipeline; the texts 

 
Figure 5.5: Proposed ClowdFlows workflow for embedding text-enriched heterogeneous information 
networks into vector spaces. 
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are processed in the “lower” pipeline. The text-preprocessing pipeline was already discussed in 
Section 4.2. In this section, we thus present the components employed in the structure-prepro-
cessing pipeline.  

TEHIN Loader 
A TEHIN Loader loads a text-enriched heterogeneous information network (TEHIN) from a 
JSON- or XML-based data file. The file contains the following information: 
List of vertices  A vertex is specified with an identifier, a type specifier, and optionally with a 

label. 

List of edges  An edge is specified with two vertices (more accurately, their identifiers), a weight 
(real number), and a type specifier. 

List of documents  A document is specified with the identifier of a vertex, to which it corre-
sponds, and with a text, which represents the content of the document. 

 

A TEHIN Loader is a data source component with no input stubs. It has only one output stub 
(tehin), which provides the loaded TEHIN to subsequent workflow components. 

ADC Extractor 
An ADC Extractor component is a stand-alone processing component with one input stub (tehin), 
through which it receives a TEHIN. On its output stub (adc), it outputs an ADC created out of 
the texts in the TEHIN. The resulting ADC inherits labels (if they exist) from the TEHIN 
vertices. 

Graph Extractor 
A Graph Extractor component is a stand-alone processing component with one input stub (tehin), 
through which it receives a HIN (note that this HIN is in fact given as a TEHIN object; if it 
contains texts, they are ignored), and one output stub (tehin) through which it outputs a sym-
metrical directed weighted graph (technically, it is a TEHIN object).  

To define the graph to be extracted, the user specifies a sequence of alternating vertex-edge 
type specifiers that unambiguously define the paths in the HIN that form the edges in the result-
ing graph. The first and the last specifier in this sequence are expected to be vertex type specifiers 
and they are expected to be equal. The first and the last vertex specifier denote the type of 
vertices that form the resulting graph. Given the toy example in Figure 3.1, the P-A-P graph is 
obtained by specifying “paper-authorOf-author-authorOf-paper” as the sequence of type specifiers. 
By default, the direction of the edges in the HIN is ignored. The user can also instruct the 
component to respect the direction of the edges. In this case, the toy HIN would need to explicitly 
model the inverse relations. The P-A-P graph would be obtained with the following sequence of 
type specifiers: “paper-writtenBy-author-authorOf-paper”. 

PPR 
A PPR component is a stand-alone processing component with one input stub (tehin) through 
which it receives a symmetric directed weighted graph (technically, it is a TEHIN object but the 
vertex- and edge-type information is ignored; if the TEHIN contains texts, they are also ignored). 
It outputs a dataset of PPR vectors through its output stub (ds). These vectors are computed 



62 TEHmINe Methodology for Mining Text-Enriched Heterogeneous Information Networks 

 

by running the Personalized PageRank algorithm (PPR). The dataset inherits labels from the 
input TEHIN object, if they are present.  

Data Fuser  
A Data Fuser component is a stand-alone processing component with multiple input stubs of the 
same type (ds), through which it receives several datasets. The component outputs a fused da-
taset through its output stub (ds).  

The input datasets need to be aligned which means that a particular row needs to correspond 
to the same object in all the datasets. Furthermore, if the input datasets are labeled, the labels 
in one dataset need to match the labels in any of the other datasets.  
The vectors in the resulting dataset are formed by concatenating the vectors in the input datasets 
as discussed in Section 5.2.4. By default, the input datasets are all weighted equally. The user 
can, however, specify weights to change this default behavior. 

5.5 Software availability 
In contrast to our text mining framework which is available as a set of ClowdFlows/TextFlows 
components (see Section 4.3), the structure preprocessing functionality is currently not available 
as a set of components (we leave this to further work). In Section 5.4, however, we give a brief 
technical specification of these components and thus provide grounds for their implementation. 

Currently, the structure preprocessing functionality is partly available in LATINO and partly 
in the source code corresponding to the VideoLectures.net use case. LATINO and VideoLec-
tures.net categorizer sources are publicly available in their respective Git repositories (Online 
references [19] and [23]). The VideoLectures.net categorizer is also available as a Windows exe-
cutable (Online reference [24]). 
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6 OntoBridge Methodology for Ontology Querying 

As already explained in Section 3.5, the ontology querying methodology was derived from the 
general-purpose TEHmINe methodology. Similarly to the TEHmINe workflow, the ontology que-
rying workflow starts with loading a TEHIN. But in this case, the TEHIN represents a grounded 
ontology. The term “grounded” in this context means that every ontology entity of interest is 
enriched with a set of documents describing, talking about, or otherwise being related to this 
entity. In Section 6.1, we discuss the idea of grounding and explain how an ontology can be 
viewed as a TEHIN. 

Both methodology workflows outlined in Chapter 3 employ a typical text preprocessing pipe-
line. On the other hand, the part where the two workflows differ the most is the structure pro-
cessing pipeline. In contrast to the TEHmINe workflow, the ontology querying workflow employs 
the Graph Creator component which is fundamentally different from the Graph Extractor com-
ponent in the TEHmINe workflow. It takes as input the BOW vectors created by the text pre-
processing pipeline, the heterogeneous network representing the ontology, and a user query; it 
outputs a homogeneous graph on which Personalized PageRank is executed. This graph construc-
tion process is discussed in detail in Section 6.2. 

6.1 Ontologies as text-enriched heterogeneous networks 
An ontology is an explicit specification of a conceptualization (Gruber, 1993). In other words, an 
ontology formally represents concepts and their interrelations (i.e., knowledge) from a certain 
domain. It usually contains the following elements: 

• Set of concepts (classes of objects) which are hierarchically arranged into a subsumption 
hierarchy. A subsumption hierarchy interrelates classes with the “is a” relation. For exam-
ple, consider these two statements: “A Volvo is a car. A car is a vehicle.” In this case, we 
have three classes of objects (Volvo, car, and vehicle), arranged into a subsumption hierar-
chy (note the “is a” relation between these classes). 

• Set of relation definitions (domain-relation-range triples). Relation definitions provide a set 
of relations that can be established between instances (objects) in the ontology. Each rela-
tion definition has a domain and a range. Both the domain and range are defined as a set 
of classes. The first (source) instance in the relation needs to belong to at least one of the 
domain classes. Similarly, the second (target) instance in the relation needs to belong to at 
least one of the range classes. For example, consider the statement “a person can own a 
vehicle”. In this case, person and vehicle are classes and owns is a relation with the domain 
person and range vehicle. We will call relation definitions also domain-relation-range triples 
or simply triples when discussing the methodology. 

• Set of interlinked instances (objects). Instances represent real-life objects such as people, 
places, and events. An instance normally belongs to a certain class. For example, my Volvo 
is an instance of (it belongs to) the class Volvo. Instances can be interlinked with the 
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relations defined in the context of the classes to which these instances belong. For example, 
consider the statement “I own my Volvo”. In this case, I is an instance of the class person, 
my Volvo is an instance of the class Volvo, and owns is an instance of the relation definition 
owns. Remember that this relation definition has the domain person and the range vehicle. 
Since Volvo and vehicle are in the subsumption relation (note that the subsumption relation 
is transitive), every instance of Volvo is also an instance of vehicle and thus this relationship 
can be established. 

• Set of axioms. Axioms are rules that a reasoning engine needs to follow in addition to the 
class, instance, and relation definitions. These rules can range from general-purpose to 
domain-specific. An example of a general-purpose rule is the membership propagation rule 
which states that “if x belongs to B and B is an A, then x also belongs to A”. In this case, 
x is an arbitrary instance and A and B are two arbitrary classes. On the other hand, an 
example of a domain-specific rule is the rule which states that “if x is a Volvo, then x was 
made in Sweden”. In this case, x is an instance of class Volvo, made in is a relation that 
can be drawn between an instance of vehicle and an instance of country, and Sweden is an 
instance of country. Effectively, this means that every Volvo was made in Sweden even if 
this is not explicitly stated in the ontology. 

 

In the following sections, we discuss how an ontology can be seen as a heterogeneous networks 
which allows us to employ the proposed ontology querying methodology. 

6.1.1 Viewing ontologies as heterogeneous networks 

In our semantic annotation use case, motivated in Section 3.1.2 and further discussed in Chapter 
8, we limit ourselves to ontologies that only contain subsumption hierarchies, relation definitions, 
and several general-purpose axioms. We therefore leave out most notably instance definitions and 
domain-specific axioms. In this setting, an ontology can be formally defined as follows: 

 𝐎𝐎 =< 𝐂𝐂, 𝐒𝐒,𝐑𝐑, 𝐀𝐀 > (16) 

Equation 16 states that an ontology 𝐎𝐎 is defined as a tuple of four elements: a set of concepts 
𝐂𝐂, arranged into a subsumption hierarchy 𝐒𝐒, a set of relation definitions 𝐑𝐑 (with domains and 
ranges from 𝐂𝐂), and a set of general-purpose axioms 𝐀𝐀. 

The subsumption hierarchy 𝐒𝐒 can be viewed simply as a collection of pairs of concepts (𝑐𝑐1,𝑐𝑐2), 
𝑐𝑐1, 𝑐𝑐2 ∈ 𝐂𝐂, in which the two concepts are in the subsumption relation (i.e., 𝑐𝑐1 is a 𝑐𝑐2; e.g., car 
is a vehicle, Volvo is a car). Without the loss of generality, we can assume that each element 
from 𝐑𝐑 is a triple of the form (𝑐𝑐1,𝑟𝑟,𝑐𝑐2), where 𝑐𝑐1 and 𝑐𝑐2 are two concepts from 𝐂𝐂 and 𝑟𝑟 identifies 
the relation that can be drawn between two instances from 𝑐𝑐1 and 𝑐𝑐2, respectively (e.g., vehicle 
made in country, person friend of person, person owns vehicle). Last but not least, the axioms 
𝐀𝐀 are defined as follows:  

• Subsumption transitivity axiom: if a is a b and b is a c, then also a is a c (where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈
𝐂𝐂). For example, if a Volvo is a car, and a car is a vehicle, then a Volvo is also a vehicle. 
In effect, this rule creates additional subsumption links that, together with the links ex-
plicitly defined in 𝐒𝐒, form the transitive closure of the subsumption hierarchy. Let us denote 
this transitive closure with 𝐒𝐒′.  

• Domain specialization axiom: if (𝑎𝑎,𝑟𝑟,𝑏𝑏) ∈ 𝐑𝐑 and (𝑐𝑐,𝑎𝑎) ∈ 𝐒𝐒′, then (𝑐𝑐,𝑟𝑟,𝑏𝑏) is also a valid rela-
tion definition even if not explicitly stated in 𝐑𝐑. For example, if a vehicle can be owned by 
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a person, and a car is a vehicle, then a car can also be owned by a person. Let us denote 
the set of such specialized relation definitions with 𝐑𝐑𝐝𝐝. 

• Range specialization axiom: if (𝑎𝑎,𝑟𝑟,𝑏𝑏) ∈ 𝐑𝐑 and (𝑐𝑐,𝑏𝑏) ∈ 𝐒𝐒′, then (𝑎𝑎,𝑟𝑟,𝑐𝑐) is also a valid rela-
tion definition even if not explicitly stated in 𝐑𝐑. For example, if a vehicle can be owned by 
a person, and a firefighter is a person, then a vehicle can be owned by a firefighter. Let us 
denote the set of such specialized relation definitions with 𝐑𝐑𝐫𝐫. 

