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Preface

On 26 June, 2000, the sciences of biology and medicine changed forever. Prime

Minister of the United Kingdom Tony Blair and President of the United States

Bill Clinton held a joint press conference, linked via satellite, to announce the

completion of the draft of the Human Genome. The New York Times ran a

banner headline: `Genetic Code of Human Life is Cracked by Scientists'. The

sequence of three billion bases was the culmination of over a decade of work,

during which the goal was always clearly in sight and the only questions were

how fast the technology could progress and how generously the funding would

ow.

The human genome is only one of the many complete genome sequences

known. Taken together, genome sequences from organisms distributed widely

among the branches of the tree of life give us a sense, only hinted at before,

of the very great unity in detail of all life on Earth. They have changed our

perceptions, much as the �rst pictures of the Earth from space presented a

uni�ed view of our planet.

The sequencing of the human genome sequence ranks with the Manhattan

project that produced atomic weapons during the Second World War, and the

space program that sent people to the Moon, as one of the great bursts of

technological achievement of the last century. These projects share grounding

in fundamental science, and large-scale and expensive engineering development

and support. For biology, neither the attitudes nor the budgets will ever be the

same.

The human genome is fundamentally about information, and computers were

essential both for the determination of the sequence and for the applications

to biology and medicine that are already resulting from it. Computing con-

tributed not only the raw capacity for processing and storage of data, but also

the mathematically-sophisticated methods required to achieve the results. The

marriage of biology and computer science has created a new �eld called bioin-

formatics. Today bioinformatics is an applied science, where we use computer

programs to make inferences from the data archives of modern molecular bi-

ology, to make connections among them, and to derive useful and interesting

predictions.
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Landmarks in the Human Genome Project

1953 Watson-Crick structure of DNA published.

1975 F. Sanger, and independently A. Maxam and W. Gilbert,

develop methods for sequencing DNA.

1977 Bacteriophage �X-174 sequenced: �rst `complete genome.'

1980 US Supreme Court holds that genetically-modi�ed bacteria are patentable.

This decision was the original basis for patenting of genes.

1981 Human mitochondrial DNA sequenced: 16 569 base pairs.

1984 Epstein-Barr virus genome sequenced: 172 281 base pairs.

1990 International Human Genome Project launched - target horizon 15 years.

1991 J. C. Venter and colleagues identify active genes via Expressed Sequence

Tags - sequences of initial portions of DNA complementary to messenger RNA.

1992 Complete low resolution linkage map of the human genome.

1992 Beginning of the Caenorhabditis elegans sequencing project.

1992 Wellcome Trust and United Kingdom Medical Research Council establish

The Sanger Centre for large-scale genomic sequencing, directed by J. Sulston.

1992 J. C. Venter forms The Institute for Genome Research (TIGR), associated

with plans to exploit sequencing commercially through gene identi�cation

and drug discovery.

1995 First complete sequence of a bacterial genome, Haemophilus inuenzae,

by TIGR.

1996 High-resolution map of human genome - markers spaced by � 600 000 base pairs.

1996 Completion of yeast genome, �rst eukaryotic genome sequence.

1998 Celera claims to be able to �nish human genome by 2001.

Wellcome responds by increasing funding to Sanger Centre.

1998 Caenorhabditis elegans sequence published.

1999 Drosophila melanogaster genome sequence announced, by Celera;

1999 Human Genome Project states goal: working draft of human genome by 2001

(90% of genes sequenced to >95% accuracy).

1999 Sequence of �rst complete human chromosome published.

2000 Joint announcement of complete draft sequence of human genome.

2003 Fiftieth anniversary of discovery of the structure of DNA.

Completion of high-quality human genome sequence by public consortium.

Bioinformatics, however, continues to evolve very rapidly. In the past eight

years, full genome sequencing has initiated the development of several high-

throughput technologies, such as DNA microarrays and mass spectrometry,

which have considerably progressed. These high-throughput technologies are

capable of rapidly producing terabytes of data that are too overwhelming

for conventional biological approaches and as a result, the need for com-

puter/statistical/machine learning techniques for their processing and inter-

pretation is today stronger rather than weaker.

Large databases of biological information created both challenging data min-

ing problems but also a lot of opportunities, each requiring new ideas. In

this regard, conventional computer science algorithms have been useful, but

are increasingly unable to address many of the most interesting gene expres-

sion analysis problems. This is due to the inherent complexity of biological

systems, brought about by evolutionary randomness, and to our lack of a com-

prehensive theory of life's organization at the molecular level. Machine-learning

approaches (e.g., learning of decision trees, neural networks, bayesian models,
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support vector machines, etc.), on the other hand, are ideally suited for do-

mains characterized by the presence of large amounts of data, `noisy' patterns,

and the absence of general theories. The fundamental idea behind these ap-

proaches is to learn the theory automatically from the data, through a process

of inference, model �tting, or learning from examples. Thus they form a viable

complementary approach to conventional methods.

Modeling biological data probabilistically really makes sense. One reason is

that biological measurements are often inherently `noisy', as is the case of

DNA microarray or mass spectrometer data. However, measurement noise

can not be the sole reason for modeling biological data probabilistically. The

real need for modeling biological data probabilistically comes from the complex-

ity and variability of biological systems brought about by eons of evolutionary

experimentation in complex environments. As a result, biological systems have

inherently a very high dimensionality. Even in microarray experiments where ex-

pression levels of thousands of genes are measured simultaneously, only a small

subset of the relevant variables is being observed. The majority of the variables

remains `hidden' and must be factored out through probabilistic modeling.

It is the merging of all three factors: easily accessible biological data, computers

and theoretical probabilistic framework that is fueling the machine learning and

data mining expansion in bioinformatics and elsewhere. And it is fair to say that

bioinformatics and machine learning methods have started to have a signi�cant

impact on biology and medicine.

Biology has traditionally been an observational rather than a deductive science.

Although recent developments have not altered this basic orientation, the na-

ture of the data has radically changed. It is arguable that until recently all

biological observations were fundamentally anecdotal - admittedly with varying

degrees of precision, some very high indeed. However, in the last generation

the data have become not only much more quantitative and precise, but, in the

case of nucleotide and amino acid sequences, they have become discrete. It is

possible to determine the genome sequence of an individual organism not only

completely, but in principle exactly. Experimental error can never be avoided

entirely, but for modern genomic sequencing it is extremely low.

Note that this has converted biology into a deductive science. Life does obey

principles of physics and chemistry, but for now life is too complex for us to

deduce its detailed properties from the basic principles.

A second obvious property of these data is their very large amount. Currently

the nucleotide sequence databanks contain 1011 bases (abbreviated 100 Gbp).

If we use the approximate size of the human genome - 3:2� 109 letters - as a
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unit, this amounts to thirty HUman Genome Equivalents (or 30 huges). For a

comprehensible standard of comparison, 1 huge is comparable to the number

of characters appearing in six complete years of issues of The New York Times.

The database of macromolecular structures contains 42,000 entries, the full

three-dimensional coordinates of proteins, of average length 400 residues. Not

only are the individual databanks large, but their sizes are increasing at a very

high rate.

The quality and quantity of these data have encouraged scientists to set equally

ambitious goals:

� To be able to say: \We saw life clearly and saw it whole". That is,

to understand integrative aspects of the biology of organisms, viewed as

coherent complex systems.

� To interrelate sequence, three-dimensional structure, expression data, in-

teractions and functions of individual genes.

� To use data on contemporary organisms as a basis for a travel backward

and forward in time - back to deduce events in evolutionary history, forward

to greater careful scienti�c modi�cation of biological systems.

� To support applications to biology, medicine, agriculture and other scien-

ti�c �elds.

Our ability to achieve these goals in the future will strongly depend on our ability

to combine and correlate diverse datasets along multiple dimensions and scales,

and progressively switch from the accumulation of data to its interpretation.

Gene expression data will have to be integrated with structural, functional,

pathway, phenotypic and clinical data, and so forth. Basic research within

bioinformatics will have to deal with these issues of system and integrative

biology, in the situation where the amount of data is growing exponentially1.

This thesis contributes to the development of methods for the interpretation

of high-throughput DNA microarray data, by integrating and using various

sources of biological data (gene ontologies, gene annotations and gene-gene

interactions) with the goal of extracting new biological knowledge hidden in

this abundance of data.

1The content of the preface was kindly borrowed from the books Introduction to Bioinformatics (2002),

Arthur M. Lesk and Bioinformatics, The Machine Learning Approach (1998), Pierre Baldi.



Contents

Preface iii

Abstract 5

Povzetek 7

1 Introduction 9

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Relational approach to functional interpretation of gene expression data . 13

1.5 Scienti�c contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Gene Expression Data and Gene Ontologies 17

2.1 Cellular biology and gene regulation . . . . . . . . . . . . . . . . . . . . 17

2.2 Techniques for measuring gene expression . . . . . . . . . . . . . . . . . 19

2.3 Gene expression data analysis . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 High-level analysis . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Further analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Gene Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Ontology design and implementation . . . . . . . . . . . . . . . 31

2.4.2 Three ontologies of GO . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Gene annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Biological pathways . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Functional Interpretation of Gene Expression Data 41

3.1 Threshold-based functional interpretation . . . . . . . . . . . . . . . . . 42

3.1.1 Fisher's exact test . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Statistical approaches to test signi�cant biological di�erences . . 44

3.1.3 Multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



2 CONTENTS

3.2 Threshold-free functional interpretation . . . . . . . . . . . . . . . . . . 51

3.2.1 Gene Set Enrichment Analysis (GSEA) . . . . . . . . . . . . . . 53

3.2.2 Parametric Analysis of Gene set Enrichment (PAGE) . . . . . . . 55

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Construction of an Integrated Database 59

4.1 Integration of GO and KEGG Orthology . . . . . . . . . . . . . . . . . . 60

4.2 Integration of GO and KO gene annotations . . . . . . . . . . . . . . . . 61

4.3 Gene-gene interaction data . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Gene expression data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Learning Relational Descriptions of Di�erentially Expressed Gene Sets 67

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Descriptive analysis using relational features . . . . . . . . . . . . . . . . 68

5.2.1 The RSD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.3 Statistical validation . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.4 Analyzing individual components of the methodology . . . . . . . 83

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 SEGS: Search for Enriched Gene Sets 87

6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 The proposed SEGS approach . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Properties of GO and KO terms . . . . . . . . . . . . . . . . . . 90

6.2.2 Basic SEGS operators for gene set construction using GO, KO and

ENTREZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.3 Pruning the search space for enriched gene sets . . . . . . . . . . 93

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Brief description of datasets . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.3 Statistical validation . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.4 Biomedical signi�cance of the discovered enriched gene sets . . . 98

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions and Further Work 103

Acknowledgement 107

References 109



CONTENTS 3

List of Figures 119

List of Tables 121

Extended Abstract 123

Biography 129





5

Abstract

Microarrays are at the center of a revolution in biotechnology, allowing re-

searchers to simultaneously monitor the expression of tens of thousands of

genes. The �nal aim of a typical microarray experiment is to �nd a molecular

explanation for a given macroscopic observation (e.g., which pathways are af-

fected by the loss of glucose in a cell, what biological processes di�erentiate

a healthy control from a diseased case); this is called functional interpretation

of gene expression data.

This thesis presents two new methods for the functional interpretation of gene

expression data that combine and use knowledge stored in di�erent kinds of

biological databases. The interpretation is done by identifying and describing

gene sets that have signi�cantly altered expression pro�le (e.g., over- or under-

expressed). The search of the interesting gene sets is performed in the space of

already de�ned gene sets (genes that have common annotation by prede�ned

ontological terms) and in the space of newly generated gene sets that have

prede�ned characteristics (e.g., the minimum number of member genes that are

found to be di�erentially expressed). Three well established methods, Fisher's

exact test, Gene Set Enrichment Analysis (GSEA), and Parametric Analysis

of Gene set Enrichment (PAGE), were employed in order to identify gene sets

with signi�cantly altered expression pro�les.

Both developed methods share the same mechanism of �rst-order (relational)

feature construction, by using the Gene Ontology (GO), Kyoto Encyclope-

dia of Genes and Genomes (KEGG) Orthology, gene annotations, and gene-

gene interaction data. These features, constructed by the propositionalization

mechanism of the Relational Subgroup Discovery algorithm (RSD), are used

as generalized gene annotations.

The �rst method belongs to the class of threshold-based functional analysis

methods. It is performed in two steps. In the �rst step, `top' genes of interest

are selected using gene di�erential expression as a selection criterion. The

selection process does not take into account the fact that gene products are

acting cooperatively in the cell and consequently, for better interpretation of

the selected gene list, in the second step their behavior must be coupled to

some extent by looking for their common description. The language used for

describing the functionality of the genes is constructed from GO, gene anno-

tations, and gene-gene interaction data. By using this background knowledge

together with the paradigm of relational subgroup discovery we found com-

mon descriptions of gene sets di�erentially expressed in speci�c cancers. The
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descriptions of these gene sets can be straightforwardly used by the medical

experts.

The second method is based on threshold-free functional analysis. This method

is also performed in two steps. In the �rst step, genes are ranked by using their

di�erential expression values when comparing prede�ned classes (e.g., tumor

vs. healthy controls) by means of an appropriate statistical test (e.g., the

t-test). In the second step, the positions of the members of the prede�ned

gene sets (e.g., de�ned by GO and KEGG Orthology terms) in the ranked list

are analyzed using appropriate statistical tests (e.g., the Kolmogorov-Smirnov

test). Gene sets, whose members are predominantly found at the top of the

list, are considered enriched and responsible for the phenotype di�erence (e.g.,

the tumor vs. normal). Our contribution to this methodology is a development

of an e�cient algorithm, inspired by the RSD �rst-order features construction,

for the construction of new, potentially enriched, gene sets. New gene sets are

de�ned by conjunctions of relational features constructed from the background

knowledge.

The two developed methods have proved to be of interest to medical experts.

The extracted knowledge turns out to be consistent with the relevant litera-

ture, and proves to have the potential for guiding the biomedical research and

generating new hypotheses that explain microarray measurements.

Also, a by-product of the thesis is an easy to use relational database that

integrates several sources of biological knowledge (GO, KEGG Orthology, gene

annotations and gene-gene interaction data) in a uni�ed format. This database

is now publicly available to a wider scienti�c community.
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Povzetek

Genske mikromre�ze so v �zari�s�cu biotehnolo�ske revolucije saj omogo�cajo so�casno

merjenje izra�zenosti ve�c deset tiso�c genov. Cilj tipi�cnega eksperimenta z

mikromre�zami je najti funkcijsko interpretacijo izra�zenosti genov, z drugimi

besedami molekularno razlago za makroskopska opa�zanja (npr. na katere poti

vpliva zmanj�sanje glukoze v celici, kateri biolo�ski proces je pomemben za raz-

likovanje med zdravimi in bolnimi primerki, ipd).

V doktorski disertaciji predstavimo dve novi metodi za funkcijsko interpretacijo

podatkov o izra�zenosti genov. V obeh primerih poleg podatkov o izra�zenosti

genov uporabimo �se biolo�sko znanje, ki je shranjeno v razli�cnih podatkovnih

bazah. Interpretacijo naredimo tako, da identi�ciramo in opi�semo gene, ki

imajo signi�kantno spremenjeno izra�zenost pro�la (npr. tiste, ki so nadpovpre�cno-

ali podpovpre�cno- izra�zeni). Zanimive mno�zice genov i�s�cemo med �ze de�niran-

imi mno�zicami genov (to so geni, ki imajo skupno anotacijo v ontologiji) in med

na novo generiranimi mno�zicami genov, ki imajo v naprej de�nirane zna�cilnosti

(npr. minimalno �stevilo diferencialno izra�zenih genov v mno�zici). Uporabili smo

tri uveljavljene metode za identi�kacijo mno�zic genov s signi�kantno spremen-

jenim pro�lom izra�zanja: Fi�serjev test (Fisher's exact test), Gene Set Enrich-

ment Analysis (GSEA) in Parametric Analysis of Gene set Enrichment (PAGE).

Obe razviti metodi uporabljata isti mehanizem za gradnjo relacijskih zna�cilk

z uporabo ontologije genov GO (Gene Ontology), enciklopedije genov in or-

tologije genomov KEGG (Kyoto Encyclopedia of Genes and Genomes Orthol-

ogy), anotacije genov in podatkov o interakciji med geni. Zna�cilke zgrajene s

postopkom propozicionalizacije algoritma RSD (Relational Subgroup Discov-

ery) uporabimo kot posplo�sene anotacije genov.

Prva metoda temelji na funkcijski analizi z omejevanjem. Izvaja se v dveh ko-

rakih: v prvem koraku izberemo `najzanimivej�se' gene glede na kriterij diferen-

cialne izra�zenosti. Ker ta postopek izbire ne upo�steva sodelovanja genov v celici

jih v drugem koraku zaradi bolj�se interpretabilnosti zdru�zimo glede na njihove

skupne opise. Jezik opisov za opisovanje funkcionalnosti genov je sestavljen

iz GO, anotacij genov in podatkov o interakciji med geni. Z uporabo tega

predznanja in paradigme relacijskega odkrivanja podskupin, implementirane v

algoritmu RSD, smo na�sli opise skupin genov, ki so diferencialno izra�zene pri

dolo�cenih tumorjih. To znanje lahko zdravniki direktno uporabijo.

Druga metoda temelji na funkcijski analizi brez omejevana. Tudi ta se izvaja

v dveh korakih: v prvem koraku gene z uporabo primernega statisti�cnega testa

(npr. t-test) razvrstimo glede na njihovo diferencialno izra�zenost v vnaprej
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dolo�cenih razredih (npr. tumor v primerjavi z zdravim tkivom). V drugem ko-

raku analiziramo pozicije elementov mno�zic genov (mno�zice genov de�niramo

npr. kot terme v GO ali KEGG) v razvrstitvi dobljeni z uporabo primernega

statisti�cnega testa (npr. Kolmogorov-Smirnov test). Mno�zice genov, katerih

elementi so ve�cinoma v za�cetku razvrstitve, so obogatene in odgovorne za

fenotipsko razlikovanje (npr. tumorja v primerjavi z zdravim tkivom). Na�s

prispevek k tej metodologiji je razvoj u�cinkovitega algoritma za gradnjo novih

- mo�zno obogatenih - mno�zic genov. Iz predznanja sestavljamo opise mno�zic

genov kot konjunkcije relacijskih zna�cilk po vzoru gradnje relacijskih logi�cnih

zna�cilk algoritma RSD.

Ti dve metodi sta potencialno zanimivi za zdravnike. Izkazalo se je namre�c, da

je avtomatsko izlu�s�ceno znanje skladno z relevantno literaturo tega podro�cja

in da ima potencial za usmerjanje biomedicinskih raziskav s tega podro�cja in za

generiranje novih hipotez, ki razlagajo eksperimente z mikromre�zami.

Poleg na�stetega je rezultat disertacije tudi uporabni�sko prijazna podatkovna

baza, ki zdru�zuje ve�c biolo�skih virov podatkov (GO, KEGG Orthology, anotacije

genov in podatke o interakciji genov) v enotnem formatu. Ta baza je zdaj javno

dostopna �sir�si znanstveni skupnosti.



1 Introduction

This chapter presents the motivation for the work in this thesis, a short introduction to

the problem of functional interpretation of gene expression data, the hypothesis that we

prove in the thesis and a list of speci�c scienti�c contributions of our work.

1.1 Motivation

Can we live forever ? Can we stop the process of aging by changing the information pro-

cesses underlying the biology ?

An answer to these questions can be given by the following metaphor of maintaining a

house. How long does a house last? The answer obviously depends on how well you take

care of it. If you do not repairs, the roof will leak, so water and the elements will invade,

and eventually the house will disintegrate. But if you proactively take care of the structure,

repair all damage, confront all dangers, and rebuild or renovate parts from time to time

using new materials and technologies, the life of the house can essentially be extended

without limit.

The same holds true for our bodies and brains. The only di�erence is that, while

we fully understand the methods underlying the maintenance of a house, we do not yet

fully understand all of the biological principles of life. But with our rapidly increasing

comprehension of the biological processes and pathways of biology, we are quickly gaining

this knowledge. We are beginning to understand that aging and diseases are not one

single unstoppable progression process, but a group of related processes. Strategies are

emerging for fully reversing each of these aging and disease progressions, using di�erent

combinations of biotechnology methods.

These questions are the main motivation for doing this work, improving the existing and

developing new methods for automatic knowledge discovery concerning biological processes

and molecular functions that govern speci�c diseases.

One powerful approach to start the investigation of these processes are high-throughput

techniques, such as DNA microarrays, that measure expression of genes. Gene expression

is the process by which speci�c cellular components produce proteins according to a speci�c

genetic blueprint, subsequence of DNA, or gene. With recently developed gene technolo-

gies we are on the verge of being able to control how genes express themselves. Many new

therapies now in development and testing are based on manipulating gene expression, by

either turning o� the expression of disease-causing genes or by turning on desirable genes

that may otherwise not be expressed in a particular type of cell.
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1.2 Problem statement

Over the past few years, due to the popularization of high-throughput techniques, the

possibility of obtaining experimental data has increased signi�cantly. Nevertheless, the

functional interpretation of the results, which involves translating these data into useful

biological knowledge, still remains a challenge.

The aim of the methods for the functional interpretation of microarray experiments

is to �nd a functional explanation at molecular level that accounts for the macroscopic

observation related to the hypothesis that originated the experiment (e.g., why a number

of genes are responsible for the physiological di�erences between healthy and diseased

people). This is achieved through the study of the over-representation of some type of

functionally relevant labels in the genes detected as important in the experiment (see

Figure 1.1).

Figure 1.1: Data ow of a typical functional interpretation of gene expression data.

Two main approaches are currently in use: threshold-based and threshold-free. In

the �rst case, the conclusions are reached by means of a two-steps process where the

important genes are �rstly selected based upon their experimental values (e.g., using a

test for di�erential expression between two classes or a clustering method for �nding co-

expressed genes, etc.) Then, this selection is analyzed for the signi�cant enrichment

of biological terms with functional meaning (e.g., Gene Ontology (GO) (6) or Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways (42)) using di�erent tests (e.g.,

Fisher's exact test) (45). Programmes such as OntoExpress (25), FatiGO (1), GOMiner

(90), etc., can be considered as representatives of a family of methods that use these

terms to �nd clues for the interpretation of the results of microarray experiments (45). By

means of this simple two-step approach, a reasonable biological functional interpretation

of a microarray experiment can be attained.

Several authors have pointed out that the �rst step of such a strategy, where genes

are selected without taking into account their cooperative behavior, would constitute its

Achile's heel. If the genes are considered as independent and tested one at a time, then
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very rigorous thresholds need to be used to reduce the rate of false positives (1). The

obvious consequence of this is the reduction of the sensitivity in the second step.

That is one of the reasons that initiated the development of a new generation of pro-

cedures which draw inspiration from molecular systems biology. Threshold-free methods

avoid the �rst step of selection by not considering genes alone, but in functional blocks.

These methods have proved to be much more sensitive than the threshold-based alterna-

tives. The Gene Set Enrichment Analysis (GSEA) (75) and Parametric Analysis of Gene

Set Enrichment (PAGE) (47) have pioneered a family of methods devised not to �nd

individual genes but to search for groups of functionally related genes with a coordinate

(although not necessarily high) over- or under-expression across a list of genes ranked by

their di�erential expression between classes of microarray data. With this aim in mind

di�erent tests have recently been proposed for analyzing microarray data (2; 31).

Moreover, from the point of view of systems biology, threshold-free methods are far

more consistent because they directly test pre-de�ned functionally-related blocks of genes.

These blocks are formed by genes that share functional labels, which are supposed to

account for the cooperative roles ful�lled by these genes in the cell. Such functionally-

related blocks of genes would provide a molecular-level explanation for the macroscopic

traits studied in the microarray experiment.

1.3 Hypothesis

Even with the introduction of new methods, very often after correcting for multiple hy-

potheses testing, few (or no) GO or KEGG terms turn out to meet the threshold for

statistical signi�cance, because the relevant biological di�erences are small relative to the

noise inherent to the microarray technology.

In this thesis we try to solve this problem by constructing new gene sets using the exist-

ing gene sets and utilizing the gene-gene interaction data. These newly constructed gene

sets are later tested for possible enrichment (i.e., checking if the gene set is signi�cantly

over-represented in the selected important genes, or if it shows collective over-expression

across a list of genes ranked by their di�erential expression).

