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Abstract

In the thesis, we address the problem of discrete-time modeling of non-linear dynamic
systems. Using the external dynamics approach, the problem is transformed to a nonlinear
static regression function approximation problem. We consider multiple-model approaches,
which build several simple models.

We build upon one crisp general-purpose approach, which builds crisp linear model
trees, and one fuzzy linear model tree approach. The former is known to be fast, but
has not been evaluated for modeling dynamic systems. While the latter is slower, its
applications for modeling dynamic systems show that it is rather accurate. We evaluate
and further develop the two approaches to improve the predictive performance of the first,
and the running time of the second approach.

In particular, we consider the crisp model tree algorithm M5’ and the fuzzy model tree
algorithm Lolimot. The models they build differ: the first builds crisp model trees, while
the second builds fuzzy model trees, also known by the name of Takagi-Sugeno models.
This thesis also investigates the use of ensembles built on top of the two tree learning
algorithms, as they would potentially be able to increase the predictive performance. The
ensemble approach considered is bagging, aimed at reducing the variance of the model.
We also consider multi-output trees, which were introduced earlier, but not yet evaluated
and popularized, and ensembles thereof.

We empirically evaluate the approaches of building model trees and ensembles on a
collection of measured and synthetic datasets derived from seven dynamic system case
studies. In order to provide for a more realistic assessment of performance, the datasets
used contain noise. The performance results obtained are analyzed using statistical tests.
The results of the empirical evaluation show that ensembles improve over the performance
of single model trees, and that the multi-output tree approach is worth considering, as
it decreases the complexity of the overall multi-output models. They also show that the
modifications of the Lolimot algorithm decrease its running time, while maintaining the
same level of predictive performance.

The first contribution of this thesis are the modifications and analysis of two model
tree learning algorithms, introduced in different domains, for the task of modeling dy-
namic systems. Also, this thesis provides an implementation and evaluation of ensemble
approaches based on the two tree learning algorithms. The ensembles of model trees are
evaluated on static regression tasks. Finally, both single trees and ensembles are evaluated
on single-output and multi-output dynamic system case studies, which provides insights
into their performance.
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Povzetek

Disertacija obravnava problem modeliranja nelinearnih dinamiénih sistemov v diskretnem
Casu. S pristopom zunanje dinamike smo problem pretvorili v regresijski problem apro-
ksimacije nelinearne stati¢ne funkcije. V disertaciji smo upostevali ve¢modelne metode
modeliranja, kjer so modeli sestavljeni iz ve¢ enostavnih podmodelov.

V disertaciji smo nadgradili sploSnonamensko metodo za modeliranje, ki gradi drevesa
linearnih modelov, in metodo mehkih dreves linearnih modelov. Prva metoda je znana
po svoji hitrosti ucenja modela, vendar do sedaj Se ni bila preizkusena za modeliranje
dinami¢nih sistemov. Medtem ko je druga metoda pri u¢enju pocasnejsa, se je do sedaj
izkazala kot precej natan¢nejSa za modeliranje dinami¢nih sistemov. Omenjeni metodi smo
ovrednotili in nadgradili tako, da smo izboljgali napovedno to¢nost modelov, dobljenih s
prvo metodo, in ¢as potreben za ucenje modelov z drugo metodo.

Obravnavani metodi sta bili metoda modelskih dreves M5’ in metoda mehkih modelskih
dreves Lolimot. Modeli, ki jih metodi gradijo, se razlikujejo: prva gradi drevesa linearnih
modelov, medtem ko druga gradi mehka drevesa linearnih modelov, ki so znani tudi kot
mehki model Takagi-Sugeno. Disertacija obravnava tudi drevesa za modeliranje sistemov
z ve¢ izhodi. Taki modeli dreves so bili sicer Ze znani, vendar Se ne ustrezno ovrednoteni
ter uporabljeni v ansamblih, kar smo storili v disertaciji.

Metode gradnje dreves linearnih modelov in njihovih ansamblov smo ovrednotili empi-
ri¢no na mnozici merjenih in simuliranih podatkov sedmih primerov dinami¢nih sistemov.
Uporabljene mnozice podatkov vsebujejo Sum in zaradi tega omogocajo bolj realisti¢no
vrednotenje dobljenih modelov. Rezultate vrednotenja smo analizirali s statisti¢nimi te-
sti. Rezultati empiri¢nega vrednotenja so pokazali, da so ansambli modelskih dreves bolj
uspesni pri napovedovanju kot posamezna drevesa. Poleg tega je bilo razvidno tudi, da
je smiselno uporabiti metodo modelskih dreves za modeliranje dinamic¢nih sistemov z vec
izhodi, saj se na ta nacin zmanjsa kompleksnost modela v primerjavi z ve¢ modeli z enim
izhodom. Rezultati vrednotenja so pokazali, da so predlagane izboljave metode Lolimot
zmanjSale ¢as ucenja modela pri enaki napovedni to¢nosti.

Prvi prispevek disertacije so izbolj8ave in vrednotenja omenjenih dveh algoritmov za
ucenje regresijskih dreves za modeliranje dinamic¢nih sistemov, ki izhajata iz razli¢nih stro-
kovnih podro¢ij. Predstavili smo metode za gradnjo ansamblov obeh vrst dreves in nji-
hovo vrednotenje. Disertacija vsebuje tudi vrednotenje ansamblov modelskih dreves za
modeliranje stati¢nih regresijskih problemov. Zadnji prispevek je empiri¢no ovrednote-
nje posameznih dreves in ansamblov na primerih z enim in veé izhodi, ki daje vpogled v
uéinkovitost obravnavanih metod za modeliranje.
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Chapter 1

Introduction

Dynamic systems, the state of which changes over time, are ubiquitous in both science and
engineering. FExperts build models of a dynamic system to analyze it, simulate and predict
its behavior under various conditions. The system behavior is represented by time series
of state variables values. In continuous time, the models of dynamic systems typically take
the form of ordinary differential equations (ODEs) or partial differential equations (PDEs),
where the rate of change of the state variable is expressed as a function of its current state,
as well as the values of input (exogenous) variables!.

In discrete time, the models of dynamic systems typically take the form of difference
(recurrence) equations, which describe the next state of the system, using the current state
and input variables. Using the external dynamics approach (Nelles, 2001), the discrete-time
modeling of dynamic systems can be reformulated and solved as a regression problem.

In this thesis we consider multiple-model approaches for solving the regression problem
mentioned. These approaches build several simpler models, each valid in its own region. In
particular, we are interested in tree-based approaches, which are able to define the bound-
aries of the regions in a more efficient manner, as compared to other types of partitioning
(e.g., grid partitioning). We limit our research only to multiple-model approaches based
on trees that use linear models named model trees.

The model trees considered and used here are crisp (linear) model trees and fuzzy
(linear) model trees. On the one hand, the crisp model trees utilize crisp binary splits, i.e.,
a data point is sorted down either the left or the right subtree of a split node. This implies
that the final prediction of the model is calculated by using one terminal node only, i.e.,
one local linear model. On the other hand, the fuzzy model trees use fuzzy binary splits,
which associate each data point with both subtrees of a split node with different weights.
The final prediction of a fuzzy model tree is obtained by consulting all local models, each
of them having different importance (w;) for the final prediction.

Ensembles are frequently used to increase the predictive performance of the crisp (and
fuzzy) tree-based approaches. The ensembles consist of several base models. The ensembles
we consider, i.e., bagging and forests, perform bootstrap random resampling of training
data and build a model on each sample: By combining their predictions, ensembles reduce
the variance of base models.

! According to the continuous-time state equations. Please note that other fields may use different
terminology. For example a system (endogenous) variable denotes a factor in a causal system whose value
is determined by the states of other variables in the system.



2 Chapter 1. Introduction

1.1 Aims and Goals

The main goal of our research is to investigate the problem of discrete-time modeling of
nonlinear dynamic systems and propose novel solutions based on linear model trees and
ensembles thereof. The general-purpose crisp linear model trees, introduced in the domain
of machine learning, have not been considered extensively for dynamic system modeling.
Fuzzy, i.e., soft, model tree learning algorithms have already been introduced and used in
the system identification and control domain, but their computational complexity is higher
as compared to the crisp approaches.

Two intermediate goals comprise the main goal of this thesis. They concern modeling
of single-output and multi-output systems, respectively. The first considers analyzing the
similarities and differences between the two approaches for modeling dynamic systems,
and their further development, i.e., introducing modifications or improvements to both ap-
proaches. We will first study, evaluate and analyze the similarities and differences between
the crisp and fuzzy model tree learning algorithms introduced in both areas. The crisp
model tree algorithms are fast but may produce inaccurate models when fitting smooth
functions, while the fuzzy approaches are slower but more accurate.

Next, we will introduce modifications to a general-purpose crisp model tree learning
algorithm in order to make it more accurate in both single-tree and ensemble settings. Also,
we will introduce modifications to the more accurate fuzzy model tree learning algorithm
in order to make it faster.

The second intermediate goal of this thesis is to study the multiple-output modeling
problem, and propose solutions based on using multi-target model trees. The terminal
nodes of the multi-target model trees include local linear models for all output variables of
the system, which may be advantageous as the potential inter-dependence of the output
variables can be utilized. Also, in the fuzzy model tree algorithm Lolimot, learning multi-
target model trees is advantageous, since the evaluation of the intermediate models is
performed simultaneously for all outputs. In more detail, the parallel simulation of the
models for all output variables, performed during learning, is more sensitive to incorrect
or imperfect models.

1.2 Methodology

First, we will define the problem of discrete-time modeling of dynamic systems as a static
function approximation task, and as such will survey the machine learning methods appro-
priate for solving it. We will also survey relevant literature from the system identification
and control community, mainly focusing on the multiple-model approaches and fuzzy mod-
eling.

Second, we will study the applicability of crisp linear model trees, fuzzy linear model
trees and ensembles of these two types of trees. We will also consider prediction of multiple
dependent variables, i.e., targets. For multi-output dynamic systems we will build models
which predict all outputs simultaneously. Ensembles of multi-target trees will also be
considered.

Third, we will perform an empirical evaluation using benchmark machine learning
datasets for the static case, and an empirical evaluation using standard measured and
synthetic datasets from the field of non-linear system identification and control. For the
latter, multi-output dynamic case studies will also be considered, and the multi-target
model tree approaches evaluated. For the evaluation in the static case, the standard 10-
fold cross-validation method will be used, while for the dynamic case, an evaluation based
on training, validation and test sets will be utilized. In the latter case, it is not possible
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to use cross-validation because of the temporal order of the data points that needs to be
preserved. The performance results will be analyzed by using statistical tests, which will
show which differences in performance are significant.

1.3 Contributions

The work presented in this thesis makes the following original contributions to the fields
of machine learning and system identification:

e Design and implementation of novel model tree based approaches for modeling dy-
namic systems, based on and improving upon the M5’ and Lolimot algorithms (Chap-
ter 4):

— Improved M5’ algorithm for regression, which can now induce fuzzified and
multi-target model trees.

— Improved Lolimot algorithm for modeling dynamic systems, which now produces
trees with similar predictive performance faster.

— Algorithms that can induce ensembles of single and multi-target model trees by
using the improved M5’ and Lolimot algorithms.

e Empirical evaluation of the developed approaches on benchmark problems and case
studies (Chapters 5 and 6):

— Evaluation of the improved M5’ and Lolimot algorithms (and ensembles based
on these) on benchmark problems of single and multi-target static regression
(Chapter 5).

— Evaluation of all the above mentioned approaches (and a few other selected
methods) on several case-studies of modeling dynamic systems (Chapter 6).

1.4 Structure of the Thesis

The introductory chapter describes general perspectives and topics considered in the thesis.
It determines the goals of the research and the expected original contributions of the work.
The rest of this chapter outlines the contents of the remaining chapters, which make up
the thesis.

Chapter 2 presents system identification in discrete time, its objectives and the typical
system identification loop. It also describes the external dynamics approach which allows a
dynamic system identification problem to be transformed into a static regression problem.
Finally, it outlines existing related work from the area of machine learning, suitable for
solving regression problems.

Chapter 3 introduces tree-based methods for regression. It starts by describing the
main components of tree learning algorithms. Then, it describes the details of the crisp
model tree approach M5’ and the fuzzy model tree approach named Lolimot. At the end,
it outlines the limitations of each of the methods, which serve as a motivation for the work
described in the following chapters.

Chapter 4 presents the novel approaches to modeling dynamic systems. It first intro-
duces the modifications of the crisp M5’ model tree algorithm that improve its accuracy for
modeling dynamic systems and allow for multi-target prediction. Then the modifications
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to the Lolimot algorithm that improve its learning time and modify its structure determi-
nation are described. Next, ensembles of model trees are introduced. Finally, the methods
are illustrated on a static function approximation problem.

Chapter 5 presents the evaluation of the model tree ensemble approach based on the
modified M5’ algorithm described in Chapter 4 on the task of static regression. Both single-
target and multi-target regression problems are considered. The evaluation is performed
using benchmark machine learning regression datasets.

Chapter 6 reports the results of the evaluation of the approaches described in Chapter
4 on the task of modeling dynamic systems. It describes the dynamic system case studies,
the preprocessing of the measured and synthetic data and the experimental results. The
results reported consider both single-output and multi-output dynamic systems, by using
single model trees and ensembles thereof. Also, a comparison to selected methods typically
used for system identification is performed and reported.

Chapter 7 presents the conclusions and summary of the thesis, its original contributions,
and gives some directions for further work.
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Background

Dynamic systems are systems whose responses change over time. The task of modeling
dynamic systems is of high practical importance, because such systems are ubiquitous
across all areas of life. The models allow for better understanding of dynamic systems, as
well as their control, the latter being the focus of study in control engineering.

This thesis is positioned at the intersection of the fields of machine learning and au-
tomated modeling of dynamic systems. Machine learning is a sub-area of artificial intelli-
gence, while automated modeling of dynamic systems is a sub-area of control engineering
and system identification. Below we first discuss the broader range of system identifica-
tion, which includes a complete description of the system identification loop. As this thesis
considers a machine learning approach to system identification, in the remainder of this
chapter we present existing machine learning approaches, which are used for regression.
Finally, we discuss the application of machine learning methods to system identification.

2.1 System Identification

System identification is concerned with building models that closely describe the real world
phenomena. In some cases it is possible to build the model using only thorough scientific
understanding of the system. This means that the knowledge of the physical, chemical or
other laws that govern the system may be enough to obtain a good model of it. This type
of modeling is white box modeling, or first-principles modeling. On the other extreme,
the task of modeling can be approached by using only measurements of some variables of
interest. This is called black box, or data-driven modeling.

Objectives. The objectives of system identification are twofold (Billings, 2013). The
first objective is building a model that would have good approximation and prediction
properties, i.e., minimum prediction errors. Users who have this as their aim could find for
example fuzzy logic approaches, neural networks, or related methods to be quite appro-
priate for achieving this. However, there is another, more analytical objective of system
identification: the possibility to build a model that would reveal the components and be-
havior of the system. Having a model that reveals the behavior, users are also able to
analyze the system by different means. One example is analyzing the system using differ-
ent input signals, which may be in practice expensive to achieve, or even dangerous (e.g.,
nuclear systems).

The latter objective of interpretability is quite important for analyzing the obtained
models. Other related objectives are obtaining insight into certain phenomena of the
system, analyzing process behavior, controlling the process, or estimating some variables
of the system that cannot be easily measured (Keesman, 2011). When the dominant
objectives of the system identification are of this type, approaches such as neural networks



6 Chapter 2. Background

may not be appropriate. They would produce models which may have good predictive
properties, however, the amount of parameters that are being estimated inside need not
carry a direct relation to variables of the system (Billings, 2013). For such reasons, defining
the purpose of the modeling procedure would also add bias to the selection of the most
appropriate modeling technique.

Exact vs approximate models. The result of system identification is a mathematical
model which represents an approximation of the real system. Due to the complexity of
the system or the limited prior knowledge regarding the laws that govern it, one can
only produce approximate models (Keesman, 2011). Even if the prior knowledge of the
physical, chemical or biological laws that govern the system is complete, using the exact
model would be too complex for particular applications. The look-up table models, which
are quite popular in industry, are another example. They are simple, and only approximate
models of the system.

The system identification loop. Guided by the intended purpose of the model
and the prior knowledge of the system being modeled several decisions have to be made
during the system identification procedure. The procedure itself can be divided into several
steps, where these decisions are being undertaken. The steps of the system identification
procedure can be summarized as:

e choice of model inputs,

choice of model architecture,

choice of dynamic representation,

choice of model structure and complexity,

choice of model parameters,

model validation.

The steps are executed in the order given in Figure 2.1. The whole procedure is a loop
(Nelles, 2001), since some of the steps need to be repeated, in order to improve the model
of the system. In the remainder of this part, we outline some basic details of the system
identification loop, which are also relevant to the thesis.

The choice of model inputs determines which variables would be used in the modeling
procedure as inputs. Additionally, it determines what kind of excitation signal would be
used for each input (sinusoidal, step-like, etc). The input signals have to be chosen in such
a manner that they excite all of the system modes, enough for determination of the model
(Ljung, 1987).

This step is one of the more important steps in the process. It requires knowledge
of the purpose of the modeling, as well as prior knowledge of the system that is being
modeled. The set of input variables could be chosen by using unsupervised or supervised
input selection, trying all input combinations, or other pruning techniques. It is worth
noting that, in spite of its importance for a black-box modeling technique, the choice of
excitation signals is usually limited, due to its application specific nature.

The decision of which model architecture would be used is the hardest and at the same
time subjective. Different criteria play a role in the selection of one model architecture over
another. Some of them include: intended use of the model, dimensionality of the problem,
offline or online learning and experience of the user.

The choice of dynamic representation is also influenced by the intended use of the
model. The most frequently used is the external dynamics approach, however the internal
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Figure 2.1: The system identification loop according to Nelles (2001).
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dynamics may also be used, mostly in cases when there is little knowledge of the underlying
system (Nelles, 2001).

The choice of model order is influenced by the prior knowledge of the system being
modeled. However, many practical applications make use of the trial-and-error approach.
It is worth noting that considering higher dynamic order (lag) leads to a loss in static
approximation accuracy (Nelles, 2001).

The choice of model structure in the dynamic case is concerned with selecting a subset
of the available variables to be used as regressors. It can be performed automatically
(for example with the Orthogonal Least Squares approach) or by using non-automatized
trial-and-error approaches. The algorithms used in this thesis are able to automatically
determine the model structure, i.e., the regressors to use in the linear models.

The choice of model parameters is performed by using different linear or nonlinear
optimization techniques. The literature and standard toolboxes offer many different ap-
proaches. This makes the usage of various techniques easy and practical, i.e., the user can
apply the optimization procedure in a black-box fashion.

The model validation determines whether the obtained model is acceptable for its in-
tended purpose. Testing the model using an unseen test dataset could be considered as a
first step. In the case there is lack of data, i.e., all the data were already used for training,
the model could be tested using simple (synthetic) input signals, such as step-like signals.
This should provide some insight into the model, even in the case there is no data to
compare the predictions to.

Given the importance of the purpose of modeling, obtaining a model may be only the
first stage of a multi-stage procedure. For example, the next stage could utilize the model
to design a controller or a fault-detection system. In this case, the criterion for validation
would be the performance of the derived controller, or fault-detection system.

2.1.1 Discrete-time vs Continuous-time Modeling

Dynamic systems can be modeled in continuous time with systems of ordinary differential
equations, describing the rate of change for each of the system variables. They can also
be modeled in discrete time, by using difference equations that describe the state of the
system at (a discrete) time point k& as a function of previous system states and inputs.

2.1.1.1 Continuous-time modeling

In continuous time, the models of dynamic systems take the form of ordinary differential
equations (ODEs) or partial differential equations (PDEs). The rate of change of state
variable of the system is expressed as a function of the current state of the system, as well
as the values of input (exogenous) variables.

2.1.1.2 Discrete-time modeling

In a state-space system, the next state of the system is determined by the state equation,
in terms of its current state and inputs. The system output is determined by the output
equation, in terms of a combination of the current system state and the current system
input. The measured variables are the input (u) and output variables (y).

In discrete time, the task is to obtain difference (recurrence) equations, by using the
measurements for the input and output variables. These equations would describe the
current outputs of the system using past values of the input and output variables. Through
the external dynamics approach (Nelles, 2001), the modeling problem can be reformulated
as a regression task. The value of the output variable(s) at time instant k, y(k), needs to
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be predicted from the lagged values of the input and output variable(s), u(k — 1), u(k —
2),..,u(k —ny),y(k—1),y(k —2),..,y(k — ny) using a static function approximator. The
values n, and n, are the lags of the input and output variables, respectively.

It is worth noting that certain differences exist between continuous-time modeling and
discrete-time modeling. First, the number of terms in the equations of continuous-time
models is smaller. For example, a first order derivative term may require up to three lagged
values of the corresponding variable (Billings, 2013). This translates to a larger number
of parameters that have to be estimated in the discrete-time model. Second, discrete-time
modeling has a requirement that a sampling time needs to be defined. Moreover, the choice
of sampling time could also affect the success and efficiency of the discrete-time modeling
procedure. Also, in both cases the data collection stage inevitably involves data sampling,
which is a discrete process.

2.1.2 System Identification in Discrete Time

This thesis addresses the task of discrete-time modeling of nonlinear dynamic systems. As
mentioned above, two types of variables are used in modeling, output and input (exogenous)
variables, denoted by y and wu, respectively. Using the external dynamics approach, the
task of empirical modeling of a dynamic system can be formulated as a regression problem
of finding a difference equation that fits an observed behavior of the system.

More precisely, to model a system described by y and u, we need to formulate a dif-
ference equation that expresses the value of the output variable y at a given time point
k as a function of past output and input variables (y and u). The transformation creates
a new vector of features, which is composed of the lagged values of the input variable u
and output variable y. Typically, up to n, and n, time points in the immediate past, with
respect to k, are considered, for the variables u and y respectively. At time point k, the
dynamic system is thus represented by the vector of features x(k)

x(k) = [u(k —1),u(k —2), .., u(k —ny),y(k —1),y(k — 2),..,y(k — ny)]T (2.1)

where (n, ny) are the orders (lags) of the system®. The model of the system is a difference
equation that describes the output of the system at (a discrete) time point k, y(k) as a
function of the previous system states and inputs (i.e., x(k)). The corresponding regression
problem is to train a nonlinear function approximator f(.), s.t. y(k) = f(x(k)), from a
table of data generated from an observed behavior in the manner described above.

The task of discrete-time modeling of nonlinear dynamic systems from measured data
can be approached using different modeling techniques. Over the last few decades, nu-
merous different methods have emerged. The earlier approaches include for example
the block-oriented Hammerstein and Wiener systems (Giri & Bai, 2010) and the semi-
parametric Volterra method (Haber & Unbehauen, 1990). More recent approaches include
the widely used basis-function approaches of artificial neural networks (Nelles, 2001) and
fuzzy modeling, as well as the nonparametric approaches of kernel methods (Cristianini &
Shawe-Taylor, 2000) and Gaussian Process models (Rasmussen & Williams, 2006), to list
just a few.

As discussed in Section 2.1, the last step of the system identification loop is a validation
of the dynamic system’s model. The validation is carried out according to the purpose of
the model and often requires a stringent and purpose-specific procedure. When the purpose
is good one-step-ahead prediction performance, as shown in Figure 2.2 (a), the predicted
values for the system variable are compared to the measured values. On the other hand, if

'In the thesis we consider only the special case of n, = n,. Using this simplification, we consider an
identical order for all input and output variables.
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Figure 2.2: A model used for prediction (a) or simulation (b). (g~! is the backshift
operator)

the aim is simulation, illustrated in Figure 2.2 (b), there is one substantial difference: the
one-step-ahead model predictions are fed back to the model to produce predictions for the
more distant future.

While the first step of one-step-ahead prediction and simulation is the same, in sim-
ulation, the predicted value of the system variable y at time k (i.e., g(k)) is fed back as
input to the model, instead of a measured value (y(k)) at time k£ + 1. Due to the real-
istic possibility of error accumulation in the case of an inaccurate model, divergence of
the simulation predictions from the measured values may occur as we move further into
the future. The cumulative error of simulation is referred to as the ouiput error, while
in the case of one-step-prediction the error is referred to as prediction error. While most
approaches to solving this task try to minimize the one-step prediction error, the learned
models are typically evaluated in terms of their simulation (output) error.

2.2 Machine Learning Approaches to Regression

A standard task in machine learning is learning predictive models. Predictive models pre-
dict the value (or values) of a dependent variable from the values of independent variables
(predictors). The predictive modeling tasks are divided based on the type of the target
variable into classification (discrete target variable) and regression (continuous target vari-
able). Among the most popular predictive modeling approaches for regression are artificial
neural networks (ANN), kernel approaches such as support vector regression (SVR) and
tree-based approaches. In the remainder of this section we present some details of these
methods.

The artificial neural networks (ANNs) (Nelles, 2001; Narendra & Parthasarathy, 1990),
which can be seen as universal approximators, are very powerful and flexible methods for re-
gression, which are also universal function approximators. They typically consist of many
simple computational elements, arranged in layers and operating in parallel. The ANN
methods are determined by their network architecture, node characteristics and learning
procedures. Different architectures of neural networks exist, the most common ones being
multilayer perceptron (MLP) and radial basis function (RBF) networks. They were in-
vented as early as 1943 (McCulloch & Pitts, 1943), uniting the studies of neurophysiology
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and mathematical logic. However, the most noticeable contribution, the backpropagation
of errors procedure (Rumelhart, Hintont, & Williams, 1986) was introduced later, in 1986.

The ANNs, which can also be seen as a basis-function approach (Nelles, 2001), work by
fixing the number of basis functions, and allowing them to be adaptive. The basis functions
include several parameters, which are adapted during the learning process (Bishop et al.,
2006).

Typically, the basis functions in ANNs are implemented in nodes, which are grouped
into layers. In this architecture, the nodes that produce the output of the model are
grouped in an output layer, while the network can include a group of hidden nodes, forming
the hidden layer. The parameters of each of the basis functions are adapted during the
training process. The most frequently used learning algorithm is the backpropagation of
the error, performed by starting from the output layer, and working back towards the
hidden and input layers. However, in spite of the advantages of popular ANN approaches,
their main disadvantages are the lack of transparency and curse of dimensionality (Azman
& Kocijan, 2011).

The support vector machines (SVM) for classification and their regression variant of
support vector regression (SVR) utilize the concept of kernels, formulated as an inner prod-
uct in a feature space. The concept of kernels was introduced as early as 1964 (Aizerman,
Braverman, & Rozoner, 1964), but it found its place in the machine learning domain later,
after the work of Boser, Guyon, and Vapnik (1992).

The SVR addresses the curse of dimensionality issue by defining basis functions that
are centred in the training points, and then selecting a subset of these, named support
vectors, during training. In other words, the model is expressed in terms of only a few
support vectors, and is able to approximate nonlinear functions with the help of the kernel
mapping.

The tree-based approaches are quite popular and the machine learning literature pro-
vides many different algorithms for learning classification and regression trees (Breiman,
Friedman, Olshen, & Stone, 1984), as well as the special case of model trees ((Karalic,
1992), the M5’ algorithm (Wang & Witten, 1997; Frank, Wang, Inglis, Holmes, & Witten,
1998), the HTL algorithm (Torgo, 1997), and others (Loh, 2002; Dobra & Gehrke, 2002;
Malerba, Esposito, Ceci, & Appice, 2004; Gama, 2004)). The model trees are comprised
of inner nodes with splits, and terminal nodes, which contain a local model (either con-
stant, linear, polynomial or of some other more complex type). Linear model trees with
axis-orthogonal splits are defined as: A model tree consists of either a) a split node with a
test of the form variable < threshold which creates a binary partition of the input space
and has left and right offspring nodes or b) a single terminal node for which a local linear
model is defined.

Tree learning algorithms are robust and tend to scale well to large predictive modeling
problems. The algorithms apply the divide-and-conquer principle, by splitting the available
learning data into smaller subsets as the tree is constructed. Thus, the potentially complex
optimization problem is broken down to several simpler optimization subproblems. Fach
optimization subproblem uses a proper subset of the whole set of training data, so the
learning procedure is simplified. This gives the tree learning algorithms the ability to
efficiently handle a large number of data points (i.e., instances).

The issue of overfitting to noise in decision trees and tree ensembles is controlled by
the depth of the individual tree or the trees in the ensemble (Segal, 2004). Larger trees
are more sensitive to noise and prone to overfitting, while smaller trees are less sensitive
and less prone to overfitting. Tree pruning procedures can be used to reduce the depth of
an overly large tree, and control the overfitting to noise.
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2.3 System Identification with Machine Learning: Prior Work

The procedure of system identification concerns building models of real-world phenomena,
typically by defining a mapping between a set of variables called inputs, and another set,
called outputs. Several approaches exist for achieving this goal, which have been introduced
in different domains. It is worth noting that while the categorization of existing approaches
for nonlinear system identification (“Nonlinar System Identification,” 2014) contains the
traditional block-oriented Hammerstein and Wiener systems (Giri & Bai, 2010), and the
semi-parametric Volterra method (Haber & Unbehauen, 1990), the approaches appearing
more recently are denoted using the phrase "neural network models". It is typical to use
the phrase "neural network models" for all machine learning approaches, i.e., approaches
which learn from data. This is due to the early success of the neural networks for sys-
tem identification. Also, the naming of "neuro-fuzzy" model class suffers from similar
shortcomings. In its early period, the neuro-fuzzy models were approaches which applied
neural networks techniques for learning parameters (and/or structure) of fuzzy models. At
present, however, this model class has been extended to different kinds of machine learning
methods which learn the parameters and/or structure of fuzzy models (Nelles, 2001).

In the remainder of this section we first introduce the existing machine learning ap-
proaches used for system identification, categorized into two categories, depending on the
models they produce. Then, we outline one important challenge for the methods: assum-
ing that the intended usage of the dynamic system models is simulation, we present the
problem of optimizing the simulation error during learning.

2.3.1 One Global Model vs Multiple Model Approaches

This part presents a classification of the machine learning approaches according to the
type of model they produce. Some approaches learn one global model describing the whole
system, while others learn multiple models. The following paragraphs present the methods
belonging to the two categories.

Methods that build one global model include for example the well-known artificial neu-
ral networks (Narendra & Parthasarathy, 1990), Gaussian Process models (Rasmussen &
Williams, 2006), and support vector regression (Cristianini & Shawe-Taylor, 2000). They
learn one global model by using a nonlinear optimization procedure on all training (iden-
tification) data in a single optimization task. The learned model is valid in the whole
operating region.

Gaussian Process models are nonparametric, probabilistic black-box models that have
been used for modeling dynamic systems (Rasmussen & Williams, 2006). One of their
advantages is the measure of confidence for the predictions they provide, which helps in
assessing the quality of the model prediction at each point. This approach is related
to support vector machines and especially to relevance vector machines (Rasmussen &
Williams, 2006).