 

Finally, let us define 𝐑𝐑′ = 𝐑𝐑 ∪ 𝐑𝐑𝐝𝐝 ∪ 𝐑𝐑𝐫𝐫. 
Given this simplified formulation, an ontology can be viewed as a heterogeneous information 

network in the following way: 
• Each concept (class) from 𝐂𝐂 represents a vertex in the network. Each vertex is of a certain 

type, defined by the corresponding concept (e.g., the network contains vertices of types car, 
country, person, and so on). 

• Two vertices, the first corresponding to the concept 𝑐𝑐1 and the second to 𝑐𝑐2, are connected 
with a directed unweighted edge of type 𝑟𝑟 if (and whenever) there exists (𝑐𝑐1,𝑟𝑟,𝑐𝑐2) ∈ 𝐑𝐑′.  

 

This procedure gives us a heterogeneous information network that can be highly heterogeneous 
in the sense of the number of different vertex and edge types. In order to apply the proposed 
methodology, we need to enrich this network with texts and thus create a text-enriched hetero-
geneous information network (TEHIN). In the following section, we discuss grounding, a process 
of enriching ontologies (more accurately: ontology-based networks) with texts. 

6.1.2 Enriching ontologies with texts 

This section discusses a general-purpose way of enriching heterogeneous networks, created from 
ontologies, with texts. We call this process grounding in the sense of enriching an object with 
data that allows us to model the object, which was initially not possible due to scarcity of infor-
mation. In general, grounding can be seen as enriching an object with a set of documents de-
scribing, talking about, or otherwise being related to this object. There are numerous ways to 
ground an object such as querying web search engines, online encyclopaedias, dictionaries, and 
thesauri (query being related to the object in question). Here, we will limit ourselves to using a 
web search engine.  

In contrast to the original TEHmINe methodology where we attach texts only to vertices, we 
ground both vertices (representing concepts) and edges (representing relation definitions, triples) 
in networks derived from ontologies. This is required by the Graph Creator component in the 
graph construction process (see Section 3.4). We use concept and relation labels from the ontology 
to form search queries with which groundings, created out of search result snippets, are retrieved. 
A web search engine normally provides an API through which we can issue search requests pro-
grammatically. It also allows us to formulate relatively complex queries that involve AND and 
OR operators, exclusions (NOT), quoted terms (i.e., sequences of words that need to occur con-
secutively), and various special operators. The latter allow us to limit the search to a particular 
web site (e.g., Wikipedia), language, and/or domain. 

We evaluated different alternatives to grounding and term matching in (Grčar et al., 2009b). 
Based on the outcomes of this study, we follow these principles when enriching networks with 
texts: 
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• We use the Faroo search engine (Online reference [13]), because it provides an easy-to-use 
REST-based API (Online reference [14]). When querying the search engine, we limit the 
search to English documents.  

• We turn a search result into a document by simply concatenating the title and summary 
provided by the search engine. Alternatively, we could download the web pages pointed to 
by search results but at the expense of time and network bandwidth. What is more, sum-
maries are usually limited to showing search terms in their contexts and can be as such 
less noisy than the actual web pages. 

• When grounding a vertex, we use the label of the corresponding concept as the search 
query. We do not put the term into quotes. When grounding an edge, on the other hand, 
we simply concatenate the domain, relation, and range labels from the corresponding rela-
tion definition to form the corresponding search query. Again, we do not put the term into 
quotes. These simple methods tend to outperform the more complex heuristics such as 
using quotes and constraining search to a particular context.  

 

The grounding process results in a text-enriched heterogeneous information network with a 
high level of heterogeneity with respect to the number of different types of vertices and edges. 
Each vertex and also each edge is enriched with a set of texts formed out of web search results. 
This allows us to employ the proposed ontology querying methodology. 

6.2 Ontologies as homogeneous graphs 
To exploit the ontology structure, the ontology needs to be represented as a graph. Converting a 
heterogeneous information network into a graph is done by the Graph Creator component in the 
ontology querying workflow (see Section 3.4). We propose two different ways of representing an 
ontology as a graph, depending on which entities are represented with vertices and how these 
vertices are interlinked.  

Whichever the choice, the edges are weighted according to the user’s query. Also, the query is 
represented with one or several vertices attached to the rest of the graph.  

In the following sections, we discuss the two proposed processes of creating graphs from on-
tology-based TEHNIs. 

6.2.1 Processing queries 

As already mentioned, the user query is represented with one or several vertices attached to the 
graph. In order to achieve this, the query first needs to be represented as a bag-of-words vector 
(or a set of BOW vectors). This process is carried out by the Graph Creator component and can 
be done in several different ways. In general, we distinguish between two types of queries as 
follows: 

• Google-like queries, which are short and with a search engine in mind. Such queries need 
to be grounded just like the ontology entities. Each query is thus sent to a web search 
engine and the retrieved documents are converted into BOW vectors. The preprocessing of 
this type of queries is denoted with (a) in Figure 6.1. 

• Descriptive queries, which are relatively long descriptions in natural language. In contrast 
to the short queries, the descriptive queries can be converted into BOW vectors directly. 
We avoid querying a web search engine and consequently eliminate noise that is usually 
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contained in web documents. The downside is, however, that the user needs to provide 
relatively comprehensive descriptions of entities to achieve good results. The preprocessing 
of this type of queries is denoted with (b) in Figure 6.1. 
 

Once the BOW vectors are computed from queries, we can again choose between several 
alternatives to create the final set of query vectors. Suppose we ground a set of 5 Google-like 
queries with 30 web documents each. We can now do one of the following: 

• Convert the 150 documents (i.e., 5 queries, 30 documents each) into BOW vectors and use 
these as the final query vector set. This alternative is denoted with (d) in Figure 6.1. 

• Convert the 150 documents into BOW vectors and compute the centroid vector (see Section 
4.1.2) for each query. This gives us 5 centroids which constitute the query vector set. This 
alternative is denoted with (c) in Figure 6.1. 
 

Overall, Figure 6.1 shows three alternatives to preprocessing user queries: (i) ground the que-
ries and compute the centroids (denoted with a–c in the figure), (ii) ground the queries and use 
the groundings’ bags-of-words directly (denoted with a–d in the figure), or (iii) skip the grounding 
process (denoted with b–d in the figure). Note that the alternative b–c does not make sense 
because skipping the grounding process results in only one feature vector per query. We evaluate 
these alternatives in the context of our semantic annotation use case in Chapter 8. 

6.2.2 Processing structure 

Given a bag-of-words vector from the query vector set, it is possible to assign a similarity score 
to an ontology entity. Let us denote this similarity score with 𝑠𝑠(𝐪𝐪, 𝑒𝑒), where 𝑠𝑠 is the cosine simi-
larity measure, 𝐪𝐪 is a bag-of-words vector from the query vector set, and 𝑒𝑒 is an ontology entity 
represented with the centroid bag-of-words vector of its groundings. The ontology entity can 
either be a concept, e.g., Company, or a domain-relation-range triple, e.g., Company-hasName-
Name. Furthermore, let us define how an entire query vector set is compared to an ontology 

 
Figure 6.1: Different approaches to processing user queries.  
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entity. Given a query vector set 𝐐𝐐 = {𝐪𝐪1, 𝐪𝐪2, 𝐪𝐪3,…}, the similarity score assigned to an entity 𝑒𝑒, 
𝑆𝑆(𝐐𝐐, 𝑒𝑒), is computed as follows: 

 𝑆𝑆(𝐐𝐐, 𝑒𝑒) = ∑ 𝑠𝑠(𝐪𝐪𝑖𝑖, 𝑒𝑒)𝑖𝑖:𝐪𝐪𝑖𝑖∈𝐐𝐐    

These notations are used in the subsequent sections to explain how the graph edges are 
weighted. In the following, we present two different graph representations of an ontology-based 
heterogeneous network, specifically the graph of concepts and the graph of triples. 

Graph of concepts 
In this section, we present an approach in which only the network vertices (i.e., concepts from 
the ontology) are represented with graph vertices. If there exists at least one edge between two 
network vertices (i.e., at least one relation definition involving the two concepts), the two corre-
sponding graph vertices are interlinked with an undirected edge. The algorithm for constructing 
this kind of graph from an ontology-based heterogeneous network is as follows: 

1. Represent each network vertex (concept) with a vertex in the graph. 
2. For each pair of network vertices, representing concepts 𝑐𝑐1 and 𝑐𝑐2, if there exists an edge 

between these two vertices (which means that there exists at least one relation 𝑟𝑟 such that 
(𝑐𝑐1,𝑟𝑟,𝑐𝑐2) ∈ 𝐑𝐑′ or (𝑐𝑐2,𝑟𝑟,𝑐𝑐1) ∈ 𝐑𝐑′, where 𝐑𝐑′ is the set of triples in the ontology), establish 
an undirected edge between the two corresponding graph vertices. Weight it according to 
the following formula: 

 𝑤𝑤(𝑐𝑐1,𝑐𝑐2) = ∑ 𝑆𝑆(𝐐𝐐, (𝑐𝑐1,𝑟𝑟,𝑐𝑐2))(𝑐𝑐1,𝑟𝑟,𝑐𝑐2)∈𝐑𝐑′ + ∑ 𝑆𝑆(𝐐𝐐, (𝑐𝑐2,𝑟𝑟,𝑐𝑐1))(𝑐𝑐2,𝑟𝑟,𝑐𝑐1)∈𝐑𝐑′    

3. Represent each bag-of-words vector 𝐪𝐪𝑖𝑖 from the query vector set 𝐐𝐐 = {𝐪𝐪1, 𝐪𝐪2, 𝐪𝐪3,…} with 
a vertex in the graph. 

4. For each vector 𝐪𝐪𝑖𝑖 and each vertex representing a concept, 𝑐𝑐𝑗𝑗, if 𝑠𝑠(𝐪𝐪𝑖𝑖, 𝑐𝑐𝑗𝑗) > 0, draw a di-
rected edge from the graph vertex representing 𝐪𝐪𝑖𝑖 to the graph vertex representing 𝑐𝑐𝑗𝑗 and 
weight it with 𝑠𝑠(𝐪𝐪𝑖𝑖, 𝑐𝑐𝑗𝑗). 
 

