
TREE ENSEMBLES FOR DISCRETE-TIME

MODELING OF NON-LINEAR DYNAMIC

SYSTEMS

Darko Aleksovski

Doctoral Dissertation
Joºef Stefan International Postgraduate School
Ljubljana, Slovenia

Supervisor: Prof. Dr. Sa²o Dºeroski, Joºef Stefan Institute, Ljubljana, Slovenia
Co-Supervisor: Prof. Dr. Ju² Kocijan, Joºef Stefan Institute, Ljubljana, Slovenia

Evaluation Board:
Prof. Dr. Ðani Juri£i¢, Chair, Joºef Stefan Institute, Ljubljana, Slovenia
Asst. Prof. Dr. Bernard �enko, Member, Joºef Stefan Institute, Ljubljana, Slovenia
Prof. Dr. Ljup£o Todorovski, Member, Faculty of Administration, University of Ljubljana,
Ljubljana, Slovenia

Darko Aleksovski

TREE ENSEMBLES FOR DISCRETE-TIME MODELING

OF NON-LINEAR DYNAMIC SYSTEMS

Doctoral Dissertation

ANSAMBLI DREVES ZAMODELIRANJE NELINEARNIH

DINAMI�NIH SISTEMOV V DISKRETNEM �ASU

Doktorska disertacija

Supervisor: Prof. Dr. Sa²o Dºeroski

Co-Supervisor: Prof. Dr. Ju² Kocijan

Ljubljana, Slovenia, September 2014

v

Acknowledgments

I would like to show my gratitude to my supervisor Prof. Dr. Sa²o Dºeroski, my co-
supervisor Prof. Dr. Ju² Kocijan, the Joºef Stefan International Postgraduate School, and
the Joºef Stefan Institute, for providing me with an excellent environment for work on the
thesis. I would also like to thank my thesis committee, Prof. Dr. Ðani Juri£i£, Prof. Dr.
Ljup£o Todorovski, and Asst. Prof. Dr. Bernard �enko, for their helpful comments and
suggestions.

Several institutions provided funding for my research work, the Slovene Human Re-
sources Development and Scholarship Fund, the Department of Knowledge Technologies
(Joºef Stefan Institute, Ljubljana), and the European Commission (through the projects
PHAGOSYS: Systems biology of phagosome formation and maturation - modulation by in-
tracellular pathogens; SUMO: Supermodeling by combining imperfect models; and MAES-
TRA: Learning from Massive, Incompletely annotated, and Structured Data).

I am especially grateful to my wife, my parents, and my sister, for their constant and
unconditional support. I would also like to thank everyone who helped me write this
dissertation successfully.

vii

Abstract

In the thesis, we address the problem of discrete-time modeling of non-linear dynamic
systems. Using the external dynamics approach, the problem is transformed to a nonlinear
static regression function approximation problem. We consider multiple-model approaches,
which build several simple models.

We build upon one crisp general-purpose approach, which builds crisp linear model
trees, and one fuzzy linear model tree approach. The former is known to be fast, but
has not been evaluated for modeling dynamic systems. While the latter is slower, its
applications for modeling dynamic systems show that it is rather accurate. We evaluate
and further develop the two approaches to improve the predictive performance of the �rst,
and the running time of the second approach.

In particular, we consider the crisp model tree algorithm M5' and the fuzzy model tree
algorithm Lolimot. The models they build di�er: the �rst builds crisp model trees, while
the second builds fuzzy model trees, also known by the name of Takagi-Sugeno models.
This thesis also investigates the use of ensembles built on top of the two tree learning
algorithms, as they would potentially be able to increase the predictive performance. The
ensemble approach considered is bagging, aimed at reducing the variance of the model.
We also consider multi-output trees, which were introduced earlier, but not yet evaluated
and popularized, and ensembles thereof.

We empirically evaluate the approaches of building model trees and ensembles on a
collection of measured and synthetic datasets derived from seven dynamic system case
studies. In order to provide for a more realistic assessment of performance, the datasets
used contain noise. The performance results obtained are analyzed using statistical tests.
The results of the empirical evaluation show that ensembles improve over the performance
of single model trees, and that the multi-output tree approach is worth considering, as
it decreases the complexity of the overall multi-output models. They also show that the
modi�cations of the Lolimot algorithm decrease its running time, while maintaining the
same level of predictive performance.

The �rst contribution of this thesis are the modi�cations and analysis of two model
tree learning algorithms, introduced in di�erent domains, for the task of modeling dy-
namic systems. Also, this thesis provides an implementation and evaluation of ensemble
approaches based on the two tree learning algorithms. The ensembles of model trees are
evaluated on static regression tasks. Finally, both single trees and ensembles are evaluated
on single-output and multi-output dynamic system case studies, which provides insights
into their performance.

ix

Povzetek

Disertacija obravnava problem modeliranja nelinearnih dinami£nih sistemov v diskretnem
£asu. S pristopom zunanje dinamike smo problem pretvorili v regresijski problem apro-
ksimacije nelinearne stati£ne funkcije. V disertaciji smo upo²tevali ve£modelne metode
modeliranja, kjer so modeli sestavljeni iz ve£ enostavnih podmodelov.

V disertaciji smo nadgradili splo²nonamensko metodo za modeliranje, ki gradi drevesa
linearnih modelov, in metodo mehkih dreves linearnih modelov. Prva metoda je znana
po svoji hitrosti u£enja modela, vendar do sedaj ²e ni bila preizku²ena za modeliranje
dinami£nih sistemov. Medtem ko je druga metoda pri u£enju po£asnej²a, se je do sedaj
izkazala kot precej natan£nej²a za modeliranje dinami£nih sistemov. Omenjeni metodi smo
ovrednotili in nadgradili tako, da smo izbolj²ali napovedno to£nost modelov, dobljenih s
prvo metodo, in £as potreben za u£enje modelov z drugo metodo.

Obravnavani metodi sta bili metoda modelskih dreves M5' in metoda mehkih modelskih
dreves Lolimot. Modeli, ki jih metodi gradijo, se razlikujejo: prva gradi drevesa linearnih
modelov, medtem ko druga gradi mehka drevesa linearnih modelov, ki so znani tudi kot
mehki model Takagi-Sugeno. Disertacija obravnava tudi drevesa za modeliranje sistemov
z ve£ izhodi. Taki modeli dreves so bili sicer ºe znani, vendar ²e ne ustrezno ovrednoteni
ter uporabljeni v ansamblih, kar smo storili v disertaciji.

Metode gradnje dreves linearnih modelov in njihovih ansamblov smo ovrednotili empi-
ri£no na mnoºici merjenih in simuliranih podatkov sedmih primerov dinami£nih sistemov.
Uporabljene mnoºice podatkov vsebujejo ²um in zaradi tega omogo£ajo bolj realisti£no
vrednotenje dobljenih modelov. Rezultate vrednotenja smo analizirali s statisti£nimi te-
sti. Rezultati empiri£nega vrednotenja so pokazali, da so ansambli modelskih dreves bolj
uspe²ni pri napovedovanju kot posamezna drevesa. Poleg tega je bilo razvidno tudi, da
je smiselno uporabiti metodo modelskih dreves za modeliranje dinami£nih sistemov z ve£
izhodi, saj se na ta na£in zmanj²a kompleksnost modela v primerjavi z ve£ modeli z enim
izhodom. Rezultati vrednotenja so pokazali, da so predlagane izbolj²ave metode Lolimot
zmanj²ale £as u£enja modela pri enaki napovedni to£nosti.

Prvi prispevek disertacije so izbolj²ave in vrednotenja omenjenih dveh algoritmov za
u£enje regresijskih dreves za modeliranje dinami£nih sistemov, ki izhajata iz razli£nih stro-
kovnih podro£ij. Predstavili smo metode za gradnjo ansamblov obeh vrst dreves in nji-
hovo vrednotenje. Disertacija vsebuje tudi vrednotenje ansamblov modelskih dreves za
modeliranje stati£nih regresijskih problemov. Zadnji prispevek je empiri£no ovrednote-
nje posameznih dreves in ansamblov na primerih z enim in ve£ izhodi, ki daje vpogled v
u£inkovitost obravnavanih metod za modeliranje.

xi

Contents

List of Figures xv

List of Tables xix

List of Algorithms xxiii

Abbreviations xxv

Symbols xxvii

1 Introduction 1
1.1 Aims and Goals . 2
1.2 Methodology . 2
1.3 Contributions . 3
1.4 Structure of the Thesis . 3

2 Background 5
2.1 System Identi�cation . 5

2.1.1 Discrete-time vs Continuous-time Modeling 8
2.1.1.1 Continuous-time modeling 8
2.1.1.2 Discrete-time modeling . 8

2.1.2 System Identi�cation in Discrete Time 9
2.2 Machine Learning Approaches to Regression 10
2.3 System Identi�cation with Machine Learning: Prior Work 12

2.3.1 One Global Model vs Multiple Model Approaches 12
2.3.2 Optimization of the Output Error 13

3 Tree-based Methods 15
3.1 Introduction . 15
3.2 Model Tree Learning Algorithms . 16
3.3 The M5' Model Tree Learning Algorithm . 19

3.3.1 Tree Growing Phase . 19
3.3.2 Tree Post-pruning Phase . 20
3.3.3 Handling Discrete Attributes . 21

3.4 Lolimot . 22
3.4.1 Estimation of Local Models' Parameters 23
3.4.2 Multi-target Lolimot Model Trees . 26
3.4.3 Optimal Complexity of a Lolimot Tree 27

3.5 Properties of Existing Approaches . 27
3.5.1 Existing Tree Approaches . 27
3.5.2 Existing Ensembles of Model Trees and Their Limitations 29

xii Contents

4 Model Trees and Ensembles for Dynamic System Modeling 31
4.1 Crisp Model Trees . 32

4.1.1 Smoothing the Crisp Model Tree Predictions 32
4.1.1.1 The Built-in M5' Smoothing 33
4.1.1.2 Smoothing Using Fuzzi�cation 33

4.1.2 Multi-target M5' . 35
4.2 Fuzzy Model Trees . 35

4.2.1 Modifying the Evaluation of Candidate Splits 36
4.2.1.1 Utilization of the Output Error While Learning 37

4.2.2 Modifying the Search for an Optimal Tree Structure 37
4.2.2.1 Considering Several Split Cut-points 37
4.2.2.2 Considering Di�erent Overlaps 38

4.2.3 Global Parameter Estimation in Lolimot 38
4.3 Model Tree Ensembles . 40

4.3.1 Ensemble Construction . 40
4.3.2 Ensemble Selection . 41

4.4 Illustrative Example . 42
4.4.1 Derivatives of the Models . 44

5 Evaluation on Benchmark Machine Learning Regression Datasets 47
5.1 Datasets . 48

5.1.1 Preprocessing . 48
5.2 Experimental Design . 49

5.2.1 Performance Measures . 50
5.3 Experimental Results . 50

5.3.1 Evaluating the Performance of Di�erent Tree Learning Algorithms . 51
5.3.1.1 Single-target Regression . 51
5.3.1.2 Multi-target Regression . 52

5.3.2 Comparing Model Trees to Ensembles 53
5.3.2.1 Single-target Regression . 54
5.3.2.2 Multi-target Regression . 56

5.3.3 Ensemble Size . 57
5.3.4 Summary . 59

6 Evaluation for Modeling Dynamic Systems 61
6.1 Dynamic System Case Studies . 62

6.1.1 Case Study: Continuous-stirred Rank Reactor 62
6.1.2 Case Study: Gas-liquid Separator . 64
6.1.3 Case Study: Narendra System . 66
6.1.4 Case Study: pH Neutralization . 66
6.1.5 Case Study: Steam Generator . 69
6.1.6 Case Study: Robot Arm . 71
6.1.7 Case Study: Winding Process . 72

6.2 Datasets . 73
6.2.1 Preprocessing . 73
6.2.2 Dataset Summary . 75

6.3 Selected Methods for Comparison . 75
6.4 Experimental Design . 77

6.4.1 Performance Measures . 79
6.5 Evaluating Modi�cations of the Model Tree Learning Algorithms 80

6.5.1 Evaluating M5' Modi�cations . 80

Contents xiii

6.5.1.1 Comparing M5' to Lolimot 80
6.5.1.2 Replacing the Crisp Local Model Estimation with Fuzzy . . 82
6.5.1.3 Evaluating Smoothing Variants 83

6.5.2 Evaluating Lolimot Modi�cations . 84
6.5.2.1 Modi�ed Evaluation of Candidate Splits 84
6.5.2.2 Modi�ed Search for an Optimal Tree Structure 85
6.5.2.3 Utilization of the Output Error While Learning 88
6.5.2.4 Global Parameter Estimation 89
6.5.2.5 Evaluating Multi-target Model Trees 91

6.5.3 Summary . 92
6.6 Model Trees and Ensembles for Single-output Modeling 93

6.6.1 Lolimot vs Ensembles . 93
6.6.2 Modi�ed Lolimot vs Ensembles . 94
6.6.3 Model Tree Ensembles vs Neural Networks and ANFIS 95
6.6.4 Auto-correlation of the Output Error 97

6.7 Model Trees and Ensembles for Multiple-output Modeling 98
6.7.1 Modi�ed Lolimot vs Ensembles . 99
6.7.2 Several Single-output Models vs One Multi-output 100

6.8 Summary . 102

7 Conclusions 105
7.1 Summary and Discussion . 105
7.2 Scienti�c Contribution . 107
7.3 Further Work . 109

Appendix A Complete Results 111

References 137

Bibliography 143

Biography 145

xv

List of Figures

Figure 2.1: The system identi�cation loop according to Nelles (2001). 7
Figure 2.2: Evaluation using one-step-ahead prediction and simulation. 10

Figure 3.1: (a) A fuzzy model tree; (b) A Takagi-Sugeno model. 16
Figure 3.2: One iteration of the Lolimot method. 24

Figure 4.1: An example model tree with one split node and two terminal nodes. . 32
Figure 4.2: Two types of fuzzy membership functions: sigmoidal (top) and trian-

gular (bottom). 34
Figure 4.3: Comparison of crisp and smoothed model trees with 4 LMs, in a 2-

dimensional space. 35
Figure 4.4: Evaluating four candidate splits using simulation, during building the

Lolimot tree for GLS. The x axis denotes the discrete step k of the
simulation procedure, while the y axis the running sum of squared errors∑k

i=1(f(xi)− f̂(xi))
2. 36

Figure 4.5: The partitioning resulting from a Lolimot model tree with three splits
and four LMs. The Gaussian membership functions are shown too. For
the bottom-right partition, with dimensions [δ1, δ2] = [4, 6], the σ1, and
σ2 values are shown. 39

Figure 4.6: Operation of the bagging method, using model trees as base models. . . 41
Figure 4.7: Performance of the soft model tree approaches. A single Lolimot tree

(left) and bagging of Lolimot trees (right). The Lolimot model tree
consists of 12 LMs. The bagging consists of 50 model trees with 12
LMs. The lower panels show the approximation error f(x) − f̂(x). In
both cases the modeling is performed by using data with 20% noise. . . 43

Figure 4.8: Performance of the crisp model tree approaches. A single M5' tree
(left), a smoothed variant of the M5' tree (middle) and bagging of M5'
trees (right). The M5' model tree has 12 terminal nodes. The bagging
consists of 50 model trees with 12 terminal nodes. The lower panels
show the approximation error f(x)− f̂(x). In both cases the modeling
is performed by using data with 20% noise. 44

Figure 4.9: An illustration of the derivatives of the di�erent models (solid lines)
compared to the true derivative of the function (dashed line). 45

Figure 5.1: A comparison of the predictive performance of Model trees (MT) and
soft model trees (Lolimot). 53

Figure 5.2: A comparison of the predictive performance of an M5' model tree to
a regression tree for the task of multi-target regression. Each marker
represents one target variable of the corresponding multi-target dataset. 54

Figure 5.3: A comparison of the predictive performance of a single M5' model tree
to that of forest ensemble of M5' model trees. 55

xvi List of Figures

Figure 5.4: A comparison of the predictive performance of a single M5' model tree
to that of forest of M5' model trees for the task of multi-target regression. 57

Figure 5.5: A comparison of the predictive performance of forests of M5' model
trees with 100 and 25 model trees. 58

Figure 6.1: A diagram of the continuous-stirred tank reactor. 62
Figure 6.2: Normalized input-output data of the CSTR dynamic system. Data used

for testing. 63
Figure 6.3: A schematic diagram of the semi-industrial process plant. 64
Figure 6.4: Input-output data for identi�cation of the gas-liquid separator system.

Detrended identi�cation data are shown in the left and detrended vali-
dation data in the right four panels. 65

Figure 6.5: Input-output data for identi�cation of the Narendra system. Testing
data are shown, up to time step 800. 66

Figure 6.6: A schematic diagram of the pH neutralization system. 67
Figure 6.7: Input-output data for identi�cation of the pHA (and pH'A) system; de-

trended identi�cation data (left) and detrended validation data (right).
The bottom left panel shows both the non-noisy data (solid line) and
the data with 20% noise (dots). 68

Figure 6.8: Input-output data for identi�cation of the pHB (and pH'B) system;
identi�cation data (left) and validation data (right). The bottom left
panel shows both the non-noisy data (solid line) and the data with 20%
noise (dots). 69

Figure 6.9: A diagram of the steam generator plant. 70
Figure 6.10: Input-output data of the steam generator dynamic system used for testing. 70
Figure 6.11: The 7-degree-of-freedom anthropomorphic robot arm. 71
Figure 6.12: Available data for the robot case study. 71
Figure 6.13: A diagram of the winding process. 72
Figure 6.14: Input-output data for the winding case study. 73
Figure 6.15: The external dynamics approach and the simulation procedure. 74
Figure 6.16: A comparison of the predictive performance of crisp M5' model trees to

soft LolimotS model trees of the same size. 81
Figure 6.17: Replacing the crisp local model estimation with fuzzy. A comparison

of the output error of M5′SOFT and M5'. 82
Figure 6.18: Testing the e�ectiveness of M5' without smoothing, as opposed toM5′Fuzz. 83
Figure 6.19: A comparison of the output error of LolimotME and Lolimot. 85
Figure 6.20: A comparison of the performance when considering several cut-points.

LolimotME and LolimotC8 are shown. 86
Figure 6.21: A comparison of the performance when optimizing the fuzzy MSF over-

lap . 87
Figure 6.22: A comparison of the Lolimot models built by using the output or the

prediction errors. 89
Figure 6.23: Performance of Lolimot (solid line) and LolimotGPE (solid line with

crosses) on the single-output datasets. Performance on the testing sets
(unseen data) shown. For the latter, the complexity determined by the
validation set is circled. 90

Figure 6.24: Comparison of the predictive performance of LolimotMO and L++MO.
Each marker represents the performance of the methods on one out-
put variable. The marker shape determines which dataset the variable
belongs to. 92

List of Figures xvii

Figure 6.25: Evaluating the single-output predictive performance of Lolimot trees
and Bagging of Lolimot trees. 94

Figure 6.26: Evaluating the single-output predictive performance of L++ trees and
Bagging of L++ trees. 95

Figure 6.27: Auto-correlation of the output error of Lolimot (solid line) and ensemble
of Lolimot (dashed line), on the single-output datasets. The x-axis
denotes the lag. 97

Figure 6.28: Auto-correlation of the output error of M5' (solid line) and ensemble
of M5' (dashed line), on the single-output datasets. The x-axis denotes
the lag. 98

Figure 6.29: A comparison of the predictive performance of multi-output model trees
to ensembles of multi-output model trees. Results for each of the output
variables are shown separately. 99

Figure 6.30: The predictive performance of several single-output L++ model trees,
and the predictive performance of a multi-output L++ model tree. . . . 101

Figure 6.31: The predictive performance of separate bagging of single-output L++
model trees, one for each output, to a bagging model which utilizes
multi-output L++MO model trees. 102

xix

List of Tables

Table 3.1: A categorization of the model tree algorithms based on their split selec-
tion procedure, based on the work of Vens and Blockeel (2006). 17

Table 3.2: Candidate cut-point determination for a split attribute A. Amin and
Amax denote the minimal and maximal value of this attribute in the set
of data points. 18

Table 5.1: The list of single-target regression datasets. The table reports the num-
ber of instances n, the number of attributes a, and the number of nominal
attributes anom. 48

Table 5.2: The list of multi-target regression datasets. The table reports the num-
ber of instances n, the number of attributes a, the number of nominal
attributes anom, and the number of targets/outputs r. 49

Table 5.3: Method parameters considered for the experimental evaluation. 50
Table 5.4: A statistical comparison of the predictive performance of model trees

(MT), soft model trees (Lolimot), and regression trees (RT), for the
task of single-target regression. A summary of Table A.1. The results
reported in all tables compare the leftmost method, in this case M5' MT,
to all of the other methods, by using paired comparisons. 51

Table 5.5: A statistical comparison of the model sizes and running times of model
trees (MT), soft model trees (Lolimot), and regression trees (RT), for the
task of single-target regression. A summary of Table A.2. The number
of wins, denoted as "#wins" is reported in the �rst row in this and
in the following tables with results for the size of the models and the
running time. The values only summarize the number of datasets on
which variant A had a smaller value than variant B, i.e., no statistical
test is considered. The sum of the number of wins for the method tested
and its alternative would always add up to the total number of datasets. 52

Table 5.6: A statistical comparison of the predictive performance of di�erent tree
learning algorithms for the task of multi-target regression. A summary
of Table A.3. 52

Table 5.7: A statistical comparison of the model sizes and running times of di�er-
ent tree learning algorithms for the task of multi-target regression. A
summary of Table A.4. 53

Table 5.8: A statistical comparison of the predictive performance of the ensem-
ble approaches for single-target regression. All ensembles consist of 100
trees. Summary of Table A.5. 55

Table 5.9: A statistical comparison of the model sizes and running times. Summary
of Table A.6. 55

Table 5.10: A statistical comparison of the predictive performance. Summary of
Table A.7. 56

xx List of Tables

Table 5.11: A statistical comparison of the model sizes and running times. Summary
of Table A.8. 56

Table 5.12: A statistical comparison of the predictive performance of forests of M5'
model trees with a di�erent number of trees, for the task of single-target
regression. Summary of Table A.9. 58

Table 5.13: A statistical comparison of the model sizes and running times of forests
of M5' model trees with a di�erent number of trees. Summary of Table
A.10. 58

Table 6.1: The dynamic system case studies considered, the selected lags and the
dimensionality of the datasets obtained. 75

Table 6.2: The generated datasets for the single-output machine learning analysis.
The parenthesis, if present, denote the output/target variable. 76

Table 6.3: The datasets and the output variables considered in the multi-output
machine learning analysis. The parenthesis denote the output/target
variable for the multi-output case study. 77

Table 6.4: Method parameters and the values considered in the experimental eval-
uation. 78

Table 6.5: A statistical comparison of M5' to LolimotS . A summary of Table A.11. 81
Table 6.6: A statistical comparison of the output error of M5′SOFT to M5' and

LolimotS . A summary of Table A.12. 82
Table 6.7: A statistical comparison of the e�ectiveness of M5' smoothing. In both

cases the tree sizes are equal. A summary of Table A.13. 84
Table 6.8: A statistical comparison of Lolimot and LolimotME . A summary of

Table A.14. 85
Table 6.9: A statistical comparison of LolimotME with LolimotC2, LolimotC4, and

LolimotC8. A summary of Table A.15 and Table A.16. 86
Table 6.10: A statistical comparison of LolimotME and Lolimotksig. A summary of

Table A.17. 87
Table 6.11: A statistical comparison of the Lolimot models built by using the output

or the prediction errors. A summary of Table A.18. 88
Table 6.12: A statistical comparison of the Lolimot and L++ models for multi-

output modeling. A summary of Table A.19. 91
Table 6.13: A statistical comparison of a single Lolimot tree and a bagging of Lolimot

trees. A summary of Table A.20. 94
Table 6.14: A statistical comparison of L++ and Bagging of L++. A summary of

Table A.21. 95
Table 6.15: A statistical comparison of ensembles of the two model tree types. A

partial summary of Table A.22 and Table A.23. 96
Table 6.16: A statistical comparison of ensembles of model trees to NNs and ANFIS.

A partial summary of Table A.22 and Table A.23. 96
Table 6.17: A statistical comparison of multi-output model trees to ensembles of

multi-output model trees. A summary of Table A.24. 100
Table 6.18: A statistical comparison of separate single-output model trees, each pre-

dicting one output variable, to one multi-output model tree. A summary
of Table A.25. 100

Table 6.19: A statistical comparison of separate bagging of single-output L++ model
trees, one for each output, to a bagging model which utilizes multi-output
L++ model trees. A summary of Table A.26. 102

List of Tables xxi

Table A.1: A statistical comparison of the predictive performance of di�erent tree
learning algorithms for the task of single-target regression. The results
in all tables compare the leftmost method, in this case M5' MT, to all
of the other methods, by using paired comparisons. Additionally, the
comparison signs <,=, > indicate the result of the paired comparison
according to the t-test. 112

Table A.2: A statistical comparison of the tree sizes in terms of the number of local
models, and the running times. Three di�erent tree learning algorithms
evaluated for the task of single-target regression. In this and the follow-
ing tables which report model sizes and running times, the model sizes
are expressed as an average number of terminal nodes of the 10 folds,
while the running times are expressed as a sum of the total time required
for learning. 113

Table A.3: A statistical comparison of the predictive performance of di�erent tree
learning algorithms, for the task of multi-target regression. 114

Table A.4: A statistical comparison of the tree sizes in terms of the number of local
models, and the running times. Three di�erent tree learning algorithms
evaluated, for the task of multi-target regression. 114

Table A.5: A statistical comparison of the predictive performance of ensembles, for
the task of single-target regression. 115

Table A.6: A statistical comparison of the model sizes and running times of ensem-
bles, for the task of single-target regression. 116

Table A.7: A statistical comparison of the predictive performance of ensembles, for
the task of multi-target regression. 117

Table A.8: A statistical comparison of the model sizes and running times of ensem-
bles, for the task of multi-target regression. 117

Table A.9: A statistical comparison of the predictive performance of forests of M5'
model trees with a di�erent number of trees for the task of single-target
regression. 118

Table A.10: A statistical comparison of the model sizes and running times of forests
of M5' model trees for the task of single-target regression. 119

Table A.11: Comparing the performance of M5' to Lolimot. 120
Table A.12: Comparing M5' to a version with fuzzy/soft estimation, and to Lolimot

of the same size. 121
Table A.13: Evaluation results of the M5' smoothing variants. 122
Table A.14: Results for a Lolimot modi�cation which evaluates candidate splits using

a di�erent procedure. The reported running times are those required for
building the model tree. 123

Table A.15: Evaluating Lolimot - several split cut-points. Prediction and output
error results. 124

Table A.16: Evaluating Lolimot - several split cut-points. Model sizes and learn-
ing times (seconds) are shown. The reported running times are those
required for tuning of the parameters and building the model tree. . . . 125

Table A.17: Evaluating Lolimot - optimizing overlaps. The reported running times
are those required for tuning of the parameters and building the model
tree. The running times of LolimotME are similar, but not identical, to
those reported in Table A.16. 126

Table A.18: Evaluating Lolimot - using output error or prediction error while learn-
ing. In both algorithm variants the trees are of equal size. 127

Table A.19: Evaluating Lolimot and L++ for multi-output modeling. 128

xxii List of Tables

Table A.20: Comparing the single-output performance of Lolimot trees and Bagging
of Lolimot trees. 129

Table A.21: Comparing the single-output performance of L++ model trees and Bag-
ging of L++ model trees. 130

Table A.22: Comparison of Model Tree Ensembles vs. Neural Networks and ANFIS.
Prediction errors and output errors are shown. 131

Table A.23: Comparison of Model Tree Ensembles vs. Neural Networks and ANFIS.
Model complexities and times required for learning are shown. 132

Table A.24: Comparing the performance of multiple-output L++ and Bagging of
multiple-output L++ model trees. The table reports identical numbers
under the time column, for each of the outputs of a dynamic system
model. 133

Table A.25: Comparing single-output model trees, each predicting one output vari-
able, to one multi-output model tree. 134

Table A.26: Comparing a separate ensemble of single-output L++ MTs, and a single
ensemble of multiple-output L++ MTs. 135

xxiii

List of Algorithms

Algorithm 3.1: Pseudocode for the tree growing phase of M5'. 20
Algorithm 3.2: Pseudocode for the tree pruning phase of M5'. 21
Algorithm 3.3: Pseudocode for the Lolimot method. 22

Algorithm 4.1: Pseudocode for the Model-Tree Ensembles method. 42

xxv

Abbreviations

ODE . . . Ordinary di�erential equation
PDE . . . Partial di�erential equation
MT . . . Model tree
ANN . . . Arti�cial neural network
MLP . . . Multi-layer perceptron
RBF . . . Radial-basis function
SVR . . . Support vector regression
TS . . . Takagi-Sugeno, or Takagi-Sugeno-Kang fuzzy model
MSF . . . Membership function, fuzzy membership function
LM . . . Local model
TDIDT . . . Top-down induction of decision trees
RRMSE . . . Root-relative mean squared error
SDR . . . Standard deviation reduction
SO . . . Single-output
MO . . . Multiple-output, or multi-output
AIC . . . Akaike information criterion
OSA . . . One-step ahead prediction error
SIM . . . Simulation error, or output error
RT . . . Regression tree
MTE . . . Model tree ensemble
BMT . . . Bagging of model trees
FMT . . . Forest of model trees
BRT . . . Bagging of regression trees
FRT . . . Forest of regression trees
CSTR . . . Continuous-stirred tank reactor
GLS . . . Gas-liquid separator
MIMO . . . Multiple-input multiple-output system
MISO . . . Multiple-input single-output system

xxvii

Symbols

D . . . The data points available for training
n = |D| . . . The number of data points in D
r . . . The number of target variables
m . . . The number of local models (LMs), i.e., terminal nodes of a model tree
p . . . The number of regressors (features used to build LMs)
t . . . The size of the the ensemble, i.e., number of trees in the ensemble
Dj . . . The j-th bootstrap sample of the set D
Tj . . . The j-th tree in the ensemble
µ . . . Fuzzy membership function
Φ . . . Fuzzy validity function

1

Chapter 1

Introduction

Dynamic systems, the state of which changes over time, are ubiquitous in both science and
engineering. Experts build models of a dynamic system to analyze it, simulate and predict
its behavior under various conditions. The system behavior is represented by time series
of state variables values. In continuous time, the models of dynamic systems typically take
the form of ordinary di�erential equations (ODEs) or partial di�erential equations (PDEs),
where the rate of change of the state variable is expressed as a function of its current state,
as well as the values of input (exogenous) variables1.

In discrete time, the models of dynamic systems typically take the form of di�erence
(recurrence) equations, which describe the next state of the system, using the current state
and input variables. Using the external dynamics approach (Nelles, 2001), the discrete-time
modeling of dynamic systems can be reformulated and solved as a regression problem.

In this thesis we consider multiple-model approaches for solving the regression problem
mentioned. These approaches build several simpler models, each valid in its own region. In
particular, we are interested in tree-based approaches, which are able to de�ne the bound-
aries of the regions in a more e�cient manner, as compared to other types of partitioning
(e.g., grid partitioning). We limit our research only to multiple-model approaches based
on trees that use linear models named model trees.

The model trees considered and used here are crisp (linear) model trees and fuzzy
(linear) model trees. On the one hand, the crisp model trees utilize crisp binary splits, i.e.,
a data point is sorted down either the left or the right subtree of a split node. This implies
that the �nal prediction of the model is calculated by using one terminal node only, i.e.,
one local linear model. On the other hand, the fuzzy model trees use fuzzy binary splits,
which associate each data point with both subtrees of a split node with di�erent weights.
The �nal prediction of a fuzzy model tree is obtained by consulting all local models, each
of them having di�erent importance (wi) for the �nal prediction.

Ensembles are frequently used to increase the predictive performance of the crisp (and
fuzzy) tree-based approaches. The ensembles consist of several base models. The ensembles
we consider, i.e., bagging and forests, perform bootstrap random resampling of training
data and build a model on each sample: By combining their predictions, ensembles reduce
the variance of base models.

1According to the continuous-time state equations. Please note that other �elds may use di�erent
terminology. For example a system (endogenous) variable denotes a factor in a causal system whose value
is determined by the states of other variables in the system.

2 Chapter 1. Introduction

1.1 Aims and Goals

The main goal of our research is to investigate the problem of discrete-time modeling of
nonlinear dynamic systems and propose novel solutions based on linear model trees and
ensembles thereof. The general-purpose crisp linear model trees, introduced in the domain
of machine learning, have not been considered extensively for dynamic system modeling.
Fuzzy, i.e., soft, model tree learning algorithms have already been introduced and used in
the system identi�cation and control domain, but their computational complexity is higher
as compared to the crisp approaches.

Two intermediate goals comprise the main goal of this thesis. They concern modeling
of single-output and multi-output systems, respectively. The �rst considers analyzing the
similarities and di�erences between the two approaches for modeling dynamic systems,
and their further development, i.e., introducing modi�cations or improvements to both ap-
proaches. We will �rst study, evaluate and analyze the similarities and di�erences between
the crisp and fuzzy model tree learning algorithms introduced in both areas. The crisp
model tree algorithms are fast but may produce inaccurate models when �tting smooth
functions, while the fuzzy approaches are slower but more accurate.

Next, we will introduce modi�cations to a general-purpose crisp model tree learning
algorithm in order to make it more accurate in both single-tree and ensemble settings. Also,
we will introduce modi�cations to the more accurate fuzzy model tree learning algorithm
in order to make it faster.

The second intermediate goal of this thesis is to study the multiple-output modeling
problem, and propose solutions based on using multi-target model trees. The terminal
nodes of the multi-target model trees include local linear models for all output variables of
the system, which may be advantageous as the potential inter-dependence of the output
variables can be utilized. Also, in the fuzzy model tree algorithm Lolimot, learning multi-
target model trees is advantageous, since the evaluation of the intermediate models is
performed simultaneously for all outputs. In more detail, the parallel simulation of the
models for all output variables, performed during learning, is more sensitive to incorrect
or imperfect models.

1.2 Methodology

First, we will de�ne the problem of discrete-time modeling of dynamic systems as a static
function approximation task, and as such will survey the machine learning methods appro-
priate for solving it. We will also survey relevant literature from the system identi�cation
and control community, mainly focusing on the multiple-model approaches and fuzzy mod-
eling.

Second, we will study the applicability of crisp linear model trees, fuzzy linear model
trees and ensembles of these two types of trees. We will also consider prediction of multiple
dependent variables, i.e., targets. For multi-output dynamic systems we will build models
which predict all outputs simultaneously. Ensembles of multi-target trees will also be
considered.

Third, we will perform an empirical evaluation using benchmark machine learning
datasets for the static case, and an empirical evaluation using standard measured and
synthetic datasets from the �eld of non-linear system identi�cation and control. For the
latter, multi-output dynamic case studies will also be considered, and the multi-target
model tree approaches evaluated. For the evaluation in the static case, the standard 10-
fold cross-validation method will be used, while for the dynamic case, an evaluation based
on training, validation and test sets will be utilized. In the latter case, it is not possible

1.3. Contributions 3

to use cross-validation because of the temporal order of the data points that needs to be
preserved. The performance results will be analyzed by using statistical tests, which will
show which di�erences in performance are signi�cant.

1.3 Contributions

The work presented in this thesis makes the following original contributions to the �elds
of machine learning and system identi�cation:

• Design and implementation of novel model tree based approaches for modeling dy-
namic systems, based on and improving upon the M5' and Lolimot algorithms (Chap-
ter 4):

� Improved M5' algorithm for regression, which can now induce fuzzi�ed and
multi-target model trees.

� Improved Lolimot algorithm for modeling dynamic systems, which now produces
trees with similar predictive performance faster.

� Algorithms that can induce ensembles of single and multi-target model trees by
using the improved M5' and Lolimot algorithms.

• Empirical evaluation of the developed approaches on benchmark problems and case
studies (Chapters 5 and 6):

� Evaluation of the improved M5' and Lolimot algorithms (and ensembles based
on these) on benchmark problems of single and multi-target static regression
(Chapter 5).

� Evaluation of all the above mentioned approaches (and a few other selected
methods) on several case-studies of modeling dynamic systems (Chapter 6).

1.4 Structure of the Thesis

The introductory chapter describes general perspectives and topics considered in the thesis.
It determines the goals of the research and the expected original contributions of the work.
The rest of this chapter outlines the contents of the remaining chapters, which make up
the thesis.

Chapter 2 presents system identi�cation in discrete time, its objectives and the typical
system identi�cation loop. It also describes the external dynamics approach which allows a
dynamic system identi�cation problem to be transformed into a static regression problem.
Finally, it outlines existing related work from the area of machine learning, suitable for
solving regression problems.

Chapter 3 introduces tree-based methods for regression. It starts by describing the
main components of tree learning algorithms. Then, it describes the details of the crisp
model tree approach M5' and the fuzzy model tree approach named Lolimot. At the end,
it outlines the limitations of each of the methods, which serve as a motivation for the work
described in the following chapters.

Chapter 4 presents the novel approaches to modeling dynamic systems. It �rst intro-
duces the modi�cations of the crisp M5' model tree algorithm that improve its accuracy for
modeling dynamic systems and allow for multi-target prediction. Then the modi�cations

4 Chapter 1. Introduction

to the Lolimot algorithm that improve its learning time and modify its structure determi-
nation are described. Next, ensembles of model trees are introduced. Finally, the methods
are illustrated on a static function approximation problem.

Chapter 5 presents the evaluation of the model tree ensemble approach based on the
modi�ed M5' algorithm described in Chapter 4 on the task of static regression. Both single-
target and multi-target regression problems are considered. The evaluation is performed
using benchmark machine learning regression datasets.

Chapter 6 reports the results of the evaluation of the approaches described in Chapter
4 on the task of modeling dynamic systems. It describes the dynamic system case studies,
the preprocessing of the measured and synthetic data and the experimental results. The
results reported consider both single-output and multi-output dynamic systems, by using
single model trees and ensembles thereof. Also, a comparison to selected methods typically
used for system identi�cation is performed and reported.

Chapter 7 presents the conclusions and summary of the thesis, its original contributions,
and gives some directions for further work.

5

Chapter 2

Background

Dynamic systems are systems whose responses change over time. The task of modeling
dynamic systems is of high practical importance, because such systems are ubiquitous
across all areas of life. The models allow for better understanding of dynamic systems, as
well as their control, the latter being the focus of study in control engineering.

This thesis is positioned at the intersection of the �elds of machine learning and au-
tomated modeling of dynamic systems. Machine learning is a sub-area of arti�cial intelli-
gence, while automated modeling of dynamic systems is a sub-area of control engineering
and system identi�cation. Below we �rst discuss the broader range of system identi�ca-
tion, which includes a complete description of the system identi�cation loop. As this thesis
considers a machine learning approach to system identi�cation, in the remainder of this
chapter we present existing machine learning approaches, which are used for regression.
Finally, we discuss the application of machine learning methods to system identi�cation.

2.1 System Identi�cation

System identi�cation is concerned with building models that closely describe the real world
phenomena. In some cases it is possible to build the model using only thorough scienti�c
understanding of the system. This means that the knowledge of the physical, chemical or
other laws that govern the system may be enough to obtain a good model of it. This type
of modeling is white box modeling, or �rst-principles modeling. On the other extreme,
the task of modeling can be approached by using only measurements of some variables of
interest. This is called black box, or data-driven modeling.