The multiple model approaches build several local models, each of them valid in a
subregion of the whole operating region. They are also referred to as local model networks
(Murray-Smith & Johansen, 1997). They include neuro-fuzzy approaches like the Adaptive
Neuro Fuzzy Inference System — ANFIS (Jang, Sun, & Mizutani, 1997), Local Linear Model
Trees — Lolimot (Nelles, 2001), and the operating regime approach (Johansen & Foss, 1997).

The ANFIS method is a hybrid neuro-fuzzy approach, which builds a Takagi-Sugeno
fuzzy model (Takagi & Sugeno, 1985). It is worth noting that this approach differs from
neural networks, because it has different types of nodes and it utilizes a hybrid learning
approach. Also, the resulting model is a set of fuzzy rules, i.e., a Takagi-Sugeno fuzzy
model. ANFIS uses a hybrid learning rule that combines the backpropagation gradient
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descent and the linear least-squares optimization method, for its parameter estimation.
The structure identification task, i.e., the determination of the number of fuzzy rules and
initial positioning of the fuzzy rule centers can be handled by using different methods: grid
partitioning of the instance space, fuzzy clustering, or a tree-based approach (Jang, 1994).
The last decision is typically left to the user.

The Local Linear Model Trees (Lolimot) (Nelles, 2001) method is a multiple model
approach which builds a fuzzy model tree. It solves the structure identification and pa-
rameter estimation problems in an integrated, iterative procedure. In each iteration, the
method adds one local model to the tree structure and calculates the parameters of the
model using local parameter estimation. It has been successfully used for identification of
dynamic systems (Nelles, 2001). More details about the Lolimot method are presented in
the following chapter of the thesis.

All methods mentioned so far, i.e., ANNs, ANFIS and Lolimot, suffer from the curse of
dimensionality as the number of input dimension gets larger. This is especially problematic
for the ANFIS method in case the structure determination is performed by using grid
partitioning. The number of parameters that it needs to estimate is in this case proportional
to p™ (where n, is the number of input variables and p is the number of membership
functions assigned to each variable).

2.3.2 Optimization of the Output Error

Most approaches to modeling dynamic systems optimize the prediction error during learn-
ing, both for the structure determination and the parameter estimation. However, the
validation of the learned model is typically performed by simulation. This presents a
challenge and raises the question whether it is possible to directly optimize the output
error while learning, instead of optimizing the prediction error. In control engineering, the
optimization of the prediction error is also known as a series-parallel identification struc-
ture, while the optimization of the output error as a parallel identification structure. For
example, the related work of Connally, Li, and Irwin (2007) investigates the differences
between series-parallel and parallel identification structures for training neural networks.
Their work tries to combine the optimization of the prediction and output error in one
training algorithm, in order to provide a more accurate neural network model.

Several other related works (L. Piroddi & Spinelli, 2003; Luigi Piroddi, 2008; Nelles,
2001; Kocijan & Petelin, 2011) deal with the parallel identification structure. The works
of Nelles (1995, 2001) conclude that a decrease of the prediction error does not necessarily
lead to a decrease in the output error of the model, when using neural-networks as models.
Similarly, Kocijan and Petelin (2011) deal with the same question in the context of Gaussian
Process models. They conclude that the direct optimization of output error is a much
harder task as compared to the optimization of prediction error, since the optimization
surface in the former case contains many local optima and its contour plots depict quite
irregular shapes.

However, some nonlinear identification methods exist, which make use of the output
error for model structure selection. An example is the Lolimot method (Nelles, 2001), which
iteratively adds complexity to a tree structure. In each iteration, the method solves the
parameter optimization problem using least squares estimation, evaluates the intermediate
model using simulation, and tries to improve the structure by adding one more node
to the tree. The author concludes that the structure search, a nonlinear optimization
problem solved by a greedy hill-climbing approach, could benefit from directly estimating
the simulation error. This approach is possible because: a) the iterative nature of the
approach means that after each iteration an intermediate solution, i.e., a fuzzy model tree,
is ready to be used; b) the number of iterations, or total number of nodes in the tree is
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typically not large, so the time consuming evaluation of the output error on the whole
training set does not increase the overall time complexity substantially.
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Chapter 3

Tree-based Methods

This chapter first introduces the model trees, and the differing terminologies of machine
learning and system identification. Then it describes the main components (building
blocks) of model tree learning algorithms. This is followed by an introduction of the
M5’ algorithm, and its main components. In the following, the Lolimot model-tree algo-
rithm for dynamic system identification is presented. Finally, the potential limitations of
the existing mode tree algorithms for modeling dynamic systems are stated. These serve
as a motivation for performing modifications and improvements to the algorithms.

3.1 Introduction

A tree learning method from machine learning produces binary trees with two types of
nodes: inner nodes and terminal nodes, cf. Figure 3.1 (a). The inner nodes of the trees
contain a split, of a certain form. The type of splits used could range from axis-orthogonal
(single split variable), axis-oblique, functional or other more complex split types. The
terminal nodes of the trees contain a local model, which could be constant, linear, poly-
nomial or some other more complex type. This thesis is concerned with trees which have
axis-orthogonal splits in the inner nodes and linear models in the terminal nodes. Such
trees are named model trees.

A set of splits of one model tree, followed from the root down to a terminal node, defines
one partition. The set of all partitions that a tree defines is named partitioning. In the
machine learning literature, most of the tree-based approaches build crisp trees, i.e., trees
with crisp or hard splits. A data point (i.e., an instance) belongs to exactly one partition,
i.e., exactly one linear model is associated to a data point. For each of the partitions, or
terminal nodes, the linear model learned is also named local model (LM).

However, by using fuzzy sets and fuzzy logic, several researchers have also defined fuzzy
trees. They differ in the fact that the splits use fuzzy weighting: a data point belongs to
the left subtree with a certain weight, and to the right subtree with a different weight.
This also means that now all of the local models are associated with a data point, however,
each one with a different weight (cf. the fuzzy weighting in Figure 3.1 (a)).

An example of a method used in control engineering, which produces fuzzy model trees
is the Local Linear Model Trees method (Lolimot). The model is built with the help of the
tree-based partitioning of the operating region, but at the end of the learning procedure, it
is represented as a Takagi-Sugeno (TS) fuzzy model (Takagi & Sugeno, 1985; Jang et al.,
1997). However, the form of the Takagi-Sugeno fuzzy model and the fuzzy model tree
described above are equivalent.

A Takagi-Sugeno fuzzy model, shown in Figure 3.1 (b) is defined by a set of rules. Each
rule is comprised of a left-hand side (antecedent) which is a fuzzy partition, and a right-
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hand side (consequent) which is a crisp linear model. The model tree built by the Lolimot
algorithm is converted to a set of TS rules. The conversion procedure considers each of
the partitions defined by the model tree partitioning. For each partition (hyperrectangle),
a fuzzy membership function is placed in the center of the partition, which comprises
the antecedent part of the TS rule. The consequent part, which does not include fuzzy
components, is a local linear model associated with that rule.
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Figure 3.1: (a) A fuzzy model tree; (b) A Takagi-Sugeno model.

3.2 Model Tree Learning Algorithms

This part gives an overview of the existing model tree learning algorithms. It starts with
a description of a general model tree algorithm and its main features. Then, each of
the features of the algorithm is discussed in more detail. The discussion focuses on the
operation of model tree learning algorithms, governed by the top-down induction of decision
trees (TDIDT) principle (Blockeel & De Raedt, 1998). Finally, to put the Lolimot method
in context, this part discusses an alternative to the recursive top-down induction principle,
along with its motivation.

Tree growing phase. The tree growing phase builds the initial tree structure. The
top-down learning approach starts by defining the root node of the tree. Each node of the
tree is then expanded until some of the stopping criteria are met, thus building the tree
structure. The expansion of a terminal tree node is performed by replacing it with a split
node and its two immediate descendant nodes.

When a terminal node is considered for expansion, a split selection procedure selects a
split to be added to the tree, among several candidate splits. This procedure is the most
important part of a TDIDT algorithm. The existing approaches use different strategies
for implementation of the split selection heuristic. The work of Vens and Blockeel (2006)
categorizes the model tree algorithms based on the split selection heuristic they implement.
To be more exact, the authors perform the categorization based on the the linear regression
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that is being used for split selection: whether it is performed or not, and what kind of linear
regression. The four categories are shown in Table 3.1. The split selection which does not
perform regression, and instead utilizes a fast heuristic, has a linear complexity in the
number of splitting attributes. However, the authors claim that a split selection procedure
which performs simple regression using only the split attribute as a regressor can also be
implemented as a linear procedure in the number of split attributes, i.e., quite fast. The
last two alternatives in Table 3.1 perform a more thorough investigation for the optimal
split, but are slower.

Table 3.1: A categorization of the model tree algorithms based on their split selection
procedure, based on the work of Vens and Blockeel (2006).

Regression in split sel.heuristic complexity example methods

no regression linear M5’ (wang & witten, 1997)

in spl.heuristic

simple regression using linear MAUVE (Vens & Blockeel, 2006)

only the split attribute

separate simple regressions quadratic SMOTTI (Malerba, Esposito, Ceci, & Appice, 2004)
using one attribute Treed regr. (Alexander & Grimshaw, 1996)
multiple regression cubic RETIS (xaraliz, 1992)

using all attributes Lolimot (weltes, 1999)

These categories of heuristics categorize the available methods by the regression per-
formed only during split selection. The regression that a model tree algorithm performs
to learn the LMs is considered as a separate issue. It is worth noting that the methods
from the last three categories shown in Table 3.1 are also typically named "look-ahead"
approaches, since they build linear models and evaluate their accuracy in the split selection
step. The growing phase is stopped for a certain terminal node, when one of the stopping
criteria is satisfied.

One subproblem of the split selection problem, is the split cut-point optimization, or
split threshold optimization procedure. It is concerned with determining the optimal split
point, given a split variable A. The prior text has provided information regarding the
different evaluation functions. These are used to select one split out of several candidate
splits, and as discussed, can either be fast heuristics which do not perform regression, or
different type of slower look-ahead heuristics, which perform regression.

Different methods exist for split cut-point optimization, and they can be divided into
data-oriented and interval approaches. The data-oriented approaches look at the values of
the variable A of the data points falling in that partition, sort the values, and consider a
subset of the unique midpoints, cf. Table 3.2. This type of implementation is typical for
methods from the machine learning domain. On the other hand, the interval implemen-
tations are not concerned with the distribution of the data points for the partition, hence
this alternative is not data-oriented. Instead, it only determines the extreme (minimal
and maximal) data points, and places the candidate cut-points at uniform locations in
that interval. This is summarized in Table 3.2. Also, the number of candidate cut-points
considered for each variable has a tremendous impact on the computation time required
for a model tree algorithm with a look-ahead split evaluation.

Tree pruning. It is well known that overly large trees are prone to overfitting. Tree
pruning is a method that handles overfitting by removing tree nodes which may deteriorate
the performance of the tree. Depending on the particular model tree algorithm, the tree
may only be pre-pruned, or it may also include a post-pruning step. In the former case, the
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Table 3.2: Candidate cut-point determination for a split attribute A. A, and Apgs
denote the minimal and maximal value of this attribute in the set of data points.

type Set of candidate cut-points used in

data-orientated all unique midpoints between M5’ (Wang & Witten, 1997)
the values of the data points
every n’-th unique midpoint between =~ MT-SMOTI

the values of the data points (Appice & Daeroski, 2007)

interval half point of the interval [Anin, Amaz] Lolimot (Netes, 1999)
5-20 uniformly dist.points Reg.Decomposition
in the interval [Amm, Amax] (Johansen & Foss, 1995)

tree growing is stopped by evaluating some stopping criteria. In the latter, a post-pruning
phase is included after the initial and overly large tree is built.

Fuzzy trees. The commonly used model tree algorithms (Quinlan, 1992; Dobra &
Gehrke, 2002; Malerba et al., 2004; Karali¢, 1992) utilize the recursive divide-and-conquer
approach and produce only hard or crisp splits. Another research direction considers
trees with soft or fuzzy splits (Marsala, 2009; Lemos, Caminhas, & Gomide, 2011). The
fuzzy trees, mainly developed for solving regression problems, produce models which fit
smooth regression surfaces better. The discontinuities produced by the crisp tree building
algorithms are smoothed, which results in more accurate models. The machine learning
literature provides many different approaches for learning fuzzy regression trees (Suarez &
Lutsko, 1999; Olaru & Wehenkel, 2003), i.e., trees with constant local models, and a few
approaches for learning fuzzy linear model trees (Lemos et al., 2011), which are equivalent
to a Takagi-Sugeno model.

Some of the approaches directly learn trees with fuzzy splits, while others learn crisp
splits and convert them to fuzzy afterwards. In other words, the introduction of fuzzy
splits in the tree learning algorithm may be performed

e within with the look-ahead split selection function, or,
e after the tree growing stage.

In the first case, the fuzzy membership values are typically used in the local model esti-
mation (Suarez & Lutsko, 1999), which means that a weighted least squares regression is
performed. This in turn increases the complexity because the evaluation of the model tree
for a single data point requires that predictions from all local models be calculated, as well
as each of their associated weights. Also, the model tree algorithm could aim for a more
accurate model, and the parameters of the fuzzy splits can be optimized by an additional,
usually expensive, step (Olaru & Wehenkel, 2003) performed at the end.

In general, the fuzzy tree methods are more computationally complex as the data points
from neighboring partitions also influence the local model estimation in a given partition
of the input space. This means that the parameters of the local models for each partition
are calculated using all training data, where the data points that are part of the partition
receive the highest weights. This procedure is clearly different from the more efficient
top-down induction of decision trees (TDIDT) approach, discussed earlier.

Iterative learning. Apart from the popular and efficient TDIDT approach, there is an
alternative iterative approach to learning trees, used mostly for fuzzy trees. It is motivated
by the fact that the prediction of a fuzzy model tree is calculated using all local model
predictions, so it would be more appropriate to evaluate the whole tree, rather than each
local model in isolation. The evaluation of the whole tree would assess the interactions
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between the local models, and their effect on the final model tree prediction. Another
reason for the iterative learning are potential constraints that the user might pose on the
model (Kocev, Struyf, & Dzeroski, 2006) before learning. These would also require an
evaluation of the model as a whole.

The Lolimot algorithm is a model tree learner which operates iteratively, and which
assesses the overall performance of the tree during learning. In each iteration, the split
node to be added is determined by using the overall (or global) model performance (Nelles,
2001).

Algorithms such as Lolimot, that build model trees in an iterative fashion, are also able
to minimize output error when modeling dynamic systems (Nelles, 1999). The simulation
procedure for evaluating a model of a dynamic system requires the complete model to be
known. The complete, but intermediate, models are available at the end of each iteration
of the iterative learning method Lolimot.

Multi-target trees. Multi-target trees are decision trees, where the terminal nodes con-
tain models for several target variables. Such trees are used when the modeling problem
contains several dependent variables. They utilize the potential inter-dependence between
the different target variables, and provide models with smaller complexity, as compared to
modeling each target variable separately. In the case of model trees, the terminal nodes
contain local models for several numeric variables (Appice & Dzeroski, 2007), an approach
also introduced for the fuzzy model trees (Nelles, 1999). However, the decision trees can
also contain local models for several discrete variables, or even a set of discrete variables
organized in a hierarchy (Aleksovski, Kocev, & Dzeroski, 2009).

3.3 The M5’ Model Tree Learning Algorithm

This part introduces the M5’ algorithm (Quinlan, 1992; Wang & Witten, 1997) as im-
plemented in the WEKA (Hall et al., 2009) framework. It presents the pseudocode and
analyzes some of its aspects. First it discusses its tree growing procedure, introducing the
fast variance reduction split heuristic and the pre-pruning criteria. This is followed by
a description of the post-pruning phase, which reduces the size of an overly grown tree.
Finally, it discusses the approach taken for handling discrete attributes, which may appear
in the dataset.

3.3.1 Tree Growing Phase

Tree growing, shown in Algorithm 3.1, is a recursive procedure that generates the initial
structure of the tree. The procedure consists of determining whether the tree node should
be a split (inner) node or a terminal node containing a linear model. If a split node is
created, the procedure continues recursively for the examples sorted down each of the two
branches created by the split.

The decision to create a terminal node instead of a split node (i.e., to perform pre-
pruning) is taken when one of the two stopping criteria are met. The first criterion tests if
the number of training points in the current node is smaller than the value of the minimal
number of instances parameter (n;,). The second criterion stops tree growing when the
standard deviation of the target attribute on the data points falling in the current node is
smaller than 5% of its standard deviation on the whole training set.

The selection of the split parameters (the feature attribute to split on and the cut-
point) is guided by the standard deviation reduction (SDR) heuristic, shown in Eq. (3.1)
below. Normally the split with the highest reduction in the standard deviation is chosen.
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As previously noted, the standard deviation reduction (SDR) heuristic is used to eval-
uate all possible split cut-points. The feature attribute (A) and cut-point (¢) combination
in the test [A < ¢] which maximizes the SDR heuristic is selected and used as a split at
the current tree node. The SDR heuristic score is calculated as:

SDR:O_Q ‘Dl’ 2 |D7" 2

D — WO‘DZ - |D‘ O-D,,- (31)

where D is the set of data points falling in the current tree node, D; and D, are the two
subsets of data points corresponding to the left and right branches of the split. U% denotes
the standard deviation of the target attribute in the set D, while op, and op, denote the
standard deviations of the target attribute in the sets D; and D, respectively.

Algorithm 3.1: Pseudocode for the tree growing phase of M5’.

Algorithm Build _tree(D)
Data: D - a training set
Result: T - a tree
if |D| < nymin then

‘ Return a terminal node
end
if standard deviation stopping criterion is satisfied then

‘ Return a terminal node
end
Let {Aq, As, .., Ay} be a random subset of feature attributes
Initialize Spest
for k=1,..,pdo

Let split s*[Ar < ¢] = argmaz(SDR(s[A) < ]))
S

if SDR(s*) < SDR(Spest) then spese = s*
end
Split set D into subsets D; and D, based on split Spes
Let T; = Build _tree(D;)
Let T, = Build _tree(D,)
Return a tree with a split node spes; and subtrees T and T,

3.3.2 Tree Post-pruning Phase

The tree pruning, shown in Algorithm 3.2, is a method that handles overfitting by removing
tree nodes which may deteriorate the performance of the tree. The post-pruning procedure
is performed after the initial tree structure has been built. It takes into consideration the
prediction error of the local models, as well as the prediction error of whole subtrees. The
pruning procedure operates in a bottom up fashion: it starts by considering the terminal
nodes for pruning and continues towards the root of the tree.

As a first step of the procedure, linear models are estimated (constructed) in all nodes
of the tree, by using least squares linear regression. The default operation of M5’ is to
use a feature selection scheme: The local model is built only by using features found in
tests of split nodes below the current tree node. This thesis evaluates M5’ with the feature
selection procedure, as well as M5’ where this procedure is turned off. Also, the least
squares estimation of the local linear model includes an attribute removal part: Features
with small effect are dropped from the linear model (Wang & Witten, 1997).
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After the estimation of linear models, the bottom-up pruning procedure evaluates
whether to prune each tree node. It compares the accuracy of the linear model learned at
the node to the accuracy of the subtree rooted at the node. A decision to prune (replace
the subtree rooted at that node with a terminal node) is made only if the accuracy of the
subtree is smaller than the accuracy of the linear model.

The M5’ algorithm and its WEKA implementation also contain a procedure which
modifies the coefficients of the linear models, in order to improve the accuracy of the
model tree. This procedure, named smoothing, uses the coefficients of the local models
learned in inner tree nodes, to smooth the local model prediction of a terminal node. The
details of this procedure can be found in the following chapter, Subsection 4.1.1.1.

Algorithm 3.2: Pseudocode for the tree pruning phase of M5’.
Algorithm Prune(T)

Data: T - a model tree

Result: pruned model tree

if root of T is a split node then

Prune( T — left )

Prune( T — right )

Learn a linear model for the root node of T

Calculate the error of the local linear model e,y

Let esy=Subtree error(T)

if esT > eLM then
| Convert root of T to a terminal node

end

end
Return T'
Algorithm Subtree error(7)
Data: T - a model tree
Result: numeric value
if root of T is a split node then
Let T;=T — left
Let T,.=T — right
Let D=T — examples
Let D;=T; — examples
Let D,.=T, — examples
Return ( |D;| * Subtree error(1;) + |D,| * Subtree error(7,) ) / |D|
else
| Return the error of the linear model in root of T
end

3.3.3 Handling Discrete Attributes

The discrete, or nominal attributes in the dataset are transformed into several binary
attributes, using the approach of Breiman et al. (1984). For each of the j possible values
of a discrete attribute, the average of the target is computed, using the training examples.
The averages are used to sort the j values. Based on this ordering, j — 1 binary attributes
are formed.

For example, assume that the nominal attribute A has three possible values vq, v9, v3.
Also, assume that the ordering based on the average of the target is vs,vi,ve. The two
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new attributes that this procedure creates are: A’ : A = vy and A” : A = vy V v9. Details
of the procedure are presented by Breiman et al. (1984), Wang and Witten (1997).

3.4 Lolimot

Algorithm 3.3: Pseudocode for the Lolimot method.
Algorithm Build _tree(Djcqrn, Dsim)
Data: data set used for learning Djeqrn, data set used for simulation Dgp,
Result: model tree T’
Create a root node for the tree and estimate local model parameters using data
Dlearn
Evaluate the model tree: (e, t) = Evaluate(T', Dicarns Dsim)
while the mazimal number of LMs is not reached and the model error is above
the threshold do
Select the terminal node ¢ for splitting
Create the set S of candidate splits using terminal node ¢ (Eq. (3.4))
for all candidate splits s in S do
Replace the terminal node ¢ with a split node ¢, and split s
Create two terminal nodes ¢} and t/, as descendants of ¢/,
Estimate local model parameters for ¢} and ¢, by weighted linear
regression using Dieqrn
Evaluate the model tree: (e, t) = Evaluate(7T', Dicarns Dsim)
end
Select and keep the candidate split s which produces lowest overall error ey

end
Let ia7c be the iteration with the smallest AIC value (Eq. (3.15))
Return the model tree T' from iteration i4r¢
Algorithm Evaluate(T, Dicqrrn, Dsim)
Data: model tree T, data set used for learning Djeqrrn, data set used for
simulation Dg;,
Result: squared error of the model tree e, terminal node ¢t with largest error
if Djegrn are data from a dynamic system then
Perform simulation of T" using the data points Dg;,
Let e be the output error

else
| Let e be the prediction error of T' calculated using Djeqrn

end
Let t be the terminal node of T’ corresponding to largest sum of squared errors
Return (e, t)

The Lolimot method builds the tree structure using an iterative procedure (Nelles,
2001). In each iteration, the size of the tree, i.e., the total number of nodes, is increased
by one. This is performed by converting a terminal tree node into an inner split node with
two immediate descendants.

Let a candidate split s be a triple consisting of a terminal node of the tree built so far,
a attribute to split on, and a split cut-point

s = (t,xs,vs) (3.2)

In each iteration, several candidate splits are considered. The set of all candidate splits
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considered is created using the following procedure: (a) one terminal node is selected
for further splitting from the existing intermediate tree; (b) all attributes are considered
as split attributes. The method only evaluates one cut-point per split attribute, i.e., it
considers only "half-splits", which divide the current partition into two equal halves.

Let the terminal node ¢ define a partition:

P ={xce Rp\(vgo) <z < v&l)) A (véo) <y < vgl)) A ...(UI(,O) <zp < vz(,l))} (3.3)

The boundaries of the partition (v](-o) and v](-l)) that the terminal node t defines, are used

to calculate the cut-points of the candidate splits. The set of candidate splits, considered
for expanding the terminal node ¢, is:

v§0) + v&l) vg)) + vél) vl(,o) + v(l)

S ={(t,x1, 5 ), (t, 22, )yt @, 5 P, (3.4)

where ’Uj(-o) and vj(l) denote the boundaries of the partition in dimension j, as defined in

Eq 3.3. Each of the candidate splits is then evaluated by using a heuristic greedy evaluation
function consisting of three steps:

e A tree with the candidate split is created.
e Local models are estimated for the two new terminal nodes.
e The fit of the whole model tree to the training data is calculated.

For a tree of m terminal nodes, this procedure considers and evaluates only a small subset
of all possible trees with m + 1 terminal nodes. One step of the iterative procedure is
depicted in Figure 3.2.

Node and split selection heuristic. The Lolimot algorithm considers only one
existing terminal node for expansion at a time. It selects the terminal node which gave rise
to the largest sum of squared errors in the previous iteration. In each iteration, the model
built so far is evaluated either using simulation or prediction, cf. the procedure Evaluate
in the pseudocode shown in Algorithm 3.3. This evaluation is performed using all available
training data (denoted as Dy, ), and no averaging is performed on the individual squared
errors. A heuristic of this kind favors terminal nodes which contain more training data
over those which contain less.

The algorithm can choose among two different heuristics for selecting splits. The first
is based on the selection heuristic component of the Lolimot algorithm, which is tailored
for dynamic systems and uses simulation. It performs a simulation of the model in each
iteration, using Dg;p,. In more detail, the algorithm uses the error of the simulation
procedure for a) selection of the terminal node to further split in the next iteration, and
b) selection of one among several candidate splits. The second alternative utilizes the
one-step-ahead prediction performance of the model tree with the added candidate split.

3.4.1 Estimation of Local Models’ Parameters

In each iteration the parameters of the newly added terminal nodes are estimated. The
estimation begins by calculating the fuzzy membership function values. As a next step,
these values are used in the weighted least square regression performed to obtain the
parameters of the local models.

Fuzzy membership function. The parameters of the partitions defined by the model
tree, i.e., the borders of the partitions, are used to define the fuzzy membership functions.
The membership functions determine the (fuzzy) membership of each data point to each
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Iteration 3 Iteration 4

0.5

Figure 3.2: One iteration of the Lolimot method. The left-hand side depicts the model tree
and its partitioning in the third iteration. The marked terminal node is the terminal node
selected for further splitting. The right-hand side depicts the complete set of candidate
splits considered in the fourth iteration and the corresponding partitionings of the input
space.
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of the partitions and the corresponding local models. The Lolimot method uses the multi-
dimensional Gaussian membership function (Nelles, 2001), whose center ¢ is set at the
center of the partition, and standard deviation vector o is calculated as 1/3 of the size of
the partition (Nelles, 1999). For example, consider the tree of iteration 3, shown in Figure
3.2. Also, consider the partition corresponding to its leftmost terminal node, defined by
21 < 0.5. The center of this partition, ¢ = [0.25,0.5]T, is the center of the corresponding
membership function, while the standard deviation of the membership function is o=
[0.5/3,1/3]%.
The membership of a data point x to the j-th partition is calculated as

Ty — C;

)%)- (3-5)

ps(0) = eapl(—5 D

o
i=1 v

After the membership values p;(x) for a data point to all the partitions are calculated,
these values are normalized across all partitions

&j(x) = ) (3.6)

Dkt M (%)
thus obtaining the validity function values ®;(x).

Note that the j-th local model for the [-th target variable is determined by the vector of
coefficients [bl,j,o biji - bl,jm], where p is the number of attributes. The parameter
estimation determines the coefficients b ;, of the local models that correspond to the
terminal nodes of the tree. In the multi-target case, this problem can be formulated as an
optimization problem, with an objective function:

I=>"> ¢ (3.7)

where e? = (y—9)?, r is the number of target variables and n is the number of data points.
Since the parameters of the local models for each target are independent of each other,
we formulate r optimization subproblems:

n

L= ey 1=12.,r (3.8)
=1

The parameter vector for [-th target variable contains m - (p + 1) parameters

T
b= [biio b - biip o bumo bimaccr bump) (3.9)

The total number of parameters that need to be identified for one model tree is m-r-(p+1)

In the fuzzy modeling literature, two approaches are commonly used for the estimation
of the local model parameters, given that the validity functions are known. The local
estimation procedure (Johansen & Babugka, 2003) estimates the parameters of each local
model in isolation of each other. An alternative is the global estimation procedure (Jang
et al., 1997), which estimates all of the local model parameters simultaneously. The former
one is faster but does not take the interactions between local models, as defined by the
membership function, into account.

As previously discussed, the parameter estimations for each of the targets are treated
as separate least-squares estimation problems. So, in the case of fuzzy local estimation, a
fuzzy Lolimot model tree with m local models predicting r targets requires a total of r-m
separate weighted least square regression problems to be solved.
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For the I-th target and j-th local model, the regression matrix X;; is a n x (p + 1)
matrix, containing the values of the regressor variables. Its form is:

1 711 w12 - Tip
X, = bora e (3.10)
1 zp1 T2 -0 Tny
The weighting matrix @ ;, composed of the validity function values (Eq. (3.6)) is:
Di(x1) 0 0
au=| | Mt B.11)
6 0 " ; (Xn)
Also, we define the vector of values for the [-th target variable, y; as
yi= 1 vz - yz,n]T, (3.12)

where y; ; denotes the value of the [-th target for the i-th data point. Finally, the parameter
estimates for the [-th target variable of the j-th local model can be calculated using the
well-known weighted least squares estimation formula

bi; = (X7;Qu1;X0) XL Quivi- (3.13)

3.4.2 Multi-target Lolimot Model Trees

This part summarizes the modifications of the Lolimot model tree learning algorithm nec-
essary for handling multiple targets. Recall that the Lolimot algorithm was introduced in
the system identification domain, and its multi-target version is used for modeling static
and dynamic multi-output systems. The algorithm contains three modifications for multi-
target modeling, as compared to the single-target version. These are:

e Determination of the set of candidate splits to evaluate. The algorithm chooses only
one terminal node and evaluates half splits in all possible dimensions. The sum of
squares is used as the criterion to choose the terminal node. While in the single-
target case this is trivial, in the multi-target case, the squared errors for each target
are normalized and summed. The terminal node which results in the largest error,
i.e., sum of normalized squared errors, is selected. The normalization is performed
for each node separately.

e Estimation of local model parameters. The algorithm evaluates a candidate split by
building local models for the two new terminal nodes. The estimation of local model
parameters is performed separately for each target variable, i.e., we have a separate
optimization problem for each target (cf. Eq. (3.13)).

e Comparing performance of candidate splits in the multi-target case. After the local
model parameters are estimated for each of the targets, and the model predictions
are calculated for every target, the errors for each of the targets are aggregated. An
aggregate multi-target root relative mean-squared error (RRMSE), also denoted as
normalized root mean squared error (Nelles, 2001), is calculated as:

Sy oy (Big — via)?
RRMSE = | 2=l=1 2ui=1 Wil — Ui, 3.14
D1 it (U — yig)? (3.14)
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where §; is the mean value of the /-th target variable, while §;; and 3;; are the
predicted and actual values respectively, for the [-th target variable and i-th data
point.