This process is illustrated in Figure 6.2. In the figure, a heterogeneous network representing a 
simple ontology is illustrated in the top left corner, the query in the top right corner, and the 
corresponding homogeneous graph in the lower part of the figure. The dashed arrows relate net-
work vertices (concepts) and the query to the corresponding graph vertices. In this example, the 
triples (Person,owns,ConstructionCompany) and (ConstructionCompany,hasName,Name) are in-
ferred by the domain and range specialization rules (see Section 6.1.1). These rules take the 
subsumption hierarchy into account, thus the subsumption hierarchy is implicitly reflected in the 
graph. Since 𝐐𝐐 = {𝐪𝐪}, the weights 𝑤𝑤1–𝑤𝑤8 are computed as follows: 

 
𝑤𝑤1 = ∑ 𝑆𝑆(𝐐𝐐, (𝑃𝑃𝑒𝑒𝑟𝑟𝑠𝑠𝑙𝑙𝑛𝑛,𝑟𝑟,𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦))(𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑛𝑛,𝑟𝑟,𝐶𝐶𝑃𝑃𝑚𝑚𝐶𝐶𝑎𝑎𝑛𝑛𝑦𝑦)∈𝐑𝐑′ +

+ ∑ 𝑆𝑆(𝐐𝐐, (𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦,𝑟𝑟,𝑃𝑃𝑒𝑒𝑟𝑟𝑠𝑠𝑙𝑙𝑛𝑛))(𝐶𝐶𝑃𝑃𝑚𝑚𝐶𝐶𝑎𝑎𝑛𝑛𝑦𝑦,𝑟𝑟,𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑛𝑛)∈𝐑𝐑′ = 𝑠𝑠(𝐪𝐪, (𝑃𝑃𝑒𝑒𝑟𝑟𝑠𝑠𝑙𝑙𝑛𝑛,𝑙𝑙𝑤𝑤𝑛𝑛𝑠𝑠,𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦))   

 𝑤𝑤2 = 𝑠𝑠(𝐪𝐪, (𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦,ℎ𝑎𝑎𝑠𝑠𝑁𝑁𝑎𝑎𝑚𝑚𝑒𝑒,𝑁𝑁𝑎𝑎𝑚𝑚𝑒𝑒))   
 𝑤𝑤3 = 𝑠𝑠(𝐪𝐪, (𝑃𝑃𝑒𝑒𝑟𝑟𝑠𝑠𝑙𝑙𝑛𝑛,𝑙𝑙𝑤𝑤𝑛𝑛𝑠𝑠,𝐶𝐶𝑙𝑙𝑛𝑛𝑠𝑠𝑡𝑡𝑟𝑟𝐶𝐶𝑐𝑐𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦))   
 𝑤𝑤4 = 𝑠𝑠(𝐪𝐪, (𝐶𝐶𝑙𝑙𝑛𝑛𝑠𝑠𝑡𝑡𝑟𝑟𝐶𝐶𝑐𝑐𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦,ℎ𝑎𝑎𝑠𝑠𝑁𝑁𝑎𝑎𝑚𝑚𝑒𝑒,𝑁𝑁𝑎𝑎𝑚𝑚𝑒𝑒))   
 𝑤𝑤5 = 𝑠𝑠(𝐪𝐪, 𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦),   𝑤𝑤6 = 𝑠𝑠(𝐪𝐪,𝑁𝑁𝑎𝑎𝑚𝑚𝑒𝑒)   
 𝑤𝑤7 = 𝑠𝑠(𝐪𝐪, 𝐶𝐶𝑙𝑙𝑛𝑛𝑠𝑠𝑡𝑡𝑟𝑟𝐶𝐶𝑐𝑐𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛𝐶𝐶𝑙𝑙𝑚𝑚𝑝𝑝𝑎𝑎𝑛𝑛𝑦𝑦),   𝑤𝑤8 = 𝑠𝑠(𝐪𝐪,𝑃𝑃𝑒𝑒𝑟𝑟𝑠𝑠𝑙𝑙𝑛𝑛)   
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When the graph is created and properly weighted, we run PPR to rank vertices (i.e., concepts) 
according to the query. The vertices representing the query are therefore used as the source 
vertices (see Section 5.1.5). Since only concepts are represented with vertices, this graph-con-
struction approach can only rank concepts (it cannot rank triples).  

Graph of triples 
In this section, we discuss an approach in which we represent network vertices (i.e., concepts from 
the corresponding ontology) as well as edges (i.e., domain-relation-range triples) with vertices in 
a graph. To avoid confusion, let us refer to graph vertices that represent network vertices as 
concept vertices, and to graph vertices reflecting network edges as triple vertices. In the resulting 
graph, a domain concept vertex is connected to the appropriate triple vertex which is further 
connected to the appropriate range concept vertex. We also introduce triple vertices based on 
inverse relations (i.e., inverted edges in the network). Each of these connects a range vertex to a 
domain vertex as discussed in the following paragraphs.  

In the previous approach, only network vertices (i.e., concepts) are represented as graph ver-
tices. Two graph vertices are connected with an undirected edge if (and only if) there exists at 
least one edge between the two corresponding network vertices. When the random walker reaches 
one of the two vertices and follows the edge to the other vertex, we had no way of knowing which 
triple caused the random walker to pass. We were thus unable to rank triples. However, we can 
modify the graph so that we are able to measure the importance of edges (triples) as well. We 
achieve this by establishing several paths between two vertices, one for each available edge. 

The process of establishing different paths between vertices is illustrated in Figure 6.3. The 
heterogeneous network representing a simple ontology is given in the upper part of the figure. To 
the left, it is shown how the graph would be created with the previous approach (i.e., graph of 
concepts). To the right, the new approach is applied. It can be seen that we use additional vertices 
(i.e., vertices representing edges from the heterogeneous network; drawn as squares and triangles 
in the figure) to model all possible triples between two concepts. We also include vertices repre-
senting inverted edges (drawn as triangles in the figure). The reason for this is that we do not 

 
Figure 6.2: The process of constructing a graph of concepts from a TEHIN representing an ontol-
ogy. 
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want the random walker to reach a triple vertex and then head back again; we want it to reach 
the other side through a couple of directed edges.  

The algorithm for constructing this kind of graph from an ontology-based heterogeneous net-
work is as follows: 

1. Represent each network vertex (concept) with a vertex in the graph. 
2. Represent each network edge corresponding to the triple (𝑐𝑐1,𝑟𝑟,𝑐𝑐2) ∈ 𝐑𝐑′, where 𝐑𝐑′ is the 

set of triples in the corresponding ontology, with two vertices: one representing the triple 
(𝑐𝑐1,𝑟𝑟,𝑐𝑐2) and the other representing the inverted network edge, i.e., the inverse relation 
definition (𝑐𝑐2,𝑟𝑟−1,𝑐𝑐1). 

3. For each pair of graph vertices, corresponding to the concepts 𝑐𝑐1, 𝑐𝑐2, and for each pair of 
graph vertices representing the triples (𝑐𝑐1,𝑟𝑟,𝑐𝑐2) and (𝑐𝑐2,𝑟𝑟−1,𝑐𝑐1), do the following: 
- Connect the vertex representing 𝑐𝑐1 to the vertex representing (𝑐𝑐1,𝑟𝑟,𝑐𝑐2) with a directed 

edge and weight it with 𝑆𝑆(𝐐𝐐, (𝑐𝑐1,𝑟𝑟,𝑐𝑐2)). 
- Connect the vertex representing (𝑐𝑐1,𝑟𝑟,𝑐𝑐2) to the vertex representing 𝑐𝑐2 with a directed 

edge and weight it with 1. 
- Connect the vertex representing 𝑐𝑐2 to the vertex representing (𝑐𝑐2,𝑟𝑟−1,𝑐𝑐1) with a di-

rected edge and weight it with 𝑆𝑆(𝐐𝐐, (𝑐𝑐1,𝑟𝑟,𝑐𝑐2)). 
- Connect the vertex representing (𝑐𝑐2,𝑟𝑟−1,𝑐𝑐1) to the vertex representing 𝑐𝑐1 with a di-

rected edge and weight it with 1. 
 

4. Represent each bag-of-words vector 𝐪𝐪𝑖𝑖 from the query vector set 𝐐𝐐 = {𝐪𝐪1, 𝐪𝐪2, 𝐪𝐪3,…} with 
a vertex in the graph. 

5. For each vector 𝐪𝐪𝑖𝑖 and each vertex representing a concept, 𝑐𝑐𝑗𝑗, if 𝑠𝑠�𝐪𝐪𝑖𝑖, 𝑐𝑐𝑗𝑗� > 0, draw a di-
rected edge from the graph vertex representing 𝐪𝐪𝑖𝑖 to the graph vertex representing 𝑐𝑐𝑗𝑗 and 
weight it with 𝑠𝑠(𝐪𝐪𝑖𝑖, 𝑐𝑐𝑗𝑗). 
 

As in the previous approach, we run PPR to rank vertices according to the relevance to the 
query. This time, not only concepts but also triples are represented with vertices. These vertices 

 
Figure 6.3: The process of constructing a graph of concepts (left) compared to the process of 
constructing a graph of triples (right). The query BOW vector is represented with the darker 
vertex. 
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also receive ranking scores, which in effect allows us to also rank triples. Note that a triple 
(𝑐𝑐1,𝑟𝑟,𝑐𝑐2) ∈ 𝐑𝐑′ accumulates the ranking score in two different vertices: in the vertex representing 
(𝑐𝑐1,𝑟𝑟,𝑐𝑐2) and in the vertex representing (𝑐𝑐2,𝑟𝑟−1,𝑐𝑐1). It is thus necessary to sum the ranking scores 
of these two vertices to obtain the ranking score of the triple. 

6.3 Software availability 
As opposed to the TEHmINe methodology which is implemented in LATINO and partly as a set 
of components in ClowdFlows/TextFlows, the ontology querying workflow shown in Figure 3.4 
will potentially be implemented in ClowdFlows as part of future work. Nevertheless, the workflow 
is currently implemented as part of Visual OntoBridge and is as such available in a publicly 
accessible Git repository (Online reference [17]). Visual OntoBridge is also available as a Windows 
executable (Online reference [18]). 
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7 VideoLectures.net Categorization Use Case 

This chapter presents the first use case. The aim was to develop an automatic categorization tool 
for video lectures hosted at VideoLectures.net. We employed TEHmINe to combine textual data 
and structure from a text-enriched heterogeneous information network formed out of the available 
VideoLectures.net data. We show that the use of the methodology results in fast, accurate, 
memory-efficient, and robust classifiers that outperform the standard text mining routine and 
diffusion kernels from several different aspects. We also present a visualization-guided analysis 
which reveals that derived graphs with many disconnected components are unable to perform 
well when not used in combination with other types of data. 

7.1 Problem definition 
The task in the VideoLectures.net use case was to develop a method that can be used to support 
the categorization of video lectures hosted by VideoLectures.net. VideoLectures.net is one of the 
world’s largest scientific and educational video web sites, currently hosting more than 17,000 
online lectures (April, 2015). The lectures are given by scholars and scientists from different fields 
of science, at events such as conferences, summer schools, and workshops. Most of the lectures 
were recorded and post-produced by the VideoLectures.net team. Consequently, all the data has 
undergone an editorial process. Apart from the lectures produced by VideoLectures.net, several 
high-profile content providers (such as MIT, CERN, and Yale) also disseminate their content 
through the VideoLectures.net portal. 

The categorizer was initially implemented in February 2009. Automated categorization was 
required due to the rapid growth of the number of hosted lectures (150–200 lectures were added 
each month at that time) as well as due to the fact that the categorization taxonomy is rather 
fine-grained (129 categories in the provided database snapshot). We evaluated our methodology 
in this use case, confronting it with a typical text mining approach and an approach based on 
diffusion kernels. 

Since most of the video lectures at VideoLectures.net are equipped with titles and descriptions, 
the baseline categorizer was implemented by using the standard text mining approach based on 
the bag-of-words representation of documents. Text categorization is a widely researched area 
due to its value in real-life applications such as indexing of scientific articles, patent categorization, 
spam filtering, and web page categorization (Sebastiani, 2002). 

7.2 Dataset 
The VideoLectures.net team provided us with a set of 3,520 English lectures, 1,156 of which were 
manually categorized (data snapshot from November 2008). Each lecture is described with a title, 
while 2,537 lectures also have a short description. The lectures are categorized into 129 categories. 
Each lecture can be assigned to more than one category (on average, a categorized lecture is 
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categorized into 1.26 categories). There are 2,706 authors in the dataset, 219 events at which the 
lectures were recorded, and 62,070 portal users’ click streams. 

From this data, it is possible to represent lectures, authors, events, and portal users as a 
heterogeneous information network. In this network, authors are linked to lectures, lectures are 
linked to events, and portal users are linked to lectures that they viewed. From the available data, 
we derived the following textual and structural information about video lectures: 

1. Each lecture is assigned a text document formed from the title and, if available, extended 
with the corresponding lecture description (abstract). 

2. The structural information of this heterogeneous information network is represented in the 
form of three weighted graphs in which nodes represent individual video lectures: 

(a) Same-event graph. Two nodes are linked if the two corresponding lectures were rec-
orded at the same event. The weight of a link is always 1. 

(b) Same-author graph. Two nodes are linked if the two corresponding lectures were pre-
sented by the same author or authors. A link is weighted by the number of authors 
the two lectures have in common. 