The construction of the new gene sets is based on the mechanism of �rst-order (re-

lational) features construction, by using GO, KEGG, gene annotations and gene-gene

interaction data. These features are used as generalized gene annotations. For example,

in addition to the usual gene features derived from GO and KEGG:

gene feature 1(X) = function(X, 'DNA Binding')

which is used to annotate all genes that perform molecular function 'DNA Binding', we

de�ne features like this one:
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gene feature 2(X) = interaction(X, Y), function(Y, 'DNA Binding')

which is used to annotate all genes that interact with genes that perform molecular function

'DNA Binding', or

gene feature 3(X) = function(X, 'DNA Binding'), component(X, 'nucleus')

which is used to annotate all genes that perform molecular function 'DNA Binding' and

operate in the 'nucleus'.

The construction of this kind of gene sets really makes sense. An increasing corpus of

evidence reveals that genes do not operate alone within the cell, but in an intricate network

of interactions that we only recently started to discover (35; 67; 73). It is widely accepted

that co-expressing genes tend to ful�ll common roles in the cell (53; 74), and in fact, this

causal relationship has been used to predict gene function from patterns of co-expression

(59; 81). This clearly shows the necessity for methods and tools to aid the functional

interpretation of large-scale experiments such as microarrays, and to formulate genome-

scale hypotheses from a systems biology perspective, in such a way that the collective

properties of groups of genes are taken into account. Therefore, adding the interacting

properties of the genes will greatly improve the functional interpretation of gene expression

data.

Second, very often there are scenarios when not all genes annotated by some GO

term are over-expressed, but only a subgroup of them. Allowing conjunctions of gene

features is an elegant way to make them more speci�c and more useful, while retaining

their comprehensibility. For example, if we test the enrichment of the gene set de�ned by

GO term 'nucleus', we can not expect that all genes in the nucleus will be over-expressed.

The same holds for GO term 'transport', there are thousands of genes operating inside

and outside the cell that perform this function. When testing this gene set for enrichment

we will probably �nd that it is not enriched. But, if we de�ne a gene set whose member

genes are annotated by both GO terms, 'nucleus' and 'transport', there is a bigger chance

that we will discover the over-expressed genes which transport molecules inside(outside)

the nucleus.
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1.4 Relational approach to functional interpretation of

gene expression data

The main novelty of this thesis is the relational approach to functional interpretation of

gene expression data by using the newly constructed features which have enabled the

development of the following two methods.

The �rst method (see Chapter 5) belongs to the class of threshold-based functional

analysis methods. It is performed in two steps. In the �rst step, `top' genes of interest are

selected using gene di�erential expression as a selection criterion. In the second step their

behavior is coupled to some extent by looking for their common description. Relational

features used for describing the functionality of the genes (described in Section 1.3) are

constructed from GO, gene annotations, and gene-gene interaction data. By using these

features together with the paradigm of relational subgroup discovery we found common

descriptions of gene sets di�erentially expressed in speci�c cancers. The descriptions of

these gene sets can be straightforwardly used by the medical experts (see Section 5.3.2).

The second method (see Chapter 6) is based on threshold-free functional analysis. This

method is also performed in two steps. In the �rst step, genes are ranked by using their

di�erential expression values when comparing prede�ned classes (e.g., tumor vs. healthy

controls) by means of a appropriate statistical test (e.g., the t-test). In the second step,

the positions of the members of the prede�ned gene sets (e.g., de�ned by GO and KEGG

Orthology (KO) terms) in the ranked list are analyzed using appropriate statistical tests

(e.g., the Kolmogorov-Smirnov test). Gene sets, whose members are predominantly found

at the top of the list, are considered enriched and responsible for the phenotype di�erence

(e.g., the tumor vs. normal). Our contribution to this methodology, inspired by relational

feature construction, is a development of an e�cient algorithm (that uses the GO and

KO topology) for the construction of new, potentially enriched (collectively di�erentially

expressed), gene sets. The experimental results show that the introduced method improves

the functional interpretation of gene expression data (see Section 6.3.2). We base our

conclusion on the following facts: Enrichment scores of the newly constructed sets are

better then the enrichment scores of any single GO and KO term, and newly constructed

enriched gene sets are sometimes described by non-enriched GO and KO terms, which

means that we are extracting additional biological knowledge that can not be found by

single term enrichment analysis.
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1.5 Scienti�c contributions

This thesis contributes to the �elds of Bioinformatics and Data mining.

The speci�c contributions include:

� A state-of-the-art overview of gene expression data analysis, with focus on functional

interpretation of gene expression data, presented in Chapters 2 and 3.

� The development of an easy to use, easily updateable relational database, integrating

four di�erent sources of information (GO, KEGG, gene annotations and gene-gene

interaction data). This database, described in Chapter 4, is made publicly available

to other researchers.

� The development of a new methodology for learning relational descriptions of dif-

ferentially expressed gene sets using the integrated background knowledge and the

methodology of relational subgroup discovery, described in Chapter 5.

� The development of a new method for the e�cient construction of biologically rel-

evant enriched gene sets, using the integrated background knowledge and various

methods for gene set enrichment analysis, described in Chapter 6.

The main scienti�c contributions of this work were published in the following papers:

� Igor Trajkovski, Filip �Zelezn�y, Jakub Tolar, Nada Lavra�c: Relational Subgroup Dis-

covery for Descriptive Analysis of Microarray Data. Proceedings of the 2nd Inter-

national Symposium on Computational Life Science (CompLife) 2006: pp. 86-96,

Cambridge, UK.

� Igor Trajkovski, Nada Lavra�c: E�cient Generation of Biologically Relevant Enriched

Gene Sets. Proceedings of the International Symposium on Bioinformatics Research

and Applications (ISBRA) 2007: pp. 248-259, Atlanta, USA.

� Igor Trajkovski, Nada Lavra�c: Interpreting Gene Expression Data by Searching for

Enriched Gene Sets. Proceedings of the 11th Conference on Arti�cial Intelligence in

Medicine (AIME) 2007: pp. 144-148, Amsterdam, The Netherlands.

� Igor Trajkovski, Filip �Zelezn�y, Nada Lavra�c, Jakub Tolar: Learning Relational De-

scriptions of Di�erentially Expressed Gene Groups. IEEE Transactions on Systems,

Man, and Cybernetics, Special issue on Intelligent Computation for Bioinformatics,

accepted, to appear in January 2008.

� Igor Trajkovski, Nada Lavra�c, Jakub Tolar: SEGS: Search for Enriched Gene Sets

in Microarray Data. Journal of Biomedical Informatics, accepted in December 2007

for publication in 2008.
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1.6 Organization of the thesis

This thesis is organized in the following way. Chapter 2 presents a state-of-the-art

overview, providing the necessary background knowledge about the gene expression data

and resources of biological knowledge stored in di�erent types of databases, needed for

understanding the existing methods for analyzing gene expression data and the new meth-

ods presented in this thesis. In Chapter 3 we review the work that relates to our functional

interpretation of microarray data. Chapter 4 presents the process of collecting, prepro-

cessing and uniformly formatting of publicly available biological databases and microarray

datasets. Chapter 5 presents the �rst developed method for learning relational descriptions

of di�erentially expressed gene groups. Chapter 6 presents the second developed method

of searching for enriched gene sets in microarray data. At the end, in Chapter 7, we draw

�nal conclusions and propose some directions for future work.





2 Gene Expression Data and Gene

Ontologies

This chapter presents a state-of-the-art overview, providing the necessary background

knowledge about the gene expression data: what these data represent, how they are

measured and what preprocessing techniques for cleaning the data are used. It also presents

several resources of biological knowledge stored in di�erent types of databases used for

functional interpretation of gene expression data.

2.1 Cellular biology and gene regulation

The cell is a complex machinery - a collection of organic molecules, intricately interacting,

constituting what we may de�ne as the basic unit of life. This microscopic mixture of

molecules possesses an extraordinary ability to communicate with its environment and to

regulate its own state according to internal and external stimuli.

The structural and functional building blocks of the cell are primarily proteins, but

also ribonucleic acids (RNA). Many of these molecules control reactions such as signaling

and metabolism while others make up the skeleton and shell of the cell thus de�ning

it spatially in its environment. The cell manufactures these molecules itself, relying on

molecular blueprints that are inherited from cell to cell. The blueprints are stored in the

deoxyribonucleic acid (DNA), a molecule shaped as a double helix, where the two strands

are joined together through pairs of nucleotides. It is the sequence of nucleotides that

determines the information content in the DNA. The set of nucleotides in the DNA is

made up of adenine (A), thymine (T), guanine (G) and cytosine (C), so the information is

encoded in a four-letter alphabet. The two strands of the double helix are complementary

to each other since A always pairs with T and G always pairs with C. A gene is a portion of

the DNA which contains the instructions for building a speci�c molecule, its gene product.

In principle, all cells in a given multicellular organism carry the same genetic code,

identical to the one of the original fertilized egg. Nevertheless, higher order species consist

of highly specialized cell types, appearing in di�erent locations of the body, having di�erent

tasks. So why do skin cells, nerve cells and blood cells, which all have the same genetic

code, behave so widely di�erent? The answer is that di�erent genes are active, or expressed

in the di�erent cell types, making them produce their own speci�c set of molecules.

The protein synthesis, that is, the process of producing a protein from the information

in its corresponding gene can be divided into two phases - transcription and translation

(Figure 2.1).
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Figure 2.1: Schematic illustration of cells protein synthesis. The �gure is printed by

courtesy of the National Human Genome Research Institute, the National Institutes of

Health.

During transcription, the genetic code of the gene is copied to a messenger RNA

(mRNA) molecule, a single-stranded nucleic acid carrying the same nucleotides as DNA

with the exception of thymine whose role is instead taken by uracil (U). Transcription starts

when the protein RNA polymerase binds to the promoter region, the start of the gene,

and locally unzips the DNA helix so that the strands become free for reading. The RNA

polymerase propagates along the strand while constructing an mRNA molecule by adding

nucleotides complementary to those being passed by on the DNA molecule. Eventually, the

RNA polymerase reaches a terminator region and stops transcribing, whereby the mRNA

is released and the DNA resumes its double helix con�guration. Following this, the primary

mRNA is processed into mature mRNA by other molecules, for example by removing the

parts corresponding to introns, non-coding regions of the DNA, in a process called splicing.

Following transcription, translation takes place, where the four-letter alphabet of the
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DNA and mRNA is translated into the alphabet of proteins. Like the nucleic acids, proteins

are polymers, albeit consisting of sequences of amino acids instead of nucleotides. The

number of amino acids is 20 so the protein alphabet is one of 20 letters. In order to

represent 20 amino acids with four nucleotides we need three nucleotides per amino acid.

Such a three-nucleotide word is denoted a codon 1. The actual translation between the two

alphabets is accomplished by transfer RNA molecules (tRNA) which attach themselves to

the mRNA. The tRNA has one end with a speci�c anticodon, that is, a complementary

codon, and another end to which the corresponding amino acid is attached. The last step

in the translation is performed by the ribosomes which join the sequence of amino acids

found on the tRNA along the mRNA together to form the protein.

The production of RNA and proteins from a given gene does not take place indepen-

dently of the expression of other genes. Conversely, gene products inuence the production

of other gene products using positive or negative feedback. This regulation is essential for

the cell to be able to respond to internal and external circumstances and takes place at all

levels in the chain of reactions that produce a protein from a gene sequence.

To enable transcription of a gene, the binding of certain proteins, transcription factors,

to the DNA, is necessary. Di�erent genes are either activated or repressed by di�erent

combinations of one or several transcription factors. Transcriptional control is not the

only means of regulation. After transcription, mRNA molecules may interact with other

gene products, resulting in altered structure or lifetime of the mRNA. After translation,

subsequent protein-protein reactions may be required to �nalize the functional protein.

The description above only sketches a few of the ways that genes interact to regulate

each others expression. The main conclusion is that the cell can be viewed as a large

dynamical system with di�erent molecules interacting with each other. The explicit study

of such genetic regulatory networks is often referred to as systems biology (although

other wider de�nitions of the term are also used). Mathematical modeling of genetic

regulatory networks had its principal breakthrough in the 1960's and various models have

been proposed, ranging in complexity from discrete cellular automata models to detailed

probabilistic models; see (23) for a review.

2.2 Techniques for measuring gene expression

Enabled by advances in measurement technology and the sequencing of genomes, such as

the human in the Human Genome Project, the 1990's witnessed the emergence of tech-

nologies for global measurement of gene expression. Earlier techniques were limited to the

study of a few genes at the time, while the microarray techniques gave biologists the tools

to sample the expression of, in principle, the whole genome in one single measurement.

1Since 43 = 64 > 20 there is a degeneracy in this representation; some amino acids are coded for by

more than one codon. On the other hand, one codon codes for at most one amino acid.
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Microarrays measure the abundance of mRNA from the set of genes at a given moment.

From a cell sample of interest, mRNA is extracted and put in contact with an array on which

probes (complementary sequences, or subsequences, of the genes) have been attached.

The di�erent mRNA in the solution then bind to their corresponding complements on the

chip, and the amount of mRNA for each gene can be optically measured by a laser scanner.

There are two main microarray platforms currently in use; spotted microarrays (70)

and high-density synthetic oligonucleotide1 microarrays (56). These are basically two vari-

ations of the same general solution described above.

Figure 2.2: Spotted microarray technique. The �gure is printed by courtesy of Anna

Andersson, Department of Clinical Genetics, Lund University hospital.

A spotted microarray2 (Figure 2.2) has probes consisting of cDNA or long oligo strands

attached spot-wise on a glass slide in a grid shaped pattern. The platform is, in its

most common form, a two-channel technique, meaning that in each measurement, the

expression pro�les of two cell samples are measured simultaneously.3 After extracting

RNA from the two samples it is reverse-transcribed to cDNA, and uorescently labeled

1A short stretch of nucleotides, 2 to 200 nucleotides long.
2The well known cDNA microarray technique falls under the category of spotted microarrays.
3However, both one- and multi-channel spotted microarray platforms exist.
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with Cy3 (green) for one sample and Cy5 (red) for the other. The cDNA molecules of the

samples are denoted targets. After labeling, the two samples are mixed and put in contact

with the probes on the slide. During hybridization, the targets bind to their corresponding

probes, thus geometrically sorting the targets on the slide. Finally, each spot is illuminated

by a laser at two di�erent wavelengths; one yielding Cy3 uorescence and one yielding

Cy5 uorescence. Thus two images are obtained; one with green spots and one with red

spots, measuring the abundances of the respective sample targets. These images then

go through a number of image processing steps. First, the spots need to be located and

segmented out from the background. Second, the spot intensity and local background

intensity is estimated from the pixels, commonly by taking the mean or the median of

the pixel values. Thus for each spot, estimates of the red and green foreground and

background intensities are available. For each channel, the expression level is estimated as

Yi = FGi � BGi (2.1)

where FGi and BGi are the foreground and background estimates at spot i for the particular

channel. In principle, the two channels could be treated separately, but in multiarray

experiments it is common practice to use a reference sample, common to all arrays, in one

of the channels. The expression levels of the other sample, the query sample, are then

reported as relative values compared to the reference expressions, i.e.,

Yi =
Yi
query

Yi
ref erence

(2.2)

Most commonly this ratio is subsequently transformed by taking the logarithm, as discussed

in Section 2.3.1.1.

High-density synthetic oligonucleotide microarrays have a slightly di�erent construction.

Here we describe the widely spread A�ymetrixTM platform. The probes are made of

excerpts of gene sequences, with a typical length of 25 nucleotides, and probes for one

gene are spread over the chip in order to decrease the inuence of systematic spatial

errors. Moreover, associated to each probe is a mismatch probe, where one nucleotide has

been replaced by its complement, thus providing the means of estimating the amount of

non-speci�c, or false positive binding. The mismatch probe and the perfect match probe

constitute a probe pair and typical arrays hold 16-20 probe pairs per gene. As opposed to

spotted microarrays, high-density oligonucleotide microarrays are single-channel, measuring

one sample on each array. To prepare the target, mRNA is extracted from the cell and

uorescently labeled while converted to complementary RNA. The targets are hybridized to

the chip and an image is generated using a laser scanner. An image from an oligonucleotide

array is slightly more standardized than a spotted microarray image in terms of location

and size of the probes on the image, but basically the same image processing steps as

for spotted microarrays need to be performed - localization, segmentation and intensity

estimation. Let PMik and MMik be the extracted perfect match and mismatch intensities
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for probe pair k of gene i , where i = 1; :::; n and k = 1; :::; K with K being the number of

probe pairs. For each probe pair we may, as in the previous case, estimate the expression

level as

Yik = PMik �MMik (2.3)

Some approaches, however, disregard the mismatch intensities altogether and let Yik =

PMik . The estimation of the expression level of a particular gene requires the summary

of the probe pair expressions Yik , k = 1; :::; K in one single value - an expression index

as it is termed for oligonucleotide arrays. A straightforward way to do this is to compute

the average, that is, Yi =
∑

k Yik=K. However, this is sensitive to outliers, so instead a

trimmed mean can be computed, which is de�ned as

Yi =
∑
k

wikYik ; wik =

{
1=#A; if k 2 A;

0; otherwise;
(2.4)

where A is the set of probe pairs such that Yik is within three standard deviations from the

mean.

2.3 Gene expression data analysis

The data processing, from scanned array images to the �nal biological interpretation in-

volves a long series of computational manipulations and analysis of the data, each one,

in their own respect, more or less challenging. We have already, in the previous section,

described the initial steps - the estimation of expression levels from the raw image data

through spot identi�cation, segmentation, intensity estimation and the computation of

expression indexes. This is followed by a number of preprocessing steps, where various

transformations of the data is applied in order to �lter out non-biological variation and to

`clean up' the data to facilitate the subsequent analysis. At this stage, data is presumably

ready to be analyzed in search for a biological interpretation. A range of high-level analysis

methods exist that have as a common aim the extraction of biologically relevant patterns

and information from the data. Clustering, classi�cation, dimensionality reduction and

other types of methods are frequently applied in gene expression data analysis. Finally, the

extracted structure needs validation, and here too, computational methods are helpful, for

example to compare the results to prior knowledge which is often stored in large databases.

2.3.1 Preprocessing

In the next sections we provide four steps for transformation of measured gene expression

data: data transformation, normalization, missing value imputation and �ltering, in order

to prepare the data for subsequent high-level analysis.
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2.3.1.1 Data transformations

As described in Section 2.2, expression values on a spotted microarray are computed as

the logarithm of the ratio between the two channel expressions. The reason for taking

the logarithm is to symmetrize between up- and down-regulation. In the original scale,

down-regulation (that is when the query target is less abundant than the reference target)

is squeezed in the interval [0, 1], while up-regulation is spread over the interval [1, 1).

Taking the logarithm makes up- and down-regulation symmetric in the interval (-1, +1).

2.3.1.2 Normalization

Any given set of microarray measurements contains variation originating from di�erent

sources. The expression levels may vary across samples due to di�erences in the quantity

of mRNA, di�erent sample processing, scanner calibration, etc. Naturally, it is of interest

to remove technical and experimental variation so that what remains is the biological

variation, relevant to the study. This is the objective of normalization.

The sources of variation are many and all are not very well understood, therefore it

is di�cult to model them explicitly. Instead, typically some general assumption about

invariance of certain quantities over samples is made. For example, in total-intensity nor-

malization it is assumed that the true average gene expression is constant across samples,

in which case each array is scaled by its total estimated expression. An extension of this

idea is used in quantile normalization (15), where the distribution of expression values is

assumed to be constant across samples. In this case, estimated expression values are trans-

formed so that in a multidimensional quantile-quantile plot of the sample distributions, the

quantiles lie along the main diagonal.

Under some circumstances none of the assumptions underlying the normalization meth-

ods is valid. This is, for example, the case if the microarray contains relatively few probes,

the majority of which are known to be involved in the biological process under study. In

this case, normalization is often based on the assumption that expression properties of a

subset of the genes are invariant. This subset can be genes that are biologically known to

have a constant expression, so called housekeeping genes, or it can be so called spike-in

genes from some other organism whose mRNA is added in known amounts early in the

experimental process.

2.3.1.3 Missing value imputation

The spotted microarray datasets, in particular, often come with missing values. Various

spots may have been agged as unreliable, for example due to scratches or debris on the

slide, and therefore lack expression values. In a study with many samples it is quite likely

that a rather large fraction of the genes contain at least one missing value across samples.

High-level analysis methods usually do not allow missing values therefore in order not to
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throw away too much potentially valuable information, the missing values need somehow

to be �lled in.

Di�erent strategies to achieve this missing value imputation exist. A crude approach

is to use the average expression value of the gene across samples. Another solution is

adopted in K nearest neighbor imputation, where, if gene i contains a missing value in

a particular sample, the K genes with most similar gene expressions in the rest of the

samples (where the corresponding sample has a value) are found and the missing value is

replaced by a weighted average of the values in the other genes (40).

2.3.1.4 Filtering

Filtering is often applied to a microarray dataset prior to high-level analysis. By discarding

genes that have noisy expression levels it is believed that the performance of subsequent

high-level analysis increases.

Di�erent rules are applied in order to �lter genes. For example, the A�ymetrixTM

oligonucleotide microarray platform provides detection p-values estimating the con�dence

of the signal presence of each gene and �ltering can thus be based on these p-values

by requiring that a gene should be signi�cantly present in at least a certain number of

samples. For spotted microarray data, one can use similar criteria based on the ratio

between foreground and background intensities or the fraction of missing values.

2.3.2 High-level analysis

Once data has been properly preprocessed, the next step is to extract some biological

meaning from it. A multitude of tools from the �elds of statistics, pattern recognition

and machine learning are helpful for this purpose. This section reviews di�erent types of

methods that are adopted to extract di�erent types of information.

Generally speaking, the high-level analysis is a problem of mapping the expression data

into some particular representation system, the choice of which will depend on the kind,

and level, of structure we wish to infer. First we need to settle how to mathematically

represent the expression dataset. Suppose that m measurements of the expression levels

of n genes are given. Let xi j be the estimated expression level of gene i in sample j

and arrange the data in a matrix X where, thus, each row gi , i = 1; :::; n represents the

expression levels of a particular gene, and each column xj , j = 1; :::; m represents the

expression levels of a particular sample. We may think of this set of data in two ways. The

�rst is to look at the m samples as points in an n-dimensional gene expression space where

the coordinates of a sample are given by the expression levels of its genes. Alternatively,

we can consider the n genes as points in an m-dimensional space, the sample expression

space, where the coordinates of a gene are given by its expression levels in the di�erent

samples.
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While the mathematical representation of input data as vectors in expression space is

quite obvious, the choice of representation of underlying patterns is more interesting. In

clustering and classi�cation, we commonly represent structure simply by class labels. An

object (gene or sample) is thus described by a single integer, determining which partition

of the objects it belongs to. Another structure representation is adopted in dimensionality

reduction and regression, where data is mapped into the Euclidean space, and thus each

object is described by a set of coordinates in this space. The most complex structure

representation is the one commonly adopted in gene network inference, where objects (in

this case, genes) correspond to nodes in a graph structure, and where the structure we

wish to infer is the graph edges with their respective weights. To summarize, we may

write:

gene expression space R
n

sample expression space R
m

}
3 x ! z 2


Zp clustering, classi�cation

R
d dim. reduction, regression,

hV; Ei gene network inference

where hV; Ei are vertices and edges of a weighted graph.

In parallel with the framework described above, a common way to classify di�erent

problems in data analysis in general is to discriminate between supervised and unsupervised

problems. Supervised problems assume the existence and use of prior knowledge, such as

classi�cation, while unsupervised problems do not.

Microarray datasets have some speci�c features that have implications for what kind

of information can be extracted from it. First, they typically contain many more variables

(genes) than observations (samples), while classical statistics typically assumes the study

of many samples described by relatively few variables, carefully chosen based on prior

knowledge, to describe a particular phenomenon. For data from microarrays, as well as

from several other emerging high-throughput measurement techniques, this is not the

case. There is usually an abundance of variables, whereas perhaps only a few of them

might be relevant. Second, due to the existence of genetic regulatory networks, there

are complex dependency structures between genes, therefore the common assumption of

independence between variables can not be made. These features lead to di�culties when

using microarray data for rigorous tests of hypotheses on a genome-wide level. However,

testing hypotheses is not the only use one can have of data. Generating hypotheses is

often equally valuable and it is important that we also cover this approach in the gene

expression data analysis.

The rest of this section describes di�erential expression analysis, classi�cation and

clustering in gene expression data analysis. Please note that methods for classi�cation

and clustering of gene expression data are not performed in this work, but we present

them here in order to introduce the reader with the most important high-level analysis

methods.
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2.3.2.1 Di�erential expression analysis

One of the most immediate questions in a study of a microarray dataset is which genes are

di�erentially expressed (DE) in two or more speci�ed groups of samples. This problem is

studied in di�erential expression analysis. Answers typically come in the form of gene lists

which can be further studied in the search for biological insights to, for example, disease

mechanisms.