Objectives. The objectives of system identi�cation are twofold (Billings, 2013). The
�rst objective is building a model that would have good approximation and prediction
properties, i.e., minimum prediction errors. Users who have this as their aim could �nd for
example fuzzy logic approaches, neural networks, or related methods to be quite appro-
priate for achieving this. However, there is another, more analytical objective of system
identi�cation: the possibility to build a model that would reveal the components and be-
havior of the system. Having a model that reveals the behavior, users are also able to
analyze the system by di�erent means. One example is analyzing the system using di�er-
ent input signals, which may be in practice expensive to achieve, or even dangerous (e.g.,
nuclear systems).

The latter objective of interpretability is quite important for analyzing the obtained
models. Other related objectives are obtaining insight into certain phenomena of the
system, analyzing process behavior, controlling the process, or estimating some variables
of the system that cannot be easily measured (Keesman, 2011). When the dominant
objectives of the system identi�cation are of this type, approaches such as neural networks

6 Chapter 2. Background

may not be appropriate. They would produce models which may have good predictive
properties, however, the amount of parameters that are being estimated inside need not
carry a direct relation to variables of the system (Billings, 2013). For such reasons, de�ning
the purpose of the modeling procedure would also add bias to the selection of the most
appropriate modeling technique.

Exact vs approximate models. The result of system identi�cation is a mathematical
model which represents an approximation of the real system. Due to the complexity of
the system or the limited prior knowledge regarding the laws that govern it, one can
only produce approximate models (Keesman, 2011). Even if the prior knowledge of the
physical, chemical or biological laws that govern the system is complete, using the exact
model would be too complex for particular applications. The look-up table models, which
are quite popular in industry, are another example. They are simple, and only approximate
models of the system.

The system identi�cation loop. Guided by the intended purpose of the model
and the prior knowledge of the system being modeled several decisions have to be made
during the system identi�cation procedure. The procedure itself can be divided into several
steps, where these decisions are being undertaken. The steps of the system identi�cation
procedure can be summarized as:

• choice of model inputs,

• choice of model architecture,

• choice of dynamic representation,

• choice of model structure and complexity,

• choice of model parameters,

• model validation.

The steps are executed in the order given in Figure 2.1. The whole procedure is a loop
(Nelles, 2001), since some of the steps need to be repeated, in order to improve the model
of the system. In the remainder of this part, we outline some basic details of the system
identi�cation loop, which are also relevant to the thesis.

The choice of model inputs determines which variables would be used in the modeling
procedure as inputs. Additionally, it determines what kind of excitation signal would be
used for each input (sinusoidal, step-like, etc). The input signals have to be chosen in such
a manner that they excite all of the system modes, enough for determination of the model
(Ljung, 1987).

This step is one of the more important steps in the process. It requires knowledge
of the purpose of the modeling, as well as prior knowledge of the system that is being
modeled. The set of input variables could be chosen by using unsupervised or supervised
input selection, trying all input combinations, or other pruning techniques. It is worth
noting that, in spite of its importance for a black-box modeling technique, the choice of
excitation signals is usually limited, due to its application speci�c nature.

The decision of which model architecture would be used is the hardest and at the same
time subjective. Di�erent criteria play a role in the selection of one model architecture over
another. Some of them include: intended use of the model, dimensionality of the problem,
o�ine or online learning and experience of the user.

The choice of dynamic representation is also in�uenced by the intended use of the
model. The most frequently used is the external dynamics approach, however the internal

2.1. System Identi�cation 7

user interation or autom
atic algorithm

Figure 2.1: The system identi�cation loop according to Nelles (2001).

8 Chapter 2. Background

dynamics may also be used, mostly in cases when there is little knowledge of the underlying
system (Nelles, 2001).

The choice of model order is in�uenced by the prior knowledge of the system being
modeled. However, many practical applications make use of the trial-and-error approach.
It is worth noting that considering higher dynamic order (lag) leads to a loss in static
approximation accuracy (Nelles, 2001).

The choice of model structure in the dynamic case is concerned with selecting a subset
of the available variables to be used as regressors. It can be performed automatically
(for example with the Orthogonal Least Squares approach) or by using non-automatized
trial-and-error approaches. The algorithms used in this thesis are able to automatically
determine the model structure, i.e., the regressors to use in the linear models.

The choice of model parameters is performed by using di�erent linear or nonlinear
optimization techniques. The literature and standard toolboxes o�er many di�erent ap-
proaches. This makes the usage of various techniques easy and practical, i.e., the user can
apply the optimization procedure in a black-box fashion.

The model validation determines whether the obtained model is acceptable for its in-
tended purpose. Testing the model using an unseen test dataset could be considered as a
�rst step. In the case there is lack of data, i.e., all the data were already used for training,
the model could be tested using simple (synthetic) input signals, such as step-like signals.
This should provide some insight into the model, even in the case there is no data to
compare the predictions to.

Given the importance of the purpose of modeling, obtaining a model may be only the
�rst stage of a multi-stage procedure. For example, the next stage could utilize the model
to design a controller or a fault-detection system. In this case, the criterion for validation
would be the performance of the derived controller, or fault-detection system.

2.1.1 Discrete-time vs Continuous-time Modeling

Dynamic systems can be modeled in continuous time with systems of ordinary di�erential
equations, describing the rate of change for each of the system variables. They can also
be modeled in discrete time, by using di�erence equations that describe the state of the
system at (a discrete) time point k as a function of previous system states and inputs.

2.1.1.1 Continuous-time modeling

In continuous time, the models of dynamic systems take the form of ordinary di�erential
equations (ODEs) or partial di�erential equations (PDEs). The rate of change of state
variable of the system is expressed as a function of the current state of the system, as well
as the values of input (exogenous) variables.

2.1.1.2 Discrete-time modeling

In a state-space system, the next state of the system is determined by the state equation,
in terms of its current state and inputs. The system output is determined by the output
equation, in terms of a combination of the current system state and the current system
input. The measured variables are the input (u) and output variables (y).

In discrete time, the task is to obtain di�erence (recurrence) equations, by using the
measurements for the input and output variables. These equations would describe the
current outputs of the system using past values of the input and output variables. Through
the external dynamics approach (Nelles, 2001), the modeling problem can be reformulated
as a regression task. The value of the output variable(s) at time instant k, y(k), needs to

2.1. System Identi�cation 9

be predicted from the lagged values of the input and output variable(s), u(k − 1), u(k −
2), .., u(k − nu), y(k − 1), y(k − 2), .., y(k − ny) using a static function approximator. The
values nu and ny are the lags of the input and output variables, respectively.

It is worth noting that certain di�erences exist between continuous-time modeling and
discrete-time modeling. First, the number of terms in the equations of continuous-time
models is smaller. For example, a �rst order derivative term may require up to three lagged
values of the corresponding variable (Billings, 2013). This translates to a larger number
of parameters that have to be estimated in the discrete-time model. Second, discrete-time
modeling has a requirement that a sampling time needs to be de�ned. Moreover, the choice
of sampling time could also a�ect the success and e�ciency of the discrete-time modeling
procedure. Also, in both cases the data collection stage inevitably involves data sampling,
which is a discrete process.

2.1.2 System Identi�cation in Discrete Time

This thesis addresses the task of discrete-time modeling of nonlinear dynamic systems. As
mentioned above, two types of variables are used in modeling, output and input (exogenous)
variables, denoted by y and u, respectively. Using the external dynamics approach, the
task of empirical modeling of a dynamic system can be formulated as a regression problem
of �nding a di�erence equation that �ts an observed behavior of the system.

More precisely, to model a system described by y and u, we need to formulate a dif-
ference equation that expresses the value of the output variable y at a given time point
k as a function of past output and input variables (y and u). The transformation creates
a new vector of features, which is composed of the lagged values of the input variable u
and output variable y. Typically, up to nu and ny time points in the immediate past, with
respect to k, are considered, for the variables u and y respectively. At time point k, the
dynamic system is thus represented by the vector of features x(k)

x(k) = [u(k − 1), u(k − 2), .., u(k − nu), y(k − 1), y(k − 2), .., y(k − ny)]T (2.1)

where (nu, ny) are the orders (lags) of the system1. The model of the system is a di�erence
equation that describes the output of the system at (a discrete) time point k, y(k) as a
function of the previous system states and inputs (i.e., x(k)). The corresponding regression
problem is to train a nonlinear function approximator f(.), s.t. y(k) = f(x(k)), from a
table of data generated from an observed behavior in the manner described above.

The task of discrete-time modeling of nonlinear dynamic systems from measured data
can be approached using di�erent modeling techniques. Over the last few decades, nu-
merous di�erent methods have emerged. The earlier approaches include for example
the block-oriented Hammerstein and Wiener systems (Giri & Bai, 2010) and the semi-
parametric Volterra method (Haber & Unbehauen, 1990). More recent approaches include
the widely used basis-function approaches of arti�cial neural networks (Nelles, 2001) and
fuzzy modeling, as well as the nonparametric approaches of kernel methods (Cristianini &
Shawe-Taylor, 2000) and Gaussian Process models (Rasmussen & Williams, 2006), to list
just a few.

As discussed in Section 2.1, the last step of the system identi�cation loop is a validation
of the dynamic system's model. The validation is carried out according to the purpose of
the model and often requires a stringent and purpose-speci�c procedure. When the purpose
is good one-step-ahead prediction performance, as shown in Figure 2.2 (a), the predicted
values for the system variable are compared to the measured values. On the other hand, if

1In the thesis we consider only the special case of nu = ny. Using this simpli�cation, we consider an
identical order for all input and output variables.

10 Chapter 2. Background

y(k-1)

y(k-n)

u(k-1)

u(k-n)

Model Model

u(k-n)

u(k-1)

ŷ(k-1)

ŷ(k-n)
q

-1

q
-1

ŷ(k)

(a) (b)

ŷ(k)

Figure 2.2: A model used for prediction (a) or simulation (b). (q−1 is the backshift
operator)

the aim is simulation, illustrated in Figure 2.2 (b), there is one substantial di�erence: the
one-step-ahead model predictions are fed back to the model to produce predictions for the
more distant future.

While the �rst step of one-step-ahead prediction and simulation is the same, in sim-
ulation, the predicted value of the system variable y at time k (i.e., ŷ(k)) is fed back as
input to the model, instead of a measured value (y(k)) at time k + 1. Due to the real-
istic possibility of error accumulation in the case of an inaccurate model, divergence of
the simulation predictions from the measured values may occur as we move further into
the future. The cumulative error of simulation is referred to as the output error, while
in the case of one-step-prediction the error is referred to as prediction error. While most
approaches to solving this task try to minimize the one-step prediction error, the learned
models are typically evaluated in terms of their simulation (output) error.

2.2 Machine Learning Approaches to Regression

A standard task in machine learning is learning predictive models. Predictive models pre-
dict the value (or values) of a dependent variable from the values of independent variables
(predictors). The predictive modeling tasks are divided based on the type of the target
variable into classi�cation (discrete target variable) and regression (continuous target vari-
able). Among the most popular predictive modeling approaches for regression are arti�cial
neural networks (ANN), kernel approaches such as support vector regression (SVR) and
tree-based approaches. In the remainder of this section we present some details of these
methods.

The arti�cial neural networks (ANNs) (Nelles, 2001; Narendra & Parthasarathy, 1990),
which can be seen as universal approximators, are very powerful and �exible methods for re-
gression, which are also universal function approximators. They typically consist of many
simple computational elements, arranged in layers and operating in parallel. The ANN
methods are determined by their network architecture, node characteristics and learning
procedures. Di�erent architectures of neural networks exist, the most common ones being
multilayer perceptron (MLP) and radial basis function (RBF) networks. They were in-
vented as early as 1943 (McCulloch & Pitts, 1943), uniting the studies of neurophysiology

2.2. Machine Learning Approaches to Regression 11

and mathematical logic. However, the most noticeable contribution, the backpropagation
of errors procedure (Rumelhart, Hintont, & Williams, 1986) was introduced later, in 1986.

The ANNs, which can also be seen as a basis-function approach (Nelles, 2001), work by
�xing the number of basis functions, and allowing them to be adaptive. The basis functions
include several parameters, which are adapted during the learning process (Bishop et al.,
2006).

Typically, the basis functions in ANNs are implemented in nodes, which are grouped
into layers. In this architecture, the nodes that produce the output of the model are
grouped in an output layer, while the network can include a group of hidden nodes, forming
the hidden layer. The parameters of each of the basis functions are adapted during the
training process. The most frequently used learning algorithm is the backpropagation of
the error, performed by starting from the output layer, and working back towards the
hidden and input layers. However, in spite of the advantages of popular ANN approaches,
their main disadvantages are the lack of transparency and curse of dimensionality (Aºman
& Kocijan, 2011).

The support vector machines (SVM) for classi�cation and their regression variant of
support vector regression (SVR) utilize the concept of kernels, formulated as an inner prod-
uct in a feature space. The concept of kernels was introduced as early as 1964 (Aizerman,
Braverman, & Rozoner, 1964), but it found its place in the machine learning domain later,
after the work of Boser, Guyon, and Vapnik (1992).

The SVR addresses the curse of dimensionality issue by de�ning basis functions that
are centred in the training points, and then selecting a subset of these, named support
vectors, during training. In other words, the model is expressed in terms of only a few
support vectors, and is able to approximate nonlinear functions with the help of the kernel
mapping.

The tree-based approaches are quite popular and the machine learning literature pro-
vides many di�erent algorithms for learning classi�cation and regression trees (Breiman,
Friedman, Olshen, & Stone, 1984), as well as the special case of model trees ((Karali£,
1992), the M5' algorithm (Wang & Witten, 1997; Frank, Wang, Inglis, Holmes, & Witten,
1998), the HTL algorithm (Torgo, 1997), and others (Loh, 2002; Dobra & Gehrke, 2002;
Malerba, Esposito, Ceci, & Appice, 2004; Gama, 2004)). The model trees are comprised
of inner nodes with splits, and terminal nodes, which contain a local model (either con-
stant, linear, polynomial or of some other more complex type). Linear model trees with
axis-orthogonal splits are de�ned as: A model tree consists of either a) a split node with a
test of the form variable ≤ threshold which creates a binary partition of the input space
and has left and right o�spring nodes or b) a single terminal node for which a local linear
model is de�ned.

Tree learning algorithms are robust and tend to scale well to large predictive modeling
problems. The algorithms apply the divide-and-conquer principle, by splitting the available
learning data into smaller subsets as the tree is constructed. Thus, the potentially complex
optimization problem is broken down to several simpler optimization subproblems. Each
optimization subproblem uses a proper subset of the whole set of training data, so the
learning procedure is simpli�ed. This gives the tree learning algorithms the ability to
e�ciently handle a large number of data points (i.e., instances).

The issue of over�tting to noise in decision trees and tree ensembles is controlled by
the depth of the individual tree or the trees in the ensemble (Segal, 2004). Larger trees
are more sensitive to noise and prone to over�tting, while smaller trees are less sensitive
and less prone to over�tting. Tree pruning procedures can be used to reduce the depth of
an overly large tree, and control the over�tting to noise.

12 Chapter 2. Background

2.3 System Identi�cation with Machine Learning: Prior Work

The procedure of system identi�cation concerns building models of real-world phenomena,
typically by de�ning a mapping between a set of variables called inputs, and another set,
called outputs. Several approaches exist for achieving this goal, which have been introduced
in di�erent domains. It is worth noting that while the categorization of existing approaches
for nonlinear system identi�cation (�Nonlinar System Identi�cation,� 2014) contains the
traditional block-oriented Hammerstein and Wiener systems (Giri & Bai, 2010), and the
semi-parametric Volterra method (Haber & Unbehauen, 1990), the approaches appearing
more recently are denoted using the phrase "neural network models". It is typical to use
the phrase "neural network models" for all machine learning approaches, i.e., approaches
which learn from data. This is due to the early success of the neural networks for sys-
tem identi�cation. Also, the naming of "neuro-fuzzy" model class su�ers from similar
shortcomings. In its early period, the neuro-fuzzy models were approaches which applied
neural networks techniques for learning parameters (and/or structure) of fuzzy models. At
present, however, this model class has been extended to di�erent kinds of machine learning
methods which learn the parameters and/or structure of fuzzy models (Nelles, 2001).

In the remainder of this section we �rst introduce the existing machine learning ap-
proaches used for system identi�cation, categorized into two categories, depending on the
models they produce. Then, we outline one important challenge for the methods: assum-
ing that the intended usage of the dynamic system models is simulation, we present the
problem of optimizing the simulation error during learning.

2.3.1 One Global Model vs Multiple Model Approaches

This part presents a classi�cation of the machine learning approaches according to the
type of model they produce. Some approaches learn one global model describing the whole
system, while others learn multiple models. The following paragraphs present the methods
belonging to the two categories.

Methods that build one global model include for example the well-known arti�cial neu-
ral networks (Narendra & Parthasarathy, 1990), Gaussian Process models (Rasmussen &
Williams, 2006), and support vector regression (Cristianini & Shawe-Taylor, 2000). They
learn one global model by using a nonlinear optimization procedure on all training (iden-
ti�cation) data in a single optimization task. The learned model is valid in the whole
operating region.

Gaussian Process models are nonparametric, probabilistic black-box models that have
been used for modeling dynamic systems (Rasmussen & Williams, 2006). One of their
advantages is the measure of con�dence for the predictions they provide, which helps in
assessing the quality of the model prediction at each point. This approach is related
to support vector machines and especially to relevance vector machines (Rasmussen &
Williams, 2006).

The multiple model approaches build several local models, each of them valid in a
subregion of the whole operating region. They are also referred to as local model networks
(Murray-Smith & Johansen, 1997). They include neuro-fuzzy approaches like the Adaptive
Neuro Fuzzy Inference System � ANFIS (Jang, Sun, & Mizutani, 1997), Local Linear Model
Trees � Lolimot (Nelles, 2001), and the operating regime approach (Johansen & Foss, 1997).

The ANFIS method is a hybrid neuro-fuzzy approach, which builds a Takagi-Sugeno
fuzzy model (Takagi & Sugeno, 1985). It is worth noting that this approach di�ers from
neural networks, because it has di�erent types of nodes and it utilizes a hybrid learning
approach. Also, the resulting model is a set of fuzzy rules, i.e., a Takagi-Sugeno fuzzy
model. ANFIS uses a hybrid learning rule that combines the backpropagation gradient

2.3. System Identi�cation with Machine Learning: Prior Work 13

descent and the linear least-squares optimization method, for its parameter estimation.
The structure identi�cation task, i.e., the determination of the number of fuzzy rules and
initial positioning of the fuzzy rule centers can be handled by using di�erent methods: grid
partitioning of the instance space, fuzzy clustering, or a tree-based approach (Jang, 1994).
The last decision is typically left to the user.

The Local Linear Model Trees (Lolimot) (Nelles, 2001) method is a multiple model
approach which builds a fuzzy model tree. It solves the structure identi�cation and pa-
rameter estimation problems in an integrated, iterative procedure. In each iteration, the
method adds one local model to the tree structure and calculates the parameters of the
model using local parameter estimation. It has been successfully used for identi�cation of
dynamic systems (Nelles, 2001). More details about the Lolimot method are presented in
the following chapter of the thesis.

All methods mentioned so far, i.e., ANNs, ANFIS and Lolimot, su�er from the curse of
dimensionality as the number of input dimension gets larger. This is especially problematic
for the ANFIS method in case the structure determination is performed by using grid
partitioning. The number of parameters that it needs to estimate is in this case proportional
to pnu (where nu is the number of input variables and p is the number of membership
functions assigned to each variable).

2.3.2 Optimization of the Output Error

Most approaches to modeling dynamic systems optimize the prediction error during learn-
ing, both for the structure determination and the parameter estimation. However, the
validation of the learned model is typically performed by simulation. This presents a
challenge and raises the question whether it is possible to directly optimize the output
error while learning, instead of optimizing the prediction error. In control engineering, the
optimization of the prediction error is also known as a series-parallel identi�cation struc-
ture, while the optimization of the output error as a parallel identi�cation structure. For
example, the related work of Connally, Li, and Irwin (2007) investigates the di�erences
between series-parallel and parallel identi�cation structures for training neural networks.
Their work tries to combine the optimization of the prediction and output error in one
training algorithm, in order to provide a more accurate neural network model.

Several other related works (L. Piroddi & Spinelli, 2003; Luigi Piroddi, 2008; Nelles,
2001; Kocijan & Petelin, 2011) deal with the parallel identi�cation structure. The works
of Nelles (1995, 2001) conclude that a decrease of the prediction error does not necessarily
lead to a decrease in the output error of the model, when using neural-networks as models.
Similarly, Kocijan and Petelin (2011) deal with the same question in the context of Gaussian
Process models. They conclude that the direct optimization of output error is a much
harder task as compared to the optimization of prediction error, since the optimization
surface in the former case contains many local optima and its contour plots depict quite
irregular shapes.

However, some nonlinear identi�cation methods exist, which make use of the output
error for model structure selection. An example is the Lolimot method (Nelles, 2001), which
iteratively adds complexity to a tree structure. In each iteration, the method solves the
parameter optimization problem using least squares estimation, evaluates the intermediate
model using simulation, and tries to improve the structure by adding one more node
to the tree. The author concludes that the structure search, a nonlinear optimization
problem solved by a greedy hill-climbing approach, could bene�t from directly estimating
the simulation error. This approach is possible because: a) the iterative nature of the
approach means that after each iteration an intermediate solution, i.e., a fuzzy model tree,
is ready to be used; b) the number of iterations, or total number of nodes in the tree is

14 Chapter 2. Background

typically not large, so the time consuming evaluation of the output error on the whole
training set does not increase the overall time complexity substantially.

15

Chapter 3

Tree-based Methods

This chapter �rst introduces the model trees, and the di�ering terminologies of machine
learning and system identi�cation. Then it describes the main components (building
blocks) of model tree learning algorithms. This is followed by an introduction of the
M5' algorithm, and its main components. In the following, the Lolimot model-tree algo-
rithm for dynamic system identi�cation is presented. Finally, the potential limitations of
the existing mode tree algorithms for modeling dynamic systems are stated. These serve
as a motivation for performing modi�cations and improvements to the algorithms.

3.1 Introduction

A tree learning method from machine learning produces binary trees with two types of
nodes: inner nodes and terminal nodes, cf. Figure 3.1 (a). The inner nodes of the trees
contain a split, of a certain form. The type of splits used could range from axis-orthogonal
(single split variable), axis-oblique, functional or other more complex split types. The
terminal nodes of the trees contain a local model, which could be constant, linear, poly-
nomial or some other more complex type. This thesis is concerned with trees which have
axis-orthogonal splits in the inner nodes and linear models in the terminal nodes. Such
trees are named model trees.

A set of splits of one model tree, followed from the root down to a terminal node, de�nes
one partition. The set of all partitions that a tree de�nes is named partitioning. In the
machine learning literature, most of the tree-based approaches build crisp trees, i.e., trees
with crisp or hard splits. A data point (i.e., an instance) belongs to exactly one partition,
i.e., exactly one linear model is associated to a data point. For each of the partitions, or
terminal nodes, the linear model learned is also named local model (LM).

However, by using fuzzy sets and fuzzy logic, several researchers have also de�ned fuzzy
trees. They di�er in the fact that the splits use fuzzy weighting: a data point belongs to
the left subtree with a certain weight, and to the right subtree with a di�erent weight.
This also means that now all of the local models are associated with a data point, however,
each one with a di�erent weight (cf. the fuzzy weighting in Figure 3.1 (a)).

An example of a method used in control engineering, which produces fuzzy model trees
is the Local Linear Model Trees method (Lolimot). The model is built with the help of the
tree-based partitioning of the operating region, but at the end of the learning procedure, it
is represented as a Takagi-Sugeno (TS) fuzzy model (Takagi & Sugeno, 1985; Jang et al.,
1997). However, the form of the Takagi-Sugeno fuzzy model and the fuzzy model tree
described above are equivalent.

A Takagi-Sugeno fuzzy model, shown in Figure 3.1 (b) is de�ned by a set of rules. Each
rule is comprised of a left-hand side (antecedent) which is a fuzzy partition, and a right-

16 Chapter 3. Tree-based Methods

hand side (consequent) which is a crisp linear model. The model tree built by the Lolimot
algorithm is converted to a set of TS rules. The conversion procedure considers each of
the partitions de�ned by the model tree partitioning. For each partition (hyperrectangle),
a fuzzy membership function is placed in the center of the partition, which comprises
the antecedent part of the TS rule. The consequent part, which does not include fuzzy
components, is a local linear model associated with that rule.

(a)

(b)

Figure 3.1: (a) A fuzzy model tree; (b) A Takagi-Sugeno model.

3.2 Model Tree Learning Algorithms

This part gives an overview of the existing model tree learning algorithms. It starts with
a description of a general model tree algorithm and its main features. Then, each of
the features of the algorithm is discussed in more detail. The discussion focuses on the
operation of model tree learning algorithms, governed by the top-down induction of decision
trees (TDIDT) principle (Blockeel & De Raedt, 1998). Finally, to put the Lolimot method
in context, this part discusses an alternative to the recursive top-down induction principle,
along with its motivation.

Tree growing phase. The tree growing phase builds the initial tree structure. The
top-down learning approach starts by de�ning the root node of the tree. Each node of the
tree is then expanded until some of the stopping criteria are met, thus building the tree
structure. The expansion of a terminal tree node is performed by replacing it with a split
node and its two immediate descendant nodes.

When a terminal node is considered for expansion, a split selection procedure selects a
split to be added to the tree, among several candidate splits. This procedure is the most
important part of a TDIDT algorithm. The existing approaches use di�erent strategies
for implementation of the split selection heuristic. The work of Vens and Blockeel (2006)
categorizes the model tree algorithms based on the split selection heuristic they implement.
To be more exact, the authors perform the categorization based on the the linear regression

3.2. Model Tree Learning Algorithms 17

that is being used for split selection: whether it is performed or not, and what kind of linear
regression. The four categories are shown in Table 3.1. The split selection which does not
perform regression, and instead utilizes a fast heuristic, has a linear complexity in the
number of splitting attributes. However, the authors claim that a split selection procedure
which performs simple regression using only the split attribute as a regressor can also be
implemented as a linear procedure in the number of split attributes, i.e., quite fast. The
last two alternatives in Table 3.1 perform a more thorough investigation for the optimal
split, but are slower.

Table 3.1: A categorization of the model tree algorithms based on their split selection
procedure, based on the work of Vens and Blockeel (2006).

Regression in split sel.heuristic complexity example methods
no regression linear M5' (Wang & Witten, 1997)

in spl.heuristic
simple regression using linear MAUVE (Vens & Blockeel, 2006)

only the split attribute
separate simple regressions quadratic SMOTI (Malerba, Esposito, Ceci, & Appice, 2004)

using one attribute Treed regr. (Alexander & Grimshaw, 1996)

multiple regression cubic RETIS (Karali£, 1992)

using all attributes Lolimot (Nelles, 1999)

These categories of heuristics categorize the available methods by the regression per-
formed only during split selection. The regression that a model tree algorithm performs
to learn the LMs is considered as a separate issue. It is worth noting that the methods
from the last three categories shown in Table 3.1 are also typically named "look-ahead"
approaches, since they build linear models and evaluate their accuracy in the split selection
step. The growing phase is stopped for a certain terminal node, when one of the stopping
criteria is satis�ed.

One subproblem of the split selection problem, is the split cut-point optimization, or
split threshold optimization procedure. It is concerned with determining the optimal split
point, given a split variable A. The prior text has provided information regarding the
di�erent evaluation functions. These are used to select one split out of several candidate
splits, and as discussed, can either be fast heuristics which do not perform regression, or
di�erent type of slower look-ahead heuristics, which perform regression.

Di�erent methods exist for split cut-point optimization, and they can be divided into
data-oriented and interval approaches. The data-oriented approaches look at the values of
the variable A of the data points falling in that partition, sort the values, and consider a
subset of the unique midpoints, cf. Table 3.2. This type of implementation is typical for
methods from the machine learning domain. On the other hand, the interval implemen-
tations are not concerned with the distribution of the data points for the partition, hence
this alternative is not data-oriented. Instead, it only determines the extreme (minimal
and maximal) data points, and places the candidate cut-points at uniform locations in
that interval. This is summarized in Table 3.2. Also, the number of candidate cut-points
considered for each variable has a tremendous impact on the computation time required
for a model tree algorithm with a look-ahead split evaluation.

Tree pruning. It is well known that overly large trees are prone to over�tting. Tree
pruning is a method that handles over�tting by removing tree nodes which may deteriorate
the performance of the tree. Depending on the particular model tree algorithm, the tree
may only be pre-pruned, or it may also include a post-pruning step. In the former case, the

18 Chapter 3. Tree-based Methods

Table 3.2: Candidate cut-point determination for a split attribute A. Amin and Amax
denote the minimal and maximal value of this attribute in the set of data points.

type Set of candidate cut-points used in
data-orientated all unique midpoints between M5' (Wang & Witten, 1997)

the values of the data points
every n′-th unique midpoint between MT-SMOTI
the values of the data points (Appice & Dºeroski, 2007)

interval half point of the interval [Amin, Amax] Lolimot (Nelles, 1999)

5-20 uniformly dist.points Reg.Decomposition
in the interval [Amin, Amax] (Johansen & Foss, 1995)

tree growing is stopped by evaluating some stopping criteria. In the latter, a post-pruning
phase is included after the initial and overly large tree is built.

Fuzzy trees. The commonly used model tree algorithms (Quinlan, 1992; Dobra &
Gehrke, 2002; Malerba et al., 2004; Karali£, 1992) utilize the recursive divide-and-conquer
approach and produce only hard or crisp splits. Another research direction considers
trees with soft or fuzzy splits (Marsala, 2009; Lemos, Caminhas, & Gomide, 2011). The
fuzzy trees, mainly developed for solving regression problems, produce models which �t
smooth regression surfaces better. The discontinuities produced by the crisp tree building
algorithms are smoothed, which results in more accurate models. The machine learning
literature provides many di�erent approaches for learning fuzzy regression trees (Suarez &
Lutsko, 1999; Olaru & Wehenkel, 2003), i.e., trees with constant local models, and a few
approaches for learning fuzzy linear model trees (Lemos et al., 2011), which are equivalent
to a Takagi-Sugeno model.

Some of the approaches directly learn trees with fuzzy splits, while others learn crisp
splits and convert them to fuzzy afterwards. In other words, the introduction of fuzzy
splits in the tree learning algorithm may be performed

• within with the look-ahead split selection function, or,

• after the tree growing stage.

In the �rst case, the fuzzy membership values are typically used in the local model esti-
mation (Suarez & Lutsko, 1999), which means that a weighted least squares regression is
performed. This in turn increases the complexity because the evaluation of the model tree
for a single data point requires that predictions from all local models be calculated, as well
as each of their associated weights. Also, the model tree algorithm could aim for a more
accurate model, and the parameters of the fuzzy splits can be optimized by an additional,
usually expensive, step (Olaru & Wehenkel, 2003) performed at the end.

In general, the fuzzy tree methods are more computationally complex as the data points
from neighboring partitions also in�uence the local model estimation in a given partition
of the input space. This means that the parameters of the local models for each partition
are calculated using all training data, where the data points that are part of the partition
receive the highest weights. This procedure is clearly di�erent from the more e�cient
top-down induction of decision trees (TDIDT) approach, discussed earlier.

Iterative learning. Apart from the popular and e�cient TDIDT approach, there is an
alternative iterative approach to learning trees, used mostly for fuzzy trees. It is motivated
by the fact that the prediction of a fuzzy model tree is calculated using all local model
predictions, so it would be more appropriate to evaluate the whole tree, rather than each
local model in isolation. The evaluation of the whole tree would assess the interactions

3.3. The M5' Model Tree Learning Algorithm 19

between the local models, and their e�ect on the �nal model tree prediction. Another
reason for the iterative learning are potential constraints that the user might pose on the
model (Kocev, Struyf, & Dºeroski, 2006) before learning. These would also require an
evaluation of the model as a whole.

The Lolimot algorithm is a model tree learner which operates iteratively, and which
assesses the overall performance of the tree during learning. In each iteration, the split
node to be added is determined by using the overall (or global) model performance (Nelles,
2001).

Algorithms such as Lolimot, that build model trees in an iterative fashion, are also able
to minimize output error when modeling dynamic systems (Nelles, 1999). The simulation
procedure for evaluating a model of a dynamic system requires the complete model to be
known. The complete, but intermediate, models are available at the end of each iteration
of the iterative learning method Lolimot.

Multi-target trees. Multi-target trees are decision trees, where the terminal nodes con-
tain models for several target variables. Such trees are used when the modeling problem
contains several dependent variables. They utilize the potential inter-dependence between
the di�erent target variables, and provide models with smaller complexity, as compared to
modeling each target variable separately. In the case of model trees, the terminal nodes
contain local models for several numeric variables (Appice & Dºeroski, 2007), an approach
also introduced for the fuzzy model trees (Nelles, 1999). However, the decision trees can
also contain local models for several discrete variables, or even a set of discrete variables
organized in a hierarchy (Aleksovski, Kocev, & Dºeroski, 2009).

3.3 The M5' Model Tree Learning Algorithm

This part introduces the M5' algorithm (Quinlan, 1992; Wang & Witten, 1997) as im-
plemented in the WEKA (Hall et al., 2009) framework. It presents the pseudocode and
analyzes some of its aspects. First it discusses its tree growing procedure, introducing the
fast variance reduction split heuristic and the pre-pruning criteria. This is followed by
a description of the post-pruning phase, which reduces the size of an overly grown tree.
Finally, it discusses the approach taken for handling discrete attributes, which may appear
in the dataset.

3.3.1 Tree Growing Phase

Tree growing, shown in Algorithm 3.1, is a recursive procedure that generates the initial
structure of the tree. The procedure consists of determining whether the tree node should
be a split (inner) node or a terminal node containing a linear model. If a split node is
created, the procedure continues recursively for the examples sorted down each of the two
branches created by the split.

The decision to create a terminal node instead of a split node (i.e., to perform pre-
pruning) is taken when one of the two stopping criteria are met. The �rst criterion tests if
the number of training points in the current node is smaller than the value of the minimal
number of instances parameter (nmin). The second criterion stops tree growing when the
standard deviation of the target attribute on the data points falling in the current node is
smaller than 5% of its standard deviation on the whole training set.

The selection of the split parameters (the feature attribute to split on and the cut-
point) is guided by the standard deviation reduction (SDR) heuristic, shown in Eq. (3.1)
below. Normally the split with the highest reduction in the standard deviation is chosen.

20 Chapter 3. Tree-based Methods

As previously noted, the standard deviation reduction (SDR) heuristic is used to eval-
uate all possible split cut-points. The feature attribute (A) and cut-point (c) combination
in the test [A < c] which maximizes the SDR heuristic is selected and used as a split at
the current tree node. The SDR heuristic score is calculated as:

SDR = σ2D −
|Dl|
|D|

σ2Dl −
|Dr|
|D|

σ2Dr (3.1)

where D is the set of data points falling in the current tree node, Dl and Dr are the two
subsets of data points corresponding to the left and right branches of the split. σ2D denotes
the standard deviation of the target attribute in the set D, while σDl and σDr denote the
standard deviations of the target attribute in the sets Dl and Dr, respectively.

Algorithm 3.1: Pseudocode for the tree growing phase of M5'.

Algorithm Build_tree(D)
Data: D - a training set
Result: T - a tree
if |D| < nmin then

Return a terminal node
end
if standard deviation stopping criterion is satis�ed then

Return a terminal node
end
Let {A1, A2, .., Ap} be a random subset of feature attributes
Initialize sbest
for k = 1, .., p do

Let split s∗[Ak < c] = argmax
s

(SDR(s[Ak < c]))

if SDR(s∗) < SDR(sbest) then sbest = s∗

end
Split set D into subsets Dl and Dr based on split sbest
Let Tl = Build_tree(Dl)
Let Tr = Build_tree(Dr)
Return a tree with a split node sbest and subtrees Tl and Tr

3.3.2 Tree Post-pruning Phase

The tree pruning, shown in Algorithm 3.2, is a method that handles over�tting by removing
tree nodes which may deteriorate the performance of the tree. The post-pruning procedure
is performed after the initial tree structure has been built. It takes into consideration the
prediction error of the local models, as well as the prediction error of whole subtrees. The
pruning procedure operates in a bottom up fashion: it starts by considering the terminal
nodes for pruning and continues towards the root of the tree.

As a �rst step of the procedure, linear models are estimated (constructed) in all nodes
of the tree, by using least squares linear regression. The default operation of M5' is to
use a feature selection scheme: The local model is built only by using features found in
tests of split nodes below the current tree node. This thesis evaluates M5' with the feature
selection procedure, as well as M5' where this procedure is turned o�. Also, the least
squares estimation of the local linear model includes an attribute removal part: Features
with small e�ect are dropped from the linear model (Wang & Witten, 1997).

3.3. The M5' Model Tree Learning Algorithm 21

After the estimation of linear models, the bottom-up pruning procedure evaluates
whether to prune each tree node. It compares the accuracy of the linear model learned at
the node to the accuracy of the subtree rooted at the node. A decision to prune (replace
the subtree rooted at that node with a terminal node) is made only if the accuracy of the
subtree is smaller than the accuracy of the linear model.

The M5' algorithm and its WEKA implementation also contain a procedure which
modi�es the coe�cients of the linear models, in order to improve the accuracy of the
model tree. This procedure, named smoothing, uses the coe�cients of the local models
learned in inner tree nodes, to smooth the local model prediction of a terminal node. The
details of this procedure can be found in the following chapter, Subsection 4.1.1.1.

Algorithm 3.2: Pseudocode for the tree pruning phase of M5'.

Algorithm Prune(T)
Data: T - a model tree
Result: pruned model tree
if root of T is a split node then

Prune(T → left)
Prune(T → right)
Learn a linear model for the root node of T
Calculate the error of the local linear model eLM
Let eST=Subtree_error(T)
if eST > eLM then

Convert root of T to a terminal node
end

end
Return T

Algorithm Subtree_error(T)
Data: T - a model tree
Result: numeric value
if root of T is a split node then

Let Tl=T → left
Let Tr=T → right
Let D=T → examples
Let Dl=Tl → examples
Let Dr=Tr → examples
Return (|Dl| * Subtree_error(Tl) + |Dr| * Subtree_error(Tr)) / |D|

else
Return the error of the linear model in root of T

end

3.3.3 Handling Discrete Attributes

The discrete, or nominal attributes in the dataset are transformed into several binary
attributes, using the approach of Breiman et al. (1984). For each of the j possible values
of a discrete attribute, the average of the target is computed, using the training examples.
The averages are used to sort the j values. Based on this ordering, j − 1 binary attributes
are formed.

For example, assume that the nominal attribute A has three possible values v1, v2, v3.
Also, assume that the ordering based on the average of the target is v3, v1, v2. The two

22 Chapter 3. Tree-based Methods

new attributes that this procedure creates are: A′ : A = v2 and A′′ : A = v1 ∨ v2. Details
of the procedure are presented by Breiman et al. (1984), Wang and Witten (1997).

3.4 Lolimot

Algorithm 3.3: Pseudocode for the Lolimot method.