(c) Viewed-together graph. Two nodes are linked if the two corresponding lectures were 
viewed together by the same portal user or users. A link is weighted by the number 
of users that viewed both lectures. 

7.3 Results of text mining and diffusion kernels 
We first performed a set of experiments on textual data only, by following a typical text mining 
approach. In addition, we employed diffusion kernels (DK) for classifying lectures according to 
their structural contexts. 

In the text mining experiments, each lecture was assigned a text document formed from the 
title and, if available, extended with the corresponding description. We represented the docu-
ments as normalized BOW vectors. In the first set of experiments, we tested several different 
BOW construction settings. We varied the type of weights (TF or TF-IDF), maximum n-gram 
length (𝑛𝑛), minimum required term frequency (𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞) and cut-off percentage1 (𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓). We 
employed the nearest centroid classifier (for details, see Section 4.1.3) in the first set of experi-
ments and performed 10-fold cross-validation on the manually categorized lectures. We performed 
flat classification as suggested in (Grobelnik and Mladenić, 2005). We measured the classification 
accuracy on the top 1, 3, 5, and 10 categories predicted by the classifier. 

The results are given in Table 7.1. We can see that the TF-IDF weighting scheme outperforms 
the TF weighting scheme, that taking bigrams into account in addition to unigrams improves the 
performance, and that it is beneficial to process only those terms that occur in the document 
collection at least twice. We therefore used Setting 5 in all our subsequent experiments involving 
BOW vector representation.  
                                         
 
 
 
 
1 The cut-off percentage allows us to prune off tails of BOW vectors. In the pruning process, we remove the com-

ponents with the smallest weights so that their aggregated weight accounts for the specified share (i.e., cut-off) 
of the overall weight. 
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In the next set of experiments, we employed two additional classifiers for the text categoriza-
tion task: SVM and 𝑘𝑘-NN. In the case of the SVM, we applied SVM-Multiclass (Joachims et al., 
2009) for which we set 𝜀𝜀 (the termination criterion) to 0.1 and 𝐶𝐶 (the trade-off between error 
and margin width) to 5,000. In the case of 𝑘𝑘-NN, we set 𝑘𝑘 (the number of neighbors) to 20. We 
used the cosine similarity measure to compute the similarity between feature vectors. 

In addition to the text mining experiments (using only the textual information), we also 
computed DK of the three graphs (we set the diffusion coefficient 𝛽𝛽 to 0.0001). For each kernel 
separately, we employed the SVM and 𝑘𝑘-NN in the 10-fold cross-validation setting. The two 
classifiers were configured in the same way as before in the text mining setting.  

We also performed several experiments with combined kernels. In Experiment 10, the com-
bined kernel was computed as a convex combination, with equal weights, of the three diffusion 
kernels (i.e., viewed-together, same-event, and same-author) and the BOW kernel (in which each 
element represents a dot product of two TF-IDF vectors). In Experiment 11, we computed the 
combined kernel by adopting the weights from the TEHmINe weight-optimization process (see 
Section 7.4). The reason for this is that the TEHmINe process is efficient enough to run numerous 
iterations of Differential Evolution (DE). In the last experiment (Experiment 12), we removed 
the viewed-together information from the evaluation process. The reason is that in real life, new 
lectures are not connected to other lectures in the viewed-together graph before they are viewed 
by at least two users. Again, we adopted the weights from the TEHmINe weight-optimization 
process. In all three cases, we only show the results for the 𝑘𝑘-NN classifier (which slightly out-
performs SVM in all these cases). 

The results are shown in Table 7.2 and show that the text mining approach performs relatively 
well. It achieves 59.51% accuracy on the topmost item and 85.46% on top 10 items (the centroid 
classifier). The same author graph contains the least relevant information for the categorization 
task. The most relevant information is contained in the viewed-together graph. 𝑘𝑘-NN applied to 
the viewed-together graph achieves 72.74% accuracy on the topmost item and 93.94% on the top 
10 items. It is noteworthy that the choice of the classification algorithm is not as important as 
the selection of the data from which the similarities between objects are inferred. 

Table 7.1: The performance of the nearest centroid classifier for text categorization by using different BOW 
construction settings. 

  Accuracy (%) 
No. Setting Top 1 Top 3 Top 5 Top 10 

1 TF, 𝑛𝑛 = 1, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 1,  
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0 53.97 ± 2.21 69.46 ± 2.32 74.48 ± 1.98 81.74 ± 1.88 

2 TF-IDF, 𝑛𝑛 = 1, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 1, 
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0 58.99 ± 2.35  75.34 ± 2.07 79.50 ± 2.03 85.55 ± 1.63 

3 TF-IDF, 𝑛𝑛 = 2, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 1, 
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0 59.60 ± 2.40 75.34 ± 2.25 80.27 ± 1.82 85.20 ± 1.74 

4 TF-IDF, 𝑛𝑛 = 3, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 1, 
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0 59.42 ± 2.54 75.77 ± 2.19 80.10 ± 1.89 85.20 ± 1.58 

5 TF-IDF, 𝑛𝑛 = 2, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 2, 
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0 59.51 ± 2.35 76.21 ± 2.16 80.79 ± 1.78 85.46 ± 1.74 

6 TF-IDF, 𝑛𝑛 = 2, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 3, 
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0 58.13 ± 2.53 75.86 ± 2.02 80.62 ± 1.76 85.20 ± 1.64 

7 TF-IDF, 𝑛𝑛 = 2, 𝑚𝑚𝑖𝑖𝑛𝑛-𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞 = 2, 
𝑐𝑐𝐶𝐶𝑡𝑡-𝑙𝑙𝑓𝑓𝑓𝑓 = 0.1 58.99 ± 2.31 75.34 ± 2.24 79.15 ± 2.12 84.25 ± 1.33 

The emphasized values represent the best achieved result for each accuracy measure. The standard errors over 
the 10 folds are given next to the average values. 
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The results of the combined kernels show that weighting all types of data equally does not 
produce the best results. The accuracy falls in comparison with Experiments 4 and 5 which use 
the also-watched diffusion kernel alone. Even though the weights in Experiment 11 are adopted 
from the TEHmINe weight-optimization process, the results are substantially better than those 
using equal weighting. The combined kernel in Experiment 11 still performs worse than the 
viewed-together diffusion kernel.  

7.4 TEHmINe results 
In the next set of experiments, we applied the proposed TEHmINe methodology. The results are 
presented in Table 7.3. 

The first nine experiments summarized in Table 7.3 were performed by employing the proposed 
methodology on each graph separately. As before, we performed 10-fold cross-validation on the 
manually categorized lectures and employed the centroid classifier, SVM-Multiclass, and 𝑘𝑘-NN 
for the categorization task (we used the same parameter values as before). We set the PageRank 
damping factor to 0.4 when computing the structural-context feature vectors. 

In the last three experiments summarized in Table 7.3, we employed the data fusion method 
explained in Section 5.2.4. In Experiment 10, all types of data were weighted equally (i.e., BOW, 
viewed-together, same-event, and same-author). We only show the results for the nearest centroid 
classifier (which outperforms SVM and 𝑘𝑘-NN in these cases). In Experiment 11, we employed DE 
to directly optimize the target evaluation metrics. The objective function was computed in an 
inner 10-fold cross-validation loop for each evaluation metric separately. We only employed the 
centroid classifier in this setting as it is fast enough to allow for numerous iterations required for 

Table 7.2: The results of the selected text classification algorithms and diffusion kernels. 

  Accuracy (%) 
No. Setting Top 1 Top 3 Top 5 Top 10 
1 Text mining, SVM 59.16 ± 2.34  73.09 ± 1.82 78.28 ± 1.55  82.96 ± 1.32 
2 Text mining, 𝑘𝑘-NN 58.47 ± 2.07 72.74 ± 1.97 78.28 ± 2.08 83.91 ± 1.55 
3 Text mining, NCC 59.51 ± 2.35 76.21 ± 2.16 80.79 ± 1.78 85.46 ± 1.74 
4 DK, viewed-together, SVM 70.75 ± 1.93  86.94 ± 1.55 90.92 ± 1.30 93.68 ± 1.25 
5 DK, viewed-together, 𝑘𝑘-NN 72.74 ± 1.51  87.80 ± 1.30 90.83 ± 1.05 93.94 ± 0.68 
6 DK, same-event, SVM 32.00 ± 1.45  49.04 ± 1.53 54.67 ± 1.30 58.65 ± 1.12 
7 DK, same-event, 𝑘𝑘-NN 31.92 ± 1.38 47.66 ± 1.64 53.37 ± 1.52 61.07 ± 1.32 
8 DK, same-author, SVM 18.94 ± 1.00 27.51 ± 1.06 31.22 ± 1.09 36.24 ± 1.25 
9 DK, same-author, 𝑘𝑘-NN 19.81 ± 1.05 31.74 ± 1.18 36.24 ± 1.42 43.59 ± 1.31 

10 DK, combined, equal 
weights, 𝑘𝑘-NN 59.07 ± 2.11 73.87 ± 2.02 78.89 ± 2.01 85.03 ± 1.41 

11 DK, combined, optimized 
weights*, 𝑘𝑘-NN 66.08 ± 2.06 81.40 ± 1.47 84.25 ± 1.71 90.92 ± 1.17 

12 
DK, combined without 
viewed-together, optimized 
weights*, 𝑘𝑘-NN  

58.64 ± 2.07 73.09 ± 1.94 78.54 ± 2.03 84.25 ± 1.48 

The emphasized values represent the best achieved result for each accuracy measure in each group of experiments. 
The standard errors over the 10 folds are given next to the average values. 
*The weights are adopted from the TEHmINe weight-optimization process (see Section 7.4). 
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the stochastic optimizer to find a good solution. The weights, determined by DE, averaged over 
the 10 folds for each evaluation metric separately, are given in Table 7.4. 

In the last experiment (Experiment 12), we removed the viewed-together information from 
the evaluation process. The reason is that in real life, new lectures are not connected to other 
lectures in the viewed-together graph because they were not yet viewed by any user. Again, we 
employed DE in an inner 10-fold cross-validation loop for each evaluation metric separately. The 
resulting weights are given in Table 7.5. 

From the results of the first nine experiments, we can confirm that the most relevant infor-
mation is contained in the viewed-together graph. The centroid classifier applied to the viewed-
together graph exhibits 74.91% accuracy on the topmost item and 95.33% on the top 10 items. 
We can also confirm that the choice of the classification algorithm is not as important as the 
selection of the data from which the similarities between objects are inferred. Even so, the cen-
troid classifier does outperform the SVM and the 𝑘𝑘-NN on the top 10 items and in the case of 
the viewed-together graph, also on the topmost item. The centroid classifier is outperformed by 
the other two classifiers on the topmost item in the case of the same-event and same-author 
graphs. 

The results of Experiment 10 show that weighting all types of data equally does not produce 
the best results. The accuracy falls in comparison with exploiting the viewed-together graph 
alone. The optimized weights indeed yield the best results (Experiment 11) and improve the 
categorization performance (compared to exploiting the viewed-together graph alone: 77.68 vs. 

Table 7.3: The results of employing the proposed methodology. 