3.4.3 Optimal Complexity of a Lolimot Tree

The optimal size of the single-target or multi-target Lolimot tree, in terms of number of
local models, is determined by using the Akaike Information Criterion (AIC). The AIC
criterion selects the algorithm iteration which provides the best trade-off between model
complexity and accuracy. It takes into consideration the size of the training set n, the
error of the model for each iteration and the total number m - p of coefficients in the linear
models. The AIC calculated for a Lolimot model tree (Nelles, 2001) is:

AIC =n-log(epyse) +m - (p+1) (3.15)

where ep;gr denotes the mean-squared error of the model tree.

3.5 Properties of Existing Approaches

This section outlines the advantages and disadvantages of the existing tree-based ap-
proaches when used for dynamic system identification. It starts with the properties of
model tree learning algorithms, and discusses the advantages and shortcomings of M5’
Lolimot and other related tree learning approaches. After that, it discusses the properties
of existing tree ensemble approaches.

3.5.1 Existing Tree Approaches

The existing tree approaches introduced earlier in this chapter were Lolimot and M5’.
This subsection first discusses their properties, after which it presents other related tree
approaches.

The advantages of the Lolimot method, which builds fuzzy model trees, are summarized
as:

e The complete model is evaluated, so the interactions between the local models in a
fuzzy setting are taken into account.

e The output error is evaluated during split selection, instead of the prediction error,
which might produce a model with better simulation performance.

e The local parameter estimation produces models with good noise handling capabili-
ties (Nelles, 1999).

On the other hand, the potential limitations of Lolimot are related to the complexity
of the produced model: The required number of terminal nodes to obtain a model with a
desired accuracy may not be optimal. They can be summarized as:

e Only half splits are considered, i.e., the split cut-point is not optimized, and the MSF
overlap is not optimized. This in turn might produce fuzzy model trees with more
local models, as compared to approaches which optimize the split cut-point and MSF
overlap.

Several existing methods build upon Lolimot and consider replacing the type of splits
with axes-oblique, and the heuristic split selection with a genetic programming approach.
The first extension (Nelles, 2006) includes a modification which considers axes-oblique
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splits, and not only axes-parallel, as in this thesis. It uses a more computationally expensive
nonlinear optimization technique to determine the optimal position and direction of each
split. However, on a simulated example, the differences to a standard Lolimot model are
visible: the size of the tree is almost a third of the size of the standard Lolimot model,
for a pre-determined model error. The consideration of axes-oblique splits thus presents
a tradeoff between the faster training time of Lolimot and the smaller size of the oblique
model trees.

The second extension (Hoffmann & Nelles, 2001) introduces Genetic Programming
(GP) for determination of the structure of the Lolimot model tree. Also, it considers
different cut-point for the splits, as compared to the single cut-point, i.e., half-split. The
conclusions are that the GP method may again reduce the size of the model tree, while
obtaining comparable predictive performance to a standard Lolimot model. However, the
number of possible partitionings that the method has to evaluate is very large, so its
applicability is limited due to the large time required for learning.

The model tree learning algorithm M5’ has different properties. It builds crisp trees,
is fast and efficient. Its advantages can be summarized as:

e The split selection procedure is fast and linear in the number of features.

e The local model estimation is fast, since the number of data points used is smaller
than in the fuzzy case.

e It can handle discrete attributes and missing values in the attributes.

However, the accuracy of M5’ model tree is in many cases lower, as compared to Lolimot.
This might be due to the lack of look-ahead step during the split selection, or the crisp and
not fuzzy local model estimation. The limitations of the M5’ algorithm can be summarized
as:

e The model trees typically have discontinuities on the borders of local models.
e The split selection procedure does not include look-ahead.

e The split selection procedure may show potentially pathological behavior for low-
dimensional datasets (Vens & Blockeel, 2006).

Other tree learning approaches. After describing the advantages and disadvantages of
M5’ and Lolimot, this part will outline the properties of other related tree learning ap-
proaches. The spatial piecewise linear models of Billings and Voon (1987) are a nonlinear
identification technique, which use interpolation of local linear models. The model repre-
sentation is equivalent to the crisp model trees, discussed above, since there is no overlap
of the operating regions. The operating regions are defined by using a grid partitioning,
and the parameters of the linear models are estimated using least squares.

A clear disadvantage is that the only type of partitioning considered is grid partitioning,
which may potentially lead to a large number of regions. The authors also conclude that
some of the potentially large numbers of operating regions may not be reachable (no
training data for those regions can be obtained, as the system can not be in that state),
hence they do not identify local models for all regions. However, they note that since the
local models are independent of one another, due to the crisp splitting, linear stability
criteria could be applied to evaluate the local models that are identified.

The spatial piecewise linear models also expect a predefined number of operating re-
gions. This is determined by the user’s choice to divide the input and output data into
several equal intervals. This is in contrast to the automatic determination of the number
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and position of operating regions found in some of the other approaches, like the model
tree algorithms, discussed earlier, use.

The regime decomposition approach of Johansen and Foss (1995) uses a tree approach
to search for the optimal structure and parameters. This approach is similar to the Lolimot
algorithm, and the final model is also in the form of a T'S model. The aim of the algorithm
is to determine the optimal axis-orthogonal decomposition into operating regions.

However, there are several differences as compared to the Lolimot approach. The
algorithm is more oriented towards optimizing the complexity (number of local models
required), so it tries to optimize the cut-points for the splits, something that Lolimot does
not perform. Another difference is the proposal of an extended horizon search strategy.
This type of search is a deep look-ahead, where an optimal split is determined by looking
at successive n* splits (n* is the search horizon), the partitioning they produce, and the
predictive performance of the local models that are built. In comparison, the existing
model tree algorithms discussed so far use only a shallow look-ahead or greedy search by
only evaluating and building one split and the predictive performance of its immediate
descendant local models.

3.5.2 Existing Ensembles of Model Trees and Their Limitations

The ensemble approaches of bagging (Breiman, 1996) and Random Forests (Breiman,
2001), which are used in this thesis, have been originally designed to use classification and
regression trees. Since bagging only manipulates the training data, and does not randomize
the base learners, it can be used with any base learner, including algorithms that learn
model trees. However, only a few authors have considered learning ensembles of model
trees, instead of regression trees. To our knowledge, at least two ensemble approaches
using crisp model trees have been introduced already.

The first is the semi-random model tree ensemble approach of Pfahringer (2011). This
approach modifies the base-level tree-learning algorithm to produce balanced trees: the
number of points falling in each terminal node of the tree is approximately the same. This
approach is thus not well-suited for dynamic systems, whose identification is performed
on data that are not evenly distributed in the instance space. The partitioning of the
instance space using semi-random model tree ensembles would be denser around the equi-
librium points, as these regions contain more points than the out-of-equilibria regions. As
a consequence, the critical out-of-equilibria regions would be covered by a small number
of partitions, resulting in poor approximations.

The second approach is the model tree ensemble method of Jung, Reichstein, and Bon-
deau (2009). It introduces ensembles of crisp model trees, by learning trees with random
splits. The model trees are built using a new model tree induction algorithm, named
TRIAL. The base learning algorithm uses randomization, i.e., its operation is perturbed
in order to increase the diversity of the predictions.
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Chapter 4

Model Trees and Ensembles for
Dynamic System Modeling

This chapter introduces modifications and extensions to existing model tree algorithms.
These are aimed at improving the performance of model trees for modeling dynamic sys-
tems. The modifications to the Lolimot model tree algorithm address the split selection, as
well as the computational efficiency of the method. Also, ensembles of Lolimot model trees
are presented, which are now applicable, given that the modified base learning algorithm
is faster.

The modifications to Lolimot, are inspired by the generalization power of the soft model
trees as opposed to the crisp ones. The modifications introduced are summarized as an
approach named L+, which evaluates more candidate splits, and also improves the com-
putational efficiency over the existing Lolimot method.

The aim of the modifications was to reduce the size of Lolimot trees, i.e., the number
of local models, as well as to improve the efficiency over Lolimot, while retaining similar
predictive power. In other words, the modifications proposed to the model tree learning
algorithm modify the methodology, since a different search heuristic is employed, and
modify the implementation, since the split evaluation is replaced with a more efficient
variant. Also, by using the more efficient L4+ method, one is also able to build ensembles,
as the learning times of the base algorithm are reduced.

The aim of this work is to introduce modifications of model tree algorithms for dy-
namic systems, and this in turn requires regression approaches that produce close fits to
smooth static functions (cf. Subsection 2.1.1.2, which discusses the external dynamics ap-
proach). For this, the applicability of crisp model tree approaches is limited, as they are
not well suited for approximating smooth nonlinear functions. However, this work would
also try to show that to a certain extent, two modifications of crisp model trees could be
used for modeling dynamic systems: a) post-smoothing, and b) ensembles, which correct
the local model estimates of single crisp trees. After the empirical evaluation, which is
presented in the following sections, this work will try to draw some conclusions regarding
their utilization.

This chapter is organized as follows. It starts with the modifications to the crisp model
tree approach M5’, for improving its fit to smooth nonlinear functions. Then it discusses
the modifications to a soft model tree approach, Lolimot. Next, it presents the ensembles
of model trees, based on the bagging principle. Finally, it illustrates the difference in
predictive power of fuzzy over crisp model tree approaches, as well as model tree ensembles.
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Figure 4.1: An example model tree with one split node and two terminal nodes.

4.1 Crisp Model Trees

An example of a crisp model tree is shown in Figure 4.1. It consists of one split node
and two terminal nodes. During the learning with the model tree algorithm M5, local
linear models are learned for all three nodes. The final prediction of the crisp model tree
is calculated either using node n2 or node n3, i.e., the prediction for the feature vector
x is either f;g(x) or f;g(X). In more general terms, a crisp model tree consisting of m
terminal nodes and m — 1 splits, which form m partitions Py, P»,--- , P, is a piecewise
linear model of the form:

o (x)  if xisin Py
fom,(x)  ifxisin Py

fom, (x) if xisin Py,

In the following, we will consider two different techniques for smoothing the predictions of
a crisp model tree, built by the M5’ algorithm.

4.1.1 Smoothing the Crisp Model Tree Predictions

The smoothing of the model tree predictions can be done by using different strategies. This
work considers two types, both of which are executed after the crisp M5’ model tree is built
and its local models are estimated. The first is the built-in M5’ smoothing, which is only
a correction of the local model coefficients. The other type is an interpolation approach,
which performs smoothing using fuzzy weighting, and changes the form of the model from
a crisp to a soft model tree.

The first variant corrects the local model coefficients for a terminal node of the tree,
by using the local models found on the path from that node to the root. The resulting
model stays a crisp model tree, i.e., only one local model is used to obtain the model tree
prediction (cf. Eq. (4.1)). The second variant performs the smoothing by using a weighted
sum of the local model predictions of all terminal nodes of the tree. This means that a
soft model tree, in this case, uses all local models to obtain the model tree prediction (cf.
Eq. (4.4)).

The smoothing could potentially increase the accuracy of the model tree, when fitting
smooth functions, and could also address the boundary discontinuities issue. The latter
issue appears on the boundaries between adjacent local models, which are potential places
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where discontinuities may appear. Two neighboring local models may have different pre-
dictions for "close" input vectors, from the other side of the boundary. For example, a
discontinuity appears for the value of x = 0.5 in the left part of Figure 4.8. In the rest of
this subsection, a detailed description of the two smoothing approaches follows.

4.1.1.1 The Built-in M5’ Smoothing

The built-in M5’ smoothing is a procedure aimed to improve the accuracy of model tree
predictions (Quinlan, 1992). Its goal is to smooth the response of local models built in leaf
nodes with a small number of data points, by also considering the predictions of the local
models built in other internal tree nodes.

It is an iterative bottom-up procedure, performed after the initial tree has been built
and pruned. The procedure starts by correcting the local model corresponding to a terminal
node of the tree, by using the linear models of all tree nodes on the path up to the root.
Assume that the local model for the terminal node n2 is fn2(), and the number of data
points sorted down to that node is d. Then, the smoothed prediction, f,/LQ() would be
calculated using the local model of node nl, as:

o dfaa(3) + kf (%)

where k is some constant value. If we rearrange, and introduce a = d%w we obtain:
Fra(x) = afna(x) + (1 = @) fr (x). (4.3)

This procedure only performs a "correction" of the possibly inaccurate local model
predictions of terminal nodes with a small number of data points. We can observe that
the weighting factor « is small in case of a leaf node with small number of data points
d, and is big otherwise. This technique is implemented in M5’, as only a correction to
the coefficients of the local models in the terminal nodes of the tree. This means that the
model tree does not change its form, i.e., it remains a crisp model tree. Additionally, the
value of the constant k is set to 15 in the WEKA implementation of the M5’ algorithm.
It is worth noting that this approach only partially solves the discontinuity problem, as it
only compensates for the large jumps of the predictions, and does not provide a continuous
transition on the boundaries between local models.

4.1.1.2 Smoothing Using Fuzzification

The smoothing of the linear models in a crisp model tree can be achieved by an alternative
approach, using fuzzification, and converting the model to a soft model tree. The original
crisp model tree (4.1) is converted to a soft model tree which has the form:

f(x) = z w;(X) frvi(X) (4.4)

where > w;(x) = 1. The difference to the M5’ built-in smoothing, described earlier, is
that in Eq. (4.3), « is not a function of the feature vector x, while here, w is a function
of x. This means that the fuzzy model tree presents a different formalism than the one
described above.

The smoothing using fuzzification, which was introduced by Jang (1994), and later
applied to M5 model trees (Aleksovski, Kocijan, & Dzeroski, 2013, 2014c¢), is performed
by representing the splits s[z; < ¢] of the crisp model tree with a fuzzy set characterized
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Figure 4.2: Two types of fuzzy membership functions: sigmoidal (top) and triangular
(bottom).

by some membership function (MSF). For example, a crisp split of the form s[z; < ],
where x; is the j-th feature, and c is a cut-point, is transformed to a fuzzy split by using
a sigmoidal membership function p(xj, ¢, o) with a fuzzy parameter a (the inverse split
width) :

1
1+ exp(—a(z; —c))
MR(xj7 ca) = 1- ML(xjv ¢, ) (4.6)

(e c.a) (45)

Several types of fuzzy membership functions can be used (triangular, sigmoidal, Gaus-
sian), two of which are shown in Figure 4.2. The choice between any of the three member-
ship functions should provide similar prediction results. In the case when the parameters
of each MSF are optimized globally (the parameters of all MSFs are optimized in a sin-
gle optimization procedure), differences in performance may appear. However, this work
calculates the MSF parameters by using a predefined percentage of the partition size.

In other words, for the sigmoidal membership function of Eq. (4.5), the value of « is
calculated such that the overlap between the two subpartitions is equal to a predetermined
percentage poyeriap Of the size of the partition in the dimension of the split attribute. Larger
values for poyeriap mean smoother transitions between the local models. The optimal value
of poveriap 1s different for each modeling problem, i.e., needs tuning.

The prediction of the model tree of Figure 4.1 with one fuzzy split p(z;, ¢, o) and two
local models fr2 and f,3 is calculated by using the following formula:

F(x) = plag, e, ) fuz(x) + (1 = plaj, ¢, @) faz(x) (4.7)

In general, a data point x is associated with all LMs (terminal nodes) of a soft model
tree, but with different weights. The weight for a LM is calculated by multiplying the
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@ membership function values for all of the splits from the root of the tree down to the
particular terminal node.

The benefits of smoothing a crisp model tree with fuzzification are the potentially more
accurate predictions, as compared to the crisp model tree. This is illustrated in Figure 4.3,
where the resulting models of crisp and smoothed model trees with 4 LMs are depicted.

&0

(a) Crisp model tree. (b) Smoothed model tree.

Figure 4.3: Comparison of crisp and smoothed model trees with 4 LMs, in a 2-dimensional
space.

4.1.2 Multi-target M5’

This part describes the modifications of M5’ for predicting multiple dependent variables,
i.e., targets. It presents the modifications performed to the split selection heuristic in the
tree growing phase, and the error calculations in the tree pruning phase.

The standard deviation reduction (SDR) is calculated by aggregating the SDR of all
target variables. For a given candidate split attribute, the SDR heuristic is first calculated
for each target, using Eq. (3.1). The aggregated heuristic value SDR 7 is then calculated
as:

1 T
D = - DR'(j 4.
SDRyr " ; SDR'(j) (4.8)

where SDR'(j) is the SDR value for the j-th target, scaled to the interval [0,1]. The
candidate split with the largest SDRy;r is selected and used by the M5’ algorithm.

The pruning phase of M5’ is also modified for the multi-target scenario. The calculation
of the linear models is performed independently for each of the targets. The overall error
of the subtree, is calculated as an average of the subtree errors of each target. The overall
error of the linear models for the r targets is calculated as an average of the errors of each
target. The error values are normalized before both averaging operations.

4.2 Fuzzy Model Trees

In this part, we are going to consider fuzzy model trees, as built by the Lolimot method.
Lolimot was introduced in the previous chapter, and here we are going to introduce the
modifications performed to Lolimot. Two of these concern the structure search: a more
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Figure 4.4: Evaluating four candidate splits using simulation, during building the Lolimot
tree for GLS. The x axis denotes the discrete step k of the simulation procedure, while the
y axis the running sum of squared errors Zle(f(xi) — flx:))%

efficient evaluation of candidate splits and a modified search for the optimal tree structure.
The latter is performed by considering several cut-points when generating the candidate
splits and using different values for the fuzzy overlap. The other two modifications concern
the split evaluation and the estimation of local models.

4.2.1 Modifying the Evaluation of Candidate Splits

This modification considers the evaluation the candidate splits in Lolimot. The evaluation
of each of the candidate splits is used to select the split which results in a smallest estimated
error and added this split to the tree. The candidate splits in Lolimot are evaluated by
creating the intermediate tree with the added split, estimating the two new local models,
and performing simulation on the training data. The procedure in Lolimot is executed on
the complete set of training data points, and results with an estimate of the effectiveness
of the candidate split.

We propose to make the estimate of effectiveness of candidate splits faster, by modifying
the evaluation process. The modified evaluation would only consider a part of the training
data, and not the full training set. In the following we describe the details of our proposed
modification, and its advantages.

Instead of executing the simulation procedure using all training data points, it is our
experience that differences between the performance of intermediate trees (corresponding
to the candidate splits) are visible much earlier. For example, Figure 4.4 displays the
simulation procedure for four intermediate trees, when building a model for the pressure
variable of the GLS system. The y axis of the figure displays the running sums of squared
error, for the four different intermediate trees, while the x axis the number of steps in the
simulation procedure.
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It can be seen that the optimal intermediate tree, calculated by simulating on the full
training set, corresponds to candidate split 4. This selection result can also be determined
by only performing the simulation half-way, i.e., only to step kgras = 350. For this example,
the simulation results for the subsequent data points beyond this step do not change the
outcome of the selection. So, one can conclude that early stopping in the simulation
procedure can be used as a modified estimate, for ranking the candidate splits. The
advantage of using the modified heuristic is that the running time of the evaluation part
is reduced. The disadvantage is that it might not result in the optimal split, as seen by
Lolimot’s current estimate, for splits with similar performance. This might happen if kgrps
is too small, or the splits show very similar performance.

The fact that the differences in performance are visible earlier in the simulation proce-
dure might be explained with the error accumulation phenomenon. The error accumulation
increases the error of the worse-performing intermediate trees much earlier in the simu-
lation procedure (penalization). This might allows an easier determination of the better
performing split or splits in the selection procedure.

The reason that the efficiency of the split evaluation heuristic is increased by using
early stopping in the simulation procedure, is that the evaluation of a soft model tree is
computationally expensive. This stems from the fact that for one data point the Lolimot
model tree needs to calculate all membership function values, as well as the predictions of
all local models. In general, setting kgras to smaller or lager values may be considered as
a tradeoff between speed of learning and accuracy of the obtained model.

4.2.1.1 Utilization of the Output Error While Learning

Related to the evaluation of the candidate splits, we also modify the method so that the
evaluation of candidate splits could be performed by either the output or the prediction
error. The former is the default when evaluating splits for dynamic systems, in the Lolimot
method. By implementing the prediction error evaluation, we hope to get more insight in
the differences between simulation and one-step-ahead prediction, when used during the
model building procedure. Please note that, in either case, the estimation of the local
model parameters is performed by minimizing the prediction error.

4.2.2 Modifying the Search for an Optimal Tree Structure

When comparing the model tree approaches introduced in the machine learning domain
to Lolimot, one difference that can be noticed is that the Lolimot method evaluates only
a small number of candidate splits. For each feature variable (dimension) it evaluates only
one half-split. A structure search for the optimal tree structure, which evaluates more
different candidate splits, has the potential to discover smaller model trees with acceptable
performance.

However, in the context of soft or fuzzy trees, and TS models, the model structure is
determined by the number, the position and the overlap of the fuzzy membership functions.
This is why this part is going to introduce modifications which evaluate a) several different
split cut-points, and with this, several different positions of the fuzzy MSFs, and b) different
overlap of the MSFs.

4.2.2.1 Considering Several Split Cut-points

Recall that in Table 3.2 we categorized the different implementations of the candidate cut-
points determination, for a given feature attribute x;. The conclusion there was that the
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methods introduced in the system identification domain do not base the candidate cut-
points determination on the data sample. Instead, they have an interval-oriented approach,
and generate uniformly distributed candidate cut-points in the [z, 27%%] interval.

The modification introduced here is also interval-oriented, as it introduces ¢ candidate
cut-points for each variable. Values for ¢ of up to 8 are used and evaluated. For example,
given a terminal node ¢ a feature attribute x;, i.e., a data dimension ¢, the candidate splits

considered are:

1
s
q+1

2
—QS
q+1

St,i = {(tv Zi, xznm + )7 (tv Zi, "L‘?Lin + )7 R (t) L, xzr'nin + LS)}? (49)

where s = 27" — """ is the size in dimension 7.

4.2.2.2 Considering Different Overlaps

The value of the vector o = [01,09, -+ ,0p] in Lolimot defines the deviation of the fuzzy
membership function, and thus the amount of overlap for the local model in question. It
is calculated as a fraction of the size of the partition in the corresponding dimension:

o = ky[01,02, -+, 6" (4.10)

where ¢; is the size of the partition in the dimension j. This means that the algorithm does
not optimize the overlap value for each of the LMs, but instead uses an overlap parameter,
k, for this purpose. Other methods which build TS models consider different values for the
overlaps of each MSF, and with this, optimize more parameters, as compared to Lolimot.
An example is the well-known ANFIS method (Jang et al., 1997), which optimizes 2p
parameters for each MSF, i.e., a total of 2pm MSF parameters for a TS model with m
LMs.

In general, the fuzzy modeling literature also notes that setting overlap parameter
to a large or small overlap between local models may have an impact on the parameters
estimated for the local models. This means that this parameter could influence the number
of LMs needed to accurately approximate some function. In other words, the overlap
parameter could have an influence on the size of the final Lolimot tree.

As discussed, the Lolimot algorithm used the multi-dimensional Gaussian membership
function. The standard deviation vector o of this function is calculated by using the overlap
parameter k, = 1/3 of the the size of the partition, in each dimension. Note, also that the
amount of overlap, i.e., o, is directly influenced by the partition boundaries, i.e., the split
thresholds, as shown in Figure 4.5. Here, the values of 0 = [0, 03] are directly dependent
on the partition size in both dimensions.

In the analysis, we consider the effect of using different values for k,. We utilize values
for k, ranging from 0.25 to 4. Additionally, we investigate what is the effect of tuning this
parameter for different datasets.

4.2.3 Global Parameter Estimation in Lolimot

As discussed earlier, the estimation of the local model parameters of a model tree, given
that the validity functions are known, could be performed using local or global parameter
estimation. The global estimation procedure estimates all of the local model parameters
simultaneously. This takes into account the interaction between local models, as defined
by the membership function overlaps. The alternative is local estimation, which estimates
parameters of each local model in isolation, and is used in the Lolimot method.
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Figure 4.5: The partitioning resulting from a Lolimot model tree with three splits and four
LMs. The Gaussian membership functions are shown too. For the bottom-right partition,
with dimensions [d1, d2] = [4, 6], the o1, and o9 values are shown.
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The global estimation was already used in the Lolimot method, by Aleksovski, Ko-
cijan, and Dzeroski (2014b), where the resulting model tree had a small complexity and
acceptable fit to the dynamic system. Additionally, the work of Nelles (1999) notes that
the global estimation has two disadvantages. The first one is not handling noise well, and
the second one is not providing for interpretation of the local model coefficients as local
linearizations of the model. In more detail, the local model coefficients that this procedure
estimates, have no physical interpretation for the underlying system.

The local estimation has faster calculation as an advantage, compared to the other
alternative, but the interactions between local models are not taken into account. We aim
to modify the implementation of the Lolimot algorithm, so that the LM estimation can
also be performed with the global parameter estimation procedure. In the remainder of
this part we outline the calculations required to perform the global parameter estimation
for the multi-target case.

For the [-th target variable, the regression matrix X; is composed of m submatrices,
one for each local model:

X, = [X§ffb> X&) Xl(iib)] (4.11)

Given that ®;(x) denotes the validity function value, as defined in Eq. (3.6), each of the

submatrices Xl(iUb), which consist of N rows and (p+ 1) columns, have the following form:
@Z(Xl) q)l(xl)xl (I)Z(Xl).’l?p
P;(x9) D;(x2)r1 -+ Pi(x9)z
Xy, = (. ) (.) _ (_)p . (4.12)
Qi(xn) Pi(xn)z1 - Pi(xn)zp

We denote with y; the vector of values of the [-th target variable, which is:

vi=[y1 w2 - yz,n]T- (4.13)

In Eq. (4.13), y;; denotes the value of the I-th target variable for the i-th data point.
The parameter estimates for each target can now be calculated using the well-known least

squares estimation formula:
b, = (X[ X)) "' X{'y1. (4.14)

4.3 Model Tree Ensembles

Ensembles for regression, also called committees of predictors, are known to improve predic-
tive accuracy. This is known in the field of neural-network ensembles (Krogh & Vedelsby,
1995) as well as tree-based ensembles (Breiman, 1996). Among the reasons for their suc-
cess are the smoothing effect on individual model estimates and the reduction of variance
of the ensemble (Grandvalet, 2004), as compared to the one of the individual trees. The
Model Tree Ensembles we are proposing here are based on the bagging (Breiman, 1996)
principle, and use either ensembles of crisp M5’ model trees, or ensembles of soft Lolimot
model trees.

4.3.1 Ensemble Construction

The ensemble construction procedure we use is based on the popular bagging approach.
As shown in Figure 4.6, bagging creates t bootstrap replicates, i.e., random samples with
replacement, of the identification set, which have an equal number of data points as the
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Figure 4.6: Operation of the bagging method, using model trees as base models.

identification set. Using each of the ¢t samples, a base learner algorithm is used to build a
collection of ¢ model trees: f1, fa,.., fi. Finally, the ensemble structure is optimized, using
an ensemble selection procedure, as described in Subsection 4.3.2.

The final ensemble model is used for prediction by averaging the predictions of each
of the base models. The pseudocode describing the ensemble construction procedure and
ensemble selection procedure is shown in Algorithm 4.1. The base learner algorithm,
denoted by the procedure Build _tree(D;), can be either M5’ or Lolimot. The operation
of both of them has been described in the preceding text.

4.3.2 Ensemble Selection

After the ensemble is built, it is optimized by using a greedy ensemble selection procedure.
Trees that do not contribute to the accuracy of the ensemble are removed from the en-
semble. A tree’s contribution is evaluated by considering the output error of the reduced
ensemble without the tree and comparing its performance to the current ensemble. By
evaluating the output error of the ensemble on the identification data (instead of the pre-
diction error), we aim to produce a more successful model of the dynamic system. In the
next paragraph we describe the ensemble selection procedure in more detail.

The selection procedure operates in a greedy fashion, reducing the ensemble size by one
tree in each step, as shown in Algorithm 4.1. It stops when no improvement can be made
to the performance of the ensemble. For dynamic systems, simulation on the identification
data is performed and the evaluation of the performance of the ensemble is carried out by
using the output error function.

After the ensemble selection procedure, assume that the resulting ensemble has ¢’ trees:
E ={T1,T,,.Ty}. The prediction of the ensemble is a uniformly weighted average of the
model tree predictions:

Fx) = & > i) (4.15)

where f,(x) denotes the prediction of the i-th model tree for data point x.
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Algorithm 4.1: Pseudocode for the Model-Tree Ensembles method.
Algorithm Learn ensemble(D)

Data: data set D

Result: an ensemble E

Create t bootstrap samples of D : D1, D, .., Dy

Build a tree using each of the ¢ samples: T; = Build _tree(D;)

Let E' =Ensemble _selection( {T1,T5,..,T;} , D)

Return the ensemble E’

Algorithm Ensemble selection(E, D)

Data: ensemble F, consisting of trees 11,75, .., data set D

Result: ensemble E’

Let ety be the output error of E, obtained by simulation on data set D

Let t = |F]|

Create t ensembles, Et, .., By where E; = {T}|j # i}

Let e; be the output error of ensemble E;

Let ereduced = mini:l..t(@)

Let j = argmin;_; ,(e;)

if (efull > ereduced) then
| Return the ensemble Ensemble _selection(£};, D)

else
| Return the ensemble F

end

4.4 Illustrative Example

This part is going to illustrate the predictive power of model trees and ensembles on a simple
1-dimensional static system. This will help understand the advantages and limitations of
model tree algorithms for modeling dynamic systems. It will also illustrate the derivatives
of the different types of models, as they are important for assessing the generalization
performance.

The predictive power of the model trees ensembles is illustrated with the regression
problem of fitting the static nonlinear function

f(z) = sin(2wz) + 22 (4.16)

using 200 points (z,y), with = uniformly distributed in the interval [0, 1].

Figure 4.7 shows two fitting scenarios, where the models are learned using a noisy
version of the data: noise with a standard deviation equal to 20% of the target variable
deviation was added. In the first scenario, the nonlinear function is approximated with
one Lolimot model tree with 12 LMs. The second scenario presents the fit of a bagging
ensemble using randomized splits, where the base models are Lolimot trees. In both cases
the fit is acceptable, while the error of the ensemble is slightly smaller. Both models handle
the noisy data well, i.e., do not overfit to the noise.
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Figure 4.7: Performance of the soft model tree approaches. A single Lolimot tree (left) and
bagging of Lolimot trees (right). The Lolimot model tree consists of 12 LMs. The bagging
consists of 50 model trees with 12 LMs. The lower panels show the approximation error

A~

f(z) — f(z). In both cases the modeling is performed by using data with 20% noise.