Algorithm Build_tree(Dlearn, Dsim)
Data: data set used for learning Dlearn, data set used for simulation Dsim

Result: model tree T
Create a root node for the tree and estimate local model parameters using data
Dlearn

Evaluate the model tree: (e, t) = Evaluate(T , Dlearn, Dsim)
while the maximal number of LMs is not reached and the model error is above

the threshold do
Select the terminal node t for splitting
Create the set S of candidate splits using terminal node t (Eq. (3.4))
for all candidate splits s in S do

Replace the terminal node t with a split node t′s and split s
Create two terminal nodes t′1 and t

′
2 as descendants of t

′
s

Estimate local model parameters for t′1 and t
′
2 by weighted linear

regression using Dlearn

Evaluate the model tree: (e, t) = Evaluate(T , Dlearn, Dsim)
end
Select and keep the candidate split s which produces lowest overall error es

end
Let iAIC be the iteration with the smallest AIC value (Eq. (3.15))
Return the model tree T from iteration iAIC

Algorithm Evaluate(T,Dlearn, Dsim)
Data: model tree T , data set used for learning Dlearn, data set used for

simulation Dsim

Result: squared error of the model tree e, terminal node t with largest error
if Dlearn are data from a dynamic system then

Perform simulation of T using the data points Dsim

Let e be the output error
else

Let e be the prediction error of T calculated using Dlearn

end
Let t be the terminal node of T corresponding to largest sum of squared errors
Return (e, t)

The Lolimot method builds the tree structure using an iterative procedure (Nelles,
2001). In each iteration, the size of the tree, i.e., the total number of nodes, is increased
by one. This is performed by converting a terminal tree node into an inner split node with
two immediate descendants.

Let a candidate split s be a triple consisting of a terminal node of the tree built so far,
a attribute to split on, and a split cut-point

s = (t, xs, vs) (3.2)

In each iteration, several candidate splits are considered. The set of all candidate splits

3.4. Lolimot 23

considered is created using the following procedure: (a) one terminal node is selected
for further splitting from the existing intermediate tree; (b) all attributes are considered
as split attributes. The method only evaluates one cut-point per split attribute, i.e., it
considers only "half-splits", which divide the current partition into two equal halves.

Let the terminal node t de�ne a partition:

Pt = {x ∈ Rp|(v(0)1 ≤ x1 < v
(1)
1) ∧ (v

(0)
2 ≤ x2 < v

(1)
2) ∧ ...(v(0)p ≤ xp < v(1)p)} (3.3)

The boundaries of the partition (v(0)j and v(1)j) that the terminal node t de�nes, are used
to calculate the cut-points of the candidate splits. The set of candidate splits, considered
for expanding the terminal node t, is:

S = {(t, x1,
v
(0)
1 + v

(1)
1

2
), (t, x2,

v
(0)
2 + v

(1)
2

2
), ...(t, xp,

v
(0)
p + v

(1)
p

2
)}, (3.4)

where v(0)j and v(1)j denote the boundaries of the partition in dimension j, as de�ned in
Eq 3.3. Each of the candidate splits is then evaluated by using a heuristic greedy evaluation
function consisting of three steps:

• A tree with the candidate split is created.

• Local models are estimated for the two new terminal nodes.

• The �t of the whole model tree to the training data is calculated.

For a tree of m terminal nodes, this procedure considers and evaluates only a small subset
of all possible trees with m + 1 terminal nodes. One step of the iterative procedure is
depicted in Figure 3.2.

Node and split selection heuristic. The Lolimot algorithm considers only one
existing terminal node for expansion at a time. It selects the terminal node which gave rise
to the largest sum of squared errors in the previous iteration. In each iteration, the model
built so far is evaluated either using simulation or prediction, cf. the procedure Evaluate
in the pseudocode shown in Algorithm 3.3. This evaluation is performed using all available
training data (denoted as Dsim), and no averaging is performed on the individual squared
errors. A heuristic of this kind favors terminal nodes which contain more training data
over those which contain less.

The algorithm can choose among two di�erent heuristics for selecting splits. The �rst
is based on the selection heuristic component of the Lolimot algorithm, which is tailored
for dynamic systems and uses simulation. It performs a simulation of the model in each
iteration, using Dsim. In more detail, the algorithm uses the error of the simulation
procedure for a) selection of the terminal node to further split in the next iteration, and
b) selection of one among several candidate splits. The second alternative utilizes the
one-step-ahead prediction performance of the model tree with the added candidate split.

3.4.1 Estimation of Local Models' Parameters

In each iteration the parameters of the newly added terminal nodes are estimated. The
estimation begins by calculating the fuzzy membership function values. As a next step,
these values are used in the weighted least square regression performed to obtain the
parameters of the local models.

Fuzzy membership function. The parameters of the partitions de�ned by the model
tree, i.e., the borders of the partitions, are used to de�ne the fuzzy membership functions.
The membership functions determine the (fuzzy) membership of each data point to each

24 Chapter 3. Tree-based Methods

Iteration 3 Iteration 4

x1 < 0.5

x2 < 0.5

x1 < 0.5

x2 < 0.5

x2 < 0.25

x1 < 0.5

x2 < 0.5

x1 < 0.75

0.5

0.50

1

1

0.5

0.50

1

1

0.5

0.50

1

1

Figure 3.2: One iteration of the Lolimot method. The left-hand side depicts the model tree
and its partitioning in the third iteration. The marked terminal node is the terminal node
selected for further splitting. The right-hand side depicts the complete set of candidate
splits considered in the fourth iteration and the corresponding partitionings of the input
space.

3.4. Lolimot 25

of the partitions and the corresponding local models. The Lolimot method uses the multi-
dimensional Gaussian membership function (Nelles, 2001), whose center c is set at the
center of the partition, and standard deviation vector σ is calculated as 1/3 of the size of
the partition (Nelles, 1999). For example, consider the tree of iteration 3, shown in Figure
3.2. Also, consider the partition corresponding to its leftmost terminal node, de�ned by
x1 < 0.5. The center of this partition, c = [0.25, 0.5]T , is the center of the corresponding
membership function, while the standard deviation of the membership function is σ=
[0.5/3, 1/3]T .

The membership of a data point x to the j-th partition is calculated as

µj(x) = exp(−1

2

n∑
i=1

(
xi − ci
σi

)2). (3.5)

After the membership values µj(x) for a data point to all the partitions are calculated,
these values are normalized across all partitions

Φj(x) =
µj(x)∑m
k=1 µk(x)

(3.6)

thus obtaining the validity function values Φj(x).
Note that the j-th local model for the l-th target variable is determined by the vector of

coe�cients
[
bl,j,0 bl,j,1 · · · bl,j,p

]
, where p is the number of attributes. The parameter

estimation determines the coe�cients bl,j,u of the local models that correspond to the
terminal nodes of the tree. In the multi-target case, this problem can be formulated as an
optimization problem, with an objective function:

I =

r∑
l=1

n∑
i=1

e2i,l (3.7)

where e2 = (y− ŷ)2, r is the number of target variables and n is the number of data points.
Since the parameters of the local models for each target are independent of each other,

we formulate r optimization subproblems:

Il =
n∑
i=1

e2i,l l = 1, 2, .., r. (3.8)

The parameter vector for l-th target variable contains m · (p+ 1) parameters

bl =
[
bl,1,0 bl,1,1 · · · bl,1,p · · · bl,m,0 bl,m,1 · · · bl,m,p

]T
. (3.9)

The total number of parameters that need to be identi�ed for one model tree is m ·r ·(p+1)
.

In the fuzzy modeling literature, two approaches are commonly used for the estimation
of the local model parameters, given that the validity functions are known. The local

estimation procedure (Johansen & Babu²ka, 2003) estimates the parameters of each local
model in isolation of each other. An alternative is the global estimation procedure (Jang
et al., 1997), which estimates all of the local model parameters simultaneously. The former
one is faster but does not take the interactions between local models, as de�ned by the
membership function, into account.

As previously discussed, the parameter estimations for each of the targets are treated
as separate least-squares estimation problems. So, in the case of fuzzy local estimation, a
fuzzy Lolimot model tree with m local models predicting r targets requires a total of r ·m
separate weighted least square regression problems to be solved.

26 Chapter 3. Tree-based Methods

For the l-th target and j-th local model, the regression matrix Xl,j is a n × (p + 1)
matrix, containing the values of the regressor variables. Its form is:

Xl,j =


1 x1,1 x1,2 · · · x1,p
1 x2,1 x2,2 · · · x2,p
...

...
...

. . .
...

1 xn,1 xn,2 · · · xn,p

 . (3.10)

The weighting matrix Ql,j , composed of the validity function values (Eq. (3.6)) is:

Ql,j =


Φj(x1) 0 · · · 0

0 Φj(x2) · · · 0
...

...
. . .

...
0 0 · · · Φj(xn)

 . (3.11)

Also, we de�ne the vector of values for the l-th target variable, yl as

yl =
[
yl,1 yl,2 · · · yl,n

]T
, (3.12)

where yl,i denotes the value of the l-th target for the i-th data point. Finally, the parameter
estimates for the l-th target variable of the j-th local model can be calculated using the
well-known weighted least squares estimation formula

b̂l,j = (XT
l,jQl,jXl,j)

−1XT
l,jQl,jyl. (3.13)

3.4.2 Multi-target Lolimot Model Trees

This part summarizes the modi�cations of the Lolimot model tree learning algorithm nec-
essary for handling multiple targets. Recall that the Lolimot algorithm was introduced in
the system identi�cation domain, and its multi-target version is used for modeling static
and dynamic multi-output systems. The algorithm contains three modi�cations for multi-
target modeling, as compared to the single-target version. These are:

• Determination of the set of candidate splits to evaluate. The algorithm chooses only
one terminal node and evaluates half splits in all possible dimensions. The sum of
squares is used as the criterion to choose the terminal node. While in the single-
target case this is trivial, in the multi-target case, the squared errors for each target
are normalized and summed. The terminal node which results in the largest error,
i.e., sum of normalized squared errors, is selected. The normalization is performed
for each node separately.

• Estimation of local model parameters. The algorithm evaluates a candidate split by
building local models for the two new terminal nodes. The estimation of local model
parameters is performed separately for each target variable, i.e., we have a separate
optimization problem for each target (cf. Eq. (3.13)).

• Comparing performance of candidate splits in the multi-target case. After the local
model parameters are estimated for each of the targets, and the model predictions
are calculated for every target, the errors for each of the targets are aggregated. An
aggregate multi-target root relative mean-squared error (RRMSE), also denoted as
normalized root mean squared error (Nelles, 2001), is calculated as:

RRMSE =

√∑r
l=1

∑n
i=1 (ŷi,l − yi,l)2∑r

l=1

∑n
i=1 (ȳl − yi,l)2

(3.14)

3.5. Properties of Existing Approaches 27

where ȳl is the mean value of the l-th target variable, while ŷi,l and yi,l are the
predicted and actual values respectively, for the l-th target variable and i-th data
point.

3.4.3 Optimal Complexity of a Lolimot Tree

The optimal size of the single-target or multi-target Lolimot tree, in terms of number of
local models, is determined by using the Akaike Information Criterion (AIC). The AIC
criterion selects the algorithm iteration which provides the best trade-o� between model
complexity and accuracy. It takes into consideration the size of the training set n, the
error of the model for each iteration and the total number m · p of coe�cients in the linear
models. The AIC calculated for a Lolimot model tree (Nelles, 2001) is:

AIC = n · log(eMSE) +m · (p+ 1) (3.15)

where eMSE denotes the mean-squared error of the model tree.

3.5 Properties of Existing Approaches

This section outlines the advantages and disadvantages of the existing tree-based ap-
proaches when used for dynamic system identi�cation. It starts with the properties of
model tree learning algorithms, and discusses the advantages and shortcomings of M5',
Lolimot and other related tree learning approaches. After that, it discusses the properties
of existing tree ensemble approaches.

3.5.1 Existing Tree Approaches

The existing tree approaches introduced earlier in this chapter were Lolimot and M5'.
This subsection �rst discusses their properties, after which it presents other related tree
approaches.

The advantages of the Lolimot method, which builds fuzzy model trees, are summarized
as:

• The complete model is evaluated, so the interactions between the local models in a
fuzzy setting are taken into account.

• The output error is evaluated during split selection, instead of the prediction error,
which might produce a model with better simulation performance.

• The local parameter estimation produces models with good noise handling capabili-
ties (Nelles, 1999).

On the other hand, the potential limitations of Lolimot are related to the complexity
of the produced model: The required number of terminal nodes to obtain a model with a
desired accuracy may not be optimal. They can be summarized as:

• Only half splits are considered, i.e., the split cut-point is not optimized, and the MSF
overlap is not optimized. This in turn might produce fuzzy model trees with more
local models, as compared to approaches which optimize the split cut-point and MSF
overlap.

Several existing methods build upon Lolimot and consider replacing the type of splits
with axes-oblique, and the heuristic split selection with a genetic programming approach.
The �rst extension (Nelles, 2006) includes a modi�cation which considers axes-oblique

28 Chapter 3. Tree-based Methods

splits, and not only axes-parallel, as in this thesis. It uses a more computationally expensive
nonlinear optimization technique to determine the optimal position and direction of each
split. However, on a simulated example, the di�erences to a standard Lolimot model are
visible: the size of the tree is almost a third of the size of the standard Lolimot model,
for a pre-determined model error. The consideration of axes-oblique splits thus presents
a tradeo� between the faster training time of Lolimot and the smaller size of the oblique
model trees.

The second extension (Ho�mann & Nelles, 2001) introduces Genetic Programming
(GP) for determination of the structure of the Lolimot model tree. Also, it considers
di�erent cut-point for the splits, as compared to the single cut-point, i.e., half-split. The
conclusions are that the GP method may again reduce the size of the model tree, while
obtaining comparable predictive performance to a standard Lolimot model. However, the
number of possible partitionings that the method has to evaluate is very large, so its
applicability is limited due to the large time required for learning.

The model tree learning algorithm M5' has di�erent properties. It builds crisp trees,
is fast and e�cient. Its advantages can be summarized as:

• The split selection procedure is fast and linear in the number of features.

• The local model estimation is fast, since the number of data points used is smaller
than in the fuzzy case.

• It can handle discrete attributes and missing values in the attributes.

However, the accuracy of M5' model tree is in many cases lower, as compared to Lolimot.
This might be due to the lack of look-ahead step during the split selection, or the crisp and
not fuzzy local model estimation. The limitations of the M5' algorithm can be summarized
as:

• The model trees typically have discontinuities on the borders of local models.

• The split selection procedure does not include look-ahead.

• The split selection procedure may show potentially pathological behavior for low-
dimensional datasets (Vens & Blockeel, 2006).

Other tree learning approaches. After describing the advantages and disadvantages of
M5' and Lolimot, this part will outline the properties of other related tree learning ap-
proaches. The spatial piecewise linear models of Billings and Voon (1987) are a nonlinear
identi�cation technique, which use interpolation of local linear models. The model repre-
sentation is equivalent to the crisp model trees, discussed above, since there is no overlap
of the operating regions. The operating regions are de�ned by using a grid partitioning,
and the parameters of the linear models are estimated using least squares.

A clear disadvantage is that the only type of partitioning considered is grid partitioning,
which may potentially lead to a large number of regions. The authors also conclude that
some of the potentially large numbers of operating regions may not be reachable (no
training data for those regions can be obtained, as the system can not be in that state),
hence they do not identify local models for all regions. However, they note that since the
local models are independent of one another, due to the crisp splitting, linear stability
criteria could be applied to evaluate the local models that are identi�ed.

The spatial piecewise linear models also expect a prede�ned number of operating re-
gions. This is determined by the user's choice to divide the input and output data into
several equal intervals. This is in contrast to the automatic determination of the number

3.5. Properties of Existing Approaches 29

and position of operating regions found in some of the other approaches, like the model
tree algorithms, discussed earlier, use.

The regime decomposition approach of Johansen and Foss (1995) uses a tree approach
to search for the optimal structure and parameters. This approach is similar to the Lolimot
algorithm, and the �nal model is also in the form of a TS model. The aim of the algorithm
is to determine the optimal axis-orthogonal decomposition into operating regions.

However, there are several di�erences as compared to the Lolimot approach. The
algorithm is more oriented towards optimizing the complexity (number of local models
required), so it tries to optimize the cut-points for the splits, something that Lolimot does
not perform. Another di�erence is the proposal of an extended horizon search strategy.
This type of search is a deep look-ahead, where an optimal split is determined by looking
at successive n∗ splits (n∗ is the search horizon), the partitioning they produce, and the
predictive performance of the local models that are built. In comparison, the existing
model tree algorithms discussed so far use only a shallow look-ahead or greedy search by
only evaluating and building one split and the predictive performance of its immediate
descendant local models.

3.5.2 Existing Ensembles of Model Trees and Their Limitations

The ensemble approaches of bagging (Breiman, 1996) and Random Forests (Breiman,
2001), which are used in this thesis, have been originally designed to use classi�cation and
regression trees. Since bagging only manipulates the training data, and does not randomize
the base learners, it can be used with any base learner, including algorithms that learn
model trees. However, only a few authors have considered learning ensembles of model
trees, instead of regression trees. To our knowledge, at least two ensemble approaches
using crisp model trees have been introduced already.

The �rst is the semi-random model tree ensemble approach of Pfahringer (2011). This
approach modi�es the base-level tree-learning algorithm to produce balanced trees: the
number of points falling in each terminal node of the tree is approximately the same. This
approach is thus not well-suited for dynamic systems, whose identi�cation is performed
on data that are not evenly distributed in the instance space. The partitioning of the
instance space using semi-random model tree ensembles would be denser around the equi-
librium points, as these regions contain more points than the out-of-equilibria regions. As
a consequence, the critical out-of-equilibria regions would be covered by a small number
of partitions, resulting in poor approximations.

The second approach is the model tree ensemble method of Jung, Reichstein, and Bon-
deau (2009). It introduces ensembles of crisp model trees, by learning trees with random
splits. The model trees are built using a new model tree induction algorithm, named
TRIAL. The base learning algorithm uses randomization, i.e., its operation is perturbed
in order to increase the diversity of the predictions.

31

Chapter 4

Model Trees and Ensembles for

Dynamic System Modeling

This chapter introduces modi�cations and extensions to existing model tree algorithms.
These are aimed at improving the performance of model trees for modeling dynamic sys-
tems. The modi�cations to the Lolimot model tree algorithm address the split selection, as
well as the computational e�ciency of the method. Also, ensembles of Lolimot model trees
are presented, which are now applicable, given that the modi�ed base learning algorithm
is faster.

The modi�cations to Lolimot, are inspired by the generalization power of the soft model

trees as opposed to the crisp ones. The modi�cations introduced are summarized as an
approach named L++, which evaluates more candidate splits, and also improves the com-
putational e�ciency over the existing Lolimot method.

The aim of the modi�cations was to reduce the size of Lolimot trees, i.e., the number
of local models, as well as to improve the e�ciency over Lolimot, while retaining similar
predictive power. In other words, the modi�cations proposed to the model tree learning
algorithm modify the methodology, since a di�erent search heuristic is employed, and
modify the implementation, since the split evaluation is replaced with a more e�cient
variant. Also, by using the more e�cient L++ method, one is also able to build ensembles,
as the learning times of the base algorithm are reduced.

The aim of this work is to introduce modi�cations of model tree algorithms for dy-
namic systems, and this in turn requires regression approaches that produce close �ts to
smooth static functions (cf. Subsection 2.1.1.2, which discusses the external dynamics ap-
proach). For this, the applicability of crisp model tree approaches is limited, as they are
not well suited for approximating smooth nonlinear functions. However, this work would
also try to show that to a certain extent, two modi�cations of crisp model trees could be
used for modeling dynamic systems: a) post-smoothing, and b) ensembles, which correct
the local model estimates of single crisp trees. After the empirical evaluation, which is
presented in the following sections, this work will try to draw some conclusions regarding
their utilization.

This chapter is organized as follows. It starts with the modi�cations to the crisp model
tree approach M5', for improving its �t to smooth nonlinear functions. Then it discusses
the modi�cations to a soft model tree approach, Lolimot. Next, it presents the ensembles
of model trees, based on the bagging principle. Finally, it illustrates the di�erence in
predictive power of fuzzy over crisp model tree approaches, as well as model tree ensembles.

32 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

n1

n2 n3

fn1()

fn2() fn3()

Figure 4.1: An example model tree with one split node and two terminal nodes.

4.1 Crisp Model Trees

An example of a crisp model tree is shown in Figure 4.1. It consists of one split node
and two terminal nodes. During the learning with the model tree algorithm M5', local
linear models are learned for all three nodes. The �nal prediction of the crisp model tree
is calculated either using node n2 or node n3, i.e., the prediction for the feature vector
x is either ˆfn2(x) or ˆfn3(x). In more general terms, a crisp model tree consisting of m
terminal nodes and m − 1 splits, which form m partitions P1, P2, · · · , Pm, is a piecewise
linear model of the form:

f(x) =


fLM1(x) if x is in P1

fLM2(x) if x is in P2

...

fLMm(x) if x is in Pm

(4.1)

In the following, we will consider two di�erent techniques for smoothing the predictions of
a crisp model tree, built by the M5' algorithm.

4.1.1 Smoothing the Crisp Model Tree Predictions

The smoothing of the model tree predictions can be done by using di�erent strategies. This
work considers two types, both of which are executed after the crisp M5' model tree is built
and its local models are estimated. The �rst is the built-in M5' smoothing, which is only
a correction of the local model coe�cients. The other type is an interpolation approach,
which performs smoothing using fuzzy weighting, and changes the form of the model from
a crisp to a soft model tree.

The �rst variant corrects the local model coe�cients for a terminal node of the tree,
by using the local models found on the path from that node to the root. The resulting
model stays a crisp model tree, i.e., only one local model is used to obtain the model tree
prediction (cf. Eq. (4.1)). The second variant performs the smoothing by using a weighted
sum of the local model predictions of all terminal nodes of the tree. This means that a
soft model tree, in this case, uses all local models to obtain the model tree prediction (cf.
Eq. (4.4)).

The smoothing could potentially increase the accuracy of the model tree, when �tting
smooth functions, and could also address the boundary discontinuities issue. The latter
issue appears on the boundaries between adjacent local models, which are potential places

4.1. Crisp Model Trees 33

where discontinuities may appear. Two neighboring local models may have di�erent pre-
dictions for "close" input vectors, from the other side of the boundary. For example, a
discontinuity appears for the value of x = 0.5 in the left part of Figure 4.8. In the rest of
this subsection, a detailed description of the two smoothing approaches follows.

4.1.1.1 The Built-in M5' Smoothing

The built-in M5' smoothing is a procedure aimed to improve the accuracy of model tree
predictions (Quinlan, 1992). Its goal is to smooth the response of local models built in leaf
nodes with a small number of data points, by also considering the predictions of the local
models built in other internal tree nodes.

It is an iterative bottom-up procedure, performed after the initial tree has been built
and pruned. The procedure starts by correcting the local model corresponding to a terminal
node of the tree, by using the linear models of all tree nodes on the path up to the root.
Assume that the local model for the terminal node n2 is f̂n2(), and the number of data
points sorted down to that node is d. Then, the smoothed prediction, f̂ ′n2() would be
calculated using the local model of node n1, as:

f̂ ′n2(x) =
df̂n2(x) + kf̂n1(x)

d+ k
(4.2)

where k is some constant value. If we rearrange, and introduce α = d
d+k , we obtain:

f̂ ′n2(x) = αf̂n2(x) + (1− α)f̂n1(x). (4.3)

This procedure only performs a "correction" of the possibly inaccurate local model
predictions of terminal nodes with a small number of data points. We can observe that
the weighting factor α is small in case of a leaf node with small number of data points
d, and is big otherwise. This technique is implemented in M5', as only a correction to
the coe�cients of the local models in the terminal nodes of the tree. This means that the
model tree does not change its form, i.e., it remains a crisp model tree. Additionally, the
value of the constant k is set to 15 in the WEKA implementation of the M5' algorithm.
It is worth noting that this approach only partially solves the discontinuity problem, as it
only compensates for the large jumps of the predictions, and does not provide a continuous
transition on the boundaries between local models.

4.1.1.2 Smoothing Using Fuzzi�cation

The smoothing of the linear models in a crisp model tree can be achieved by an alternative
approach, using fuzzi�cation, and converting the model to a soft model tree. The original
crisp model tree (4.1) is converted to a soft model tree which has the form:

f(x) =
∑
i

wi(x)fLMi(x) (4.4)

where
∑
wi(x) = 1. The di�erence to the M5' built-in smoothing, described earlier, is

that in Eq. (4.3), α is not a function of the feature vector x, while here, w is a function
of x. This means that the fuzzy model tree presents a di�erent formalism than the one
described above.

The smoothing using fuzzi�cation, which was introduced by Jang (1994), and later
applied to M5' model trees (Aleksovski, Kocijan, & Dºeroski, 2013, 2014c), is performed
by representing the splits s[xj < c] of the crisp model tree with a fuzzy set characterized

34 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

−3 −2 −1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

µ

L
(x)

µ
R

(x)

crisp split

−3 −2 −1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Two types of fuzzy membership functions: sigmoidal (top) and triangular
(bottom).

by some membership function (MSF). For example, a crisp split of the form s[xj < c],
where xj is the j-th feature, and c is a cut-point, is transformed to a fuzzy split by using
a sigmoidal membership function µ(xj , c, α) with a fuzzy parameter α (the inverse split
width) :

µL(xj , c, α) =
1

1 + exp(−α(xj − c))
(4.5)

µR(xj , c, α) = 1− µL(xj , c, α) (4.6)

Several types of fuzzy membership functions can be used (triangular, sigmoidal, Gaus-
sian), two of which are shown in Figure 4.2. The choice between any of the three member-
ship functions should provide similar prediction results. In the case when the parameters
of each MSF are optimized globally (the parameters of all MSFs are optimized in a sin-
gle optimization procedure), di�erences in performance may appear. However, this work
calculates the MSF parameters by using a prede�ned percentage of the partition size.

In other words, for the sigmoidal membership function of Eq. (4.5), the value of α is
calculated such that the overlap between the two subpartitions is equal to a predetermined
percentage poverlap of the size of the partition in the dimension of the split attribute. Larger
values for poverlap mean smoother transitions between the local models. The optimal value
of poverlap is di�erent for each modeling problem, i.e., needs tuning.

The prediction of the model tree of Figure 4.1 with one fuzzy split µ(xj , c, α) and two
local models fn2 and fn3 is calculated by using the following formula:

f̂(x) = µ(xj , c, α)f̂n2(x) + (1− µ(xj , c, α))f̂n3(x) (4.7)

In general, a data point x is associated with all LMs (terminal nodes) of a soft model
tree, but with di�erent weights. The weight for a LM is calculated by multiplying the

4.2. Fuzzy Model Trees 35

µ membership function values for all of the splits from the root of the tree down to the
particular terminal node.

The bene�ts of smoothing a crisp model tree with fuzzi�cation are the potentially more
accurate predictions, as compared to the crisp model tree. This is illustrated in Figure 4.3,
where the resulting models of crisp and smoothed model trees with 4 LMs are depicted.

(a) Crisp model tree. (b) Smoothed model tree.

Figure 4.3: Comparison of crisp and smoothed model trees with 4 LMs, in a 2-dimensional
space.

4.1.2 Multi-target M5'

This part describes the modi�cations of M5' for predicting multiple dependent variables,
i.e., targets. It presents the modi�cations performed to the split selection heuristic in the
tree growing phase, and the error calculations in the tree pruning phase.

The standard deviation reduction (SDR) is calculated by aggregating the SDR of all
target variables. For a given candidate split attribute, the SDR heuristic is �rst calculated
for each target, using Eq. (3.1). The aggregated heuristic value SDRMT is then calculated
as:

SDRMT =
1

r

r∑
j=1

SDR′(j) (4.8)

where SDR′(j) is the SDR value for the j-th target, scaled to the interval [0, 1]. The
candidate split with the largest SDRMT is selected and used by the M5' algorithm.

The pruning phase of M5' is also modi�ed for the multi-target scenario. The calculation
of the linear models is performed independently for each of the targets. The overall error
of the subtree, is calculated as an average of the subtree errors of each target. The overall
error of the linear models for the r targets is calculated as an average of the errors of each
target. The error values are normalized before both averaging operations.

4.2 Fuzzy Model Trees

In this part, we are going to consider fuzzy model trees, as built by the Lolimot method.
Lolimot was introduced in the previous chapter, and here we are going to introduce the
modi�cations performed to Lolimot. Two of these concern the structure search: a more

36 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

k

∑
k i=

1
(f
(x

i)
−

f̂
(x

i)
2

split
1

split
2

split
3

split
4

Figure 4.4: Evaluating four candidate splits using simulation, during building the Lolimot
tree for GLS. The x axis denotes the discrete step k of the simulation procedure, while the
y axis the running sum of squared errors

∑k
i=1(f(xi)− f̂(xi))

2.

e�cient evaluation of candidate splits and a modi�ed search for the optimal tree structure.
The latter is performed by considering several cut-points when generating the candidate
splits and using di�erent values for the fuzzy overlap. The other two modi�cations concern
the split evaluation and the estimation of local models.

4.2.1 Modifying the Evaluation of Candidate Splits

This modi�cation considers the evaluation the candidate splits in Lolimot. The evaluation
of each of the candidate splits is used to select the split which results in a smallest estimated
error and added this split to the tree. The candidate splits in Lolimot are evaluated by
creating the intermediate tree with the added split, estimating the two new local models,
and performing simulation on the training data. The procedure in Lolimot is executed on
the complete set of training data points, and results with an estimate of the e�ectiveness
of the candidate split.

We propose to make the estimate of e�ectiveness of candidate splits faster, by modifying
the evaluation process. The modi�ed evaluation would only consider a part of the training
data, and not the full training set. In the following we describe the details of our proposed
modi�cation, and its advantages.

Instead of executing the simulation procedure using all training data points, it is our
experience that di�erences between the performance of intermediate trees (corresponding
to the candidate splits) are visible much earlier. For example, Figure 4.4 displays the
simulation procedure for four intermediate trees, when building a model for the pressure
variable of the GLS system. The y axis of the �gure displays the running sums of squared
error, for the four di�erent intermediate trees, while the x axis the number of steps in the
simulation procedure.

4.2. Fuzzy Model Trees 37

It can be seen that the optimal intermediate tree, calculated by simulating on the full
training set, corresponds to candidate split 4. This selection result can also be determined
by only performing the simulation half-way, i.e., only to step kSIM = 350. For this example,
the simulation results for the subsequent data points beyond this step do not change the
outcome of the selection. So, one can conclude that early stopping in the simulation
procedure can be used as a modi�ed estimate, for ranking the candidate splits. The
advantage of using the modi�ed heuristic is that the running time of the evaluation part
is reduced. The disadvantage is that it might not result in the optimal split, as seen by
Lolimot's current estimate, for splits with similar performance. This might happen if kSIM
is too small, or the splits show very similar performance.

The fact that the di�erences in performance are visible earlier in the simulation proce-
dure might be explained with the error accumulation phenomenon. The error accumulation
increases the error of the worse-performing intermediate trees much earlier in the simu-
lation procedure (penalization). This might allows an easier determination of the better
performing split or splits in the selection procedure.

The reason that the e�ciency of the split evaluation heuristic is increased by using
early stopping in the simulation procedure, is that the evaluation of a soft model tree is
computationally expensive. This stems from the fact that for one data point the Lolimot
model tree needs to calculate all membership function values, as well as the predictions of
all local models. In general, setting kSIM to smaller or lager values may be considered as
a tradeo� between speed of learning and accuracy of the obtained model.

4.2.1.1 Utilization of the Output Error While Learning

Related to the evaluation of the candidate splits, we also modify the method so that the
evaluation of candidate splits could be performed by either the output or the prediction
error. The former is the default when evaluating splits for dynamic systems, in the Lolimot
method. By implementing the prediction error evaluation, we hope to get more insight in
the di�erences between simulation and one-step-ahead prediction, when used during the
model building procedure. Please note that, in either case, the estimation of the local
model parameters is performed by minimizing the prediction error.

4.2.2 Modifying the Search for an Optimal Tree Structure

When comparing the model tree approaches introduced in the machine learning domain
to Lolimot, one di�erence that can be noticed is that the Lolimot method evaluates only
a small number of candidate splits. For each feature variable (dimension) it evaluates only
one half-split. A structure search for the optimal tree structure, which evaluates more
di�erent candidate splits, has the potential to discover smaller model trees with acceptable
performance.

However, in the context of soft or fuzzy trees, and TS models, the model structure is
determined by the number, the position and the overlap of the fuzzy membership functions.
This is why this part is going to introduce modi�cations which evaluate a) several di�erent
split cut-points, and with this, several di�erent positions of the fuzzy MSFs, and b) di�erent
overlap of the MSFs.

4.2.2.1 Considering Several Split Cut-points

Recall that in Table 3.2 we categorized the di�erent implementations of the candidate cut-
points determination, for a given feature attribute xi. The conclusion there was that the

38 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

methods introduced in the system identi�cation domain do not base the candidate cut-
points determination on the data sample. Instead, they have an interval-oriented approach,
and generate uniformly distributed candidate cut-points in the [xmini , xmaxi] interval.

The modi�cation introduced here is also interval-oriented, as it introduces q candidate
cut-points for each variable. Values for q of up to 8 are used and evaluated. For example,
given a terminal node t a feature attribute xi, i.e., a data dimension i, the candidate splits
considered are:

St,i = {(t, xi, xmini +
1

q + 1
s), (t, xi, x

min
i +

2

q + 1
s), · · · , (t, xi, xmini +

q

q + 1
s)}, (4.9)

where s = xmaxi − xmini is the size in dimension i.

4.2.2.2 Considering Di�erent Overlaps

The value of the vector σ = [σ1, σ2, · · · , σp] in Lolimot de�nes the deviation of the fuzzy
membership function, and thus the amount of overlap for the local model in question. It
is calculated as a fraction of the size of the partition in the corresponding dimension:

σ = kσ[δ1, δ2, · · · , δp]T (4.10)

where δj is the size of the partition in the dimension j. This means that the algorithm does
not optimize the overlap value for each of the LMs, but instead uses an overlap parameter,
kσ for this purpose. Other methods which build TS models consider di�erent values for the
overlaps of each MSF, and with this, optimize more parameters, as compared to Lolimot.
An example is the well-known ANFIS method (Jang et al., 1997), which optimizes 2p
parameters for each MSF, i.e., a total of 2pm MSF parameters for a TS model with m
LMs.

In general, the fuzzy modeling literature also notes that setting overlap parameter
to a large or small overlap between local models may have an impact on the parameters
estimated for the local models. This means that this parameter could in�uence the number
of LMs needed to accurately approximate some function. In other words, the overlap
parameter could have an in�uence on the size of the �nal Lolimot tree.

As discussed, the Lolimot algorithm used the multi-dimensional Gaussian membership
function. The standard deviation vector σ of this function is calculated by using the overlap
parameter kσ = 1/3 of the the size of the partition, in each dimension. Note, also that the
amount of overlap, i.e., σ, is directly in�uenced by the partition boundaries, i.e., the split
thresholds, as shown in Figure 4.5. Here, the values of σ = [σ1, σ2] are directly dependent
on the partition size in both dimensions.

In the analysis, we consider the e�ect of using di�erent values for kσ. We utilize values
for kσ ranging from 0.25 to 4. Additionally, we investigate what is the e�ect of tuning this
parameter for di�erent datasets.

4.2.3 Global Parameter Estimation in Lolimot

As discussed earlier, the estimation of the local model parameters of a model tree, given
that the validity functions are known, could be performed using local or global parameter
estimation. The global estimation procedure estimates all of the local model parameters
simultaneously. This takes into account the interaction between local models, as de�ned
by the membership function overlaps. The alternative is local estimation, which estimates
parameters of each local model in isolation, and is used in the Lolimot method.

4.2. Fuzzy Model Trees 39

x2

x1

10

2

106

6

σ1

σ2

Figure 4.5: The partitioning resulting from a Lolimot model tree with three splits and four
LMs. The Gaussian membership functions are shown too. For the bottom-right partition,
with dimensions [δ1, δ2] = [4, 6], the σ1, and σ2 values are shown.

40 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

The global estimation was already used in the Lolimot method, by Aleksovski, Ko-
cijan, and Dºeroski (2014b), where the resulting model tree had a small complexity and
acceptable �t to the dynamic system. Additionally, the work of Nelles (1999) notes that
the global estimation has two disadvantages. The �rst one is not handling noise well, and
the second one is not providing for interpretation of the local model coe�cients as local
linearizations of the model. In more detail, the local model coe�cients that this procedure
estimates, have no physical interpretation for the underlying system.

The local estimation has faster calculation as an advantage, compared to the other
alternative, but the interactions between local models are not taken into account. We aim
to modify the implementation of the Lolimot algorithm, so that the LM estimation can
also be performed with the global parameter estimation procedure. In the remainder of
this part we outline the calculations required to perform the global parameter estimation
for the multi-target case.

For the l-th target variable, the regression matrix Xl is composed of m submatrices,
one for each local model:

Xl =
[
X

(sub)
l,1 X

(sub)
l,2 · · · X

(sub)
l,m

]
. (4.11)

Given that Φi(x) denotes the validity function value, as de�ned in Eq. (3.6), each of the
submatrices X(sub)

l,i , which consist of N rows and (p+ 1) columns, have the following form:

Xl,i =


Φi(x1) Φi(x1)x1 · · · Φi(x1)xp
Φi(x2) Φi(x2)x1 · · · Φi(x2)xp

...
...

. . .
...

Φi(xn) Φi(xn)x1 · · · Φi(xn)xp

 . (4.12)

We denote with yl the vector of values of the l-th target variable, which is:

yl =
[
yl,1 yl,2 · · · yl,n

]T
. (4.13)

In Eq. (4.13), yl,i denotes the value of the l-th target variable for the i-th data point.
The parameter estimates for each target can now be calculated using the well-known least
squares estimation formula:

b̂l = (XT
l Xl)

−1XT
l yl. (4.14)

4.3 Model Tree Ensembles

Ensembles for regression, also called committees of predictors, are known to improve predic-
tive accuracy. This is known in the �eld of neural-network ensembles (Krogh & Vedelsby,
1995) as well as tree-based ensembles (Breiman, 1996). Among the reasons for their suc-
cess are the smoothing e�ect on individual model estimates and the reduction of variance
of the ensemble (Grandvalet, 2004), as compared to the one of the individual trees. The
Model Tree Ensembles we are proposing here are based on the bagging (Breiman, 1996)
principle, and use either ensembles of crisp M5' model trees, or ensembles of soft Lolimot
model trees.

4.3.1 Ensemble Construction

The ensemble construction procedure we use is based on the popular bagging approach.
As shown in Figure 4.6, bagging creates t bootstrap replicates, i.e., random samples with
replacement, of the identi�cation set, which have an equal number of data points as the

4.3. Model Tree Ensembles 41

Data set D

D1

D2

Dt

Bootstrap

samling
Averaging

Ensemble

of Model

Trees

Figure 4.6: Operation of the bagging method, using model trees as base models.

identi�cation set. Using each of the t samples, a base learner algorithm is used to build a
collection of t model trees: f1, f2, .., ft. Finally, the ensemble structure is optimized, using
an ensemble selection procedure, as described in Subsection 4.3.2.

The �nal ensemble model is used for prediction by averaging the predictions of each
of the base models. The pseudocode describing the ensemble construction procedure and
ensemble selection procedure is shown in Algorithm 4.1. The base learner algorithm,
denoted by the procedure Build_tree(Di), can be either M5' or Lolimot. The operation
of both of them has been described in the preceding text.

4.3.2 Ensemble Selection

After the ensemble is built, it is optimized by using a greedy ensemble selection procedure.
Trees that do not contribute to the accuracy of the ensemble are removed from the en-
semble. A tree's contribution is evaluated by considering the output error of the reduced
ensemble without the tree and comparing its performance to the current ensemble. By
evaluating the output error of the ensemble on the identi�cation data (instead of the pre-
diction error), we aim to produce a more successful model of the dynamic system. In the
next paragraph we describe the ensemble selection procedure in more detail.