  Accuracy (%) 
No. Setting Top 1 Top 3 Top 5 Top 10 
1 Viewed-together, SVM 70.41 ± 1.45 85.46 ± 1.68 89.71 ± 1.52 93.60 ± 1.41 
2 Viewed-together, 𝑘𝑘-NN 70.75 ± 1.71  84.60 ± 1.65 89.36 ± 1.26 93.34 ± 0.98 
3 Viewed-together, NCC 74.91 ± 1.82 89.01 ± 1.14 92.13 ± 1.07 95.33 ± 1.02 
4 Same-event, SVM 31.74 ± 1.00 50.17 ± 1.09 55.97 ± 1.08 59.95 ± 1.03 
5 Same-event, 𝑘𝑘-NN 32.34 ± 1.57 50.43 ± 1.32 55.96 ± 1.11 64.79 ± 0.99 
6 Same-event, NCC 27.59 ± 1.16 46.62 ± 1.29 53.63 ± 1.37 65.05 ± 0.93 
7 Same-author, SVM 15.83 ± 0.92 24.22 ± 1.02 27.33 ± 1.07 33.04 ± 1.00 
8 Same-author, 𝑘𝑘-NN 15.48 ± 0.88 23.70 ± 0.87 27.94 ± 0.91 32.52 ± 1.23 
9 Same-author, NCC 14.79 ± 0.73 25.52 ± 0.75 31.74 ± 0.82 42.73 ± 1.60 
10 Combined, equal weights, NCC 66.25 ± 1.94 83.12 ± 1.09 86.93 ± 1.11  93.08 ± 1.08  
11 Combined, DE, NCC 77.68 ± 1.30 90.66 ± 1.29 93.34 ± 0.92 95.85 ± 0.75 
12 Without viewed-together, NCC 62.97 ± 2.10 79.06 ± 1.86 84.07 ± 1.28 89.10 ± 1.18 
The emphasized values represent the best achieved result for each accuracy measure in each group of experiments. 
The standard errors over the 10 folds are given next to the average values. 

 

Table 7.4: The weights computed in the optimization process in Experiment 11. 

 Average weights 
Accuracy measure Viewed together Same event Same author BOW 
Top 1 0.9310 ± 0.0038 0.0057 ± 0.0014 0.0049 ± 0.0019 0.0585 ± 0.0045 
Top 3 0.8839 ± 0.0079 0.0455 ± 0.0065 0.0096 ± 0.0028 0.0611 ± 0.0035 
Top 5 0.7607 ± 0.0195 0.0648 ± 0.0093 0.0892 ± 0.0112 0.0853 ± 0.0073 
Top 10 0.7931 ± 0.0391 0.0505 ± 0.0168 0.0968 ± 0.0336 0.0596 ± 0.0061 
The standard errors over the 10 folds are given next to the average values. 
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74.91% on the topmost item, 95.85 vs. 95.33% on the top 10 items). This is also the case when 
the viewed-together information is not present in the test set (Experiment 12). The classifier is 
able to exploit the remaining data and exhibit accuracies that are higher than those achieved by 
resorting to text mining alone (62.97 vs. 59.51% on the topmost item, 89.10 vs. 85.46% on the 
top 10 items). A classifier based on combined feature vectors is not only more accurate but is 
also robust to missing a certain type of data in the test examples. 

When comparing the single-graph TEHmINe approaches (Table 7.3, Experiments 1 to 9) to 
the single-kernel DK approaches (Table 7.2, Experiments 4 to 9), we can see that the centroid 

Table 7.5: The weights computed in the optimization process in Experiment 12. 

 Average weights 
Accuracy measure Same event Same author BOW 
Top 1 0.3796 ± 0.0191 0.1852 ± 0.0310 0.4352 ± 0.0202 
Top 3 0.3601 ± 0.0181 0.0899 ± 0.0301 0.5500 ± 0.0350 
Top 5 0.3424 ± 0.0259 0.2339 ± 0.0505 0.4237 ± 0.0313 
Top 10 0.2606 ± 0.0361 0.4146 ± 0.0683 0.3247 ± 0.0460 
The standard errors over the 10 folds are given next to the average values. 

 

 

Table 7.6: The summary of all the results. 

  Accuracy (%) 
Ref. Setting Top 1 Top 3 Top 5 Top 10 
T7.2.3 Text mining, NCC 59.51 ± 2.35 76.21 ± 2.16 80.79 ± 1.78 85.46 ± 1.74 

T7.2.5 DK, viewed-together,  
𝑘𝑘-NN 72.74 ± 1.51  87.80 ± 1.30 90.83 ± 1.05 93.94 ± 0.68 

T7.3.3 TEHmINe, viewed-to-
gether, NCC 74.91 ± 1.82 89.01 ± 1.14 92.13 ± 1.07 95.33 ± 1.02 

T7.2.6 DK, same-event, SVM 32.00 ± 1.45  49.04 ± 1.53 54.67 ± 1.30 58.65 ± 1.12 
T7.3.6 TEHmINe, same-event, 

NCC 27.59 ± 1.16 46.62 ± 1.29 53.63 ± 1.37 65.05 ± 0.93 

T7.2.9 DK, same-author, 𝑘𝑘-NN 19.81 ± 1.05 31.74 ± 1.18 36.24 ± 1.42 43.59 ± 1.31 

T7.3.9 TEHmINe, same-author, 
NCC 14.79 ± 0.73 25.52 ± 0.75 31.74 ± 0.82 42.73 ± 1.60 

T7.2.10 DK, combined, equal 
weights, 𝑘𝑘-NN 59.07 ± 2.11 73.87 ± 2.02 78.89 ± 2.01 85.03 ± 1.41 

T7.3.10 TEHmINe, combined, equal 
weights, NCC 66.25 ± 1.94 83.12 ± 1.09 86.93 ± 1.11  93.08 ± 1.08  

T7.2.11 DK, combined, optimized 
weights, 𝑘𝑘-NN 66.08 ± 2.06 81.40 ± 1.47 84.25 ± 1.71 90.92 ± 1.17 

T7.3.11 TEHmINe, combined, opti-
mized weights, NCC 77.68 ± 1.30 90.66 ± 1.29 93.34 ± 0.92 95.85 ± 0.75 

T7.2.12 
DK, combined without 
viewed-together, optimized 
weights, 𝑘𝑘-NN 

58.64 ± 2.07 73.09 ± 1.94 78.54 ± 2.03 84.25 ± 1.48 

T7.3.12 
TEHmINe, combined with-
out viewed-together, opti-
mized weights, NCC 

62.97 ± 2.10 79.06 ± 1.86 84.07 ± 1.28 89.10 ± 1.18 

This table summarizes the results from Tables 7.2 and 7.3, respectively. The original tables (together with the ex-
periment number) are referenced in the first column. The emphasized values represent the best achieved result for 
each accuracy measure in each group of experiments. The standard errors over the 10 folds are given next to the 
average values. 
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classifier applied to the viewed-together graph outperforms the SVM and the 𝑘𝑘-NN applied to 
the viewed-together diffusion kernel. On the other hand, with respect to the same-event and 
same-author graphs, the centroid classifier is outperformed by the DK-based approaches. When 
comparing the TEHmINe data-fusion strategies (Table 7.3, Experiments 10 to 12) to the kernel 
combination experiments (Table 7.2, Experiments 10 to 12), we can see that TEHmINe outper-
forms kernel combinations in all the cases. Note, however, that the weights used in the kernel 
combination experiment were adopted from the TEHmINe experiments. The reason is that, unlike 
diffusion kernels, the TEHmINe process is efficient enough to run numerous iterations of the 
employed stochastic optimizer. For the reader’s convenience, we summarize all the results in 
Table 7.6. 

7.5 Time and space complexity analysis 
Whenever a set of new lectures enters the categorization system—regardless of whether we use 
the proposed methodology or the DK approach—the following procedure is applied: 

1. kernel or feature vectors are recomputed,  
2. a model is trained on manually categorized lectures, and  
3. new lectures are categorized.  

 

Each fold in the 10-fold cross-validation roughly corresponds to this setting. We focused on the 
viewed-together graph only and measured the times required to perform each of these three steps 
in each of the 10 folds, computing average values in the end. The results are given in Table 7.7. 

The results show that the DK-based approach (first row) is more demanding than the proposed 
methodology represented by the second row (1,193 vs. 371 s). Roughly speaking, this is mostly 
due to the fact that in our use case, the diffusion kernel is computed over 3,520 objects (resulting 
in a 3,520 by 3,520 kernel matrix), whereas, by using the proposed methodology, only 1,156 PPR 
vectors of length 3,520 need to be computed, where 1,156 is the number of manually categorized 
lectures. Note also that computing a series of PPR vectors is trivially parallelizable as one vector 
is computed entirely independently of the others (the so-called “embarrassingly parallel” prob-
lem). On a quad-core machine, for example, the time required to compute the PPR vectors in 
our case would be ∼80 s. Even greater efficiency is demonstrated by the PageRank-based centroid 
classifier (PRNCC) (the last row). When the PRNCC is used, the feature vectors are not pre-
computed. Instead, in the training phase, approximately 130 PPR vectors are computed, one for 
each category in the training set. In addition, in the prediction phase, ∼115 additional PPR 
vectors are computed (115 objects is roughly the size of the test set). The PRNCC thus requires 
only 70 s for the entire process. Needless to say, the PRNCC-based approach is also trivially 
parallelizable, which makes it even more suitable for large-scale scenarios. Let us also point out 
that this efficiency is not achieved at the cost of decreased accuracy. In fact, the accuracy of the 
PRNCC is exactly the same as that of the centroid classifier (see Section 5.3). Of all our experi-
ments involving the viewed-together graph, the one employing the centroid classifier (which is 
equivalent to employing the more efficient PRNCC) demonstrates the best accuracy. 
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Considering the space complexity, let us point out that the PRNCC computes and stores only 
around 130 PPR vectors of length 3,520 (i.e., the PRNCC model), which makes it by far the 
most efficient approach in terms of memory requirements. In comparison, the DK-based approach 
stores a 3,520 by 3,520 kernel matrix and the 𝑘𝑘-NN employed by the proposed methodology 
stores around 1,040 PPR vectors of length 3,520 (roughly 1,040 objects constitute the training 
set in each fold). For simplicity, we assumed that these vectors are not sparse, which is actually 
not the case. Due to the sparseness of the vectors, the amount of space consumed by using 
TEHmINe is in reality even lower. 

7.6 Visualization-guided analysis 

In this section, we present another use case of our methodology: visualization of vector spaces. 
In machine learning and data mining, visualization techniques are often used for gaining insight 
into data and thus guiding the knowledge discovery process. In text mining, document space 
visualization techniques are used to provide overviews and insights into relatively large document 
collections (Fortuna et al., 2006; Vieira et al., 2006). A document space is essentially a high-
dimensional BOW vector space. To visualize a document space, feature vectors need to be pro-
jected onto a two-dimensional canvas so that the neighborhoods of points in the planar projection 
reflect the neighborhoods of vectors in the original high-dimensional space. Since the proposed 

Table 7.7: The time, in seconds, spent for feature vector or kernel computation, training, and prediction. 

 Time [s] 
Setting Preprocessing Training Predicting 
DK, 𝑘𝑘-NN 1,193 0 1 
PPR, 𝑘𝑘-NN 286 0 85 
PPR, PRNCC 0 35 34 

 

 
Figure 7.1: Visualization of the same-author vector space with the edges adopted from the corre-
sponding graph. 
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methodology enables us to convert graphs into BOW-like vectors, we can visualize these graphs 
by using one of the available document space visualization techniques. Even more, we can visu-
alize any “fusion” of feature vectors obtained by following the proposed methodology. We will 
employ the document space visualization technique based on least-square meshes (Sorkine and 
Cohen-Or, 2004; Vieira et al., 2006)—more specifically, the implementation thoroughly presented 
in (Grčar et al., 2010)—to demonstrate how visualized vector spaces can provide valuable insights. 
Specifically, we will explain why the same-author graph, even though based on a solid intuition 
that “a scientist normally sticks to his field of science”, demonstrates such poor performance 
when used for categorization. From this same perspective, we will examine the same-event graph 
and look for the key difference between the same-author and same-event graphs on one hand and 
the viewed-together graph on the other. 