Figure 4.8 shows the fit of a crisp M5’ tree with 12 terminal nodes, the same crisp tree
with fuzzification, and a bagging ensemble of 50 crisp trees using randomized splits. In the
first two cases the errors of the crisp model tree are clearly visible. They are larger around
the five split cut-points, ﬁ where ¢ = 1,2, ---12. Also, a discontinuity is visible in the first
case, for z = %, where the predictions for z < % are larger than the predictions of x > %
This discontinuity issue is fixed in the second case, however the error improvement of the
fuzzified model tree is small. On the other hand, the bagging ensemble shows an improved

fit to the nonlinear function, as compared to a single M5’ model tree.

If we compare the fit of the crisp model tree, shown in the left part of Figure 4.8, to
the fit of the soft model tree, shown in the left part of Figure 4.7, we can note that the
performance of the crisp model tree is worse than the single Lolimot tree with the same
number of local models/terminal nodes. This shows the advantage in terms of predictive
power that the soft tree variants possess. This advantage is more clearly visible when the
function to be fit contains "more nonlinearity", an example of which is the function chosen
here. When comparing the errors of the ensembles, however, we can conclude that both
ensembles produce similar results, the bagging of Lolimot trees being slightly better.
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Figure 4.8: Performance of the crisp model tree approaches. A single M5’ tree (left), a
smoothed variant of the M5’ tree (middle) and bagging of M5’ trees (right). The M5’
model tree has 12 terminal nodes. The bagging consists of 50 model trees with 12 terminal
nodes. The lower panels show the approximation error f(z) — f(z). In both cases the
modeling is performed by using data with 20% noise.

4.4.1 Derivatives of the Models

This analysis focuses on the derivatives of the model, using the same static function.
The derivatives of the model play an important role to the model performance, as they
determine the local linearizations of the nonlinear model of the system. Also, the correct
fit of the model to the system derivatives would mean that acceptable OSA and simulation
performance can be expected. The aim of the analysis is to show the correspondence of
the derivatives of different model types to the true derivatives of the static function.

The derivative of the static nonlinear function defined in Eq. (4.16), with respect to z

daf

e 27 cos(2mx) + 2. (4.17)

The derivatives of the models produced are calculated differently. The derivative of the
crisp model tree is the slope coefficient of the corresponding local model. The derivative of
a soft model tree is a weighted sum of the slopes of all local models (note that the weights
add up to 1). The derivative of an ensemble, such as bagging, which produces the final
prediction by averaging the predictions of the base models, is calculated by averaging the
slopes of each base model.

is:
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The results in Figure 4.9 show that the fuzzy MT has a closer fit to the true function
derivatives, as compared to a crisp MT. When comparing to the smoothed version, we
can conclude that the fit to the true derivatives is similar. Both bagging variants produce
models with closer fit to the true derivatives, however, the model derivatives show larger
variation around the true function derivative. The large variation is probably due to the
randomization of the cut-points, which is used to illustrate the ensembles.

Fuzzy MT Bagg fuzzy MTs
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Crisp MT Crisp MT smoothed
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Figure 4.9: An illustration of the derivatives of the different models (solid lines) compared
to the true derivative of the function (dashed line).
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Chapter 5

Evaluation on Benchmark Machine
Learning Regression Datasets

This chapter of the thesis would analyze the performance of regression trees, model trees
and ensembles, for the tasks of single-target and multi-target regression. The datasets used
are considered as benchmark machine learning datasets, and the results should provide
sone insight into the potential of the model tree ensembles. In more detail, the analysis
in this chapter will consider three different tree formalisms: crisp regression trees, crisp
model trees and soft model trees. Also, it will consider ensembles of all the three mentioned
formalisms. The questions that it will try to provide answers to, are the following:

e How well do the different tree formalisms perform for single-target and multi-target
regression?

e Do the ensembles of model trees offer an increase in performance over single model
trees?

e How do forests compare to bagging, when using model trees as base models?

e What is the influence of the ensemble size on its performance?

All of the questions are going to be analyzed by using a group of 49 single-target
datasets, and a group of 9 multi-target datasets. The evaluation would be performed by
using cross-validation. The results would be analyzed by using statistical tests, which
would determine whether the differences obtained are statistically significant.

The first question is going to be addressed by comparing the different tree variants
on the two dataset groups. The measures that would be reported and analyzed consider
the predictive performance, the model sizes, and the time required for learning. The
second question is going to be addressed by analyzing the performance of bagging and
forest ensembles. Recall that the forests differed from bagging due to the introduction of
randomness in the tree building procedure. The performances of bagging and forests would
be compared to that of a single tree. The third question would compare the two ensemble
approaches of bagging and forests, and evaluate whether the randomization included in
the forests is beneficial over the bagging ensemble. Finally, for the last question, ensembles
of model trees using different sizes would be evaluated. The results here would be utilized
for determination of a sensible value for the ensemble size parameter.

The rest of the chapter describes the single-target and multi-target datasets, used in
the analysis. It also provides information regarding the preprocessing of the data. In the
following it describes the experimental setup, the performance measures and the statistical
tests used. Also, it provides information regarding the parameters evaluated for each of
the algorithms. Finally, it presents the experimental results.
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5.1 Datasets

The benchmark machine learning datasets for regression, that are used can be divided in
two groups:

e single-target regression datasets,
e multi-target regression datasets.

The description of each group can be found in Tables 5.1 and 5.2, respectively. The first
consists of 49 single-target datasets, while the second consists of 9 multi-target datasets.
For the multi-target case, the total number of target variables is equal to 33. The datasets
for the single-target regression task are taken from two repositories (Torgo, 2013; Asun-
cion & Newman, 2007), while the multi-target datasets are obtained from several sources,
reported in the table along with the dataset information.

Table 5.1: The list of single-target regression datasets. The table reports the number of
instances n, the number of attributes a, and the number of nominal attributes anom.

Dataset n a Anom
01. abalone 4177 9 1
02. analcat 4052 8 5
03. auto93 93 23 6
04. autoMpg 398 8 3
05. auto-price 159 16 1
06. bank8FM 8192 9 0
07. baseball 337 17 4
08. baskball 96 5 0
09. bodyfat 252 15 0
10. breastTumor 286 10 8
11. cal-housing 20640 9 0
12. cholesterol 303 14 7
13. cleveland 303 14 7
14. cloud 108 7 2
15. concrete 1030 9 0
16. cpu 209 8 1
17. cpu-act 8192 22 0
18. dailyElectrEner 365 7 0
19. delta-ailerons 7129 6 0
20. delta-elevators 9517 7 0
21. echoMonths 130 10 3
22. electr-len-2.arff 1056 5 0
23. fishcatch 158 8 2
24. forestFiresPOR 517 13 1
25. fruitfly 125 5 2
26. housing 506 14 1
27. hungarian 294 14 7
28. kin8nm 8192 9 0
29. laser 993 5 0
30. lowbwt 189 10 7
31. machine-cpu 209 7 0
32. meta 528 22 2
33. mortgage 1049 16 0
34. pbc 418 19 8
35. pharynx 195 12 10
36. pol 15000 49 0
37. puma8NH 8192 9 0
38. pwLinear 200 11 0
39. quake 2178 4 0
40. sensory 576 12 11
41. servo 167 5 4
42. stock 950 10 0
43. strike 625 7 1
44. treasury 1049 16 0
45. triazines 186 61 0
46. veteran 137 8 4
47. wankara 1609 10 0
48. wisconsin 194 33 0
49. wizmir 1461 10 0

5.1.1 Preprocessing

The preprocessing part deals with the missing values in the dataset and the nominal
(discrete) attributes which have more than two possible values. The datasets have been
preprocessed with the default preprocessing procedures of the M5’ algorithm in the WEKA
implementation.
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Table 5.2: The list of multi-target regression datasets. The table reports the number of
instances n, the number of attributes a, the number of nominal attributes a,om, and the
number of targets/outputs r.

Dataset n a Qpom r
01. Collembola (kampichler, Daeroski, & Wieland, 2000) 393 50 8 3
02. EDM (karali¢ & Bratko, 1997) 154 18 0 2
03. Forestry IRS (stojanova, 2009) 2730 31 0 2
04. Forestry SPOT (stojanova, 2009) 2730 51 0 2
05. Sigmea-real (pemsar, Debeljak, Lavigne, & Dreroski, 2005) 817 8 0 2
06. Sigmea-simulated (pemsar, Debeljak, Lavigne, & Dreroski, 2005) 10368 13 2 2
07. Solar-flarel (asuncion & Newman, 2007) 323 13 10 3
08. Solar-flare2 (Asuncion & Newman, 2007) 1066 13 10 3
09. Water quality (preroski, Demsar, & Grbovi¢, 2000) 1060 30 0 14

The missing values in the dataset are replaced with modes and means from the training
data. The discrete variables with more than two possible values are converted to several
binary attributes. A discrete attribute with v possible values is converted into v — 1 binary
attributes, using the one-attribute-per-value approach (Breiman et al., 1984). For more
details regarding the preprocessing of the data that the M5’ implementation in WEKA
performs, see (Hall et al., 2009).

5.2 Experimental Design

One of the goals of a sound experimental design is to determine a good estimate of the
performance of the methods, on unseen data. This needs to be executed using a limited
number of available data instances. In order to estimate the predictive performance of the
obtained models, we employ the standard 10-fold cross-validation estimator. The data is
split into k = 10 parts of approximately equal size. In the jth step, the part j is used
as a test set, while the other k£ — 1 parts are used as a training set. To allow for a fair
comparison of the performance, for each of the selected methods we utilize exactly the
same folds.

The optimal parameters of the methods, for each of the 10 folds, are selected using
internal (nested) 5-fold cross validation. This means that for each of the 10 outer folds,
we perform nested 5-fold cross-validation, which would determine the optimal set of pa-
rameters for the method in that fold (Witten & Frank, 2005). For each of the methods,
several different parameter values are tried. The list of parameter values for each of the
methods is reported in Table 5.3. It is worth noting that the Lolimot model tree algorithm
considered was set up in order to evaluate the candidate splits according to the prediction
error, as opposed to its default evaluation by using output error.

To test whether the obtained differences in performance are statistically significant
given a single dataset, we apply the paired Student’s t-test. This parametric test assumes
that the population follows a normal distribution. The paired t-test is applied to the results
of the methods on each of the 10 folds of the cross-validation procedure. In the case of
multiple target variables, the differences are assessed and reported for each target variable
independently.

To test the difference in performance of algorithms on all available datasets, we utilize
the non-parametric Wilcoxon signed rank test (Wilcoxon, 1945). It is commonly used
when the assumption of normality of the population cannot be made. For the predictive
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performance, we utilize the error from the cross-validation procedure, i.e., the aggregated
performance from each of the folds. The significance level used for both the paired t-test
and the Wilcoxon test is 0.01. This means that the null hypothesis, which states that the
difference between the two responses is zero, is rejected when the p-value is less than the
significance level of 0.01.

Table 5.3: Method parameters considered for the experimental evaluation.

Method name Parameter name Values considered
M5’ model tree (MT) Post-pruning T/F
LS Regression: only M5 fea- T/F
tures
LS Regression: M5’ feature se- T/F
lection
Smoothing of linear models T/F
M5’ regression tree (RT) Post-pruning T/F
Lolimot Maximal num. iterations 30
Bagging of M5’ MTs or RTs Number of trees 100
Forest of M5’ MTs or RTs Number of trees 100
Size of random subset of feat. [0.2; 0.4; 0.6; 0.8] *#features
att
Bagging Lolimot Number of trees 100

5.2.1 Performance Measures

The experimental analysis evaluates the performance of the models learned, using different
measures. The performance measures consider three aspects of the models: a) the predic-
tive performance of the models, b) the time required for model learning and c) the size of
the resulting model.

The predictive performance is measured in terms of root relative mean-squared error,
or abbreviated RRMSE, calculated as:

RRMSE = Y22 Wi §)° (5.1)
> (v —9)?
The tables in Section 5.3 report the aggregated RRMSE error of the 10 folds of the cross-
validation procedure. The results of the multi-target regression report the RRMSE for
each target separately.

The time required for model learning is reported in seconds, and it includes the total
time required for the 10-fold cross-validation procedure. The size of the trees is reported
as the number of terminal nodes (local models) of the tree. In a similar fashion, by size of
an ensemble of trees, we denote the average number of terminal nodes in the trees of the
ensemble. This notation is used in the whole chapter.

For all of the measures reported, a smaller value indicates better performance. This
is also consistent in the statistical test reports. For example, a result of the t-test which
reports the value 10:5 for the running time of algorithm variant A compared to B means
that for 10 datasets algorithm A had a stat.sign.smaller running time than B. Also it states
that for 5 other datasets, algorithm B had a stat.sign.smaller running time than A.

5.3 Experimental Results

This section reports the results of the empirical analysis, both on single-target and on
multi-target regression tasks. It is organized as follows: First, the performance of model
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trees and regression trees is evaluated on the benchmark machine learning datasets. Then,
the model trees are compared to ensembles, and finally, the ensemble size is evaluated, by
considering ensembles with a different number of trees.

5.3.1 Evaluating the Performance of Different Tree Learning Algorithms

The experimental evaluation would compare the performance of different types of trees and
ensembles thereof. This part outlines the types of trees which are used, and the algorithms
that built them.

The comparison includes regression trees and ensembles thereof, typically evaluated in
the machine learning domain. The regression trees are built by using the M5’ algorithm
with the regression tree setting. Also, it compares crisp and fuzzy model trees. The former
are built by using the M5’ algorithm, while the latter are built by using the Lolimot
algorithm. The crisp model trees are frequently included in machine learning comparative
studies, as single trees. However, ensembles of crisp model trees, fuzzy model trees, and
ensembles thereof are rarely used in machine learning studies. The motivation of the
analysis is to evaluate the applicability of the last two in the machine learning domain. In
summary, the types of models and the algorithms used in the evaluation, are as follows:

e crisp regression trees, built with the M5’ algorithm (M5’ RT, or only RT),
e crisp model trees, built with the M5’ algorithm (M5" MT, or only MT),
e soft model trees, built with Lolimot (Lolimot).

In the following subsections, the different tree learning algorithms would be compared by
first considering the single-target regression task, followed by an analysis of the methods
for multi-target regression.

5.3.1.1 Single-target Regression

Here we report the performance of the regression tree approach and the two model tree
approaches for the single-target regression tasks. The results of the predictive performance
are summarized in Table 5.4. On the one hand, they show that there is no significant dif-
ference between the performance of M5’ model trees and Lolimot trees. The t-test reports
that the M5’ model tree outperforms Lolimot in 5 of the 49 cases, while the Lolimot model
shows better performance in 7 of the 49 cases. The Wilcoxon test detects no statistically
significant difference at the 1% level, which is also supported by the markers placed mainly
around the diagonal, in Figure 5.1. On the other hand, the comparison to regression
trees shows that M5’ model trees are a better performing approach, and this difference is
statistically significant according to the Wilcoxon test.

Table 5.4: A statistical comparison of the predictive performance of model trees (MT), soft
model trees (Lolimot), and regression trees (RT), for the task of single-target regression.
A summary of Table A.1. The results reported in all tables compare the leftmost method,
in this case M5" MT, to all of the other methods, by using paired comparisons.

M5’ MT : Lolimot RT
t-test 5:7 21:0
w-test 0.384 0.000
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Table 5.5: A statistical comparison of the model sizes and running times of model trees
(MT), soft model trees (Lolimot), and regression trees (RT), for the task of single-target
regression. A summary of Table A.2. The number of wins, denoted as "#wins" is reported
in the first row in this and in the following tables with results for the size of the models and
the running time. The values only summarize the number of datasets on which variant A
had a smaller value than variant B, i.e., no statistical test is considered. The sum of the
number of wins for the method tested and its alternative would always add up to the total
number of datasets.

Model size Learning time (sec.)
M5 MT : Lolimot RT M5’ MT : Lolimot RT
#wins 23:26 42:7 49:0 148
w-test 0.003 0.019 0.000 0.000

Considering the size of the trees, reported in Table 5.5, we can conclude that M5’
builds larger trees than Lolimot, and the difference is statistically significant. Also, a
RT is typically larger than an M5’ model tree, however the difference is not statistically
significant at the 1% level. Both of these results are expected, since one could expect that
the soft model tree requires less local models to obtain the same predictive performance as
compared to the crisp model tree. Also, in theory, a linear model of the model tree is able
to replace a subtree of the regression tree, modeling a linear relationship, and lowering the
number of local models.

In spite of the differences in sizes, the running times are the smallest for regression
trees, and largest for the Lolimot method. This is expected for M5’ MTs and M5’ RTs, due
to the same tree building phase, and the additional local model estimation performed by
the former approach during the tree pruning phase. Also, it is expected when comparing
M5’ to Lolimot, mainly because of the lookahead step included in the Lolimot approach,
which includes estimation and evaluation of local linear models.

5.3.1.2 Multi-target Regression

The results of the predictive performance on the multi-target regression tasks are summa-
rized in Table 5.6. Similar to the single-target case, they suggest no difference between
the performance of M5’ and Lolimot, and a statistically significant difference between M5’
model trees and regression trees.

The comparison results of an M5’ MT to a RT, show that the former wins on 4 of the
9 multi-target datasets. Also, the Wilcoxon test reports this as a statistically significant
difference, at the 1% level. More insight into the differences in performance are presented
in Figure 5.2. The results there confirm that the model tree outperforms the regression
tree on the multi-target regression task.

Table 5.6: A statistical comparison of the predictive performance of different tree learning
algorithms for the task of multi-target regression. A summary of Table A.3.

M5’ MT: Lolimot RT
t-test 0:0 4:0
w-test 0.150 0.006
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Figure 5.1: A comparison of the predictive performance of Model trees (MT) and soft

model trees (Lolimot).

Table 5.7: A statistical comparison of the model sizes and running times of different tree

learning algorithms for the task of multi-target regression. A summary of Table A 4.

Model size Learning time
M5 MT: Lolimot RT M5 MT: Lolimot RT
#wins 3:6 81 9:0 09
w-test 0.039 0.875 0.004 0.004

The results for the model sizes in Table 5.7 show that the M5 MTs and RTs have

similar sizes for most of the datasets. The w-test produces quite a high p-value, indicating

that there is very little evidence of differently-sized models. The comparison of M5 MTs

to Lolimot is in favor of the latter, but the difference is not statistically significant.

5.3.2 Comparing Model Trees to Ensembles

This subsection compares the performance of ensembles of different types of trees, to the

performance of an M5’ model tree.

The decision to consider only the M5’ model tree

here was influenced by the results from the previous subsection, where the M5’ model tree
and Lolimot both showed acceptable performance, however, the learning times of the M5’
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Figure 5.2: A comparison of the predictive performance of an M5’ model tree to a regression
tree for the task of multi-target regression. Each marker represents one target variable of
the corresponding multi-target dataset.

algorithm were substantially smaller.

The ensembles considered in this subsection are built using the three types of base
models, discussed earlier. Also, the ensembles are built by using both bagging and forest
approaches, with the exception of the Lolimot method, where only bagging is considered.
In more detail, the method variants considered here, and their abbreviations are: forests of
M5’ model trees (FMT), bagging of M5’ model trees (BMT), a single M5’ model tree (MT),
forests of M5’ regression trees (FRT), bagging of M5’ regression trees (BRT) and bagging
of soft Lolimot trees (BL). All ensembles analyzed in this part consist of a fixed number of
100 trees. This analysis first compares the methods for the single-target regression tasks,
and uses the datasets listed in Table 5.1. Then it considers the multi-target regression
tasks and the datasets listed in Table 5.2.

5.3.2.1 Single-target Regression

The results of the ensembles for the single-target regression task are summarized in Table
5.8. The statistical tests show that the difference in predictive performance of forests of
M5’ model trees is statistically significant when compared to a single M5’ model tree, and
when compared to each of the ensemble variants built using regression trees or soft Lolimot
model trees. The difference of forests of M5’ model trees to bagging of M5’ model trees
is not statistically significant at the 1% level, according to the Wilcoxon test. Also, the
t-test reveals that the number of datasets on which the former is significantly better than
the later, is only 7, out of 49.
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Table 5.8: A statistical comparison of the predictive performance of the ensemble ap-
proaches for single-target regression. All ensembles consist of 100 trees. Summary of Table
AL

FMT: BMT MT FRT BRT BL
t-test 71 16:0 13:0 14:0 12:1
w-test  0.028 0.000 0.001 0.000 0.003

Table 5.9: A statistical comparison of the model sizes and running times. Summary of
Table A.6.

Model size Learning time (sec.)
FMT : BMT MT FRT BRT BL FMT:BMT MT FRT BRT BL
#wins 18:31 22:27 37:12 28:21 11:38 2:47 0:49 0:49 0:49 2:47
w-test 0.001 0.236 0.012 0.462 0.000 0.000 0.000 0.000 0.000 0.000

A comparison of the predictive performance of forests of model trees to a single model
tree is shown in Figure 5.3. The results in the figure show that the most of the markers
are below the diagonal, which indicates that a forest of M5’ model trees provides an
improvement in predictive performance over a single M5’ model tree.
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Figure 5.3: A comparison of the predictive performance of a single M5’ model tree to that
of forest ensemble of M5’ model trees.



56 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

Regarding the sizes of the trees, summarized in Table 5.9, the results suggest that
bagging of M5" model trees builds smaller trees than forests of M5’ model trees. Also,
forests of M5’ model trees build smaller trees than forests of regression trees, which is
somewhat expected. In theory, the linear models can potentially replace a subtree of the
regression tree consisting of several splits, which forms a piecewise constant model. The
results for the soft model trees show that the bagging of Lolimot trees approach creates
trees with less local models than the forests of model trees. This can also be considered
as expected, since the soft model tree formalism would require less local models than the
crisp one, to achieve comparable accuracy on a smooth function approximation task.

5.3.2.2 Multi-target Regression

The results of the multi-target regression analysis for the different types of ensembles are
shown in Table 5.10, which is a summary of Table A.7. The results reveal that the forests
of M5’ model trees show improvement over bagging of M5’ model trees and a single M5’
model tree, while they have similar performance to the regression tree and Lolimot variants.
The Wilcoxon test shows that the difference to the bagging of M5’ model trees and a single
M5’ model tree is significant at the 1% level. The performance of forests and a single M5’
model tree is also presented visually, in Figure 5.4. The most of the markers visible are
below the diagonal, which suggests that the forests improve over the single tree. However,
the markers for two of the datasets are not visible, as their errors were out of the scope of
the figure.

Table 5.10: A statistical comparison of the predictive performance. Summary of Table
AT,

FMT : BMT MT FRT BRT BL
t-test 1:0 3:0 3:0 2:0 4:0
w-test 0.001 0.001 0.837 0.102 0.027

Table 5.11: A statistical comparison of the model sizes and running times. Summary of
Table A.8.

Model size Learning time (sec.)
FMT : BMT MT FRT BRT BL FMT: BMT MT FRT BRT BL
#wins 4:5 45 9.0 54 2:7 1:8 09 09 09 09
w-test 0.078 0.375 0.250 0.688 0.016 0.020 0.004 0.004 0.004 0.004

A detailed look at the results shows large errors obtained by the three ensemble variants
using model trees, on the Sigmea simulated dataset. The large errors values are evident
for all of the targets in this dataset, and they convey that some of the model trees in
the ensemble have incorrect local model coefficients. In more detail, Table A.7 reveals
that all three variants using M5’ model trees, i.e., a forests of M5’, bagging of M5’ and a
single M5’ model tree, have large errors for both targets of the Sigmea simulated dataset.
However, the t-test outcome states an equal performance to bagging of regression trees
and of Lolimot trees. Further analysis of the results for this dataset show that for several
of the folds the model tree and ensembles thereof contain incorrect local models, and the
error for the folds in question is quite large. The model errors corresponding to these
folds also increase the final cross-validated RRMSE error measure. For the other folds, the
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Figure 5.4: A comparison of the predictive performance of a single M5’ model tree to that
of forest of M5” model trees for the task of multi-target regression.

errors of all three M5’ model tree-based methods are comparable to the methods based on
regression trees and Lolimot trees.

The incorrect local models learned for this dataset might be due to the small number
of training points in some of the partitions. One possible solution to this problem is
the "capping", as mentioned in the work of Pfahringer (2011). Using this approach, the
model tree predictions are modified, so that they are in some pre-defined range. Overly
large or small model predictions would be replaced by the minimum or maximum of the
corresponding target variable in the training set.

Also, for the Collembola dataset, all variants based on model trees overprune and build
rather small models consisting mostly of only one local model. This is the reason why both
approaches based on regression trees have smaller errors on this dataset. In summary, the
results suggest that the overpruning issue and the incorrect local models issue could reduce
the applicability of model trees and ensembles thereof, for multi-target regression.

5.3.3 Ensemble Size

This subsection presents the analysis of the ensemble size on its performance, on the task
of single-target regression. It considers the forests of M5’ model trees, which proved to be
the most successful ensemble approach of the ones compared earlier.

The results in Table 5.12 summarize the results when considering forests of 100, 50
and 25 model trees. The outcomes of the statistical tests show that there is a significant
difference in performance between forests with 100 M5’ model trees and forests with 25
trees. According to the Wilcoxon test, the difference is significant at the 1% level, while
the t-test shows a significant difference for only two multi-target datasets. Additionally,
the prediction performance results visualized in Figure 5.5 show that the improvement in
performance by using 100 trees over 25 trees, is rather small.
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Table 5.12: A statistical comparison of the predictive performance of forests of M5’ model
trees with a different number of trees, for the task of single-target regression. Summary of
Table A.9.

FMT(100) : FMT(50) FMT(25)
t-test 0:1 2:0
w-test 0.064 0.000

Table 5.13: A statistical comparison of the model sizes and running times of forests of M5’
model trees with a different number of trees. Summary of Table A.10.

Model size Learning time (sec.)
FMT(100) : FMT(50) FMT(25) FMT(100): FMT(50) FMT(25)
#wins 29:20 25:24 8:41 0:49
w-test 0.885 0.770 0.000 0.000

The comparison of the model tree sizes in each of the forest variants, shown in Table
5.13, suggests that all three variants build model trees with comparable sizes. In other
words, the results do not offer enough evidence to reject the null hypothesis of same-sized
model trees. As expected, the running times are in favor of the ensemble with 25 model
trees.
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Figure 5.5: A comparison of the predictive performance of forests of M5” model trees with

100 and 25 model trees.
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5.3.4 Summary

In summary, the empirical analysis showed that the model trees outperform the regression
trees, and their size is also smaller. It also showed that the forests of M5’ model trees
improve the predictive performance over a single model tree. Additionally, the comparison
of the forests of M5’ model trees to the regression tree ensembles showed an improvement
only in the single-target case. In the following, we outline some of the other conclusions
which this analysis provides.

The predictive performance comparison of the single trees showed that there was no
statistically significant difference between Lolimot and M5 MTs. Also, the M5 MTs
outperformed the RTs, and the difference was statistically significant. The differences for
the latter comparison were visible both in the single-target, as well as the multi-target
analysis. Such results were expected, since the M5 and Lolimot model trees are a more
powerful modeling formalism than regression trees.

Regarding the comparison of the sizes of trees, in terms of the number of terminal nodes,
the results showed that Lolimot built smaller or equal trees as the M5” MT algorithm. This
might be affected, however, by the limit of 30 terminal nodes in the Lolimot tree. The
comparison of M5 MTs to RTs showed that the model trees require less terminal nodes
for some datasets and a comparable number of terminal nodes for others. The statistical
test did not detect a significant difference between these two. Since both are built using an
identical tree building phase, the difference in size is due to the different amount of pruning.
As expected here, the linear models in the model trees allow the pruning procedure to
perform more reduction of the tree size. This was visible both in the comparison of the
single trees in Subsection 5.3.1, and in the comparisons of ensembles, where the sizes of
trees included in an ensemble were analyzed, cf. Subsection 5.3.2.

This chapter also tried to answer the question whether ensembles of model trees improve
the predictive performance over a single model tree. A conclusion regarding this can be
made from both Figure 5.3 and 5.4: The forests of M5’ model trees increase the predictive
performance over a single M5’ model tree. The difference is statistically significant for both
the single-target, and the multi-target regression, at the 1% level. However, the multi-
target analysis showed that the M5’ multi-target model tree algorithm needs to overcome
two potential issues in the ensemble setting. The first is the identification of incorrect
local models, which is due to the small sample of data points, while the second is that the
pruning procedure can reduce the tree to a single local model. The issues appeared in 2
and 3 of the 9 multi-target datasets, respectively.

To overcome the issues it might be beneficial to limit, i.e., cap, the predictions of
the model tree in the ensemble setting. The regression tree approaches do not have this
problem, since they only learn a constant model in the terminal nodes, i.e., only fit one
parameter (intercept) using the potentially small number of training points. On the other
hand, the model trees use the same training points to fit p + 1 parameters.

The analysis included a comparison of the forests of M5’ model trees to bagging. It
concluded that the forests either improve the predictive performance over bagging, or in
the worst case show similar results. On the one hand, the forests have the advantage of
faster learning than bagging, since the tree algorithm needs to evaluate a smaller amount
of candidate splits. On the other hand, the forests require that the size of random subset
of features be tuned. Regarding the comparison of forests with a different number of trees,
it was shown that there is a significant improvement when considering a forest of 100 trees,
over a forest of 25 trees.

The comparison of ensembles of M5’ model trees to ensembles of Lolimot showed that
forests of M5’ model trees significantly improved the predictive performance over a bagging
of the same number of Lolimot trees, for the single-target regression. For the multi-target
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regression the improvement was not significant, however differences in performance in favor
of the first were again visible. The running times, were, as expected, in favor of the crisp
model tree ensembles.

It is worth noting that, as future work, the analysis could be extended by including
related methods that build soft or fuzzy regression trees. They could potentially build
competitive models, however the algorithms that learn such trees are typically more com-
putationally expensive than the M5’ algorithm used here. Examples of soft regression
trees, or in more general terms fuzzy decision trees, include the approaches of Olaru and
Wehenkel (2003) and Suarez and Lutsko (1999).
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Chapter 6

Evaluation for Modeling Dynamic
Systems

The empirical evaluation in this chapter will try to answer several questions regarding
the application of model trees and ensembles for modeling nonlinear dynamic systems in
discrete time. To achieve this, it is going to consider seven dynamic system case studies
that will be used in the empirical evaluation. In the following, a summary of all available
data would be presented, along with the details of the experimental procedure, the methods
selected for comparison, as well as their parameters. Finally, the results of the experiments
would be presented, starting with the analysis of the model tree algorithm modifications
and finishing with the evaluation of the model tree ensembles for single-output and multi-
output modeling of nonlinear dynamic systems.