For simplicity, suppose that we want to �nd DE genes in a two-group comparison. The

most common approach is to study gene by gene and select those that show di�erential

expression in the two groups. An early methodology for this is fold analysis, where the

amount of di�erential expression is measured by the expression ratio between the two

samples and di�erential expression is considered signi�cant if it is above or below constant

threshold values, typically 2 and 0.5, respectively (70).

Current datasets usually contain several samples per group. In this case, the use of

statistical tests like some Student's t-test become possible. For each gene, we may, for

example, compute the two-sample t-statistic

t =
�1 � �2√
�1
N1

+ �2
N2

(2.5)

where �1; �2 are group means; �1; �2, estimated standard deviations and N1; N2, number

of samples in group 1 and 2, respectively. The distribution of the statistic under the null

hypothesis, which is that the gene is not di�erentially expressed in the two groups, can

either be assumed to follow a t-distribution or be estimated by permutation of the class

labels. In this way, a p-value, quantifying the signi�cance of the di�erential expression,

can be obtained.

Microarray datasets involve many more variables (genes) than observations (samples)

and this needs to be taken into consideration while looking for DE genes. For example,

consider a dataset where the number of genes is n = 104 and the fraction of truly non-

DE genes is �0 = 0:9. Suppose p = 0:05 is chosen as a threshold for calling a gene

di�erentially expressed. The expected number of non-DE genes that is incorrectly called

di�erentially expressed is then p � n ��0 = 450 - almost half the number of truly DE genes.

Moreover, not all DE genes will be called DE since, in some cases, by chance, the p-value

will exceed 0.05. The result is that the gene list will contain a large fraction of genes

that have nothing to do with the condition that de�nes the groups. This exempli�es the

multiple testing problem, where a p-value threshold that seems standard and reasonable in

a single test leads to a high false discovery rate (FDR), de�ned as the expected proportion

of false positives among the declared signi�cant results. Discussions and procedures for

minimizing the FDR are given in Chapter 3.

The t-test has also several cons for testing the di�erential expression of genes. For

example in the presence of outliers, the expression distributions are non-normal, and we can
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not use t-distribution for inferring the p-values. Another problem is that a small number

of samples makes it di�cult to get signi�cant results in the tests. A third problem is

that gene expressions are typically not independent, so the assumption of independence is

violated. However, if genes are, on average, uncorrelated and the dependencies are weak,

it can be argued that this problem is less severe.

Treating genes one-by-one does not make use of the full potential in a microarray

dataset. Since groups of genes are correlated it makes sense to perform di�erential ex-

pression analysis of whole groups of genes instead of single genes. Such groups may, for

example, be de�ned as genes known to be involved in particular pathways of interest or as

genes located in the same chromosomal regions. Gene set enrichment analysis (GSEA)

(75) implements a method for this, and it has been shown that, using this method, di�er-

ential expression of groups of genes can be identi�ed where single gene tests would fail to

discover di�erential expression. GSEA and other methods for group di�erential expression,

also called group enrichment analysis, are presented in Chapter 3.

2.3.2.2 Classi�cation

The task of classi�cation is that of learning how to best guess which, out of a number of

given classes, an object with unknown class label belongs to. A classi�er is constructed

by training, where it is introduced to representative training objects of known classes -

the training set. For microarray data, the applications of classi�cation include diagnosing

cancer type, given the expression pattern from a tumor sample, or predicting the biological

function of genes based on their expression patterns.

In a sense, classi�cation is similar to di�erential expression analysis, since most classi�-

cation algorithms, explicitly or implicitly, work by �nding variables, or functions of variables,

that are good predictors of the class. A di�erence, however, is that while a biological inter-

pretation of these predictors is a nice side-e�ect, it is not the primary goal as in di�erential

expression analysis. The similarity is particularly clear in a class of methods represented

by (32), where, given a two-group classi�cation problem, a list of di�erentially expressed

genes is extracted using the training set, and a voting function, de�ned on these genes,

decides which class a presented sample belongs to. A problem with this approach is that

many of the discriminative genes are likely to be correlated, perhaps being involved in the

same particular process. Genes with less strong di�erential expression, but uncorrelated

with the group of most strongly DE genes, would most likely increase the generalization

performance but are not included using the basic method described.

In gene list based classi�ers, as above, the decision function is �xed and prede�ned

while the set of variables on which it operates is learned from the data. Other methods,

such as Arti�cial Neural Networks (ANNs) and Support Vector Machines (SVMs), use all

variables but let the method learn the decision function from the data. Here too, a list

of predictive variables can be extracted by ranking them according to their inuence on
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the �nal decision function. Arti�cial neural networks can readily be applied to classi�ca-

tion problems with more than two classes (44), while support vector machines are binary

classi�ers, discriminating between, for example, healthy and cancerous tissue (29), or clas-

sifying genes as belonging to a known functional group or not (17). Binary classi�ers can

be extended to handle K classes by learning to classify between each pair of classes or by

learning K classi�ers of one class against all others. Both ANNs and SVMs are able to

learn nonlinear decision functions.

Just like in di�erential expression analysis, the fact that the genes by far outnumber the

samples, introduces some di�culties. For example, gene list based classi�ers, as described

above and in (32), classify judging from lists of top discriminatory genes. As pointed out

in the discussion on di�erential expression analysis, such lists are likely to be `infected' by

false positives, which by their presence disturb the classi�cation of new samples. In fact,

this problem is common to all classi�cation methods when the number of samples is much

smaller than the number of variables. A classi�er risks to trust variables or sets of variables

as having predictive power when in fact they have this power (on training data) by chance.

A wealth of di�erent classi�cation methods have been applied to microarray data but,

so far, none has stood out as signi�cantly more suitable than the others. Presumably, the

importance of the method choice will grow with the number of samples in the datasets.

2.3.2.3 Clustering

Clustering is the process of grouping together similar objects into resulting groups, or

clusters. In gene expression data analysis, clustering serves to discover groups of co-

regulated genes or groups of samples with similar expression pro�les, for example revealing

classes or subclasses of disease states. The problem is similar to that of classi�cation,

with the di�erence that clustering methods discover groups in data without using any

prior knowledge, while classi�cation methods do so by arranging objects into class labeled

groups. Indeed, classi�cation methods are sometimes referred to as supervised clustering.

The problem of grouping together `similar' objects calls for a de�nition of similarity.

There are several ways for calculating the (dis)similarity of two vectors, but two most

frequently used measures are Euclidean distance and correlation distance, de�ned as 1��xy ,
where �xy is the correlation between vectors x and y .

Hierarchical clustering. Hierarchical clustering is currently the most frequently used

clustering method in gene expression data analysis,(27) being an early example. The (ag-

glomerative) hierarchical clustering algorithm takes as input a matrix of pairwise similarities

between objects. Initially all objects are considered as clusters. Then, iteratively, the most

similar cluster pair is found and merged together into a new cluster. This is repeated

until all objects are contained in a single cluster. Similarities between two clusters can be

de�ned in a number of ways, for example, the largest similarity between any pair of objects

in separate clusters (single linkage), the smallest similarity between any pair of objects in
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separate clusters (complete linkage) or the average similarity between all pairs of objects

in separate clusters (average linkage). The clustering is visualized in a cluster tree, a den-

drogram, visualizing the nested structure of clusters. Hence, in fact, hierarchical clustering

yields a more detailed structure representation (a tree-graph) than many other clustering

methods that simply divide the data into partitions.

Hierarchical clustering is frequently used in comparative genomics and phylogeny to

study, for example, the evolutionary development of gene sequences, and perhaps hier-

archical clustering is more suited for data where distances can be de�ned as a discrete

number of alterations, than for quantitative data like gene expression data. One problem

is that it might be di�cult to decide which clustering level in the dendrogram to choose,

if the aim actually is to partition the data. On the other hand, the user does not have

to provide an a priori number of clusters. Another issue is over-�tting. Di�erent ways

of de�ning the similarities between points and clusters yield very di�erent cluster trees.

Hence, there is a risk of adjusting parameters until getting a tree that adheres to prior

beliefs.

K-means clustering. K-means clustering is a standard and well understood clustering

algorithm. The algorithm takes as input the expression data and the number of clusters,

K. Initially, K cluster centers are randomly placed in the span of the data. All objects

are assigned to their nearest cluster center and the mean expression of each cluster is

calculated. These means replace the prior cluster centers and the two steps are repeated

until convergence. The advantage of K-means is that the method does not have many

parameters to assign, while in many cases it is a drawback that the number of clusters has

to be provided to the algorithm. An example of the use of K-means clustering in gene

expression data analysis can be found in (77).

It is important to keep in mind that most clustering algorithms will divide data into

clusters even if no real cluster structure is present. Therefore, it is important to control

the signi�cance of the produced results. For example, when clustering genes, measured

over a small number of samples, the clusters will contain many false positives, while many

true positives will be missed. This is due to the fact that the statistical con�dence of

similarity measures will be low.

2.3.3 Further analysis

Once high-level analysis methods have suggested some underlying structure in the data,

these results need to be interpreted and validated in terms of biological signi�cance. This

can be done in a number of di�erent ways. Suppose, for example, that we have clustered

the data, so that what we have to validate is a particular partition of the data.

A natural way to validate sample clusters is to consult clinical variables of the samples

(e.g., gender, blood pressure, cancer diagnosis) and investigate if patterns, similar to the

ones discovered in the gene expression data, appear there. With an extensive clinical
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database this might be a task at almost the same complexity level as the gene expression

analysis itself. One particular way of evaluating proposed sample clusters in diseases like

cancer is the use of Kaplan-Meier survival analysis, which involves a statistical test of

whether two groups of patients have signi�cantly di�erent median survival times. If this

is found, it is often argued that the clusters are of biological relevance, for example, as

subgroups of the same disease (5).

For genes, the available knowledge does not come in the shape of sets of clinical

variables like for samples. Instead, gene clusters can be validated with respect to, e.g.,

cellular functions, chromosomal locations, sequence information, etc. Knowledge about

the genome is stored in Gene Ontology (GO) (6) databases where genes are arranged in

tree structures according to function, location and other properties. Given a set of genes,

one can make a query to a GO database testing if some, say functional, group on some tree

level is over-represented among the genes (91). Alternatively, databases containing known

pathway relations, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (41),

may be consulted to see whether genes from some particular pathway are over-represented

in the cluster. The evaluation of the meaning and relevance of gene clusters using queries

to databases requires that enough useful information has been stored in the database by

human curators. To circumvent this, one may make use of text mining techniques which

search through vast collections of literature and attempt to extract relevant information.

For a given gene cluster, text mining methods can retrieve abstracts where subsets of the

given genes co-occur. From these abstracts, overrepresented keywords can be extracted

in order to gain understanding of the functional or clinical context of the genes (61). On

a more detailed level, the literature can be mined for causal relations between the genes,

thereby suggesting a network of functional relations between genes (39). A third way to

evaluate gene clusters is to consult sequence data. The upstream regions of the genes are

then searched for shared subsequences, presumably corresponding to known or unknown

transcription factors. The existence of such shared subsequences may then con�rm the

biological relevance and aid the understanding of the role of the gene cluster.

In this thesis we focus on extracting biological knowledge stored in popular bio-ontologies,

as GO and KEGG, so in the next section we give a brief overview of the controlled biologi-

cal vocabularies maintained by the Gene Ontology Consortium, followed by an introduction

to biological pathway database KEGG and related gene annotations.

2.4 Gene Ontologies

Recent developments in molecular biology have brought an explosion in the amount of

available data. The sequencing race began in 1996 with the release of the genome of

Saccharomyces cerevisiae, a higher model organism commonly known as baker's yeast. The

completely sequenced human genome was announced in 2003, containing approximately
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3 billion base pairs and 25,000 genes1. Today, numerous other animal genomes are fully

available, while others are still at di�erent stages of completeness.

Information gained from completed sequences of various genomes suggests that there

exists a single �nite superset of genes and proteins, most of which are conserved in many or

all living cells. This recognition has lead to the uni�cation of biology. Known properties and

functions of genes and proteins in a speci�c genome contribute to the general knowledge

base, as it is likely that similar functions are expressed in homologous2 genes of many

other diverse organisms (6). Relevant information can be extracted from previously proven

results with well-known model organisms, and used for studying more complex genomes.

Unfortunately, the pace at which new genomes are sequenced often exceeds the speed

of organizing and cross-referencing existing data. Biological information concerning genes,

proteins and their functions is primarily available in numerous genome-speci�c databases

and maintained by di�erent organizations. Moreover, there is often no clear understand-

ing or agreement concerning common genetic terminology and functional descriptions of

biological objects. Therefore, the task of �nding relevant genes of similar function may be

quite challenging.

The Gene Ontology (GO) Consortium was established to address the above problems.

The primary goal of the consortium is to maintain and develop a controlled and organism-

independent vocabulary of the molecular biology domain. Such a vocabulary provides a

hierarchical collection of terms, to describe general as well as speci�c molecular functions,

cellular components and biological processes (6). The GO project was initially a collab-

oration between the Saccharomyces Genome Database of baker's yeast, Mouse Genome

Informatics of common house mouse, and Flybase, the database of fruity. More databases

joined the consortium later, and many other data sources are using the ontologies today

for identifying genes and proteins by their functionality. Vocabularies and gene annotations

are freely available at the GO Consortium web site3.

2.4.1 Ontology design and implementation

The concept of ontologies in computer science was �rst introduced in research related to

Arti�cial Intelligence and Knowledge-Based Systems with the purpose of sharing knowledge

and improving communication between independent systems. In this terminology the body

of formally represented knowledge is based on conceptualization: objects, concepts and

other entities that are assumed to exist in some area of interest, and relationships that

hold among them. The speci�c area of interest is often referred to as domain, and objects

are known as terms.

1National Human Genome Research Institute, http://www.genome.gov
2Similar in position, structure, function, or characteristics
3http://www.geneontology.org
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Ontology is an explicit speci�cation of conceptualization. An ontology consists of a

set of terms represented in a given domain, and relationships that hold between terms.

Knowledge concerning objects and relations is stored in a representational vocabulary. In

addition to objects and relations, ontology holds respective human-readable descriptions,

and formal axioms that constrain the interpretation and the use of objects and relations.

Gene Ontology vocabularies are structured in a form of Directed Acyclic Graphs (DAG),

directed graphs with no path starting and ending at the same vertex. A vertex of the GO

graph corresponds to a biological term, and a directed edge between two terms shows

that one term is hierarchically related to the other. Such a graph represents a hierarchical

structure resembling a tree, except that each child vertex may have more than one parent

vertices. The situation that a speci�c term is a child of multiple broad terms, captures

well the biological reality.

Two types of parent-child relationships are de�ned in GO. Relation type is a describes

the fact that a child term is an instance of the parent, while relation type part of denotes

that a child term is a component of the parent. A child term may have di�erent classes of

relationships with its parents. Every term has a unique identi�er (e.g., GO:0000001) and

a name. Besides these, a number of optional properties may be de�ned.

There are a few GO rules and guidelines to be followed. True Path Rule is the most

relevant guideline in the context of this work. It states that for any given child term, the

path to its top-level parent must always be true. In case of multiple parents, all paths

from a term to the top hierarchy have to be veri�ed. An example GO hierarchy is shown

in Figure 2.3.

2.4.2 Three ontologies of GO

As stated in the above de�nitions, an ontology represents knowledge of a speci�c domain or

an area of knowledge. Gene Ontology maintains vocabularies of three domains, Molecular

Function, Biological Process and Cellular Component. These particular classi�cations were

chosen because they represent information sets that are common to all living organisms.

Vocabularies are developed for a generic eukaryotic cell (cell that have nucleus); specialized

organs and body parts are not represented.

It is correct to say that Gene Ontology consists of three independent vocabularies

of di�erent domains. Each vocabulary has one root term and there are no parent-child

relations linking vertices of di�erent ontologies.

� Molecular function (GO:0008639, MF or Func) is de�ned as what a gene product

does at the biochemical level. Domain terms only specify function, location and time

of event remain unde�ned within ontology.
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Figure 2.3: A part of the GO providing the annotations concerning the positive regulation

of muscle cell di�erentiation.

� Biological process (GO:0008150, BP or Proc) refers to the biological objective to

which a gene product contributes. A process is accomplished by one or more ordered

assemblies of functions, often involving transformation of biological matter.

� Cellular component (GO:0005575, CC or Comp) refers to the place in a cell or

extracellular region where a gene product is found or where the product is active.

Two types of terms deserve further attention. Every domain has an unknown term just

below the root; it is meant to hold genes and gene products that have been investigated,

but no knowledge of the domain has been revealed. From time to time, some terms are

marked as obsolete as biological knowledge evolves; these terms are removed from active

vocabularies and placed under obsolete term of the domain in question.

The GO Consortium explicitly states that Biological Process domain is not equivalent

to a biological pathway and describing a pathway through the necessary dynamics and

dependencies between processes and functions is beyond the scope of the GO project.
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The GO Consortium recognizes that there exists a biological relationship between a series

of molecular functions in a biological process, that unfold in a certain component of a cell.

This means that there are in fact numerous interconnections between three independent

domains. Even though GO could be logically expanded to reect states, operations and

components of cells, the current goal of the project is to concentrate on the development

of three independent and precise collections of terms.

As of September 2007, GO vocabularies consisted of 21,908 terms, including 12,549

terms of Biological Process, 1,846 terms of Cellular Component and 7,513 terms of Molec-

ular Function. There were 1001 obsolete terms not included in the above statistics. The

longest path from child to root involves 15 edges, but most of the terms are normally

distributed at middle levels (Figure 2.4). Ontologies are by no means complete and are

continuously expanding through collaboration of many organism-speci�c databases.

Figure 2.4: Histogram of the GO terms on di�erent DAG levels.

2.4.3 Gene annotations

In addition to the three GO ontologies of Molecular Function, Biological Process and

Cellular Component, several databases exists that include links between GO terms and

genes or gene products. These links are commonly referred to as annotations or sometimes

as associations.

The GO Consortium maintains annotations of three model organisms of founding mem-

bers, namely baker's yeast Saccharomyces cerevisiae, common house mouseMus musculus
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and fruity Drosophila melanogaster. GO annotations of numerous other genomes, in-

cluding human, are now available at National Institute of Health runned web site ENTEZ1.

Every annotation to GO is attributed to a source, which may be literature reference,

another database or computational analysis. Annotation must also indicate the type of

evidence, provided by the source to support the association between the given entity and

the GO term. A standard set of evidence codes is available for qualifying annotations with

respect to di�erent types of experimental conditions (7). Evidence codes provide means

to describe a range of di�erent experiments varying from in vitro2 techniques to purely in

silico3 methods. The GO web site includes a comprehensive annotation guide for evidence

codes and proposes a loose order of decreasing reliability.

One of the most important guidelines of GO is the previously described True Path Rule.

In the context of annotations, the guideline is interpreted as follows. Every gene or gene

product that is annotated to a speci�c term in the GO, is always annotated to all term's

parents up to the top-level parent, using all possible paths from the term to the root (6).

Such indirect True Path annotations are not provided in GO datasets and therefore need

to be inferred explicitly. The True Path Rule also explains the need for storing several

evidence codes for any gene-term pair. Besides the fact that di�erent experimental results

may support exactly the same annotation, terms located in the top of the hierarchy get

repeated indirect annotations of same genes via di�erent paths.

Figure 2.5 displays a histogram for term sizes in the sense of the number of annotated

genes. For every organism, there are numerous highly specialized terms with only a few

annotated genes, while larger groups are more uncommon. Largest groups on the right side

of the �gure represent root terms, each of these containing the union of its descendants'

annotations.

In this section, we give a brief introduction to biological pathways and then in Chapter 4

we propose a simple model for integrating knowledge from Gene Ontology vocabularies

with pathway databases, such as KEGG, and gene-gene interaction data provided in the

ENTEZ database.

2.4.4 Biological pathways

According to (43), a pathway is a linked set of biochemical reactions, where a product of

one reaction is a reactant of, or an enzyme that catalyses, a subsequent reaction. In other

words, a pathway is a biochemical process that can be partitioned into component steps.

Small metabolic processes with just a few reactants, as well as macroprocesses involving

1http://www.ncbi.nlm.nih.gov/entrez/, for downloading structured gene information provided on the

web site visit ftp://ftp.ncbi.nlm.nih.gov/gene/
2Latin: \within glass"; biological experiments performed in a test tube, or generally outside a living

organism or cell.
3Latin: \within silicon"; a general term for any computational means in biology.
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Figure 2.5: Histogram for sizes of GO term annotations.

hundreds of molecular components with the cooperation of multiple cells, are commonly

described as pathways (43).

Metabolic networks are currently the most well-studied biological pathways. Ametabolic

network is essentially a chemical processing factory within each cell, that enables the or-

ganism to convert small molecules from the environment into building blocks of its own

structures, and to extract energy from these molecules.

A sequence of steps comprising a pathway is rarely a simple linear sequence, as a single

reaction often requires multiple inputs and creates multiple outputs. A pathway may

contain redundancy, as multiple parallel series of events produce the same biochemical

result. On the other hand, a single molecular component can be multifunctional and

involved in multiple pathways with di�erent goals. Pathways may also be competitive;

activities of one pathway may render the other pathway inactive, as the �rst one consumes,

binds or deactivates some resource on which the second pathway depends (69).

A mathematical representation for a pathway is a directed graph, that at a high level

displays the cause-e�ect dependencies among the components. It has been more common

to display molecular components as nodes of a graph and underlying events (reaction,

modi�cation, translocation, transcription) as edges between the nodes (69). Figure 2.6

graphically displays the glycolysis and gluconeogenesis pathway.

In our work we study pathway data from the The Kyoto Encyclopedia of Genes and

Genomes (KEGG). KEGG is a knowledge base for systematic analysis of gene functions

in terms of networks of genes and molecules, that provides means of linking genomes to
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Figure 2.6: KEGG pathway 00010 for glycolysis and gluconeogenesis. The pathway in-

volves 48 genes in yeast, 55 genes in mouse, and 63 human genes.

biological systems. KEGG database is publicly available on their web site1.

KEGG resource consists of 4 major components. GENES database is a collection of

gene catalogues for all complete genomes and some partial genomes. LIGAND database

describes building blocks of the biochemical space, such as enzymes, chemical compound

structures, reactions and other substances in living cells, as well as a set of drug molecules.

PATHWAY database consists of a collection of pathway maps, while BRITE database

1http://www.genome.ad.jp/kegg/pathway.html
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holds a collection of hierarchies and binary relations that correspond to rules governing the

genome-environment interactions in pathways.

In current work, we are most interested in the KEGG PATHWAY database, that holds a

collection of manually drawn pathway maps for metabolism, genetic information processing,

environmental information processing, and other cellular processes (41).

Figure 2.7: This �gure shows a part of the KEGG Orthology providing the annotations

concerning Carbohydrate and Energy Metabolism.

Every pathway in KEGG is identi�ed with a �ve-digit code (00010) and described with

a name (glycolysis and gluconeogenesis). Organism-speci�c pathways are automatically

generated based on the generic pathway maps by matching genes from the organism's

catalogues. Pathways are partially distributed into classes and subclasses. For example,

the broad class metabolism is divided into subclasses like energy metabolism, nucleotide

metabolism, etc. Each of the subclasses holds a number of pathways, for example sulfur

metabolism is a kind of energy metabolism. This pathway organization and structuring is

called the KEGG Orthology (KO) (see Figure 2.7).



Gene Ontologies 39

In the next chapter we present three basic methods for calculating gene set enrichment,

that are used in functional interpretation of gene expression data: Fisher's exact test, Gene

Set Enrichment Analysis (GSEA) and Parametric Analysis of Gene set Enrichment (PAGE).

Together with these methods, we also present the problem of Multiple Testing, and some

techniques for its solution.





3 Functional Interpretation of Gene

Expression Data

Molecular biology has addressed functional questions by studying individual genes, either

independently or a few at a time. Despite its reductionistic approach, it was extremely

successful in assigning functional properties and biological roles to genes and gene products.

The recent possibility of obtaining information on thousands of genes or proteins in a

single experiment, thanks to high-throughput methodologies such as gene expression or

proteomics, has opened up new possibilities in studying living systems at the genome level

that are beyond the old paradigm `one-gene-one-postdoc'. Relevant biological questions

regarding genes, gene products interactions or biological processes played by networks of

components, etc., can now for the �rst time be addressed realistically and used in the

more advanced analysis of biological results.

Nevertheless, genomic technologies are at the same time generating new challenges

for data analysis and demand a drastic change in data management. Dealing with this

abundance of data must be approached cautiously, because of the high occurrence of

spurious associations, if the proper methodologies are not used and if statistical testing is

not applied rigorously.

To translate this abundance of data into information, numerical analysis is �rstly re-

quired to determine which genes (among the thousands analyzed) can be considered as

signi�cantly related to the phenotypes (see Section 2.3.2.1). The second step is to inter-

pret the roles played by the targeted genes. The availability of GO and KEGG annotations

for a considerable number of genes helps interpret these results from a biological point of

view.