Figure 7.1 shows the visualization of the same-author vector space with the edges adopted 
from the same-author graph. We can clearly see that we are dealing with many disconnected 
components. Each component corresponds to a group of lectures presented by the same author 
or several authors of which each collaborated with at least one other author from the group on 
at least one paper (lecture). The black dots in the visualization represent the lectures that were 
manually categorized (ground truth) and the white dots represent the uncategorized lectures. 
Note that (1) only the categorized lectures (black dots) participate in the 10-fold cross-validation 
process and, (2) given a categorized lecture from a particular component, only the lectures from 
the same component participate as features in the feature vector of this categorized lecture. Let 
us now consider a component with one single categorized lecture (black dot). When such a cate-
gorized lecture is part of the test set in the cross-validation process, the corresponding feature 
vector is orthogonal to every feature vector in the training set (note that only the categorized 
lectures constitute the training set). This means that it is not possible to categorize it due to the 
lack of information caused by the sparseness of the same-author graph. In general, the smaller 
the number of categorized lectures in a component, the bigger the chance that they will all 

 
Figure 7.2: Visualization of the same-event vector space with the edges adopted from the corre-
sponding graph. 
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constitute the same fold in the cross-validation setting, which results in the inability to classify 
any of them when the corresponding fold forms the test set. From this, we can conclude that 
having many disconnected components containing low numbers of categorized lectures leads to a 
poor categorization performance. 

Figures 7.2 and 7.3 show the visualization of the same-event and viewed-together vector space, 
respectively. We can see that (1) the viewed-together graph contains less disconnected compo-
nents than the same-event graph, which contains less disconnected components than the same-
author graph (note that each single disconnected dot also represents a disconnected component), 
(2) the viewed-together graph contains one large component containing nearly all the categorized 
lectures, and (3) the components in the same-event graph are larger than those in the same-
author graph and thus each of them has the potential of containing a larger number of categorized 
lectures. 

To make sure that these observations are not merely “visual artifacts”, we computed the 
number of disconnected components and the number of components containing a certain number 
of categorized lectures in each of the three graphs. The results for the same-author and same-
event graphs are shown in Figures 7.4 and 7.5, respectively. The viewed-together graph consists 
of 99 disconnected components of which 1 contains 1,155 categorized lectures, 1 contains 1 cate-
gorized lecture, and 97 contain no categorized lectures. 

The charts in Figures 7.4 and 7.5 clearly support our claims. The same-author graph contains 
the largest number of components (i.e., 2,519) and a relatively large number of components that 
contain low numbers of categorized lectures. The same-event graph contains roughly 10 times 
less components and also the number of components containing low numbers of categorized lec-
tures is much lower. If we look at the statistics of the viewed-together graph, we see that it 
contains only one disconnected categorized lecture that is orthogonal to the training set in the 

 
Figure 7.3: Visualization of the viewed-together vector space with the edges adopted from the 
corresponding graph. 
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cross-validation process. From this perspective, the viewed-together graph exhibits the most ap-
propriate structure, followed by the same-event, and same-author graphs. This is also clearly 
reflected in the empirical studies presented in Section 7.4. 

 
 

 
Figure 7.4: The number of disconnected components and the number of components containing a 
certain number of categorized lectures for the same-author graph. 

 
Figure 7.5: The number of disconnected components and the number of components containing a 
certain number of categorized lectures for the same-event graph. 
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8 Ontology Querying Use Case 

In the following sections, we evaluate the ontology querying methodology for the task of creating 
semantic annotations in the geospatial domain. Semantic annotations are formal, machine-read-
able descriptions that enable efficient search and browse through resources, as well as efficient 
composition and execution of web services. In this work, the semantic annotation is defined as a 
set of interlinked ontology elements associated with the resource being annotated (see Section 
3.1.2 for a motivating example). In our setting, the task is to annotate schemas of Web Feature 
Services (WFS). WFS is an Open Geospatial Consortium (OGC) standard that defines an inter-
face for querying and editing geographic features, such as roads or lake outlines (Online reference 
[12]). 

The ontology querying methodology was derived from the general-purpose TEHmINe meth-
odology. Similarly to the TEHmINe workflow, the ontology querying workflow starts with loading 
a TEHIN. In this case, the TEHIN represents a grounded ontology. The term “grounded” in this 
context means that every ontology entity of interest is enriched with a set of documents describing, 
talking about, or otherwise being related to this entity. In Chapter 6, we already discussed the 
idea of grounding and explained how an ontology can be viewed as a TEHIN. In addition, we 
proposed two techniques for converting an ontology-based TEHIN to a homogeneous graph, which 
is a necessary step in the proposed ontology querying methodology. In the following sections, we 
compare the use of the ontology querying methodology to the text mining approach that does 
not take the ontology structure into account. 

8.1 Experimental setting 
In this section, we present the dataset, gold standard, and evaluation metric that we use in our 
experimental setting. Since the experimental setting has many different parameters, we follow 
the outcomes of Grčar et al. (2009b) and employ the settings already presented in Section 6.1.2. 
In addition, we employ the usual way of converting documents into bags-of-words. We eliminate 
stop words, apply stemming, identify word bigrams, and compute normalized TF-IDF vectors. 
We take into account only words and bigrams that occur at least 5 times in the entire corpus. 
From each TF-IDF vector, prior to normalization, we remove the low weights that collectively 
constitute 20% of the sum of all the weights in the vector. 

8.1.1 Dataset and gold standard 

For the experiments, we acquired an ontology and a set of Web Feature Services (WFS’s). Each 
WFS was accompanied with several sets of user queries.  

The ontology was provided by the University of Münster. It is an early version of the SWING 
ontology (Andrei et al., 2008). It contains 332 concepts, 141 relations, and 4,362 domain-relation-
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range triples (taking the basic inference axioms into account; see Section 6.1.1). Some of the 
ontology entities are given in Table 8.1. We asked the domain experts at Bureau of geological 
and mining research (BRGM, France) to provide us with natural-language queries with which 
they would hope to retrieve building blocks for annotating the selected WFS’s. For this purpose, 
we gave each of the participating domain experts a set of forms presenting the WFS’s schemas. 
A participant had to describe each feature type with a set of English queries, one query per 
attribute and one additional query for the feature type itself. Figure 8.1 shows one of such gold 
standard acquisition forms.  

We received input from 3 domain experts, each assigning queries to 7 feature types (41 queries 
altogether by each of the participants). Each feature type involved in the golden-standard acqui-
sition was manually annotated. Therefore, the annotations corresponding to the feature types 
and consequently also relevant concepts and triples used to build the annotations were available.  

With respect to the hand-made annotations, we have identified 114 concepts and 96 triples 
(unique in the context of the same feature type) relevant for annotating the feature types involved 
in the golden-standard acquisition process. Since the acquired golden standard thus contained 
both, the queries and the corresponding building blocks, we were able to assess the quality of an 
annotation algorithm by measuring the amount of golden-standard building blocks discovered in 
the domain ontology, given a particular set of queries. We measured the area under the Receiver 
Operating Characteristic (ROC) curve to evaluate the lists produced by the algorithm. We discuss 
this metric in the following section. 

8.1.2 Evaluation metric 

We evaluated the quality of the lists of concepts and triples by computing the Area Under the 
ROC Curve (AUC) with respect to the provided golden standard. Given the top 𝑛𝑛 items of a 
ranked list of potentially relevant items, the ROC curve tells us the true positive rate 𝑇𝑇𝑃𝑃𝑇𝑇 (the 
percentage of golden-standard items among top 𝑛𝑛 items) versus the false positive rate 𝑇𝑇𝑃𝑃𝑇𝑇 (the 
percentage of non-golden-standard items among top 𝑛𝑛  items). The ROC curve is defined as 
ROC(𝑛𝑛) = (𝑇𝑇𝑃𝑃𝑇𝑇, 𝑇𝑇𝑃𝑃𝑇𝑇) . Obviously ROC(0) = (0%, 0%)  and ROC(𝑁𝑁) = (100%, 100%) , where 
𝑁𝑁  is the number of all items. If the list is randomly shuffled, 𝑇𝑇𝑃𝑃𝑇𝑇 is close to (or equals) 𝑇𝑇𝑃𝑃𝑇𝑇 at 
each 𝑛𝑛. In such case, the area under the curve is 50% of the optimal area. The optimal area is 
achieved if all golden-standard items are at the top of the list. In such case, there exists 𝑚𝑚, 0 <
𝑚𝑚 < 𝑁𝑁 , such that ROC(𝑚𝑚) = (100%, 0%). These properties of the ROC curve are illustrated in 
Figure 8.2. 

If several consecutive items are assigned the same score and is thus not possible to sort them 
within the group, the golden-standard items in this group, if any, are treated as being the bot-
tommost items in the group. This way, we implicitly penalize algorithms that tend to assign the 
same ranking score to more than one item. To better understand what an AUC value means, we 

Table 8.1: Entities from the domain ontology. 

Concepts (332)  Relations (141)  Triples (4,362) 
QuarrySite  hasName  QuarrySite hasName Name 
MonitoringStation  consumes  Train transports Water 
Znieff  playsRoleOf  ProtectedArea hasLocation Location 
Law  hasEffect  Extraction hasSubject Phosphorus 
Organism  part of  Consumption consumes Pebbles 
...  ...  ... 
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can interpret it as follows. Suppose that the AUC value is 𝑎𝑎 and the list has 𝑁𝑁  items. One of the 
possible scenarios is that the correct items are equally distributed amongst the first 2(1 − 𝑎𝑎)𝑁𝑁  
items. For example, if AUC is 98% and the list has 5,000 items, the correct items could be equally 
distributed amongst the first 4% of 5,000 items (i.e., top 200 items). This is, of course, not 
necessarily the case; it is just a way to quickly assess the practical value of the algorithm being 
evaluated. 

8.2 Evaluation results 
In the following sections, we discuss the results of the evaluation by assessing the quality of the 
algorithms and determining a set of good default settings. 

 
Figure 8.1: The gold-standard acquisition form for the feature type “regions”. The feature type 
(green box) with its attributes (yellow boxes) is visualized in the left-hand side, the corresponding 
queries, provided by one of the participants, can be seen in the right-hand side of the figure. 

 
Figure 8.2: Basic properties of the ROC curve. 
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8.2.1 Baseline algorithm 

To produce the ranked list of recommended concepts and ranked list of recommended domain-
relation-range triples, it is possible to directly apply the term matching techniques discussed in 
(Grčar et al., 2009b). The algorithm is as follows: 

1. Each concept and each domain-relation-range triple discovered in the ontology is grounded 
through a web search engine as already discussed in Section 6.1.2. 

2. The groundings are converted into BOW vectors. Each vector is labeled with the corre-
sponding domain ontology entity (either a concept or a triple). These vectors constitute 
the training set (i.e., a set of labeled examples). 

3. The training set is used to train the nearest centroid classifier. 
4. The set of queries, provided by the user, is converted into a set of BOW vectors. These 

constitute the query vector set. 
 

Given a BOW vector from the query vector set, the classifier is used to assign a similarity score 
to each target class, that is, to each ontology entity (a concept or a triple). These scores are 
aggregated over the entire set of query vectors. In effect, given the set of query vectors, the 
classifier is able to sort the ontology concepts and triples according to the queries. This gives us 
two lists of annotation building blocks: the list of concepts and the list of triples. 

In this section, we evaluate the baseline algorithm to establish the baselines and determine a 
setting in which the baseline algorithm performs best. Through the evaluation, we determine the 
following two parameters: 

• The number of search results taken into account when grounding domain ontology entities 
and user queries. We experimented with 10, 25, 50, and 100 documents per grounding. 