The questions that this evaluation will try to answer consider the using of crisp and
soft model trees for modeling dynamic systems. This chapter will present the results of
the evaluation of the proposed modifications to the base learning algorithms M5’, which
produces crisp model trees, and Lolimot, which produces soft model trees. It will also em-
pirically analyze the performance of ensembles, built using the two model tree algorithms.
In particular it will try to provide answers to the following questions:

e Do the proposed modifications to the model tree learning algorithms improve the
performance for modeling dynamic systems?

Is the multi-output modeling beneficial, as compared to single-output modeling?

Do the proposed ensemble methods improve over the performance of single model

trees?

Are the two different model tree algorithms resilient to noise?

How does the ensemble of model trees compare to selected, frequently used methods
for identification of dynamic systems?

The first question is going to be addressed by evaluating each of the proposed modifi-
cations to the model tree learning algorithms, by using several case studies which include
measured and synthetic data of nonlinear dynamic systems. For the second question two
types of models would be compared: a set of single-output models, where each model
predicts one output variable, to a single multi-output model, which predicts all output
variables simultaneously. The comparison would be performed by performing simulation,
which assumes using predicted values for all output variables, and where the error ac-
cumulation could easily sort out the incorrect models. The third and fourth questions
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would be addressed by performing empirical comparisons of model trees and ensembles of
models trees, built on data from the same case studies. Recall that for some of the case
studies measured data were available, and these already contain certain amounts of noise.
On the other hand for the synthetic datasets, we add noise to the output variables. The
last question is going to be addressed by comparing the ensembles to the frequently used
feed-forward Neural Networks and the hybrid neuro-fuzzy approach ANFIS.

6.1 Dynamic System Case Studies

We take into consideration seven dynamic system case studies from the areas of industrial
engineering and mechanical engineering. One of the case studies presents a real world sce-
nario of an experiment performed using a semi-industrial process plant at the Jozef Stefan
Institute, i.e., the gas-liquid separator. Three other case studies, namely the Continuous-
stirred Tank Reactor (CSTR), Steam Generator and the Winding process, are described
and their data are published in the Daisy repository (De Moor, 2013). One of the case
studies, concerning an anthropomorphic robot arm, is described and published by an inde-
pendent source. Finally, two of the case studies, namely, pH Neutralization, and Narendra,
are synthetic.

For each of the case studies, we also provide information regarding the input signals and
the sampling time. The reasons for providing this information along with the description
of the case studies were outlined in Section 2.1. Namely, the choice of the input signals
during the data gathering procedure determines the distribution of the data points. Several
different types of input signals exist, with two possible types being step-like (e.g., pseudo-
random binary) and sine signals with different frequencies. The different types of excitation
signals have a huge impact on the distribution of the data points that would be used for
training and the expected accuracy of the model. In the remainder of this subsection we
describe the dynamic system case studies which we use to evaluate our methodology.

6.1.1 Case Study: Continuous-stirred Rank Reactor

Feed %

Cooling Jacket

Ca

Figure 6.1: A diagram of the continuous-stirred tank reactor.

This case study concerns the well-known continuous-stirred tank reactor (CSTR). The
CSTR process (Espinosa & Vandewalle, 1999; Lightbody & Irwin, 1997), depicted in Figure
6.1, describes a reaction of two products which are mixed. The products react and generate
a compound A, whose concentration is C,(t). The temperature of the mixture is 7'(¢). This
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exothermic reaction is controlled by introducing a coolant, whose flow rate is g.(¢). The
differential equations which describe the process are:

Calt) = %(Cao — Ca(t)) — koCalt)e” 7@ (6.1)
T(t) = %(Tg C () — ki Ca(t)e F®
hage(#) (1 — 7T ) (Thg — T(8) (6.2)

The modeling problem has one input variable (¢.) and two output variables (C, and T').
The numerical values for the other parameters of the model are given by Lightbody and
Irwin (1997), Appendix A. The data that are used in this thesis are obtained from the
Daisy repository (De Moor, 2013), where it is stated that the sampling time used to obtain
the data Ty is 6 s. The number of data points is 7500, where the first 5000 are used as
training points, and the last 2500 as testing points (Espinosa & Vandewalle, 1999). The
input-output data of the test set are depicted in Figure 6.2 and denoted as CSTR.
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Figure 6.2: Normalized input-output data of the CSTR dynamic system. Data used for
testing.

As Figure 6.2 shows, the CSTR data originating from the repository do not contain
noise. In the analysis, we would also like to address the noise issue and to obtain insights
into the noise-tolerance of the model tree and ensemble methods. For this purpose we create
an additional version of the dataset, denoted as CSTR/’, with added noise. We added white
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noise with mean zero and standard deviation of 20% of the standard deviation of the output
variables. The noise was added only to the output variables in the training set, i.e., to
all corresponding lagged variables in the set of features, as well as in the output variables
(targets) of the training set. No noise was added to the test data.

6.1.2 Case Study: Gas-liquid Separator

The system being modeled in this case study is a unit for the separation of gas from
liquid (Kocijan & Likar, 2008). The separator unit is a semi-industrial process plant which
belongs to a larger pilot plant, residing at the Jozef Stefan Institute. A scheme of the
structure of the plant is given in Figure 6.3.

The purpose of the modeled system is to capture flue gases under low pressure from the
effluent channels using a water flow, cool the gases down, and supply them with increased
pressure to other parts of the pilot plant. The flue gases coming from the efluent channels
are absorbed by the water flow into the water circulation pipe through the injector Iy. The
flow of water is generated by the water ring pump (P1), whose speed is kept constant.
The pump feeds the gas-water mixture into the tank T, where the gas is separated from
the water. The accumulated gases in the tank form a kind of a pressurized gas ’cushion’.
Due to this pressure, the flue gases are blown out from the tank into the neutralization
unit, while on the other hand, the water is forced by the ’cushion’ to circulate back to the
reservoir. The water quantity in the circuit is constant.

@_‘ -
" —pk

|
V, Flue gas

P1

Flue gas
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Ty
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Figure 6.3: A schematic diagram of the semi-industrial process plant.

The first-principles model of the system is a set of differential equations. The variable
p1 is the relative air pressure in the tank Ty, the variable hy is the liquid level of the
tank Ty, while u; and uy are command signals for the valves V; and Vg respectively. The
differential equation for the air pressure variable p; has the form:

apy

= fa(h1)[on + copy + asp? + fo(ur)y/1 + fe(uz) v/ (p1 + o + ashy)] (6.3)

where the values «; are constants, while fy(h1), fp(u1) and f.(uz) are functions of the
corresponding variables. f,(h1) is a rational function of hy, while f,(u;) and f.(ug2) are
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the valve characteristics (exponential functions of u; and wug respectively). The differential
equation for the variable which denotes the liquid level of the tank, hq, is:

dhy

— = ag + fo(u2)\/(p1 + o + ashy) (6.4)

where the value ag is a constant. The details of the model are given by Kocijan and Likar
(2008).

The aim of the system identification in this case study is to build a model for predicting
the value of the pressure variable p;, from lagged values of itself, as well as lagged values
of the input variables. The sampling time selected was 20 s, same as in the work of
Kocijan and Grancharova (2010). The training and the testing data both consist of 733
input-output data points, shown in Figure 6.4, and are disturbed by intrinsic measurement
noise. The optimal lag was chosen by considering lag values from 1 to 3. For illustration,
for a lag of 1, the system identification problem is transformed to the following regression
problem:

pi(k) = filpr(k — 1), ua(k — 1), ua(k — 1), ha(k — 1)) (6.5)
hi(k) = fa(p1(k — 1), ur(k — 1), ua(k — 1), ha(k — 1)) (6.6)

of fitting the static nonlinear functions f; and fs.
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Figure 6.4: Input-output data for identification of the gas-liquid separator system. De-
trended identification data are shown in the left and detrended validation data in the right
four panels.
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6.1.3 Case Study: Narendra System

This case study considers the synthetic Narendra nonlinear dynamic system (Narendra
& Parthasarathy, 1990). This dynamic system is composed of an input variable v and a
system variable y, which are connected by the following relation

1
_ +
1+ y(k)?

The identification data shown in Figure 6.5 consists of 2000 data points for training and
2000 for testing, generated by using a different input signal u, with the same properties. In
the experimental analysis we consider two versions of the data, one without and one with
added noise. We added white noise with standard deviation of 20 % of the output variable
deviation. The noise was added by following an identical procedure, as with the CSTR
system, described above. The version of the data without noise is denoted by Narendra,
while the version with noise is denoted by Narendra’ in the empirical analysis.

y(k+1) = u(k)?. (6.7)

Testing data for the Narendra system
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Figure 6.5: Input-output data for identification of the Narendra system. Testing data are
shown, up to time step 800.

6.1.4 Case Study: pH Neutralization

The control of alkalinity (pH) is common in biotechnological industries and chemical pro-
cesses. The topic of this case study is the identification of the pH neutralization process,
which exhibits severe nonlinear behavior (Henson & Seborg, 1994; Kocijan & Petelin,
2011). What follows is a short description of the process itself, the equations governing the
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process and the synthetic data generated from this model of the pH neutralization process,
which are used for the task of system identification.

Q;

Q

1 o

=

hy

Figure 6.6: A schematic diagram of the pH neutralization system.

The pH neutralization system, described in detail by Henson and Seborg (1994), con-
sists of an acid stream Qp, a buffer stream Qo, and a base stream Qg that are mixed in
a tank T;. Before mixing takes place, the acid stream (; enters another tank T5. The
measured variable is the effluent pH, which is controlled by manipulating the flow rate of
the base stream Q3. The flow rates of the acid and buffer streams are taken to be constant.
A schematic diagram of the system is shown in Figure 6.6.

A model of this dynamic system is derived by Henson and Seborg (1994), which contains
the following state, input and output variables:

X = [Waa Wy h1]%, u=Qs, y =pH (6.8)

where Wy, and Wy, are the effluent reaction invariants and h; is the liquid level of tank
T1. Also, it is assumed for the state variable hq that a controller has already been designed
to keep its level at a nominal value of h} = 14¢m by manipulating the exit flow rate Qq.
The state-space model obtained has the form:

x = f(x)+g(x)u (6.9)

e(x,y) =0 (6.10)

where f(x) and g(x) are nonlinear functions of the state vector x, while ¢(x, y) is a nonlinear
function which is a part of the implicit output equation (Eq. (6.10)). In the analysis, we
consider four variants of the pH data, both with and without noise and generated by two
different input signals. In all four variants the sampling time selected was 25 s, same as in
the work of Kocijan and Petelin (2011).

In the first two dataset variants the input variable u changed its value every 500 s,
each time being set to a value generated by using a uniform random distribution. The
input-output data used, shown in Figure 6.7, consist of 320 data points for identification
and 320 data points for validation. The first variant is denoted as pH 4.
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Identification data Validation data
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Figure 6.7: Input-output data for identification of the pH4 (and pH’4) system; detrended
identification data (left) and detrended validation data (right). The bottom left panel
shows both the non-noisy data (solid line) and the data with 20% noise (dots).

To evaluate the resilience of the identification methods to noise, another variant of the
data was considered, denoted as pH’ 4, where white noise was added to the output (system)
variable only in the identification data. The standard deviation of the added white noise
was 20% of the output variable’s standard deviation. The bottom left panel in Figure 6.7
shows the identification data with 20% noise. The validation data were not disturbed by
white noise.

The third and the fourth dataset variants, denoted as pHp and pH’p consist of 400
data points for identification and 400 for validation. In this case the input variable u has
considerably different dynamics, and the input signal u changed its value in every second
time step, as shown in Figure 6.8. We use the notation pHp to refer to the variant which
does not contain noise, while pH’g for the variant with 20% noise added, the same way as
for pH’4. The experimental procedure required a determination of the optimal dynamic
order (lag) of the variables in the pH system. The values for the lag that we chose to
evaluate for the four variants of the dataset ranged from 1 to 4.
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Figure 6.8: Input-output data for identification of the pHp (and pH’p) system; identi-
fication data (left) and validation data (right). The bottom left panel shows both the
non-noisy data (solid line) and the data with 20% noise (dots).

6.1.5 Case Study: Steam Generator

This case study concerns the identification of a steam generating plant at the Abbott Power
Plant in Champaign, Illinois, using input-output data obtained from the DalSy repository
(De Moor, 2013). The unit is dual fuel (oil/gas) fired and performs both heating an electric
power generation.

The aim is to identify a 4-input 4-output nonlinear plant model. A diagram of the
process inputs and outputs is shown in Figure 6.9. Before identification is performed, the
water level control is stabilized using feed-forward control and PID control (Espinosa &
Vandewalle, 1999). The control signal for the feed-forward control is proportional to the
steam flow. The PID controller is added to compensate the mass in the drum. The purpose
of the identification is the specific control objective of preserving the level of the header
pressure and the oxygen level in the flue gas (Pellegrinetti & Bentsman, 1996).

The four inputs are the fuel flow rate uy, air flow rate ug, water reference level ug
and steam demand wuy4 (disturbance defined by the load level). The four output variables
are the steam pressure yp, excess oxygen yo, water level y3 and steam flow rate y4. The
available data used for identification, shown in Figure 6.10, are obtained from the DalSy
repository (De Moor, 2013). The total number of data points is 9600, out of which the first
7600 were used for training and 2000 points were used for testing. The sampling rate is 3
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seconds. The modeling task is a challenging one: The plant exhibits high-order dynamics,
and displays transportation delays due to the piping, which result in varying dead times,
as well as large amounts of sensor noise.
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Figure 6.9: A diagram of the steam generator plant.
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Figure 6.10: Input-output data of the steam generator dynamic system used for testing.
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6.1.6 Case Study: Robot Arm

This case study deals with modeling a 7-degree-of-freedom anthropomorphic robot arm
(Vijayakumar & Schaal, 2000), shown in Figure 6.11. The data comes from a robot arm
which performs various rhythmic and discrete movement tasks. The robot arm system
studied here is highly nonlinear and presents a modeling challenge.

The data is collected with a sampling rate of 0.1 s and consists of 21 input variables and
7 output variables. The 21 input dimensions are the 7 joint positions, 7 joint velocities,
and 7 joint accelerations, while the 7 output dimensions are the 7 torque commands,
Ty, To, -+ ,T7, for each of the motors. The modeling goal is to approximate the torque
commands of every robot motor in response to the vector of input variables.

The number of data points used in this study is 2000, where the first 1000 are used for
training and the last 1000 are used for testing. One part of the training data is shown in
Figure 6.12, where it is visible that the data is nonlinear and contains a small amount of
noise.

Figure 6.11: The 7-degree-of-freedom anthropomorphic robot arm.
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Figure 6.12: Input-output data for the robot case study, where only the first 400 normalized
data points from the training set are shown. The figure depicts (a) the 7 joint positions,
(b) the 7 joint velocities, (c) the 7 joint accelerations, and (d) the 7 torque commands
(outputs).
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6.1.7 Case Study: Winding Process

This process is a setup of an industrial winding process pilot plant (Bastogne, Garnier, &
Sibille, 2001). It is composed of a plastic web and three reels coupled with direct-current
motors. The web is unwinded from the first reel (denoted as unwinding reel), goes over
the traction reel and is rewinded back on the rewinding reel, shown in Figure 6.13.

The task is to control the web tension in order to avoid sliding effects, wrinkles and
material distortion. It presents a nonlinear and time-variant system. For this system, the
three angular speeds S, S2, S3, are measured by using dynamo tachometers. Data about
the setpoint current at the DC motor Mj, and the setpoint current at the DC motor Ms
is also available.

unwind reel

. rewind reel
traction reel

Figure 6.13: A diagram of the winding process.

The tensions in the web between the first and the second reel (77), and between the
second and the third reel (T5) are measured by tension meters. These two variables are
the outputs, while the previous five are considered inputs (De Moor, 2013). The sampling
rate is 0.1 s, while there are 2500 data samples available, covering a period of 250 s. The
input-output data used are shown in Figure 6.14.
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Figure 6.14: Input-output data for the winding case study. Only the training data are
shown. The first three rows show the five input variables, while the last row shows the two
output variables.

6.2 Datasets

This part first describes the preprocessing of the dynamic system measurements, which
are performed for each of the dynamic system case studies, introduced earlier. It also
describes the procedure for the determination of the optimal dynamic order. Finally, it
summarizes the transformed datasets, which are used in the machine learning setting, for
the evaluations that follow.

6.2.1 Preprocessing

The input-output data of the dynamic systems that are considered, require a preprocessing
step. The transformation of the systems measurements is performed in order to successfully
model the dynamic system. The measurements are transformed according to the external
dynamics approach (Nelles, 1999). The approach is named "external" since there is a clear
separation: external dynamics filter bank and a nonlinear static model (approximator)
(Nelles, 2001). This approach requires that a value for the order (lag) is selected, which
can be different for every variable. For example, the transformed data for a 1-input (q.)
2-output (C, and T'), considering a lag of 2 for all variables, are illustrated in Figure 6.15.
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Figure 6.15: The transformed data using the external dynamics approach, and the simu-
lation procedure are shown. The dynamic system has three variables ¢., C, and T, and
the chosen lag is 2. The first row shows the transformed data for time instant 3. The last
column shows the predictions of the model for output variable T'. The shaded cells in the
subsequent rows, as well as the arrows, illustrate the simulation procedure.

In the system identification and control literature, it is common to test several lag
combinations for a dynamic system under investigation. Furthermore, in some of the
cases, different lag values are chosen for different variables, a choice which is influenced
by the modeling technique selected. In this thesis however, we do not make a thorough
investigation of the optimal lag for each variable of the system, and consider instead an
identical lag for all variables.

The optimal value for the dynamic order (lag) for each case study was selected using a
heuristic procedure. The training data for each of the case studies were further split into two
subsets: a larger training subset and a smaller validation subset. Several different values
for the order of the model were considered, as shown in Table 6.1. For each dynamic order,
a multi-output model tree was built for the case studies that contained multiple output
variables, and a single-output model tree for the others. The model tree was learned by
using the training subset, and evaluated using the validation subset. The value for the
order which gave rise to the smallest squared output error on the validation subset was
selected. Also, all methods considered in the thesis, which also include Neural Networks
and other neuro-fuzzy approaches, were evaluated using identical lag values. In other
words, all of the methods were tested on the same static nonlinear regression problems.
Table 6.1 also reports the number of features (regressors), when looking at the dynamic
system identification problem as a static nonlinear function approximation.
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Table 6.1: The dynamic system case studies considered, the selected lags and the dimen-
sionality of the datasets obtained.

Case Orders Num. in- Num. Order Num. Order Num.
study considered puts outputs  selected features; selected features;
(SO) num. (MO) num.
targets targets
(SO) (MO)
CSTR 1;2:3;4 1 2 3 9:1 3 9:2
GLS 1;2;3 2 2 1 4:1 2 8:2
Narendra 1;2 1 1 2 4;1 / /
pH 1;2;3:4 1 1 2 4:1 / /
Steam 4:5:6;7 4 4 6 48:1 6 48:4
Gen.
Robot 1;2 21 7 1 28;1 1 28;7
Winding 1;2;3 5 2 3 2151 3 2152

6.2.2 Dataset Summary

The datasets obtained from the seven dynamic system case studies can be grouped in two
groups, according to the number of output variables they contain. The two groups are:

e datasets for modeling single-output dynamic systems

e datasets for modeling multiple-output dynamic systems

The first group of datasets is shown in Table 6.2, while the second, multi-output group of
datasets is shown in Table 6.3.

6.3 Selected Methods for Comparison

We compare the two model tree methods and ensembles thereof, with two methods that
are well-established in the area of system identification: Neural Networks (Cristianini &
Shawe-Taylor, 2000) and ANFIS (Jang et al., 1997). From the parameter identification per-
spective, both methods utilize global optimization of the parameters. This means that all
the parameters are considered and optimized together in each optimization step (iteration).
On the other hand, the model tree algorithms M5’ and Lolimot use local optimization of
the local model parameters, and local optimization of the structure parameters.

The models that the compared methods learn are of two types: a feed-forward neural-
network model and a Takagi-Sugeno fuzzy model. The final models of Lolimot and the
smoothed M5’ tree are also equivalent to a Takagi-Sugeno mode, by their learning strategy
is substantially different from the one employed by ANFIS. The latter uses a separate
structure identification step and global optimization of the model parameters, while the
model tree learning algorithm Lolimot uses an integrated structure identification and local
parameter estimation approach. A brief overview of the properties of the methods is given
in the following paragraphs.

We use feedforward Artificial Neural Networks (NN) (Cristianini & Shawe-Taylor,
2000), more specifically a multilayer perceptron with one hidden layer of neurons, trained
by using a backpropagation procedure. The number of neurons in the hidden layer is the
only parameter whose value needs selection. We use the Neural Network Toolbox imple-
mentation in Matlab. The network training is performed using the Levenberg-Marquardt
optimization procedure.
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Table 6.2: The generated datasets for the single-output machine learning analysis. The
parenthesis, if present, denote the output/target variable.

Case study Output variable

1 CSTR(Ca) concentration of A

2 CSTR(T) temperature

3 CSTR(Ca) concentration of A (+20%n)
4 CSTR(T) temperature (+20%n)

5 GLS(p1) pressure

6 GLS(h1) level

7 Narendra y

8 Narendra’ y (+20%n)

9 pHyu pH
10 pH’4 pH (+20%n)
11 pHp pH
12 pH'p pH (+20%n)

13 SteamGen(y;) drum pressure

14 SteamGen(ys) excess oxygen

15 SteamGen(ys) water level

16 SteamGen(ys) steam flow

17 Robot(m) torque comm. for motor #1
18 Robot(7s) torque comm. for motor #2
19 Robot(ms) torque comm. for motor #3
20  Robot(7y) torque comm. for motor #4
21  Robot(7s) torque comm. for motor #5
22 Robot(7s) torque comm. for motor #6
23 Robot(7g) torque comm. for motor #7
24 Winding(71)  tension btw. reel #1 and #2
25 Winding(7>)  tension btw. reel #2 and #3

The Adaptive network based fuzzy inference system (ANFIS) (Jang et al., 1997) is
a hybrid neural-network approach, which builds a Takagi-Sugeno fuzzy model. ANFIS
solves the parameter estimation problem by using a hybrid learning rule that combines the
backpropagation gradient descent and the least-squares estimation method. The structure
identification task — determining the number of fuzzy rules and initial positioning of the
fuzzy rule centers is a separate procedure that must be run before ANFIS. It can be
approached using different methods: grid partitioning, fuzzy clustering of the instance
space, or a tree-based approach (Jang, 1994). All of these can be used to determine the
initial number and placement of the fuzzy rules. The first one produces an overly large
set, of rules for modeling problems with a large number of dimensions, and is only used for
small problems. This leads to the known problem of the ANFIS method: it suffers from
the curse of dimensionality as the number of input dimensions gets larger.

In this work, we use the Matlab implementation of the ANFIS method, which is avail-
able in the Fuzzy Logic Toolbox. For the structure identification problem, we utilize the
computationally cheaper alternative, among the three alternatives mentioned before, which
is the fuzzy c-means clustering method. We do not use the clustering method’s automatic
procedure of determining the number of clusters, however, since in our experience it pro-
duces sub-optimal models. Instead, we utilize a version of the clustering algorithm with a
single tunable parameter: the number of fuzzy clusters.
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Table 6.3: The datasets and the output variables considered in the multi-output machine
learning analysis. The parenthesis denote the output/target variable for the multi-output

case study.

Case study Output variable

1 CSTR(Ca) concentration of A

2 CSTR (T) temperature

3 CSTR'(Ca) concentration of A (noisy dataset)

4  CSTRY(T) temperature (noisy dataset)

5 GLS(p1) pressure

6 GLS(hy) level

7 SteamGen(y;) drum pressure

8 SteamGen(ys) excess oxygen

9 SteamGen(ys) water level
10  SteamGen(yy) steam flow
11 Robot(7) torque comm. for motor #1
12 Robot(7z) torque comm. for motor #2
13 Robot(73) torque comm. for motor #3
14  Robot(7) torque comm. for motor #4
15  Robot(7s) torque comm. for motor #5
16  Robot(7s) torque comm. for motor #6
17 Robot(7s) torque comm. for motor #7
18 Winding(77)  tension btw. reel #1 and #2
19 Winding(72)  tension btw. reel #2 and #3

6.4 Experimental Design

This part describes the experimental setup, the data used and the experimental procedure.
For most of the dynamic system case studies, there is a data in the form of a training set
and a test set already available. The training and test sets are obtained from different
signals generated under the same conditions. This means that the input signals used to
excite the dynamic systems (or their models) in both cases had the same form and similar
extreme values.

However, the evaluation is performed on three separate sets of the data, instead of
two. The available training set, for each of the case studies, is split using a 60:40 split
into a training and validation part. This results in three separate sets of the data. The
training and validation parts are used for obtaining the optimal parameter values for the
considered methods, a procedure which is known as early stopping. After the optimal
parameter values are determined, the final model is built on the whole training set, which
includes both training and validation parts of the data. Finally, this model is evaluated on
the unseen test data, and the results of this evaluation are reported.

To allow for a fair comparison, the three sets of data are exactly the same for all consid-
ered methods. As described, the first two are used for obtaining sensible parameter values
for the (algorithm, dataset) combination. This parameter optimization step consisted of
trying several discrete values for the parameters. We report the parameter values we tested
for each of the methods, in Table 6.4.

The Lolimot model tree algorithm and its modifications are evaluated by running the
algorithm for 30 iterations. In our experience, more than 30 iterations does not improve
the performance of the Lolimot model tree. The Lolimot method includes an automatic
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Table 6.4: Method parameters and the values considered in the experimental evaluation.

Chapter 6. Evaluation for Modeling Dynamic Systems

Method name

Parameter name

Values considered

Lolimot Num. iterations 30
The modified Lolimot Num. iterations 30
ko 0.25: 3.0
M5’ LS Regression: only M5 fea- T/F
tures
LS Regression: M5’ feature se- T/F
lection
Fuzzification overlap 0.05:0.90
Bagging Lolimot and modified Number of trees 100
Lolimot
Bagging of M5’ trees Number of trees 100
Forest of M5’ trees Number of trees 100

Size of random subset of feat.
att
Num. hidden neurons

[0.2;0.4;0.6; 0.8]# features

1:15
Num. fuzzy clusters (rules) 2:8

Neural Networks
ANFIS

determination of the optimal complexity, implemented by using the AIC (cf. Subsection
3.4.3). However, in our experience this measure does not yield the tree with the optimal
size in all cases. Also, to make the comparison to the other methods fair, we employ the
early stopping approach. The ensembles od Lolimot and the modified Lolimot, built by
the bagging approach, are made up of 100 model trees. The bagging and (random) forests
of M5’ trees are also made up of 100 model trees.

To obtain more reliable estimates of the performance of the methods which include
randomization, each experiment was repeated 5 times'. In each of repetitions we used
different random seeds for the randomization procedure in the methods. In the experi-
mental results, we report the mean and the standard deviation of the simulation (output),
measured as RRMSE across the 5 runs.

The ensembles of model trees that we are proposing utilize a randomization procedure.
The bagging and random forest methods use the randomization to select the bootstrap
samples, to be used to learn each base model. Additionally, the random forest uses attribute
randomization during the split selection procedure. The base learning algorithms, i.e., the
model tree learning algorithms Lolimot and M5’ do not use randomization. The other
methods compared, ANFIS and Neural Networks both use randomization, however the
randomization has a different influence on the model accuracies for the two methods. The
Neural Networks use randomization to set the initial values of the neuron parameters.
The structure determination of ANFIS, carried out by using c-means fuzzy clustering, uses
random initial standard deviations of the fuzzy membership Gaussian functions. However,
the randomization in ANFIS has very little effect on the predictive performance of the
method, and this in turn might be considered as a positive property of the approach.

Multi-output experiments. This experimental analysis considers several multi-output
case studies, which contain a total of 19 output variables, shown in Table 6.3. The results
of the multi-output modeling are reported per output variable, considering and evaluating
all 19 variables together. This is the approach used in the reporting of the number of wins,
and in the statistical significance tests.

!From a machine learning viewpoint, a more reliable measure of the performance can be obtained by
repeating the training and testing procedure several times and reporting the mean and variance of the
error measure. We used 5 runs, to illustrate the influence of the random seed value chosen on the ensemble
model.
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6.4.1 Performance Measures

This subsection describes the evaluation of the performance of the models learned. The
performance measures consider three aspects of the models: a) the predictive performance
of the models, b) the time required for model learning and c) the size of the resulting
model, in terms of the number of terminal nodes of the model tree, or the number of local
models.

The predictive performance of the model determines how the model would perform on
new unseen data points, or in other words, how well does the model generalize. The size
of the model is reported in a) number of terminal nodes for individual model trees and b)
average number of terminal nodes for the model trees in an ensemble.

The evaluation of the predictive performance of a dynamic system’s model is carried out
according to the purpose of the model and often requires a stringent and purpose-specific
evaluation. When evaluating a model using one-step-ahead prediction, as shown in Figure
2.2 (a), the predicted values for the system variable are compared to the measured values.
On the other hand, the procedure of simulation, illustrated in Figure 2.2 (b), introduces
one substantial difference: the one-step-ahead model predictions are fed back to the model
to produce predictions for the more distant future.

As discussed in 2.1.2, the first step of one-step-ahead prediction and simulation is the
same. The simulation procedure, presents an iterative application of the predictive model.
The result of the simulation is called simulation output and the corresponding error is
denoted as simulation error or output error.

It is worth noting that the simulation procedure can also be seen as a form of gener-
alization. The first data point in the training set corresponds to the first time step in the
simulation procedure. Assuming that the model is not perfect and does not yield the exact
output value of the training set in every subsequent time step, we can look at all the other
data points as novel: the model has not been trained using them, and its performance on
these novel data points might be considered as an estimate of its generalization ability.

Due to the realistic possibility of error accumulation in the case of an inaccurate model,
divergence of the simulation predictions from the measured values may occur as we move
further into the future. This increases the importance of simulation, as it represents a
more stringent evaluation of the predictive performance of a dynamic systems’ model.

The predictive performance of the obtained models in the empirical analysis is assessed
by looking at a squared-error measure. Similar as in the previous chapter, we calculate and
report the root relative mean-squared error (RRMSE), which is also known in the control
domain as normalized root mean squared error (NRMSE):

RRMSE = % (6.11)

In a comparison of method A to method B, we report the number of wins, and the
statistical significance of the difference for the measure. By a "win", we denote a strictly
smaller value for the performance measure: smaller squared error, smaller model size, or a
smaller amount of time required for learning. In the experimental analysis we report the
number of wins the statistical significance of the difference. In some of the experiments,
we report all three measures, while in others, where for example the comparison assumes
models of the same size, we report only a subset of the three measures.