The hypothesis commonly used is as follows:

if some genes have been found to be di�erentially expressed when comparing

two di�erent phenotypes (or are correlated to a given continuous phenotypic

trait, or to survival, etc.) it is because the roles they play at the molecular

level account (to some extent) for the phenotypes analyzed.

(3.1)

The GO and KEGG annotations available for the genes can serve as a more or less

detailed description of these biological roles. For example, if 50 genes from an array

of 6,500 genes are di�erentially expressed and 40 of them (80% - a high proportion)

are annotated as `response to external stimulus' (GO:0009605), it is intuitive to conclude

that this process must be related to the phenotypes studied. In addition, if the background

distribution of this type of gene in the genome is, say 4%, one can conclude that most of
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the genes related to `external stimulus' have been altered in their expression levels in the

experiment.

Using (3.1) as a basis for functional interpretation of gene expression data, in this

chapter we present three methods that improve the analysis. The �rst one is from the

class of threshold-based interpretation, where �rst genes of interest are selected, and then

their annotation is analyzed, using the biological background knowledge provided in the

annotation databases. The last two are from the class of threshold-free interpretation,

where �rst genes are ranked by using their di�erential expression values (e.g., using the

t-scores), and then positions of members of prede�ned gene sets (using GO, KEGG) in

the ranked list are analyzed using appropriate statistical tests (e.g., Kolmogorov-Smirnov).

3.1 Threshold-based functional interpretation

The �nal aim of a typical microarray experiment is to �nd a molecular explanation for a

given macroscopic observation (e.g., which pathways are a�ected by the loss of glucose

in a cell, what biological processes di�erentiate a healthy control from a diseased case).

In the �rst generation of approaches proposed, the interpretation of microarray data

is usually performed in two steps: in the �rst step genes of interest are selected (see

Section 2.3.2.1), because they co-express in a cluster or they are signi�cantly over- or

under-expressed when two classes of experiments are compared. The selection process

does not take into account the fact that these genes are acting cooperatively in the cell

and consequently their behavior must be coupled to some extent. In this selection pro-

cess, under the unrealistic simpli�cation of independence among gene behaviors, rigorous

thresholds are usually imposed to reduce the false positives rate in the results. In the

second step, the selected genes of interest are compared with a background (typically the

rest of the genes) in order to �nd enrichment in any functional term. This comparison

with the background is required, otherwise the signi�cance of a proportion (even if high)

cannot be determined. This comparison to the background is essential because sometimes

apparently high enrichment in a given functional term is nothing but a reection of a high

proportion of this particular term in the whole genome and, consequently, has nothing to

do with the set of genes of interest. The procedure for the interpretation of genes se-

lected by signi�cant di�erential expression between two pre-de�ned classes of experiments

is illustrated in Figure 3.1.

This second step of comparison between the selected genes and the background can be

carried out by means of the application of other, equivalent tests such as the hypergeomet-

ric, binomial, Fisher's exact test, etc., implemented in di�erent available tools, reviewed in

(45). Among these tools, the most popular ones (most quoted in the literature) are Onto-

express (46) and FatiGO (1). These tools use di�erent biological terms with functional

meaning such as GO, KEGG pathways and other terms of biological relevance.
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Figure 3.1: The two-step procedure for the functional interpretation of distinct microarray

experiments, implementing the supervised approach with functional annotations of genes

di�erentially expressed among two classes (C1 and C2) of experiments. The �gure rep-

resents a list of genes (rows) ordered by di�erential expression when classes C1 and C2

are compared. Genes on the top are more expressed in class C1 (red color) than in C2.

Conversely, genes on the bottom are more expressed in class C2. There is a gradient of

di�erential expression between the two extreme situations. Typically genes are arranged

by means of a test (e.g., the t-test) and those with a value of the statistic over a given

threshold are declared as signi�cant (right part). Then the distribution of functional terms

(e.g., GO terms) among the di�erentially expressed genes and the rest is compared by

means of another test (e.g., the Fisher's exact test).

Here we present the most used threshold-based procedure for calculating the enrich-

ment of a gene sets, i.e., the Fisher`s exact test.

3.1.1 Fisher's exact test

When using Fisher's test, the score for a gene set annotated by GO term S is the degree

of independence between the two properties:

A = gene is in the list of di�erentially expressed genes

B = gene is annotated by GO term S

Testing the independence of these two properties corresponds to Fisher's exact test (57),

and is computed by the following procedure:
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1. Let N be the number of genes on a microarray

2. S is a GO term

(a) M genes 2 S

(b) N �M genes =2 S

3. Let k be the number of di�erentially expressed genes

4. The probability of having exactly x , out of k DE genes, annotated by S

is computed as follows:

p(X = x jN;M; k) =

(
M

x

)(
N�M

k�x

)(
N

k

)
5. The Fisher's score determines the probability of having at least x genes,

out of k di�erentially expressed genes, annotated by S:

p = 1�
x�1∑
i=0

(
M

i

)(
N�M

k�i

)(
N

k

)

3.1.2 Statistical approaches to test signi�cant biological di�erences

As previously mentioned much caution should be made when dealing with a large set of

data because of the high occurrence of spurious associations (30). Table 3.1 has been

constructed using ten random datasets obtained by the random sampling of 50 genes from

the complete genome of Saccharomyces cerevisiae (yeast used in baking and brewing). For

each random set, the proportions of all the GO terms (at GO level 4) have been compared

between both partitions (50 genes with respect to the remaining ones), and the GO term

showing the most extreme di�erential distribution was displayed in each case (rows of the

table). The �rst column shows the percentage of genes annotated with the GO term in the

random partition of 50 genes, the second column represents the corresponding percentage

in the rest of the genome and the third column shows the p-value obtained upon the

application of a Fisher's exact test. It is astonishing that most of the random partitions

present asymmetrical distributions of GO terms with signi�cant individual p-values (column

3).

This apparent paradox stems from the fact that we are not conducting a single test

in each partition, but as many tests as GO terms are being checked (several thousands).

Therefore, the common mistake is made when a researcher tends to forget about the many

hypotheses rejected and only focuses on the term for which an apparent asymmetrical
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Table 3.1: GO terms found to be di�erentially distributed when comparing ten independent

random partitions of 50 genes sampled from the complete genome of yeast.

% in % in p-value adjusted GO term

random whole p-value

set genome

8.33 1.86 0.0752 1 ion homeostasis (GO:0050801)

10.00 31.34 0.0096 0.6735 nucleobase, nucleoside, nucleotide

& nucleic acid metab. (GO:0006139)

3.33 0.24 0.075 1 One-carbon compound metab. (GO:0006730)

4.04 8.00 0.0177 0.6599 energy pathways (GO:0006091)

3.45 0.22 0.0669 1 metabolic compound salvage (GO:0043094)

5.88 0.67 0.024 1 vesicle fusion (GO:0006906)

6.45 1.60 0.09 1 negative regulation of gene

expression, epigenetic (GO:0045814)

13.79 3.97 0.028 1 response to external stimulus (GO:0009605)

16.13 4.23 0.0097 1 response to endogenous stim. (GO:0009719)

2.70 0.13 0.054 1 host-pathogen interaction (GO:0030383)

distribution was found. In some cases this situation is caused by the way in which some of

the above mentioned programs work. To some extent the fact that many tests are really

being conducted is hidden to the user and the result is presented as if it were the case of

a unique test. If we conduct several thousands of tests simultaneously, the probability of

�nding an apparently asymmetrical distribution for a given GO term increases enormously.

A very simple example can be used here to illustrate this concept: let us imagine to ip a

coin 10 times and get 10 heads. One would certainly suspect that something was wrong

with the coin. If the same operation was repeated with 10,000 di�erent coins one or even

several occurrences of 10 heads would not be considered surprising. We intuitively accept

this because of the probability of having an unexpected result just by chance is high. If we

were interested in checking whether an observation is signi�cantly di�erent from what we

could expect simply by chance in a multiple testing situation then the proper correction

must be applied. The fourth column of Table 3.1 shows an adjusted p-value using one of

the most popular multiple-testing corrections, the False Discovery Rate (FDR) (14), and

it is obvious that none of the situations depicted in columns 1 and 2 can be attributed to

anything else than random occurrence.

Table 3.1 shows how random partitions, for which no functional enrichment should

be expected, yield apparent enrichments in GO terms because the most asymmetrically

distributed GO term among several thousands are chosen a posteriori. These values occur

simply by chance and cannot be considered as either biologically authentic or statistically
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signi�cant. This clearly shows that multiple testing adjustment must be used if several

hypotheses are simultaneously tested.

Multiple testing has been addressed in di�erent ways depending on particular cases and

the number of simultaneous hypotheses tested. Thus, corrections such as Bonferroni or

Sidak are very simple to be applied but are too conservative if the number of simultaneous

tests is high (86). Another family of methods that allow less conservative adjustments

are the Family Wise Error Rate (FWER), that controls the probability that one or more

of the rejected hypotheses (GO terms whose di�erences cannot be attributed to chance)

is true (that is, a false positive). The minP step-down method (86), a permutation-based

algorithm, provides a strong control of the FWER. Approaches that control the FWER can

be used in this context although they are dependent on the number of hypotheses tested

and tend to be too conservative for a high number of simultaneous tests. In this case, it

would be more appropriate to control the proportion of errors among the identi�ed GO

terms whose di�erences among groups of genes cannot be attributed to chance instead.

The expectation of this proportion is the False Discovery Rate (FDR). Di�erent procedures

o�er strong control of the FDR under independence and some speci�c types of positive

dependence of the tests statistics (13), or under arbitrary dependency of test statistics

(14).

Next, we present the most used procedures for correcting the calculated p-values when

we use multiple hypothesis testing, Bonferroni and FDR.

3.1.3 Multiple testing

Say that we want to perform a statistical test with a 0.05 threshold, a threshold of 0.05

means we are 95% sure that the result is signi�cant, but we repeat the test for twenty

di�erent hypotheses. What is the chance that at least one of the tests will receive a

p-value less than 0.05 ?

� Pr(making a mistake) = 0.05

� Pr(not making a mistake) = 0.95

� Pr(not making any mistake) = 0:9520 = 0.358

� Pr(making at least one mistake) = 1 - 0.358 = 0.642

Consequently, there is a 64.2% chance of making at least one mistake.

For example we can take the problem of selecting di�erentially expressed genes. If

we apply the standard procedure of calculating the t-scores of the genes, from which we

calculate the appropriate p-value, and we put a threshold of 0.05, applied on Golub data

(32), we will �nd that 1045 genes are di�erentially expressed (Figure 3.2). Because we

apply the t-test 7,074 times, we can expect that around 350 of these 1,045 selected genes

are false positives.
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Figure 3.2: Golub data (32), 27 ALL vs. 11 AML samples, 7,074 genes. Left picture is

the histogram of the calculated t-scores. Right picture is the histogram of corresponding

p-values. There are 1,045 genes with p-value < 0.05.

3.1.3.1 Bonferroni correction

The Bonferroni correction is a multiple-hypotheses testing correction used when several

dependent or independent statistical tests are being performed simultaneously (since while

a given threshold may be appropriate for each individual testing, it is not for the set of

all tests). In order to avoid a lot of false positives, the threshold needs to be lowered to

account for the number of tests being performed.

The simplest and most conservative approach is the Bonferroni correction, which sets

the threshold value �new for the entire set of tests equal to the threshold value � of

individual tests divided by the number of tests.

For the previous example when we performed the testing for 20 hypotheses,

�new =
0:05

20
= 0:0025 (3.2)

� Pr(making a mistake) = 0.0025

� Pr(not making a mistake) = 0.9975

� Pr(not making any mistake) = 0:997520 = 0.9512

� Pr(making at least one mistake) = 1 - 0.9512 = 0.0488

If we apply the proposed correction of p-values on the Golub data, we will select 98

di�erentially expressed genes.

When we test genes for di�erential expression we do two types of errors:



48 FUNCTIONAL INTERPRETATION OF GENE EXPRESSION DATA

� False positive (Type I error): the experiment indicates that the gene has changed,

but it actually has not.

� False negative (Type II error): the gene has changed, but the experiment failed to

indicate the change.

Typically, researchers are more concerned about false positives because without doing many

(expensive) replicates of the experiments, there will always be many false negatives.

3.1.3.2 False Discovery Rate

The false discovery rate (FDR) is the percentage of genes above a given position in the

ranked list that are expected to be false positives, or percentage of selected genes that

are not di�erentially expressed. The false positive rate (FPR) is the percentage of non-

di�erentially expressed genes that are agged as di�erentially expressed.

For the example presented in Figure 3.3, FDR and FPR have the following values:

Figure 3.3: Usual scenario of Type I and Type II errors.

FDR =
FP

FP + TP
=

5

18
= 27:8% (3.3)

FPR =
FP

FP + TN
=

5

38
= 13:2% (3.4)

While estimating the FPR is harder, we can easily control the FDR by the following

procedure:

� Ordered unadjusted p-values: pr1 � pr2 � ::: � prn , where n is the number of genes.

� To control FDR at level �, let

j� = maxfj : prj <
j

n
� �g (3.5)

� Select the genes rj for j = 1; :::; j� as di�erentially expressed.
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Figure 3.4: Golub data (32), 27 ALL vs. 11 AML samples, 7,074 genes. 681 genes are

selected as di�erentially expressed.

If we apply the proposed FDR correction of p-values on the Golub data, we will select

681 di�erentially expressed genes. In this case, with high probability, we are sure that the

number of false positives is around 35, or 5%, compared with the previous case when we

did not use p-value correction, when we had around 30% false positives.

We used the procedure for �nding di�erentially expressed genes as a test case to explain

multiple testing issues. The same issues must be considered when we look for enriched

gene sets. The procedure is absolutely the same, we just map the following concepts:

gene � gene set

di�erentially expressed gene � enriched gene set

Table 3.2 shows a list of most popular tools for analyzing enrichment in biologically

relevant terms.
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In general, most of them use FDR-based multiple testing adjustments that are less

conservative than Bonferroni or Sidak counterparts (14). Thus the package Babelomics

(3), which includes FatiGO (1), and the Onto Tools (25; 45) would be optimal in terms of

biological information content and testing strategies. DAVID/Ease (24), FunSpec (65),

only for yeast, and GeneMerge (18) would be attractive from the point of view of the bio-

logical information although a bit conservative in terms of multiple testing correction. On

the other hand, BayGO (82), GOMiner (90), GOstat (11), GOSurfer (91) and Ontology

Traverser (88) use proper multiple-testing corrections although only provide GO terms for

the annotation of the experiments. Other tools such as GO:TermFinder (16) only provide

GO and are conservative in the multiple testing adjustment or even fail to provide such an

adjustment.

We have shown how important are multiple testing issues in �nding enriched gene sets.

Any procedure that does not take this into account, as a consequence, can discover high

number of spurious relationships as reliable.

3.2 Threshold-free functional interpretation

The above two-step approach is the natural choice for analyzing clusters of genes. Nev-

ertheless, the application of a two-step strategy to the interpretation of di�erential gene

expression in class comparison experiments causes an enormous loss of information as a

large number of false negatives is accepted in order to preserve a low ratio of false pos-

itives (and the noisier the data the worse the e�ect). There are other limitations of the

threshold-based analysis; here we list some of them:

� After correcting for multiple hypotheses testing, in selecting di�erentially expressed

genes, a very small number of genes, or no individual gene, may meet the threshold for

statistical signi�cance, because the relevant biological di�erences are small relative

to the noise inherent to the microarray technology.

� The opposite situation, one may be left with a long list of statistically signi�cant

genes without any common biological function, so none of the GO and KEGG terms

is signi�cantly enriched.

� Single-gene analysis may miss important e�ects on pathways. Biological pathways

often a�ect sets of genes acting jointly. An increase of 20% in all genes members

of a biological pathway may dramatically alter the execution of that pathway, and

its impact on other processes, more than a 10-fold increase in a single gene.

� The most speci�c GO terms have few genes annotated so there is often not enough

power to �nd these terms statistically signi�cant. The more general the GO term,

the more genes are annotated with it, but the less useful it is as an indication of the

function of the di�erentially expressed genes.
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To overcome these analytical challenges, recently several methods inspired from sys-

tems biology were developed. These methods focus more on collective properties of the

genes than on individual gene expression values. Functionally related genes simultaneously

ful�ll their roles in the cell and, consequently, they are expected to display a coordinated

expression. It is a long recognized fact that genes with similar overall expression often

share similar functions (27; 53). This observation is consistent with the hypothesis of

modularly-behaving gene programmes, where sets of genes are activated in a coordinated

way to carry out functions. In this scenario, a di�erent type of inference can be made

based on testing hypotheses centered on blocks of functionally related genes, instead of

testing one gene at a time.

Thus, genes can be ranked by using their di�erential expression values when comparing

prede�ned classes (e.g., cases and healthy controls) by means of any appropriate statistical

test (e.g., the t-test). The order of the genes (that cooperatively act to de�ne pathways,

functional classes) in this ranked list must be related to its participation in the distinguishing

characteristic, or quality of an organism, studied in the experiment. Consequently, each

functional class `responsible' for the di�erences between the classes will be found in the

extremes of the ranking with highest probability. Under this perspective the previous

imposition of a threshold based on the rank values, which does not take into account the

cooperative behavior of the genes, is thus avoided.

Figure 3.5 illustrates the threshold-free analysis strategy. Genes are arranged by dif-

ferential expression between the classes N (normal) and T (test). On the right-hand side

of the �gure, there are labels for two di�erent functional terms at the points in the list

where genes ful�lling the corresponding roles are situated. Functional term A is completely

unrelated with the experiment because di�erent genes, belonging to this functional term,

appear over-expressed in classes N and T and also in intermediate positions. Conversely,

functional term B is predominantly ful�lled by genes with higher expression in class N (red

values corresponding to highest expression), but scarcely appears among genes with higher

expression in class T. This observation clearly points to functional term B as one of the

molecular basis of the macroscopic observation made in the experiment. Instead of try-

ing to select genes with extreme values of di�erential expression, systems biology-inspired

methods will directly search for blocks of functionally related genes signi�cantly cumulated

in the extremes of a ranked list of genes.

A simple way of studying the asymmetrical distribution of blocks of genes across a list

of ranked genes is to check if, in consecutive partitions, one of the parts is signi�cantly

enriched in any biological term with respect to their complementary part. Figure 3.5

illustrates this concept in an ordered list of genes. In this list (C), black circles represent

genes annotated with a particular functional term and open circles represent genes with

any di�erent annotation. In the �rst partition, the di�erences (50% versus 35%), cannot

be considered signi�cant. Nevertheless, in the second partition, the di�erences in the
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Figure 3.5: Threshold-free procedure for the functional analysis of class comparison

experiments. On the left: genes ordered by di�erential expression between classes N

(normal) and T (test). (A) Functional term unrelated to the experiment from which the

rank of genes was obtained. (B) Functional term related to the experiment. (C) Schematic

representation of two partitions of the segmentation test.

proportions are high enough to be declared signi�cant (75% versus 20%): the vast majority

of the genes annotated with the functional term are on the lower side of the partition.

There are di�erent methods which have been proposed for this purpose such as the

GSEA (75) or the SAFE (10) method that use a non-parametrical version of a Kolmogorov-

Smirnov test. With similar accuracy, conceptually simpler and quicker methods have also

been proposed such as the parametrical counterpart of the GSEA, the PAGE (47) or the

segmentation test, Fatiscan (2). Here we present one representative method of both

classes, GSEA and PAGE.

3.2.1 Gene Set Enrichment Analysis (GSEA)

GSEA (75) considers experiments with gene expression pro�les from samples belonging

to two classes. First, genes are ranked based on their t-score values. Given a prede�ned

set of genes S (e.g., genes involved in some biological process) the goal of GSEA is to
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determine whether the members of S are randomly distributed throughout ranked gene

list L or primarily found at the top.

Figure 3.6: The `spectral lines' show the positions of genes members of gene set S on the

ranked gene list. This �gure is borrowed from the supplementary material of (75).

There are two major steps of the GSEA method:

1. Calculation of the enrichment score. The enrichment score (ES) reects the de-

gree to which a set S is overrepresented at the top of ranked list L. The score

is calculated by walking down the list L, increasing a running-sum statistic when

encountering a gene in S and decreasing it when gene is not in S. The magnitude

of the increment depends on the size of S, let jSj = M, and the total number of

genes N. The enrichment score is the maximum deviation from zero encountered in

the random walk (see Figure 3.6). If L = (g1, g2, ...,gN) is a ranked list of genes,

according to their t-scores, enrichment score ES is calculated as:

Hit(S; i) =
∑
gj2S

1�j�i

1

M
Miss(S; i) =

∑
gj2S

1�j�i

1

N �M
(3.6)

ES(S) = max
1�i�N

jHit(S; i)�Miss(S; i)j (3.7)

2. Estimation of the signi�cance level of ES. The statistical signi�cance of the ES

is computed by using an empirical phenotype-based permutation test procedure that

preserves the complex correlation structure of the gene expression data. Speci�cally,

one permutes the phenotype labels and recomputes the ES of the gene set for the

permuted data, which generates a null distribution for the ES. The empirical, p-value

of the observed ES is then calculated relative to this null distribution.
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3.2.2 Parametric Analysis of Gene set Enrichment (PAGE)

According to the Central Limit Theorem in statistics, the distribution of the average of

randomly sampled n observations tends to follow the normal distribution as the sampling

size n becomes larger, even when the parent distribution from which the average is calcu-

lated is not normal. In other words, when the mean and variance of the parent distribution

(whether it is normally distributed or not) are � and �2, the average of n observations

from the parent distribution will follow a normal distribution of mean � and variance �2

n

when the sampling size n is large enough.

Figure 3.7: Histograms of t-score values from Golub dataset (32), when one gene is

selected (left) and histogram of the average of t-scores of 10 randomly selected genes

(right).

In PAGE (47), the parent distribution is a distribution of any numerical values (also

termed parameters here) that describe di�erential expression of genes among samples in a

microarray dataset. In most cases, the distribution of a parameter, i.e., the t-score values

of the genes, is not normally distributed. However, as the Central Limit Theorem states,

when we sample n observations from the parent distribution of a parameter, the average

of the sampled observations tends to follow the normal distribution as our sampling size n

becomes larger. Here, we de�ne sampled observations as parameter values for the genes

within prede�ned gene sets, groups of genes having similar functions, genes in the same

biological pathway, and so on. If we de�ne a gene set of su�ciently large size, e.g., 30,

we can use the normal distribution to test the statistical signi�cance of that gene set.

The following procedure is used for p value calculation of gene set S:
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1. From input data containing t-score values for each gene, mean of all

t-score values (�) and standard deviation of all t-score values (�) are

calculated (this is a common step for the calculation of p-values of all

genes).

2. The mean of t-scores (�S) of gene members of S is calculated.

3. If M is the size of S then the Z -score is calculated as

Z =
(�S � �) � pM

�

4. Gene set p-value is computed from the Z -score, using numerical methods

(47).

3.3 Discussion

The importance of using biological information as an instrument to understand the biolog-

ical roles played by genes targeted in functional genomics experiments has been highlighted

in this chapter. There are situations in which the existence of noise and/or the weakness

of the signal hamper the detection of over- or under-expressed genes. Improvements in

methodologies of data analysis, dealing exclusively with expression values can help to some

extent. Therefore, the idea of using biological knowledge as part of the analysis process is

gaining popularity. In recent analysis approaches, genes are no longer the units of interest,

but groups of genes with a common function. Let us consider a list of genes arranged

according to their degree of di�erential expression between two conditions (e.g., patients

versus controls). If a given biological process is accounting for the observed phenotypic dif-

ferences we should then expect to �nd most genes involved in this process over-expressed

in one of the conditions against the other. Contrarily, if the process has nothing to do

with the phenotypes, the genes will be randomly distributed amongst both classes (for

example if genes account for physiological functions unrelated to the disease studied, they

will be active or inactive both in patients and controls). If terms were found di�erentially

represented in the extremes of the list, one can conclude that these biological processes

are signi�cantly related to the phenotypes.

Di�erent creative uses of information in the gene selection process as well as the avail-

ability of more detailed annotations will enhance our capability of translating experimental

results into biological knowledge.
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In the next chapter we present our work on integrating various sources of biological

knowledge in a uni�ed format, that was later used for the development of the new methods

for functional interpretation of gene expression data.





4 Construction of an Integrated

Database

Di�erent kinds of information and data are spread over the web, hosted in a large-scale

independent, heterogeneous and highly focused resources. While the time to obtain ge-

nomic data is getting shorter, the time for one to process the data and understand the

biological meaning is much prolonged. Therefore, the integration of biological data and

information has become an important ongoing scienti�c problem, as researchers still need

comprehensive tools for integrative data and information processing.