The selection procedure operates in a greedy fashion, reducing the ensemble size by one
tree in each step, as shown in Algorithm 4.1. It stops when no improvement can be made
to the performance of the ensemble. For dynamic systems, simulation on the identi�cation
data is performed and the evaluation of the performance of the ensemble is carried out by
using the output error function.

After the ensemble selection procedure, assume that the resulting ensemble has t′ trees:
E = {T1, T2, ..Tt′}. The prediction of the ensemble is a uniformly weighted average of the
model tree predictions:

f̄(x) =
1

t′

t′∑
i=1

f̂i(x) (4.15)

where f̂i(x) denotes the prediction of the i-th model tree for data point x.

42 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

Algorithm 4.1: Pseudocode for the Model-Tree Ensembles method.

Algorithm Learn_ensemble(D)
Data: data set D
Result: an ensemble E
Create t bootstrap samples of D : D1, D2, .., Dt

Build a tree using each of the t samples: Ti = Build_tree(Di)
Let E′ =Ensemble_selection({T1, T2, .., Tt} , D)
Return the ensemble E′

Algorithm Ensemble_selection(E, D)
Data: ensemble E, consisting of trees T1, T2, .., data set D
Result: ensemble E′

Let efull be the output error of E, obtained by simulation on data set D
Let t = |E|
Create t ensembles, E1, .., Et where Ei = {Tj |j 6= i}
Let ei be the output error of ensemble Ei
Let ereduced = mini=1..t(ei)
Let j = argmini=1..t(ei)
if (efull > ereduced) then

Return the ensemble Ensemble_selection(Ej, D)
else

Return the ensemble E
end

4.4 Illustrative Example

This part is going to illustrate the predictive power of model trees and ensembles on a simple
1-dimensional static system. This will help understand the advantages and limitations of
model tree algorithms for modeling dynamic systems. It will also illustrate the derivatives
of the di�erent types of models, as they are important for assessing the generalization
performance.

The predictive power of the model trees ensembles is illustrated with the regression
problem of �tting the static nonlinear function

f(x) = sin(2πx) + 2x (4.16)

using 200 points (x, y), with x uniformly distributed in the interval [0, 1].

Figure 4.7 shows two �tting scenarios, where the models are learned using a noisy
version of the data: noise with a standard deviation equal to 20% of the target variable
deviation was added. In the �rst scenario, the nonlinear function is approximated with
one Lolimot model tree with 12 LMs. The second scenario presents the �t of a bagging
ensemble using randomized splits, where the base models are Lolimot trees. In both cases
the �t is acceptable, while the error of the ensemble is slightly smaller. Both models handle
the noisy data well, i.e., do not over�t to the noise.

4.4. Illustrative Example 43

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fuzzy MT

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Bagg fuzzy MTs

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1
Model errors. MSE=0.001

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1
Model errors. MSE=0.0009

Figure 4.7: Performance of the soft model tree approaches. A single Lolimot tree (left) and
bagging of Lolimot trees (right). The Lolimot model tree consists of 12 LMs. The bagging
consists of 50 model trees with 12 LMs. The lower panels show the approximation error
f(x)− f̂(x). In both cases the modeling is performed by using data with 20% noise.

Figure 4.8 shows the �t of a crisp M5' tree with 12 terminal nodes, the same crisp tree
with fuzzi�cation, and a bagging ensemble of 50 crisp trees using randomized splits. In the
�rst two cases the errors of the crisp model tree are clearly visible. They are larger around
the �ve split cut-points, i

12 where i = 1, 2, · · · 12. Also, a discontinuity is visible in the �rst
case, for x = 5

12 , where the predictions for x <
5
12 are larger than the predictions of x >

5
12 .

This discontinuity issue is �xed in the second case, however the error improvement of the
fuzzi�ed model tree is small. On the other hand, the bagging ensemble shows an improved
�t to the nonlinear function, as compared to a single M5' model tree.

If we compare the �t of the crisp model tree, shown in the left part of Figure 4.8, to
the �t of the soft model tree, shown in the left part of Figure 4.7, we can note that the
performance of the crisp model tree is worse than the single Lolimot tree with the same
number of local models/terminal nodes. This shows the advantage in terms of predictive
power that the soft tree variants possess. This advantage is more clearly visible when the
function to be �t contains "more nonlinearity", an example of which is the function chosen
here. When comparing the errors of the ensembles, however, we can conclude that both
ensembles produce similar results, the bagging of Lolimot trees being slightly better.

44 Chapter 4. Model Trees and Ensembles for Dynamic System Modeling

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5
Crisp MT

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5
Crisp MT smoothed

0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5
Bagg crisp MTs

0 0.5 1
−0.2

−0.1

0

0.1

0.2
Model errors. MSE=0.0023

0 0.5 1
−0.2

−0.1

0

0.1

0.2
Model errors. MSE=0.0018

0 0.5 1
−0.2

−0.1

0

0.1

0.2
Model errors. MSE=0.0012

Figure 4.8: Performance of the crisp model tree approaches. A single M5' tree (left), a
smoothed variant of the M5' tree (middle) and bagging of M5' trees (right). The M5'
model tree has 12 terminal nodes. The bagging consists of 50 model trees with 12 terminal
nodes. The lower panels show the approximation error f(x) − f̂(x). In both cases the
modeling is performed by using data with 20% noise.

4.4.1 Derivatives of the Models

This analysis focuses on the derivatives of the model, using the same static function.
The derivatives of the model play an important role to the model performance, as they
determine the local linearizations of the nonlinear model of the system. Also, the correct
�t of the model to the system derivatives would mean that acceptable OSA and simulation
performance can be expected. The aim of the analysis is to show the correspondence of
the derivatives of di�erent model types to the true derivatives of the static function.

The derivative of the static nonlinear function de�ned in Eq. (4.16), with respect to x
is:

df

dx
= 2π cos(2πx) + 2. (4.17)

The derivatives of the models produced are calculated di�erently. The derivative of the
crisp model tree is the slope coe�cient of the corresponding local model. The derivative of
a soft model tree is a weighted sum of the slopes of all local models (note that the weights
add up to 1). The derivative of an ensemble, such as bagging, which produces the �nal
prediction by averaging the predictions of the base models, is calculated by averaging the
slopes of each base model.

4.4. Illustrative Example 45

The results in Figure 4.9 show that the fuzzy MT has a closer �t to the true function
derivatives, as compared to a crisp MT. When comparing to the smoothed version, we
can conclude that the �t to the true derivatives is similar. Both bagging variants produce
models with closer �t to the true derivatives, however, the model derivatives show larger
variation around the true function derivative. The large variation is probably due to the
randomization of the cut-points, which is used to illustrate the ensembles.

0 0.2 0.4 0.6 0.8 1
−5

0

5

10
Fuzzy MT

0 0.2 0.4 0.6 0.8 1
−5

0

5

10
Bagg fuzzy MTs

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10
Crisp MT

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10
Crisp MT smoothed

0 0.2 0.4 0.6 0.8 1
−5

0

5

10
Bagg crisp MTs

Figure 4.9: An illustration of the derivatives of the di�erent models (solid lines) compared
to the true derivative of the function (dashed line).

47

Chapter 5

Evaluation on Benchmark Machine

Learning Regression Datasets

This chapter of the thesis would analyze the performance of regression trees, model trees
and ensembles, for the tasks of single-target and multi-target regression. The datasets used
are considered as benchmark machine learning datasets, and the results should provide
some insight into the potential of the model tree ensembles. In more detail, the analysis
in this chapter will consider three di�erent tree formalisms: crisp regression trees, crisp
model trees and soft model trees. Also, it will consider ensembles of all the three mentioned
formalisms. The questions that it will try to provide answers to, are the following:

• How well do the di�erent tree formalisms perform for single-target and multi-target
regression?

• Do the ensembles of model trees o�er an increase in performance over single model
trees?

• How do forests compare to bagging, when using model trees as base models?

• What is the in�uence of the ensemble size on its performance?

All of the questions are going to be analyzed by using a group of 49 single-target
datasets, and a group of 9 multi-target datasets. The evaluation would be performed by
using cross-validation. The results would be analyzed by using statistical tests, which
would determine whether the di�erences obtained are statistically signi�cant.

The �rst question is going to be addressed by comparing the di�erent tree variants
on the two dataset groups. The measures that would be reported and analyzed consider
the predictive performance, the model sizes, and the time required for learning. The
second question is going to be addressed by analyzing the performance of bagging and
forest ensembles. Recall that the forests di�ered from bagging due to the introduction of
randomness in the tree building procedure. The performances of bagging and forests would
be compared to that of a single tree. The third question would compare the two ensemble
approaches of bagging and forests, and evaluate whether the randomization included in
the forests is bene�cial over the bagging ensemble. Finally, for the last question, ensembles
of model trees using di�erent sizes would be evaluated. The results here would be utilized
for determination of a sensible value for the ensemble size parameter.

The rest of the chapter describes the single-target and multi-target datasets, used in
the analysis. It also provides information regarding the preprocessing of the data. In the
following it describes the experimental setup, the performance measures and the statistical
tests used. Also, it provides information regarding the parameters evaluated for each of
the algorithms. Finally, it presents the experimental results.

48 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

5.1 Datasets

The benchmark machine learning datasets for regression, that are used can be divided in
two groups:

• single-target regression datasets,

• multi-target regression datasets.

The description of each group can be found in Tables 5.1 and 5.2, respectively. The �rst
consists of 49 single-target datasets, while the second consists of 9 multi-target datasets.
For the multi-target case, the total number of target variables is equal to 33. The datasets
for the single-target regression task are taken from two repositories (Torgo, 2013; Asun-
cion & Newman, 2007), while the multi-target datasets are obtained from several sources,
reported in the table along with the dataset information.

Table 5.1: The list of single-target regression datasets. The table reports the number of
instances n, the number of attributes a, and the number of nominal attributes anom.

Dataset n a anom

01. abalone 4177 9 1
02. analcat 4052 8 5
03. auto93 93 23 6
04. autoMpg 398 8 3
05. auto-price 159 16 1
06. bank8FM 8192 9 0
07. baseball 337 17 4
08. baskball 96 5 0
09. bodyfat 252 15 0
10. breastTumor 286 10 8
11. cal-housing 20640 9 0
12. cholesterol 303 14 7
13. cleveland 303 14 7
14. cloud 108 7 2
15. concrete 1030 9 0
16. cpu 209 8 1
17. cpu-act 8192 22 0
18. dailyElectrEner 365 7 0
19. delta-ailerons 7129 6 0
20. delta-elevators 9517 7 0
21. echoMonths 130 10 3
22. electr-len-2.ar� 1056 5 0
23. �shcatch 158 8 2
24. forestFiresPOR 517 13 1
25. fruit�y 125 5 2
26. housing 506 14 1
27. hungarian 294 14 7
28. kin8nm 8192 9 0
29. laser 993 5 0
30. lowbwt 189 10 7
31. machine-cpu 209 7 0
32. meta 528 22 2
33. mortgage 1049 16 0
34. pbc 418 19 8
35. pharynx 195 12 10
36. pol 15000 49 0
37. puma8NH 8192 9 0
38. pwLinear 200 11 0
39. quake 2178 4 0
40. sensory 576 12 11
41. servo 167 5 4
42. stock 950 10 0
43. strike 625 7 1
44. treasury 1049 16 0
45. triazines 186 61 0
46. veteran 137 8 4
47. wankara 1609 10 0
48. wisconsin 194 33 0
49. wizmir 1461 10 0

5.1.1 Preprocessing

The preprocessing part deals with the missing values in the dataset and the nominal
(discrete) attributes which have more than two possible values. The datasets have been
preprocessed with the default preprocessing procedures of the M5' algorithm in the WEKA
implementation.

5.2. Experimental Design 49

Table 5.2: The list of multi-target regression datasets. The table reports the number of
instances n, the number of attributes a, the number of nominal attributes anom, and the
number of targets/outputs r.

Dataset n a anom r

01. Collembola (Kampichler, Dºeroski, & Wieland, 2000) 393 50 8 3
02. EDM (Karali£ & Bratko, 1997) 154 18 0 2
03. Forestry IRS (Stojanova, 2009) 2730 31 0 2
04. Forestry SPOT (Stojanova, 2009) 2730 51 0 2
05. Sigmea-real (Dem²ar, Debeljak, Lavigne, & Dºeroski, 2005) 817 8 0 2
06. Sigmea-simulated (Dem²ar, Debeljak, Lavigne, & Dºeroski, 2005) 10368 13 2 2
07. Solar-�are1 (Asuncion & Newman, 2007) 323 13 10 3
08. Solar-�are2 (Asuncion & Newman, 2007) 1066 13 10 3
09. Water quality (Dºeroski, Dem²ar, & Grbovi¢, 2000) 1060 30 0 14

The missing values in the dataset are replaced with modes and means from the training
data. The discrete variables with more than two possible values are converted to several
binary attributes. A discrete attribute with v possible values is converted into v−1 binary
attributes, using the one-attribute-per-value approach (Breiman et al., 1984). For more
details regarding the preprocessing of the data that the M5' implementation in WEKA
performs, see (Hall et al., 2009).

5.2 Experimental Design

One of the goals of a sound experimental design is to determine a good estimate of the
performance of the methods, on unseen data. This needs to be executed using a limited
number of available data instances. In order to estimate the predictive performance of the
obtained models, we employ the standard 10-fold cross-validation estimator. The data is
split into k = 10 parts of approximately equal size. In the jth step, the part j is used
as a test set, while the other k − 1 parts are used as a training set. To allow for a fair
comparison of the performance, for each of the selected methods we utilize exactly the
same folds.

The optimal parameters of the methods, for each of the 10 folds, are selected using
internal (nested) 5-fold cross validation. This means that for each of the 10 outer folds,
we perform nested 5-fold cross-validation, which would determine the optimal set of pa-
rameters for the method in that fold (Witten & Frank, 2005). For each of the methods,
several di�erent parameter values are tried. The list of parameter values for each of the
methods is reported in Table 5.3. It is worth noting that the Lolimot model tree algorithm
considered was set up in order to evaluate the candidate splits according to the prediction
error, as opposed to its default evaluation by using output error.

To test whether the obtained di�erences in performance are statistically signi�cant
given a single dataset, we apply the paired Student's t-test. This parametric test assumes
that the population follows a normal distribution. The paired t-test is applied to the results
of the methods on each of the 10 folds of the cross-validation procedure. In the case of
multiple target variables, the di�erences are assessed and reported for each target variable
independently.

To test the di�erence in performance of algorithms on all available datasets, we utilize
the non-parametric Wilcoxon signed rank test (Wilcoxon, 1945). It is commonly used
when the assumption of normality of the population cannot be made. For the predictive

50 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

performance, we utilize the error from the cross-validation procedure, i.e., the aggregated
performance from each of the folds. The signi�cance level used for both the paired t-test
and the Wilcoxon test is 0.01. This means that the null hypothesis, which states that the
di�erence between the two responses is zero, is rejected when the p-value is less than the
signi�cance level of 0.01.

Table 5.3: Method parameters considered for the experimental evaluation.

Method name Parameter name Values considered

M5' model tree (MT) Post-pruning T/F
LS Regression: only M5' fea-
tures

T/F

LS Regression: M5' feature se-
lection

T/F

Smoothing of linear models T/F

M5' regression tree (RT) Post-pruning T/F

Lolimot Maximal num. iterations 30

Bagging of M5' MTs or RTs Number of trees 100

Forest of M5' MTs or RTs Number of trees 100
Size of random subset of feat.
att

[0.2; 0.4; 0.6; 0.8] *#features

Bagging Lolimot Number of trees 100

5.2.1 Performance Measures

The experimental analysis evaluates the performance of the models learned, using di�erent
measures. The performance measures consider three aspects of the models: a) the predic-
tive performance of the models, b) the time required for model learning and c) the size of
the resulting model.

The predictive performance is measured in terms of root relative mean-squared error,
or abbreviated RRMSE, calculated as:

RRMSE =

√∑
(yi − ŷi)2√∑
(yi − ȳ)2

(5.1)

The tables in Section 5.3 report the aggregated RRMSE error of the 10 folds of the cross-
validation procedure. The results of the multi-target regression report the RRMSE for
each target separately.

The time required for model learning is reported in seconds, and it includes the total
time required for the 10-fold cross-validation procedure. The size of the trees is reported
as the number of terminal nodes (local models) of the tree. In a similar fashion, by size of
an ensemble of trees, we denote the average number of terminal nodes in the trees of the
ensemble. This notation is used in the whole chapter.

For all of the measures reported, a smaller value indicates better performance. This
is also consistent in the statistical test reports. For example, a result of the t-test which
reports the value 10:5 for the running time of algorithm variant A compared to B means
that for 10 datasets algorithm A had a stat.sign.smaller running time than B. Also it states
that for 5 other datasets, algorithm B had a stat.sign.smaller running time than A.

5.3 Experimental Results

This section reports the results of the empirical analysis, both on single-target and on
multi-target regression tasks. It is organized as follows: First, the performance of model

5.3. Experimental Results 51

trees and regression trees is evaluated on the benchmark machine learning datasets. Then,
the model trees are compared to ensembles, and �nally, the ensemble size is evaluated, by
considering ensembles with a di�erent number of trees.

5.3.1 Evaluating the Performance of Di�erent Tree Learning Algorithms

The experimental evaluation would compare the performance of di�erent types of trees and
ensembles thereof. This part outlines the types of trees which are used, and the algorithms
that built them.

The comparison includes regression trees and ensembles thereof, typically evaluated in
the machine learning domain. The regression trees are built by using the M5' algorithm
with the regression tree setting. Also, it compares crisp and fuzzy model trees. The former
are built by using the M5' algorithm, while the latter are built by using the Lolimot
algorithm. The crisp model trees are frequently included in machine learning comparative
studies, as single trees. However, ensembles of crisp model trees, fuzzy model trees, and
ensembles thereof are rarely used in machine learning studies. The motivation of the
analysis is to evaluate the applicability of the last two in the machine learning domain. In
summary, the types of models and the algorithms used in the evaluation, are as follows:

• crisp regression trees, built with the M5' algorithm (M5' RT, or only RT),

• crisp model trees, built with the M5' algorithm (M5' MT, or only MT),

• soft model trees, built with Lolimot (Lolimot).

In the following subsections, the di�erent tree learning algorithms would be compared by
�rst considering the single-target regression task, followed by an analysis of the methods
for multi-target regression.

5.3.1.1 Single-target Regression

Here we report the performance of the regression tree approach and the two model tree
approaches for the single-target regression tasks. The results of the predictive performance
are summarized in Table 5.4. On the one hand, they show that there is no signi�cant dif-
ference between the performance of M5' model trees and Lolimot trees. The t-test reports
that the M5' model tree outperforms Lolimot in 5 of the 49 cases, while the Lolimot model
shows better performance in 7 of the 49 cases. The Wilcoxon test detects no statistically
signi�cant di�erence at the 1% level, which is also supported by the markers placed mainly
around the diagonal, in Figure 5.1. On the other hand, the comparison to regression
trees shows that M5' model trees are a better performing approach, and this di�erence is
statistically signi�cant according to the Wilcoxon test.

Table 5.4: A statistical comparison of the predictive performance of model trees (MT), soft
model trees (Lolimot), and regression trees (RT), for the task of single-target regression.
A summary of Table A.1. The results reported in all tables compare the leftmost method,
in this case M5' MT, to all of the other methods, by using paired comparisons.

M5' MT : Lolimot RT
t-test 5:7 21:0
w-test 0.384 0.000

52 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

Table 5.5: A statistical comparison of the model sizes and running times of model trees
(MT), soft model trees (Lolimot), and regression trees (RT), for the task of single-target
regression. A summary of Table A.2. The number of wins, denoted as "#wins" is reported
in the �rst row in this and in the following tables with results for the size of the models and
the running time. The values only summarize the number of datasets on which variant A
had a smaller value than variant B, i.e., no statistical test is considered. The sum of the
number of wins for the method tested and its alternative would always add up to the total
number of datasets.

Model size Learning time (sec.)
M5' MT : Lolimot RT M5' MT : Lolimot RT
#wins 23:26 42:7 49:0 1:48
w-test 0.003 0.019 0.000 0.000

Considering the size of the trees, reported in Table 5.5, we can conclude that M5'
builds larger trees than Lolimot, and the di�erence is statistically signi�cant. Also, a
RT is typically larger than an M5' model tree, however the di�erence is not statistically
signi�cant at the 1% level. Both of these results are expected, since one could expect that
the soft model tree requires less local models to obtain the same predictive performance as
compared to the crisp model tree. Also, in theory, a linear model of the model tree is able
to replace a subtree of the regression tree, modeling a linear relationship, and lowering the
number of local models.

In spite of the di�erences in sizes, the running times are the smallest for regression
trees, and largest for the Lolimot method. This is expected for M5' MTs and M5' RTs, due
to the same tree building phase, and the additional local model estimation performed by
the former approach during the tree pruning phase. Also, it is expected when comparing
M5' to Lolimot, mainly because of the lookahead step included in the Lolimot approach,
which includes estimation and evaluation of local linear models.

5.3.1.2 Multi-target Regression

The results of the predictive performance on the multi-target regression tasks are summa-
rized in Table 5.6. Similar to the single-target case, they suggest no di�erence between
the performance of M5' and Lolimot, and a statistically signi�cant di�erence between M5'
model trees and regression trees.

The comparison results of an M5' MT to a RT, show that the former wins on 4 of the
9 multi-target datasets. Also, the Wilcoxon test reports this as a statistically signi�cant
di�erence, at the 1% level. More insight into the di�erences in performance are presented
in Figure 5.2. The results there con�rm that the model tree outperforms the regression
tree on the multi-target regression task.

Table 5.6: A statistical comparison of the predictive performance of di�erent tree learning
algorithms for the task of multi-target regression. A summary of Table A.3.

M5' MT: Lolimot RT
t-test 0:0 4:0
w-test 0.150 0.006

5.3. Experimental Results 53

Figure 5.1: A comparison of the predictive performance of Model trees (MT) and soft
model trees (Lolimot).

Table 5.7: A statistical comparison of the model sizes and running times of di�erent tree
learning algorithms for the task of multi-target regression. A summary of Table A.4.

Model size Learning time
M5' MT: Lolimot RT M5' MT: Lolimot RT
#wins 3:6 8:1 9:0 0:9
w-test 0.039 0.875 0.004 0.004

The results for the model sizes in Table 5.7 show that the M5' MTs and RTs have
similar sizes for most of the datasets. The w-test produces quite a high p-value, indicating
that there is very little evidence of di�erently-sized models. The comparison of M5' MTs
to Lolimot is in favor of the latter, but the di�erence is not statistically signi�cant.

5.3.2 Comparing Model Trees to Ensembles

This subsection compares the performance of ensembles of di�erent types of trees, to the
performance of an M5' model tree. The decision to consider only the M5' model tree
here was in�uenced by the results from the previous subsection, where the M5' model tree
and Lolimot both showed acceptable performance, however, the learning times of the M5'

54 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

regression tree

M
5

’
m

o
d

e
l
tr

e
e

Collembola

EDM

Forestry IRS

Forestry SPOT

Sigmea−real

Sigmea−simulated

Solar−flare1

Solar−flare2

Water quality

Figure 5.2: A comparison of the predictive performance of an M5' model tree to a regression
tree for the task of multi-target regression. Each marker represents one target variable of
the corresponding multi-target dataset.

algorithm were substantially smaller.

The ensembles considered in this subsection are built using the three types of base
models, discussed earlier. Also, the ensembles are built by using both bagging and forest
approaches, with the exception of the Lolimot method, where only bagging is considered.
In more detail, the method variants considered here, and their abbreviations are: forests of
M5' model trees (FMT), bagging of M5' model trees (BMT), a single M5' model tree (MT),
forests of M5' regression trees (FRT), bagging of M5' regression trees (BRT) and bagging
of soft Lolimot trees (BL). All ensembles analyzed in this part consist of a �xed number of
100 trees. This analysis �rst compares the methods for the single-target regression tasks,
and uses the datasets listed in Table 5.1. Then it considers the multi-target regression
tasks and the datasets listed in Table 5.2.

5.3.2.1 Single-target Regression

The results of the ensembles for the single-target regression task are summarized in Table
5.8. The statistical tests show that the di�erence in predictive performance of forests of
M5' model trees is statistically signi�cant when compared to a single M5' model tree, and
when compared to each of the ensemble variants built using regression trees or soft Lolimot
model trees. The di�erence of forests of M5' model trees to bagging of M5' model trees
is not statistically signi�cant at the 1% level, according to the Wilcoxon test. Also, the
t-test reveals that the number of datasets on which the former is signi�cantly better than
the later, is only 7, out of 49.

5.3. Experimental Results 55

Table 5.8: A statistical comparison of the predictive performance of the ensemble ap-
proaches for single-target regression. All ensembles consist of 100 trees. Summary of Table
A.5.

FMT : BMT MT FRT BRT BL
t-test 7:1 16:0 13:0 14:0 12:1
w-test 0.028 0.000 0.001 0.000 0.003

Table 5.9: A statistical comparison of the model sizes and running times. Summary of
Table A.6.

Model size Learning time (sec.)
FMT : BMT MT FRT BRT BL FMT : BMT MT FRT BRT BL
#wins 18:31 22:27 37:12 28:21 11:38 2:47 0:49 0:49 0:49 2:47
w-test 0.001 0.236 0.012 0.462 0.000 0.000 0.000 0.000 0.000 0.000

A comparison of the predictive performance of forests of model trees to a single model
tree is shown in Figure 5.3. The results in the �gure show that the most of the markers
are below the diagonal, which indicates that a forest of M5' model trees provides an
improvement in predictive performance over a single M5' model tree.

Figure 5.3: A comparison of the predictive performance of a single M5' model tree to that
of forest ensemble of M5' model trees.

56 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

Regarding the sizes of the trees, summarized in Table 5.9, the results suggest that
bagging of M5' model trees builds smaller trees than forests of M5' model trees. Also,
forests of M5' model trees build smaller trees than forests of regression trees, which is
somewhat expected. In theory, the linear models can potentially replace a subtree of the
regression tree consisting of several splits, which forms a piecewise constant model. The
results for the soft model trees show that the bagging of Lolimot trees approach creates
trees with less local models than the forests of model trees. This can also be considered
as expected, since the soft model tree formalism would require less local models than the
crisp one, to achieve comparable accuracy on a smooth function approximation task.

5.3.2.2 Multi-target Regression

The results of the multi-target regression analysis for the di�erent types of ensembles are
shown in Table 5.10, which is a summary of Table A.7. The results reveal that the forests
of M5' model trees show improvement over bagging of M5' model trees and a single M5'
model tree, while they have similar performance to the regression tree and Lolimot variants.
The Wilcoxon test shows that the di�erence to the bagging of M5' model trees and a single
M5' model tree is signi�cant at the 1% level. The performance of forests and a single M5'
model tree is also presented visually, in Figure 5.4. The most of the markers visible are
below the diagonal, which suggests that the forests improve over the single tree. However,
the markers for two of the datasets are not visible, as their errors were out of the scope of
the �gure.

Table 5.10: A statistical comparison of the predictive performance. Summary of Table
A.7.

FMT : BMT MT FRT BRT BL
t-test 1:0 3:0 3:0 2:0 4:0
w-test 0.001 0.001 0.837 0.102 0.027

Table 5.11: A statistical comparison of the model sizes and running times. Summary of
Table A.8.

Model size Learning time (sec.)
FMT : BMT MT FRT BRT BL FMT : BMT MT FRT BRT BL
#wins 4:5 4:5 9:0 5:4 2:7 1:8 0:9 0:9 0:9 0:9
w-test 0.078 0.375 0.250 0.688 0.016 0.020 0.004 0.004 0.004 0.004

A detailed look at the results shows large errors obtained by the three ensemble variants
using model trees, on the Sigmea simulated dataset. The large errors values are evident
for all of the targets in this dataset, and they convey that some of the model trees in
the ensemble have incorrect local model coe�cients. In more detail, Table A.7 reveals
that all three variants using M5' model trees, i.e., a forests of M5', bagging of M5' and a
single M5' model tree, have large errors for both targets of the Sigmea simulated dataset.
However, the t-test outcome states an equal performance to bagging of regression trees
and of Lolimot trees. Further analysis of the results for this dataset show that for several
of the folds the model tree and ensembles thereof contain incorrect local models, and the
error for the folds in question is quite large. The model errors corresponding to these
folds also increase the �nal cross-validated RRMSE error measure. For the other folds, the

5.3. Experimental Results 57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M5’ model tree

F
o

re
s
ts

 o
f

M
5

’
m

o
d

e
l
tr

e
e

s
.

Collembola

EDM

Forestry IRS

Forestry SPOT

Sigmea−real

Sigmea−simulated

Solar−flare1

Solar−flare2

Water quality

Figure 5.4: A comparison of the predictive performance of a single M5' model tree to that
of forest of M5' model trees for the task of multi-target regression.

errors of all three M5' model tree-based methods are comparable to the methods based on
regression trees and Lolimot trees.

The incorrect local models learned for this dataset might be due to the small number
of training points in some of the partitions. One possible solution to this problem is
the "capping", as mentioned in the work of Pfahringer (2011). Using this approach, the
model tree predictions are modi�ed, so that they are in some pre-de�ned range. Overly
large or small model predictions would be replaced by the minimum or maximum of the
corresponding target variable in the training set.

Also, for the Collembola dataset, all variants based on model trees overprune and build
rather small models consisting mostly of only one local model. This is the reason why both
approaches based on regression trees have smaller errors on this dataset. In summary, the
results suggest that the overpruning issue and the incorrect local models issue could reduce
the applicability of model trees and ensembles thereof, for multi-target regression.

5.3.3 Ensemble Size

This subsection presents the analysis of the ensemble size on its performance, on the task
of single-target regression. It considers the forests of M5' model trees, which proved to be
the most successful ensemble approach of the ones compared earlier.

The results in Table 5.12 summarize the results when considering forests of 100, 50
and 25 model trees. The outcomes of the statistical tests show that there is a signi�cant
di�erence in performance between forests with 100 M5' model trees and forests with 25
trees. According to the Wilcoxon test, the di�erence is signi�cant at the 1% level, while
the t-test shows a signi�cant di�erence for only two multi-target datasets. Additionally,
the prediction performance results visualized in Figure 5.5 show that the improvement in
performance by using 100 trees over 25 trees, is rather small.

58 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

Table 5.12: A statistical comparison of the predictive performance of forests of M5' model
trees with a di�erent number of trees, for the task of single-target regression. Summary of
Table A.9.

FMT(100) : FMT(50) FMT(25)
t-test 0:1 2:0
w-test 0.064 0.000

Table 5.13: A statistical comparison of the model sizes and running times of forests of M5'
model trees with a di�erent number of trees. Summary of Table A.10.

Model size Learning time (sec.)
FMT(100) : FMT(50) FMT(25) FMT(100) : FMT(50) FMT(25)
#wins 29:20 25:24 8:41 0:49
w-test 0.885 0.770 0.000 0.000

The comparison of the model tree sizes in each of the forest variants, shown in Table
5.13, suggests that all three variants build model trees with comparable sizes. In other
words, the results do not o�er enough evidence to reject the null hypothesis of same-sized
model trees. As expected, the running times are in favor of the ensemble with 25 model
trees.

Figure 5.5: A comparison of the predictive performance of forests of M5' model trees with
100 and 25 model trees.

5.3. Experimental Results 59

5.3.4 Summary

In summary, the empirical analysis showed that the model trees outperform the regression
trees, and their size is also smaller. It also showed that the forests of M5' model trees
improve the predictive performance over a single model tree. Additionally, the comparison
of the forests of M5' model trees to the regression tree ensembles showed an improvement
only in the single-target case. In the following, we outline some of the other conclusions
which this analysis provides.

The predictive performance comparison of the single trees showed that there was no
statistically signi�cant di�erence between Lolimot and M5' MTs. Also, the M5' MTs
outperformed the RTs, and the di�erence was statistically signi�cant. The di�erences for
the latter comparison were visible both in the single-target, as well as the multi-target
analysis. Such results were expected, since the M5' and Lolimot model trees are a more
powerful modeling formalism than regression trees.

Regarding the comparison of the sizes of trees, in terms of the number of terminal nodes,
the results showed that Lolimot built smaller or equal trees as the M5' MT algorithm. This
might be a�ected, however, by the limit of 30 terminal nodes in the Lolimot tree. The
comparison of M5' MTs to RTs showed that the model trees require less terminal nodes
for some datasets and a comparable number of terminal nodes for others. The statistical
test did not detect a signi�cant di�erence between these two. Since both are built using an
identical tree building phase, the di�erence in size is due to the di�erent amount of pruning.
As expected here, the linear models in the model trees allow the pruning procedure to
perform more reduction of the tree size. This was visible both in the comparison of the
single trees in Subsection 5.3.1, and in the comparisons of ensembles, where the sizes of
trees included in an ensemble were analyzed, cf. Subsection 5.3.2.

This chapter also tried to answer the question whether ensembles of model trees improve
the predictive performance over a single model tree. A conclusion regarding this can be
made from both Figure 5.3 and 5.4: The forests of M5' model trees increase the predictive
performance over a single M5' model tree. The di�erence is statistically signi�cant for both
the single-target, and the multi-target regression, at the 1% level. However, the multi-
target analysis showed that the M5' multi-target model tree algorithm needs to overcome
two potential issues in the ensemble setting. The �rst is the identi�cation of incorrect
local models, which is due to the small sample of data points, while the second is that the
pruning procedure can reduce the tree to a single local model. The issues appeared in 2
and 3 of the 9 multi-target datasets, respectively.

To overcome the issues it might be bene�cial to limit, i.e., cap, the predictions of
the model tree in the ensemble setting. The regression tree approaches do not have this
problem, since they only learn a constant model in the terminal nodes, i.e., only �t one
parameter (intercept) using the potentially small number of training points. On the other
hand, the model trees use the same training points to �t p+ 1 parameters.

The analysis included a comparison of the forests of M5' model trees to bagging. It
concluded that the forests either improve the predictive performance over bagging, or in
the worst case show similar results. On the one hand, the forests have the advantage of
faster learning than bagging, since the tree algorithm needs to evaluate a smaller amount
of candidate splits. On the other hand, the forests require that the size of random subset
of features be tuned. Regarding the comparison of forests with a di�erent number of trees,
it was shown that there is a signi�cant improvement when considering a forest of 100 trees,
over a forest of 25 trees.

The comparison of ensembles of M5' model trees to ensembles of Lolimot showed that
forests of M5' model trees signi�cantly improved the predictive performance over a bagging
of the same number of Lolimot trees, for the single-target regression. For the multi-target

60 Chapter 5. Evaluation on Benchmark Machine Learning Regression Datasets

regression the improvement was not signi�cant, however di�erences in performance in favor
of the �rst were again visible. The running times, were, as expected, in favor of the crisp
model tree ensembles.

It is worth noting that, as future work, the analysis could be extended by including
related methods that build soft or fuzzy regression trees. They could potentially build
competitive models, however the algorithms that learn such trees are typically more com-
putationally expensive than the M5' algorithm used here. Examples of soft regression
trees, or in more general terms fuzzy decision trees, include the approaches of Olaru and
Wehenkel (2003) and Suarez and Lutsko (1999).

61

Chapter 6

Evaluation for Modeling Dynamic

Systems

The empirical evaluation in this chapter will try to answer several questions regarding
the application of model trees and ensembles for modeling nonlinear dynamic systems in
discrete time. To achieve this, it is going to consider seven dynamic system case studies
that will be used in the empirical evaluation. In the following, a summary of all available
data would be presented, along with the details of the experimental procedure, the methods
selected for comparison, as well as their parameters. Finally, the results of the experiments
would be presented, starting with the analysis of the model tree algorithm modi�cations
and �nishing with the evaluation of the model tree ensembles for single-output and multi-
output modeling of nonlinear dynamic systems.

The questions that this evaluation will try to answer consider the using of crisp and
soft model trees for modeling dynamic systems. This chapter will present the results of
the evaluation of the proposed modi�cations to the base learning algorithms M5', which
produces crisp model trees, and Lolimot, which produces soft model trees. It will also em-
pirically analyze the performance of ensembles, built using the two model tree algorithms.
In particular it will try to provide answers to the following questions:

• Do the proposed modi�cations to the model tree learning algorithms improve the
performance for modeling dynamic systems?

• Is the multi-output modeling bene�cial, as compared to single-output modeling?

• Do the proposed ensemble methods improve over the performance of single model
trees?

• Are the two di�erent model tree algorithms resilient to noise?

• How does the ensemble of model trees compare to selected, frequently used methods
for identi�cation of dynamic systems?

The �rst question is going to be addressed by evaluating each of the proposed modi�-
cations to the model tree learning algorithms, by using several case studies which include
measured and synthetic data of nonlinear dynamic systems. For the second question two
types of models would be compared: a set of single-output models, where each model
predicts one output variable, to a single multi-output model, which predicts all output
variables simultaneously. The comparison would be performed by performing simulation,
which assumes using predicted values for all output variables, and where the error ac-
cumulation could easily sort out the incorrect models. The third and fourth questions

62 Chapter 6. Evaluation for Modeling Dynamic Systems

would be addressed by performing empirical comparisons of model trees and ensembles of
models trees, built on data from the same case studies. Recall that for some of the case
studies measured data were available, and these already contain certain amounts of noise.
On the other hand for the synthetic datasets, we add noise to the output variables. The
last question is going to be addressed by comparing the ensembles to the frequently used
feed-forward Neural Networks and the hybrid neuro-fuzzy approach ANFIS.

6.1 Dynamic System Case Studies

We take into consideration seven dynamic system case studies from the areas of industrial
engineering and mechanical engineering. One of the case studies presents a real world sce-
nario of an experiment performed using a semi-industrial process plant at the Joºef Stefan
Institute, i.e., the gas-liquid separator. Three other case studies, namely the Continuous-
stirred Tank Reactor (CSTR), Steam Generator and the Winding process, are described
and their data are published in the Daisy repository (De Moor, 2013). One of the case
studies, concerning an anthropomorphic robot arm, is described and published by an inde-
pendent source. Finally, two of the case studies, namely, pH Neutralization, and Narendra,
are synthetic.

For each of the case studies, we also provide information regarding the input signals and
the sampling time. The reasons for providing this information along with the description
of the case studies were outlined in Section 2.1. Namely, the choice of the input signals
during the data gathering procedure determines the distribution of the data points. Several
di�erent types of input signals exist, with two possible types being step-like (e.g., pseudo-
random binary) and sine signals with di�erent frequencies. The di�erent types of excitation
signals have a huge impact on the distribution of the data points that would be used for
training and the expected accuracy of the model. In the remainder of this subsection we
describe the dynamic system case studies which we use to evaluate our methodology.

6.1.1 Case Study: Continuous-stirred Rank Reactor

Ca

T
Cooling Jacket

Product

Feed

Tc0

Figure 6.1: A diagram of the continuous-stirred tank reactor.

This case study concerns the well-known continuous-stirred tank reactor (CSTR). The
CSTR process (Espinosa & Vandewalle, 1999; Lightbody & Irwin, 1997), depicted in Figure
6.1, describes a reaction of two products which are mixed. The products react and generate
a compound A, whose concentration is Ca(t). The temperature of the mixture is T (t). This

6.1. Dynamic System Case Studies 63

exothermic reaction is controlled by introducing a coolant, whose �ow rate is qc(t). The
di�erential equations which describe the process are:

Ċa(t) =
q

v
(Ca0 − Ca(t))− k0Ca(t)e−

E
RT (t) (6.1)

Ṫ (t) =
q

v
(T0 − T (t))− k1Ca(t)e−

E
RT (t)

+k2qc(t)(1− e−
k3
qc(t))(Tc0 − T (t)) (6.2)

The modeling problem has one input variable (qc) and two output variables (Ca and T).
The numerical values for the other parameters of the model are given by Lightbody and
Irwin (1997), Appendix A. The data that are used in this thesis are obtained from the
Daisy repository (De Moor, 2013), where it is stated that the sampling time used to obtain
the data Ts is 6 s. The number of data points is 7500, where the �rst 5000 are used as
training points, and the last 2500 as testing points (Espinosa & Vandewalle, 1999). The
input-output data of the test set are depicted in Figure 6.2 and denoted as CSTR.