To test the difference in performance of algorithms on a number of datasets, we utilize
the non-parametric Wilcoxon signed rank test. The p-value used for the Wilcoxon test
is 0.01, or a 1% significance level. This means that when comparing methods A and B
using some performance measure, we report the number of wins, discussed earlier, and the
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p-value of the Wilcoxon test, denoted as w-test. The differences in predictive performance
of the methods are also summarized by plotting the RRMSE values of the method A (x-
axis) against the corresponding errors of method B (y-axis). In the case the markers are
grouped and close to the diagonal, the methods perform similar. In case the markers are
above the diagonal, method A shows better predictive performance than method B, and
vice versa.

Besides the predictive performance, this chapter also depicts the auto-correlation of
the output error. The analysis of auto-correlation properties of the error could poten-
tially lead to conclusions regarding the bias of the parameter estimates in the models.
There is a possibility that the bias in the parameter estimates goes undetected if only the
prediction/output errors are analyzed.

6.5 Evaluating Modifications of the Model Tree Learning Al-
gorithms

This section evaluates the proposed modifications to the two model tree learning algo-
rithms. It considers the relatively accurate fuzzy model tree algorithm Lolimot, built for
the purpose of system identification and the relatively fast and general-purpose model tree
algorithm M5’. As outlined in the previous sections, the main differences are a) the for-
mer builds soft trees, while the latter build crisp ones, b) the split selection: the former
is a look-ahead type model tree algorithm, while the latter is a fast heuristic model tree
algorithm and c¢) the parameter estimation.

This part is organized as follows. First, we consider the M5’ method. We compare
its performance to Lolimot, analyze M5’s performance and introduce modifications. Then,
we consider the Lolimot method and evaluate its modifications. Finally, we summarize
the results obtained, and try to answer the question: What are the benefits of using
general-purpose model tree algorithms, which use crisp model trees and crisp local model
estimation, for modeling dynamic systems.

In more detail, the M5’ modifications concern the post-smoothing of the local models.
The modifications are performed after the M5’ tree is learned and are performed to obtain
a more powerful model - soft tree. The soft model tree would potentially lower the overall
model error, and fix the discontinuities on boundaries between local models.

Also, the modifications of Lolimot analyzed here are several. The first one is aimed at
a more efficient evaluation of candidate splits. It evaluates whether replacing some of its
expensive calculations with potentially faster procedures would produce a method which
runs faster and has similar accuracy. The next two modifications can be summarized as
a modified search for the optimal tree structure, in terms of splits and MSF overlaps.
After this, we analyze whether it is beneficial to use the simulation procedure in the split
evaluation heuristic. At the end, we evaluate a different approach for LM estimation, by
using the global parameter estimation procedure.

6.5.1 Evaluating M5’ Modifications
6.5.1.1 Comparing M5’ to Lolimot

This part aims to put the two model tree algorithms in context and provide a fair compar-
ison of the performance of M5’ and Lolimot. As the pruning procedure of M5’ could not
be directly tuned to obtain the tree with desired complexity, the following strategy is used:
The M5’ tree is built, and its number of local models is taken as a reference. A Lolimot
tree of the same size, denoted by Lolimotg, is built and compared to the M5’ algorithm.
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The summarized results of the output error are shown in Figure 6.16, while the results
of the statistical tests are shown in Table 6.5. They show that Lolimotg with the same
number of local models outperforms the M5’ algorithm. The difference is statistically
significant at the 1% level. The complete results, which also include the number of local
models, and the one-step-ahead error, are shown in Table A.11.

Table 6.5: A statistical comparison of M5’ to Lolimotg. A summary of Table A.11.

M5’ : Lolimotg RRMSE Time

#wins 3:22 187
w-test 0.0 0.0
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Figure 6.16: A comparison of the predictive performance of crisp M5’ model trees to soft
Lolimotg model trees of the same size.

To summarize, the comparison of the performance of the equally-sized M5’ and Lolimot
model trees (M5’ vs Lolimotg), shows that the Lolimotg builds trees which perform better
or equal to M5'. By analyzing the results, we can also conclude that:

e Lolimot shows better performance than Mb5’, with the exception of only a few cases
with similar performance

e For several datasets the M5’ pruning mechanism overprunes, i.e., leaves only a few
local models; Such are for example almost all datasets for the Steam Generator case
study

e For some of the robot datasets, the Lolimot model tree performs substantially better

These results suggest that the size of the M5’ tree that the method has determined during
pruning is not always optimal and the method could benefit from a modification of the
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post-pruning phase. In the case of considering a method which would select the splits by
means of a look-ahead procedure, the post-pruning phase might not be necessary.

6.5.1.2 Replacing the Crisp Local Model Estimation with Fuzzy

This experiment tries to evaluate the benefits of a soft model tree, as opposed to a crisp
one. It compares the M5’ crisp model tree and its performance, to a soft model tree,
derived from the crisp one. The soft tree contains fuzzy splits, which are implemented
with MSFs exactly like in Lolimot. Also, the local models are estimating by solving the
weighted least-squares regression problem, again using the same procedure as in Lolimot.

The procedure in this experiment is: First, the tree structure is learned by M5’. Then,
the tree is converted to a soft tree and the local models are estimated. Both steps are
performed identically as in Lolimot. The resulting model, denoted as M 5% pr, is evaluated
and its performance is reported.

The results in Figure 6.17 show that the replacement of the crisp model tree with
a soft/fuzzy one increases the performance of the model tree. The errors are mainly
above the diagonal, which indicates that the M5, variant provides an increase in the
performance.

Table 6.6: A statistical comparison of the output error of M54, to M5 and Lolimotg.
A summary of Table A.12.

Mb5sopp = M5 Lolimotg

#wins  16:8 3:21
w-test  0.018 0.002
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Figure 6.17: Replacing the crisp local model estimation with fuzzy. A comparison of the
output error of M5, e and M5’



6.5. Evaluating Modifications of the Model Tree Learning Algorithms 83

Regarding the statistical comparison of the results, shown in Table 6.6, which also
provide a comparison with Lolimotg, we can conclude that:

o M5y pr performs better than M5’, however the difference is not statistically signif-
icant at the 1% level

o M5, pp performs worse than Lolimotg and the difference is statistically significant.

The complete results, which also include the complexity of the models, are available in
Table A.12.

6.5.1.3 Evaluating Smoothing Variants

This part would try to assess whether a smoothing procedure performed after the tree
structure is learned and parameters of linear models estimated is beneficial. The aim
here is to evaluate two alternatives for smoothing of the local model predictions. The
two alternatives are the built-in M5 smoothing, denoted as M5g¢,,, and smoothing by
fuzzyfication, denoted as M5, .., both introduced in Subsection 4.1.1. As discussed there,
the smoothing by fuzzification could be taken into account for the linear model estimation.
However, given that the linear model parameters in M5’ are estimated on an unpruned

and potentially very large tree, this would lead to a large amount of calculations required.
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Figure 6.18: Testing the effectiveness of M5’ without smoothing, as opposed to M5

What follows are summarized results, whether the two types of smoothing of the M5’
tree offer a difference in the performance, as compared to the case of no smoothing. The re-
sults in Table 6.7 show how do the two smoothing alternatives compare to the unsmoothed
model trees, in terms of output error and time required for learning. The M5;¢,, variant
wins in 22 out of the 25 cases, while the M5%, .. wins in 18 cases, where the differences
are statistically significant at the 1% level only for the first case. This means that both
types of smoothing increase the performance over the unsmoothed M5’ model tree.
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Additionally, the output error results of M5’ and M5',,,,. are depicted in Figure 6.18. It
shows a large increase in performance for the Narendra and pH case studies. The complete
numerical results, along with the time required to build each model, can be found in Table
A13.

Table 6.7: A statistical comparison of the effectiveness of M5’ smoothing. In both cases
the tree sizes are equal. A summary of Table A.13.

M5 : MdSBsy Mb'pu.. Mdsy M5 pyz.
RRMSE time

#wins 3:22 7:18 19:6 25:0

w-test 0.001 0.045 0.704 0.000

6.5.2 Evaluating Lolimot Modifications

The modifications of the Lolimot algorithm that are evaluated in this subsection consider
the evaluation of the candidate splits, the search for the optimal tree structure, the uti-
lization of the output error while learning and the estimation of local model parameters
with a different approach.

In the first part, we analyze the potential benefit of a more efficient candidate split
evaluation. The next two parts consider the modified search for the optimal tree structure.
It generates and evaluates more than one candidate split per dimension, which results in
different positioning of the MSF centers. In other words, it tries to determine if better
positioning of the MSF can influence the final model performance. Recall that, the Lolimot
algorithm builds two equal hyper-rectangles and places the MSFs in their centers. Our
modification builds two hyper-rectangles of different sizes, and places the MSFs in their
centers. Also, the modifications related to the tree structure consider different overlaps of
the MSFs. However, the modification preserves Lolimot’s procedure of determination of
the MSF deviation as a function of the partition size. With our proposed modification,
the MSF deviations are calculated using a different function of the partition size.

Another modification is aimed at the estimation of the local model parameters. The
two variants evaluated are local and global estimation of parameters. The fuzzy procedure
of local parameter estimation is faster, but it does not offer the best predictive performance.
The alternative global parameter estimation is considerably slower, however it may offer
the best predictive performance as it also takes into account the MSF overlaps. Finally,
this part would analyze the differences for modeling multi-output dynamic systems.

6.5.2.1 Modified Evaluation of Candidate Splits

Here we asses the modification to the heuristic evaluation of candidate splits. We report the
output error performance of the obtained models and time needed for model building. We
denote the two variants with Lolimot and Lolimot;g. Both variants utilize the same values
for the tree complexity. This value is determined by using the early stopping procedure,
i.e., with the help of the validation set. The kgras value for the Lolimoty;g variant is
chosen by using a trial-and-error approach, and is set to 350. This means that we evaluate
the candidate splits only for 350 steps.
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Figure 6.19: A comparison of the output error of Lolimot ;g and Lolimot.

The output error results are shown in Figure 6.19, while the results of the statistical
tests for the errors and building time are shown in Table 6.8. The complete results are
available in the Appendix A, Table A.14.

Table 6.8: A statistical comparison of Lolimot and Lolimotysg. A summary of Table A.14.

Lolimotsg : Lolimot RRMSE Time
#wins 7:18  24:1
w-test 0.274 0.0

The output error results show no statistically significant difference between the original
and modified split evaluation procedure. Also, the figure shows that the errors are close to
the diagonal of the plot, which indicates similar performance. The time needed to build
the models is on the other hand quite different for the two variants. The modified split
evaluation procedure shows improvement of up to several times (see Table A.14). The
differences in the times needed for model building are statistically significant. We can
conclude that the Lolimot ;g variant is a better choice, since it offers similar performance
as the original method, but with reduced learning times. In the analysis that follows, we
will utilize the Lolimot ;g variant.

6.5.2.2 Modified Search for an Optimal Tree Structure

This part is going to evaluate two modifications of Lolimot. The first one considers several
split cut-points and the second one utilizes different MSF overlap values.

The first modification evaluates whether considering more than one half-split can result
in increased performance. In this analysis, we employ versions of the algorithm which
evaluate 2, 4, and 8 splits in each dimension instead of only one. The modified versions
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of the algorithm are named Lolimotce, Lolimotey, and Lolimotesg, respectively. All three
versions are built upon the Lolimot ;g variant, evaluated in the previous part.

Table 6.9 presents the results from the statistical tests, which indicate that there is no
statistically significant difference in the simulation performance. On the other hand, the
three algorithm versions need more time for learning and build larger trees. The results
shown in Figure 6.20 confirm that the performance of Lolimoteg is similar or worse to the
original algorithm, as the points are around and above the diagonal. The complete results
are shown in Tables A.15 and A.16.

Table 6.9: A statistical comparison of Lolimotj;g with Lolimotos, Lolimoteos, and
Lolimotcg. A summary of Table A.15 and Table A.16.

RRMSE Time Size
Lolimoty g : Lol Loly Lol.g Lol Lolyg Lol,g Lol Loly Loles
#wins  14:11 13:12 1619 25:0 25:0 25:0 11:14 718  9:16
w-test  (0.427 0.78 0.090 0.000 0.000 0.000 0.400 0.588 0.781
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Figure 6.20: A comparison of the performance when considering several cut-points.
Lolimot ;g and Lolimotcg are shown.

The second modification evaluates different values for the k, parameter (cf. Eq. (4.10)),

which effects the amount of MSF overlap. The values considered for k, are the following:

1 1 1 1 1 1 1 1 1 1 : : : :
4, 2, 075 1, 125°1.5°1.75° 3.0’ 3.95° 2.5° 3.757 3.0° 3.5° The modification evaluated in this part

is denoted as Lolimotyg;y. Again, it is built upon the the Lolimot /g variant, i.e., it both
uses the more efficient split evaluation and it optimizes the k, parameter.
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Table 6.10: A statistical comparison of Lolimot g and Lolimoty. A summary of Table
A17.

Lolimotyg : Lolimoty;z  RRMSE  time size
#wins 19:6  4:21  4:21
w-test 0.024 0.0 0.007

The results in Figure 6.21 show that the errors are mostly below and around the
diagonal of the plot, which means that there is some difference in performance visible.
This result is not statistically significant at the 1% level, however, the p-value is quite
small, and we believe that the optimization of the overlap has the potential to improve the
result. In the investigations that follow, we will be using Lolimotyg-

Regarding the running times and sizes of the trees, Lolimoty;, builds trees with more
local models, as compared to the other variant, and this also requires more time. The
differences in model size and learning times are statistically significant.
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Figure 6.21: A comparison of the performance when optimizing the fuzzy MSF overlap .

As a summary of the search for optimal tree structure, we can conclude that the more
important of the two sub-tasks is the optimization of the overlaps. The two experiments
showed that only the overlap tuning shows improvement in the performance over the orig-
inal method. The consideration of several cut-points for the splits does not show improved
performance. It may be necessary to tune all MSF-related parameters, i.e., both the split
cut-points and the overlaps in a single tuning procedure. However, this poses a more
complex optimization problem, which also adds to the computational time required for
modeling. Due to this result we presume that the dominating factor regarding the tree
structure optimization in soft model trees is the amount of overlap, possibly coupled with
the type of local model estimation.

It is worth noting that other fuzzy modeling methods like ANFIS optimize both the
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position and the overlap of each fuzzy MSF. In the tree setting, this would translate to
simultaneous tuning of both the split cut-points and the fuzzy MSF overlaps.

6.5.2.3 Utilization of the Output Error While Learning

This part analyzes whether the evaluation of candidate splits with simulation has any
advantages over the evaluation with prediction. The Lolimot variant using the prediction
error for evaluation of the candidate splits is denoted as Lolimot,s,. It is built upon the
Lolimot variant which uses the more efficient split evaluation procedure, and the &, tuning.
This means that this evaluation also tunes the values of k,, as well as the complexity of
the tree. Both are performed by using the validation set. For the experiments reported
here, both variants Lolimot,s, and Lolimoty;, use same size of the tree and k, value.

The results of the comparisons are available in Table 6.11, where Lolimot,s, shows
worse performance in 16 out of the 25 tests. However this difference is not statistically
significant. It is interesting to note that Figure 6.22 shows that there is considerable benefit
of using the simulation error for the noisy pH variant, the measured GLS level variable
and one of the winding variables. Given that the first is a noisy variant and the second
is a measured variable, where the measurements are not ideal for identification, one might
conclude that for practical applications, it is better to use the simulation error. There is no
benefit in using the prediction errors, as the running times are different, but the differences
are very small (cf. Table A.18).

Table 6.11: A statistical comparison of the Lolimot models built by using the output or
the prediction errors. A summary of Table A.18.

Lolimot,s, : Lolimotgg, RRMSE  time
#wins 9:16 9:16
w-test 0.145 0.019

The results show that the evaluation of the candidate splits using simulation is better,
when the intended use of the model is simulation. This is a result that might be considered
as expected. This comparison was also performed in the work of Aleksovski, Kocijan, and
Dzeroski (2014a), where the authors conclude that the evaluation using the output error can
bring slight improvement to the performance of multi-output model trees and ensembles,
based on the Lolimot algorithm.
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Figure 6.22: A comparison of the Lolimot models built by using the output or the prediction
errors.

6.5.2.4 Global Parameter Estimation

This part compares the Lolimot method to a modified version where the local estimation is
replaced by global parameter estimation. The modified version is denoted as Lolgpg. This
evaluation is reported differently than the previous ones, and only illustrates the potential
that the global parameter estimation has. The reason is that from a machine learning point
of view, the determination of the optimal complexity using the training and/or validation
sets fails in most of the cases to find the optimal complexity. In the following we will
present and discuss the results, and at the end we will outline some possible solutions for
the complexity determination issue.

Figure 6.23 shows the comparison of local to global estimation in Lolimot. The plot
shows the performance of the models for the single-output systems, in each of the iterations
of the algorithm. It can be concluded that the global estimation in most cases obtains a
model with smaller error, and it does this by using a smaller number of local models.
After this optimal point is reached, the performance of the model tree deteriorates very
fast. For example, Lolimotgpr produces results that outperform Lolimot for all the CSTR
alternatives, the GLS dataset, the Narendra dataset and other. On the other hand, there
exist datasets like the Steam-generator variants, for which the local estimation performs
better.
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Figure 6.23: Performance of Lolimot (solid line) and Lolimotgpp (solid line with crosses)
on the single-output datasets. Performance on the testing sets (unseen data) shown. For
the latter, the complexity determined by the validation set is circled.

Note that in the figure, the selected model complexity is shown as a) a stop in the
dashed line for the local estimation and b) a circle for Lolimotgpg. Both of these are
determined by using early stopping, i.e., with the validation set. It can be seen that this
selected number of LMs for Lolimotgpg is in most cases suboptimal. So, the determination
of the optimal complexity of the Lolimotgpr model presents a challenge. However, the
obvious advantages of global estimation are that it can produce models with much lower
output error, and in most cases, it performs this with a lower number of local models.

Regarding the potential benefits of local over global estimation, the work of Nelles
(2001) has already outlined several results and conclusions for the Lolimot method. The
main advantage of the local parameter estimation is the reduction of the effective number
of parameters, and the good resilience to noise, which follows from the former property.
However, the global parameter estimation is not considered for Lolimot. The advantage
of the global parameter estimation is the potential to obtain a model with increased ac-
curacy, as compared to the local model estimation. Its disadvantage is its computational
complexity: the comput.complexity is O(m?), for m local models.

From the aspect of machine learning, we might conclude that the utilization of global
parameter estimation in soft model trees requires a modified tuning procedure for the
optimal model complexity, as the early stopping procedure fails. Instead, one might resort
to techniques such as the AIC or BIC measures.
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To summarize, this part presented some potentially interesting and novel results. They
are:

e Lolimotgpg can achieve better performance with less local models, i.e., smaller com-
plexity,

e Lolimotgpg is very sensitive to the number of local models and the optimal com-
plexity is a challenge to determine.

For the remainder of the experimental analysis, the modified Lolimot method with the
following two modifications:

e modified evaluation of the candidate splits,

e optimizing the MSF overlaps, by tuning k,,

would also be used and evaluated. This version of the Lolimot method would be denoted
as L++.

6.5.2.5 Evaluating Multi-target Model Trees

This experiment evaluates the multi-target Lolimot and the modified version L++ for
modeling multi-output dynamic systems. Its aim is to assess whether differences exist
between the two methods, when building multi-target model trees. The results of the
comparison on the 19 output variables are summarized in Figure 6.24 and in Table 6.12.

Table 6.12: A statistical comparison of the Lolimot and L++ models for multi-output
modeling. A summary of Table A.19.

L++y0 : Lolimoty;o RRMSE  time numLM
#wins 11:8 11:8 9:10
w-test 0.421 0.017 0.255

It is visible in Figure 6.24 that the L++ method shows decreased output errors for all
output variables for the CSTR and five of the seven variables for the Robot multi-output
system. This is partially influenced by the different number of LMs selected by the early
stopping procedure in the two runs. Also, the L++ method shows similar performance for
both outputs of the GLS system, and slightly worse performance for both outputs of the
Winding system. However, as Table A.19 shows, the running time of L4+ ;0 is smaller, by
a factor of three to fifteen times. Exceptions are the cases where the number of iterations
for the two methods is not comparable.
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Figure 6.24: Comparison of the predictive performance of Lolimotys;o and L++,70. Each
marker represents the performance of the methods on one output variable. The marker
shape determines which dataset the variable belongs to.

6.5.3 Summary

In summary, the results showed that the soft or fuzzy estimation of local model parameters,
and a soft model tree formalism are more flexible and produce more accurate models.
For example, the experiment reported in Subsection 6.5.1.2 showed that the predictive
performance of the crisp M5’ model tree could be increased by re-estimating the local
models with soft estimation and converting to the soft model tree formalism.

In Subsection 6.5.1.3 the variants for post-smoothing were empirically evaluated. Both
variants resulted in increased performance of the model tree, however, we consider that the
post-smoothing does not solve the whole problem. The incorrect determination of the tree
structure, in terms of split attributes and cut-points, and also the incorrect determination
of the linear model coefficients, present a bigger problem, and in many cases this could not
be fixed by the post-smoothing. Examples of the incorrect determination are the models
with large output error for the datasets Robot 7o, 74,77, pH’ 4, Narendra and Narendra’,
shown in Figure 6.16 and Table A.11.

The possibility of using a general-purpose look-ahead tree learning approach, which
builds crisp trees can be considered not flexible, when compared to soft tree approaches.
It lacks the flexibility that the soft tree approaches have regarding: a) estimation of the
local model coefficients and b) the tuning of the split cut-point. In more detail, a crisp
model tree approach needs to determine if the amount of data in a partition is enough
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for estimating a local model, or there is enough data, but some of them are colinear (e.g.,
input signal which does not change its value for several time steps). This is required for
estimation of the correct local model parameters. The soft model tree approaches, on
the other hand utilize weighted least-squares regression, which uses all data points in the
local model estimation. This solves the mentioned issues with the local model parameters.
Additionally, the crisp model tree approaches using look-ahead need to fine-tune the split
cut-point, and this presents a computationally expensive procedure. As a comparison,
the performance of a soft model tree approach such as Lolimot was not influenced by the
tuning of the split cut-point, and the half-splits produced satisfactory results, as Subsection
6.5.2.2 showed. In our opinion, the overlap of the MSFs and the regression which uses all
data help to decrease the influence of the cut-point optimization issue.

However, the fuzzy parameter estimation and soft model trees have the following dis-
advantages:

e the need to optimize the MSF parameters: MSF positions and overlaps,

e the computational cost of calculating the fuzzy validity functions for each data point,
which may be problematic for a large number of local models and many repetitions
(considering many candidate splits).

The modifications to the Lolimot method, summarized as L++, showed a decrease of
running times, of up to several times (for some examples two times faster, for others up
to 20 times). The optimization of the overlap parameter proved to be useful, and in many
cases increase the performance of the model tree.

The analysis of using prediction or output error while learning showed that the output
error proves more useful in the noisy cases and in the cases where the measurements are
not perfect. The analysis also showed that there is no benefit of using the prediction error
instead of the output error, as the running times are practically identical.

Also, the utilization of the global parameter estimation, as compared to the local esti-
mation used in Lolimot, showed that the prediction results can be further improved. The
issue there was that the optimal model complexity was hard to determine, and a model
tree with only one or two LLMs more than that optimum already had quite a deteriorated
performance.

6.6 Model Trees and Ensembles for Single-output Modeling

This section reports the analysis of the ensembles of model trees. It considers bagging
ensembles of Lolimot and L++, as well as bagging and random forests of M5 model
trees. So far, the single trees built by the original and improved Lolimot methods showed
better predictive performance than the ones built by M5’. However, we expect a potential
improvement in the performance of the model when M5’ is used in the ensemble setting.
This is the reason why we include results using ensembles of M5’ model trees.

The analysis treats both the single-output and multi-output problems. The number
of trees parameter for the ensembles analyzed here was set to 100. A previous work
(Aleksovski et al., 2014a) considered bagging of Lolimot model trees with different sizes,
and concluded that acceptable performance may be achieved by using 50 trees, or less. In
this thesis, however, we utilize a larger number of trees.

6.6.1 Lolimot vs Ensembles

This part analyzes whether the ensembles of Lolimot trees offer a difference in the per-
formance, as compared to the case of a single Lolimot tree. The summarized results are
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available in Figure 6.25, while the complete numerical results can be found in Table A.20.
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Figure 6.25: Evaluating the single-output predictive performance of Lolimot trees and

Bagging of Lolimot trees.

The results suggest that bagging improves the performance over a single Lolimot tree,
as most of the points are below the diagonal. The difference is statistically significant, as

shown in Table 6.13.

Table 6.13: A statistical comparison of a single Lolimot tree and a bagging of Lolimot

trees. A summary of Table A.20.

Lolimot : Bagging

RRMSE time
#wins 5:20  25:0
w-test 0.0 0.0

6.6.2 Modified Lolimot vs Ensembles

This part presents the summarized results, which compare the modified Lolimot method
(L++) to Bagging of L-++ model trees. The experiment considers only the single-output
problems. The results are summarized in Table 6.14 and Figure 6.26, while complete results

are available in Table A.21.
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Table 6.14: A statistical comparison of L4+ and Bagging of L4++. A summary of Table
A.21.

L++: BaggL++

RRMSE  time
#wins 6:19 25:0
w-test 0.040 0.0
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Figure 6.26: Evaluating the single-output predictive performance of L+ trees and Bagging
of L++ trees.

The results show that the bagging procedure produces a smaller output error in 19 of the
25 cases, however, the difference is not statistically significant at the 1 % level. Figure 6.26
shows that the bagging procedure improves the performance for both Winding outputs, for
most of the Robot outputs and most of the Steam Gen. output variables. Additionally, it
showed that the bagging increases the output error for the two GLS output variables and
the two pHp variants.

6.6.3 Model Tree Ensembles vs Neural Networks and ANFIS

This part presents the comparison results of ensembles of both types of model trees, and
selected methods frequently used for dynamic system identification. The latter include
Neural Networks and the hybrid ANFIS method, introduced and discussed in Section 6.3.
The summarized results are divided in two parts: the first compares the ensembles of L+-+
and M5 model trees, while the second part compares the ensembles of L++4 to NNs and
ANFIS.

Table 6.15 summarizes the results of the comparison between the different types of
model tree ensembles. Due to the reasons discussed earlier, we also evaluate ensembles



96 Chapter 6. Evaluation for Modeling Dynamic Systems

of M5” model trees. The ensembles of M5’ evaluated are bagging of M5’ model trees
(BMT) and forests of M5’ model trees (FMT). Both of these include the ensemble selection
procedure, proposed to increase the performance of ensembles of M5’ trees, as discussed in
Section 4.3.2.

Table 6.15: A statistical comparison of ensembles of the two model tree types. A partial
summary of Table A.22 and Table A.23.

Bagg.L++ : BMT FMT BMT FMT BMT FMT
RRMSE Time Complexity

#wins 19:6 19:6 1:24 1:24 4:21 6:19

w-test 0.006 0.009 0.0 0.0 0.003 0.008

The results in Table 6.15 show that the ensembles of L++ model trees build more
accurate models than both types of ensembles of M5’ trees. The difference is statistically
significant at the 1% level for all paired output error comparisons. However, the ensembles
of M5’ require less time for learning the models, and also tend to build model trees with
a smaller number of terminal nodes. This may be explained by the possible overpruning,
i.e., leaving only a few terminal nodes in the model trees. This was discussed in Subsection
6.5.1.1, where it was identified as one of the reasons for inaccurate models.

Next we consider the comparison of the more successful among the ensemble ap-
proaches, the Bagging of L++ model trees, to Neural Networks and ANFIS. The results
summarized in Table 6.16 show that Bagging of L-++ MTs produces models with smaller
output errors, as compared to Neural Networks and ANFIS. The differences in predictive
performance are statistically significant at the 1% level.

Table 6.16: A statistical comparison of ensembles of model trees to NNs and ANFIS. A
partial summary of Table A.22 and Table A.23.

Bagg.L++ : NN ANFIS NN ANFIS NN ANFIS
RRMSE Time Complexity

#wins 19:6 18:7  0:25 7:18 4:21 3:22

w-test 0.003 0.008 0.0 0.109 0.0 0.0

However, the model trees included in the ensembles have larger complexity than the
other methods. The Bagg.L++ require more time to build than NNs, while the time
comparison to ANFIS does not show statistically a significant difference. It is worth
noting that the reason that a competitive method like ANFIS provided results with worse
predictive performance than Bagg. L4+ is most likely the suboptimal parameters chosen
by using the validation set. The rest of the results for the comparisons, including one-step-
ahead results, are available in Appendix A, Table A.22.
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6.6.4 Auto-correlation of the Output Error

This subsection depicts the auto-correlation of the output error of the tree-based models.
First, it shows the auto-correlation of Lolimot and ensembles of Lolimot model trees. Then,
it considers the M5’ model trees and ensembles thereof.

Figure 6.27 presents the auto-correlation of the output error for Lolimot and ensembles
of Lolimot, while Figure 6.28 presents the same for M5’ and ensembles thereof. It is worth
noting, that the simulation procedure for the single M5’ tree learned on the Robot(7s)
dataset diverges. Additionally, an M5’ ensemble substantially improves the predictive
performance over a single M5’ tree for the Robot(74) dataset, which may be related to the

smaller auto-correlation of the ensemble error.
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Figure 6.27: Auto-correlation of the output error of Lolimot (solid line) and ensemble of
Lolimot (dashed line), on the single-output datasets. The z-axis denotes the lag.



98

Chapter 6. Evaluation for Modeling Dynamic Systems

CSTR (Ca) CSTR’ (Ca) CSTR (T) CSTR’ (T) GLS (h1)
1 1 1 1 1 77
PIVAVN
vv-av/'J"»xM o ) e 7 N >
0 R 0 prgst7 - S 0 i 0 = S oL~ N
-1 -1 -1 -1 -1
-200 0 200 -200 0 200 -200 0 200 -200 0 200 -200 0 200
GLS (p1) Narendra Narendra’ pHp pH'p
1 1 1 1 1
0 "A‘M\«Y/&/’W 0 Nl AN N\*\/j\”/\/\‘ 0 "\,\A/\A/\A/\/\(W 0 MW\/\A/\/WW\
-1 -1 -1 -1 -1
-200 0 200 -200 0 200 -200 0 200 -200 0 200 -200 0 200
pH4 pH’ 4 SteamGen (y;) SteamGen (ys) SteamGen (y3)
1 1 1 1 1
MWW J o MJ«\,M MJMM
0 I EATTIVIATLVYS I 1 0 0
-1 -1 -1 -1 -1
-200 0 200 -200 0 200 -200 0 200 -200 0 200 -200 0 200
SteamGen (y4) Robot (71) Robot (72) Robot (73) Robot (74)
1 1 1 1 1
WV\M JWVMJ!YWW\M ; |’
0 : 0 y YA 0 vy 0 pp 0 )
-1 -1 -1 -1 -1
-200 0 200 -200 0 200 -200 0 200 -200 0 200 -200 0 200
Robot (75) Robot (75) Robot (77) Winding (71) Winding (73)
1 1 1 1 1
0 Mdoooty 0 M\/W 0 WM 0 vv—-w«lw«-w 0 WWN‘J*WM
200 0 200 -200 0 200 -200 0 200 -200 O 200 -200 O 200

Figure 6.28: Auto-correlation of the output error of M5’ (solid line) and ensemble of M5’
(dashed line), on the single-output datasets. The z-axis denotes the lag.