There are several ongoing project that try to integrate several sources of biological

knowledge and build a universal platform for the analysis of genomic data. BioWare-

house (54) is an open source toolkit for constructing bioinformatics databases using the

MySQL and Oracle relational database managers. BioWarehouse integrates its component

databases (ENZYME, KEGG, BioCyc, UniProt, etc.) into a common representational

framework within a single database management system, thus enabling multi-database

queries using the Structured Query Language (SQL). WebGestalt1, developed at Bioinfor-

matics Resource Center at Vanderbilt University, incorporates information from di�erent

public resources and provides an easy way for biologists to make sense out of large sets of

genes. It enables biologists to manipulate integrated information and �nd patterns that are

not detectable otherwise. WebGestalt is designed for functional genomic, proteomic and

large scale genetic studies from which high-throughput data are continuously produced.

We approach this problem by dividing it in three parts: creation of a database for

genomic data and information, creation of a platform for analyzing the gene expression

data, and creation of a web-based tool for accessing the data and knowledge discovery.

This can be done by the integration of numerous public databases (GO, KEGG Orthology,

gene annotations and gene-gene interaction data) in a common, structured format, placing

a broad and deep set of searchable information at the �ngertips of researchers of the wider

scienti�c community. Construction of an integrated database, described in this chapter,

achieved as one of the contributions of this thesis, has been made publicly available2.

1http://bioinfo.vanderbilt.edu/webgestalt
2http://kt.ijs.si/software/SEGS
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4.1 Integration of GO and KEGG Orthology

Hierarchical relations within the set of KEGG Orthology (KO) terms suggest a model

for integrating pathway data into the Gene Ontology model. Gene Ontology consists of

three independent ontologies, namely Biological Process, Molecular Function and Cellular

Component. We add the KEGG pathway data into the Gene Ontology data model as the

fourth independent ontology of pathways (Path). The fourth ontology has the following

GO-compliant properties.

� The set of terms in the Path ontology is equal to the collection of available organism-

independent pathways. All terms have a unique identi�er. The identi�er in our model

includes the pre�x `KEGG:' (KEGG:01150) to distinguish it from GO terms.

� The set of gene annotations of a pathway is the collection of genes mapped to

organism-speci�c version of the pathway.

� Terms and annotated genes of the Path ontology are created independently, and

hierarchically unrelated of the three remaining ontologies.

� Every parent term in the Path ontology implicitly includes all the annotations of its

child terms.

� The top-level root term of the Path ontology, named `Pathway' with the identi-

�er KEGG:00000 holds all genes present in the KEGG pathways. This term is a

placeholder, as no such general term currently exists in the KEGG database.

The proposed model makes it possible to analyze Gene Ontology terms and pathways

simultaneously, and determine possible interconnections and correlation within related gene

annotations. The model is not limited to the KEGG database; other pathway databases as

well as di�erent types of knowledge, such as protein-protein interactions may be integrated.

On the one hand, we recognize that viewing a pathway as an unstructured set of anno-

tated genes greatly simpli�es the picture, as we disregard internal dependencies, chemical

building blocks and internal rules of behavior. On the other hand, a high-level overview

of participating pathway genes with combined data of molecular functions, biological pro-

cesses and cell locations may help to hypothesize about more general ideas of the biological

domain.

We use a Prolog like format for representing the combined GO-KO ontology, that is

also used for gene annotation database and gene-gene interaction. The general form of

the representation is:

[Object, List of properties]
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In case of the common GO-KO ontology:

� Object is a GO or KO identi�er (GO:XXXXXXX or KEGG:XXXXX),

� List of properties is a quadruple [ontology id, term name, is a terms, part of terms],

where ontology id is one of the four identi�ers: `biological process',

`molecular function', `cellular component' or `KEGG pathway'. For the Path ontol-

ogy, part of terms is always empty.

Figure 4.1 presents part of the integrated GO-KO ontology.

['GO:0031258', ['cellular_component', 'lamelli. membrane', ['GO:0031253', 'GO:0031256'], ['GO:0030027']]]

['GO:0000326', ['cellular_component', 'protein storage vacuole', ['GO:0000322', 'GO:0000325'], []]]

['GO:0001875', ['molecular_function', 'lipopolysac. receptor activity', ['GO:0001530', 'GO:0008329'], []]]

['GO:0003697', ['molecular_function', 'single-stranded DNA binding', ['GO:0043566'], []]]

['GO:0002262', ['biological_process', 'myeloid cell homeostasis', ['GO:0001776'], []]]

['GO:0009245', ['biological_process', 'lipid A biosynthetic process', ['GO:0046493'], ['GO:0009103']]]

['GO:0009238', ['biological_process', 'enterobactin metabolic process', ['GO:0006725', 'GO:0009237'], []]]

['KEGG:00310', ['KEGG_pathway', 'Lysine degradation', ['KEGG:01150'], []]]

['KEGG:00350', ['KEGG_pathway', 'Tyrosine metabolism', ['KEGG:01150'], []]]

Figure 4.1: Part of GO-KO ontology. In September 2007, the GO-KO ontology has about

22,000 terms, of which 273 are KO terms.

This database can be e�ciently stored in a hash data structure supported by several

programming languages (e.g., Python, Java, C++), and is also simple for parsing.

4.2 Integration of GO and KO gene annotations

The gene annotations are composed of attributes that describe the names and the struc-

tural and functional characteristics of known genes, the tissues in which the genes are

expressed, the gene's protein products, the known relationship among genes, the gene's

correlation with di�erent pathologies and the biochemical pathways in which they are in-

volved.

At present, the gene functional annotations are probably those carrying the most inter-

esting information and their analysis could highlight new biological knowledge such as the

identi�cation of functional relationships among genes and involvement of speci�c genes in

pathological process.

In the spirit of previous merging of GO and KO, here we also present the creation

of the integrated database of gene GO-KO annotations. The original �les for separate
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GO and KO annotations can be found on the ENTREZ1 and KEGG2 site, respectively.

Figure 4.2 displays part of the ENTREZ web page containing the annotations of the gene

LDHA lactate dehydrogenase with KEGG and GO terms.

Figure 4.2: A part of data, providing annotation of the gene LDHA lactate dehydrogenase

with KEGG and GO terms, contained in the ENTREZ database.

As in the previous case, the general common format of the data is:

[Object, List of properties]

where:

� Object is a gene id, i.e., an integer, representing the gene's ENTREZ identi�cation

number,

� List of properties is a sorted list of GO and KO term identi�ers that represent the

annotations of gene gene id.

Figure 4.3 presents part of the gene annotation database.

1ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
2ftp://ftp.genome.jp/pub/kegg/genes/organisms/hsa/hsa pathway.list
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[15, ['GO:0004059', 'GO:0007623', 'GO:0008415', 'GO:0016740', 'KEGG:00380']]

[25734, ['GO:0004674', 'GO:0004713', 'GO:0005515', 'GO:0006468', 'GO:0007498']]

[72685, ['GO:0004721', 'GO:0004725', 'GO:0006457', 'GO:0006470', 'GO:0016787', 'GO:0031072']]

[814663, ['GO:0004514']]

[377841, ['GO:0016787', 'KEGG:00230', 'KEGG:00240']]

[389342, ['KEGG:03010']]

[2655449, ['GO:0004252', 'GO:0005515', 'GO:0006508']]

Figure 4.3: Part of gene annotation database.

4.3 Gene-gene interaction data

Protein/gene interactions assemble the molecular machines of the cell, underlie the dy-

namics of virtually all cellular responses and reveal functional relationships between and

within regulatory modules. The sum of all such interactions de�nes the global regulatory

network of the cell.

Microarray and proteomic platform technologies now generate large datasets of protein

and genetic interactions, but these datasets vary widely in coverage, data quality, annota-

tion and availability. The assembling and collecting gene interaction data in a consistent,

well-annotated format is essential for the analysis of gene functions, investigation of sys-

tem level attributes and benchmarking of high-throughput interaction studies. A number

of interaction databases, including BIND1, BioGRID2, EcoCyc3 and HPRD4, provide a va-

riety of datasets and analysis tools. ENTREZ5 (among other functionality) is a repository

for interaction datasets (BIND, BioGRID, EcoCyc and HPRD) to house and distribute

comprehensive collections of physical and genetic interactions. The interaction data in

the ENTREZ database is freely downloadable, interaction data is updated regularly, and

downloadable �les are refreshed to reect the most recent changes.

The information about the gene interactions comes from two sources of data:

� High-throughput experiments. High-throughput approaches aimed at identifying

novel protein and gene networks have begun to enhance hypothesis-driven biochem-

ical and genetic approaches. These hypothesis-generating high-throughput tech-

niques include the two-hybrid method for detecting pair-wise protein interactions

(38; 80), mass spectrometric analysis of puri�ed protein complexes (37), and the

1http://www.bind.ca
2http://www.thebiogrid.org
3http://www.ecocyc.org
4http://www.hprd.org
5ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/
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synthetic genetic array and molecular barcode methods for systematic detection of

synthetic lethal genetic interactions (78). The type of used method for discovering

the gene-gene interaction is usually included as an evidence code.

� Literature. High-throughput datasets are �lled with false positive and negative

interactions. This shortfall compromises both prediction of gene/protein function

and network-level analysis. The primary literature contains a vast collection of

well-validated physical and genetic interactions that, while searchable through pub-

lications in PubMed, are not available in a relational database. A comprehensive

set of literature-derived interactions would serve as a gold standard both for high-

throughput datasets and for automated text mining approaches. Encouraged by

these potential applications, signi�cant e�orts to curate interaction data from the

primary literature are underway by several databases (36; 60).

In order to simplify the usage of gene-gene interaction data we created a database that

uni�es the data provided in the four gene-gene interaction databases (BIND, BioGRID,

EcoCyc and HPRD) in a common uni�ed format.

As in the previous cases, the uni�ed format of the data is:

[Object, List of properties]

where:

� Object is a gene id, i.e., integer, representing the gene's ENTREZ identi�cation

number,

� List of properties is a sorted list of gene id's, i.e., a list of integers, representing

ENTREZ gene identi�cation numbers (gene id).

Figure 4.4 presents part of the gene-gene interaction database.

[176 , [1404, 2192, 2199, 4060, 7130, 7143]]

[177 , [3146, 6271, 6283, 6285, 6286, 55140]]

[182 , [2353, 3725, 4242, 4301, 4851, 4853, 4854]]

[185 , [183, 409, 624, 3717, 5868, 57085, 85406]]

[8870 , [819, 4170, 5594, 5595, 7917, 8743]]

[35699 , [30977, 31469, 32268, 32504, 33882, 34665, 34685, 40585, 41397, 42928]]

[59177 , [32962, 35513, 35764, 36469, 37565, 38067, 40822, 43238]]

[855312 , [850832, 851520, 852256, 852838, 853428, 855386, 856891]]

[1157783 , [1154478]]

Figure 4.4: Part of gene-gene interactions database. In September 2007, the number of

all gene-gene interactions was about 118,000.
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4.4 Gene expression data

Recall the central dogma: DNA makes mRNA, mRNA makes protein. Genomic databases

contain DNA sequences. Expression databases record measurements of mRNA levels,

usually via microarrays, describing patterns of gene transcription.

Comparisons of expression patterns give clues to:

� the function and mechanism of action of gene products,

� how organisms coordinate their control over metabolic processes in di�erent condi-

tions - for instance yeast under aerobic or anaerobic conditions,

� the variations in mobilization of genes at di�erent stages of the cell cycle, or of the

development of an organism,

� the response to challenge by a parasite,

� the response to medications of di�erent types and dosages, to guide e�ective therapy.

There exist many public microarray databases which are often accompanied with some

data analysis and/or visualization tools. Here we list some of them:

� ArrayExpress1 - A public repository for microarray based gene expression data main-

tained by the European Bioinformatics Institute.

� Gene Expression Omnibus2 - A database of the US National Center for Biotechnol-

ogy Information, for supporting the public use and disseminating of gene expression

data.

� Cancer Program Data Sets3 - provides access to datasets described in cancer

program publications of the Broad Institute (created by MIT, Harvard & Whitehead

Institute).

� Standford Microarray Database4 - stores raw and normalized data from microarray

experiments, as well as their corresponding image �les.

� Gene Expression Database (GXD)5 - A database of Mouse Genome Informatics.

� Rice Expression Database6 - holds raw and normalized data from expression pro�les

obtained by the Rice Microarray Project and other research groups.

1http://www.ebi.ac.uk/arrayexpress/
2http://www.ncbi.nlm.nih.gov/geo/
3http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
4http://genome-www.stanford.edu/microarray
5http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtml
6http://red.dna.a�rc.go.jp/RED/
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All three created databases (GO-KO ontology, gene annotation database and gene-

gene interaction database) together with �ve di�erent datasets (used in our experiments)

formatted in a uni�ed format, and provided on the thesis web site1, are free for download

and usage by wider scienti�c community.

From our experience, we expect that this will be of great help to biologists, medical

researchers and other non-computer science trained researchers because all the data are

provided in a uni�ed format that is easy for eye reading and parsing by di�erent script

(Python, Perl, Ruby, ..., etc.) and binary/interpretable (C/C++, JAVA, Pascal, Prolog,

..., etc.) languages.

In the next chapter we present our �rst developed method for functional interpretation

of gene expression data. It uses the methodology of Relational Subgroup Discovery (RSD)

in order to �nd gene sets with altered expression pro�les.

1http://kt.ijs.si/software/SEGS



5 Learning Relational Descriptions of

Di�erentially Expressed Gene Sets

Microarrays are at the center of a revolution in biotechnology, allowing researchers to

simultaneously monitor the expression of tens of thousands of genes. Independent of the

platform and the analysis methods used, the result of a microarray experiment is, in most

cases, a list of genes found to be di�erentially expressed in di�erent types of tissues. A

common challenge faced by the researchers is to translate such gene lists into a better

understanding of the underlying biological phenomena.

Manual or semi-automated analysis of large-scale biological datasets typically requires

biological experts with vast knowledge of many genes, to decipher the known biology

accounting for genes with correlated experimental patterns. The goal is to identify the

relevant `functions', or the global cellular activities, at work in the experiment. For example,

experts routinely scan gene expression clusters to see if any of the clusters are explained

by a known biological function. E�cient interpretation of this data is challenging because

the number and diversity of genes exceed the ability of any single researcher to track the

complex relationships hidden in the datasets. However, much of the information relevant

to the data is contained in the publicly available gene ontologies. Including this additional

data as a knowledge source for any algorithmic strategy greatly improves the analysis.

Here we present a method to identify sets of di�erentially expressed genes that have

functional similarity in the background knowledge formally represented with gene anno-

tation terms from the gene ontology. The input to our algorithm is a multi-dimensional

numerical dataset, representing the expression of the genes under di�erent conditions

(de�ning the classes of examples), GO and gene-gene interaction data. The output is a

set of gene sets whose expression is signi�cantly di�erent for one class compared to the

other classes.

The gene features extracted from public databases describe the genes in terms of their

functionality and interactions with other genes. Medical experts are usually not satis�ed

with a separate description of every important gene, but want to know the processes that

are controlled by these genes. With our algorithm we are able to �nd these processes by

indicating the genes from the preselected list of di�erentially expressed genes which are

included in these processes.

These goals can be achieved by using the methodology of Relational Subgroup Dis-

covery (RSD) (83). With RSD we are able to induce sets of rules characterizing the

di�erentially expressed genes in terms of functional knowledge extracted from the gene

ontology and information about gene interactions.
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5.1 Related work

While the GO based tools reviewed above enable basic analysis such as identifying a set of

statistically over-represented GO terms associated with a given gene set, such analysis may

be insu�cient to discover frequent yet more complex ontological patterns. For example,

a set of di�erentially expressed genes may be better characterized in terms of a logical

conjunction/disjunction of GO terms presence/absence statements, rather than by simple

list of frequent terms. More generally, one should also take into account the GO terms

associated not only to the analyzed gene set, but also to other genes that interact with

some of the analyzed genes.

The formalism of relational logic used by the RSD algorithm can capture such patterns

(51; 83). Paper (8) is related to our work in that it also uses relational logic descriptions

for functional discrimination of genes. A principal di�erence from our approach is however

at least threefold. Firstly, (8) uses the inductive logic programming system Progol to

search for relational ontological patterns (rules). The cover-set algorithm used by Progol

is arguably inappropriate for �nding a set of interesting gene subgroup descriptions as we

explain later in this chapter. On the contrary, our approach is based on the weighted

covering algorithm more suitable for such a task. Secondly and more importantly, the

approach in (8) assumes all genes in the analyzed gene set to be of the same importance

when forming the pattern descriptions. This clearly ignores the fact that certain genes are

more `interesting' than others, e.g., their expression variance across di�erent conditions is

larger. When constructing gene group descriptions, our approach deliberately devotes more

attention to the `more important' genes than to those less important. Lastly, unlike our

work, (8) does not consider interactions among genes or their inclusion in gene regulatory

pathways as relational properties exploitable for descriptive purposes.

Another recent paper (79) also uses relational logic for learning from genomic, pro-

teomic and related data sources, including gene ontologies. The learning objective of

(79) is however rather unrelated to ours. Whereas we attempt to compactly describe

di�erentially expressed gene sets, (79) aims to predict protein-protein interactions.

5.2 Descriptive analysis using relational features

The fundamental idea of the proposed method is outlined in Figure 5.1. First, we construct

a set of di�erentially expressed genes, GC(c), for every class c 2 C. These sets can be

constructed in several ways. For example: GC(c) can be the set of k (k > 0) most corre-

lated genes with class c , for instance computed by Pearson's correlation. GC(c) can also

be the set of best k single gene predictors, using the recall values from a microarray ex-

periment (absent/present/marginal) as the expression value of the gene. These predictors

can acquire the form such as:



Descriptive analysis using relational features 69

If genei = present Then class = c

In our experiments GC(c) was constructed using a modi�ed version of the t-test statistics.

Details about the selection mechanism used in our method are presented in Section 2.3.2.1.

Figure 5.1: An outline of the process of microarray data analysis using RSD. First, in

microarray data, we search for di�erentially expressed genes. Using the gene ontology in-

formation, gene annotation and gene interaction data (provided in the ENTREZ database),

we produce background knowledge for di�erentially expressed genes on one hand, and ran-

domly chosen genes on the other hand. The background knowledge is represented in the

form of Prolog facts. Next, the RSD algorithm �nds characteristic descriptions of sets of

di�erentially expressed genes. Finally, the discovered descriptions can be straightforwardly

interpreted and exploited by medical experts.

The second step aims at improving the interpretability of GC. Informally, we do this by

identifying gene sets in GC(c) (for each c 2 C) which can be summarized in a compact

way. Put di�erently, for each ci 2 C we search for compact descriptions of gene sets with

the expression strongly correlating (positively or negatively) with ci and weakly with all

cj 2 C; j 6= i .

Searching for these gene sets, together with their description, is de�ned as a separate

supervised machine learning task. We refer to it as the secondary mining task, as it aims

to mine from the outputs of the primary learning process in which di�erentially expressed

genes are found. This secondary task is, in a way, orthogonal to the primary discovery

process in that the original attributes (genes) now become training examples, each of

which has a class label `di�erentially expressed' and `not di�erentially expressed'. To apply

a discovery algorithm, information about relevant features of these examples is required.

No such features (i.e., `attributes' of the original attributes - genes) are usually present

in the gene expression microarray datasets themselves. However, this information can be

extracted from the database that we created, described in Chapter 4. For each gene we

extracted its molecular functions, biological processes and cellular components where its
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protein products are located, and transformed this information into the gene's background

knowledge encoded in relational logic in the form of Prolog facts. Part of the knowledge

for gene SRC, whose Entrez GeneID is 6714, is presented here:

function(6714,'ATP binding').

function(6714,'receptor activity').

process(6714,'signal complex formation').

process(6714,'protein kinase cascade').

component(6714,'integral to membrane').

...

Next, using GO, in the gene's background knowledge we also included the gene's gen-

eralized annotations. For example, if one gene is functionally annotated as: zinc ion

binding, in the background knowledge we also included its more general functional anno-

tations: transition metal ion binding, metal ion binding, cation binding, ion

binding and binding. In the gene's background knowledge we also included information

about the interactions of the genes, in the form of pairs of genes for which there is an

evidence that they can interact:

interaction(6714,155).

interaction(6714,1874).

interaction(6714,8751).

interaction(6714,302).

...

In traditional machine learning, examples are expected to be described by a tuple of values

corresponding to some prede�ned, �xed set of attributes. Note that a gene annotation

does not straightforwardly correspond to a �xed attribute set, as it has an inherently

relational character and we need to develop the relevant attributes on the basis of the

pre-formed relational background knowledge. For example, a gene may be related to

a variable number of cell processes, meaning it can play a role in a variable number of

regulatory pathways etc. This imposes 1-to-many relations hard to elegantly capture

within an attribute set of a �xed size. Furthermore, a useful piece of information about a

gene g may, for instance, be expressed by the following feature involving the background

knowledge of another gene:

gene g interacts with another gene whose functions include protein binding. (5.1)

Going even further, the feature may not include only a single interaction relation but

rather consider entire chains of interactions. Consequently, the task we are approaching

is a case of subgroup discovery from relational data. For this purpose we employ the
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methodology of relational subgroup discovery proposed in (51; 83) and implemented in

the RSD1 algorithm. Using RSD, we were able to discover knowledge such as:

Genes whose protein products are located in the nucleus, interacting with

genes involved in the process of transcription regulation tend to be di�er-

entially expressed between acute myeloid leukemia and acute lymphoblastic

leukemia.

(5.2)

5.2.1 The RSD algorithm

The RSD algorithm proceeds in two steps. First, it constructs a set of relational features

in the form of �rst-order logic atom conjunctions. The entire set of features is then viewed

as an attribute set, where an attribute has the value true for a gene (example) if the gene

has the feature corresponding to the attribute. As a result, by means of relational feature

construction we achieve the conversion of relational data into attribute-value descriptions.2

In the second step, interesting gene subgroups are searched, such that each subgroup is

represented as a conjunction of selected features. The subgroup discovery algorithm

employed in this second step is an adaptation of the popular propositional rule learning

algorithm CN2 (21).

5.2.1.1 Relational feature construction

The feature construction component of RSD aims at generating a set of relational features

in the form of relational logic atom conjunctions. For example, the feature 5.1 exempli�ed

informally in the previous section has the relational logic form:

interaction(A,B),function(B,'protein binding')

where upper cases denote variables, and a comma between two logical literals denotes a

conjunction.

The user speci�es mode declarations which syntactically constrain the resulting set of

constructed features. Each mode declaration de�nes a predicate that can appear in a

feature, and assigns to each of its arguments a type and a mode (either input or output).

Thus the following example declaration:

mode(3, interaction(+gene,-gene))

states that predicate interaction can appear in the feature with an input (+ sign) variable

of type gene and an output (- sign) variable of the same type. The �rst declaration

argument (number 3) stipulates that the predicate can appear in a single feature at most

1http://labe.felk.cvut.cz/�zelezny/rsd/rsd.pdf
2This process is known as propositionalization (49),(50).
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3 times with the same input variable; in other words, three interactants of a single gene

can be addressed in a feature.

In a feature, if two arguments have di�erent types, they may not hold the same variable.

Also, literals in a feature must be `linked':

1. Every variable in an input argument of a literal must appear in an output argument

of some preceding literal in the same feature, with the exception of the �rst variable

in the feature (the key variable).

2. Inversely, every output variable of a literal must appear as an input variable of some

subsequent literal.

Furthermore, the maximum length of a feature (number of contained literals) is declared,

along with further optional syntactic constraints (51; 83).

Predicates with only variables in their arguments are not su�cient to capture impor-

tant gene's properties. It is important that features may also contain constants (such as

'protein binding'). A distinguished predicate instantiate is used to indicate variables

which will be automatically substituted by constants used in the training examples. For

example, with the following declaration

mode(2, function(+gene,-function))

mode(1, instantiate(+function))

RSD �rst generates a constant-free feature

interaction(A,B), function(B,C), instantiate(C)

and then replaces it with a set of features, in each of which variable C is replaced by a

constant and the instantiate predicate is removed. An example feature set consists of

the following two features:

interaction(A,B), function(B,'protein binding')

and

interaction(A,B), function(B,'binding')

However, only such replacements for C are considered that make the resulting feature hold

true for at least a pre-speci�ed number of genes, according to a pre-speci�ed minimal

support threshold of RSD.