0 5000 10000 15000
−4

−2

0

2

4

q

0 5000 10000 15000
−4

−2

0

2

4

C
a

0 5000 10000 15000
−4

−2

0

2

4

Time (s)

T

Figure 6.2: Normalized input-output data of the CSTR dynamic system. Data used for
testing.

As Figure 6.2 shows, the CSTR data originating from the repository do not contain
noise. In the analysis, we would also like to address the noise issue and to obtain insights
into the noise-tolerance of the model tree and ensemble methods. For this purpose we create
an additional version of the dataset, denoted as CSTR', with added noise. We added white

64 Chapter 6. Evaluation for Modeling Dynamic Systems

noise with mean zero and standard deviation of 20% of the standard deviation of the output
variables. The noise was added only to the output variables in the training set, i.e., to
all corresponding lagged variables in the set of features, as well as in the output variables
(targets) of the training set. No noise was added to the test data.

6.1.2 Case Study: Gas-liquid Separator

The system being modeled in this case study is a unit for the separation of gas from
liquid (Kocijan & Likar, 2008). The separator unit is a semi-industrial process plant which
belongs to a larger pilot plant, residing at the Joºef Stefan Institute. A scheme of the
structure of the plant is given in Figure 6.3.

The purpose of the modeled system is to capture �ue gases under low pressure from the
e�uent channels using a water �ow, cool the gases down, and supply them with increased
pressure to other parts of the pilot plant. The �ue gases coming from the e�uent channels
are absorbed by the water �ow into the water circulation pipe through the injector I1. The
�ow of water is generated by the water ring pump (P1), whose speed is kept constant.
The pump feeds the gas-water mixture into the tank T1, where the gas is separated from
the water. The accumulated gases in the tank form a kind of a pressurized gas 'cushion'.
Due to this pressure, the �ue gases are blown out from the tank into the neutralization
unit, while on the other hand, the water is forced by the 'cushion' to circulate back to the
reservoir. The water quantity in the circuit is constant.

T2

LT 2

Flue gas LT

1

PT

1

FT

2

FT

1

T1

P1

V2

V1

h1

p1

h2

Flue gas

I1

Figure 6.3: A schematic diagram of the semi-industrial process plant.

The �rst-principles model of the system is a set of di�erential equations. The variable
p1 is the relative air pressure in the tank T1, the variable h1 is the liquid level of the
tank T1, while u1 and u2 are command signals for the valves V1 and V2 respectively. The
di�erential equation for the air pressure variable p1 has the form:

dp1
dt

= fa(h1)[α1 + α2p1 + α3p
2
1 + fb(u1)

√
p1 + fc(u2)

√
(p1 + α4 + α5h1)] (6.3)

where the values αi are constants, while fa(h1), fb(u1) and fc(u2) are functions of the
corresponding variables. fa(h1) is a rational function of h1, while fb(u1) and fc(u2) are

6.1. Dynamic System Case Studies 65

the valve characteristics (exponential functions of u1 and u2 respectively). The di�erential
equation for the variable which denotes the liquid level of the tank, h1, is:

dh1

dt
= α6 + fc(u2)

√
(p1 + α4 + α5h1) (6.4)

where the value α6 is a constant. The details of the model are given by Kocijan and Likar
(2008).

The aim of the system identi�cation in this case study is to build a model for predicting
the value of the pressure variable p1, from lagged values of itself, as well as lagged values
of the input variables. The sampling time selected was 20 s, same as in the work of
Kocijan and Grancharova (2010). The training and the testing data both consist of 733
input-output data points, shown in Figure 6.4, and are disturbed by intrinsic measurement
noise. The optimal lag was chosen by considering lag values from 1 to 3. For illustration,
for a lag of 1, the system identi�cation problem is transformed to the following regression
problem:

p1(k) = f1(p1(k − 1), u1(k − 1), u2(k − 1), h1(k − 1)) (6.5)

h1(k) = f2(p1(k − 1), u1(k − 1), u2(k − 1), h1(k − 1)) (6.6)

of �tting the static nonlinear functions f1 and f2.

0 5000 10000 15000
−5

0

5
Training data

u
1

0 5000 10000 15000
−5

0

5
Test data

0 5000 10000 15000
−2

0

2

u
2

0 5000 10000 15000
−5

0

5

0 5000 10000 15000
−2

0

2

h
1

0 5000 10000 15000
−2

0

2

0 5000 10000 15000
−5

0

5

Time (s)

p
1

0 5000 10000 15000
−5

0

5

Time (s)

Figure 6.4: Input-output data for identi�cation of the gas-liquid separator system. De-
trended identi�cation data are shown in the left and detrended validation data in the right
four panels.

66 Chapter 6. Evaluation for Modeling Dynamic Systems

6.1.3 Case Study: Narendra System

This case study considers the synthetic Narendra nonlinear dynamic system (Narendra
& Parthasarathy, 1990). This dynamic system is composed of an input variable u and a
system variable y, which are connected by the following relation

y(k + 1) =
1

1 + y(k)2
+ u(k)3. (6.7)

The identi�cation data shown in Figure 6.5 consists of 2000 data points for training and
2000 for testing, generated by using a di�erent input signal u, with the same properties. In
the experimental analysis we consider two versions of the data, one without and one with
added noise. We added white noise with standard deviation of 20 % of the output variable
deviation. The noise was added by following an identical procedure, as with the CSTR
system, described above. The version of the data without noise is denoted by Narendra,
while the version with noise is denoted by Narendra' in the empirical analysis.

0 100 200 300 400 500 600 700 800
−1.5

−1

−0.5

0

0.5

1

1.5
Testing data for the Narendra system

u

y

Figure 6.5: Input-output data for identi�cation of the Narendra system. Testing data are
shown, up to time step 800.

6.1.4 Case Study: pH Neutralization

The control of alkalinity (pH) is common in biotechnological industries and chemical pro-
cesses. The topic of this case study is the identi�cation of the pH neutralization process,
which exhibits severe nonlinear behavior (Henson & Seborg, 1994; Kocijan & Petelin,
2011). What follows is a short description of the process itself, the equations governing the

6.1. Dynamic System Case Studies 67

process and the synthetic data generated from this model of the pH neutralization process,
which are used for the task of system identi�cation.

T1

T2

Q1

Q2

Q3

Q4

h1

pH
pH

Figure 6.6: A schematic diagram of the pH neutralization system.

The pH neutralization system, described in detail by Henson and Seborg (1994), con-
sists of an acid stream Q1, a bu�er stream Q2, and a base stream Q3 that are mixed in
a tank T1. Before mixing takes place, the acid stream Q1 enters another tank T2. The
measured variable is the e�uent pH, which is controlled by manipulating the �ow rate of
the base stream Q3. The �ow rates of the acid and bu�er streams are taken to be constant.
A schematic diagram of the system is shown in Figure 6.6.

A model of this dynamic system is derived by Henson and Seborg (1994), which contains
the following state, input and output variables:

x = [Wa4 Wb4 h1]
T , u = Q3, y = pH (6.8)

where Wa4 and Wb4 are the e�uent reaction invariants and h1 is the liquid level of tank
T1. Also, it is assumed for the state variable h1 that a controller has already been designed
to keep its level at a nominal value of h′1 = 14cm by manipulating the exit �ow rate Q4.
The state-space model obtained has the form:

ẋ = f(x) + g(x)u (6.9)

c(x, y) = 0 (6.10)

where f(x) and g(x) are nonlinear functions of the state vector x, while c(x, y) is a nonlinear
function which is a part of the implicit output equation (Eq. (6.10)). In the analysis, we
consider four variants of the pH data, both with and without noise and generated by two
di�erent input signals. In all four variants the sampling time selected was 25 s, same as in
the work of Kocijan and Petelin (2011).

In the �rst two dataset variants the input variable u changed its value every 500 s,
each time being set to a value generated by using a uniform random distribution. The
input-output data used, shown in Figure 6.7, consist of 320 data points for identi�cation
and 320 data points for validation. The �rst variant is denoted as pHA.

68 Chapter 6. Evaluation for Modeling Dynamic Systems

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

u

Identification data

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1

0

1

2

3

4

Time (sec)

y

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

u

Validation data

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1

0

1

2

3

4

Time (sec)

y

Figure 6.7: Input-output data for identi�cation of the pHA (and pH'A) system; detrended
identi�cation data (left) and detrended validation data (right). The bottom left panel
shows both the non-noisy data (solid line) and the data with 20% noise (dots).

To evaluate the resilience of the identi�cation methods to noise, another variant of the
data was considered, denoted as pH'A, where white noise was added to the output (system)
variable only in the identi�cation data. The standard deviation of the added white noise
was 20% of the output variable's standard deviation. The bottom left panel in Figure 6.7
shows the identi�cation data with 20% noise. The validation data were not disturbed by
white noise.

The third and the fourth dataset variants, denoted as pHB and pH'B consist of 400
data points for identi�cation and 400 for validation. In this case the input variable u has
considerably di�erent dynamics, and the input signal u changed its value in every second
time step, as shown in Figure 6.8. We use the notation pHB to refer to the variant which
does not contain noise, while pH'B for the variant with 20% noise added, the same way as
for pH'A. The experimental procedure required a determination of the optimal dynamic
order (lag) of the variables in the pH system. The values for the lag that we chose to
evaluate for the four variants of the dataset ranged from 1 to 4.

6.1. Dynamic System Case Studies 69

0 2000 4000 6000 8000 10000
0

5

10

15

20
u

Training data

0 2000 4000 6000 8000 10000
0

5

10

15

20

u

Test data

0 2000 4000 6000 8000 10000
2

4

6

8

10

y

Time (s)

0 2000 4000 6000 8000 10000
2

4

6

8

10

y

Time (s)

Figure 6.8: Input-output data for identi�cation of the pHB (and pH'B) system; identi-
�cation data (left) and validation data (right). The bottom left panel shows both the
non-noisy data (solid line) and the data with 20% noise (dots).

6.1.5 Case Study: Steam Generator

This case study concerns the identi�cation of a steam generating plant at the Abbott Power
Plant in Champaign, Illinois, using input-output data obtained from the DaISy repository
(De Moor, 2013). The unit is dual fuel (oil/gas) �red and performs both heating an electric
power generation.

The aim is to identify a 4-input 4-output nonlinear plant model. A diagram of the
process inputs and outputs is shown in Figure 6.9. Before identi�cation is performed, the
water level control is stabilized using feed-forward control and PID control (Espinosa &
Vandewalle, 1999). The control signal for the feed-forward control is proportional to the
steam �ow. The PID controller is added to compensate the mass in the drum. The purpose
of the identi�cation is the speci�c control objective of preserving the level of the header
pressure and the oxygen level in the �ue gas (Pellegrinetti & Bentsman, 1996).

The four inputs are the fuel �ow rate u1, air �ow rate u2, water reference level u3
and steam demand u4 (disturbance de�ned by the load level). The four output variables
are the steam pressure y1, excess oxygen y2, water level y3 and steam �ow rate y4. The
available data used for identi�cation, shown in Figure 6.10, are obtained from the DaISy
repository (De Moor, 2013). The total number of data points is 9600, out of which the �rst
7600 were used for training and 2000 points were used for testing. The sampling rate is 3

70 Chapter 6. Evaluation for Modeling Dynamic Systems

seconds. The modeling task is a challenging one: The plant exhibits high-order dynamics,
and displays transportation delays due to the piping, which result in varying dead times,
as well as large amounts of sensor noise.

u1

u3

u2

y1

y4

y2

y3Furnace

Steam

Drum

Mud

Drum
Burner

Induced Draft Fan

Forced Draft Fan

Figure 6.9: A diagram of the steam generator plant.

500 1000 1500 2000
−2

0

2
Input variables

u
1

500 1000 1500 2000
−2

0

2

u
2

500 1000 1500 2000
−2

0

2

u
3

500 1000 1500 2000
−2

0

2

u
4

500 1000 1500 2000
−2

0

2

4
Output variables

y 1

500 1000 1500 2000
−5

0

5

y 2

500 1000 1500 2000
−2

0

2

4

y 3

500 1000 1500 2000
−2

0

2

4

y 4

Figure 6.10: Input-output data of the steam generator dynamic system used for testing.

6.1. Dynamic System Case Studies 71

6.1.6 Case Study: Robot Arm

This case study deals with modeling a 7-degree-of-freedom anthropomorphic robot arm
(Vijayakumar & Schaal, 2000), shown in Figure 6.11. The data comes from a robot arm
which performs various rhythmic and discrete movement tasks. The robot arm system
studied here is highly nonlinear and presents a modeling challenge.

The data is collected with a sampling rate of 0.1 s and consists of 21 input variables and
7 output variables. The 21 input dimensions are the 7 joint positions, 7 joint velocities,
and 7 joint accelerations, while the 7 output dimensions are the 7 torque commands,
τ1, τ2, · · · , τ7, for each of the motors. The modeling goal is to approximate the torque
commands of every robot motor in response to the vector of input variables.

The number of data points used in this study is 2000, where the �rst 1000 are used for
training and the last 1000 are used for testing. One part of the training data is shown in
Figure 6.12, where it is visible that the data is nonlinear and contains a small amount of
noise.

Figure 6.11: The 7-degree-of-freedom anthropomorphic robot arm.

0 50 100 150 200 250 300 350 400
−5

0

5
(a)

0 50 100 150 200 250 300 350 400
−5

0

5
(b)

0 50 100 150 200 250 300 350 400
−5

0

5
(c)

0 50 100 150 200 250 300 350 400
−5

0

5
(d)

Figure 6.12: Input-output data for the robot case study, where only the �rst 400 normalized
data points from the training set are shown. The �gure depicts (a) the 7 joint positions,
(b) the 7 joint velocities, (c) the 7 joint accelerations, and (d) the 7 torque commands
(outputs).

72 Chapter 6. Evaluation for Modeling Dynamic Systems

6.1.7 Case Study: Winding Process

This process is a setup of an industrial winding process pilot plant (Bastogne, Garnier, &
Sibille, 2001). It is composed of a plastic web and three reels coupled with direct-current
motors. The web is unwinded from the �rst reel (denoted as unwinding reel), goes over
the traction reel and is rewinded back on the rewinding reel, shown in Figure 6.13.

The task is to control the web tension in order to avoid sliding e�ects, wrinkles and
material distortion. It presents a nonlinear and time-variant system. For this system, the
three angular speeds S1, S2, S3, are measured by using dynamo tachometers. Data about
the setpoint current at the DC motor M1, and the setpoint current at the DC motor M2

is also available.

T1 T3

S1

I1

M1 M2 M3

I3

S3S2

unwind reel

traction reel
rewind reel

web

Figure 6.13: A diagram of the winding process.

The tensions in the web between the �rst and the second reel (T1), and between the
second and the third reel (T2) are measured by tension meters. These two variables are
the outputs, while the previous �ve are considered inputs (De Moor, 2013). The sampling
rate is 0.1 s, while there are 2500 data samples available, covering a period of 250 s. The
input-output data used are shown in Figure 6.14.

6.2. Datasets 73

0 50 100 150
−10

0

10

S
1

0 50 100 150
−10

−5

0

5

S
2

0 50 100 150
−10

−5

0

5

S
3

0 50 100 150
−4

−2

0

2

M
1

0 50 100 150
−2

0

2

M
2

0 50 100 150
−10

0

10

Time (s)

T
1

0 50 100 150
−10

−5

0

5

Time (s)

T
2

Figure 6.14: Input-output data for the winding case study. Only the training data are
shown. The �rst three rows show the �ve input variables, while the last row shows the two
output variables.

6.2 Datasets

This part �rst describes the preprocessing of the dynamic system measurements, which
are performed for each of the dynamic system case studies, introduced earlier. It also
describes the procedure for the determination of the optimal dynamic order. Finally, it
summarizes the transformed datasets, which are used in the machine learning setting, for
the evaluations that follow.

6.2.1 Preprocessing

The input-output data of the dynamic systems that are considered, require a preprocessing
step. The transformation of the systems measurements is performed in order to successfully
model the dynamic system. The measurements are transformed according to the external
dynamics approach (Nelles, 1999). The approach is named "external" since there is a clear
separation: external dynamics �lter bank and a nonlinear static model (approximator)
(Nelles, 2001). This approach requires that a value for the order (lag) is selected, which
can be di�erent for every variable. For example, the transformed data for a 1-input (qc)
2-output (Ca and T), considering a lag of 2 for all variables, are illustrated in Figure 6.15.

74 Chapter 6. Evaluation for Modeling Dynamic Systems

time

instant

3

4

5

k-1

k

.

.
.
.

input vector x f
2
(x)

qc(1)

qc(2)

qc(3)

qc(k-3)

qc(k-2)

.

.

qc(2)

qc(3)

qc(4)

qc(k-2)

qc(k-1)

C
a
(1)

C
a
(2)

C
a
(3)

C
a
(k-3)

C
a
(k-2)

C
a
(2)

C
a
(3)

C
a
(4)

C
a
(k-2)

C
a
(k-1)

T(1)

T(2)

T(3)

T(k-3)

T(k-2)

T(2)

T(3)

T(4)

T(k-2)

T(k-1)

.

.

T(3)

T(4)

T(5)

T(k-1)

T(k)

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ ˆ ˆ

ˆˆˆ

Figure 6.15: The transformed data using the external dynamics approach, and the simu-
lation procedure are shown. The dynamic system has three variables qc, Ca and T , and
the chosen lag is 2. The �rst row shows the transformed data for time instant 3. The last
column shows the predictions of the model for output variable T . The shaded cells in the
subsequent rows, as well as the arrows, illustrate the simulation procedure.

In the system identi�cation and control literature, it is common to test several lag
combinations for a dynamic system under investigation. Furthermore, in some of the
cases, di�erent lag values are chosen for di�erent variables, a choice which is in�uenced
by the modeling technique selected. In this thesis however, we do not make a thorough
investigation of the optimal lag for each variable of the system, and consider instead an
identical lag for all variables.

The optimal value for the dynamic order (lag) for each case study was selected using a
heuristic procedure. The training data for each of the case studies were further split into two
subsets: a larger training subset and a smaller validation subset. Several di�erent values
for the order of the model were considered, as shown in Table 6.1. For each dynamic order,
a multi-output model tree was built for the case studies that contained multiple output
variables, and a single-output model tree for the others. The model tree was learned by
using the training subset, and evaluated using the validation subset. The value for the
order which gave rise to the smallest squared output error on the validation subset was
selected. Also, all methods considered in the thesis, which also include Neural Networks
and other neuro-fuzzy approaches, were evaluated using identical lag values. In other
words, all of the methods were tested on the same static nonlinear regression problems.
Table 6.1 also reports the number of features (regressors), when looking at the dynamic
system identi�cation problem as a static nonlinear function approximation.

6.3. Selected Methods for Comparison 75

Table 6.1: The dynamic system case studies considered, the selected lags and the dimen-
sionality of the datasets obtained.

Case
study

Orders
considered

Num. in-
puts

Num.
outputs

Order
selected
(SO)

Num.
features;
num.
targets
(SO)

Order
selected
(MO)

Num.
features;
num.
targets
(MO)

CSTR 1;2;3;4 1 2 3 9;1 3 9;2
GLS 1;2;3 2 2 1 4;1 2 8;2
Narendra 1;2 1 1 2 4;1 / /
pH 1;2;3;4 1 1 2 4;1 / /
Steam
Gen.

4;5;6;7 4 4 6 48;1 6 48;4

Robot 1;2 21 7 1 28;1 1 28;7
Winding 1;2;3 5 2 3 21;1 3 21;2

6.2.2 Dataset Summary

The datasets obtained from the seven dynamic system case studies can be grouped in two
groups, according to the number of output variables they contain. The two groups are:

• datasets for modeling single-output dynamic systems

• datasets for modeling multiple-output dynamic systems

The �rst group of datasets is shown in Table 6.2, while the second, multi-output group of
datasets is shown in Table 6.3.

6.3 Selected Methods for Comparison

We compare the two model tree methods and ensembles thereof, with two methods that
are well-established in the area of system identi�cation: Neural Networks (Cristianini &
Shawe-Taylor, 2000) and ANFIS (Jang et al., 1997). From the parameter identi�cation per-
spective, both methods utilize global optimization of the parameters. This means that all
the parameters are considered and optimized together in each optimization step (iteration).
On the other hand, the model tree algorithms M5' and Lolimot use local optimization of
the local model parameters, and local optimization of the structure parameters.

The models that the compared methods learn are of two types: a feed-forward neural-
network model and a Takagi-Sugeno fuzzy model. The �nal models of Lolimot and the
smoothed M5' tree are also equivalent to a Takagi-Sugeno mode, by their learning strategy
is substantially di�erent from the one employed by ANFIS. The latter uses a separate
structure identi�cation step and global optimization of the model parameters, while the
model tree learning algorithm Lolimot uses an integrated structure identi�cation and local
parameter estimation approach. A brief overview of the properties of the methods is given
in the following paragraphs.

We use feedforward Arti�cial Neural Networks (NN) (Cristianini & Shawe-Taylor,
2000), more speci�cally a multilayer perceptron with one hidden layer of neurons, trained
by using a backpropagation procedure. The number of neurons in the hidden layer is the
only parameter whose value needs selection. We use the Neural Network Toolbox imple-
mentation in Matlab. The network training is performed using the Levenberg-Marquardt
optimization procedure.

76 Chapter 6. Evaluation for Modeling Dynamic Systems

Table 6.2: The generated datasets for the single-output machine learning analysis. The
parenthesis, if present, denote the output/target variable.

Case study Output variable
1 CSTR(Ca) concentration of A
2 CSTR(T) temperature
3 CSTR'(Ca) concentration of A (+20%n)
4 CSTR'(T) temperature (+20%n)
5 GLS(p1) pressure
6 GLS(h1) level
7 Narendra y
8 Narendra' y (+20%n)
9 pHA pH
10 pH'A pH (+20%n)
11 pHB pH
12 pH'B pH (+20%n)
13 SteamGen(y1) drum pressure
14 SteamGen(y2) excess oxygen
15 SteamGen(y3) water level
16 SteamGen(y4) steam �ow
17 Robot(τ1) torque comm. for motor #1
18 Robot(τ2) torque comm. for motor #2
19 Robot(τ3) torque comm. for motor #3
20 Robot(τ4) torque comm. for motor #4
21 Robot(τ5) torque comm. for motor #5
22 Robot(τ6) torque comm. for motor #6
23 Robot(τ8) torque comm. for motor #7
24 Winding(T1) tension btw. reel #1 and #2
25 Winding(T2) tension btw. reel #2 and #3

The Adaptive network based fuzzy inference system (ANFIS) (Jang et al., 1997) is
a hybrid neural-network approach, which builds a Takagi-Sugeno fuzzy model. ANFIS
solves the parameter estimation problem by using a hybrid learning rule that combines the
backpropagation gradient descent and the least-squares estimation method. The structure
identi�cation task � determining the number of fuzzy rules and initial positioning of the
fuzzy rule centers is a separate procedure that must be run before ANFIS. It can be
approached using di�erent methods: grid partitioning, fuzzy clustering of the instance
space, or a tree-based approach (Jang, 1994). All of these can be used to determine the
initial number and placement of the fuzzy rules. The �rst one produces an overly large
set of rules for modeling problems with a large number of dimensions, and is only used for
small problems. This leads to the known problem of the ANFIS method: it su�ers from
the curse of dimensionality as the number of input dimensions gets larger.

In this work, we use the Matlab implementation of the ANFIS method, which is avail-
able in the Fuzzy Logic Toolbox. For the structure identi�cation problem, we utilize the
computationally cheaper alternative, among the three alternatives mentioned before, which
is the fuzzy c-means clustering method. We do not use the clustering method's automatic
procedure of determining the number of clusters, however, since in our experience it pro-
duces sub-optimal models. Instead, we utilize a version of the clustering algorithm with a
single tunable parameter: the number of fuzzy clusters.

6.4. Experimental Design 77

Table 6.3: The datasets and the output variables considered in the multi-output machine
learning analysis. The parenthesis denote the output/target variable for the multi-output
case study.

Case study Output variable
1 CSTR(Ca) concentration of A
2 CSTR (T) temperature
3 CSTR'(Ca) concentration of A (noisy dataset)
4 CSTR'(T) temperature (noisy dataset)
5 GLS(p1) pressure
6 GLS(h1) level
7 SteamGen(y1) drum pressure
8 SteamGen(y2) excess oxygen
9 SteamGen(y3) water level
10 SteamGen(y4) steam �ow
11 Robot(τ1) torque comm. for motor #1
12 Robot(τ2) torque comm. for motor #2
13 Robot(τ3) torque comm. for motor #3
14 Robot(τ4) torque comm. for motor #4
15 Robot(τ5) torque comm. for motor #5
16 Robot(τ6) torque comm. for motor #6
17 Robot(τ8) torque comm. for motor #7
18 Winding(T1) tension btw. reel #1 and #2
19 Winding(T2) tension btw. reel #2 and #3

6.4 Experimental Design

This part describes the experimental setup, the data used and the experimental procedure.
For most of the dynamic system case studies, there is a data in the form of a training set
and a test set already available. The training and test sets are obtained from di�erent
signals generated under the same conditions. This means that the input signals used to
excite the dynamic systems (or their models) in both cases had the same form and similar
extreme values.

However, the evaluation is performed on three separate sets of the data, instead of
two. The available training set, for each of the case studies, is split using a 60:40 split
into a training and validation part. This results in three separate sets of the data. The
training and validation parts are used for obtaining the optimal parameter values for the
considered methods, a procedure which is known as early stopping. After the optimal
parameter values are determined, the �nal model is built on the whole training set, which
includes both training and validation parts of the data. Finally, this model is evaluated on
the unseen test data, and the results of this evaluation are reported.

To allow for a fair comparison, the three sets of data are exactly the same for all consid-
ered methods. As described, the �rst two are used for obtaining sensible parameter values
for the (algorithm, dataset) combination. This parameter optimization step consisted of
trying several discrete values for the parameters. We report the parameter values we tested
for each of the methods, in Table 6.4.

The Lolimot model tree algorithm and its modi�cations are evaluated by running the
algorithm for 30 iterations. In our experience, more than 30 iterations does not improve
the performance of the Lolimot model tree. The Lolimot method includes an automatic

78 Chapter 6. Evaluation for Modeling Dynamic Systems

Table 6.4: Method parameters and the values considered in the experimental evaluation.

Method name Parameter name Values considered

Lolimot Num. iterations 30

The modi�ed Lolimot Num. iterations 30
kσ 0.25 : 3.0

M5' LS Regression: only M5' fea-
tures

T/F

LS Regression: M5' feature se-
lection

T/F

Fuzzi�cation overlap 0.05:0.90

Bagging Lolimot and modi�ed
Lolimot

Number of trees 100

Bagging of M5' trees Number of trees 100

Forest of M5' trees Number of trees 100
Size of random subset of feat.
att

[0.2; 0.4; 0.6; 0.8]#features

Neural Networks Num. hidden neurons 1:15

ANFIS Num. fuzzy clusters (rules) 2:8

determination of the optimal complexity, implemented by using the AIC (cf. Subsection
3.4.3). However, in our experience this measure does not yield the tree with the optimal
size in all cases. Also, to make the comparison to the other methods fair, we employ the
early stopping approach. The ensembles od Lolimot and the modi�ed Lolimot, built by
the bagging approach, are made up of 100 model trees. The bagging and (random) forests
of M5' trees are also made up of 100 model trees.

To obtain more reliable estimates of the performance of the methods which include
randomization, each experiment was repeated 5 times1. In each of repetitions we used
di�erent random seeds for the randomization procedure in the methods. In the experi-
mental results, we report the mean and the standard deviation of the simulation (output),
measured as RRMSE across the 5 runs.

The ensembles of model trees that we are proposing utilize a randomization procedure.
The bagging and random forest methods use the randomization to select the bootstrap
samples, to be used to learn each base model. Additionally, the random forest uses attribute
randomization during the split selection procedure. The base learning algorithms, i.e., the
model tree learning algorithms Lolimot and M5' do not use randomization. The other
methods compared, ANFIS and Neural Networks both use randomization, however the
randomization has a di�erent in�uence on the model accuracies for the two methods. The
Neural Networks use randomization to set the initial values of the neuron parameters.
The structure determination of ANFIS, carried out by using c-means fuzzy clustering, uses
random initial standard deviations of the fuzzy membership Gaussian functions. However,
the randomization in ANFIS has very little e�ect on the predictive performance of the
method, and this in turn might be considered as a positive property of the approach.

Multi-output experiments. This experimental analysis considers several multi-output
case studies, which contain a total of 19 output variables, shown in Table 6.3. The results
of the multi-output modeling are reported per output variable, considering and evaluating
all 19 variables together. This is the approach used in the reporting of the number of wins,
and in the statistical signi�cance tests.

1From a machine learning viewpoint, a more reliable measure of the performance can be obtained by
repeating the training and testing procedure several times and reporting the mean and variance of the
error measure. We used 5 runs, to illustrate the in�uence of the random seed value chosen on the ensemble
model.

6.4. Experimental Design 79

6.4.1 Performance Measures

This subsection describes the evaluation of the performance of the models learned. The
performance measures consider three aspects of the models: a) the predictive performance
of the models, b) the time required for model learning and c) the size of the resulting
model, in terms of the number of terminal nodes of the model tree, or the number of local
models.

The predictive performance of the model determines how the model would perform on
new unseen data points, or in other words, how well does the model generalize. The size
of the model is reported in a) number of terminal nodes for individual model trees and b)
average number of terminal nodes for the model trees in an ensemble.

The evaluation of the predictive performance of a dynamic system's model is carried out
according to the purpose of the model and often requires a stringent and purpose-speci�c
evaluation. When evaluating a model using one-step-ahead prediction, as shown in Figure
2.2 (a), the predicted values for the system variable are compared to the measured values.
On the other hand, the procedure of simulation, illustrated in Figure 2.2 (b), introduces
one substantial di�erence: the one-step-ahead model predictions are fed back to the model
to produce predictions for the more distant future.

As discussed in 2.1.2, the �rst step of one-step-ahead prediction and simulation is the
same. The simulation procedure, presents an iterative application of the predictive model.
The result of the simulation is called simulation output and the corresponding error is
denoted as simulation error or output error.

It is worth noting that the simulation procedure can also be seen as a form of gener-
alization. The �rst data point in the training set corresponds to the �rst time step in the
simulation procedure. Assuming that the model is not perfect and does not yield the exact
output value of the training set in every subsequent time step, we can look at all the other
data points as novel: the model has not been trained using them, and its performance on
these novel data points might be considered as an estimate of its generalization ability.

Due to the realistic possibility of error accumulation in the case of an inaccurate model,
divergence of the simulation predictions from the measured values may occur as we move
further into the future. This increases the importance of simulation, as it represents a
more stringent evaluation of the predictive performance of a dynamic systems' model.

The predictive performance of the obtained models in the empirical analysis is assessed
by looking at a squared-error measure. Similar as in the previous chapter, we calculate and
report the root relative mean-squared error (RRMSE), which is also known in the control
domain as normalized root mean squared error (NRMSE):

RRMSE =

√∑
(yi − ŷi)2√∑
(yi − ȳ)2

(6.11)

In a comparison of method A to method B, we report the number of wins, and the
statistical signi�cance of the di�erence for the measure. By a "win", we denote a strictly
smaller value for the performance measure: smaller squared error, smaller model size, or a
smaller amount of time required for learning. In the experimental analysis we report the
number of wins the statistical signi�cance of the di�erence. In some of the experiments,
we report all three measures, while in others, where for example the comparison assumes
models of the same size, we report only a subset of the three measures.

To test the di�erence in performance of algorithms on a number of datasets, we utilize
the non-parametric Wilcoxon signed rank test. The p-value used for the Wilcoxon test
is 0.01, or a 1% signi�cance level. This means that when comparing methods A and B
using some performance measure, we report the number of wins, discussed earlier, and the

80 Chapter 6. Evaluation for Modeling Dynamic Systems

p-value of the Wilcoxon test, denoted as w-test. The di�erences in predictive performance
of the methods are also summarized by plotting the RRMSE values of the method A (x-
axis) against the corresponding errors of method B (y-axis). In the case the markers are
grouped and close to the diagonal, the methods perform similar. In case the markers are
above the diagonal, method A shows better predictive performance than method B, and
vice versa.

Besides the predictive performance, this chapter also depicts the auto-correlation of
the output error. The analysis of auto-correlation properties of the error could poten-
tially lead to conclusions regarding the bias of the parameter estimates in the models.
There is a possibility that the bias in the parameter estimates goes undetected if only the
prediction/output errors are analyzed.

6.5 Evaluating Modi�cations of the Model Tree Learning Al-

gorithms

This section evaluates the proposed modi�cations to the two model tree learning algo-
rithms. It considers the relatively accurate fuzzy model tree algorithm Lolimot, built for
the purpose of system identi�cation and the relatively fast and general-purpose model tree
algorithm M5'. As outlined in the previous sections, the main di�erences are a) the for-
mer builds soft trees, while the latter build crisp ones, b) the split selection: the former
is a look-ahead type model tree algorithm, while the latter is a fast heuristic model tree
algorithm and c) the parameter estimation.

This part is organized as follows. First, we consider the M5' method. We compare
its performance to Lolimot, analyze M5's performance and introduce modi�cations. Then,
we consider the Lolimot method and evaluate its modi�cations. Finally, we summarize
the results obtained, and try to answer the question: What are the bene�ts of using
general-purpose model tree algorithms, which use crisp model trees and crisp local model
estimation, for modeling dynamic systems.

In more detail, the M5' modi�cations concern the post-smoothing of the local models.
The modi�cations are performed after the M5' tree is learned and are performed to obtain
a more powerful model - soft tree. The soft model tree would potentially lower the overall
model error, and �x the discontinuities on boundaries between local models.

Also, the modi�cations of Lolimot analyzed here are several. The �rst one is aimed at
a more e�cient evaluation of candidate splits. It evaluates whether replacing some of its
expensive calculations with potentially faster procedures would produce a method which
runs faster and has similar accuracy. The next two modi�cations can be summarized as
a modi�ed search for the optimal tree structure, in terms of splits and MSF overlaps.
After this, we analyze whether it is bene�cial to use the simulation procedure in the split
evaluation heuristic. At the end, we evaluate a di�erent approach for LM estimation, by
using the global parameter estimation procedure.

6.5.1 Evaluating M5' Modi�cations

6.5.1.1 Comparing M5' to Lolimot

This part aims to put the two model tree algorithms in context and provide a fair compar-
ison of the performance of M5' and Lolimot. As the pruning procedure of M5' could not
be directly tuned to obtain the tree with desired complexity, the following strategy is used:
The M5' tree is built, and its number of local models is taken as a reference. A Lolimot
tree of the same size, denoted by LolimotS , is built and compared to the M5' algorithm.

6.5. Evaluating Modi�cations of the Model Tree Learning Algorithms 81

The summarized results of the output error are shown in Figure 6.16, while the results
of the statistical tests are shown in Table 6.5. They show that LolimotS with the same
number of local models outperforms the M5' algorithm. The di�erence is statistically
signi�cant at the 1% level. The complete results, which also include the number of local
models, and the one-step-ahead error, are shown in Table A.11.

Table 6.5: A statistical comparison of M5' to LolimotS . A summary of Table A.11.

M5' : LolimotS RRMSE Time
#wins 3:22 18:7
w-test 0.0 0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M5’

L
o
li
m
o
t S

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.16: A comparison of the predictive performance of crisp M5' model trees to soft
LolimotS model trees of the same size.

To summarize, the comparison of the performance of the equally-sized M5' and Lolimot
model trees (M5' vs LolimotS), shows that the LolimotS builds trees which perform better
or equal to M5'. By analyzing the results, we can also conclude that:

• Lolimot shows better performance than M5', with the exception of only a few cases
with similar performance

• For several datasets the M5' pruning mechanism overprunes, i.e., leaves only a few
local models; Such are for example almost all datasets for the Steam Generator case
study

• For some of the robot datasets, the Lolimot model tree performs substantially better

These results suggest that the size of the M5' tree that the method has determined during
pruning is not always optimal and the method could bene�t from a modi�cation of the

82 Chapter 6. Evaluation for Modeling Dynamic Systems

post-pruning phase. In the case of considering a method which would select the splits by
means of a look-ahead procedure, the post-pruning phase might not be necessary.

6.5.1.2 Replacing the Crisp Local Model Estimation with Fuzzy

This experiment tries to evaluate the bene�ts of a soft model tree, as opposed to a crisp
one. It compares the M5' crisp model tree and its performance, to a soft model tree,
derived from the crisp one. The soft tree contains fuzzy splits, which are implemented
with MSFs exactly like in Lolimot. Also, the local models are estimating by solving the
weighted least-squares regression problem, again using the same procedure as in Lolimot.

The procedure in this experiment is: First, the tree structure is learned by M5'. Then,
the tree is converted to a soft tree and the local models are estimated. Both steps are
performed identically as in Lolimot. The resulting model, denoted asM5′SOFT , is evaluated
and its performance is reported.

The results in Figure 6.17 show that the replacement of the crisp model tree with
a soft/fuzzy one increases the performance of the model tree. The errors are mainly
above the diagonal, which indicates that the M5′SOFT variant provides an increase in the
performance.

Table 6.6: A statistical comparison of the output error of M5′SOFT to M5' and LolimotS .
A summary of Table A.12.

M5′SOFT : M5' LolimotS
#wins 16:8 3:21
w-test 0.018 0.002

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M5’

M
5
′ S
O
F
T

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.17: Replacing the crisp local model estimation with fuzzy. A comparison of the
output error of M5′SOFT and M5'.

6.5. Evaluating Modi�cations of the Model Tree Learning Algorithms 83

Regarding the statistical comparison of the results, shown in Table 6.6, which also
provide a comparison with LolimotS , we can conclude that:

• M5′SOFT performs better than M5', however the di�erence is not statistically signif-
icant at the 1% level

• M5′SOFT performs worse than LolimotS and the di�erence is statistically signi�cant.

The complete results, which also include the complexity of the models, are available in
Table A.12.

6.5.1.3 Evaluating Smoothing Variants

This part would try to assess whether a smoothing procedure performed after the tree
structure is learned and parameters of linear models estimated is bene�cial. The aim
here is to evaluate two alternatives for smoothing of the local model predictions. The
two alternatives are the built-in M5' smoothing, denoted as M5′BSM , and smoothing by
fuzzy�cation, denoted asM5′Fuzz, both introduced in Subsection 4.1.1. As discussed there,
the smoothing by fuzzi�cation could be taken into account for the linear model estimation.
However, given that the linear model parameters in M5' are estimated on an unpruned
and potentially very large tree, this would lead to a large amount of calculations required.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M5’

M
5
’ F

u
z
z

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.18: Testing the e�ectiveness of M5' without smoothing, as opposed to M5′Fuzz.