• The query processing method (see Section 6.2.1). We tried out the following 3 query pro-
cessing methods: 
- Ground and compute centroids. This corresponds to the alternative a–c in Figure 6.1. 
- Ground only. This corresponds to the alternative a–d in Figure 6.1. 
- Skip grounding. This corresponds to the alternative b–d in Figure 6.1. 

 

The results are shown in Figures 8.3 and 8.4. The chart in Figure 8.3 presents the evaluations 
result for the list of proposed concepts, while the chart in Figure 8.4 presents the evaluation 
results for the list of proposed triples. Both charts show the average area under the ROC curve 
(y axis; see Section 8.1.2) with respect to the number of documents per grounding (x axis). Each 
chart shows three series representing the three different query processing methods. 

From the results, we can conclude the following: 
• Grounding the queries helps rank the concepts while it hinders the ranking of the triples. 

To fully understand the reason for this, further experiments would be required.  
• It makes no significant difference if we skip the centroid computation step when processing 

the queries that have been grounded. 
• The concepts—as well as the queries when used for ranking the concepts—should be 

grounded with at least 50 documents. As we can see from the chart, at around 50 docu-
ments, all available useful information is already contained in the collected documents. 

• The triples—as well as the queries when used for ranking the triples—should be grounded 
with only around 10 documents. We believe this is because the triples are more precisely 
defined than the concepts (i.e., the corresponding search terms contain more words), which 
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yields a smaller number of high-quality search results. Consequently, noise kicks in rela-
tively soon.  
 

We take some of these findings into account in the following section to evaluate the proposed 
ontology querying methodology. 

 
Figure 8.3: Evaluation results for the list of proposed concepts. 

 
Figure 8.4: Evaluation results for the list of proposed triples. 
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8.2.2 Graph-based algorithms 

In this section, we evaluate the two graph-based algorithms discussed in Section 6.2.2: the Graph 
Of Concepts (GOC) and the Graph Of Triples (GOT). We show that these indeed significantly 

 
Figure 8.5: Evaluation results for the list of proposed concepts. 

 
Figure 8.6: Evaluation results for the list of proposed triples. 
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outperform the baseline algorithm. Note that GOC is unable to produce the sorted list of triples. 
Nevertheless, we evaluated GOC to see if it outperforms GOT on concepts.  

In the previous section, through the evaluation of the baseline algorithm, we concluded that 
it makes no significant difference if we compute the centroids or not while processing the queries. 
Therefore, we only distinguish between grounding the queries—in this case we compute the cen-
troids—and not grounding them. We also concluded that the number of documents per grounding 
should be either 50 or 10, depending on whether we deal with the concepts or the triples. Even 
so, we tested the graph-based algorithms with 10, 25, 50, and 100 documents per grounding. It 
turned out that it is best to ground both, the concepts and the triples, with 50 documents per 
grounding. The reason for this is discussed later on in this section. 

The most important parameter to tune was the PageRank damping factor. We experimented 
with the damping factor values 0.2, 0.4, 0.6, 0.8, and 0.9. The results are presented in Figures 
8.5 and 8.6. The chart in Figure 8.5 presents the evaluations result for the list of proposed 
concepts, while the chart in Figure 8.6 presents the evaluation results for the list of proposed 
triples. Both charts show the average area under the ROC curve (y axis; see Section 8.1.2) with 
respect to the value of the damping factor (x axis). The first chart displays four series: two for 
GOC and two for GOT. The second chart, on the other hand, only shows the performance of 
GOT as GOC is unable to rank triples. Each chart also shows the corresponding baseline. The 
baselines are the result of the evaluation of the baseline algorithm (see Section 8.2.1). 

When evaluating the baseline algorithm, we learned the following: 
• The concepts should be grounded with 50 documents each, so should the queries when used 

to rank the concepts. 
• The triples should be grounded with only 10 documents each, the queries should not be 

grounded when used to rank the triples.  
 

The evaluation of the graph-based algorithms fully confirms these findings at low damping 
factor values. This is expected because low damping factor values mean putting less emphasis on 
the structure; the random walker gets tired after only a few steps and “jumps” back to a source 
vertex. However, as we increase the damping factor towards the values at which the graph-based 
algorithms perform best, the non-grounded queries lose their advantage over the grounded ones 
even on the triples. This is clearly evident from Figure 8.6. According to the chart in the figure, 
it is beneficial to ground the queries for damping factor values higher than 0.5. Therefore, we can 
draw the following new conclusions: 

• Grounding the queries helps rank both, the concepts and the triples. 
• The concepts, triples, and queries should be grounded with 50 documents each. 
• GOC and GOT both perform comparably well but at different damping factor values: GOC 

performs best at 0.2, GOT at 0.6 (see Figure 8.5). This is expected as in the case of GOC, 
a concept vertex is only one step away from another concept vertex, while in the case of 
GOT, the random walker needs to make two steps to pass from one concept vertex to 
another. The fact that these two representations perform comparably well speaks in favor 
of GOT as it is, in contrast to GOC, able to rank triples as well. 

• The damping factor should be set to 0.6 for the concepts (note that GOT should be used) 
and 0.8 for the triples. This means that we can either run PageRank twice or set the 
damping factor to 0.7 to increase the speed at the slight expense of quality on both sides. 
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The rewarding fact is that we managed to significantly beat the baselines. We have increased 
the average AUC for 5.48% on the concepts and for 3.18% on the triples (in absolute terms). 
This presents a relatively big difference. For example, if the correct triples were distributed 
amongst the top 597 of 4,362 suggestions with the baseline algorithm (see Section 8.1.2 on as-
sessing the value of AUC), they will now be distributed amongst the top 319 suggestions (almost 
half less). This means, roughly speaking, that the graph-based algorithms are twice as good as 
the baseline algorithm. Also, we believe that the user will have to inspect far less than 319 items 
to find the required building blocks as he will be able to interact with the system (i.e., re-
formulate queries). To support this claim, we computed the average AUC by taking, for each 
annotation, only the most successful annotator into account (i.e., the annotator that formulated 
the query yielding the highest AUC). The average AUC on the triples rose to 98.15%. This 
reduces the number of items that need to be inspected from 319 to 161 (of 4,362) which is already 
very useful for the user. Note also that there may be some “true negatives” at the top of this list 
as our golden standard is not complete (at the time the golden standard annotations were defined, 
the ontology was not yet expressive enough). 

These findings were adopted to implement the semi-automatic annotation capabilities in Vis-
ual OntoBridge (Grčar and Mladenić, 2009; Grčar et al., 2012). 
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9 Conclusions and Further Work 

The main goal of this thesis was to develop and implement TEHmINe, a methodology for mining 
text-enriched heterogeneous information networks. With respect to this, we first set several re-
quirements to narrow down the infinite space of all possible methodologies. We then explored a 
range of methods from text mining, link analysis, and heterogeneous information network mining 
to devise the building blocks of the envisioned methodology. We demonstrated the use of 
TEHmINe in two different real-life use cases, showing its versatility, efficiency, and usefulness. In 
this chapter, we reevaluate the methodology with respect to the requirements set forth in Section 
3.2. Finally, we conclude the thesis by presenting several ideas for further work. 

9.1 Review of the methodology with respect to the require-
ments 

In Section 3.2, we posed several requirements for a general-purpose TEHIN mining methodology. 
In this section, we reevaluate the methodology with respect to these requirements. 
Bimodality  The methodology (and the corresponding toolkit) needs to enable us to exploit both 

textual and structural aspect of a TEHIN. This is the first of the three major requirements. It 
is implemented in the core of our methodology as a data fusion step that projects both types 
of data into a common vector space. We demonstrate its usefulness in the two presented use 
cases. In both cases, the setting in which we exploit both types of data outperforms the setting 
based only on text mining. 

Heterogeneity  The methodology needs to provide facilities to handle different types of objects 
and different types of links (heterogeneity) that are forming a heterogeneous information net-
work. This is the second of the three major requirements. It is implemented as a three-step 
process. First, a heterogeneous information network is decomposed into a set of (homogeneous) 
graphs. Each aspect of heterogeneity is then handled separately. In the second step, each graph 
is embedded into a vector space, resulting in a set of structural vectors for each object. In the 
final step, the structural vectors (potentially together with the BOW vectors), corresponding 
to the same object, are fused together into a single BOW-like vector. In this data fusion step, 
it is possible to apply a feature weighting scheme that determines which types of information 
to emphasize and which to suppress. 

Applicability  The methodology needs to be applicable to a wide range of data mining problems 
involving text corpora, (heterogeneous) information networks, or text-enriched (heterogeneous) 
information networks. This is the last of the three major requirements. We reinterpreted this 
requirement as the ability to employ standard machine learning principles and techniques (e.g., 
feature selection and weighting, clustering, classification, ranking, regression, etc.). This is also 
the most important requirement that implies basing the methodology on an existing toolset 
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for data mining. With respect to this, we based our methodology on a text mining framework. 
The fact that in the end, we project a TEHIN into a BOW-like space, enables us to use the 
data analysis algorithms that are available in the selected text mining toolkit. Since we de-
scribe objects with vectors (rather than kernels or similarity matrices), our methodology is 
extremely versatile. We can employ feature-based methods (e.g., naive Bayes, nearest centroid 
classifier, Latent Semantic Indexing (LSI), feature selection techniques (see, e.g., Brank et al., 
2008), 𝑘𝑘-means clustering), similarity-based methods (e.g., 𝑘𝑘-NN), and kernel-based methods 
(e.g., SVM). With respect to this, we can say that our methodology is widely applicable. 

Uniformity  The purpose of the methodology is to join the two worlds, text mining and network 
analysis, in a seamless way. The same modeling (analysis) tools should be able to handle both 
textual and structural data from a TEHIN. The preprocessing part of our methodology consists 
of two separate pipelines: the pipeline for processing texts and the pipeline for processing 
structure. Both types of data (texts and structure) are in the end projected into a common 
BOW-like vector space in which knowledge discovery is performed by using standard machine 
learning algorithms. These same machine learning algorithms can also be employed in scenar-
ios when there is only text or only structure available. 

Maturity  The methodology should employ well-established and well-developed building blocks 
from the fields of text mining and network analysis. The first pipeline in the preprocessing 
part of the methodology workflow consists of well-established text mining components. They 
are employed for transforming texts into BOW vectors. The second pipeline, on the other 
hand, is based on Personalized PageRank (PPR). We can undoubtingly say that this part is 
also well-established as it is used in numerous applications. Finally, both types of data (texts 
and structure) are projected into a common BOW-like vector space in which knowledge dis-
covery is performed by using standard (well-developed and well-established) machine learning 
algorithms suited for working with BOW vectors, similarity matrices, or kernels (such as naive 
Bayes, 𝑘𝑘-nearest neighbor, 𝑘𝑘-means clustering, and support vector machine). 

Modularity  The methodology needs to be representable as a set of components arranged into a 
data mining workflow. The methodology was presented as a set of workflows already in Chap-
ter 3. These workflows were further detailed and upgraded in Chapters 5 and 6. The purpose 
of this requirement was to provide the basis for the implementation of the methodology in a 
workflow-based data mining environment.  