Given a set of declarations, RSD proceeds in the manner described above to produce

an exhaustive set of features satisfying the declarations. Technically, this is implemented

as an exhaustive depth-�rst backtrack search in the space of all feature descriptions,

equipped with certain pruning mechanisms. Besides the language declarations, each feature

must also comply to the connectivity requirement, according to which no feature may be

decomposable into a conjunction of two or more features. For example, the following

expression does not form an admissible feature:
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interaction(A,B),function(B,'protein binding'),

interaction(A,C),component(C,'membrane')

The reason is that it can be decomposed into two separate features, consisting of the

�rst two (last two, respectively) literals. We do not construct such decomposable ex-

pressions, as these are clearly redundant for the purpose of subsequent search for rules

with conjunctive antecedents. Note that decomposable features may in general be made

undecomposable by adding a literal, such as by adding interaction(B,C) to the expres-

sion exempli�ed above. It is primarily the concept of undecomposability that allows for

extensive search space pruning (51; 83) in the feature construction process.

Some examples of features constructed by RSD are listed below:

f(7,A):-function(A,'kisspeptin receptor binding').

f(8,A):-function(A,'phosphopant binding').

f(11,A):-process(A,'intestinal lipid catabolism').

f(14,A):-process(A,'neurite morphogenesis').

f(19,A):-component(A,'nucleus').

f(22,A):-interaction(A,B),function(B,'mannokinase activity').

f(24,A):-interaction(A,B),function(B,'enzyme regulator activity'),

component(B,'membrane').

f(84,A):-interaction(A,B),process(A,'glycolate catabolism'),

component(B,'intrinsic to membrane').

where the `head' of the feature de�nition formally indicates the feature number and the

key variable.

Finally, to evaluate the truth value of each feature for each example for generating

the attribute-value representation of the relational data, the �rst-order logic resolution

procedure is used, provided by a standard Prolog language interpreter.

5.2.1.2 Subgroup Discovery

Subgroup discovery aims at �nding population subgroups that are statistically `most inter-

esting', e.g., are as large as possible and have the most unusual statistical characteristics

with respect to the property of interest (87) (see Figure 5.2).

Notice an important aspect of the above de�nition: there is a prede�ned property

of interest, meaning that a subgroup discovery task aims at characterizing population

subgroups of a given target class. This property indicates that standard classi�cation

rule learning algorithms could be used for solving the task. However, while the goal of

classi�cation rule learning is to generate predictive models in the form of rule sets that

discriminate between the target class and non-target classes, subgroup discovery aims at

discovering a set of individual patterns (rules) characterizing the target class.
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Figure 5.2: Descriptions of discovered subgroups ideally cover just individuals of the target

class (subgroups 1 and 3), however they may cover also a few individuals of other classes

(subgroup 2).

Rule learning typically involves two main procedures: the search procedure used to in-

duce a single rule (see Section 5.2.1.3 below) and the control procedure (the covering al-

gorithm) that repeatedly executes the search to induce a set of rules (see Section 5.2.1.4).

5.2.1.3 Inducing a single subgroup describing rule

The RSD algorithm (51; 83) is based on an adaptation of the standard propositional rule

learner CN2 (21). Its search procedure used in learning a single rule performs beam search,

starting from the empty conjunct, successively adding conditions (relational features). In

CN2, classi�cation accuracy of a rule is used as a heuristic function in the beam search.

The accuracy1 of an induced rule of the form H  B (where H in the rule head is the

target class, and B is the rule body formed by a conjunction of relational features) is equal

to the conditional probability of head H, given that body B is satis�ed: p(HjB).
In RSD, the accuracy heuristic Acc(H  B) = p(HjB) is replaced by the weighted

relative accuracy heuristic. Weighted relative accuracy is a reformulation of the Piatetsky-

Shapiro heuristics used in MIDOS (87), aimed at balancing the size of a group with its

distributional unusualness (48). It is de�ned as follows:

WRAcc(H  B) = p(B) � (p(HjB)� p(H)): (5.3)

Weighted relative accuracy consists of two components: generality p(B), and relative

accuracy p(HjB)�p(H). The second term, relative accuracy, is the accuracy gain relative
to the rule H  true, which predicts all instances to satisfy H. Hence, rule H  B is

only interesting if it improves upon this `default' accuracy. Another way of viewing relative

accuracy is that it measures the utility of connecting rule body B with rule head H. Note

that it is easy to obtain high relative accuracy with very speci�c rules, i.e., rules with low

generality p(B). To this end, generality is used as a `weight' which trades o� generality

of the rule (rule coverage p(B)) and relative accuracy (p(HjB)� p(H)).

1In some contexts, this quantity is called precision.
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In the computation of Acc and WRAcc all probabilities are estimated by relative fre-

quencies1 as follows:

Acc(H  B) = p(HjB) = p(HB)

p(B)
=

n(HB)

n(B)
(5.4)

WRAcc(H  B) =
n(B)

N
�
(
n(HB)

n(B)
� n(H)

N

)
(5.5)

where N is the number of all the examples, n(B) the number of examples covered by rule

H  B, n(H) the number of examples of class H, and n(HB) the number of examples of

class H correctly classi�ed by the rule (true positives).

An example subgroup describing rule, constructed as conjunction of two features (num-

bered 81 and 254), is given below:

subgroup(A) = f(81, A), f(254, A),

where

f(81, A) = interaction(A,B), process(B,'phosphorylation')

and

f(254, A) = interaction(A,B), process(B,'negative regulation of apoptosis'),

component(B,'intracellular membrane-bound organelle')

5.2.1.4 Inducing a set of subgroup describing rules

In CN2, for a given class in the rule head, the rule with the best value of the heuristic

function found in the beam search is kept. The algorithm then removes all examples of the

target class satisfying the rule's conditions (i.e., positive examples covered by the rule) and

invokes a new rule learning iteration on the remaining training set. All negative examples

(i.e., examples that belong to other classes) remain in the training set.

In this classical covering algorithm, only the �rst few induced rules may be of interest as

subgroup descriptors with su�cient coverage, since subsequently induced rules are induced

from biased example subsets, i.e., subsets including only positive examples not covered by

previously induced rules. This bias constrains the population of individuals in a way that is

unnatural for the subgroup discovery process, which is aimed at discovering characteristic

properties of subgroups of the target population.

1Alternatively, the Laplace (20) and the m-estimate (19) could also be used.
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In contrast, RSD uses the weighted covering algorithm, which allows for discovering

interesting subgroup properties in the entire target population. The weighted covering

algorithm modi�es the classical covering algorithm in such a way that covered positive

examples are not deleted from the set of examples to be used to construct the next

rule. Instead, in each run of the covering loop, the algorithm stores with each example

a count that indicates how many times (with how many induced rules) the example has

been covered so far.

By default, initial weights of all examples ej are set to 1 (alternatively, as was the case

in our experiments, the initial weights of the examples may encode the apriori importance

of a given example). In subsequent iterations of the weighted covering algorithm all target

class examples weights decrease according to the formula 1
i+1

, where i is the number of

constructed rules that cover example ej . In this way the target class examples whose

weights have not been decreased will have a greater chance to be covered in the following

iterations of the weighted covering algorithm.

The combination of the weighted covering algorithm with the weighted relative accu-

racy thus implies the use of the following modi�ed WRAcc heuristic:

WRAcc(H  B) =
n0(B)

N 0
�
(
n0(HB)

n0(B)
� n(H)

N

)
(5.6)

where N is the number of examples, N 0 the sum of the weights of all examples, n(H) the

number of examples of class H, n0(B) the sum of the weights of all covered examples, and

n0(HB) the sum of the weights of all correctly covered examples.

An example set of rules is given below:

subgroup1(A) = f(81, A), f(254, A),

subgroup2(A) = f(34, A), f(103, A),

subgroup3(A) = f(54, A), f(180, A)

where

f(81, A) = interaction(A,B), process(B,'phosphorylation')

f(254, A) = interaction(A,B), process(B,'negative regulation of apoptosis'),

component(B,'intracellular membrane-bound organelle')

f(34, A) = interaction(A,B),function(B,'metal ion binding'),

component(B,'membrane')

f(103, A) = interaction(A,B),function(B,'struct. constit. of cytoskeleton')

f(54, A) = interaction(A,B),function(B,'metal ion binding'),

process(B,'transcription, DNA-dependent')

f(180, A) = interaction(A,B),process(B,'reg. of transcript., DNA-dependent').
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5.3 Experiments

In this section we present the experiments and analysis of the results used for demonstrating

the applicability of the new developed methodology.

5.3.1 Materials and methods

We apply the proposed methodology on three classi�cation problems from gene expression

data, with the aim to describe the genes that are usually used by the classi�ers, i.e, the

di�erentially expressed genes.

The �rst problem was introduced in (32) and aims at distinguishing between sam-

ples of ALL and AML from gene expression pro�les obtained by the A�ymetrix HU6800

microarray chip, containing probes for 6817 genes. The data contains 73 class-labeled

samples of expression vectors. The second problem was described in (66) and aims at dis-

tinguishing di�erent subtypes of ALL (6 recognized subtypes plus a separate class `other'

containing the remaining samples). The data contains 132 class-labeled samples obtained

by A�ymetrix HG-U133 set of microarrays, containing 22,283 probes. The third problem

was de�ned in (64). Here one tries to distinguish among 14 classes of cancers from gene

expression pro�les obtained by the A�ymetrix Hu6800 and Hu35KsubA microarray chip,

containing probes for 16,063 genes. The dataset contains 198 class-labeled samples. Note

that out method does not address the learning task of discriminating between the classes.

Instead, for the given target class we aim at �nding the most characteristic description of

its di�erentially expressed genes.

To access the annotation data for every gene considered, it was necessary to obtain

unique gene identi�ers from the microarray probe identi�ers available in the original data.

We achieved this by script-based querying of the A�ymetrix site1 for translating probe ID's

into unique gene ID's. Knowing the gene identi�ers, information about gene annotations

and gene interactions can be extracted from the ENTREZ, that is included in our database.

We developed a program script in the Python language, which extracts gene annotations

and gene interactions from our database, and produces their structured, relational logic

representations which can be used as input to RSD.

For all three datasets, and for each class c we �rst extracted a set of di�erentially

expressed genes GC(c). In our experiments we used t-test score T (g; c) for selecting

di�erentially expressed genes. t-test is a test of the null hypothesis that the means of two

normally distributed populations are equal. Higher jT (g; c)j means lower probability which
in turn means that mean gene expression is di�erent between di�erent classes.

1www.a�ymetrix.com/analysis/neta�x/



78 LEARNING RELATIONAL DESCRIPTIONS OF DIFF. EXP. GENE SETS

T (g; c) is computed by the following formula:

T (g; c) =
�1(g)� �2(g)√

�1(g)
N1

+ �2(g)
N2

(5.7)

where N1 = jc j, N2 = jC n c j, [�1(g); �1(g)] and [�2(g); �2(g)] denote the means and

standard deviations of the logarithm of the expression levels of gene g for the samples in

class c and samples in C n c , respectively.
T (g; c) reects the di�erence between the classes relative to the standard deviation

within the classes. Large values of jT (g; c)j indicate a strong correlation between the

expression of gene g and class c , while the sign of T (g; c) being positive (negative)

corresponds to g being highly (less) expressed in class c than in the other classes. Unlike a

standard Pearson's correlation coe�cient, T (g; c) is not con�ned to the range [�1;+1]. In
order to avoid situations illustrated in Figure 5.3, where genes B and C would have similar

values of jT (g; c)j but where C is not signi�cantly di�erentially expressed, we dictate one

more condition for a gene to be selected: j�1(g)� �2(g))j > 1. Thereby we ensure that

selected genes have at least twofold di�erence in their average expression for the given

class.

Figure 5.3: Expression of three genes (A, B and C) for �ve patients of class 1 and �ve

patients of class 2. Perfect class distinction can be achieved by idealized gene A, in which

the expression level is uniformly low in class 1 and uniformly high in class 2. A more

realistic case is gene B which is also useful for class distinction. We do not use gene C

for class distinction as we are interested in genes that have signi�cant di�erence in their

mean expression between the classes.

For all three problems and all classes we selected the 50 most di�erentially expressed

(highest t-score ranking) genes and the same number of randomly chosen non-di�erentially

expressed genes. The speci�c number of selected genes is a matter of trade-o�. Including

a high number of examples in the training set is in general preferable for learning. However,

extending the training set to relatively low-scoring genes decreases the overall quality of

the training set. A full quanti�cation of this trade-o� is out of the scope of this study,

where we adhere to 50 examples of each class. This is a usual number of selected genes

in the context of microarray data classi�cation with support vector machines or voting

algorithms (32).
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The average, maximal and minimal values of jT (g; c)j for the selected di�erentially

expressed genes for each problem/class are listed in Table 5.1. In general, higher numbers

mean that the class is easier to distinguish from the other classes on the basis of the

expression of the most di�erentially expressed genes.

Table 5.1: Average, maximal and minimal value of jT (g; c)j, for g 2 GC(c), for each

problem and class c .

Task Class Avg Max Min

ALL-AML ALL 6.74 11.09 5.31

AML 6.74 11.09 5.31

Subtypes BCR 5.95 10.30 4.65

of ALL E2A 11.68 38.80 8.46

HD50 6.09 8.56 5.21

MLL 8.71 13.15 6.85

T ALL 16.70 27.12 12.66

TEL 9.69 17.59 7.34

Multy BREAST 6.53 8.42 5.86

class PROSTATE 6.05 11.90 4.84

LUNG 5.04 8.56 4.25

COLORECTAL 5.71 14.83 4.42

LYMPHOMA 8.73 14.69 7.32

BLADDER 5.91 10.27 5.07

MELANOMA 6.53 11.28 5.71

UTERUS 5.07 7.49 4.46

LEUKEMIA 11.55 17.02 9.78

RENAL 4.65 6.62 4.06

PANCREAS 5.22 7.92 4.32

OVARY 4.06 6.33 3.59

MESOTHELIOMA 4.81 9.51 4.61

CNS 11.99 23.06 9.47

The usage of the gene t-test score T (g; c) is twofold. In the �rst part of the analysis

it is used for the selection of di�erentially expressed genes as described above. Secondly, it

acts as the initial weight for each example gene in the subgroup discovery procedure where

we try to characterize these di�erentially expressed genes. In this secondary mining task,

RSD will thus prefer to group genes with large weights. As a consequence, such important

genes are typically covered by more than one reported subgroup description, each time

with an alternative description.
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5.3.2 Experimental results

To illustrate the straightforward interpretability of the induced gene set descriptions, we

use as an example the best-scoring gene subgroups discovered by RSD for the CNS (central

nervous system) and breast cancer class from the 14-class cancer problem.

A group of genes, CSN-geneSet(A), di�erentially expressed between CNS on one hand

and the other classes, was de�ned by RSD through the conjunction of two relational logic

features:

CNS-geneSet(A) = f(81, A), f(254, A),

where

f(81, A) = interaction(A,B), process(B,'phosphorylation')

and

f(254, A) = interaction(A,B), process(B,'negative regulation of apoptosis'),

component(B,'intracellular membrane-bound organelle')

This gene group, de�ned by the interaction with genes involved in phosphorylation, negative

regulation of apoptosis and intracellular localization, contains 7 di�erentially expressed

genes and none of the non-di�erentially expressed genes used as the negative examples

by the algorithm. The gene group members are brain speci�c genes and genes active in

cellular survival. The former includes glial �brillar astrocytic protein [GFAP, 2670] and

reticulon 4 [neurite growth factor, 57142] exhibited positive expression scores as would be

predicted in brain derived cancers. The latter, cell death genes caspase 4 [837] and tumor

necrosis factor receptor type I associated death domain protein [TRADD, 8717] are both

associated with decreased expression, also an expected �nding, as lower levels of these cell

death/pro-apoptotic genes are associated with uncontrolled cellular growth in malignancy

and are one of the most prominent features of cancers.

These observations support the validity of our method (as they �t biological expec-

tations based on scienti�c and clinical investigations unrelated to ours) and thus give

credibility to �ndings related to the remaining genes in the subgroup, of which little is

known in brain cancers. These include glycogen synthase kinase 3 beta and nuclear recep-

tor corepressor 2. Glycogen synthase kinase 3 beta is a master switch of multiple processes

involved in cellular biology by de�nition exercising its regulatory e�ects by phosphorylation.

Speci�cally it is critical for cell migration, proliferation (including pathological cellular pro-

liferation in multiple human cancers) and it has been previously reported to be functionally

connected to brain protein tau (89). To our knowledge, however, nothing is known of its
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role on brain tumors. The role of the nuclear receptor corepressor 2 has been described

for breast and prostate cancer. As their role in brain cancer is not known and based on

our data their expression is indeed signi�cantly increased in brain tumors (when compared

to other malignancies) the nuclear receptor corepressor 2 and glycogen synthase kinase 3

beta represent good candidate genes for further investigations in etiology of brain cancer.

A group of genes, breast-geneSet(A), di�erentially expressed (in this case it was

under-expressed) between breast on one hand and the other classes, was de�ned by RSD

through the conjunction of two relational logic features:

breast-geneSet(A) = f(14, A), f(38, A),

where

f(14, A) = process(A,'regulation of transcription')

and

f(38, A) = function(A,'zinc ion binding')

This gene group is made of genes involved in regulation of transcription and in zinc ion

binding. Zinc is a cofactor in protein-DNA binding, via a `zinc �nger' domain. This

property is shared by many transcription factors, which are major regulators of normal and

abnormal (e.g., malignant) cell proliferation, therefore `regulation of transcription'

was not found interesting. Second, zinc is an essential growth factor. Less than optimal

expression of the factors involved in zinc metabolism can therefore represent either a

cause or a biomarker of dysregulated cellular proliferation. By combining the both features,

`regulation of transcription' and `zinc ion binding' RSD was able to construct

gene set that was composed of mostly di�erentially expressed genes.

5.3.3 Statistical validation

Here we present a statistical validation of the proposed methodology for discovering de-

scriptions of di�erentially expressed gene sets. Speci�cally we wish to determine if the

high descriptive capacity pertaining to the incorporation of the expressive relational logic

language incurs a risk of descriptive over�tting, i.e., a risk of discovering subgroups whose

bias toward di�erential expression is only due to chance. We thus aim at measuring the

discrepancy of the quality of discovered subgroups on the training data on one hand and

independent test sets on the other hand, as performed by 5-fold strati�ed cross-validation1.

1Same as cross-validation, except that the folds are strati�ed so that they contain approximately the

same proportions of labels as the original dataset.



82 LEARNING RELATIONAL DESCRIPTIONS OF DIFF. EXP. GENE SETS

The speci�c qualities measured for each set of subgroups produced for a given class

are average precision (PRE), recall (REC) and area under ROC (AUC)1 values among all

subgroups in the subgroup set. Table 5.2 shows the PRE and REC values results for the

three respective problem domains2.

Table 5.2: Precision, recall and AUC �gures of found subgroups, for the set of ALL/AML,

Subtypes of ALL and Multi-Class-Cancer di�erentially expressed genes, obtained through

5-fold cross-validation.

Task Data PRE REC AUC

ALL-AML Train 100(�0)% 16% 65%

Test 85(�6)% 13% 60%

Subtypes Train 95(�4)% 17% 63%

of ALL Test 78(�10)% 12% 61%

Multy Train 94(�6)% 14% 59%

class Test 75(�12)% 12% 57%

Overall, the results demonstrate an acceptable decay from the training to the testing

set in terms of both PRE and REC, suggesting that the discovered subgroup descriptions

indeed capture the relevant gene properties. In terms of total coverage, in average, RSD

covered more then 2
3
of the preselected di�erentially expressed genes, while 1

3
of the

preselected genes were not included in any group. A possible interpretation is that they

are not functionally connected with the other genes and their initial selection through the

t-test was due to chance. This information can evidently be back-translated into the gene

selection procedure and used as a gene selection heuristic. This approach is out of the

scope of the thesis but represents a direction for future work.

The risk of descriptive over�tting suggested by the results of Table 5.2 is due to two

reasons: �rst, the imperfections in the data and second, the high expressiveness of the

relational logic language.

Concerning the �rst reason, the existing gene annotation databases are currently rather

coarse-grained in that high-con�dence classi�cation of genes into low-level (i.e., speci�c)

ontological classes is rarely available. A second source of input imperfectness is the fact

that functions, locations and involved processes are known for only a subset of genes.

Furthermore, most annotation databases are built by curators who manually review the

existing literature. It is thus possible that certain known facts get temporarily overlooked.

1De�nitions of PRE, REC and AUC can be found in (83).
2For the �rst problem we had one set of di�erentially expressed genes, where for the second (third)

problem we had 6 (14) sets of di�erentially expressed genes and equal number of learning tasks, one for

each class, where results of each subtask were averaged.
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For instance, (45) found references in the literature published in the early 90s, for 65 func-

tional annotations that are not yet included in the current functional annotation databases.

Secondly, the language expressivity allows for forming rather complex rules, involving

both gene-ontological terms and gene-interaction relations. As such they are possibly

prone to capturing noise in data rather than genuine biological principles.

Despite the two described factors, the over�tting e�ect manifests itself to an accept-

able extent and the rule quality measured on independent testing sets is still relatively

high. Moreover, some of the actual discovered patterns also lead to biologically plausible

interpretations as demonstrated in Section 5.3.2.

5.3.4 Analyzing individual components of the methodology

We further experimented with di�erent settings of our algorithm in order to investigate

the inuence of di�erent ingredients of the approach on the precision of the found de-

scriptions. In addition to the original setting (ORIG), we performed experiments with

three alternative settings: without gene-interaction information (-INTERACTION), with-

out GO term generalization (-GO), and without incorporating gene t-test scores as the

initial weights in the RSD's weighted covering algorithm for subgroup discovery, thus ini-

tializing all weights to 1 (-WEIGHT). In Table 5.3 we present the test-set results averaged

in 5-fold cross-validation.

Table 5.3: Precision of discovered di�erentially expressed gene group descriptions, for

three scenarios where part of the background knowledge or gene-weight information was

removed.

TASK ORIG -INTERACTION -GO -WEIGHTS

ALL-AML 85(�6)% 44(�12)% 72(�13)% 75(�8)%
Subtypes 78(�10)% 52(�13)% 74(�16)% 71(�12)%
of ALL

Multy 75(�12)% 45(�16)% 56(�14)% 73(�14)%
class

Table 5.3 shows that all the three ingredients exhibit a strong positive inuence on the

results, with interaction data being the strongest factor.
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5.4 Discussion

In this chapter we presented a method that uses gene ontologies, together with the

paradigm of relational subgroup discovery, to help �nd patterns of expression for genes

with a common biological function that correlate with the underlying biology responsible

for class di�erentiation. Our methodology proposes to �rst select a set of important dif-

ferentially expressed genes for all classes and then �nd compact, relational descriptions of

subgroups among these genes.

It is noteworthy that the latter descriptive `post-processing' step is a machine learning

task, in which the curse of dimensionality usually ascribed to microarray data classi�cation,

actually turns into an advantage. This is because, in traditional microarray data mining

con�gurations, the high number of genes results in a high number of attributes usually

confronted with a relatively small number of expression samples, thus forming grounds for

over�tting. In our approach, on the contrary, genes correspond to examples and thus their

abundance is bene�cial. Furthermore, the dimensionality of the secondary attributes (rela-

tional features of genes extracted from gene annotations) can be conveniently controlled

via suitable constraints of the language grammar used for the automatic construction of

the gene features.

A further remark concerns the fact that genes are frequently associated to multiple

functions, i.e., they may under some conditions exhibit a behavior of genes with one func-

tion while in other conditions a di�erent aspect of their function may be important. Here

the subgroup discovery methodology is e�ective at selecting a speci�c function important

for the classi�cation. Indeed, one given gene can be included in multiple subgroup descrip-

tions (this was e.g., the case of genes with id's 51592 and 115426 in the breast cancer

class), each emphasizing the di�erent biological process critical to the explanation of the

underlying biology responsible for the observed experimental results.

Yet another aspect of the proposed method is of interest, following from the illustrative

example of a discovery result provided in Section 5.3.2. Here the discovered subgroup

contains four genes whose di�erential expression (for the CNS cancer class) is well in

accordance with the biological state of the art. The group is described using the features

shared by the genes, rather than through plain gene list as in traditional approaches. As a

consequence, the group also includes further genes sharing the features, whose connection

to brain cancer has not yet been described, yet closer analysis reveals evidence that such

association is indeed plausible. We believe that this `generalization' aspect of the proposed

methodology may contribute to discovering new marker genes by proposing candidate genes

for further experimental evaluation.
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We have assessed the quality of the induced descriptions by evaluating them on in-

dependent test sets using 5-fold cross-validation. The results show a clear advantage of

using all the complementary sources of background knowledge in the description genera-

tion procedure (GO ontology, gene interactions as well as degree of di�erential expression

of genes represented by gene weights), as shown in Table 5.3.