What follows are summarized results, whether the two types of smoothing of the M5'
tree o�er a di�erence in the performance, as compared to the case of no smoothing. The re-
sults in Table 6.7 show how do the two smoothing alternatives compare to the unsmoothed
model trees, in terms of output error and time required for learning. The M5′BSM variant
wins in 22 out of the 25 cases, while the M5′Fuzz wins in 18 cases, where the di�erences
are statistically signi�cant at the 1% level only for the �rst case. This means that both
types of smoothing increase the performance over the unsmoothed M5' model tree.

84 Chapter 6. Evaluation for Modeling Dynamic Systems

Additionally, the output error results of M5' andM5′Fuzz are depicted in Figure 6.18. It
shows a large increase in performance for the Narendra and pH case studies. The complete
numerical results, along with the time required to build each model, can be found in Table
A.13.

Table 6.7: A statistical comparison of the e�ectiveness of M5' smoothing. In both cases
the tree sizes are equal. A summary of Table A.13.

M5' : M5'BSM M5'Fuzz M5'BSM M5'Fuzz
RRMSE time

#wins 3:22 7:18 19:6 25:0
w-test 0.001 0.045 0.704 0.000

6.5.2 Evaluating Lolimot Modi�cations

The modi�cations of the Lolimot algorithm that are evaluated in this subsection consider
the evaluation of the candidate splits, the search for the optimal tree structure, the uti-
lization of the output error while learning and the estimation of local model parameters
with a di�erent approach.

In the �rst part, we analyze the potential bene�t of a more e�cient candidate split
evaluation. The next two parts consider the modi�ed search for the optimal tree structure.
It generates and evaluates more than one candidate split per dimension, which results in
di�erent positioning of the MSF centers. In other words, it tries to determine if better
positioning of the MSF can in�uence the �nal model performance. Recall that, the Lolimot
algorithm builds two equal hyper-rectangles and places the MSFs in their centers. Our
modi�cation builds two hyper-rectangles of di�erent sizes, and places the MSFs in their
centers. Also, the modi�cations related to the tree structure consider di�erent overlaps of
the MSFs. However, the modi�cation preserves Lolimot's procedure of determination of
the MSF deviation as a function of the partition size. With our proposed modi�cation,
the MSF deviations are calculated using a di�erent function of the partition size.

Another modi�cation is aimed at the estimation of the local model parameters. The
two variants evaluated are local and global estimation of parameters. The fuzzy procedure
of local parameter estimation is faster, but it does not o�er the best predictive performance.
The alternative global parameter estimation is considerably slower, however it may o�er
the best predictive performance as it also takes into account the MSF overlaps. Finally,
this part would analyze the di�erences for modeling multi-output dynamic systems.

6.5.2.1 Modi�ed Evaluation of Candidate Splits

Here we asses the modi�cation to the heuristic evaluation of candidate splits. We report the
output error performance of the obtained models and time needed for model building. We
denote the two variants with Lolimot and LolimotME . Both variants utilize the same values
for the tree complexity. This value is determined by using the early stopping procedure,
i.e., with the help of the validation set. The kSIM value for the LolimotME variant is
chosen by using a trial-and-error approach, and is set to 350. This means that we evaluate
the candidate splits only for 350 steps.

6.5. Evaluating Modi�cations of the Model Tree Learning Algorithms 85

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lolimot

L
o
li
m
o
t M

E

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.19: A comparison of the output error of LolimotME and Lolimot.

The output error results are shown in Figure 6.19, while the results of the statistical
tests for the errors and building time are shown in Table 6.8. The complete results are
available in the Appendix A, Table A.14.

Table 6.8: A statistical comparison of Lolimot and LolimotME . A summary of Table A.14.

LolimotME : Lolimot RRMSE Time
#wins 7:18 24:1
w-test 0.274 0.0

The output error results show no statistically signi�cant di�erence between the original
and modi�ed split evaluation procedure. Also, the �gure shows that the errors are close to
the diagonal of the plot, which indicates similar performance. The time needed to build
the models is on the other hand quite di�erent for the two variants. The modi�ed split
evaluation procedure shows improvement of up to several times (see Table A.14). The
di�erences in the times needed for model building are statistically signi�cant. We can
conclude that the LolimotME variant is a better choice, since it o�ers similar performance
as the original method, but with reduced learning times. In the analysis that follows, we
will utilize the LolimotME variant.

6.5.2.2 Modi�ed Search for an Optimal Tree Structure

This part is going to evaluate two modi�cations of Lolimot. The �rst one considers several
split cut-points and the second one utilizes di�erent MSF overlap values.

The �rst modi�cation evaluates whether considering more than one half-split can result
in increased performance. In this analysis, we employ versions of the algorithm which
evaluate 2, 4, and 8 splits in each dimension instead of only one. The modi�ed versions

86 Chapter 6. Evaluation for Modeling Dynamic Systems

of the algorithm are named LolimotC2, LolimotC4, and LolimotC8, respectively. All three
versions are built upon the LolimotME variant, evaluated in the previous part.

Table 6.9 presents the results from the statistical tests, which indicate that there is no
statistically signi�cant di�erence in the simulation performance. On the other hand, the
three algorithm versions need more time for learning and build larger trees. The results
shown in Figure 6.20 con�rm that the performance of LolimotC8 is similar or worse to the
original algorithm, as the points are around and above the diagonal. The complete results
are shown in Tables A.15 and A.16.

Table 6.9: A statistical comparison of LolimotME with LolimotC2, LolimotC4, and
LolimotC8. A summary of Table A.15 and Table A.16.

RRMSE Time Size
LolimotME : Lolc2 Lolc4 Lolc8 Lolc2 Lolc4 Lolc8 Lolc2 Lolc4 Lolc8

#wins 14:11 13:12 16:9 25:0 25:0 25:0 11:14 7:18 9:16
w-test 0.427 0.786 0.090 0.000 0.000 0.000 0.400 0.588 0.781

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lolimot

L
ol
im

ot
C
8

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.20: A comparison of the performance when considering several cut-points.
LolimotME and LolimotC8 are shown.

The second modi�cation evaluates di�erent values for the kσ parameter (cf. Eq. (4.10)),
which e�ects the amount of MSF overlap. The values considered for kσ are the following:
4, 2, 1

0.75 , 1,
1

1.25 ,
1
1.5 ,

1
1.75 ,

1
2.0 ,

1
2.25 ,

1
2.5 ,

1
2.75 ,

1
3.0 ,

1
3.5 . The modi�cation evaluated in this part

is denoted as Lolimotksig. Again, it is built upon the the LolimotME variant, i.e., it both
uses the more e�cient split evaluation and it optimizes the kσ parameter.

6.5. Evaluating Modi�cations of the Model Tree Learning Algorithms 87

Table 6.10: A statistical comparison of LolimotME and Lolimotksig. A summary of Table
A.17.

Lolimotksig : LolimotME RRMSE time size
#wins 19:6 4:21 4:21
w-test 0.024 0.0 0.007

The results in Figure 6.21 show that the errors are mostly below and around the
diagonal of the plot, which means that there is some di�erence in performance visible.
This result is not statistically signi�cant at the 1% level, however, the p-value is quite
small, and we believe that the optimization of the overlap has the potential to improve the
result. In the investigations that follow, we will be using Lolimotksig.

Regarding the running times and sizes of the trees, Lolimotksig builds trees with more
local models, as compared to the other variant, and this also requires more time. The
di�erences in model size and learning times are statistically signi�cant.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lolimot

L
ol
im

ot
k
s
ig

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.21: A comparison of the performance when optimizing the fuzzy MSF overlap .

As a summary of the search for optimal tree structure, we can conclude that the more
important of the two sub-tasks is the optimization of the overlaps. The two experiments
showed that only the overlap tuning shows improvement in the performance over the orig-
inal method. The consideration of several cut-points for the splits does not show improved
performance. It may be necessary to tune all MSF-related parameters, i.e., both the split
cut-points and the overlaps in a single tuning procedure. However, this poses a more
complex optimization problem, which also adds to the computational time required for
modeling. Due to this result we presume that the dominating factor regarding the tree
structure optimization in soft model trees is the amount of overlap, possibly coupled with
the type of local model estimation.

It is worth noting that other fuzzy modeling methods like ANFIS optimize both the

88 Chapter 6. Evaluation for Modeling Dynamic Systems

position and the overlap of each fuzzy MSF. In the tree setting, this would translate to
simultaneous tuning of both the split cut-points and the fuzzy MSF overlaps.

6.5.2.3 Utilization of the Output Error While Learning

This part analyzes whether the evaluation of candidate splits with simulation has any
advantages over the evaluation with prediction. The Lolimot variant using the prediction
error for evaluation of the candidate splits is denoted as Lolimotosa. It is built upon the
Lolimot variant which uses the more e�cient split evaluation procedure, and the kσ tuning.
This means that this evaluation also tunes the values of kσ, as well as the complexity of
the tree. Both are performed by using the validation set. For the experiments reported
here, both variants Lolimotosa and Lolimotksig use same size of the tree and kσ value.

The results of the comparisons are available in Table 6.11, where Lolimotosa shows
worse performance in 16 out of the 25 tests. However this di�erence is not statistically
signi�cant. It is interesting to note that Figure 6.22 shows that there is considerable bene�t
of using the simulation error for the noisy pH variant, the measured GLS level variable
and one of the winding variables. Given that the �rst is a noisy variant and the second
is a measured variable, where the measurements are not ideal for identi�cation, one might
conclude that for practical applications, it is better to use the simulation error. There is no
bene�t in using the prediction errors, as the running times are di�erent, but the di�erences
are very small (cf. Table A.18).

Table 6.11: A statistical comparison of the Lolimot models built by using the output or
the prediction errors. A summary of Table A.18.

Lolimotosa : Lolimotksig RRMSE time
#wins 9:16 9:16
w-test 0.145 0.019

The results show that the evaluation of the candidate splits using simulation is better,
when the intended use of the model is simulation. This is a result that might be considered
as expected. This comparison was also performed in the work of Aleksovski, Kocijan, and
Dºeroski (2014a), where the authors conclude that the evaluation using the output error can
bring slight improvement to the performance of multi-output model trees and ensembles,
based on the Lolimot algorithm.

6.5. Evaluating Modi�cations of the Model Tree Learning Algorithms 89

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lolimotksig

L
o
li
m
o
t
o
s
a

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.22: A comparison of the Lolimot models built by using the output or the prediction
errors.

6.5.2.4 Global Parameter Estimation

This part compares the Lolimot method to a modi�ed version where the local estimation is
replaced by global parameter estimation. The modi�ed version is denoted as LolGPE . This
evaluation is reported di�erently than the previous ones, and only illustrates the potential
that the global parameter estimation has. The reason is that from a machine learning point
of view, the determination of the optimal complexity using the training and/or validation
sets fails in most of the cases to �nd the optimal complexity. In the following we will
present and discuss the results, and at the end we will outline some possible solutions for
the complexity determination issue.

Figure 6.23 shows the comparison of local to global estimation in Lolimot. The plot
shows the performance of the models for the single-output systems, in each of the iterations
of the algorithm. It can be concluded that the global estimation in most cases obtains a
model with smaller error, and it does this by using a smaller number of local models.
After this optimal point is reached, the performance of the model tree deteriorates very
fast. For example, LolimotGPE produces results that outperform Lolimot for all the CSTR
alternatives, the GLS dataset, the Narendra dataset and other. On the other hand, there
exist datasets like the Steam-generator variants, for which the local estimation performs
better.

90 Chapter 6. Evaluation for Modeling Dynamic Systems

0 10 20 30

0.01

0.02

0.03

0.04

CSTR (Ca)

0 5 10 15 20

0.02

0.03

0.04

0.05

0.06

0.07

0.08

CSTR’ (Ca)

0 10 20 30

0.005

0.01

0.015

0.02

0.025

0.03

CSTR (T)

0 5 10 15 20

0.02

0.03

0.04

0.05

0.06

0.07

CSTR’ (T)

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

GLS (h1)

0 5 10 15 20

0.2

0.25

0.3

0.35

0.4

0.45

GLS (p1)

0 10 20 30

0.1

0.2

0.3

0.4

Narendra

0 5 10 15 20

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Narendra’

0 5 10 15 20

0.15

0.2

0.25

0.3

pHB

0 5 10 15 20

0.2

0.25

0.3

0.35

pH’B

0 10 20 30

0.1

0.15

0.2

0.25

0.3

0.35

0.4

pHA

0 10 20 30

0.15

0.2

0.25

0.3

0.35

0.4

0.45

pH’A

0 10 20 30

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SteamGen (y1)

0 10 20 30

0.3

0.35

0.4

0.45

SteamGen (y2)

0 5 10 15 20

0.15

0.16

0.17

0.18

0.19

0.2

0.21

SteamGen (y3)

0 5 10 15 20

0.2

0.25

0.3

0.35

0.4

0.45

SteamGen (y4)

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

Robot (τ1)

0 5 10 15 20

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Robot (τ2)

0 5 10 15 20

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Robot (τ3)

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Robot (τ4)

0 5 10 15 20

0.25

0.3

0.35

0.4

0.45

Robot (τ5)

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Robot (τ6)

0 5 10 15 20

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Robot (τ7)

0 5 10 15

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Winding (T1)

0 10 20 30

0.2

0.25

0.3

0.35

0.4

0.45

Winding (T2)

Figure 6.23: Performance of Lolimot (solid line) and LolimotGPE (solid line with crosses)
on the single-output datasets. Performance on the testing sets (unseen data) shown. For
the latter, the complexity determined by the validation set is circled.

Note that in the �gure, the selected model complexity is shown as a) a stop in the
dashed line for the local estimation and b) a circle for LolimotGPE . Both of these are
determined by using early stopping, i.e., with the validation set. It can be seen that this
selected number of LMs for LolimotGPE is in most cases suboptimal. So, the determination
of the optimal complexity of the LolimotGPE model presents a challenge. However, the
obvious advantages of global estimation are that it can produce models with much lower
output error, and in most cases, it performs this with a lower number of local models.

Regarding the potential bene�ts of local over global estimation, the work of Nelles
(2001) has already outlined several results and conclusions for the Lolimot method. The
main advantage of the local parameter estimation is the reduction of the e�ective number
of parameters, and the good resilience to noise, which follows from the former property.
However, the global parameter estimation is not considered for Lolimot. The advantage
of the global parameter estimation is the potential to obtain a model with increased ac-
curacy, as compared to the local model estimation. Its disadvantage is its computational
complexity: the comput.complexity is O(m2), for m local models.

From the aspect of machine learning, we might conclude that the utilization of global
parameter estimation in soft model trees requires a modi�ed tuning procedure for the
optimal model complexity, as the early stopping procedure fails. Instead, one might resort
to techniques such as the AIC or BIC measures.

6.5. Evaluating Modi�cations of the Model Tree Learning Algorithms 91

To summarize, this part presented some potentially interesting and novel results. They
are:

• LolimotGPE can achieve better performance with less local models, i.e., smaller com-
plexity,

• LolimotGPE is very sensitive to the number of local models and the optimal com-
plexity is a challenge to determine.

For the remainder of the experimental analysis, the modi�ed Lolimot method with the
following two modi�cations:

• modi�ed evaluation of the candidate splits,

• optimizing the MSF overlaps, by tuning kσ,

would also be used and evaluated. This version of the Lolimot method would be denoted
as L++.

6.5.2.5 Evaluating Multi-target Model Trees

This experiment evaluates the multi-target Lolimot and the modi�ed version L++ for
modeling multi-output dynamic systems. Its aim is to assess whether di�erences exist
between the two methods, when building multi-target model trees. The results of the
comparison on the 19 output variables are summarized in Figure 6.24 and in Table 6.12.

Table 6.12: A statistical comparison of the Lolimot and L++ models for multi-output
modeling. A summary of Table A.19.

L++MO : LolimotMO RRMSE time numLM
#wins 11:8 11:8 9:10
w-test 0.421 0.017 0.255

It is visible in Figure 6.24 that the L++ method shows decreased output errors for all
output variables for the CSTR and �ve of the seven variables for the Robot multi-output
system. This is partially in�uenced by the di�erent number of LMs selected by the early
stopping procedure in the two runs. Also, the L++ method shows similar performance for
both outputs of the GLS system, and slightly worse performance for both outputs of the
Winding system. However, as Table A.19 shows, the running time of L++MO is smaller, by
a factor of three to �fteen times. Exceptions are the cases where the number of iterations
for the two methods is not comparable.

92 Chapter 6. Evaluation for Modeling Dynamic Systems

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

LolimotMO

L
+
+

M
O

CSTR

GLS

SteamG.

Robot

Winding

Figure 6.24: Comparison of the predictive performance of LolimotMO and L++MO. Each
marker represents the performance of the methods on one output variable. The marker
shape determines which dataset the variable belongs to.

6.5.3 Summary

In summary, the results showed that the soft or fuzzy estimation of local model parameters,
and a soft model tree formalism are more �exible and produce more accurate models.
For example, the experiment reported in Subsection 6.5.1.2 showed that the predictive
performance of the crisp M5' model tree could be increased by re-estimating the local
models with soft estimation and converting to the soft model tree formalism.

In Subsection 6.5.1.3 the variants for post-smoothing were empirically evaluated. Both
variants resulted in increased performance of the model tree, however, we consider that the
post-smoothing does not solve the whole problem. The incorrect determination of the tree
structure, in terms of split attributes and cut-points, and also the incorrect determination
of the linear model coe�cients, present a bigger problem, and in many cases this could not
be �xed by the post-smoothing. Examples of the incorrect determination are the models
with large output error for the datasets Robot τ2, τ4, τ7, pH'A, Narendra and Narendra',
shown in Figure 6.16 and Table A.11.

The possibility of using a general-purpose look-ahead tree learning approach, which
builds crisp trees can be considered not �exible, when compared to soft tree approaches.
It lacks the �exibility that the soft tree approaches have regarding: a) estimation of the
local model coe�cients and b) the tuning of the split cut-point. In more detail, a crisp
model tree approach needs to determine if the amount of data in a partition is enough

6.6. Model Trees and Ensembles for Single-output Modeling 93

for estimating a local model, or there is enough data, but some of them are colinear (e.g.,
input signal which does not change its value for several time steps). This is required for
estimation of the correct local model parameters. The soft model tree approaches, on
the other hand utilize weighted least-squares regression, which uses all data points in the
local model estimation. This solves the mentioned issues with the local model parameters.
Additionally, the crisp model tree approaches using look-ahead need to �ne-tune the split
cut-point, and this presents a computationally expensive procedure. As a comparison,
the performance of a soft model tree approach such as Lolimot was not in�uenced by the
tuning of the split cut-point, and the half-splits produced satisfactory results, as Subsection
6.5.2.2 showed. In our opinion, the overlap of the MSFs and the regression which uses all
data help to decrease the in�uence of the cut-point optimization issue.

However, the fuzzy parameter estimation and soft model trees have the following dis-
advantages:

• the need to optimize the MSF parameters: MSF positions and overlaps,

• the computational cost of calculating the fuzzy validity functions for each data point,
which may be problematic for a large number of local models and many repetitions
(considering many candidate splits).

The modi�cations to the Lolimot method, summarized as L++, showed a decrease of
running times, of up to several times (for some examples two times faster, for others up
to 20 times). The optimization of the overlap parameter proved to be useful, and in many
cases increase the performance of the model tree.

The analysis of using prediction or output error while learning showed that the output
error proves more useful in the noisy cases and in the cases where the measurements are
not perfect. The analysis also showed that there is no bene�t of using the prediction error
instead of the output error, as the running times are practically identical.

Also, the utilization of the global parameter estimation, as compared to the local esti-
mation used in Lolimot, showed that the prediction results can be further improved. The
issue there was that the optimal model complexity was hard to determine, and a model
tree with only one or two LMs more than that optimum already had quite a deteriorated
performance.

6.6 Model Trees and Ensembles for Single-output Modeling

This section reports the analysis of the ensembles of model trees. It considers bagging
ensembles of Lolimot and L++, as well as bagging and random forests of M5' model
trees. So far, the single trees built by the original and improved Lolimot methods showed
better predictive performance than the ones built by M5'. However, we expect a potential
improvement in the performance of the model when M5' is used in the ensemble setting.
This is the reason why we include results using ensembles of M5' model trees.

The analysis treats both the single-output and multi-output problems. The number
of trees parameter for the ensembles analyzed here was set to 100. A previous work
(Aleksovski et al., 2014a) considered bagging of Lolimot model trees with di�erent sizes,
and concluded that acceptable performance may be achieved by using 50 trees, or less. In
this thesis, however, we utilize a larger number of trees.

6.6.1 Lolimot vs Ensembles

This part analyzes whether the ensembles of Lolimot trees o�er a di�erence in the per-
formance, as compared to the case of a single Lolimot tree. The summarized results are

94 Chapter 6. Evaluation for Modeling Dynamic Systems

available in Figure 6.25, while the complete numerical results can be found in Table A.20.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lolimot

B
a
g
g
.L
o
li
m
o
t

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.25: Evaluating the single-output predictive performance of Lolimot trees and
Bagging of Lolimot trees.

The results suggest that bagging improves the performance over a single Lolimot tree,
as most of the points are below the diagonal. The di�erence is statistically signi�cant, as
shown in Table 6.13.

Table 6.13: A statistical comparison of a single Lolimot tree and a bagging of Lolimot
trees. A summary of Table A.20.

Lolimot : Bagging
RRMSE time

#wins 5:20 25:0
w-test 0.0 0.0

6.6.2 Modi�ed Lolimot vs Ensembles

This part presents the summarized results, which compare the modi�ed Lolimot method
(L++) to Bagging of L++ model trees. The experiment considers only the single-output
problems. The results are summarized in Table 6.14 and Figure 6.26, while complete results
are available in Table A.21.

6.6. Model Trees and Ensembles for Single-output Modeling 95

Table 6.14: A statistical comparison of L++ and Bagging of L++. A summary of Table
A.21.

L++ : Bagg.L++
RRMSE time

#wins 6:19 25:0
w-test 0.040 0.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L++

B
a
g
g
L
+
+

CSTR

GLS

Nar
pH

B

pH
A

SteamG.

Robot

Winding

Figure 6.26: Evaluating the single-output predictive performance of L++ trees and Bagging
of L++ trees.

The results show that the bagging procedure produces a smaller output error in 19 of the
25 cases, however, the di�erence is not statistically signi�cant at the 1 % level. Figure 6.26
shows that the bagging procedure improves the performance for both Winding outputs, for
most of the Robot outputs and most of the Steam Gen. output variables. Additionally, it
showed that the bagging increases the output error for the two GLS output variables and
the two pHB variants.

6.6.3 Model Tree Ensembles vs Neural Networks and ANFIS

This part presents the comparison results of ensembles of both types of model trees, and
selected methods frequently used for dynamic system identi�cation. The latter include
Neural Networks and the hybrid ANFIS method, introduced and discussed in Section 6.3.
The summarized results are divided in two parts: the �rst compares the ensembles of L++
and M5' model trees, while the second part compares the ensembles of L++ to NNs and
ANFIS.

Table 6.15 summarizes the results of the comparison between the di�erent types of
model tree ensembles. Due to the reasons discussed earlier, we also evaluate ensembles

96 Chapter 6. Evaluation for Modeling Dynamic Systems

of M5' model trees. The ensembles of M5' evaluated are bagging of M5' model trees
(BMT) and forests of M5' model trees (FMT). Both of these include the ensemble selection
procedure, proposed to increase the performance of ensembles of M5' trees, as discussed in
Section 4.3.2.

Table 6.15: A statistical comparison of ensembles of the two model tree types. A partial
summary of Table A.22 and Table A.23.

Bagg.L++ : BMT FMT BMT FMT BMT FMT
RRMSE Time Complexity

#wins 19:6 19:6 1:24 1:24 4:21 6:19
w-test 0.006 0.009 0.0 0.0 0.003 0.008

The results in Table 6.15 show that the ensembles of L++ model trees build more
accurate models than both types of ensembles of M5' trees. The di�erence is statistically
signi�cant at the 1% level for all paired output error comparisons. However, the ensembles
of M5' require less time for learning the models, and also tend to build model trees with
a smaller number of terminal nodes. This may be explained by the possible overpruning,
i.e., leaving only a few terminal nodes in the model trees. This was discussed in Subsection
6.5.1.1, where it was identi�ed as one of the reasons for inaccurate models.

Next we consider the comparison of the more successful among the ensemble ap-
proaches, the Bagging of L++ model trees, to Neural Networks and ANFIS. The results
summarized in Table 6.16 show that Bagging of L++ MTs produces models with smaller
output errors, as compared to Neural Networks and ANFIS. The di�erences in predictive
performance are statistically signi�cant at the 1% level.

Table 6.16: A statistical comparison of ensembles of model trees to NNs and ANFIS. A
partial summary of Table A.22 and Table A.23.

Bagg.L++ : NN ANFIS NN ANFIS NN ANFIS
RRMSE Time Complexity

#wins 19:6 18:7 0:25 7:18 4:21 3:22
w-test 0.003 0.008 0.0 0.109 0.0 0.0

However, the model trees included in the ensembles have larger complexity than the
other methods. The Bagg.L++ require more time to build than NNs, while the time
comparison to ANFIS does not show statistically a signi�cant di�erence. It is worth
noting that the reason that a competitive method like ANFIS provided results with worse
predictive performance than Bagg.L++ is most likely the suboptimal parameters chosen
by using the validation set. The rest of the results for the comparisons, including one-step-
ahead results, are available in Appendix A, Table A.22.

6.6. Model Trees and Ensembles for Single-output Modeling 97

6.6.4 Auto-correlation of the Output Error

This subsection depicts the auto-correlation of the output error of the tree-based models.
First, it shows the auto-correlation of Lolimot and ensembles of Lolimot model trees. Then,
it considers the M5' model trees and ensembles thereof.

Figure 6.27 presents the auto-correlation of the output error for Lolimot and ensembles
of Lolimot, while Figure 6.28 presents the same for M5' and ensembles thereof. It is worth
noting, that the simulation procedure for the single M5' tree learned on the Robot(τ2)
dataset diverges. Additionally, an M5' ensemble substantially improves the predictive
performance over a single M5' tree for the Robot(τ4) dataset, which may be related to the
smaller auto-correlation of the ensemble error.

−200 0 200
−1

0

1

CSTR (Ca)

−200 0 200
−1

0

1

CSTR’ (Ca)

−200 0 200
−1

0

1

CSTR (T)

−200 0 200
−1

0

1

CSTR’ (T)

−200 0 200
−1

0

1

GLS (h1)

−200 0 200
−1

0

1

GLS (p1)

−200 0 200
−1

0

1

Narendra

−200 0 200
−1

0

1

Narendra’

−200 0 200
−1

0

1

pHB

−200 0 200
−1

0

1

pH’B

−200 0 200
−1

0

1

pHA

−200 0 200
−1

0

1

pH’A

−200 0 200
−1

0

1

SteamGen (y1)

−200 0 200
−1

0

1

SteamGen (y2)

−200 0 200
−1

0

1

SteamGen (y3)

−200 0 200
−1

0

1

SteamGen (y4)

−200 0 200
−1

0

1

Robot (τ1)

−200 0 200
−1

0

1

Robot (τ2)

−200 0 200
−1

0

1

Robot (τ3)

−200 0 200
−1

0

1

Robot (τ4)

−200 0 200
−1

0

1

Robot (τ5)

−200 0 200
−1

0

1

Robot (τ6)

−200 0 200
−1

0

1

Robot (τ7)

−200 0 200
−1

0

1

Winding (T1)

−200 0 200
−1

0

1

Winding (T2)

Figure 6.27: Auto-correlation of the output error of Lolimot (solid line) and ensemble of
Lolimot (dashed line), on the single-output datasets. The x-axis denotes the lag.

98 Chapter 6. Evaluation for Modeling Dynamic Systems

−200 0 200
−1

0

1

CSTR (Ca)

−200 0 200
−1

0

1

CSTR’ (Ca)

−200 0 200
−1

0

1

CSTR (T)

−200 0 200
−1

0

1

CSTR’ (T)

−200 0 200
−1

0

1

GLS (h1)

−200 0 200
−1

0

1

GLS (p1)

−200 0 200
−1

0

1

Narendra

−200 0 200
−1

0

1

Narendra’

−200 0 200
−1

0

1

pHB

−200 0 200
−1

0

1

pH’B

−200 0 200
−1

0

1

pHA

−200 0 200
−1

0

1

pH’A

−200 0 200
−1

0

1

SteamGen (y1)

−200 0 200
−1

0

1

SteamGen (y2)

−200 0 200
−1

0

1

SteamGen (y3)

−200 0 200
−1

0

1

SteamGen (y4)

−200 0 200
−1

0

1

Robot (τ1)

−200 0 200
−1

0

1

Robot (τ2)

−200 0 200
−1

0

1

Robot (τ3)

−200 0 200
−1

0

1

Robot (τ4)

−200 0 200
−1

0

1

Robot (τ5)

−200 0 200
−1

0

1

Robot (τ6)

−200 0 200
−1

0

1

Robot (τ7)

−200 0 200
−1

0

1

Winding (T1)

−200 0 200
−1

0

1

Winding (T2)

Figure 6.28: Auto-correlation of the output error of M5' (solid line) and ensemble of M5'
(dashed line), on the single-output datasets. The x-axis denotes the lag.

6.7 Model Trees and Ensembles for Multiple-output Model-

ing

This part evaluates the model tree and ensemble approaches for modeling multi-output
systems. In particular, it empirically compares:

• a single multi-output model tree to an ensemble of multi-output model trees,

• building several single-output models, where each model predicts one output variable,
to a multi-output model, where all output variables are predicted simultaneously.

For easier understanding of what is being compared, each of the subsections includes a
graphic, representing the comparison on a sample 2-output system. The model trees which
are able to predict multiple outputs are denoted by two di�erent colors in their terminal
nodes.

6.7. Model Trees and Ensembles for Multiple-output Modeling 99

6.7.1 Modi�ed Lolimot vs Ensembles

vs D

D2

D1

Dt

Ens

This part reports the results of the comparison of the multi-output version of L++ to
bagging of multi-output L++ models. The results are depicted in Figure 6.29, and suggest
that the bagging of multi-output L++ model trees improves the performance. The most
of the markers are below the diagonal, while the others are very close to it, which shows
the improved predictive performance in favor of bagging L++MO. The improvements are
visible for all outputs of the GLS and Robot case studies. On the other hand, there is no
improvement in performance for the output variables of the Steam Gen. and CSTR case
studies. The overall di�erence in predictive performance is statistically signi�cant, at the
1% level, which is shown in Table 6.17. The complete results are available in Table A.24.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L++MO

B
a
g
g
L
+
+

M
O

CSTR

GLS

SteamG.

Robot

Winding

Figure 6.29: A comparison of the predictive performance of multi-output model trees to
ensembles of multi-output model trees. Results for each of the output variables are shown
separately.

100 Chapter 6. Evaluation for Modeling Dynamic Systems

Table 6.17: A statistical comparison of multi-output model trees to ensembles of multi-
output model trees. A summary of Table A.24.

Bagg.L++MO : L++MO

RRMSE time
#wins 14:5 0:19
w-test 0.003 0.000

6.7.2 Several Single-output Models vs One Multi-output

vs

In the case of several single-output model trees, compared to a one multi-output
model tree, the results shown in Figure 6.30 suggest improvement in the predictive per-
formance can be expected by using a multiple-output model tree. For example, the �gure
shows that all output variables of the Steam Gen. case study and �ve variables of the
Robot case study, the multi-output alternative o�ers an improvement in performance. Ad-
ditionally, the �gure does not show markers for the noisy CSTR dataset (CSTR') and for
the GLS dataset. The reason is that the single-output models diverged when simulated us-
ing parallel simulation. Table 6.18 also shows that the di�erence in predictive performance
is statistically signi�cant.

The complete results, available in Table A.25, also show that the total complexity of
the model trees is smaller in the multi-output case. For example, the multi-output tree for
the Steam Gen. contains only 21 LMs, while the four single-output model trees contain a
total of 69 LMs. Also, the total time needed to build the four single-output model trees is
larger than the one single-output model.

Table 6.18: A statistical comparison of separate single-output model trees, each predicting
one output variable, to one multi-output model tree. A summary of Table A.25.

(Separate L++ SO models) : (L++MO) RRMSE Time Num.LMs
#wins 6:13 4:15 0:19
w-test 0.006 0.021 0.000

6.7. Model Trees and Ensembles for Multiple-output Modeling 101

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Separate L++ single−output model trees

L
+
+

M
O

CSTR

GLS

SteamG.

Robot

Winding

Figure 6.30: The predictive performance of several single-output L++ model trees, and
the predictive performance of a multi-output L++ model tree.

D

D2

D1

Dt

Ens

D

D2

D1

Dt

D

D2

D1

Dt

vs

Ens

Ens

Also, we analyze the case of several ensembles of single-output model trees,
compared to one ensemble of multi-output model trees. The analysis is performed
by using bagging ensembles of the L++ model trees. The results of this comparison are
depicted in Figure 6.31, where it can be seen that the predictive performance is improved
for all output variables of the Robot dynamic system, and three of the four outputs of the
Steam Gen. system. Similar to the previous experiment, this �gure does not show markers
for the noisy CSTR dataset (CSTR') and for the GLS dataset, due to the divergence of the
single-output models. It is worth noting that these two present realistic modeling problems
as the �rst includes 20% noise, and the measurements of the second are not ideal. From
this aspect, we can conclude that for multi-output problems it is better to resort to the
multi-output Lolimot and L++ (and their ensembles), then the single-output versions.

Table 6.19 shows the results of the statistical tests, which suggest that the di�erences

102 Chapter 6. Evaluation for Modeling Dynamic Systems

in predictive performance are statistically signi�cant at the 1% level. The results of the
running times are also in favor of the multi-output modeling approach, and this di�erence
is also statistically signi�cant. The complete results, which include the one-step-ahead
errors, learning times and complexities, are available in Table A.26.

Table 6.19: A statistical comparison of separate bagging of single-output L++ model trees,
one for each output, to a bagging model which utilizes multi-output L++ model trees. A
summary of Table A.26.

(Separate ensemble (Single ensemble of
of SO L++ MTs) : MO L++ MTs) RRMSE Time Num.LMs

#wins 5:14 4:15 0:19
w-test 0.007 0.001 0.000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Separate ensemble of single−output L++ MTs

S
in

g
le

 e
n
s
e
m

b
le

 o
f
m

u
lt
i−

o
u
tp

u
t
L
+

+
 M

T
s

CSTR

GLS

SteamG.

Robot

Winding

Figure 6.31: The predictive performance of separate bagging of single-output L++ model
trees, one for each output, to a bagging model which utilizes multi-output L++MO model
trees.

6.8 Summary

In summary, the evaluation of the two types of model tree algorithms, and ensembles
thereof, showed di�ering results, which were in favor of the soft model tree formalism.

The analysis with the general-purpose model tree algorithmM5' did not yield conclusive
results regarding the minimal modi�cations for successful application for modeling dynamic
systems. The conclusions that the analysis provided regarding this were:

• The output error results of single M5' trees showed larger errors as compared to
Lolimot, i.e., a soft tree approach.

6.8. Summary 103

• The post-smoothing procedure decreased the output error only slightly. Only in a
few cases it helped decrease the error substantially. In our opinion it does not solve
the problem of large output errors.

• The post-pruning procedure overpruned the tree for many of the case studies, thus
deteriorating the output error performance.

• Randomization of the split attribute as included in the Forests method helped. It
showed decreased errors as compared to bagging.

• Ensemble selection of ensembles of M5' model trees helped. The M5' model trees
created in an ensemble showed di�erent performance. It is a fact that some of
the trees, i.e., base models in the ensemble, are not appropriate for modeling the
dynamical system and show large output errors, or in the worst case the simulation
of such trees diverges. In our opinion the ensemble selection procedure, which utilizes
the output error on the training set removes the trees which are not appropriate.
This in turn increases the performance of the resulting reduced ensemble, over the
full ensemble.

• The results for the Robot dataset, which consists of the largest number of input
variables were not comparable to that of Lolimot.

Regarding the modi�cations required for a general-purpose crisp model tree algorithm,
we present several guidelines and discuss further work. The replacement of the crisp local
model estimation with soft would result in a more robust estimation procedure. This
naturally assumes that the soft formalism of Eq. (4.4) would be chosen too. A lookahead
procedure would be more useful for a general-purpose crisp model tree algorithm, however,
the split cut-point needs tuning, which can be computationally demanding. The post-
pruning phase of a general-purpose tree learning algorithm might be replaced with a pre-
pruning phase.

The analysis also revealed several di�erent properties of Lolimot and ensembles of
Lolimot. In particular, the bene�ts over a crisp approach, for modeling dynamic systems,
are several:

• The fuzzy estimation of local model parameters is more robust than the crisp - it
uses all available data, and it can produce estimates even for partitions which have
none, or only a few training data points.

• The natural type of evaluation of a model the tree of the previous point is by using
interpolation of the local models (treating it as a soft model tree).

• The model predictions are smooth, and as such are more appropriate to model the
static nonlinearity (external dynamics approach).

• The optimization of the split cut-point is not as in�uential to the model performance,
as in the crisp case.

The empirical analysis of the improved version of the Lolimot algorithm, named L++,
showed decreased running times, while the output error was similar to that of Lolimot.
The tuning of the overlap parameter proved to be useful for obtaining models with better
predictive performance. The bagging of soft model trees, which was also evaluated, showed
improved prediction results. The di�erence was visible both when comparing Lolimot
model trees to bagging of Lolimot in Subsection 6.6.1, and when comparing L++ model
trees to bagging of L++ in Subsection 6.6.2.

104 Chapter 6. Evaluation for Modeling Dynamic Systems

The analysis of the multi-output problems in Subsection 6.7.2 showed that the learning
of multi-output trees is faster than several single-output trees. Also, when the model is
evaluated using simulation, the single-output model trees tend to over�t to the training
data and produce a diverging simulation result. The multi-output learning of trees has a
clear advantage here, since the candidate splits are selected based upon the performance
of the parallel simulation, i.e., a simulation for all output variables. Also, the diverging
single-output models appeared on a noisy version of the synthetic CSTR dataset, and on
the measured GLS dataset, whose measurements are not ideal (at least for the h1 variable).
Both noisy and non-ideal measurements are properties of realistic modeling problems that
the user might come across.

105

Chapter 7

Conclusions

7.1 Summary and Discussion

This thesis considered the problem of discrete-time modeling of dynamic systems, by using
black-box modeling techniques. In particular, it considered the crisp model tree approaches
introduced in the machine learning domain and the soft/fuzzy linear model tree approaches,
or Takagi-Sugeno fuzzy models, introduced in the system identi�cation domain. The thesis
also considered ensembles of both types of linear model trees.

The discrete-time modeling was reformulated, according to the external dynamics ap-
proach, into a static nonlinear function approximation problem. This thesis studied and
evaluated whether the local linear model trees and ensembles are suitable for solving the
static approximation task, and eventually, provide an appropriate discrete-time model of
the dynamic system. These models are learned from measured input-output data, measured
at discrete time intervals, and provide an input-output mapping of the studied system.

The thesis considered models that describe closely the studied real-world phenomena.
Typically, two objectives are of importance when pursuing the modeling task: good predic-
tive performance and interpretability of the models. In the thesis, we studied and analyzed
mainly the predictive performance objective. However, the models built in the form of
model trees also allow for some kind of interpretation (cf. Subsection 4.4.1), which can
be obtained by looking at the local model coe�cients. Both the crisp and the fuzzy local
estimation provide for interpretable coe�cients, representing local linearizations around
the operating point of the nonlinear dynamic system.