6.7 Model Trees and Ensembles for Multiple-output Model-
ing

This part evaluates the model tree and ensemble approaches for modeling multi-output
systems. In particular, it empirically compares:

e 3 single multi-output model tree to an ensemble of multi-output model trees,

e building several single-output models, where each model predicts one output variable,
to a multi-output model, where all output variables are predicted simultaneously.

For easier understanding of what is being compared, each of the subsections includes a
graphic, representing the comparison on a sample 2-output system. The model trees which
are able to predict multiple outputs are denoted by two different colors in their terminal
nodes.
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6.7.1 Modified Lolimot vs Ensembles

e n
VS D

This part reports the results of the comparison of the multi-output version of L4+ to
bagging of multi-output L++ models. The results are depicted in Figure 6.29, and suggest
that the bagging of multi-output L++ model trees improves the performance. The most
of the markers are below the diagonal, while the others are very close to it, which shows
the improved predictive performance in favor of bagging L4++370. The improvements are
visible for all outputs of the GLS and Robot case studies. On the other hand, there is no
improvement in performance for the output variables of the Steam Gen. and CSTR case
studies. The overall difference in predictive performance is statistically significant, at the
1% level, which is shown in Table 6.17. The complete results are available in Table A.24.
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Figure 6.29: A comparison of the predictive performance of multi-output model trees to
ensembles of multi-output model trees. Results for each of the output variables are shown
separately.
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Table 6.17: A statistical comparison of multi-output model trees to ensembles of multi-
output model trees. A summary of Table A.24.

Bagg.L++yo0 @ Lt++wmo
RRMSE  time
#wins 14:5  0:19
w-test 0.003 0.000

6.7.2 Several Single-output Models vs One Multi-output

'S

In the case of several single-output model trees, compared to a one multi-output
model tree, the results shown in Figure 6.30 suggest improvement in the predictive per-
formance can be expected by using a multiple-output model tree. For example, the figure
shows that all output variables of the Steam Gen. case study and five variables of the
Robot case study, the multi-output alternative offers an improvement in performance. Ad-
ditionally, the figure does not show markers for the noisy CSTR dataset (CSTR’) and for
the GLS dataset. The reason is that the single-output models diverged when simulated us-
ing parallel simulation. Table 6.18 also shows that the difference in predictive performance
is statistically significant.

The complete results, available in Table A.25, also show that the total complexity of
the model trees is smaller in the multi-output case. For example, the multi-output tree for
the Steam Gen. contains only 21 LMs, while the four single-output model trees contain a
total of 69 LMs. Also, the total time needed to build the four single-output model trees is
larger than the one single-output model.

Table 6.18: A statistical comparison of separate single-output model trees, each predicting
one output variable, to one multi-output model tree. A summary of Table A.25.

(Separate L+-+ SO models) : (L++30) RRMSE Time Num.LMs
#wins 6:13  4:15 0:19
w-test 0.006 0.021 0.000
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Figure 6.30: The predictive performance of several single-output L-++ model trees, and
the predictive performance of a multi-output L+-+ model tree.
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Also, we analyze the case of several ensembles of single-output model trees,
compared to one ensemble of multi-output model trees. The analysis is performed
by using bagging ensembles of the L++ model trees. The results of this comparison are
depicted in Figure 6.31, where it can be seen that the predictive performance is improved
for all output variables of the Robot dynamic system, and three of the four outputs of the
Steam Gen. system. Similar to the previous experiment, this figure does not show markers
for the noisy CSTR dataset (CSTR’) and for the GLS dataset, due to the divergence of the
single-output models. It is worth noting that these two present realistic modeling problems
as the first includes 20% noise, and the measurements of the second are not ideal. From
this aspect, we can conclude that for multi-output problems it is better to resort to the
multi-output Lolimot and L++ (and their ensembles), then the single-output versions.

Table 6.19 shows the results of the statistical tests, which suggest that the differences
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in predictive performance are statistically significant at the 1% level. The results of the
running times are also in favor of the multi-output modeling approach, and this difference
is also statistically significant. The complete results, which include the one-step-ahead
errors, learning times and complexities, are available in Table A.26.

Table 6.19: A statistical comparison of separate bagging of single-output L-++ model trees,
one for each output, to a bagging model which utilizes multi-output L++ model trees. A
summary of Table A.26.

(Separate ensemble (Single ensemble of
of SO L++ MT5) : MO L++ MTs) RRMSE Time Num.LMs

#wins 0:14  4:15 0:19
w-test 0.007 0.001 0.000
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Figure 6.31: The predictive performance of separate bagging of single-output L+-+ model
trees, one for each output, to a bagging model which utilizes multi-output L+ ;0 model
trees.

6.8 Summary

In summary, the evaluation of the two types of model tree algorithms, and ensembles
thereof, showed differing results, which were in favor of the soft model tree formalism.

The analysis with the general-purpose model tree algorithm M5’ did not yield conclusive
results regarding the minimal modifications for successful application for modeling dynamic
systems. The conclusions that the analysis provided regarding this were:

e The output error results of single M5’ trees showed larger errors as compared to
Lolimot, i.e., a soft tree approach.
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e The post-smoothing procedure decreased the output error only slightly. Only in a
few cases it helped decrease the error substantially. In our opinion it does not solve
the problem of large output errors.

e The post-pruning procedure overpruned the tree for many of the case studies, thus
deteriorating the output error performance.

e Randomization of the split attribute as included in the Forests method helped. It
showed decreased errors as compared to bagging.

e Ensemble selection of ensembles of M5’ model trees helped. The M5’ model trees
created in an ensemble showed different performance. It is a fact that some of
the trees, i.e., base models in the ensemble, are not appropriate for modeling the
dynamical system and show large output errors, or in the worst case the simulation
of such trees diverges. In our opinion the ensemble selection procedure, which utilizes
the output error on the training set removes the trees which are not appropriate.
This in turn increases the performance of the resulting reduced ensemble, over the
full ensemble.

e The results for the Robot dataset, which consists of the largest number of input
variables were not comparable to that of Lolimot.

Regarding the modifications required for a general-purpose crisp model tree algorithm,
we present several guidelines and discuss further work. The replacement of the crisp local
model estimation with soft would result in a more robust estimation procedure. This
naturally assumes that the soft formalism of Eq. (4.4) would be chosen too. A lookahead
procedure would be more useful for a general-purpose crisp model tree algorithm, however,
the split cut-point needs tuning, which can be computationally demanding. The post-
pruning phase of a general-purpose tree learning algorithm might be replaced with a pre-
pruning phase.

The analysis also revealed several different properties of Lolimot and ensembles of
Lolimot. In particular, the benefits over a crisp approach, for modeling dynamic systems,
are several:

e The fuzzy estimation of local model parameters is more robust than the crisp - it
uses all available data, and it can produce estimates even for partitions which have
none, or only a few training data points.

e The natural type of evaluation of a model the tree of the previous point is by using
interpolation of the local models (treating it as a soft model tree).

e The model predictions are smooth, and as such are more appropriate to model the
static nonlinearity (external dynamics approach).

e The optimization of the split cut-point is not as influential to the model performance,
as in the crisp case.

The empirical analysis of the improved version of the Lolimot algorithm, named L++,
showed decreased running times, while the output error was similar to that of Lolimot.
The tuning of the overlap parameter proved to be useful for obtaining models with better
predictive performance. The bagging of soft model trees, which was also evaluated, showed
improved prediction results. The difference was visible both when comparing Lolimot
model trees to bagging of Lolimot in Subsection 6.6.1, and when comparing L++ model
trees to bagging of L4+ in Subsection 6.6.2.
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The analysis of the multi-output problems in Subsection 6.7.2 showed that the learning
of multi-output trees is faster than several single-output trees. Also, when the model is
evaluated using simulation, the single-output model trees tend to overfit to the training
data and produce a diverging simulation result. The multi-output learning of trees has a
clear advantage here, since the candidate splits are selected based upon the performance
of the parallel simulation, i.e., a simulation for all output variables. Also, the diverging
single-output models appeared on a noisy version of the synthetic CSTR dataset, and on
the measured GLS dataset, whose measurements are not ideal (at least for the h; variable).
Both noisy and non-ideal measurements are properties of realistic modeling problems that
the user might come across.
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Chapter 7

Conclusions

7.1 Summary and Discussion

This thesis considered the problem of discrete-time modeling of dynamic systems, by using
black-box modeling techniques. In particular, it considered the crisp model tree approaches
introduced in the machine learning domain and the soft /fuzzy linear model tree approaches,
or Takagi-Sugeno fuzzy models, introduced in the system identification domain. The thesis
also considered ensembles of both types of linear model trees.

The discrete-time modeling was reformulated, according to the external dynamics ap-
proach, into a static nonlinear function approximation problem. This thesis studied and
evaluated whether the local linear model trees and ensembles are suitable for solving the
static approximation task, and eventually, provide an appropriate discrete-time model of
the dynamic system. These models are learned from measured input-output data, measured
at discrete time intervals, and provide an input-output mapping of the studied system.

The thesis considered models that describe closely the studied real-world phenomena.
Typically, two objectives are of importance when pursuing the modeling task: good predic-
tive performance and interpretability of the models. In the thesis, we studied and analyzed
mainly the predictive performance objective. However, the models built in the form of
model trees also allow for some kind of interpretation (cf. Subsection 4.4.1), which can
be obtained by looking at the local model coefficients. Both the crisp and the fuzzy local
estimation provide for interpretable coefficients, representing local linearizations around
the operating point of the nonlinear dynamic system.

The thesis introduced and evaluated several modifications to the general purpose model-
tree learning algorithm MJ5’. It tried to determine a minimal set of properties that the crisp
M5’ algorithm needs to have, in order to be appropriate for modeling dynamic systems,
either in an ensemble or a single tree setting. The modifications were motivated by the
design of the Lolimot method, and in particular its fuzzy local model estimation and the
type of models it produces. Subsection 6.5.1 provided an empirical comparison of the
differences between the crisp estimation of M5’ and the fuzzy local estimation of Lolimot.
In particular, it evaluated a modification of M5’ which replaced the crisp trees and local
model estimation with fuzzy local model estimation. It concluded that the fuzzy local
estimation and fuzzy model tree formalism are able to improve the predictive performance
of M5’.

Two conclusions were made regarding the modifications of M5’ On the one hand, the
use of the fuzzy local model estimation for unpruned trees would require that local models
are estimated for trees with a large number of terminal nodes. This is why the crisp
LM estimation in M5’ was retained. On the other hand, the fuzzy model tree formalism
was successfully utilized: The crisp M5’ model tree as built by the original method was
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converted to a fuzzy model tree by a procedure of fuzzification. This procedure did not
re-estimate the local models of the tree, and only converted the crisp splits into fuzzy ones,
transforming the crisp model tree into a fuzzy model tree.

However, as the empirical analysis showed, the modifications introduced to M5’ did not
yield conclusive results regarding the minimal set of properties for its successful application
for dynamic system identification. The predictive performance of both single trees built by
the improved M5’ and ensembles of improved M5’ tree was still lower than that of Lolimot
and ensembles of Lolimot. Also, the analysis showed that the M5’ model tree algorithm
may identify incorrect models. For some datasets, the crisp local model estimation was
performed on a small number of data points, which led to identification of incorrect local
models. These in turn contained overly large or small coefficients, which resulted in large
overall model errors. The culprit for this is the heuristic split selection, which we discuss
below.

It is our opinion that the heuristic split selection procedure of M5’ should be altered,
as for example, it had trouble obtaining good results for all of the outputs of the Robot
case study, which contains a large number of input variables. In such cases, we suggest
that instead of replacing the heuristic split selection with a look-ahead approach which
uses crisp LM estimation, the user resorts to a look-ahead approach which uses the soft
LM estimation. By doing so, the user would make use of a more powerful formalism, with
potentially lower computational complexity, as the choice of the cut-points in the splits
was shown to have almost no influence on the error of the final model.

The thesis also provided an in-depth evaluation of the properties of Lolimot and consid-
ered several ways of modifying it. The evaluation showed that the soft model tree approach
Lolimot produced models with lower output error as compared to the crisp general-purpose
Mb5’. Additionally, as the number of iterations was limited to 30, the models produced were
also smaller as compared to M5’. The analysis concluded that two improvements to Lolimot
are beneficial: a) altering its model evaluation in the look-ahead split selection phase, and
b) altering the structure of the model trees by tuning the overlap of the fuzzy membership
functions (MSFEs).

The advantages of the first modification are decreased running times of the method,
while the models built preserved their predictive performance. The advantage of the second
are the slightly lowered output errors, which were, however, not statistically significant
according to the the Wilcoxon test at the 1% level. The conclusion made here is that
although the overlap in Lolimot is calculated by using a fixed k, value (Nelles, 1999), the
empirical analysis showed that the amount of overlap k., of the fuzzy MSFs, needs tuning
for each dataset.

The thesis provided two empirical analyses of the improved model tree algorithms and
ensembles thereof: a) on static regression tasks, and b) on dynamic system case studies. In
particular, the analysis on the static regression tasks showed that the forests of M5" model
trees increased the predictive performance over single M5’ model trees. The randomness
introduced in the split selection of the M5’ method in the forest setting improved the
results, both for single-target and multi-target regression.

The results also showed that the forests of model trees improved upon forests of re-
gression trees. This means that one might expect potentially good predictive performance
by ensembles of model trees. Also, the analysis on the static regression tasks compared
single trees and concluded that Lolimot and M5’ show similar performance, and that they
improve over the performance of a single regression tree.

The analysis on the dynamic system case studies compared ensembles of model trees
built by the improved M5’, and the improved Lolimot. Regarding the former, the forests
of M5’ model trees with ensemble selection provided satisfactory predictive performance.
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The ensemble selection procedure removed the trees which were not successful from the
ensemble and increased its predictive performance. Also, similar to the static case, the
randomization of the base learning algorithm, as implemented in the forests of M5’ model
trees, showed improved performance over bagging and single M5’ trees.

Regarding the latter, the bagging of Lolimot trees improved the performance over a
single Lolimot tree. The improvement, however, was not statistically significant at the 1%
level, due to the increased error on a few case studies. Finally, the comparison to selected
methods, typically used for modeling dynamic systems, showed that bagging of improved
Lolimot trees produced slightly better predictive performance results over ANFIS and
Neural Networks. The improvement over ANFIS was rather unexpected, and was found
to be due to the suboptimal parameters for ANFIS, chosen by using the same validation
set as the other methods.

In summary, the thesis evaluated ensembles of both crisp and soft model trees and
concluded that soft model trees and ensembles thereof can solve the discrete-time modeling
problem of nonlinear dynamic systems, while the crisp approaches can provide satisfactory
results in many cases, by using the forest ensembles with ensemble selection. The ensembles
of soft Lolimot model trees are a more accurate and slower alternative, as compared to
ensembles of crisp M5" model trees, which are less accurate and faster. The ensembles
of crisp M5’ model trees improved the performance over a single model tree, and also the
ensembles of soft Lolimot model trees improved the performance over a single Lolimot tree.

The thesis also studied the modeling of multi-input multi-output (MIMO) dynamic
systems by using multi-output (multi-target) model trees and ensembles of multi-output
trees. It started with the typical approach to solving the multi-output problem, which
builds single-output models for each of the output variables, i.e., breaking up the MIMO
problem into several MISO problems. It evaluated an alternative multi-output tree ap-
proach which builds local models for all output variables in each of the terminal nodes
of a single multi-target tree. The inter-dependencies between the outputs and the "com-
mon directions of nonlinearity" would potentially enable building multi-output trees with
smaller total size (number of splits) and almost equal performance, as compared to the
former approach.

The empirical analysis showed that the multi-output model trees are a more promising
approach. Two advantages of multi-output model trees were noticed: a) the learning of a
multi-output tree is faster than a set of single-output ones, and b) the single-output model
trees might overfit to the training data and produce incorrect models. The latter advantage
of the multi-output variant is due to the candidate split selection procedure: it uses the
intermediate models for each output in a parallel simulation procedure. The latter is more
appropriate for detection of incorrect multi-output models. Also, the parallel simulation
procedure provides the final model assessment, and using it during learning is beneficial
for the multi-output model.

7.2 Scientific Contribution

The research presented considered two linear model tree learning algorithms, introduced
in different communities. The thesis compared their similarities and differences, evaluated
them for modeling dynamic systems, and proposed modifications for each of them. The
work presented here also studied and evaluated ensembles of model trees. It took into
account the modeling of both single-output and multi-output dynamic systems, by multi-
output model trees, or multi-output Takagi-Sugeno models. Additionally, it evaluated
the model tree ensembles on machine learning benchmark regression tasks, and concluded
that the ensembles provide an increase in performance over single model trees. The main
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contributions of the thesis can be summarized as follows.

1. Design and implementation of novel model-tree based approaches for
modeling dynamic systems, based on and improving upon the M5’ and Lolimot
algorithms.

a. Improved M5’ algorithm for regression, which can now induce fuzzified and multi-
target model trees. We analyzed the benefit of fuzzy local model estimation, and the fuzzy
model tree formalism, applied to an M5 model tree. Since the fuzzy estimation is more
computationally expensive than the crisp, we introduced a fuzzyfication step after the crisp
M5’ model tree is learned. This step preserves the local models already estimated, and
only converts the crisp tree to a fuzzy tree, by replacing the crisp splits with fuzzy ones.

We also introduced multi-target M5" model trees. Modifications to the heuristic split
selection as well as to the pruning procedure were made. The terminal nodes contain a
linear model for each of the targets, with each estimated independently of the other.

b. Improved Lolimot algorithm for modeling dynamic systems, which now produces trees
with similar predictive performance faster. The work in this thesis improved the Lolimot
algorithm by a) introducing a faster model evaluation procedure and b) by optimizing the
fuzzy overlap. The improved Lolimot, with these two modifications, produces model trees
with similar performance and has reduced running time.

This thesis also considered an optimization of the split cut-points in Lolimot, which did
not provide an improvement in the predictive performance. In more detail, the results of
the analysis showed that optimizing the cut-points while keeping the fuzzy overlaps fixed
does not improve predictive performance. This means that the cut-points and overlaps
should probably be optimized simultaneously.

c. Algorithms that can induce ensembles of single and multi-target model trees by using
the improved M5’ and Lolimot algorithms. This work introduced the MTE algorithm which
induces ensembles based on the bagging and forests of the improved model tree algorithm
M5’. The MTE algorithm can be used for single and multi-target regression tasks, as the
fuzzified M5’ model trees support this. MTE also contains an ensemble selection approach
which reduces the size of the ensemble, by removing some of the model trees. It uses the
output error for evaluation of the intermediate ensembles. The ensemble selection approach
has the potential to build ensembles with similar or improved predictive performance, while
using a smaller number of trees.

This work also introduced ensembles of Lolimot and the improved Lolimot algorithms.
The ensembles use the bagging approach. Both MTE and ensembles of Lolimot can be
used for single- and multi-target problems.

2. Empirical evaluation of the developed approaches on benchmark prob-
lems and case studies.

a. Evaluation of the improved M5’ and Lolimot algorithms (and ensembles based on
these) on benchmark problems of single and multi-target static regression. The thesis re-
ported the results of an empirical evaluation of the improved M5’ and Lolimot, and ensem-
bles thereof, on regression problems typically considered in the machine learning domain.
The predictive performance of the M5’ linear model trees was increased by using forests
of such trees, the same applies for bagging ensembles of Lolimot model trees. The in-
troduction of randomness in the split selection procedure in M5’ proved to be beneficial
in the ensemble setting, both for single-target and multi-target problems. The empirical
evaluation of M5’ showed that the crisp local model estimation may fail to detect matrix
singularity issues and as a result, identify incorrect local models. These incorrect local
models, might contain overly large or small coefficients and produce models with large
errors. The soft local model estimation might be considered here instead, as it is more
robust against this issue.
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b. Evaluation of all the above approaches (and a few other selected methods) on several
case-studies of modeling dynamic systems. The thesis reported the results of an empirical
evaluation of all approaches on datasets derived from several dynamic system case studies.
It evaluated the improved Lolimot, bagging of Lolimot model trees and bagging and forests
of improved M5’ model trees. The bagging of Lolimot model trees improved the predictive
performance over a single Lolimot model tree, however the running times were obviously
increased. The best prediction result using M5’ model trees was obtained by using the
MTE algorithm, i.e., forests of M5 model trees, with ensemble selection. The latter
helped increase the predictive performance by removing the incorrect M5’ trees from the
ensemble. However, the predictive performance of forests of M5’ was significantly worse
than the one of bagging of improved Lolimot model trees. Also, the comparison of bagging
of improved Lolimot trees to a few other selected methods used in system identification
showed slightly better predictive performance.

7.3 Further Work

We would like to consider three major directions for further work. First, we would like to
apply the methods we have developed to additional case studies, especially case studies
of natural (as opposed to man-made) dynamic systems. Second, we would like to further
improve the methods developed here. Finally, we would like to consider the development of
new or adaptation of other machine learning techniques (not considered so far) for solving
the problem of modeling dynamic systems.

Ecosystems. The first direction for further work considers the (single- and multi-output)
modeling of ecological dynamic systems, such as lake ecosystems. Preliminary experiences
in applying the methods from this thesis to such domains show that the measurements
in these domains are far from perfect: not all variables which influence the outputs are
measured, and the sampling time used to obtain the measurements is too coarse, i.e., not
short enough. We believe that improving the quality of the data for such systems may
lead to successful modeling of these systems by using discrete-time approaches, such as the
ones presented in this thesis.

Further improvements. To improve upon the approaches considered here, we would
like to evaluate the potential of soft global estimation of the local model parameters in
Lolimot. As shown in the empirical evaluation, when combined with linear model trees,
such estimation leads to smaller trees with increased predictive performance. However,
the optimal number of local models is hard to determine, because soon after reaching the
optimal number of local models, the predictive performance of such model trees quickly
deteriorates, due to overfitting. Also, the coefficients identified by global estimation do not
allow the local models to be interpreted as local linearizations of the nonlinear dynamic
system, in case this is a requirement of the modeling. Resolving these two issues is likely
to be a significant challenge.

Further development. In terms of further development of machine learning methods for
modeling dynamic system in discrete time, we would like to consider the use of background
knowledge, the adaptation of boosting and the use of methods for online learning, or
learning from data streams.

Regarding the use of background knowledge that the user might have about the system,
the model trees allow for some knowledge of the system to be included in the model. Two
options can be used: a) pre-determining the first several split nodes, which would influence
the positioning of the MSFs, and b) pre-determining the subsets of regressors that are to
be used in specific parts of the operating regions. While option a) has been explored in
multi-target regression trees, option b) and the combination of the two options remain to
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be explored.

The boosting of model trees might yield ensembles with a smaller number of trees,
as compared to bagging. These, however cannot be built in parallel, as is the case with
bagging. Also, the Lolimot algorithm may have to be modified to consider more splits in
each dimension (as proposed by one of its modifications in the thesis), or add randomization
in the split selection procedure. Namely, the current split selection procedure might lead
to positions and overlaps of membership functions that are very similar in the first few
Lolimot iterations, and to local models whose coefficients are estimated by using the same
data points and weights both for the first and the subsequent steps of boosting.

Approaches that learn incrementally, in an online manner, allow for modeling of time-
varying dynamic systems. They can detect changes in the sequential/streaming data and
adapt the model accordingly. This can be used for discovering potential faults or changes
in the dynamic system being monitored. Some online approaches based on model trees
have already been introduced (Nelles, 1996; Potts & Sammut, 2007).

The same holds for techniques (e.g., (Ikonomovska, Gama, & Dzeroski, 2011)) for
learning data streams that can be applied to large quantities (data streams) of sequential
data that arrive constantly and endlessly at very high rates and cannot be stored for longer
periods of time. Such data for learning from data streams can be difficult/impossible
to handle using the standard offline techniques, due to time and memory constraints.
Evaluation using the output error is typically not used in the online setting, but approaches
(such as the ensembles of improved Lolimot trees), which use the output error during
learning are potentially more successful at the identification of dynamic systems: using
output error when modeling dynamic systems with model trees or ensembles on data
streams (Tkonomovska, 2012) is thus a challenge worth addressing.
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Appendix A

Complete Results

This appendix presents the complete results for the empirical analysis a) on the benchmark
machine learning datasets (Chapter 4), and b) for modeling dynamic systems (Chapter 5).
In particular:

e Tables A.1 to A.10 show the complete results in the static case,

e Tables A.11 to A.26 show the complete results of the evaluation for modeling dynamic
systems.
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Table A.1: A statistical comparison of the predictive performance of different tree learn-
ing algorithms for the task of single-target regression. The results in all tables compare
the leftmost method, in this case M5’ MT, to all of the other methods, by using paired
comparisons. Additionally, the comparison signs <, =, > indicate the result of the paired
comparison according to the t-test.

M5’ MT: t-test Lolimot t-test RT

abalone 0.6667 = 0.6569 = 0.7064
analcat 0.1422 = 0.1402 = 0.1478
auto93 0.5807 < 1.0928 = 0.6467
autoMpg 0.3693 = 0.3736 < 0.4417
auto-price 0.3971 = 0.4375 = 0.3990
bank8FM 0.2010 = 0.2009 < 0.2480
baseball 0.5818 = 0.5710 = 0.6255
baskball 0.8086 = 0.7670 = 0.9089
bodyfat 0.1545 = 0.1611 = 0.1864
breastTumor 0.9613 = 0.9706 = 1.0009
cal-housing 0.4668 < 0.5641 < 0.5147
cholesterol 1.0118 = 1.0343 = 1.0447
cleveland 0.7024 = 0.6910 < 0.8493
cloud 0.3857 = 0.4007 = 0.5518
concrete 0.3454 = 0.3429 < 0.4262
cpu 0.2356 = 0.1784 = 0.4028
cpu-act 0.1446 > 0.1228 < 0.1744
dailyElectrEner 0.4385 = 0.4184 < 0.4897
delta-ailerons 0.5446 = 0.5420 < 0.5831
delta-elevators 0.6969 > 0.6822 = 0.7025
echoMonths 0.7136 = 0.7388 = 0.7364
electr-len-2 0.0407 < 0.0519 < 0.0556
fishcatch 0.1737 = 0.1433 = 0.2229
forestFiresPOR 1.0196 = 1.0011 = 1.1849
fruitfly 1.0230 = 1.0449 = 1.0000
housing 0.4031 = 0.3751 < 0.5034
hungarian 0.7450 = 0.7428 < 0.8410
kin8nm 0.5857 >  0.5654 < 0.6909
laser 0.2080 > 0.1626 = 0.2328
lowbwt 0.6433 = 0.6366 = 0.6318
machine-cpu 0.3251 = 0.2902 = 0.3857
meta 0.8127 = 1.0062 = 0.9663
mortgage 0.0417 = 0.0205 < 0.0762
pbc 0.7957 = 0.8260 < 0.9096
pharynx 0.3577 < 1.3477 = 0.3730
pol 0.1485 < 0.4404 < 0.1960
puma8NH 0.5712 > 0.5627 < 0.5943
pwLinear 0.3102 = 0.3120 < 0.4481
quake 0.9958 = 1.0014 = 1.0016
sensory 0.8459 = 0.8437 < 0.9323
servo 0.3510 = 0.2410 = 0.3771
stock 0.1378 = 0.1262 = 0.1638
strike 1.0743 = 0.9209 = 1.0239
treasury 0.0732 = 0.0576 < 0.1044
triazines 7.2210 = 1.0973 = 0.8973
veteran 0.9652 = 1.1412 = 0.9383
wankara 0.0825 > 0.0785 < 0.1283
wisconsin 0.9905 = 0.9809 = 1.0063
wizmir 0.0834 > 0.0778 < 0.1207
t-test 5:7 21:0

w-test 0.384 0.000
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Table A.2: A statistical comparison of the tree sizes in terms of the number of local models,
and the running times. Three different tree learning algorithms evaluated for the task of
single-target regression. In this and the following tables which report model sizes and
running times, the model sizes are expressed as an average number of terminal nodes of
the 10 folds, while the running times are expressed as a sum of the total time required for
learning.

Model size Learning time (sec.)

M5 MT: Lolimot RT M5 MT: Lolimot RT
abalone 12.0 7.7 36.2 574.9 12187.8 148.4
analcat 80.2 20.2 12.0 113.6 11072.8 57.2
auto93 39.0 8.5 7.0 32.4 365.5 12.5
autoMpg 4.4 3.5 16.0 51.9 426.6 23.5
auto-price 62.4 3.9 62.3 22.3 195.0 10.7
bank8FM 45.0 29.9 255.0 746.2 67071.5  450.2
baseball 6.4 3.6 10.0 35.2 223.7 14.9
baskball 1.5 2.1 2.1 12.5 26.0 5.4
bodyfat 33.0 4.4 33.0 19.0 133.2 8.2
breastTumor 1.0 1.0 2.0 44.7 310.8 22.0
cal-housing 7645.0 6.0 499.0 1901.6 9283.2 1039.2
cholesterol 2.0 1.2 4.0 61.0 247.0 18.1
cleveland 1.0 1.0 6.0 27.8 383.4 13.1
cloud 1.0 1.3 43.0 12.1 30.4 7.6
concrete 404.0 28.6  404.0 69.4 1159.9 35.0
cpu 4.0 5.8 34.0 24.3 357.6 10.4
cpu-act 8.0 27.4 270.0 1056.2 103635.8 969.4
dailyElectrEner 1.6 9.4 8.0 25.8 107.1 11.1
delta-ailerons 22.0 28.9 74.0 478.9 35770.4 238.3
delta-elevators 8.0 24.2 59.0 577.0 66766.8 306.4
echoMonths 1.0 1.2 2.0 13.7 41.9 6.5
electr-len-2 50.6 29.7 113.0 30.7 816.5 31.1
fishcatch 3.0 4.6 41.0 18.6 63.8 7.1
forestFiresPOR 119. 1.1 1.0 65.2 564.9 24.2
fruitfly 1.0 1.4 1.0 13.5 29.9 5.8
housing 193.0 16.2 193.0 48.2 245.8 25.2
hungarian 1.0 1.5 4.0 23.8 317.8 10.5
kin8nm 1632.0 30.0 264.0 863.9 66828.9  432.8
laser 49.0 27.0 219.0 47.1 642.9 20.5
lowbwt 1.0 1.1 2.0 21.7 98.4 9.5
machine-cpu 62.0 3.8 62.0 14.4 45.6 7.7
meta 10.0 8.8 47.0 108.0 2337.0 29.0
mortgage 99.7 23.8 99.0 79.1 1868.2 34.0
pbc 1.0 1.1 6.0 59.7 297.0 20.3
pharynx 5.0 15.4 14.0 250.9 15239.3 73.9
pol 1305.0 6.0 1305.4 1832.8 15998.4 1287.6
puma8NH 35.0 22.2 83.0 908.6 56952.5 503.3
pwLinear 2.0 2.5 14.0 18.2 124.2 11.2
quake 1.0 9.1 1.0 123.5 1329.7 58.7
sensory 247.0 2.0 8.0 98.0 734.4 33.8
servo 37.0 3.3 49.0 16.4 86.3 7.9
stock 253.4 29.7 253.3 71.4 1175.5 30.6
strike 1.0 1.1 10.0 67.7 683.6 32.3
treasury 34.0 15.7 59.0 73.5 1623.4 30.8
triazines 77.0 3.4 5.0 120.2 825.5 22.6
veteran 1.0 1.9 2.0 15.5 42.2 8.8
wankara 4.0 19.7  415.3 120.6 2249.4 52.9
wisconsin 1.0 1.0 3.0 65.9 300.5 13.4
wizmir 2.0 13.4 345.1 92.6 1722.8 44.5
:;#/:Wins1 23:26 42:7 49:0 1:48
w-test 0.003 0.019 0.000 0.000

!The number of wins, denoted as "#wins" is reported in this and in the following tables with results for
the size of the models and the running time. The values only summarize the number of datasets on which
variant A had a smaller value than variant B. No statistical test is considered. The sum of the number of
wins for the method tested and its alternative would always add up to the total number of datasets.
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Table A.3: A statistical comparison of the predictive performance of different tree learning
algorithms, for the task of multi-target regression.