We believe that the presented approach can signi�cantly contribute to the application

of relational machine learning to gene expression analysis. Despite the demonstrated ben-

e�ts of the methodology, the precision and recall evaluation of descriptors in Table 5.2

suggests that there is still room for improvement. This is to be achieved through the

expected increase in both the quality and quantity of gene/protein annotations in the near

future.

In the next chapter we present our second developed method for functional interpreta-

tion of gene expression data. The main component of the developed method is an e�cient

algorithm for the construction of new biologically interesting gene sets. After the con-

struction, the gene sets are tested for enrichment by the standard methods for enrichment

analysis.





6 SEGS: Search for Enriched Gene Sets

Gene Ontology (GO) terms are often used to interpret the results of microarray experi-

ments. The most common approach is to perform Fisher's exact test (57) to �nd gene

sets annotated by GO terms which are over-represented among the genes declared to be

di�erentially expressed in the analysis of microarray data. Another way is to apply Gene

Set Enrichment Analysis (GSEA) (75) that uses prede�ned gene sets and ranks of genes

to identify signi�cant biological changes in microarray datasets. However, after correcting

for multiple hypotheses testing, few (or no) GO terms may meet the threshold for statis-

tical signi�cance, because the relevant biological di�erences are small relative to the noise

inherent to the microarray technology.

In addition to the individual GO terms, we propose testing of gene sets constructed as

intersections of GO terms, Kyoto Encyclopedia of Genes and Genomes Orthology (KO)

terms, and gene sets constructed by using gene-gene interaction data obtained from the

ENTREZ database. Our method �nds gene sets that are signi�cantly over-represented

among di�erentially expressed genes which can not be found by the standard enrichment

testing methods applied on individual GO and KO terms, thus improving the enrichment

analysis of microarray data.
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6.1 Related work

Tests for gene set enrichment compare lists of di�erentially expressed (DE) genes and

non-DE genes to �nd which gene sets annotated by GO and KO terms are over- or under-

represented amongst the DE genes. Several research groups have developed software to

carry out Fisher's exact tests to �nd which gene sets are over-represented among the

genes found to be di�erentially expressed, e.g., (1; 11) and other works cited in (45). The

Fisher's test for term T essentially compares the proportion of DE genes annotated by

term T with the proportion of non-DE genes annotated by term T . Since there is a test

for each of several thousands of GO nodes, and hundreds of KO nodes, multiple hypothesis

testing must be taken into account. This is usually done by the Bonferroni correction or a

more sophisticated correction controlling the False Discovery Rate (FDR). Benjamini and

Hochberg's method (13) gives valid control of the FDR even when the di�erent tests are

dependent.

Approaches based on Fisher's exact testing have some major limitations:

� After correcting for multiple hypothesis testing, in selecting DE genes, no individ-

ual gene may meet the threshold for statistical signi�cance, because the relevant

biological di�erences are small relative to the inherent microarray technology noise.

� The opposite situation, one may be left with a long list of statistically signi�cant

genes without any common biological function, so none of the gene sets annotated

by GO and KO terms is signi�cantly enriched.

� Single gene analysis may miss important e�ects on pathways. Biological pathways

often a�ect sets of genes acting jointly. An increase of 20% in the expression of all

gene members of a biological pathway can alter the execution of that pathway, and

its impact on other processes, signi�cantly more than a 10-fold increase in a single

gene (63).

� It is not rare that di�erent research groups studying the same biological system

report lists of DE genes they found to be statistically signi�cant which have just a

small overlap (28).

� Since all genes annotated by a given GO term are also annotated by all of its parents,

closely related nodes may be found separately signi�cant (4).

� Speci�c GO terms have few genes annotated, so there is often not enough statistical

evidence to �nd these terms as statistically signi�cant. The more general the GO

term, the more genes are annotated by it, but the less useful the term is as an

indication of the function of the di�erentially expressed genes (55).
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Several methods have been developed recently to overcome the presented analytical chal-

lenges. For improving the sensitivity of enrichment detection, Gene Set Enrichment Anal-

ysis (GSEA) (75) and Parametric Analysis of Gene Set Enrichment (PAGE) (47) were

developed. GSEA calculates an enrichment score (ES) for a given gene set using ranks of

genes and infers the statistical signi�cance of ES against the ES-background distribution

calculated by permuting the labels of the original dataset. In the new version of GSEA,

GSEA-P (76), there is an option for importing gene sets from MSigDB (Molecular Sig-

natures Database) and testing them for enrichment, thus increasing the probability for

�nding enriched gene sets. In contrast, PAGE calculates a Z-score for a given gene set

from a parameter such as t-score value calculated on the basis of two experimental groups

and infers statistical signi�cance of the Z-score against the standard normal distribution.

These two methods are capable to �nd enriched gene sets, not detectable by the standard

Fisher's exact test.

(34) take into account the hierarchical structure of the GO by measuring the over-

representation of each term relative to its parent terms. (4) downweight the contribution

of genes to the calculation of over-representation of a term if the children of that term

have already been found signi�cantly enriched. These two methods do not improve the

statistical power, as the number of genes in each hypothesis test will be smaller than in

the usual term-by-term tests, as double counting is penalized. However, they do help

to improve the interpretation, since they produce just one (or at least not too many)

signi�cant p-values for each signi�cant region of the graph. (55) use grouping of similar

GO terms (which are close in the GO graph) in order to increase the statistical power.

The reason is that the lower terms in the GO have few genes annotated by it, and can

not be found statistically signi�cantly enriched. Therefore, (55) group several terms to

increase the size of the gene sets tested for enrichment. This approach is useful and

can �nd enriched gene sets not detectable by standard screening of GO terms, but it

is di�erent form ours: we construct new gene sets as intersections of gene sets de�ned

by Molecular Function, Biological Processes and Cellular Component terms of GO and

KO terms, whereas (55) create new gene sets by making union of similar terms in GO.

Concerning the usage of KO term in enrichment analysis, the work of (58) uses KO terms

for automated annotation of large sets of genes, including whole genomes, and automated

identi�cation of pathways. This is done by identifying both the most frequent and the

statistically signi�cantly enriched pathways.

6.2 The proposed SEGS approach

In this thesis we propose a novel approach for searching of enriched gene sets (SEGS)

which proves to further improve the gene set enrichment results and by that the interpre-

tation of gene expression data. Our approach is based on the e�cient generation of new
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biologically relevant gene sets, that are tested for possible enrichment. The new gene sets

are generated as intersections of GO and KO terms and gene sets de�ned with the help of

gene-gene interaction data. Testing the enrichment of these gene sets with the standard

methods (Fisher's exact test, GSEA and PAGE) shows that our method �nds gene sets

constructed from GO and KO terms signi�cantly over-represented amongst di�erentially

expressed genes, while these GO and KO terms are not found to be enriched by Fisher's

test, GSEA or PAGE, thus improving the enrichment analysis of microarray data.

6.2.1 Properties of GO and KO terms

First, let us state some properties of gene annotations by GO and KO terms:

� one gene can be annotated by several terms,

� if a gene is annotated by term T then it is annotated by all the ancestors of T, and

� a term may have thousands of genes annotated by it.

From this we can conclude that:

� each GO and KO term de�nes a gene set,

� one gene can be a member of several gene sets, and

� some gene sets are subsets of other gene sets.

Second, let Func (or P roc , Comp, respectively) denote the set of gene sets that are

de�ned by the GO terms that are subterms of the term Molecular Function (or Biological

Process, Cellular Component, respectively), and let Path denote the set of gene sets

de�ned by the KO terms.

6.2.2 Basic SEGS operators for gene set construction using GO, KO

and ENTREZ

Our method relies on two ideas for the construction of new gene sets: using the gene-gene

interaction data, and intersection of gene sets.

6.2.2.1 Gene-gene interaction operator

There are cases when some abrupt processes are not detectable by the enrichment score.

One of the reasons can be that gene members of that process have a slight increase/decrease

in their expression, but this increase/decrease can have a much larger e�ect on the genes

that interact with them. Therefore we propose to construct a gene set whose members

interact with members of another gene set (see Figure 6.1). The gene-gene interaction
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data can be found in the ENTREZ database. Gene set construction is formally described

as follows:

Figure 6.1: Construction of a new gene set, int(S), from existing gene set S. All gi 2
int(S) are interacting with some gj 2 S. Gene sets S and int(S) do not need to intersect.

if S 2 Func (or P roc; Comp; Path, respectively) then int(S) = fgj j gj
interacts with gi 2 S g is added to Func (or P roc; Comp; Path).

(6.1)

6.2.2.2 Intersection operator

There are cases where some gene sets are not signi�cantly enriched, but their intersection

is signi�cantly enriched. For example, it can happen that a gene set de�ned by molecular

function F is not enriched because a lot of genes in di�erent parts of the cell execute it,

and one can not expect that all of them will be over/under expressed, but if genes with

that function in a speci�c part of the cell (Cpart) are abnormally active, then this can be

elegantly described by de�ning the following gene set:

geneSet(S) = func(F ), comp(Cpart) = SF

⋂
SCpart

.

Note that the actual way of constructing new gene sets by intersection of the existing

ones is analog to the method of �rst-order feature construction of the RSD algorithm,

described in Section 5.2.1.1. Consequently, viewed as a �rst-order feature, the gene set S

is constructed as a �rst-order feature:

geneSet(S) = func(S; F ), comp(S;Cpart).
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Gene set construction due to gene sets intersection is formally described as follows:

if S1 2 Func , S2 2 P roc , S3 2 Comp and S4 2 Path, then Snew =

S1

⋂
S2

⋂
S3

⋂
S4 is a newly de�ned gene set.

(6.2)

An example of this type of construction is presented in Figure 6.2.

Figure 6.2: Construction of a new gene set, consisting of the members of the `leukocyte

migration' process which interact with genes on the cell surface.

The newly de�ned gene sets are interpreted very intuitively. For example, gene set S

de�ned as the intersection of `functional' term A and `process' term B

geneSet(S) = func(A), proc(B) � SA

⋂
SB

is interpreted as: genes that are part of process B and have function A.

The number of potentially newly de�ned gene sets is huge. It is currently1 estimated

at:

jFunc j � jP roc j � jCompj � jPathj � 47 � 1012 (6.3)

If for each of these sets we compute its enrichment score, which in case of GSEA takes

linear time in the number of genes (� 2� 104), then we need � 1018 numeric operations.

If we want to statistically validate discovered enriched gene sets, usually with 1,000 per-

mutation tests, we get � 1021 operations, that is well above the average performance of

today's PCs. Therefore, we need to e�ciently search the gene set space for potentially

enriched gene sets, as proposed below.

1In September 2007, jFunc j = 7; 513; jP roc j = 12; 549; jCompj = 1; 846 and jPathj = 272.
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6.2.3 Pruning the search space for enriched gene sets

The �rst idea for improvement is that we are not interested in generating all possible gene

sets, but only those that are potentially enriched. This can be achieved by generating gene

sets that have some prede�ned minimum number of genes at the top of the ranked list,

i.e., according to the genes t-scores, for example 3 in the �rst 100, or 10 in the �rst 300

genes of the list. That is a weak constraint concerning the biological interpretation of the

results, because we are not really interested in gene sets that do not have some minimum

number of genes at the top of the list, but it is a hard constraint concerning the pruning

of the search space of all gene sets. By having this constraint we can use the GO and KO

topology to e�ciently generate all gene sets that satisfy the constraint.

As the GO is a directed acyclic graph (DAG), with the root of the graph being the

most general term, this means that if one term (gene set) does not satisfy our constraint,

than all its descendants will also not satisfy it, because they cover a subset of the genes

covered by the given term. In this way we can signi�cantly prune the search space of

potentially enriched gene sets. Therefore, we �rst construct gene sets from the top nodes

of the GO and KO, and if we fail to satisfy the given constraint we do not re�ne the last

added term.

Note that the e�ciency of the algorithm comes from the usage of the DAG structure

of GO and KO. RSD does not use the structure of GO terms when it construct �rst-order

relational features used for describing the genes, but it considers these terms as they have

at structure.

The pseudo code presented in Figure 6.3, implements the basic idea of an e�cient

construction of potentially enriched gene sets, following the idea of relational feature

construction outlined in Section 5.2.1.1.

The main function of the algorithm is the recursive function BUILD-CLAUSE. It tries

to add a new term to the given input clause (conjunction of terms). If the new clause

covers enough top genes (line 17) then it is added to the resulting list of clauses that

describe the new gene sets. After the term is added the procedure recursively calls itself in

order to add more terms to the clause (line 21) or to re�ne the added term (line 25). The

provided code will generate all gene sets that have at least 3 genes in the top 100 genes

of the GeneList. The proposed method has the data ow model shown in Figure 6.4.

6.3 Experiments

Note that in this study we do not address the problem of discriminating between the

classes. Instead, for the given target class we aim at �nding relevant enriched gene sets

that can capture the underlying biology characteristic for the class.



94 SEGS: SEARCH FOR ENRICHED GENE SETS

01 topTerm = ['molecular_function', 'biological_process',

02 'cellular_component', 'kegg_pathway']

03

04 function GENERATE-GENE-SETS(GeneList)

05 input: GeneList

06 output: gene_sets

07

08 gene_sets = []

09 BUILD-CLAUSE(0, [], GeneList[1:100], topTerm[0], gene_sets)

10 return gene_sets

11

12 procedure BUILD-CLAUSE(depth, clause, genes, term, gene_sets)

13 input: depth, clause, gene_set, term

14 output: gene_sets

15

16 new_genes = INTERSECTION(genes, TERM_TO_GENES[term])

17 IF LENGTH(new_genes) > 3 THEN # minimal support ?

18 ADD(clause, term)

19 ADD(gene_sets, clause)

20 IF depth < 4 THEN # add more terms

21 BUILD-CLAUSE(depth + 1, clause, new_genes,

22 topTerm[depth + 1], gene_sets)

23 REMOVE(clause, term)

24 FOR EACH child IN CHILDREN(term) DO # refine

25 BUILD-CLAUSE(depth, clause, new_genes,

26 child, gene_sets)

Figure 6.3: SEGS algorithm for constructing potentially enriched gene sets.

Figure 6.4: Data ow of the proposed SEGS method for the construction of enriched gene

sets.
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6.3.1 Brief description of datasets

We applied the proposed SEGS methodology to three classi�cation problems: leukemia

(32), di�use large B-cell lymphoma (DLBCL) (71) and prostate tumor (72). All of them

are binary classi�cation problems. The leukemia data includes 48 acute lymphoblastic

leukemia (ALL) samples and 25 acute myeloid leukemia (AML) samples, each with 7,074

gene expression values. The DLBCL dataset includes 7,070 gene expression pro�les for

77 patients, 58 with DLBCL and 19 with follicular lymphoma (FL). The prostate tumor

dataset includes 12,533 genes measured for 52 prostate tumor and 50 normal tissue sam-

ples. The data for these three datasets were produced from A�ymetrix gene chips and are

available at http://www.genome.wi.mit.edu/cancer/.

6.3.2 Experimental results

To illustrate the straightforward interpretability of the enriched gene sets found by our

approach, we provide the most enriched gene sets for all classes in the three mentioned

classi�cation problems (see Tables 6.1, 6.2 and 6.3). Because we use three statistical

tests(Fisher's exact test, GSEA and PAGE), which give three di�erent rankings for the

enrichment of the gene sets, we calculated the aggregate rank for each gene set by sum-

ming its ranks from the separate rankings.

Concerning the number of generated gene sets, for the leukemia dataset we generated

210,762 (ALL) and 127,187 (AML) gene sets, for DLBCL dataset we generated 158,152

(DLBCL) and 78,048 (FL) gene sets, and for the prostate dataset we generated 28,027

(tumor) and 62,567 (normal) gene sets, that satis�ed the constraint to have at least 3

genes in the �rst 100, or 10 in the �rst 300 most di�erentially expressed genes. We also

set an additional constraint needed for the PAGE algorithm, the size of the generated gene

sets, which was chosen to be larger than 30.

6.3.3 Statistical validation

The following procedure was used to calculate the signi�cance of the observed enrichment

of a gene set by comparing it with the set of maximal enrichment scores computed from

the same datasets but with randomly assigned phenotypes (class labels):

1. Randomly assign the original phenotype (class) labels to samples, reorder genes

according to their t-score values, and re-compute the enrichment scores.

2. Repeat step 1 for 1,000 permutations, and create a histogram of the corresponding

best enrichment scores for all three tests.
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Table 6.1: Five most enriched gene sets (according to the aggregate ranking) found in

the leukemia dataset by using GO, KO and ENTREZ. Please note that commas represent

the gene sets intersection.

Gene set Set size Gene set Set size

Enriched in ALL Enriched in AML

func('DNA binding'), 41 int(comp('lysosome')), 37

int(comp('nucleoplasm')), int(proc('response to ext. stimulus')),

int(proc('histone modi�cation')) int(path('Immune System'))

int(func('transcrip. repressor activ.')), 50 int(comp('membrane part')), 38

comp('nucleus'), proc('inammatory response'),

int(proc('histone modi�cation')), int(path('Human Diseases'))

int(path('Long-term potentiation'))

int(func('acetyltransferase activity')), 45 int(func('peptidase activity')), 31

int(comp('nucleus')), int(comp('integral to pl. membrane')),

int(proc('ubiquitin cycle')), proc('defense response')

int(path('Signal Transduction'))

int(func('nucleotidyltransferase activ.')), 84 int(func('metal ion binding')), 39

comp('nucleus'), int(comp('integral to membrane')),

int(proc('DNA repair')), proc('inammatory response')

int(path('Cell cycle'))

int(func('zinc ion binding')), 64 int(func('endopept. inhibitor act.')), 43

comp('intracellular organelle part'), int(comp('integral to pl. membrane')),

int(proc('protein complex assembly')), int(proc('response to pest.path.par.')),

int(path('Wnt signaling pathway')) int(path('Cell adhesion molecules'))

Table 6.2: Five most enriched gene sets (according to the aggregate ranking) found in

the DLBCL dataset by using GO, KO and ENTREZ.

Gene set Set size Gene set Set size

Enriched in DLBCL Enriched in FL

int(func('transf.phosph.cont.groups')), 33 comp('integral to membrane'), 47

int(comp('nuclear part')), proc('humoral immune response')

proc('biopolymer metabolism')

int(func('transf.phosph.cont.groups')), 46 comp('plasma membrane'), 40

comp('nucleus'), path('Hematopoietic cell lineage')

proc('DNA metabolism'),

int(path('Cell cycle'))

int(func('DNA binding')), 35 func('transmembrane receptor act.'), 83

int(comp('nucleus')), int(comp('membrane')),

proc('DNA replication'), int(proc('immune response')),

int(path('Cancers')) int(path('Immune System'))

int(func('DNA binding')), 50 func('transmembrane receptor act.'), 100

int(comp('nucleus')), comp('integral to membrane'),

proc('biopolymer metabolism'), int(proc('immune response')),

int(path('Pancreatic cancer')) int(path('Env. Inf. Processing'))

int(func('transcrip. factor act.')), 64 proc('humoral immune response'), 48

int(comp('nucleus')), int(path('Sign. Molec. & Inter.'))

proc('biopolymer metabolism'),

int(path('Cell Growth and Death'))
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Table 6.3: Five most enriched gene sets (according to the aggregate ranking) found in

the prostate dataset by using GO, KO and ENTREZ.

Gene set Set size Gene set Set size

Enriched in prostate cancer Enriched in normal

func('struct. constituent of ribosome'), 52 int(func('receptor binding')), 143

comp('intracellular organelle part'), comp('integral to membrane'),

proc('protein biosynthesis'), int(proc('+ regul. of cell prolif.')),

path('Ribosome') int(path('Human Diseases'))

func('RNA binding'), 45 int(func('protein kinase act.')), 162

comp('ribosome'), int(comp('integral to membrane')),

proc('protein biosynthesis') int(proc('Ras protein sig. transd.')),

int(path('Fc eps. RI sig. path.'))

func('RNA binding'), 51 int(func('protein kinase act.')), 172

comp('cytoplasmic part'), int(comp('integral to membrane')),

path('Genetic Information Processing') int(proc('Ras protein sig. transd.')),

int(path('Focal adhesion'))

func('struct. constituent of ribosome'), 62 int(func('receptor binding')), 178

comp('cytost. ribosome (s. Eukaryota)'), int(comp('cytosol')),

proc('protein biosynthesis') int(proc('+ regul. of cell prolif.')),

int(path('Colorectal cancer'))

func('RNA binding'), 120 int(func('protein kinase activity')), 170

comp('intracellular organelle part') int(comp('integral to membrane')),

int(proc('Ras protein sig. transd.')),

int(path('Nat.kill.cell.medi.cyt.'))

3. Estimate the p-value for the calculated enrichment score value of the gene set S

using the histogram computed at step 2. If there was not a case where random

labeling of the examples gives a better enrichment score, then p-value < 0.001.

We use class labeled permutation because it preserves gene-gene correlations and,

thus, provides a more biologically reasonable assessment of the signi�cance than the one

obtained by randomly permuting the genes.

After the calculation of the gene sets enrichment, we remove gene sets that have

too general descriptions. For example, if gene set S1 is more enriched then gene set

S2, and S1 has a more speci�c description than S2, then S2 is eliminated. Note that

S1 = T11
⋂
T12
⋂
T13
⋂
T14 is more speci�c than S2 = T21

⋂
T22
⋂
T23
⋂
T24 if T1j is a

subterm of T2j for j = 1 : : : 4.

Tables 6.4, 6.5 and 6.6 provide the results of the empirical comparison of SEGS with

single GO and KO term analysis of the three datasets. We can see that on all tests the

best constructed gene sets are found to be more enriched than the most enriched gene

sets de�ned by taking into account only single GO and KO terms.

Concerning the joint coverage of the �ve most enriched gene sets, for the ALL class

of the �rst problem, we found that their union consists of 179 genes. The sum of the

cardinalities of these �ve sets is 284. This means that we did not �nd �ve di�erent

descriptions of the same gene set, but these descriptions cover quite di�erent sets of

genes. Similar results were obtained for all the classes of the other two datasets.
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Table 6.4: Comparison of the most enriched gene sets constructed using GO, KO and

ENTREZ compared to the most enriched gene sets de�ned by singe GO and KO terms,

for the ALL class in the leukemia dataset.

Gene set Set Fisher GSEA PAGE Aggr.

size p-value ES score Z-score rank

(adj p-val) (adj p-val) (adj p-val) (ranks)

Enriched gene sets in ALL (the same as in Table 6.1)

func('DNA binding'),

int(comp('nucleoplasm')), 41 4.18 �10�18 0.33 8.92 5

int(proc('histone modi�cation')) (0.001) (0.001) (0.001) (2+2+1)

int(func('transcrip. repressor activ.')),

comp('nucleus'), 50 4.96 �10�19 0.31 7.37 9

int(proc('histone modi�cation')), (0.001) (0.001) (0.001) (1+3+5)

int(path('Long-term potentiation'))

int(func('acetyltransferase activity')),

int(comp('nucleus')), 45 1.38 �10�17 0.21 5.11 16

int(proc('ubiquitin cycle')), (0.001) (0.005) (0.015) (3+6+7)

int(path('Signal Transduction'))

int(func('nucleotidyltransf. activ.')),

comp('nucleus'), 84 1.16 �10�15 0.25 5.90 17

int(proc('DNA repair')), (0.004) (0.002) (0.002) (6+5+6)

int(path('Cell cycle'))

int(func('zinc ion binding')),

comp('intracellular organelle part'), 64 5.70 �10�16 0.28 5.05 19

int(proc('protein complex assembly')), (0.002) (0.001) (0.021) (5+4+10)

int(path('Wnt signaling pathway'))

Enriched gene sets in ALL (using single GO and KO terms analysis)

proc('DNA metabolic process') 314 9.14 �10�7 0.14 4.47 8

(0.031) (0.018) (0.003) (3+4+1)

comp('nucleus') 1461 3.51 �10�9 0.13 3.29 11

(0.012) (0.020) (0.045) (1+5+5)

comp('chromosome') 139 5.28 �10�7 0.19 3.11 15

(0.025) (0.004) (0.061) (2+1+12)

path('pyrimidine metabolism') 48 9.21 �10�6 0.15 4.13 16

(0.072) (0.010) (0.009) (11+3+2)

func('DNA binding') 810 1.15 �10�6 0.10 3.89 18

(0.048) (0.071) (0.011) (7+8+3)

proc('nucleobase, nucleoside, 1321 4.31 �10�6 0.08 3.65 23

nucleotide & nucleic acid met. proc.') (0.050) (0.125) (0.022) (9+10+4)

path('nucleotide metabolism') 101 1.02 �10�6 0.07 3.19 28

(0.040) (0.144) (0.053) (5+13+10)

6.3.4 Biomedical signi�cance of the discovered enriched gene sets

The goal of this study is to provide a better understanding of the biology of malignancies

through the use of the background knowledge encoded in GO, KO and ENTREZ. To do so,

we have examined biological functions of genes using the entire pathway changes which are

more likely (than the changes in the expression of individual genes) to represent meaningful

alterations of cellular metabolism in cancers. In its overall design this study �lls in the gap

of knowledge represented by the common reductionist approach to the interpretation of

microarray data whereby increased or decreased expression of a single gene, rather than
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Table 6.5: Comparison of the most enriched gene sets constructed using GO, KO and

ENTREZ compared to the most enriched gene sets de�ned by singe GO and KO terms,

for the DLBCL class in the lymphome dataset.