The thesis introduced and evaluated several modi�cations to the general purpose model-
tree learning algorithm M5'. It tried to determine a minimal set of properties that the crisp
M5' algorithm needs to have, in order to be appropriate for modeling dynamic systems,
either in an ensemble or a single tree setting. The modi�cations were motivated by the
design of the Lolimot method, and in particular its fuzzy local model estimation and the
type of models it produces. Subsection 6.5.1 provided an empirical comparison of the
di�erences between the crisp estimation of M5' and the fuzzy local estimation of Lolimot.
In particular, it evaluated a modi�cation of M5' which replaced the crisp trees and local
model estimation with fuzzy local model estimation. It concluded that the fuzzy local
estimation and fuzzy model tree formalism are able to improve the predictive performance
of M5'.

Two conclusions were made regarding the modi�cations of M5': On the one hand, the
use of the fuzzy local model estimation for unpruned trees would require that local models
are estimated for trees with a large number of terminal nodes. This is why the crisp
LM estimation in M5' was retained. On the other hand, the fuzzy model tree formalism
was successfully utilized: The crisp M5' model tree as built by the original method was

106 Chapter 7. Conclusions

converted to a fuzzy model tree by a procedure of fuzzi�cation. This procedure did not
re-estimate the local models of the tree, and only converted the crisp splits into fuzzy ones,
transforming the crisp model tree into a fuzzy model tree.

However, as the empirical analysis showed, the modi�cations introduced to M5' did not
yield conclusive results regarding the minimal set of properties for its successful application
for dynamic system identi�cation. The predictive performance of both single trees built by
the improved M5' and ensembles of improved M5' tree was still lower than that of Lolimot
and ensembles of Lolimot. Also, the analysis showed that the M5' model tree algorithm
may identify incorrect models. For some datasets, the crisp local model estimation was
performed on a small number of data points, which led to identi�cation of incorrect local
models. These in turn contained overly large or small coe�cients, which resulted in large
overall model errors. The culprit for this is the heuristic split selection, which we discuss
below.

It is our opinion that the heuristic split selection procedure of M5' should be altered,
as for example, it had trouble obtaining good results for all of the outputs of the Robot
case study, which contains a large number of input variables. In such cases, we suggest
that instead of replacing the heuristic split selection with a look-ahead approach which
uses crisp LM estimation, the user resorts to a look-ahead approach which uses the soft
LM estimation. By doing so, the user would make use of a more powerful formalism, with
potentially lower computational complexity, as the choice of the cut-points in the splits
was shown to have almost no in�uence on the error of the �nal model.

The thesis also provided an in-depth evaluation of the properties of Lolimot and consid-
ered several ways of modifying it. The evaluation showed that the soft model tree approach
Lolimot produced models with lower output error as compared to the crisp general-purpose
M5'. Additionally, as the number of iterations was limited to 30, the models produced were
also smaller as compared to M5'. The analysis concluded that two improvements to Lolimot
are bene�cial: a) altering its model evaluation in the look-ahead split selection phase, and
b) altering the structure of the model trees by tuning the overlap of the fuzzy membership
functions (MSFs).

The advantages of the �rst modi�cation are decreased running times of the method,
while the models built preserved their predictive performance. The advantage of the second
are the slightly lowered output errors, which were, however, not statistically signi�cant
according to the the Wilcoxon test at the 1% level. The conclusion made here is that
although the overlap in Lolimot is calculated by using a �xed kσ value (Nelles, 1999), the
empirical analysis showed that the amount of overlap kσ, of the fuzzy MSFs, needs tuning
for each dataset.

The thesis provided two empirical analyses of the improved model tree algorithms and
ensembles thereof: a) on static regression tasks, and b) on dynamic system case studies. In
particular, the analysis on the static regression tasks showed that the forests of M5' model
trees increased the predictive performance over single M5' model trees. The randomness
introduced in the split selection of the M5' method in the forest setting improved the
results, both for single-target and multi-target regression.

The results also showed that the forests of model trees improved upon forests of re-
gression trees. This means that one might expect potentially good predictive performance
by ensembles of model trees. Also, the analysis on the static regression tasks compared
single trees and concluded that Lolimot and M5' show similar performance, and that they
improve over the performance of a single regression tree.

The analysis on the dynamic system case studies compared ensembles of model trees
built by the improved M5', and the improved Lolimot. Regarding the former, the forests
of M5' model trees with ensemble selection provided satisfactory predictive performance.

7.2. Scienti�c Contribution 107

The ensemble selection procedure removed the trees which were not successful from the
ensemble and increased its predictive performance. Also, similar to the static case, the
randomization of the base learning algorithm, as implemented in the forests of M5' model
trees, showed improved performance over bagging and single M5' trees.

Regarding the latter, the bagging of Lolimot trees improved the performance over a
single Lolimot tree. The improvement, however, was not statistically signi�cant at the 1%
level, due to the increased error on a few case studies. Finally, the comparison to selected
methods, typically used for modeling dynamic systems, showed that bagging of improved
Lolimot trees produced slightly better predictive performance results over ANFIS and
Neural Networks. The improvement over ANFIS was rather unexpected, and was found
to be due to the suboptimal parameters for ANFIS, chosen by using the same validation
set as the other methods.

In summary, the thesis evaluated ensembles of both crisp and soft model trees and
concluded that soft model trees and ensembles thereof can solve the discrete-time modeling
problem of nonlinear dynamic systems, while the crisp approaches can provide satisfactory
results in many cases, by using the forest ensembles with ensemble selection. The ensembles
of soft Lolimot model trees are a more accurate and slower alternative, as compared to
ensembles of crisp M5' model trees, which are less accurate and faster. The ensembles
of crisp M5' model trees improved the performance over a single model tree, and also the
ensembles of soft Lolimot model trees improved the performance over a single Lolimot tree.

The thesis also studied the modeling of multi-input multi-output (MIMO) dynamic
systems by using multi-output (multi-target) model trees and ensembles of multi-output
trees. It started with the typical approach to solving the multi-output problem, which
builds single-output models for each of the output variables, i.e., breaking up the MIMO
problem into several MISO problems. It evaluated an alternative multi-output tree ap-
proach which builds local models for all output variables in each of the terminal nodes
of a single multi-target tree. The inter-dependencies between the outputs and the "com-
mon directions of nonlinearity" would potentially enable building multi-output trees with
smaller total size (number of splits) and almost equal performance, as compared to the
former approach.

The empirical analysis showed that the multi-output model trees are a more promising
approach. Two advantages of multi-output model trees were noticed: a) the learning of a
multi-output tree is faster than a set of single-output ones, and b) the single-output model
trees might over�t to the training data and produce incorrect models. The latter advantage
of the multi-output variant is due to the candidate split selection procedure: it uses the
intermediate models for each output in a parallel simulation procedure. The latter is more
appropriate for detection of incorrect multi-output models. Also, the parallel simulation
procedure provides the �nal model assessment, and using it during learning is bene�cial
for the multi-output model.

7.2 Scienti�c Contribution

The research presented considered two linear model tree learning algorithms, introduced
in di�erent communities. The thesis compared their similarities and di�erences, evaluated
them for modeling dynamic systems, and proposed modi�cations for each of them. The
work presented here also studied and evaluated ensembles of model trees. It took into
account the modeling of both single-output and multi-output dynamic systems, by multi-
output model trees, or multi-output Takagi-Sugeno models. Additionally, it evaluated
the model tree ensembles on machine learning benchmark regression tasks, and concluded
that the ensembles provide an increase in performance over single model trees. The main

108 Chapter 7. Conclusions

contributions of the thesis can be summarized as follows.
1. Design and implementation of novel model-tree based approaches for

modeling dynamic systems, based on and improving upon the M5' and Lolimot
algorithms.

a. Improved M5' algorithm for regression, which can now induce fuzzi�ed and multi-

target model trees. We analyzed the bene�t of fuzzy local model estimation, and the fuzzy
model tree formalism, applied to an M5' model tree. Since the fuzzy estimation is more
computationally expensive than the crisp, we introduced a fuzzy�cation step after the crisp
M5' model tree is learned. This step preserves the local models already estimated, and
only converts the crisp tree to a fuzzy tree, by replacing the crisp splits with fuzzy ones.

We also introduced multi-target M5' model trees. Modi�cations to the heuristic split
selection as well as to the pruning procedure were made. The terminal nodes contain a
linear model for each of the targets, with each estimated independently of the other.

b. Improved Lolimot algorithm for modeling dynamic systems, which now produces trees

with similar predictive performance faster. The work in this thesis improved the Lolimot
algorithm by a) introducing a faster model evaluation procedure and b) by optimizing the
fuzzy overlap. The improved Lolimot, with these two modi�cations, produces model trees
with similar performance and has reduced running time.

This thesis also considered an optimization of the split cut-points in Lolimot, which did
not provide an improvement in the predictive performance. In more detail, the results of
the analysis showed that optimizing the cut-points while keeping the fuzzy overlaps �xed
does not improve predictive performance. This means that the cut-points and overlaps
should probably be optimized simultaneously.

c. Algorithms that can induce ensembles of single and multi-target model trees by using

the improved M5' and Lolimot algorithms. This work introduced the MTE algorithm which
induces ensembles based on the bagging and forests of the improved model tree algorithm
M5'. The MTE algorithm can be used for single and multi-target regression tasks, as the
fuzzi�ed M5' model trees support this. MTE also contains an ensemble selection approach
which reduces the size of the ensemble, by removing some of the model trees. It uses the
output error for evaluation of the intermediate ensembles. The ensemble selection approach
has the potential to build ensembles with similar or improved predictive performance, while
using a smaller number of trees.

This work also introduced ensembles of Lolimot and the improved Lolimot algorithms.
The ensembles use the bagging approach. Both MTE and ensembles of Lolimot can be
used for single- and multi-target problems.

2. Empirical evaluation of the developed approaches on benchmark prob-
lems and case studies.

a. Evaluation of the improved M5' and Lolimot algorithms (and ensembles based on

these) on benchmark problems of single and multi-target static regression. The thesis re-
ported the results of an empirical evaluation of the improved M5' and Lolimot, and ensem-
bles thereof, on regression problems typically considered in the machine learning domain.
The predictive performance of the M5' linear model trees was increased by using forests
of such trees, the same applies for bagging ensembles of Lolimot model trees. The in-
troduction of randomness in the split selection procedure in M5' proved to be bene�cial
in the ensemble setting, both for single-target and multi-target problems. The empirical
evaluation of M5' showed that the crisp local model estimation may fail to detect matrix
singularity issues and as a result, identify incorrect local models. These incorrect local
models, might contain overly large or small coe�cients and produce models with large
errors. The soft local model estimation might be considered here instead, as it is more
robust against this issue.

7.3. Further Work 109

b. Evaluation of all the above approaches (and a few other selected methods) on several

case-studies of modeling dynamic systems. The thesis reported the results of an empirical
evaluation of all approaches on datasets derived from several dynamic system case studies.
It evaluated the improved Lolimot, bagging of Lolimot model trees and bagging and forests
of improved M5' model trees. The bagging of Lolimot model trees improved the predictive
performance over a single Lolimot model tree, however the running times were obviously
increased. The best prediction result using M5' model trees was obtained by using the
MTE algorithm, i.e., forests of M5' model trees, with ensemble selection. The latter
helped increase the predictive performance by removing the incorrect M5' trees from the
ensemble. However, the predictive performance of forests of M5' was signi�cantly worse
than the one of bagging of improved Lolimot model trees. Also, the comparison of bagging
of improved Lolimot trees to a few other selected methods used in system identi�cation
showed slightly better predictive performance.

7.3 Further Work

We would like to consider three major directions for further work. First, we would like to
apply the methods we have developed to additional case studies, especially case studies
of natural (as opposed to man-made) dynamic systems. Second, we would like to further
improve the methods developed here. Finally, we would like to consider the development of
new or adaptation of other machine learning techniques (not considered so far) for solving
the problem of modeling dynamic systems.

Ecosystems. The �rst direction for further work considers the (single- and multi-output)
modeling of ecological dynamic systems, such as lake ecosystems. Preliminary experiences
in applying the methods from this thesis to such domains show that the measurements
in these domains are far from perfect: not all variables which in�uence the outputs are
measured, and the sampling time used to obtain the measurements is too coarse, i.e., not
short enough. We believe that improving the quality of the data for such systems may
lead to successful modeling of these systems by using discrete-time approaches, such as the
ones presented in this thesis.

Further improvements. To improve upon the approaches considered here, we would
like to evaluate the potential of soft global estimation of the local model parameters in
Lolimot. As shown in the empirical evaluation, when combined with linear model trees,
such estimation leads to smaller trees with increased predictive performance. However,
the optimal number of local models is hard to determine, because soon after reaching the
optimal number of local models, the predictive performance of such model trees quickly
deteriorates, due to over�tting. Also, the coe�cients identi�ed by global estimation do not
allow the local models to be interpreted as local linearizations of the nonlinear dynamic
system, in case this is a requirement of the modeling. Resolving these two issues is likely
to be a signi�cant challenge.

Further development. In terms of further development of machine learning methods for
modeling dynamic system in discrete time, we would like to consider the use of background
knowledge, the adaptation of boosting and the use of methods for online learning, or
learning from data streams.

Regarding the use of background knowledge that the user might have about the system,
the model trees allow for some knowledge of the system to be included in the model. Two
options can be used: a) pre-determining the �rst several split nodes, which would in�uence
the positioning of the MSFs, and b) pre-determining the subsets of regressors that are to
be used in speci�c parts of the operating regions. While option a) has been explored in
multi-target regression trees, option b) and the combination of the two options remain to

110 Chapter 7. Conclusions

be explored.
The boosting of model trees might yield ensembles with a smaller number of trees,

as compared to bagging. These, however cannot be built in parallel, as is the case with
bagging. Also, the Lolimot algorithm may have to be modi�ed to consider more splits in
each dimension (as proposed by one of its modi�cations in the thesis), or add randomization
in the split selection procedure. Namely, the current split selection procedure might lead
to positions and overlaps of membership functions that are very similar in the �rst few
Lolimot iterations, and to local models whose coe�cients are estimated by using the same
data points and weights both for the �rst and the subsequent steps of boosting.

Approaches that learn incrementally, in an online manner, allow for modeling of time-
varying dynamic systems. They can detect changes in the sequential/streaming data and
adapt the model accordingly. This can be used for discovering potential faults or changes
in the dynamic system being monitored. Some online approaches based on model trees
have already been introduced (Nelles, 1996; Potts & Sammut, 2007).

The same holds for techniques (e.g., (Ikonomovska, Gama, & Dºeroski, 2011)) for
learning data streams that can be applied to large quantities (data streams) of sequential
data that arrive constantly and endlessly at very high rates and cannot be stored for longer
periods of time. Such data for learning from data streams can be di�cult/impossible
to handle using the standard o�ine techniques, due to time and memory constraints.
Evaluation using the output error is typically not used in the online setting, but approaches
(such as the ensembles of improved Lolimot trees), which use the output error during
learning are potentially more successful at the identi�cation of dynamic systems: using
output error when modeling dynamic systems with model trees or ensembles on data
streams (Ikonomovska, 2012) is thus a challenge worth addressing.

111

Appendix A

Complete Results

This appendix presents the complete results for the empirical analysis a) on the benchmark
machine learning datasets (Chapter 4), and b) for modeling dynamic systems (Chapter 5).
In particular:

• Tables A.1 to A.10 show the complete results in the static case,

• Tables A.11 to A.26 show the complete results of the evaluation for modeling dynamic
systems.

112 Appendix A. Complete Results

Table A.1: A statistical comparison of the predictive performance of di�erent tree learn-
ing algorithms for the task of single-target regression. The results in all tables compare
the leftmost method, in this case M5' MT, to all of the other methods, by using paired
comparisons. Additionally, the comparison signs <,=, > indicate the result of the paired
comparison according to the t-test.

M5' MT: t-test Lolimot t-test RT

abalone 0.6667 = 0.6569 = 0.7064
analcat 0.1422 = 0.1402 = 0.1478
auto93 0.5807 < 1.0928 = 0.6467
autoMpg 0.3693 = 0.3736 < 0.4417
auto-price 0.3971 = 0.4375 = 0.3990
bank8FM 0.2010 = 0.2009 < 0.2480
baseball 0.5818 = 0.5710 = 0.6255
baskball 0.8086 = 0.7670 = 0.9089
bodyfat 0.1545 = 0.1611 = 0.1864
breastTumor 0.9613 = 0.9706 = 1.0009
cal-housing 0.4668 < 0.5641 < 0.5147
cholesterol 1.0118 = 1.0343 = 1.0447
cleveland 0.7024 = 0.6910 < 0.8493
cloud 0.3857 = 0.4007 = 0.5518
concrete 0.3454 = 0.3429 < 0.4262
cpu 0.2356 = 0.1784 = 0.4028
cpu-act 0.1446 > 0.1228 < 0.1744
dailyElectrEner 0.4385 = 0.4184 < 0.4897
delta-ailerons 0.5446 = 0.5420 < 0.5831
delta-elevators 0.6969 > 0.6822 = 0.7025
echoMonths 0.7136 = 0.7388 = 0.7364
electr-len-2 0.0407 < 0.0519 < 0.0556
�shcatch 0.1737 = 0.1433 = 0.2229
forestFiresPOR 1.0196 = 1.0011 = 1.1849
fruit�y 1.0230 = 1.0449 = 1.0000
housing 0.4031 = 0.3751 < 0.5034
hungarian 0.7450 = 0.7428 < 0.8410
kin8nm 0.5857 > 0.5654 < 0.6909
laser 0.2080 > 0.1626 = 0.2328
lowbwt 0.6433 = 0.6366 = 0.6318
machine-cpu 0.3251 = 0.2902 = 0.3857
meta 0.8127 = 1.0062 = 0.9663
mortgage 0.0417 = 0.0205 < 0.0762
pbc 0.7957 = 0.8260 < 0.9096
pharynx 0.3577 < 1.3477 = 0.3730
pol 0.1485 < 0.4404 < 0.1960
puma8NH 0.5712 > 0.5627 < 0.5943
pwLinear 0.3102 = 0.3120 < 0.4481
quake 0.9958 = 1.0014 = 1.0016
sensory 0.8459 = 0.8437 < 0.9323
servo 0.3510 = 0.2410 = 0.3771
stock 0.1378 = 0.1262 = 0.1638
strike 1.0743 = 0.9209 = 1.0239
treasury 0.0732 = 0.0576 < 0.1044
triazines 7.2210 = 1.0973 = 0.8973
veteran 0.9652 = 1.1412 = 0.9383
wankara 0.0825 > 0.0785 < 0.1283
wisconsin 0.9905 = 0.9809 = 1.0063
wizmir 0.0834 > 0.0778 < 0.1207

t-test 5:7 21:0
w-test 0.384 0.000

113

Table A.2: A statistical comparison of the tree sizes in terms of the number of local models,
and the running times. Three di�erent tree learning algorithms evaluated for the task of
single-target regression. In this and the following tables which report model sizes and
running times, the model sizes are expressed as an average number of terminal nodes of
the 10 folds, while the running times are expressed as a sum of the total time required for
learning.

Model size Learning time (sec.)
M5' MT: Lolimot RT M5' MT: Lolimot RT

abalone 12.0 7.7 36.2 574.9 12187.8 148.4
analcat 80.2 20.2 12.0 113.6 11072.8 57.2
auto93 39.0 8.5 7.0 32.4 365.5 12.5
autoMpg 4.4 3.5 16.0 51.9 426.6 23.5
auto-price 62.4 3.9 62.3 22.3 195.0 10.7
bank8FM 45.0 29.9 255.0 746.2 67071.5 450.2
baseball 6.4 3.6 10.0 35.2 223.7 14.9
baskball 1.5 2.1 2.1 12.5 26.0 5.4
bodyfat 33.0 4.4 33.0 19.0 133.2 8.2
breastTumor 1.0 1.0 2.0 44.7 310.8 22.0
cal-housing 7645.0 6.0 499.0 1901.6 9283.2 1039.2
cholesterol 2.0 1.2 4.0 61.0 247.0 18.1
cleveland 1.0 1.0 6.0 27.8 383.4 13.1
cloud 1.0 1.3 43.0 12.1 30.4 7.6
concrete 404.0 28.6 404.0 69.4 1159.9 35.0
cpu 4.0 5.8 34.0 24.3 357.6 10.4
cpu-act 8.0 27.4 270.0 1056.2 103635.8 969.4
dailyElectrEner 1.6 9.4 8.0 25.8 107.1 11.1
delta-ailerons 22.0 28.9 74.0 478.9 35770.4 238.3
delta-elevators 8.0 24.2 59.0 577.0 66766.8 306.4
echoMonths 1.0 1.2 2.0 13.7 41.9 6.5
electr-len-2 50.6 29.7 113.0 30.7 816.5 31.1
�shcatch 3.0 4.6 41.0 18.6 63.8 7.1
forestFiresPOR 119.0 1.1 1.0 65.2 564.9 24.2
fruit�y 1.0 1.4 1.0 13.5 29.9 5.8
housing 193.0 16.2 193.0 48.2 245.8 25.2
hungarian 1.0 1.5 4.0 23.8 317.8 10.5
kin8nm 1632.0 30.0 264.0 863.9 66828.9 432.8
laser 49.0 27.0 219.0 47.1 642.9 20.5
lowbwt 1.0 1.1 2.0 21.7 98.4 9.5
machine-cpu 62.0 3.8 62.0 14.4 45.6 7.7
meta 10.0 8.8 47.0 108.0 2337.0 29.0
mortgage 99.7 23.8 99.0 79.1 1868.2 34.0
pbc 1.0 1.1 6.0 59.7 297.0 20.3
pharynx 5.0 15.4 14.0 250.9 15239.3 73.9
pol 1305.0 6.0 1305.4 1832.8 15998.4 1287.6
puma8NH 35.0 22.2 83.0 908.6 56952.5 503.3
pwLinear 2.0 2.5 14.0 18.2 124.2 11.2
quake 1.0 9.1 1.0 123.5 1329.7 58.7
sensory 247.0 2.0 8.0 98.0 734.4 33.8
servo 37.0 3.3 49.0 16.4 86.3 7.9
stock 253.4 29.7 253.3 71.4 1175.5 30.6
strike 1.0 1.1 10.0 67.7 683.6 32.3
treasury 34.0 15.7 59.0 73.5 1623.4 30.8
triazines 77.0 3.4 5.0 120.2 825.5 22.6
veteran 1.0 1.9 2.0 15.5 42.2 8.8
wankara 4.0 19.7 415.3 120.6 2249.4 52.9
wisconsin 1.0 1.0 3.0 65.9 300.5 13.4
wizmir 2.0 13.4 345.1 92.6 1722.8 44.5

#wins1 23:26 42:7 49:0 1:48
w-test 0.003 0.019 0.000 0.000

1The number of wins, denoted as "#wins" is reported in this and in the following tables with results for
the size of the models and the running time. The values only summarize the number of datasets on which
variant A had a smaller value than variant B. No statistical test is considered. The sum of the number of
wins for the method tested and its alternative would always add up to the total number of datasets.

114 Appendix A. Complete Results

Table A.3: A statistical comparison of the predictive performance of di�erent tree learning
algorithms, for the task of multi-target regression.

M5' MT: t-test Lolimot t-test RT

class-spec 6.7591 2.5555 0.8727
class-ind 5.7335 6.1634 0.8540
class-fols 0.9345 3.5040 0.9435
Collembola = =
DFlow 0.7828 0.8094 0.9106
DGap 0.7127 0.7208 0.7667
EDM = =
p 0.0350 0.0320 0.1113
aspect 0.9866 0.9880 1.0000
Forestry IRS = <
p 0.0334 0.0296 0.1113
aspect 0.9962 0.9957 1.0000
Forestry SPOT = <
MF0/00 plR 0.5788 0.8406 0.6190
MS0/00 plR 0.5447 0.6420 0.6481
Sigmea-real = =
Dispersal Rate Pollen 297.7392 0.0336 0.0429
Dispersal Seeds 228.3116 0.0257 0.0224
Sigmea-simulated = =
c-class 0.9523 0.9554 0.9649
m-class 0.9237 0.9284 0.9686
x-class 0.9584 0.9443 1.0087
Solar-�are1 = <
c-class 0.8761 0.8922 0.8935
m-class 0.9859 0.9785 0.9883
x-class 0.9711 0.9957 0.9747
Solar-�are2 = =
Cladophora 0.9652 0.9359 1.0099
Gongrosira 0.9943 0.9773 1.0177
Oedogonium 0.9047 0.9039 0.9499
Stigeoclonium 0.8729 0.8927 0.9116
Melosira 0.9507 0.9613 0.9819
Nitzschia 0.8235 0.8231 0.8421
Audouinella 0.8664 0.8586 0.8967
Erpobdella 0.9113 0.9764 0.9356
Gammarus 0.8110 0.8250 0.8381
Baetis 0.9386 0.9416 0.9741
Hydropsyche 0.9468 0.9749 0.9955
Rhyacophila 0.8561 0.8841 0.8707
Simulium 0.9918 0.9939 1.0303
Tubifex 0.8765 0.8931 0.9084
Water quality = <
t-test 0:0 4:0
w-test 0.150 0.006

Table A.4: A statistical comparison of the tree sizes in terms of the number of local models,
and the running times. Three di�erent tree learning algorithms evaluated, for the task of
multi-target regression.

Model size Learning time (sec.)
M5' MT: Lolimot RT M5' MT: Lolimot RT

Collembola 1.1 1.0 2.0 626.1 6232.8 133.0
EDM 7.0 1.8 13.0 16.1 159.9 6.2
Forestry IRS 1.0 1.4 1.0 710.2 10932.7 371.0
Forestry SPOT 1.0 2.0 1.0 1840.2 20076.3 434.6
Sigmea-real 49.2 2.7 49.2 19.7 272.1 15.9
Sigmea-simulated 30.4 28.8 36.0 297.8 62192.4 213.0
Solar-�are1 12.1 1.0 1.0 21.9 568.6 13.3
Solar-�are2 13.2 1.1 13.2 95.2 2166.5 25.7
Water quality 53.5 2.8 53.5 1005.7 2614.4 279.6

#wins 3:6 8:1 9:0 0:9
w-test 0.039 0.875 0.004 0.004

115

Table A.5: A statistical comparison of the predictive performance of ensembles, for the
task of single-target regression.

Forests MT : t-test Bagg.MT t-test MT t-test Forests RT t-test Bagg.RT t-test Bagg.Lol

abalone 0.6535 = 0.6487 = 0.6667 = 0.6680 = 0.6695 = 0.6527
analcat 0.1474 = 0.1428 = 0.1422 = 0.1463 = 0.1473 = 0.1406
auto93 0.4279 = 0.4441 = 0.5807 = 0.4949 < 0.5030 < 0.6700
autoMpg 0.3286 = 0.3391 = 0.3693 = 0.3402 = 0.3531 = 0.3516
auto-price 0.4101 = 0.3975 = 0.3971 = 0.3482 = 0.3677 = 0.4258
bank8FM 0.1895 < 0.1936 < 0.2010 < 0.2056 < 0.2075 < 0.2001
baseball 0.5496 = 0.5552 = 0.5818 = 0.5675 = 0.5729 = 0.5494
baskball 0.8035 = 0.8004 = 0.8086 = 0.8932 = 0.8627 = 0.7687
bodyfat 0.1591 = 0.1502 = 0.1545 = 0.1590 = 0.1703 = 0.1558
breastTumor 0.9558 = 0.9541 = 0.9613 = 0.9637 = 0.9637 = 0.9704
cal-housing 0.4236 < 0.4305 < 0.4668 = 0.4220 = 0.4225 < 0.5409
cholesterol 1.0026 = 1.0095 = 1.0118 = 0.9902 = 0.9923 = 1.0312
cleveland 0.6925 = 0.6996 = 0.7024 = 0.7014 = 0.7406 = 0.6909
cloud 0.3953 = 0.3788 = 0.3857 = 0.4817 = 0.4552 = 0.3896
concrete 0.3006 < 0.3168 < 0.3454 = 0.2978 = 0.3057 < 0.3311
cpu 0.1613 = 0.1543 = 0.2356 = 0.3480 < 0.3331 = 0.1403
cpu-act 0.1265 = 0.1357 < 0.1446 < 0.1329 < 0.1400 > 0.1198
dailyElectrEner 0.4065 = 0.4134 = 0.4385 = 0.4156 = 0.4273 = 0.4140
delta-ailerons 0.5266 = 0.5290 < 0.5446 < 0.5388 < 0.5439 < 0.5445
delta-elevators 0.6734 = 0.6806 = 0.6969 = 0.6552 = 0.6648 = 0.6814
echoMonths 0.7189 = 0.7184 = 0.7136 = 0.7141 = 0.7147 < 0.7383
electr-len-2 0.0398 = 0.0410 = 0.0407 < 0.0490 < 0.0481 < 0.0506
�shcatch 0.1362 = 0.1396 < 0.1737 < 0.1940 < 0.1928 = 0.1418
forestFiresPOR 1.0080 = 5.5383 = 1.0196 = 1.0050 = 1.0224 = 1.0008
fruit�y 1.0216 = 1.0340 = 1.0230 = 1.0000 = 1.0021 = 1.0441
housing 0.3648 = 0.4285 = 0.4031 = 0.3723 = 0.4045 = 0.3581
hungarian 0.7195 = 0.7183 = 0.7450 = 0.7691 = 0.7694 = 0.7364
kin8nm 0.6995 = 0.5261 = 0.5857 = 0.5067 = 0.5131 = 0.5659
laser 0.1328 = 0.1507 < 0.2080 < 0.1776 = 0.1882 < 0.1572
lowbwt 0.6178 = 0.6272 = 0.6433 = 0.6133 = 0.6173 = 0.6395
machine-cpu 0.2863 = 0.2892 = 0.3251 = 0.3785 = 0.3603 = 0.2886
meta 0.6285 = 0.8312 = 0.8127 = 0.7160 = 0.7334 = 0.7713
mortgage 0.0221 = 0.0259 = 0.0417 < 0.0509 < 0.0568 = 0.0204
pbc 0.8042 > 0.7938 = 0.7957 = 0.8190 = 0.8427 = 0.8234
pharynx 0.2974 = 0.2987 = 0.3577 = 0.2915 = 0.2958 = 0.4941
pol 0.1035 < 0.1228 < 0.1485 < 0.1222 < 0.1426 < 0.2454
puma8NH 0.5638 = 0.5650 < 0.5712 < 0.5685 < 0.5701 < 0.5717
pwLinear 0.3441 = 0.3246 = 0.3102 = 0.3645 = 0.3707 = 0.3080
quake 1.0232 = 1.0103 = 0.9958 = 0.9974 = 0.9966 = 1.0003
sensory 0.8237 = 0.8252 < 0.8459 = 0.8283 = 0.8332 = 0.8438
servo 0.2721 = 0.2915 < 0.3510 = 0.3478 < 0.3190 = 0.2466
stock 0.1049 = 0.1180 < 0.1378 < 0.1115 = 0.1229 < 0.1233
strike 0.9067 = 0.9064 = 1.0743 = 0.9159 = 0.9201 = 0.9218
treasury 0.0534 < 0.0622 < 0.0732 < 0.0668 < 0.0750 = 0.0558
triazines 0.8049 = 0.8173 = 7.2210 = 0.7825 = 0.7745 = 0.9345
veteran 0.9493 = 0.9475 = 0.9652 = 0.9562 = 0.9445 = 0.9880
wankara 0.0766 < 0.0797 < 0.0825 < 0.0864 < 0.0903 = 0.0775
wisconsin 0.9488 = 0.9409 < 0.9905 = 0.9821 = 0.9758 < 0.9904
wizmir 0.0765 < 0.0793 < 0.0834 < 0.0842 < 0.0884 = 0.0781

t-test 7:1 16:0 13:0 14:0 12:1
w-test 0.028 0.000 0.001 0.000 0.003

116 Appendix A. Complete Results

Table A.6: A statistical comparison of the model sizes and running times of ensembles, for
the task of single-target regression.

Model size Learning time (sec.)
Forests MT : Bagg.MT MT Forests RT Bagg.RT Bagg.Lol. Forests MT: Bagg.MT. MT Forests RT Bagg.RT Bagg.Lol.

abalone 23.5 11.5 12.0 1569.0 85.5 16.0 327840.8 82852.4 574.9 21000.0 5468.9 68616.6
analcat 55.5 85.5 80.0 62.0 21.5 12.4 194682.0 51574.2 113.6 3232.5 1509.6 13254.1
auto93 1.0 1.0 39.0 37.5 32.5 8.5 13216.0 3707.1 32.4 450.9 206.0 8629.6
autoMpg 155.0 3.5 4.0 155.0 153.5 3.5 31505.0 81626.4 51.9 1630.1 604.1 8394.0
auto-price 8.5 7.5 62.0 54.0 53.5 3.9 11717.0 2974.3 22.3 497.7 175.5 2282.7
bank8FM 2377.0 2207.0 45.0 2277.5 2207.0 28.9 2456439.2 176910.8 746.2 31342.6 21441.4 48926.9
baseball 2.5 3.5 6.0 111.5 16.5 3.6 51681.8 5376.5 35.2 951.0 360.1 4970.0
baskball 1.0 1.0 1.0 39.5 3.5 2.1 8457.8 2230.5 12.5 395.9 105.6 294.7
bodyfat 63.0 33.5 33.0 46.0 33.5 4.4 32968.0 7162.2 19.0 613.2 221.2 3697.3
breastTumor 1.5 1.5 1.0 3.0 2.0 1.0 199158.5 73252.1 44.7 1491.4 509.0 7065.6
cal-housing 7278.5 6940.0 7645.0 6989.0 6940.0 29.9 1749791.5 575609.2 1901.6 88797.7 122594.1 79924.4
cholesterol 1.0 2.5 2.0 6.5 6.0 1.2 24521.2 6718.6 61.0 809.3 413.7 4037.9
cleveland 1.0 1.0 1.0 83.5 69.5 1.0 16164.2 4156.4 27.8 676.1 329.5 4074.8
cloud 2.5 1.0 1.0 41.0 39.0 1.3 8873.0 2095.7 12.1 294.4 88.0 509.6
concrete 32.0 47.5 404.0 369.0 352.0 27.8 378604.4 19148.7 69.4 4022.9 823.9 22866.9
cpu 17.0 6.5 4.0 31.5 29.5 5.8 11454.6 10196.4 24.3 636.5 220.1 8983.5
cpu-act 1927.5 1868.5 8.0 1927.5 1868.5 28.7 680543.6 227160.8 1056.2 40114.6 19331.3 380124.6
dailyElectrEner 74.5 77.0 1.0 141.0 137.5 9.4 27731.8 6766.0 25.8 1191.9 388.9 2913.4
delta-ailerons 2522.0 2305.5 22.0 2522.0 2305.5 28.8 581637.9 771850.3 478.9 18944.9 6148.6 27517.3
delta-elevators 3508.0 3164.5 8.0 3508.0 3164.5 22.5 1150836.9 941940.6 577.0 57058.9 10977.7 28732.0
echoMonths 1.0 1.0 1.0 5.0 6.5 1.2 10100.8 2439.4 13.7 315.9 104.9 677.0
electr-len-2 19.0 13.5 50.0 122.0 110.5 28.9 56623.6 7206.1 30.7 1745.2 388.7 14018.8
�shcatch 9.0 5.5 3.0 44.5 38.5 4.6 9240.9 2224.5 18.6 392.8 158.2 1632.0
forestFiresPOR 117.0 106.0 119.0 3.5 1.5 1.1 80509.4 23856.6 65.2 1415.2 457.5 10095.2
fruit�y 1.5 1.5 1.0 1.0 1.0 1.4 8865.0 2513.7 13.5 202.5 117.7 481.4
housing 11.0 16.5 193.0 193.5 179.0 16.2 38822.4 23599.4 48.2 1546.8 709.0 11046.9
hungarian 1.0 12.0 1.0 8.0 7.0 1.5 10668.4 2647.9 23.8 1145.1 237.7 3715.6
kin8nm 3249.0 223.0 1632.0 3181.5 3142.5 30.0 744515.3 214215.1 863.9 43311.0 15021.1 81852.6
laser 38.0 37.5 49.0 219.0 204.5 25.8 52845.0 11177.8 47.1 2445.1 607.1 10876.1
lowbwt 1.5 1.0 1.0 2.5 2.5 1.1 13427.9 3736.2 21.7 662.7 297.5 2024.1
machine-cpu 58.0 6.0 62.0 61.0 53.5 3.8 12929.2 3190.2 14.4 306.1 125.4 915.6
meta 10.0 7.5 10.0 57.5 53.5 8.8 51041.7 13485.9 108.0 1643.8 713.0 61571.9
mortgage 39.0 30.0 99.0 116.5 86.5 24.3 98800.6 9864.1 79.1 2093.8 1277.6 110346.9
pbc 168.5 1.0 1.0 168.5 166.0 1.1 130042.4 9816.0 59.7 1595.8 1450.9 7278.4
pharynx 44.5 8.5 5.0 18.0 17.5 15.4 1765938.6 456127.1 250.9 2635.3 872.4 669277.6
pol 286.5 212.5 1305.0 1281.5 1096.5 30.0 806743.6 258610.5 1832.8 52880.4 23764.5 313991.8
puma8NH 48.5 35.0 35.0 145.0 118.0 23.0 1535174.8 1532370.1 908.6 36663.3 14670.9 48230.5
pwLinear 30.5 74.5 2.0 14.5 16.0 2.5 22179.7 6949.2 18.2 1008.6 218.4 1394.6
quake 3.0 1.0 1.0 5.0 8.0 8.0 193564.5 54371.0 123.5 5729.6 2020.8 5580.9
sensory 218.5 210.5 247.0 220.5 210.5 2.0 127006.5 13150.9 98.0 1739.7 968.4 15085.2
servo 37.5 6.0 37.0 47.5 42.5 3.3 12954.9 3766.1 16.4 536.3 138.4 1744.8
stock 57.5 53.0 253.0 253.5 241.5 29.7 57728.0 31802.6 71.4 8194.5 803.9 25503.8
strike 3.0 9.5 1.0 5.5 12.0 1.1 299610.6 10460.3 67.7 2014.5 1382.2 14200.5
treasury 106.0 87.5 34.0 92.0 87.5 18.0 35993.2 34129.9 73.5 2163.2 741.2 33738.0
triazines 1.0 1.0 77.0 72.0 71.5 3.4 131979.8 15116.5 120.2 1082.6 535.5 14104.1
veteran 17.0 54.0 1.0 48.0 2.5 1.9 49077.1 2723.0 15.5 674.5 104.9 792.2
wankara 503.0 366.0 4.0 417.5 366.0 20.4 178584.5 70115.0 120.6 4344.8 1183.9 19827.2
wisconsin 15.5 17.0 1.0 5.5 4.5 1.0 26232.8 6868.8 65.9 733.5 368.3 5270.9
wizmir 445.5 298.5 2.0 360.0 298.5 14.6 79430.7 19886.3 92.6 3473.3 1317.2 17333.7

#wins 18:31 22:27 37:12 28:21 11:38 2:47 0:49 0:49 0:49 2:47
w-test 0.001 0.236 0.012 0.462 0.000 0.000 0.000 0.000 0.000 0.000

117

Table A.7: A statistical comparison of the predictive performance of ensembles, for the
task of multi-target regression.