Efficiency  The devised methodology needs to allow for a fairly efficient implementation. The 
main components in our methodology are the standard text preprocessing routine and PPR. 
The text preprocessing routine is extremely efficient. The most problematic part is holding 
statistics for n-grams in the TF-IDF computation process, especially if n is large. This, how-
ever, can be solved with an apriori-like algorithm which does several passes over the corpus, 
discarding terms with insufficient support after each pass. See, for example, Grčar et al. (2010) 
for an assessment of text preprocessing efficiency. The PPR computations, on the other hand, 
are more computationally expensive. However, since PageRank is extremely popular and useful, 
there is a substantial body of work done on speeding PPR up. The special case where PPR is 
run from a single source vertex is often referred to as a random walk with restart (RWR) in 
the literature. RWR approaches normally perform the relevance computation on a limited 
neighborhood of the source vertex by either resorting to graph partitioning or by bounding 
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random walks (Fujiwara et al., 2012; Tong et al., 2006). Furthermore, we devised an algorithm 
for an efficient structure-based centroid computation with PPR. This centroid-computation 
algorithm can be used in the classical nearest centroid classifier. In case of having 𝑟𝑟 classes 
and 𝑛𝑛 objects, 𝑛𝑛 ≫ 𝑟𝑟, this speeds up the process by factor 𝑛𝑛𝑟𝑟 by computing 𝑟𝑟 PPR vectors 
instead of 𝑛𝑛 PPR vectors in the training phase. 

9.2 Summary of contributions 
This thesis addresses the problem of discovering knowledge in large text corpora enriched with 
relational data which implicitly or explicitly provides semantic relations between the texts. Such 
relational data can be described in the form of a heterogeneous information network, a generali-
zation of the standard information network. We could also say that we address knowledge dis-
covery scenarios in which heterogeneous information networks are enriched with texts. We call 
such networks text-enriched heterogeneous information networks or TEHINs for short. The main 
motivation behind this work comes from the fact that the current general-purpose text mining 
toolkits are unable to handle relational information in a common knowledge discovery setting. In 
this thesis, we address this situation and develop TEHmINe, a general-purpose methodology for 
mining TEHINs in a typical text mining framework.  

The main hypothesis researched in the thesis is that structural data, often available in real-
world scenarios, can be exploited to improve the performance of algorithms employed for solving 
text mining tasks such as text classification and ranking. We show that it is possible to devise a 
methodology that supports this hypothesis and at the same time (i) is applicable to a wide range 
of data analysis problems, (ii) is devised as an easy-to-understand data analysis workflow, (iii) 
employs well-established data analysis techniques, and (iii) can be applied to large corpora of 
text documents accompanied with relatively large heterogeneous information networks. We test 
this hypothesis in two real-world use cases. In the video lecture categorization use case, we employ 
the devised methodology to combine textual data and structure from a TEHIN formed out of 
the available data. We show that the TEHIN contains a lot of useful information and that by 
employing the devised methodology, we are able to significantly outperform the standard text 
mining approach. Furthermore, in the ontology querying use case, the general idea is to rank 
ontology entities with respect to a query. The baselines are set with a standard text mining 
approach and by combining textual data and structure, we can significantly improve the perfor-
mance of the developed ranking system over these baselines.  

The main contributions of this thesis can be summarized as follows: 
• We introduced the concept of a text-enriched heterogeneous information network (TEHIN).  
• We provided a general overview of the related work from the fields of text mining, link 

analysis, data fusion, and heterogeneous information network mining.  
• We provided a conceptual workflow-based overview of the proposed methodology for mining 

TEHINs.  
• We argued for projecting graphs into vector spaces by using Personalized PageRank (PPR).  
• We presented (and argue for) a technique for decomposing a heterogeneous information 

network into a set of graphs.  
• We presented a simple technique for combining BOW vectors and (several sets of) PPR 

vectors into combined BOW-like vectors.  



96 Conclusions and Further Work 

 

• We presented an extremely efficient way of computing graph-based centroids and developed 
PRNCC, a PageRank-based nearest centroid classifier that uses the developed technique 
to substantially speed up the training phase. 

• We implemented the text preprocessing routine as a software library called LATINO (Link 
analysis and text mining toolbox).  

• We provided the functionality of LATINO as a set of ClowdFlows components.  
• We developed an automatic categorization tool for video lectures hosted at VideoLec-

tures.net.  
• We developed an approach to drawing relatively large graphs by using our vector-space 

embedding technique. 
• We developed an approach to representing ontologies as graphs.  
• We developed and evaluated an approach to ontology querying.  
• We implemented Visual OntoBridge, a software application for supporting the user in a 

semantic annotation task. 

9.3 Future work 
This thesis develops a complete methodology rather than thoroughly exploring its parts. It leaves 
some steps rather pragmatic or even underdeveloped. Such a step is most notably the presented 
data fusion procedure. There is room for improvements also in other parts of the pipeline. The 
following are some ideas for further work. 
Disconnected components in derived graphs  In Chapter 7 (esp. Section 7.6), we exposed 

an issue that any algorithm for propagating labels or authority through a graph will face when 
dealing with disconnected components: the labels from one component will fail to reach the 
other components. Our methodology suggests decomposing a heterogeneous information net-
work into a set of simple, homogeneous graphs. Even if the original network does not have 
any disconnected components, the derived graphs do not necessarily inherit this property. In 
our lecture categorization use case, this is most evident in the same-author graph which ex-
hibits over 2,500 disconnected components, 1,643 of which contain no labeled vertices. This 
makes the same-author information harder to exploit and also results in the poorest contribu-
tion to the overall categorization performance. It is worth exploring this issue further in order 
to propose a technique for interlinking such disconnected components. Here, we briefly present 
several ideas: 

• Connecting disconnected components with links from other derived graphs. This is the 
simplest approach in which sparser graphs would inherit some links from denser graphs 
obtained from the same heterogeneous network. In our lecture categorization use case, we 
could, for example, interlink the disconnected components in the same-author graph with 
specific links from the same-event and viewed-together graphs. It is of course not clear 
which links to inherit in this way. One heuristic would be to connect the two vertices with 
the maximal joint degree. There are also other possibilities and would need to be more 
systematically explored. 

• Using link prediction techniques. Another way to deal with this problem would be to 
employ link prediction techniques to induce inter-component links that would serve as 
bridges in the PageRank computation process. Since we are interested in links between 
disconnected components, the approaches based on the number of common neighbors 



Conclusions and Further Work 97 

 

(Newman, 2001a) are not suitable for this task. We could however implement the idea 
based solely on the degrees of the two vertices (Barabasi et al., 2002; Newman, 2001b). 
Furthermore, we could take one of the approaches specifically tailored for heterogeneous 
networks (Davis et al., 2011; Yang et al., 2012). This means that we would be able to 
infer links in sparse graphs from other types of structural information. For example, we 
would be able to predict same-author links by examining the same-event and viewed-
together graphs, looking for correlations between these different types of links. 

• Using a less sparse derived graph to propagate sparse information. In our methodology, 
we suggest to run PPR from a vertex and in effect compute a feature vector describing 
how well the vertex is connected (similar, close) to each other vertex. This basically means 
that a vertex is described with other vertices. We could reformulate this step to instead 
describe a vertex with other vertices’ features. Imagine that we have two derived graphs, 
the same-author graph (extremely sparse; many disconnected components) and the 
viewed-together graph (much denser; one single component), both obtained from the same 
heterogeneous network. Instead of running PPR on the same-author graph in isolation, 
we could propagate the same-author information across the viewed-together graph. One 
way to efficiently do this would be to run PPR on the viewed-together graph and compute 
a linear combination of the author feature vectors, weights being the PPR scores. This 
and other possible approaches would need to be more thoroughly explored. 

Weight optimization process in the data fusion step  In the data fusion step of the pro-
posed methodology, the idea is to assign a weight to each different type of data in an attempt 
to optimize the selected performance metric. This part of the methodology is clearly under-
specified in this thesis. In the lecture categorization use case, we perform differential evolution 
which is a stochastic optimization technique. Another possibility would be to employ multiple 
kernel learning in a classification setting (as in Lanckriet et al. (2004)). The problem with a 
stochastic optimization loop is that it is fairly inefficient while the problem with MKL is that 
it restrains the knowledge discovery process mainly to kernel-based methods. The proposed 
methodology would be greatly improved if a general-purpose technique for optimizing the 
weights in a more efficient way would be devised. It would be possible to tune a weight ac-
cording to how well the corresponding feature set performs in isolation or how sparse the 
corresponding graph is (these two aspects are actually highly correlated). By observing these 
initial weights, it would be possible to introduce various constraints into a stochastic optimi-
zation process (e.g., the weight of the same-author feature set should be lower than the weight 
of the same-event feature set). It would also be possible to devise a (greedy) stepwise optimi-
zation process, optimizing one single parameter in each step (i.e., α·feature-set1 + (1–
α)·feature-set2). In general, there are many possibilities to tune the weights; they should be 
thoroughly explored and evaluated. 

IDF-like component in vertex weights  In the text preprocessing step, texts are converted 
into BOW vectors. BOW vectors are high-dimensional sparse vectors in which dimensions are 
defined by words and terms. A popular scheme for computing weights in such vectors is the 
so-called TF-IDF weighting scheme. This scheme weights a term higher if it occurs often in 
the same text (the TF component) and at the same time lower if it occurs in many texts from 
the corpus (the IDF component). In Section 5.2.2, we show an analogy between PPR and TF 
weights, arguing that we are able to project networks into BOW-like vector spaces. We, how-
ever, disregard the IDF component which has a clear intuitive meaning in text mining and is 
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usually shown to improve the results of a knowledge discovery process. It would be possible 
to transfer the intuition that common features are less important, into our structural feature 
vector computation process. Our preliminary experiments, not presented in this thesis, show 
that a simple heuristic, in which the PPR weight is multiplied by the logarithm of the total 
number of vertices divided by the degree of the corresponding vertex (which resembles the 
IDF formula), already outperforms the proposed weight computation process in the presented 
lecture categorization use case. This and other similar heuristics should be studied more thor-
oughly. 

Faster PPR computation  Computing PPR is one of the key processes in our methodology. 
In general, several PPR vectors are computed for each vertex (one for each different type of 
structural information). It is thus crucial to compute PPRs as fast as possible. Since PageRank 
is relatively popular and generally useful, there is a substantial body of work done on speeding 
PPR up. The special case where PPR is run from a single source vertex is often referred to as 
a random walk with restart (RWR) in the literature. Tong et al. (2006) discuss several ap-
proaches to fast approximate RWR computations by resorting to graph partitioning techniques. 
They perform RWR only on the sub-graph that contains the source vertex and set the rele-
vance scores of the vertices outside this sub-graph to 0. In a different approach, Fujiwara et 
al. (2012) compute an upper relevance bound in order to avoid computing relevance scores for 
vertices that are too far from the source vertex. In this thesis, we use the original formulation 
(implementation) of PPR. We propose to study fast algorithms for approximate PPR compu-
tation more thoroughly and assess their impact on the performance in knowledge discovery 
settings. 

Implementation of ClowdFlows components  The components, presented in this thesis, 
were initially implemented as two academic prototypes, employing the devised methodology 
(or parts of it) in the two presented use cases. The first prototype is the VideoLectures.net 
categorization tool which categorizes video lectures into a taxonomy of scientific topics. The 
second prototype is Visual OntoBridge, a system that employs the presented methodology for 
ontology querying. The text mining process as well as the PageRank computation routine, 
employed in these prototypes, is implemented as a software library called LATINO (Link 
analysis and text mining toolbox). Some of the functionality of LATINO is provided also as a 
set of ClowdFlows components for text preprocessing and machine learning. Several method-
ology components, however, were not reimplemented as ready-to-use components or a software 
library. Such components are most notably the following: (i) graph extraction (a general-
purpose component for creating graphs out of TEHINs), (ii) PPR (even though PPR is avail-
able in LATINO, it is not available as a ClowdFlows component for embedding graphs into 
vector spaces), and (iii) data fusion (a general-purpose data fusion component as envisioned 
by the proposed methodology). In addition, two more components could be implemented: (i) 
PPR-based nearest centroid classifier (see Section 5.3.2) and (ii) graph visualization tool (see 
Section 7.6). We leave these implementation efforts for further work.  
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