Gene set Set Fisher GSEA PAGE Aggr.

size p-value ES score Z-score rank

(adj p-val) (adj p-val) (adj p-val) (ranks)

Enriched gene sets in DLBCL

int(func('transf.phosph.cont.groups')),

int(comp('nuclear part')), 33 7.13 �10�16 0.36 6.84 3

proc('biopolymer metabolism') (0.002) (0.001) (0.001) (1+1+1)

int(func('transf.phosph.cont.groups')),

comp('nucleus'), 46 9.53 �10�16 0.29 6.41 6

proc('DNA metabolism'), (0.002) (0.001) (0.001) (2+2+2)

int(path('Cell cycle'))

int(func('DNA binding')),

int(comp('nucleus')), 35 1.63 �10�15 0.24 6.21 11

proc('DNA replication'), (0.005) (0.005) (0.001) (3+4+4)

int(path('Cancers'))

int(func('DNA binding')),

int(comp('nucleus')), 50 2.66 �10�15 0.26 5.67 12

proc('biopolymer metabolism'), (0.006) (0.002) (0.007) (4+3+5)

int(path('Pancreatic cancer'))

int(func('transcrip. factor act.')),

int(comp('nucleus')), 64 4.16 �10�15 0.22 6.25 13

proc('biopolymer metabolism'), (0.011) (0.008) (0.001) (5+5+3)

int(path('Cell Growth and Death'))

Enriched gene sets in DLBCL (using single GO and KO terms analysis)

comp('mitochondrion') 317 8.23 �10�9 0.18 4.92 4

(0.018) (0.002) (0.003) (2+1+1)

proc('DNA replication') 114 6.72 �10�9 0.14 3.97 9

(0.015) (0.015) (0.010) (1+5+3)

func('ATP binding') 567 7.81 �10�8 0.15 3.87 12

(0.021) (0.004) (0.017) (5+2+5)

path('amino acid metabolism') 211 3.38 �10�7 0.15 3.45 18

(0.039) (0.004) (0.046) (6+3+9)

comp('spindle') 29 8.55 �10�7 0.12 3.29 27

(0.048) (0.025) (0.091) (8+7+12)

path('proteasome') 27 3.14 �10�6 0.10 3.73 28

(0.053) (0.121) (0.033) (13+9+6)

behavior of a functionally linked group of genes (a pathway), is used as a readout. In

this way, discovered enriched gene sets (described in Tables 6.4, 6.5 and 6.6) for ALL vs.

AML, DLBCL vs. follicular lymphoma, and prostate cancer vs. normal tissue, expand our

understanding of predictors of clinical behavior of these cancers. Expert interpretation of

several found enriched gene sets for each of the three problems is given below.

6.3.4.1 ALL vs. AML

Acute leukemias strike 3-4 people per 100,000 every year. Two major classes of acute

leukemias exist: acute lymphoblastic leukemia (ALL) and acute myelogenous leukemia
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Table 6.6: Comparison of the most enriched gene sets constructed using GO, KO and

ENTREZ compared to the most enriched gene sets de�ned by singe GO and KO terms,

for the TUMOR class in the prostate dataset.

Gene set Set Fisher GSEA PAGE Aggr.

size p-value ES score Z-score rank

(adj p-val) (adj p-val) (adj p-val) (ranks)

Enriched gene sets in TUMOR

func('struct. constituent of ribosome'),

comp('intracellular organelle part'), 52 5.03 �10�17 0.40 5.60 5

proc('protein biosynthesis') (0.001) (0.001) (0.001) (3+1+1)

path('Ribosome')

func('RNA binding'),

comp('ribosome'), 45 1.72 �10�18 0.32 3.88 9

proc('protein biosynthesis') (0.001) (0.001) (0.019) (1+3+5)

func('RNA binding'),

comp('cytoplasmic part'), 51 7.27 �10�17 0.27 4.80 12

path('Genetic Information Processing') (0.001) (0.003) (0.002) (4+6+2)

func('struct. constituent of ribosome'),

comp('cytost. ribosome (s. Eukaryota)'), 62 3.38 �10�16 0.31 3.63 20

proc('protein biosynthesis') (0.002) (0.001) (0.024) (7+4+9)

func('RNA binding'), 120 9.71 �10�16 0.23 3.68 27

comp('intracellular organelle part') (0.003) (0.004) (0.021) (12+8+7)

Enriched gene sets in TUMOR (using single GO and KO terms analysis)

path('Ribosome') 74 8.64 �10�7 0.19 3.39 5

(0.028) (0.007) (0.033) (2+2+1)

comp('cytosolic part') 112 9.49 �10�6 0.21 3.01 11

(0.063) (0.004) (0.058) (5+1+5)

path('Translation') 94 2.84 �10�7 0.12 3.23 14

(0.021) (0.026) (0.050) (1+10+3)

comp('ribonucleoprotein complex') 275 9.97 �10�6 0.16 3.12 16

(0.080) (0.012) (0.054) (7+5+4)

comp('mitochondrion') 462 8.23 �10�6 0.14 2.96 19

(0.035) (0.021) (0.071) (4+8+7)

(AML). The peak incidence of ALL is in childhood (and children account for one quarter

of all acute leukemia cases) and it is rare in older adults. In contrast, the median age of

AML patients is 60 years and its incidence increases gradually with age. Therefore, as ALL

and AML are distinct in clinical presentation, we expected that there would be correlative

di�erences in their biology, as evidenced by microarray expression data.

In fact, the results of our analysis show that functionally linked groups of genes involved

in DNA binding (a process whereby transcription factors exert their positive or negative

e�ects on the �rst phase of protein expression, i.e. transcription of DNA sequence into

RNA) and in histone modi�cation (a process whereby transcription machinery is either

allowed or prohibited from the access to DNA in the �rst place) are prominent in ALL

cellular pathways, with 41 genes and 50 genes in the �rst and second ALL gene sets,

respectively (22; 26).

This is in agreement with the current understanding of the role of transcriptional

activators and repressors in ALL, as is the role of ubiquitin (the third ALL gene set with
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45 genes) and DNA repair in this condition (the fourth ALL gene set with 84 genes).

Ubiquitin cascade is the major cellular mechanism for recycling proteins, thus regulating

their activity and permanence (half-life) in the cell. DNA repair is a key regulator of survival

of the cell, normal or malignant, as the unrepaired DNA typically precludes cellular division

and proliferation. Lastly, the �fth ALL gene set (64 genes) identi�es the evolutionarily

conserved Wnt-signaling pathway as active in ALL (85). This is relevant, since Wnt-

dependent cellular processes have been shown to be critical for solid organ malignancies,

and as therapeutics are already in development for application in solid neoplasms, most

notably heaptocellular and colon carcinomas (33; 52), it is plausible that they would have

a role in chemotherapy for ALL as well.

Terms identi�ed as relevant in AML include those of immune and inammatory re-

sponse, cell adhesion and metal ion binding processes. This perhaps gives extra weights to

a recently identi�ed, yet not completely understood, property of AML to be more suscep-

tible to eradication by immune means than ALL (9). In fact, the success of hematopoietic

stem cell transplantation for AML maybe in a large part a result of graft-versus-leukemia

e�ect, i.e. immune mediated (68).

6.3.4.2 DLBCL vs. follicular lymphoma

Follicular and di�use large B-cell lymphomas are two common classes of lymphoma, ma-

lignancy that typically involves lymph nodes, spleen, but can originate at other sites, such

as gastrointestinal tract, liver, throat, bone, and brain. As expected, immune response

pathways (for follicular lymphoma), and DNA binding and replication (key processes in

transcriptional regulation of cell division and proliferation in di�use large B-cell lymphoma)

dominate the expression patterns (see Table 6.2) (12; 62).

6.3.4.3 Prostate cancer vs. normal tissue

Prostate cancer is the most common, non-dermatologic male cancer. It represents 33%

of cancers and is the third leading cause of cancer deaths in men (84). Thus, the impact

on public health is dramatic and any insights with a potential of translation into viable

preventive or therapeutic interventions are urgently needed. In this work, the pathways

active in gene transcription (upregulated in any rapidly dividing cells, e.g., malignant cell)

have been identi�ed: gene sets 1, 2 and 3 in prostate cancer (with 52, 45 and 51 genes,

respectively in Table 6.3).

In addition, the investigations of normal cells of prostate point, as expected in normal

glandular tissue of prostate, discovered groups of genes involved in cell adhesion, Ras

oncogene signal transduction, protein regulation (phosphorylation by kinases), including

surface membrane receptors (gene sets 1-5 on normal prostate tissue in Table 6.3).
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6.4 Discussion

This chapter addressed the problem of �nding enriched functional groups of genes based

on gene expression data. The proposed SEGS method allows for integration of GO and

KO gene annotations as well as the gene-gene interaction data from ENTREZ into the

construction of new interesting relevant gene sets. The experimental results show that the

introduced method improves the statistical signi�cance and the functional interpretation

of gene expression data, and we base our conclusion on the following facts:

� Enrichment scores of the newly constructed sets are better then the enrichment

scores of any single GO and KO term.

� Newly constructed enriched gene sets can be described by non-enriched GO and KO

terms, which means that we are extracting additional biological knowledge that can

not be found by single term enrichment analysis.

� This method is a generalization of traditional methods. If we turn-o� gene-gene

interactions and intersections of GO and KO terms, we get the classical single term

enrichment analysis.

The results provide strongly suggesting evidence that the proposed SEGS method indeed

�nds biologically relevant terms not found by single term analysis (see the examples of

terms commented by the medical expert in Section 6.3.4). The expert interpretation of

the results of this study shows that meaningful analysis of gene products acting jointly in

biologically relevant ways is possible and that this and future studies can provide support

for transferring of this new technology to clinic.
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In this thesis we �rst gave an extensive overview of the area of gene expression data

analysis, in particular, functional interpretation of gene expression data, we presented an

integrated database of di�erent kind of gene information, and presented two new methods

for descriptive analysis of gene expression data.

The importance of using biological information as an instrument to understand the

biological roles played by genes targeted in functional genomics experiments has been

highlighted in this thesis. In recent analysis approaches, genes are no longer the units of

interest; the interesting units are groups of genes with a common function. For genes,

the available knowledge does not come in the form of sets of clinical variables, but is

stored in gene ontology databases where genes are arranged in tree structures according

to function, location and other properties. Given a set of genes, one can make a query to

a gene ontology database to test if some, say functional, group is over-represented among

the genes.

The most common approach is to perform Fisher's exact test to �nd gene sets anno-

tated by GO terms which are over-represented among the di�erentially expressed genes.

Another way is to apply GSEA or PAGE that uses prede�ned gene sets and ranks of genes

to identify signi�cant biological changes in microarray datasets. However, after correct-

ing for multiple hypotheses testing, few (or no) GO terms may meet the threshold for

statistical signi�cance, because the relevant biological di�erences are small relative to the

noise inherent to the microarray technology. In this thesis we present two new methods

that approach this problem by expanding the space of gene sets tested for possible en-

richment (i.e., checking if the gene set is signi�cantly over-represented in the selected

important genes, or if it shows collective over-expression across a list of genes ranked by

their di�erential expression).

The �rst method uses gene ontology, gene-gene interaction data and the paradigm of

relational subgroup discovery to help �nd patterns of expression for genes with a com-

mon biological function that correlate with the underlying biology responsible for class

di�erentiation. The methodology proposes to �rst select a set of important di�erentially

expressed genes for all classes and then �nd compact, relational descriptions of subgroups

among these genes. We have assessed the quality of the induced descriptions by evaluating

them on independent test sets using the cross-validation technique. The results show a

clear advantage of using all the complementary sources of background knowledge in the

description generation procedure (GO, ENTEZ, as well as degree of di�erential expression

of genes represented by gene weights). We believe that the presented approach can sig-

ni�cantly contribute to the application of relational machine learning to gene expression
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analysis. Despite the demonstrated bene�ts of the methodology, the precision and recall

evaluation suggests that there is still room for improvement. This is to be achieved through

the expected increase in both the quality and quantity of gene/protein annotations in the

near future.

The second method address the problem of �nding enriched functional gene groups

for speci�c diseases based on gene expression data, GO, KEGG and ENTREZ data. This

method is based on the e�cient generation of new biologically relevant gene sets, that

are tested for possible enrichment. The enrichment of the gene sets was tested with the

standard methods: Fisher's exact test, GSEA and PAGE. The new gene sets are generated

as intersections of existing GO terms, KEGG terms and gene sets de�ned with the help of

gene-gene interaction data and existing GO and KEGG terms. Our method �nds gene sets

constructed from GO, KEGG and ENTREZ signi�cantly enriched, and most importantly

these single GO and KEGG terms are not found to be enriched by Fisher's test, GSEA or

PAGE, thus improving the interpretation of gene set enrichment for microarray data.

A direct comparison between these methods is not possible, because the aim of the

�rst method is to describe the top most di�erentially expressed genes, and the aim of the

second is to �nd the global biological changes across the whole list of genes, di�erentially

expressed and not di�erentially expressed genes. Depending of the needs, the user can

choose which of the two methods to apply in the analysis.

There are several directions for improvement of the methods. In the next version we

plan to extend it with other annotation systems such as gene clusters, chromosomes or

common regulatory elements, with which richer biological information might be derived.

An extensive study about the relevance of the found enriched gene sets (percentage of false

positives) is also planed in the future. Another application of the found enriched gene sets

is their usage as features for the classi�cation of microarray data. We believe that some

of these features will turn out to be statistically signi�cant markers of speci�c diseases.

At the moment we only provide a web application that implements the second method,

but in the future we plan to develop an R package (as R is a standard for implementing

and distributing new microarray analysis methods) that will cover both methods and the

developed integrated database.

Functional interpretation of gene expression data is still an emerging research area in

which a number of issues still need to be addressed. Two main aspects are susceptible of

improvement: the de�nition of blocks of functionally-related genes and the interpretation

of data other than simple ranked lists of genes.

Blocks of functionally-related genes refer to biologically meaningful terms that have

been de�ned by curators in di�erent repositories (e.g., GO, KEGG) or can be de�ned by

the users. These blocks can be considered as categorical variables in the sense that a gene

belongs (or not) to a given class. Partial or conditional membership is not considered.

While this de�nition could be applicable to some functionally related classes, such as the

`ribosomal proteins' which show a tight coordinated expression, in other classes this level
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of coordination in the expression cannot be expected from all the members. Thus, the

introduction of weights that consider distinct degrees of membership or the use of di�erent

tests that account for non categorical classes would possibly improve the resolution of the

methods for functional interpretation of gene expression data.

Not all the experimental outcomes in microarray data analysis can be represented as a

list of ordered genes. This representation is suitable for class comparisons or for the study

of a continuous parameter (e.g., the level of a metabolite) or survival studies, in which a

threshold-free approach can be applied. Nevertheless there are situations in which this list

does not have such a simple interpretation, as is the case of multiclass comparisons. An-

other interesting situation is when multiple phenotype variables are simultaneously studied.

In this case instead of a uni-dimensional list the resulting representation could be imagined

as a multi-dimensional space in which accumulation of biologically relevant terms must be

studied. Also a network of transcriptional interactions could be represented as a graph or

as a matrix. In any case, the functional interpretation by threshold-free strategies of these

di�erent gene arrangements is something that must be addressed in the future.
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Extended abstract

Microarrays are at the center of a revolution in biotechnology, allowing re-

searchers to simultaneously monitor the expression of tens of thousands of

genes. The �nal aim of a typical microarray experiment is to �nd a molecular

explanation for a given macroscopic observation (e.g., which pathways are af-

fected by the loss of glucose in a cell, what biological processes di�erentiate

a healthy control from a diseased case); this is called functional interpretation

of gene expression data.

Introduction

First methods for functional interpretation of microarray data used a two-

step approach, in which �rst genes of interest are selected. Typical criteria

for selection are di�erential expression or co-expression. Then in the second,

independent step, the annotations of these genes by biologically functional

terms are analyzed, usually by looking for functional terms over-represented in

the group of genes selected in the �rst step. Examples of widely used terms

with functional meaning are Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways. Programmes such as OntoExpress,

FatiGO, GOMiner, etc., can be considered as representatives of a family of

methods that use these terms to �nd clues for the interpretation of the results

of microarray experiments. By means of this simple two-step approach, a

reasonable biological functional interpretation of a microarray experiment can

be attained.

Nevertheless, this approach has a weak point: the resulting list of genes of

interest is generally incomplete. This is due to the fact that the de�nition

of this list is a�ected by many factors including, among others, the method

of selection and the imposed thresholds during the analysis. That is one of

the reasons that initiated the development of a new generation of procedures

which draw inspiration from molecular systems biology. These procedures aim

to directly test the behavior of blocks of functionally related genes, instead

of focusing only on the most di�erentially expressed genes. The Gene Set

Enrichment Analysis (GSEA) and Parametric Analysis of Gene Set Enrichment

(PAGE) have pioneered a family of methods devised not to �nd individual genes

but to search for groups of functionally related genes with a joint (although

not necessarily high) over- or under-expression across a list of genes ranked by

their di�erential expression between classes of microarray data.
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Even with the introduction of new methods, very often after correcting for

multiple hypotheses testing, few (or no) GO or KEGG terms turn out to meet

the threshold for statistical signi�cance, because the relevant biological di�er-

ences are small relative to the noise inherent to the microarray technology.

Scienti�c contribution

This thesis presents two new methods for the functional interpretation of gene

expression data that combine and use knowledge stored in di�erent kinds of

biological databases. The interpretation is done by identifying and describing

gene sets that have signi�cantly altered expression pro�le (e.g., over- or under-

expressed). The search of the interesting gene sets is performed in the space of

already de�ned gene sets (genes that have common annotation by prede�ned

ontological terms) and in the space of newly generated gene sets that have

prede�ned characteristics (e.g., the minimum number of member genes that are

found to be di�erentially expressed). Three well established methods, Fisher's

exact test, GSEA, and PAGE, were employed in order to identify gene sets

with signi�cantly altered expression pro�les.

Both developed methods share the same mechanism of �rst-order (relational)

feature construction, by using the GO, KEGG Orthology, gene annotations,

and gene-gene interaction data. These features, constructed by the proposi-

tionalization mechanism of the Relational Subgroup Discovery algorithm (RSD),

are used as generalized gene annotations.

Learning Relational Descriptions of Di�erentially Expressed

Gene Sets

This method belongs to the class of threshold-based functional analysis meth-

ods. It is performed in two steps. In the �rst step, `top' genes of interest

are selected using gene di�erential expression as a selection criterion. The

selection process does not take into account the fact that gene products are

acting cooperatively in the cell and consequently, for better interpretation of

the selected gene list, in the second step their behavior must be coupled to

some extent by looking for their common description. The language used for

describing the functionality of the genes is constructed from GO, gene anno-

tations, and gene-gene interaction data. By using this background knowledge

together with the paradigm of relational subgroup discovery we found com-

mon descriptions of gene sets di�erentially expressed in speci�c cancers. The
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descriptions of these gene sets can be straightforwardly used by the medical

experts.

The input to our algorithm is a multi-dimensional numerical dataset, repre-

senting the expression of the genes under di�erent conditions (that de�ne the

classes of examples), GO, and gene-gene interaction data used for producing

background knowledge about these genes. The output is a set of gene sets

whose expression is signi�cantly di�erent for one class compared to the other

classes.

It is noteworthy that the latter descriptive `post-processing' step is a machine

learning task, in which the curse of dimensionality usually ascribed to microar-

ray data classi�cation, actually turns into an advantage. This is because, in

traditional microarray data mining con�gurations, the high number of genes

results in a high number of attributes usually confronted with a relatively small

number of expression samples, thus forming grounds for over�tting. In our

approach, on the contrary, genes correspond to examples and thus their abun-

dance is bene�cial. Furthermore, the dimensionality of the secondary attributes

(relational features of genes extracted from gene annotations) can be conve-

niently controlled via suitable constraints of the language grammar used for

the automatic construction of the gene features.

We apply the proposed methodology on three classi�cation problems from

gene expression data (ALL vs AML leukemia, subtypes of ALL leukemia and

classi�cation of 14 types of cancers), with the aim to describe the genes that

are usually used by the classi�ers, i.e, the di�erentially expressed genes. The

results provide strongly suggesting evidence that the proposed method indeed

�nds biologically relevant terms not found by single term analysis. The expert

interpretation of the results of this study shows that meaningful analysis of gene

products acting jointly in biologically relevant ways is possible and that this and

future studies can provide support for transferring of this new technology to

clinic.

We believe that the developed method can signi�cantly contribute to the ap-

plication of relational machine learning to gene expression analysis especially

through the expected increase in both the quality and quantity of gene/protein

annotations in the near future.
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SEGS: Search for Enriched Gene Sets

This is based on threshold-free functional analysis. This method is also per-

formed in two steps. In the �rst step, genes are ranked by using their di�erential

expression values when comparing prede�ned classes (e.g., tumor vs. healthy

controls) by means of a appropriate statistical test (e.g., the t-test). In the

second step, the positions of the members of the prede�ned gene sets (e.g.,

de�ned by GO and KEGG Orthology (KO) terms) in the ranked list are ana-

lyzed using appropriate statistical tests (e.g., the Kolmogorov-Smirnov test).

Gene sets, whose members are predominantly found at the top of the list, are

considered enriched and responsible for the phenotype di�erence (e.g., the tu-

mor vs. normal). Our contribution to this methodology is a development of an

e�cient algorithm, inspired by the RSD �rst-order features construction, for

the construction of new, potentially enriched, gene sets. New gene sets are

de�ned by conjunctions of relational features constructed from the background

knowledge.

Testing the enrichment of these gene sets with the standard methods (Fisher's

exact test, GSEA and PAGE) shows that our method �nds gene sets con-

structed from GO and KO terms signi�cantly over-represented amongst dif-

ferentially expressed genes, while these GO and KO terms are not found to

be enriched by Fisher's test, GSEA or PAGE, thus improving the enrichment

analysis of microarray data.

We applied the proposed SEGS methodology to three classi�cation problem

datasets: leukemia, di�use large B-cell lymphoma and prostate tumor, with

aim to �nd relevant enriched gene sets that can capture the underlying bi-

ology characteristic for the given class. The experimental results show that

the introduced method improves the statistical signi�cance and the functional

interpretation of gene expression data, and we base our conclusion on the fol-

lowing facts: Enrichment scores of the newly constructed sets are better then

the enrichment scores of any single GO and KO term, and newly constructed

enriched gene sets can be described by non-enriched GO and KO terms, which

means that we are extracting additional biological knowledge that can not be

found by single term enrichment analysis.

Construction of an integrated database

Di�erent kinds of information and data are spread over the web, hosted in a

large-scale independent, heterogeneous and highly focused resources. While
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the time to obtain genomic data is getting shorter, the time for one to process

the data and understand the biological meaning is much prolonged. Therefore,

the integration of biological data and information has become an important

ongoing scienti�c problem, as researchers have not yet been o�ered compre-

hensive tools for integrative data and information processing.

We approach this problem by dividing it in three parts: creation of a database

for genomic data and information, creation of a platform for analyzing the

gene expression data, and creation of a web-based tool for accessing the data

and knowledge discovery. We created an easy to use relational database that

integrates numerous public databases (GO, KO, gene annotations and gene-

gene interaction data) in a common, structured format, placing a broad and

deep set of searchable information at the �ngertips of researchers of the wider

scienti�c community.

Conclusions and further Work

The two developed methods have proved to be of interest to medical experts.

The extracted knowledge turns out to be consistent with the relevant litera-

ture, and proves to have the potential for guiding the biomedical research and

generating new hypotheses that explain microarray measurements.

Direct comparison between these methods is not possible, because the aim of

the �rst method is to describe the top most di�erentially expressed genes, and

the aim of the second is to �nd the global biological changes across the whole

list of genes, di�erentially expressed and not di�erentially expressed genes.

Depending of the needs, the user can choose which of the two methods to

apply in the analysis.

As a further work, an extensive study about the relevance of the found en-

riched gene sets (percentage of false positives) is planed in the future. Next

further work will also aims at using discovered enriched gene sets as features

for classi�cation of microarray data. We believe that some of these features

will turn out to be statistically signi�cant markers of speci�c diseases.
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