M5’ MT: t-test Lolimot t-test RT
class-spec 6.7591 2.5555 0.8727
class-ind 5.7335 6.1634 0.8540
class-fols 0.9345 3.5040 0.9435
Collembola = =
DFlow 0.7828 0.8094 0.9106
DGap 0.7127 0.7208 0.7667
EDM = =
p 0.0350 0.0320 0.1113
aspect 0.9866 0.9880 1.0000
Forestry IRS = <
P 0.0334 0.0296 0.1113
aspect 0.9962 0.9957 1.0000
Forestry SPOT = <
MF0/00 plR 0.5788 0.8406 0.6190
MS0/00 plR 0.5447 0.6420 0.6481
Sigmea-real = =
Dispersal Rate Pollen 297.7392 0.0336 0.0429
Dispersal Seeds 228.3116 0.0257 0.0224
Sigmea-simulated = =
c-class 0.9523 0.9554 0.9649
m-class 0.9237 0.9284 0.9686
x-class 0.9584 0.9443 1.0087
Solar-flarel = <
c-class 0.8761 0.8922 0.8935
m-class 0.9859 0.9785 0.9883
x-class 0.9711 0.9957 0.9747
Solar-flare2 = =
Cladophora 0.9652 0.9359 1.0099
Gongrosira 0.9943 0.9773 1.0177
Oedogonium 0.9047 0.9039 0.9499
Stigeoclonium 0.8729 0.8927 0.9116
Melosira 0.9507 0.9613 0.9819
Nitzschia 0.8235 0.8231 0.8421
Audouinella 0.8664 0.8586 0.8967
Erpobdella 0.9113 0.9764 0.9356
Gammarus 0.8110 0.8250 0.8381
Baetis 0.9386 0.9416 0.9741
Hydropsyche 0.9468 0.9749 0.9955
Rhyacophila 0.8561 0.8841 0.8707
Simulium 0.9918 0.9939 1.0303
Tubifex 0.8765 0.8931 0.9084
‘Water quality = <
t-test 0:0 4:0
w-test 0.150 0.006

Table A .4: A statistical comparison of the tree sizes in terms of the number of local models,
and the running times. Three different tree learning algorithms evaluated, for the task of
multi-target regression.

Model size Learning time (sec.)

M5’ MT: Lolimot RT M5’ MT: Lolimot RT
Collembola 1.1 1.0 2.0 626.1 6232.8 133.0
EDM 7.0 1.8 13.0 16.1 159.9 6.2
Forestry IRS 1.0 1.4 1.0 710.2 10932.7 371.0
Forestry SPOT 1.0 2.0 1.0 1840.2 20076.3 434.6
Sigmea-real 49.2 2.7  49.2 19.7 272.1 15.9
Sigmea-simulated 30.4 28.8 36.0 297.8 62192.4 213.0
Solar-flarel 12.1 1.0 1.0 21.9 568.6 13.3
Solar-flare2 13.2 1.1 13.2 95.2 2166.5 25.7
‘Water quality 53.5 2.8 53.5 1005.7 2614.4 279.6
#wins 3:6 8:1 9:0 0:9
w-test 0.039 0.875 0.004 0.004
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Table A.5: A statistical comparison of the predictive performance of ensembles, for the
task of single-target regression.

Forests MT : t-test Bagg.MT t-test MT t-test Forests RT t-test Bagg.RT t-test Bagg.Lol

abalone 0.6535 = 0.6487 = 0.6667 = 0.6680 = 0.6695 = 0.6527
analcat 0.1474 = 0.1428 = 0.1422 = 0.1463 = 0.1473 = 0.1406
auto93 0.4279 = 0.4441 = 0.5807 = 0.4949 < 0.5030 < 0.6700
autoMpg 0.3286 = 0.3391 = 0.3693 = 0.3402 = 0.3531 = 0.3516
auto-price 0.4101 = 0.3975 = 0.3971 = 0.3482 = 0.3677 = 0.4258
bank8FM 0.1895 < 0.1936 < 0.2010 < 0.2056 < 0.2075 < 0.2001
baseball 0.5496 = 0.5552 = 0.5818 = 0.5675 = 0.5729 = 0.5494
baskball 0.8035 = 0.8004 = 0.8086 = 0.8932 = 0.8627 = 0.7687
bodyfat 0.1591 = 0.1502 = 0.1545 = 0.1590 = 0.1703 = 0.1558
breastTumor 0.9558 = 0.9541 = 0.9613 = 0.9637 = 0.9637 = 0.9704
cal-housing 0.4236 < 0.4305 < 0.4668 = 0.4220 = 0.4225 < 0.5409
cholesterol 1.0026 = 1.0095 = 1.0118 = 0.9902 = 0.9923 = 1.0312
cleveland 0.6925 = 0.6996 = 0.7024 = 0.7014 = 0.7406 = 0.6909
cloud 0.3953 = 0.3788 = 0.3857 = 0.4817 = 0.4552 = 0.3896
concrete 0.3006 < 0.3168 < 0.3454 = 0.2978 = 0.3057 < 0.3311
cpu 0.1613 = 0.1543 = 0.2356 = 0.3480 < 0.3331 = 0.1403
cpu-act 0.1265 = 0.1357 < 0.1446 < 0.1329 < 0.1400 > 0.1198
dailyElectrEner 0.4065 = 0.4134 = 0.4385 = 0.4156 = 0.4273 = 0.4140
delta-ailerons 0.5266 = 0.5290 < 0.5446 < 0.5388 < 0.5439 < 0.5445
delta-elevators 0.6734 = 0.6806 = 0.6969 = 0.6552 = 0.6648 = 0.6814
echoMonths 0.7189 = 0.7184 = 0.7136 = 0.7141 = 0.7147 < 0.7383
electr-len-2 0.0398 = 0.0410 = 0.0407 < 0.0490 < 0.0481 < 0.0506
fishcatch 0.1362 = 0.1396 < 0.1737 < 0.1940 < 0.1928 = 0.1418
forestFiresPOR 1.0080 = 5.5383 = 1.0196 = 1.0050 = 1.0224 = 1.0008
fruitfly 1.0216 = 1.0340 = 1.0230 = 1.0000 = 1.0021 = 1.0441
housing 0.3648 = 0.4285 = 0.4031 = 0.3723 = 0.4045 = 0.3581
hungarian 0.7195 = 0.7183 = 0.7450 = 0.7691 = 0.7694 = 0.7364
kin8nm 0.6995 = 0.5261 = 0.5857 = 0.5067 = 0.5131 = 0.5659
laser 0.1328 = 0.1507 < 0.2080 < 0.1776 = 0.1882 < 0.1572
lowbwt 0.6178 = 0.6272 = 0.6433 = 0.6133 = 0.6173 = 0.6395
machine-cpu 0.2863 = 0.2892 = 0.3251 = 0.3785 = 0.3603 = 0.2886
meta 0.6285 = 0.8312 = 0.8127 = 0.7160 = 0.7334 = 0.7713
mortgage 0.0221 = 0.0259 = 0.0417 < 0.0509 < 0.0568 = 0.0204
pbe 0.8042 > 0.7938 = 0.7957 = 0.8190 = 0.8427 = 0.8234
pharynx 0.2974 = 0.2987 = 0.3577 = 0.2915 = 0.2958 =] 0.4941
pol 0.1035 < 0.1228 < 0.1485 < 0.1222 < 0.1426 < 0.2454
puma8NH 0.5638 = 0.5650 < 0.5712 < 0.5685 < 0.5701 < 0.5717
pwLinear 0.3441 = 0.3246 = 0.3102 = 0.3645 = 0.3707 = 0.3080
quake 1.0232 = 1.0103 = 0.9958 = 0.9974 = 0.9966 = 1.0003
sensory 0.8237 = 0.8252 < 0.8459 = 0.8283 = 0.8332 = 0.8438
servo 0.2721 = 0.2915 < 0.3510 = 0.3478 < 0.3190 = 0.2466
stock 0.1049 = 0.1180 < 0.1378 < 0.1115 = 0.1229 < 0.1233
strike 0.9067 = 0.9064 = 1.0743 = 0.9159 = 0.9201 = 0.9218
treasury 0.0534 < 0.0622 < 0.0732 < 0.0668 < 0.0750 = 0.0558
triazines 0.8049 = 0.8173 = 7.2210 = 0.7825 = 0.7745 = 0.9345
veteran 0.9493 = 0.9475 = 0.9652 = 0.9562 = 0.9445 = 0.9880
wankara 0.0766 < 0.0797 < 0.0825 < 0.0864 < 0.0903 = 0.0775
wisconsin 0.9488 = 0.9409 < 0.9905 = 0.9821 = 0.9758 < 0.9904
wizmir 0.0765 < 0.0793 < 0.0834 < 0.0842 < 0.0884 = 0.0781
t-test 7:1 16:0 13:0 14:0 12:1

w-test 0.028 0.000 0.001 0.000 0.003
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Appendix A. Complete Results

Table A.6: A statistical comparison of the model sizes and running times of ensembles, for

the task of single-target regression.

Model size Learning time (sec.)

Forests MT : Bagg.MT MT Forests RT Bagg.RT Bagg.Lol. Forests MT: Bagg.MT. MT Forests RT Bagg.RT Bagg.Lol.
abalone 23.5 11.5 12.0 1569.0 85.5 16.0 327840.8 82852.4 574.9 21000.0 5468.9  68616.6
analcat 55.5 85.5 80.0 62.0 21.5 12.4 194682.0 51574.2 113.6 3232.5 1509.6 13254.1
auto93 1.0 1.0 39.0 37.5 32.5 8.5 13216.0 3707.1 32.4 450.9 206.0 8629.6
autoMpg 155.0 3.5 4.0 155.0 153.5 3.5 31505.0 81626.4 51.9 1630.1 604.1 8394.0
auto-price 8.5 7.5 62.0 54.0 53.5 3.9 11717.0 2974.3 22.3 497.7 175.5 2282.7
bank8FM 2377.0 2207.0 45.0 2277.5 2207.0 28.9 2456439.2 176910.8 746.2 31342.6 21441.4 48926.9
baseball 2.5 3.5 6.0 111.5 16.5 3.6 51681.8 5376.5 35.2 951.0 360.1 4970.0
baskball 1.0 1.0 1.0 39.5 3.5 2.1 8457.8 2230.5 12.5 395.9 105.6 294.7
bodyfat 63.0 33.5 33.0 46.0 33.5 4.4 32968.0 7162.2 19.0 613.2 221.2 3697.3
breast Tumor 1.5 1.5 1.0 3.0 2.0 1.0 199158.5 73252.1 44.7 1491.4 509.0 7065.6
cal-housing 7278.5 6940.0 7645.0 6989.0 6940.0 29.9 1749791.5 575609.2 1901.6 88797.7 122594.1 79924.4
cholesterol 1.0 2.5 2.0 6.5 6.0 1.2 24521.2 6718.6 61.0 809.3 413.7 4037.9
cleveland 1.0 1.0 1.0 83.5 69.5 1.0 16164.2 4156.4 27.8 676.1 329.5 4074.8
cloud 2.5 1.0 1.0 41.0 39.0 1.3 8873.0 2095.7 12.1 294.4 88.0 509.6
concrete 32.0 47.5 404.0 369.0 352.0 27.8 378604.4 19148.7 69.4 4022.9 823.9 22866.9
cpu 17.0 6.5 4.0 31.5 29.5 5.8 11454.6 10196.4 24.3 636.5 220.1 8983.5
cpu-act 1927.5 1868.5 8.0 1927.5 1868.5 28.7 680543.6 227160.8 1056.2 40114.6 19331.3 380124.6
dailyElectrEner 74.5 77.0 1.0 141.0 137.5 9.4 27731.8 6766.0 25.8 1191.9 388.9 2913.4
delta-ailerons 2522.0 2305.5 22.0 2522.0 2305.5 28.8 581637.9 771850.3 478.9 18944.9 6148.6 27517.3
delta-elevators 3508.0 3164.5 8.0 3508.0 3164.5 22.5 1150836.9 941940.6 577.0 57058.9 10977.7  28732.0
echoMonths 1.0 1.0 1.0 5.0 6.5 1.2 10100.8 2439.4 13.7 315.9 104.9 677.0
electr-len-2 19.0 13.5 50.0 122.0 110.5 28.9 56623.6 7206.1 30.7 1745.2 388.7 14018.8
fishcatch 9.0 5.5 3.0 44.5 38.5 4.6 9240.9 2224.5 18.6 392.8 158.2 1632.0
forestFiresPOR 117.0 106.0 119.0 3.5 1.5 1.1 80509.4 23856.6 65.2 1415.2 457.5 10095.2
fruitfly 1.5 1.5 1.0 1.0 1.0 1.4 8865.0 2513.7 13.5 202.5 117.7 481.4
housing 11.0 16.5 193.0 193.5 179.0 16.2 38822.4 23599.4 48.2 1546.8 709.0 11046.9
hungarian 1.0 12.0 1.0 8.0 7.0 1.5 10668.4 2647.9 23.8 1145.1 237.7 3715.6
kin8nm 3249.0 223.0 1632.0 3181.5 3142.5 30.0 744515.3 214215.1 863.9 43311.0 15021.1 81852.6
laser 38.0 37.5 49.0 219.0 204.5 25.8 52845.0 11177.8 47.1 2445.1 607.1 10876.1
lowbwt 1.5 1.0 1.0 2.5 2.5 1.1 13427.9 3736.2 21.7 662.7 297.5 2024.1
machine-cpu 58.0 6.0 62.0 61.0 53.5 3.8 12929.2 3190.2 14.4 306.1 125.4 915.6
meta 10.0 7.5 10.0 57.5 53.5 8.8 51041.7 13485.9 108.0 1643.8 713.0 61571.9
mortgage 39.0 30.0 99.0 116.5 86.5 24.3 98800.6 9864.1 79.1 2093.8 1277.6 110346.9
pbc 168.5 1.0 1.0 168.5 166.0 1.1 130042.4 9816.0 59.7 1595.8 1450.9 7278.4
pharynx 44.5 8.5 5.0 18.0 17.5 15.4 1765938.6 456127.1 250.9 2635.3 872.4 669277.6
pol 286.5 212.5 1305.0 1281.5 1096.5 30.0 806743.6 258610.5 1832.8 52880.4 23764.5 313991.8
puma8NH 48.5 35.0 35.0 145.0 118.0 23.0 1535174.8 1532370.1 908.6 36663.3 14670.9  48230.5
pwLinear 30.5 74.5 2.0 14.5 16.0 2.5 22179.7 6949.2 18.2 1008.6 218.4 1394.6
quake 3.0 1.0 1.0 5.0 8.0 8.0 193564.5 54371.0 123.5 5729.6 2020.8 5580.9
sensory 218.5 210.5 247.0 220.5 210.5 2.0 127006.5 13150.9 98.0 1739.7 968.4 15085.2
servo 37.5 6.0 37.0 47.5 42.5 3.3 12954.9 3766.1 16.4 536.3 138.4 1744.8
stock 57.5 53.0 253.0 253.5 241.5 29.7 57728.0 31802.6 71.4 8194.5 803.9 25503.8
strike 3.0 9.5 1.0 5.5 12.0 1.1 299610.6 10460.3 67.7 2014.5 1382.2 14200.5
treasury 106.0 87.5 34.0 92.0 87.5 18.0 35993.2 34129.9 73.5 2163.2 741.2  33738.0
triazines 1.0 1.0 77.0 72.0 71.5 3.4 131979.8 15116.5 120.2 1082.6 535.5 14104.1
veteran 17.0 54.0 1.0 48.0 2.5 1.9 49077.1 2723.0 15.5 674.5 104.9 792.2
wankara 503.0 366.0 4.0 417.5 366.0 20.4 178584.5 70115.0 120.6 4344.8 1183.9 19827.2
wisconsin 15.5 17.0 1.0 5.5 4.5 1.0 26232.8 6868.8 65.9 733.5 368.3 5270.9
wizmir 445.5 298.5 2.0 360.0 298.5 14.6 79430.7 19886.3 92.6 3473.3 1317.2 17333.7
#wins 18:31  22:27 37:12 28:21 11:38 2:47 0:49 0:49 0:49 2:47
w-test 0.001 0.236 0.012 0.462 0.000 0.000 0.000 0.000 0.000 0.000
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Table A.7: A statistical comparison of the predictive performance of ensembles, for the
task of multi-target regression.

Forests MT : t-test Bagg.MT t-test MT t-test Forests RT t-test Bagg.RT t-test Bagg.Lol.
class-spec 3.5341 3.7864 6.7591 0.8537 0.8527 2.8580
class-ind 7.0768 8.5728 5.7335 0.8278 0.8262 5.9769
class-fols 4.3792 3.3956 0.9345 0.8950 0.9002 4.0425
Collembola = = = = =
DFlow 0.6763 0.7454 0.7828 0.6041 0.6855 0.7946
DGap 0.6798 0.6948 0.7127 0.7047 0.6973 0.7196
EDM = = = = <
P 0.0152 0.0137 0.0350 0.0175 0.0149 0.0317
aspect 0.9842 0.9962 0.9866 0.9921 1.0061 0.9866
Forestry IRS = < < = <
P 0.0149 0.0138 0.0334 0.0179 0.0148 0.0323
aspect 0.9829 0.9950 0.9962 0.9864 1.0016 0.9953
Forestry SPOT = < < = <
MFO0/00 plR 0.6117 0.6109 0.5788 0.5846 0.6268 0.6812
MS0/00 plR 0.5096 0.5484 0.5447 0.5160 0.4575 0.6127
Sigmea-real = = = = =
Dispersal Rate Pollen 173.5425 546.5373 297.7392 0.0412 0.0421 0.0754
Dispersal Seeds 173.2916 379.6341 228.3116 0.0220 0.0219 0.0586
Sigmea-simulated = = = = =
c-class 0.9323 0.9327 0.9523 0.9356 0.9637 0.9570
m-class 0.9171 0.9165 0.9237 0.9116 0.9657 0.9301
x-class 0.9540 0.9485 0.9584 0.9462 1.0199 0.9505
Solar-flarel = = = < =
c-class 0.8652 0.8694 0.8761 0.8755 0.8875 0.8751
m-class 0.9691 0.9707 0.9859 0.9764 0.9968 0.9745
x-class 0.9775 0.9716 0.9711 0.9635 0.9787 0.9905
Solar-flare2 = = = = =
Cladophora 0.9231 0.9283 0.9652 0.9315 0.9337 0.9323
Gongrosira 0.9783 0.9796 0.9943 0.9849 0.9839 0.9823
Oedogonium 0.8923 0.8932 0.9047 0.9002 0.8998 0.9029
Stigeoclonium 0.8479 0.8556 0.8729 0.8546 0.8639 0.8817
Melosira 0.9245 0.9313 0.9507 0.9275 0.9345 0.9515
Nitzschia 0.7877 0.7937 0.8235 0.7887 0.7952 0.8172
Audouinella 0.8411 0.8411 0.8664 0.8466 0.8461 0.8552
Erpobdella 0.8967 0.8989 0.9113 0.9001 0.9035 0.9404
Gammarus 0.7828 0.7888 0.8110 0.7933 0.7991 0.8152
Baetis 0.9088 0.9182 0.9386 0.9169 0.9260 0.9304
Hydropsyche 0.9198 0.9245 0.9468 0.9245 0.9322 0.9498
Rhyacophila 0.8507 0.8520 0.8561 0.8485 0.8482 0.8794
Simulium 0.9660 0.9716 0.9918 0.9700 0.9747 0.9848
Tubifex 0.8523 0.8549 0.8765 0.8548 0.8597 0.8871
‘Water quality < < < < <
t-test 1:0 3:0 3:0 2:0 4:0
w-test 0.001 0.001 0.837 0.102 0.027

Table A.8: A statistical comparison of the model sizes and running times of ensembles, for
the task of multi-target regression.

Model size Learning time (sec.)

Forest.MT: Bagg.MT MT Forest.RT Bagg.RT Bagg.Lol. Forests MT Bagg.MT MT Forests RT Bagg.RT Bagg.Lol.
Collemb. 1.1 1.2 1.0 105.5 96.0 1.0 1276587.7 102137.8 626.1 7643.8 3684.5 4412.9
EDM 15.0 4.2 7.0 15.0 9.0 1.8 6684.0 3629.0 16.1 310.2 132.7 88.3
Forest.iRS 584.5 451.0 1.0 584.5 451.0 2.2 502094.9 522805.3 710.2 22309.0 10783.9 2511.3
Forest.SPOT 502.0 430.5 1.0 502.0 430.5 1.5 3075722.3 365028.6 1840.2 39901.2 17867.1 5801.7
Sigmea-real 10.0 3.5 49.0 48.5 47.0 2.8 40074.3 8277.6 19.7 879.6 325.2 282.6
Sigmea-sim. 33.5 36.5 30.0 33.5 36.5 26.7 236026.9 67697.1 297.8 17516.1 8995.6 8718.1
Solar-flarel 1.0 1.3 12.0 6.5 1.0 1.0 50864.8 16071.0 21.9 659.1 320.6 444.5
Solar-flare2 13.0 13.0 13.0 13.0 13.0 1.0 28540.6 9463.2 95.2 1548.7 691.1 1211.7
Water quality 64.5 47.5 53.0 64.5 47.5 3.1 330572.0 224589.1 1005.7 22288.1 8924.7 1483.9
#wins 4:5 4:5 9:0 5:4 2:7 1:8 0:9 0:9 0:9 0:9
w-test 0.078 0.375 0.250 0.688 0.016 0.020 0.004 0.004 0.004 0.004




118 Appendix A. Complete Results

Table A.9: A statistical comparison of the predictive performance of forests of M5’ model
trees with a different number of trees for the task of single-target regression.

RF(100 MT) t-test RF(50 MT) t-test RF(25 MT)

abalone 0.6535 = 0.6533 = 0.6531
analcat 0.1474 = 0.1474 = 0.1454
auto93 0.4279 = 0.4272 = 0.4313
autoHorse 0.2877 = 0.2909 < 0.3156
autoMpg 0.3286 = 0.3335 = 0.3314
auto-price 0.4101 = 0.4146 = 0.4174
bank8FM 0.1895 = 0.1898 = 0.1920
baseball 0.5496 = 0.5614 = 0.5492
baskball 0.8035 > 0.7948 = 0.8006
bodyfat 0.1591 = 0.1598 = 0.1679
breast Tumor 0.9558 = 0.9546 = 0.9544
cal-housing 0.4236 = 0.4252 = 0.4298
cholesterol 1.0026 = 0.9838 = 1.0068
cleveland 0.6925 = 0.7035 = 0.7013
cloud 0.3953 = 0.3919 = 0.4021
concrete 0.3006 = 0.3046 = 0.3200
cpu 0.1613 = 0.1544 = 0.2202
cpu-act 0.1265 = 0.1269 = 0.1284
dailyElectrEner 0.4065 = 0.4166 = 0.4114
delta-ailerons 0.5266 = 0.5274 = 0.5281
delta-elevators 0.6734 = 0.6739 = 0.6795
echoMonths 0.7189 = 0.7201 = 0.7213
electr-len-2 0.0398 = 0.0468 = 0.0414
fishcatch 0.1362 = 0.1388 = 0.1400
forestFiresPOR 1.0080 = 1.0190 = 1.0032
fruitfly 1.0216 = 1.0177 = 1.0290
housing 0.3648 = 0.3465 = 0.3601
hungarian 0.7195 = 0.7285 = 0.7273
kin8nm 0.6995 = 0.5758 = 0.6036
laser 0.1328 = 0.1366 = 0.1401
lowbwt 0.6178 = 0.6369 = 0.6353
machine-cpu 0.2863 = 0.3057 = 0.2897
meta 0.6285 = 5991.7710 = 12560.1648
mortgage 0.0221 = 0.0226 = 0.0240
pbe 0.8042 = 0.8081 = 0.8106
pharynx 0.2974 = 0.3007 = 0.3040
puma8NH 0.5638 = 0.5636 < 0.5657
pwLinear 0.3441 = 0.3240 = 0.3304
quake 1.0232 = 1.0342 = 1.1682
sensory 0.8237 = 0.8213 = 0.8241
servo 0.2721 = 0.2616 = 0.2782
stock 0.1049 = 0.1051 = 0.1058
strike 0.9067 = 0.9074 = 0.9110
treasury 0.0534 = 0.0536 = 0.0548
triazines 0.8049 = 0.8136 = 0.7949
veteran 0.9493 = 0.9467 = 0.9411
wankara 0.0766 = 0.0770 = 0.0773
wisconsin 0.9488 = 0.9492 = 0.9538
wizmir 0.0765 = 0.0765 = 0.0770
t-test 0:1 2:0

w-test 0.064 0.000
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Table A.10: A statistical comparison of the model sizes and running times of forests of
M5’ model trees for the task of single-target regression.

Model size Learning time (sec.)

RF(100 MT) RF(50 MT) RF(25 MT) RF(100 MT) RF(50 MT) RF(25 MT)
abalone 23.5 13.5 19.0 327840.8 300031.6 90246.9
analcat 55.5 43.5 16.0 194682.0 24286.5 12853.4
auto93 1.0 5.0 1.5 13216.0 7221.9 4346.6
autoHorse 10.0 49.5 56.0 83234.8 43382.4 21305.2
autoMpg 155.0 155.5 161.0 31505.0 16491.3 27920.1
auto-price 8.5 4.0 7.5 11717.0 6475.1 6058.5
bank8FM 2377.0 2437.5 2365.0 2456439.2 324667.2 304354.7
baseball 2.5 3.5 116.5 51681.8 12248.0 20916.0
baskball 1.0 1.0 1.0 8457.8 4375.8 2463.6
bodyfat 63.0 72.0 40.0 32968.0 8898.1 6970.7
breastTumor 1.5 1.0 3.0 199158.5 47568.9 7447.6
cal-housing 7278.5 7090.0 7189.5 1749791.5 871515.5 495852.7
cholesterol 1.0 1.0 1.0 24521.2 24951.2 14836.1
cleveland 1.0 88.5 89.0 16164.2 9124.3 10268.4
cloud 2.5 1.0 2.0 8873.0 4530.4 2609.4
concrete 32.0 34.5 37.0 378604.4 40559.7 29789.9
cpu 17.0 9.0 11.0 11454.6 27391.5 7197.0
cpu-act 1927.5 1896.0 1917.0 680543.6 366597.0 176832.3
dailyElectrEner 74.5 80.5 148.5 27731.8 16716.9 8221.8
delta-ailerons 2522.0 2515.0 2506.5 581637.9 317841.6 571575.4
delta-elevators 3508.0 3526.0 3491.5 1150836.9 367030.5 189756.4
echoMonths 1.0 1.0 1.0 10100.8 4992.0 2953.3
electr-len-2 19.0 20.5 13.5 56623.6 86443.9 10814.6
fishcatch 9.0 7.0 7.5 9240.9 5027.8 2783.3
forestFiresPOR 117.0 122.5 11.0 80509.4 14783.4 8823.6
fruitfly 1.5 1.0 1.0 8865.0 4898.6 2612.7
housing 11.0 12.5 13.5 38822.4 20329.5 18071.3
hungarian 1.0 22.5 13.0 10668.4 5804.6 3325.3
kin8nm 3249.0 195.0 3269.0 744515.3 2231298.8 345005.7
laser 38.0 24.5 35.5 52845.0 50555.3 17919.0
lowbwt 1.5 1.5 2.0 13427.9 50708.6 4486.7
machine-cpu 58.0 6.5 4.0 12929.2 6229.5 3498.7
meta 10.0 37.5 37.5 51041.7 28024.2 38594.6
mortgage 39.0 132.5 121.0 98800.6 180214.4 11391.1
pbc 168.5 165.5 172.0 130042.4 19655.0 11108.4
pharynx 44.5 50.5 44.0 1765938.6 57289.0 392165.5
puma8NH 48.5 42.0 48.5 1535174.8 2124603.2 210734.8
pwLinear 30.5 77.0 78.5 22179.7 8668.3 4634.6
quake 3.0 1.0 4.0 193564.5 100668.6 46251.2
sensory 218.5 223.5 221.5 127006.5 26247.5 14620.6
servo 37.5 37.5 32.0 12954.9 5443.3 3053.1
stock 57.5 37.5 49.0 57728.0 29893.7 16157.1
strike 3.0 4.0 8.0 299610.6 21544.2 11947.4
treasury 106.0 110.0 98.5 35993.2 79147.7 11631.9
triazines 1.0 1.0 1.0 131979.8 27585.1 16244.6
veteran 17.0 53.5 54.0 49077.1 5506.0 3068.3
wankara 503.0 414.0 442.5 178584.5 54083.2 28107.4
wisconsin 15.5 16.0 1.0 26232.8 14409.0 7398.8
wizmir 445.5 424.5 444.5 79430.7 40938.4 22529.0
#wins 29:20 25:24 8:41 0:49

w-test 0.885 0.770 0.000 0.000
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