Forests MT : t-test Bagg.MT t-test MT t-test Forests RT t-test Bagg.RT t-test Bagg.Lol.

class-spec 3.5341 3.7864 6.7591 0.8537 0.8527 2.8580
class-ind 7.0768 8.5728 5.7335 0.8278 0.8262 5.9769
class-fols 4.3792 3.3956 0.9345 0.8950 0.9002 4.0425
Collembola = = = = =
DFlow 0.6763 0.7454 0.7828 0.6041 0.6855 0.7946
DGap 0.6798 0.6948 0.7127 0.7047 0.6973 0.7196
EDM = = = = <
p 0.0152 0.0137 0.0350 0.0175 0.0149 0.0317
aspect 0.9842 0.9962 0.9866 0.9921 1.0061 0.9866
Forestry IRS = < < = <
p 0.0149 0.0138 0.0334 0.0179 0.0148 0.0323
aspect 0.9829 0.9950 0.9962 0.9864 1.0016 0.9953
Forestry SPOT = < < = <
MF0/00 plR 0.6117 0.6109 0.5788 0.5846 0.6268 0.6812
MS0/00 plR 0.5096 0.5484 0.5447 0.5160 0.4575 0.6127
Sigmea-real = = = = =
Dispersal Rate Pollen 173.5425 546.5373 297.7392 0.0412 0.0421 0.0754
Dispersal Seeds 173.2916 379.6341 228.3116 0.0220 0.0219 0.0586
Sigmea-simulated = = = = =
c-class 0.9323 0.9327 0.9523 0.9356 0.9637 0.9570
m-class 0.9171 0.9165 0.9237 0.9116 0.9657 0.9301
x-class 0.9540 0.9485 0.9584 0.9462 1.0199 0.9505
Solar-�are1 = = = < =
c-class 0.8652 0.8694 0.8761 0.8755 0.8875 0.8751
m-class 0.9691 0.9707 0.9859 0.9764 0.9968 0.9745
x-class 0.9775 0.9716 0.9711 0.9635 0.9787 0.9905
Solar-�are2 = = = = =
Cladophora 0.9231 0.9283 0.9652 0.9315 0.9337 0.9323
Gongrosira 0.9783 0.9796 0.9943 0.9849 0.9839 0.9823
Oedogonium 0.8923 0.8932 0.9047 0.9002 0.8998 0.9029
Stigeoclonium 0.8479 0.8556 0.8729 0.8546 0.8639 0.8817
Melosira 0.9245 0.9313 0.9507 0.9275 0.9345 0.9515
Nitzschia 0.7877 0.7937 0.8235 0.7887 0.7952 0.8172
Audouinella 0.8411 0.8411 0.8664 0.8466 0.8461 0.8552
Erpobdella 0.8967 0.8989 0.9113 0.9001 0.9035 0.9404
Gammarus 0.7828 0.7888 0.8110 0.7933 0.7991 0.8152
Baetis 0.9088 0.9182 0.9386 0.9169 0.9260 0.9304
Hydropsyche 0.9198 0.9245 0.9468 0.9245 0.9322 0.9498
Rhyacophila 0.8507 0.8520 0.8561 0.8485 0.8482 0.8794
Simulium 0.9660 0.9716 0.9918 0.9700 0.9747 0.9848
Tubifex 0.8523 0.8549 0.8765 0.8548 0.8597 0.8871
Water quality < < < < <
t-test 1:0 3:0 3:0 2:0 4:0
w-test 0.001 0.001 0.837 0.102 0.027

Table A.8: A statistical comparison of the model sizes and running times of ensembles, for
the task of multi-target regression.

Model size Learning time (sec.)
Forest.MT: Bagg.MT MT Forest.RT Bagg.RT Bagg.Lol. Forests MT Bagg.MT MT Forests RT Bagg.RT Bagg.Lol.

Collemb. 1.1 1.2 1.0 105.5 96.0 1.0 1276587.7 102137.8 626.1 7643.8 3684.5 4412.9
EDM 15.0 4.2 7.0 15.0 9.0 1.8 6684.0 3629.0 16.1 310.2 132.7 88.3
Forest.iRS 584.5 451.0 1.0 584.5 451.0 2.2 502094.9 522805.3 710.2 22309.0 10783.9 2511.3
Forest.SPOT 502.0 430.5 1.0 502.0 430.5 1.5 3075722.3 365028.6 1840.2 39901.2 17867.1 5801.7
Sigmea-real 10.0 3.5 49.0 48.5 47.0 2.8 40074.3 8277.6 19.7 879.6 325.2 282.6
Sigmea-sim. 33.5 36.5 30.0 33.5 36.5 26.7 236026.9 67697.1 297.8 17516.1 8995.6 8718.1
Solar-�are1 1.0 1.3 12.0 6.5 1.0 1.0 50864.8 16071.0 21.9 659.1 320.6 444.5
Solar-�are2 13.0 13.0 13.0 13.0 13.0 1.0 28540.6 9463.2 95.2 1548.7 691.1 1211.7
Water quality 64.5 47.5 53.0 64.5 47.5 3.1 330572.0 224589.1 1005.7 22288.1 8924.7 1483.9

#wins 4:5 4:5 9:0 5:4 2:7 1:8 0:9 0:9 0:9 0:9
w-test 0.078 0.375 0.250 0.688 0.016 0.020 0.004 0.004 0.004 0.004

118 Appendix A. Complete Results

Table A.9: A statistical comparison of the predictive performance of forests of M5' model
trees with a di�erent number of trees for the task of single-target regression.

RF(100 MT) t-test RF(50 MT) t-test RF(25 MT)

abalone 0.6535 = 0.6533 = 0.6531
analcat 0.1474 = 0.1474 = 0.1454
auto93 0.4279 = 0.4272 = 0.4313
autoHorse 0.2877 = 0.2909 < 0.3156
autoMpg 0.3286 = 0.3335 = 0.3314
auto-price 0.4101 = 0.4146 = 0.4174
bank8FM 0.1895 = 0.1898 = 0.1920
baseball 0.5496 = 0.5614 = 0.5492
baskball 0.8035 > 0.7948 = 0.8006
bodyfat 0.1591 = 0.1598 = 0.1679
breastTumor 0.9558 = 0.9546 = 0.9544
cal-housing 0.4236 = 0.4252 = 0.4298
cholesterol 1.0026 = 0.9838 = 1.0068
cleveland 0.6925 = 0.7035 = 0.7013
cloud 0.3953 = 0.3919 = 0.4021
concrete 0.3006 = 0.3046 = 0.3200
cpu 0.1613 = 0.1544 = 0.2202
cpu-act 0.1265 = 0.1269 = 0.1284
dailyElectrEner 0.4065 = 0.4166 = 0.4114
delta-ailerons 0.5266 = 0.5274 = 0.5281
delta-elevators 0.6734 = 0.6739 = 0.6795
echoMonths 0.7189 = 0.7201 = 0.7213
electr-len-2 0.0398 = 0.0468 = 0.0414
�shcatch 0.1362 = 0.1388 = 0.1400
forestFiresPOR 1.0080 = 1.0190 = 1.0032
fruit�y 1.0216 = 1.0177 = 1.0290
housing 0.3648 = 0.3465 = 0.3601
hungarian 0.7195 = 0.7285 = 0.7273
kin8nm 0.6995 = 0.5758 = 0.6036
laser 0.1328 = 0.1366 = 0.1401
lowbwt 0.6178 = 0.6369 = 0.6353
machine-cpu 0.2863 = 0.3057 = 0.2897
meta 0.6285 = 5991.7710 = 12560.1648
mortgage 0.0221 = 0.0226 = 0.0240
pbc 0.8042 = 0.8081 = 0.8106
pharynx 0.2974 = 0.3007 = 0.3040
puma8NH 0.5638 = 0.5636 < 0.5657
pwLinear 0.3441 = 0.3240 = 0.3304
quake 1.0232 = 1.0342 = 1.1682
sensory 0.8237 = 0.8213 = 0.8241
servo 0.2721 = 0.2616 = 0.2782
stock 0.1049 = 0.1051 = 0.1058
strike 0.9067 = 0.9074 = 0.9110
treasury 0.0534 = 0.0536 = 0.0548
triazines 0.8049 = 0.8136 = 0.7949
veteran 0.9493 = 0.9467 = 0.9411
wankara 0.0766 = 0.0770 = 0.0773
wisconsin 0.9488 = 0.9492 = 0.9538
wizmir 0.0765 = 0.0765 = 0.0770

t-test 0:1 2:0
w-test 0.064 0.000

119

Table A.10: A statistical comparison of the model sizes and running times of forests of
M5' model trees for the task of single-target regression.

Model size Learning time (sec.)
RF(100 MT) RF(50 MT) RF(25 MT) RF(100 MT) RF(50 MT) RF(25 MT)

abalone 23.5 13.5 19.0 327840.8 300031.6 90246.9
analcat 55.5 43.5 16.0 194682.0 24286.5 12853.4
auto93 1.0 5.0 1.5 13216.0 7221.9 4346.6
autoHorse 10.0 49.5 56.0 83234.8 43382.4 21305.2
autoMpg 155.0 155.5 161.0 31505.0 16491.3 27920.1
auto-price 8.5 4.0 7.5 11717.0 6475.1 6058.5
bank8FM 2377.0 2437.5 2365.0 2456439.2 324667.2 304354.7
baseball 2.5 3.5 116.5 51681.8 12248.0 20916.0
baskball 1.0 1.0 1.0 8457.8 4375.8 2463.6
bodyfat 63.0 72.0 40.0 32968.0 8898.1 6970.7
breastTumor 1.5 1.0 3.0 199158.5 47568.9 7447.6
cal-housing 7278.5 7090.0 7189.5 1749791.5 871515.5 495852.7
cholesterol 1.0 1.0 1.0 24521.2 24951.2 14836.1
cleveland 1.0 88.5 89.0 16164.2 9124.3 10268.4
cloud 2.5 1.0 2.0 8873.0 4530.4 2609.4
concrete 32.0 34.5 37.0 378604.4 40559.7 29789.9
cpu 17.0 9.0 11.0 11454.6 27391.5 7197.0
cpu-act 1927.5 1896.0 1917.0 680543.6 366597.0 176832.3
dailyElectrEner 74.5 80.5 148.5 27731.8 16716.9 8221.8
delta-ailerons 2522.0 2515.0 2506.5 581637.9 317841.6 571575.4
delta-elevators 3508.0 3526.0 3491.5 1150836.9 367030.5 189756.4
echoMonths 1.0 1.0 1.0 10100.8 4992.0 2953.3
electr-len-2 19.0 20.5 13.5 56623.6 86443.9 10814.6
�shcatch 9.0 7.0 7.5 9240.9 5027.8 2783.3
forestFiresPOR 117.0 122.5 11.0 80509.4 14783.4 8823.6
fruit�y 1.5 1.0 1.0 8865.0 4898.6 2612.7
housing 11.0 12.5 13.5 38822.4 20329.5 18071.3
hungarian 1.0 22.5 13.0 10668.4 5804.6 3325.3
kin8nm 3249.0 195.0 3269.0 744515.3 2231298.8 345005.7
laser 38.0 24.5 35.5 52845.0 50555.3 17919.0
lowbwt 1.5 1.5 2.0 13427.9 50708.6 4486.7
machine-cpu 58.0 6.5 4.0 12929.2 6229.5 3498.7
meta 10.0 37.5 37.5 51041.7 28024.2 38594.6
mortgage 39.0 132.5 121.0 98800.6 180214.4 11391.1
pbc 168.5 165.5 172.0 130042.4 19655.0 11108.4
pharynx 44.5 50.5 44.0 1765938.6 57289.0 392165.5
puma8NH 48.5 42.0 48.5 1535174.8 2124603.2 210734.8
pwLinear 30.5 77.0 78.5 22179.7 8668.3 4634.6
quake 3.0 1.0 4.0 193564.5 100668.6 46251.2
sensory 218.5 223.5 221.5 127006.5 26247.5 14620.6
servo 37.5 37.5 32.0 12954.9 5443.3 3053.1
stock 57.5 37.5 49.0 57728.0 29893.7 16157.1
strike 3.0 4.0 8.0 299610.6 21544.2 11947.4
treasury 106.0 110.0 98.5 35993.2 79147.7 11631.9
triazines 1.0 1.0 1.0 131979.8 27585.1 16244.6
veteran 17.0 53.5 54.0 49077.1 5506.0 3068.3
wankara 503.0 414.0 442.5 178584.5 54083.2 28107.4
wisconsin 15.5 16.0 1.0 26232.8 14409.0 7398.8
wizmir 445.5 424.5 444.5 79430.7 40938.4 22529.0

#wins 29:20 25:24 8:41 0:49
w-test 0.885 0.770 0.000 0.000

120 Appendix A. Complete Results

T
ab
le
A
.1
1:

C
om

pa
ri
ng

th
e
pe
rf
or
m
an
ce

of
M
5'
to

L
ol
im
ot
.

O
S
A

S
IM

n
u
m
L
M

ti
m
e

M
5
'

L
o
li
m
o
t S

M
5
'

L
o
li
m
o
t S

M
5
'

L
o
li
m
o
t S

C
S
T
R
(C
a
)

0
.0
1
5
1

0
.0
0
3
5

0
.0
1
5
1

0
.0
0
9
1

1
2
.0
0
0
0

0
.5
1
0
0

4
2
.8
5
0
0

C
S
T
R
'
(C
a
)

0
.0
1
5
5

0
.0
1
5
4

0
.0
1
6
7

0
.0
1
7
1

4
.0
0
0
0

1
.1
1
9
0

5
.4
2
5
0

C
S
T
R
(T
)

0
.0
0
4
0

0
.0
0
2
3

0
.0
1
2
5

0
.0
0
4
7

3
.0
0
0
0

0
.5
1
4
0

2
.6
9
2
0

C
S
T
R
'
(T
)

0
.0
2
4
2

0
.0
1
7
3

0
.0
2
6
1

0
.0
1
9
4

4
.0
0
0
0

1
.0
1
7
0

4
.9
0
9
0

G
L
S
(h

1
)

0
.0
0
5
0

0
.0
0
4
6

0
.1
1
3
2

0
.0
6
4
6

2
.0
0
0
0

0
.0
9
1
0

0
.0
3
7
0

G
L
S
(p

1
)

0
.1
0
9
6

0
.1
0
6
6

0
.1
8
8
1

0
.1
7
6
4

4
.0
0
0
0

0
.0
6
7
0

0
.1
0
8
0

N
a
re
n
d
ra

0
.0
5
9
1

0
.0
2
4
9

0
.2
0
9
8

0
.0
4
4
1

4
1
.0
0
0
0

0
.1
2
8
0

8
5
.8
6
2
0

N
a
re
n
d
ra
'

0
.0
7
5
0

0
.0
7
2
4

0
.1
4
5
6

0
.1
2
8
6

1
0
.0
0
0
0

0
.3
7
1
0

5
.9
2
2
0

p
H
B

0
.1
3
5
0

0
.0
7
1
7

0
.2
9
3
7

0
.2
0
2
1

8
.0
0
0
0

0
.1
4
5
0

0
.2
7
8
0

p
H
' B

0
.0
9
3
4

0
.0
8
4
9

0
.2
4
2
6

0
.2
3
3
5

2
.0
0
0
0

0
.0
5
4
0

0
.0
1
4
0

p
H
A

0
.0
5
5
3

0
.0
6
5
7

0
.1
2
6
7

0
.1
2
9
6

6
.0
0
0
0

0
.0
2
0
0

0
.1
0
8
0

p
H
' A

0
.1
1
2
5

0
.1
3
2
8

0
.6
7
3
9

0
.2
8
6
8

3
.0
0
0
0

0
.0
3
1
0

0
.0
2
3
0

S
te
a
m
G
e
n
(y

1
)

0
.0
2
2
0

0
.0
1
9
1

0
.2
2
8
7

0
.1
4
4
6

2
.0
0
0
0

1
.2
1
0
0

2
.8
2
8
0

S
te
a
m
G
e
n
(y

2
)

0
.2
6
8
5

0
.2
8
5
8

0
.2
9
7
6

0
.3
0
9
2

4
8
.0
0
0
0

1
.7
9
2
0

9
7
0
.3
8
7
0

S
te
a
m
G
e
n
(y

3
)

0
.0
9
0
6

0
.0
6
2
0

0
.2
0
5
5

0
.1
4
2
7

2
.0
0
0
0

1
.9
1
3
0

2
.4
2
7
0

S
te
a
m
G
e
n
(y

4
)

0
.0
4
9
3

0
.0
4
8
9

0
.1
5
7
9

0
.1
3
9
2

2
.0
0
0
0

1
.5
4
8
0

2
.3
9
7
0

R
o
b
o
t
(τ

1
)

0
.0
9
2
2

0
.0
9
0
5

0
.1
6
3
9

0
.1
2
7
5

3
.0
0
0
0

0
.6
2
3
0

0
.9
1
7
0

R
o
b
o
t
(τ

2
)

0
.1
0
2
9

0
.0
9
6
7

N
a
N

4
8
.1
9
1
7

2
.0
0
0
0

0
.4
9
1
0

0
.4
5
9
0

R
o
b
o
t
(τ

3
)

0
.0
7
3
8

0
.0
6
9
0

0
.2
3
1
3

0
.1
8
3
0

2
.0
0
0
0

0
.4
4
7
0

0
.5
7
7
0

R
o
b
o
t
(τ

4
)

0
.0
6
8
4

0
.0
6
2
0

N
a
N

0
.1
0
4
3

2
.0
0
0
0

0
.6
4
7
0

0
.5
7
0
0

R
o
b
o
t
(τ

5
)

0
.1
8
3
6

0
.1
7
4
2

0
.8
7
8
0

0
.3
0
3
1

2
.0
0
0
0

0
.5
6
9
0

0
.5
7
3
0

R
o
b
o
t
(τ

6
)

0
.0
7
8
6

0
.0
7
5
1

0
.1
4
5
6

0
.1
2
0
5

2
.0
0
0
0

0
.5
9
1
0

0
.5
7
5
0

R
o
b
o
t
(τ

7
)

0
.0
6
2
9

0
.0
6
1
0

0
.0
8
5
8

0
.0
7
7
0

2
.0
0
0
0

0
.7
0
0
0

0
.6
7
0
0

W
in
d
in
g
(T

1
)

0
.3
2
2
0

0
.2
8
9
0

0
.4
0
1
0

0
.3
3
8
4

4
.0
0
0
0

0
.8
0
0
0

2
.7
7
4
0

W
in
d
in
g
(T

2
)

0
.1
0
7
1

0
.0
7
4
9

0
.2
7
8
8

0
.1
4
8
7

3
1
.0
0
0
0

0
.6
4
8
0

9
6
.7
6
3
0

121

T
ab
le
A
.1
2:

C
om

pa
ri
ng

M
5'
to

a
ve
rs
io
n
w
it
h
fu
zz
y/
so
ft
es
ti
m
at
io
n,

an
d
to

L
ol
im
ot

of
th
e
sa
m
e
si
ze
.

O
S
A

S
IM

n
u
m
L
M

M
5
'

M
5′ S
O
F
T

L
o
li
m
o
t S

M
5
'

M
5′ S
O
F
T

L
o
li
m
o
t S

C
S
T
R
(C
a
)

0.
01
51

0.
00
16

0.
00
35

0.
01
51

0.
00
26

0.
00
91

12
.0
00
0

C
S
T
R
'
(C
a
)

0.
01
55

0.
01
63

0.
01
54

0.
01
67

0.
01
89

0.
01
71

4.
00
00

C
S
T
R
(T
)

0.
00
40

0.
00
23

0.
00
23

0.
01
25

0.
00
51

0.
00
47

3.
00
00

C
S
T
R
'
(T
)

0.
02
42

0.
02
13

0.
01
73

0.
02
61

0.
02
33

0.
01
94

4.
00
00

G
L
S
(h

1
)

0.
00
50

0.
00
46

0.
00
46

0.
11
32

0.
06
66

0.
06
46

2.
00
00

G
L
S
(p

1
)

0.
10
96

0.
11
20

0.
10
66

0.
18
81

0.
20
03

0.
17
64

4.
00
00

N
a
re
n
d
ra

0.
05
91

0.
03
54

0.
02
49

0.
20
98

0.
11
06

0.
04
41

41
.0
00
0

N
a
re
n
d
ra
'

0.
07
50

0.
07
51

0.
07
24

0.
14
56

0.
15
10

0.
12
86

10
.0
00
0

p
H
B

0.
13
50

0.
07
32

0.
07
17

0.
29
37

0.
22
51

0.
20
21

8.
00
00

p
H
' B

0.
09
34

0.
10
09

0.
08
49

0.
24
26

0.
27
47

0.
23
35

2.
00
00

p
H
A

0.
05
53

0.
05
95

0.
06
57

0.
12
67

0.
15
48

0.
12
96

6.
00
00

p
H
' A

0.
11
25

0.
13
46

0.
13
28

0.
67
39

0.
26
63

0.
28
68

3.
00
00

S
te
a
m
G
en

(y
1
)

0.
02
20

0.
01
91

0.
01
91

0.
22
87

0.
14
70

0.
14
46

2.
00
00

S
te
a
m
G
en

(y
2
)

0.
26
85

0.
22
33

0.
28
58

0.
29
76

0.
25
12

0.
30
92

48
.0
00
0

S
te
a
m
G
en

(y
3
)

0.
09
06

0.
06
27

0.
06
20

0.
20
55

0.
14
45

0.
14
27

2.
00
00

S
te
a
m
G
en

(y
4
)

0.
04
93

0.
04
89

0.
04
89

0.
15
79

0.
15
38

0.
13
92

2.
00
00

R
o
b
o
t
(τ

1
)

0.
09
22

0.
08
88

0.
09
05

0.
16
39

0.
15
22

0.
12
75

3.
00
00

R
o
b
o
t
(τ

2
)

0.
10
29

0.
10
27

0.
09
67

N
aN

N
aN

48
.1
91
7

2.
00
00

R
o
b
o
t
(τ

3
)

0.
07
38

0.
07
07

0.
06
90

0.
23
13

0.
23
40

0.
18
30

2.
00
00

R
o
b
o
t
(τ

4
)

0.
06
84

0.
06
71

0.
06
20

N
aN

0.
24
86

0.
10
43

2.
00
00

R
o
b
o
t
(τ

5
)

0.
18
36

0.
18
37

0.
17
42

0.
87
80

0.
40
04

0.
30
31

2.
00
00

R
o
b
o
t
(τ

6
)

0.
07
86

0.
07
81

0.
07
51

0.
14
56

0.
14
99

0.
12
05

2.
00
00

R
o
b
o
t
(τ

7
)

0.
06
29

0.
06
18

0.
06
10

0.
08
58

0.
08
25

0.
07
70

2.
00
00

W
in
d
in
g
(T

1
)

0.
32
20

0.
28
71

0.
28
90

0.
40
10

0.
34
49

0.
33
84

4.
00
00

W
in
d
in
g
(T

2
)

0.
10
71

0.
08
16

0.
07
49

0.
27
88

0.
32
60

0.
14
87

31
.0
00
0

122 Appendix A. Complete Results

T
ab
le
A
.1
3:

E
va
lu
at
io
n
re
su
lt
s
of

th
e
M
5'
sm

oo
th
in
g
va
ri
an
ts
.

O
S
A

S
IM

n
u
m
L
M

M
5
'

M
5
' B
S
M

M
5
' F
u
z
z

M
5
'

M
5
' B
S
M

M
5
' F
u
z
z

M
5
'

M
5
' B
S
M

M
5
' F
u
z
z

C
S
T
R
(C
a
)

0.
01
51

0.
01
47

0.
01
50

0.
01
51

0.
01
47

0.
01
50

0.
57
00

0.
25
30

2.
26
20

C
S
T
R
'
(C
a
)

0.
01
55

0.
01
52

0.
01
52

0.
01
67

0.
01
64

0.
01
65

0.
67
50

0.
61
20

5.
77
90

C
S
T
R
(T
)

0.
00
40

0.
00
40

0.
00
39

0.
01
25

0.
01
19

0.
01
24

0.
27
90

0.
28
10

2.
78
60

C
S
T
R
'
(T
)

0.
02
42

0.
02
39

0.
02
41

0.
02
61

0.
02
58

0.
02
60

0.
58
70

0.
58
30

5.
76
10

G
L
S
(h

1
)

0.
00
50

0.
00
49

0.
00
50

0.
11
32

0.
11
07

0.
11
24

0.
01
10

0.
01
10

0.
14
50

G
L
S
(p

1
)

0.
10
96

0.
10
99

0.
10
90

0.
18
81

0.
18
95

0.
18
74

0.
02
50

0.
02
50

0.
25
80

N
a
re
n
d
ra

0.
05
91

0.
04
74

0.
05
65

0.
20
98

0.
11
12

0.
10
48

0.
04
60

0.
04
70

0.
53
40

N
a
re
n
d
ra
'

0.
07
50

0.
07
13

0.
08
44

0.
14
56

0.
13
18

0.
15
34

0.
11
40

0.
12
20

1.
17
20

p
H
B

0.
13
50

0.
09
20

0.
10
89

0.
29
37

0.
25
09

0.
25
89

0.
01
60

0.
01
60

0.
17
70

p
H
' B

0.
09
34

0.
09
40

0.
09
22

0.
24
26

0.
24
60

0.
24
27

0.
02
00

0.
02
00

0.
19
80

p
H
A

0.
05
53

0.
05
85

0.
06
02

0.
12
67

0.
12
41

0.
17
58

0.
00
80

0.
00
80

0.
09
80

p
H
' A

0.
11
25

0.
11
25

0.
11
20

0.
67
39

0.
36
76

0.
37
90

0.
01
50

0.
01
50

0.
14
70

S
te
a
m
G
en

(y
1
)

0.
02
20

0.
02
19

0.
02
19

0.
22
87

0.
22
70

0.
22
76

0.
55
50

0.
56
20

5.
15
20

S
te
a
m
G
en

(y
2
)

0.
26
85

0.
23
03

0.
23
66

0.
29
76

0.
25
16

0.
27
54

0.
91
60

0.
91
20

7.
58
80

S
te
a
m
G
en

(y
3
)

0.
09
06

0.
09
01

0.
09
05

0.
20
55

0.
20
41

0.
20
54

1.
18
50

1.
17
40

11
.7
43
0

S
te
a
m
G
en

(y
4
)

0.
04
93

0.
04
93

0.
04
93

0.
15
79

0.
15
79

0.
15
79

0.
93
70

0.
93
70

8.
46
20

R
o
b
o
t
(τ

1
)

0.
09
22

0.
09
17

0.
09
06

0.
16
39

0.
23
44

0.
19
66

0.
19
10

0.
19
20

1.
87
80

R
o
b
o
t
(τ

2
)

0.
10
29

0.
10
27

0.
10
27

N
aN

N
aN

N
aN

0.
20
30

0.
20
30

1.
92
30

R
o
b
o
t
(τ

3
)

0.
07
38

0.
07
36

0.
07
35

0.
23
13

0.
23
07

0.
23
03

0.
18
70

0.
19
00

1.
92
50

R
o
b
o
t
(τ

4
)

0.
06
84

0.
06
83

0.
06
82

N
aN

N
aN

N
aN

0.
18
50

0.
19
10

1.
94
40

R
o
b
o
t
(τ

5
)

0.
18
36

0.
18
34

0.
18
30

0.
87
80

0.
83
60

0.
88
16

0.
23
00

0.
23
70

2.
25
40

R
o
b
o
t
(τ

6
)

0.
07
86

0.
07
85

0.
07
83

0.
14
56

0.
14
51

0.
14
50

0.
18
30

0.
18
70

1.
85
10

R
o
b
o
t
(τ

7
)

0.
06
29

0.
06
28

0.
06
29

0.
08
58

0.
08
57

0.
08
49

0.
18
20

0.
18
40

1.
89
40

W
in
d
in
g
(T

1
)

0.
32
20

0.
31
87

0.
32
54

0.
40
10

0.
38
04

0.
43
79

0.
29
30

0.
29
20

2.
79
70

W
in
d
in
g
(T

2
)

0.
10
71

0.
09
73

0.
10
18

0.
27
88

0.
21
67

0.
21
93

0.
21
50

0.
21
60

2.
17
60

123

T
ab
le
A
.1
4:

R
es
ul
ts
fo
r
a
L
ol
im
ot

m
od
i�
ca
ti
on

w
hi
ch

ev
al
ua
te
s
ca
nd
id
at
e
sp
lit
s
us
in
g
a
di
�e
re
nt

pr
oc
ed
ur
e.

T
he

re
po
rt
ed

ru
nn
in
g
ti
m
es

ar
e
th
os
e

re
qu
ir
ed

fo
r
bu
ild
in
g
th
e
m
od
el
tr
ee
.

O
S
A

S
IM

n
u
m
L
M

ti
m
e

L
o
li
m
o
t

L
o
li
m
o
t M

E
L
o
li
m
o
t

L
o
li
m
o
t M

E
L
o
li
m
o
t

L
o
li
m
o
t M

E

C
S
T
R
(C
a
)

0.
00
34

0.
00
18

0.
00
73

0.
00
34

30
.0
00
0

43
5.
16
40

18
.3
56
0

C
S
T
R
'
(C
a
)

0.
01
43

0.
01
69

0.
01
59

0.
01
84

12
.0
00
0

97
.0
43
0

5.
75
70

C
S
T
R
(T
)

0.
00
20

0.
00
23

0.
00
36

0.
00
51

25
.0
00
0

36
4.
20
50

13
.3
37
0

C
S
T
R
'
(T
)

0.
01
13

0.
01
41

0.
01
20

0.
01
51

8.
00
00

26
.2
12
0

1.
66
50

G
L
S
(h

1
)

0.
00
46

0.
00
46

0.
06
46

0.
06
46

2.
00
00

0.
04
90

0.
02
60

G
L
S
(p

1
)

0.
09
99

0.
10
63

0.
16
33

0.
17
54

7.
00
00

1.
43
50

0.
37
60

N
a
re
n
d
ra

0.
05
05

0.
04
68

0.
10
36

0.
09
48

14
.0
00
0

11
.4
99
0

1.
59
20

N
a
re
n
d
ra
'

0.
07
04

0.
07
59

0.
12
42

0.
14
00

8.
00
00

3.
14
90

0.
44
80

p
H
B

0.
05
94

0.
06
75

0.
14
59

0.
19
88

12
.0
00
0

0.
76
60

0.
34
00

p
H
' B

0.
09
84

0.
08
50

0.
28
36

0.
22
65

12
.0
00
0

0.
82
60

0.
65
20

p
H
A

0.
06
57

0.
06
57

0.
11
23

0.
11
23

9.
00
00

0.
54
30

0.
45
70

p
H
' A

0.
10
59

0.
09
99

0.
13
99

0.
12
32

30
.0
00
0

2.
96
40

3.
01
70

S
te
a
m
G
en

(y
1
)

0.
01
91

0.
01
92

0.
14
46

0.
14
49

2.
00
00

5.
56
00

2.
25
80

S
te
a
m
G
en

(y
2
)

0.
23
03

0.
23
25

0.
27
32

0.
29
50

5.
00
00

33
.6
79
0

13
.0
04
0

S
te
a
m
G
en

(y
3
)

0.
06
27

0.
06
27

0.
14
40

0.
14
40

1.
00
00

0.
08
40

0.
05
70

S
te
a
m
G
en

(y
4
)

0.
04
67

0.
04
88

0.
12
65

0.
15
35

5.
00
00

22
.3
08
0

8.
44
00

R
o
b
o
t
(τ

1
)

0.
07
74

0.
07
68

0.
08
40

0.
08
27

8.
00
00

10
.1
16
0

3.
99
10

R
o
b
o
t
(τ

2
)

0.
07
75

0.
07
91

0.
15
23

0.
19
33

28
.0
00
0

94
.1
00
0

31
.5
62
0

R
o
b
o
t
(τ

3
)

0.
07
51

0.
07
27

0.
10
29

0.
11
00

28
.0
00
0

59
.1
45
0

18
.3
34
0

R
o
b
o
t
(τ

4
)

0.
05
42

0.
05
58

0.
05
93

0.
06
15

5.
00
00

2.
69
70

1.
20
10

R
o
b
o
t
(τ

5
)

0.
16
38

0.
16
22

0.
24
21

0.
23
48

5.
00
00

3.
75
50

1.
76
50

R
o
b
o
t
(τ

6
)

0.
07
12

0.
07
14

0.
09
62

0.
09
78

6.
00
00

6.
46
20

2.
72
50

R
o
b
o
t
(τ

7
)

0.
05
65

0.
05
68

0.
06
46

0.
06
75

4.
00
00

2.
33
80

1.
05
00

W
in
d
in
g
(T

1
)

0.
28
37

0.
27
77

0.
33
59

0.
32
87

7.
00
00

6.
08
90

1.
58
60

W
in
d
in
g
(T

2
)

0.
08
13

0.
08
13

0.
18
93

0.
18
93

3.
00
00

2.
64
80

0.
65
80

124 Appendix A. Complete Results

T
ab
le
A
.1
5:

E
va
lu
at
in
g
L
ol
im
ot

-
se
ve
ra
l
sp
lit

cu
t-
po
in
ts
.
P
re
di
ct
io
n
an
d
ou
tp
ut

er
ro
r
re
su
lt
s.

O
S
A

S
IM

L
o
li
m
o
t M

E
L
o
li
m
o
t C

2
L
o
li
m
o
t C

4
L
o
li
m
o
t C

8
L
o
li
m
o
t M

E
L
o
li
m
o
t C

2
L
o
li
m
o
t C

4
L
o
li
m
o
t C

8

C
S
T
R
(C
a
)

0.
00
18

0.
00
39

0.
00
26

0.
00
35

0.
00
34

0.
00
79

0.
00
63

0.
00
87

C
S
T
R
'
(C
a
)

0.
01
69

0.
02
16

0.
01
96

0.
02
04

0.
01
84

0.
02
29

0.
02
19

0.
02
29

C
S
T
R
(T
)

0.
00
23

0.
00
23

0.
00
24

0.
00
26

0.
00
51

0.
00
46

0.
00
50

0.
00
49

C
S
T
R
'
(T
)

0.
01
41

0.
01
16

0.
01
09

0.
01
85

0.
01
51

0.
01
26

0.
01
16

0.
02
02

G
L
S
(h

1
)

0.
00
46

0.
00
46

0.
00
46

0.
00
46

0.
06
46

0.
08
52

0.
08
50

0.
08
50

G
L
S
(p

1
)

0.
10
63

0.
10
38

0.
10
95

0.
11
34

0.
17
54

0.
16
95

0.
18
69

0.
22
59

N
a
re
n
d
ra

0.
04
68

0.
03
32

0.
03
67

0.
03
63

0.
09
48

0.
07
68

0.
07
67

0.
07
94

N
a
re
n
d
ra
'

0.
07
59

0.
08
03

0.
05
44

0.
07
04

0.
14
00

0.
13
45

0.
10
31

0.
13
06

p
H
B

0.
06
75

0.
07
04

0.
07
01

0.
07
23

0.
19
88

0.
20
01

0.
20
84

0.
21
15

p
H
' B

0.
08
50

0.
10
38

0.
10
92

0.
10
22

0.
22
65

0.
25
40

0.
26
31

0.
25
30

p
H
A

0.
06
57

0.
06
76

0.
05
12

0.
05
60

0.
11
23

0.
12
82

0.
08
99

0.
13
07

p
H
' A

0.
09
99

0.
09
63

0.
09
06

0.
08
70

0.
12
32

0.
12
27

0.
11
29

0.
12
37

S
te
a
m
G
en

(y
1
)

0.
01
92

0.
01
92

0.
02
08

0.
01
95

0.
14
49

0.
15
24

0.
16
32

0.
15
75

S
te
a
m
G
en

(y
2
)

0.
23
25

0.
22
81

0.
23
74

0.
23
54

0.
29
50

0.
29
24

0.
31
90

0.
31
44

S
te
a
m
G
en

(y
3
)

0.
06
27

0.
06
29

0.
06
27

0.
06
29

0.
14
40

0.
14
42

0.
14
40

0.
14
12

S
te
a
m
G
en

(y
4
)

0.
04
88

0.
04
88

0.
04
88

0.
04
87

0.
15
35

0.
14
96

0.
14
31

0.
14
30

R
o
b
o
t
(τ

1
)

0.
07
68

0.
07
64

0.
07
86

0.
07
67

0.
08
27

0.
08
36

0.
09
16

0.
07
70

R
o
b
o
t
(τ

2
)

0.
07
91

0.
09
23

0.
08
16

0.
08
19

0.
19
33

0.
17
06

0.
15
27

0.
19
70

R
o
b
o
t
(τ

3
)

0.
07
27

0.
08
24

0.
06
27

0.
06
35

0.
11
00

0.
13
91

0.
09
54

0.
10
55

R
o
b
o
t
(τ

4
)

0.
05
58

0.
05
34

0.
05
44

0.
05
63

0.
06
15

0.
05
71

0.
06
37

0.
07
18

R
o
b
o
t
(τ

5
)

0.
16
22

0.
16
68

0.
17
02

0.
17
14

0.
23
48

0.
23
89

0.
27
47

0.
21
27

R
o
b
o
t
(τ

6
)

0.
07
14

0.
07
11

0.
07
22

0.
07
41

0.
09
78

0.
09
99

0.
09
90

0.
10
77

R
o
b
o
t
(τ

7
)

0.
05
68

0.
05
67

0.
05
48

0.
05
83

0.
06
75

0.
07
40

0.
06
48

0.
07
74

W
in
d
in
g
(T

1
)

0.
27
77

0.
28
44

0.
27
01

0.
27
80

0.
32
87

0.
33
72

0.
33
66

0.
33
30

W
in
d
in
g
(T

2
)

0.
08
13

0.
08
74

0.
08
14

0.
08
10

0.
18
93

0.
17
32

0.
18
21

0.
18
43

125

T
ab
le
A
.1
6:

E
va
lu
at
in
g
L
ol
im
ot

-
se
ve
ra
l
sp
lit

cu
t-
po
in
ts
.
M
od
el
si
ze
s
an
d
le
ar
ni
ng

ti
m
es

(s
ec
on
ds
)
ar
e
sh
ow

n.
T
he

re
po
rt
ed

ru
nn
in
g
ti
m
es

ar
e

th
os
e
re
qu
ir
ed

fo
r
tu
ni
ng

of
th
e
pa
ra
m
et
er
s
an
d
bu
ild
in
g
th
e
m
od
el
tr
ee
.

n
u
m
L
M

ti
m
e

L
o
li
m
o
t M

E
L
o
li
m
o
t C

2
L
o
li
m
o
t C

4
L
o
li
m
o
t C

8
L
o
li
m
o
t M

E
L
o
li
m
o
t C

2
L
o
li
m
o
t C

4
L
o
li
m
o
t C

8

C
S
T
R
(C
a
)

30
.0

30
.0

30
.0

30
.0

30
1.
1

12
58
.2

22
75
.8

43
88
.8

C
S
T
R
'
(C
a
)

12
.0

30
.0

10
.0

10
.0

21
7.
3

88
6.
2

15
16
.4

30
20
.9

C
S
T
R
(T
)

25
.0

30
.0

24
.0

28
.0

24
6.
2

11
64
.1

22
01
.0

44
70
.9

C
S
T
R
'
(T
)

8.
0

7.
0

7.
0

6.
0

19
0.
2

76
5.
2

14
99
.6

29
93
.8

G
L
S
(h

1
)

2.
0

2.
0

1.
0

1.
0

5.
8

15
.9

31
.5

53
.7

G
L
S
(p

1
)

7.
0

28
.0

4.
0

11
.0

5.
7

23
.1

29
.7

61
.6

N
a
re
n
d
ra

14
.0

30
.0

30
.0

30
.0

28
.5

11
4.
1

21
5.
4

41
8.
7

N
a
re
n
d
ra
'

8.
0

10
.0

21
.0

8.
0

25
.2

87
.1

15
4.
5

27
9.
9

p
H
B

12
.0

6.
0

7.
0

6.
0

3.
3

6.
8

11
.4

20
.6

p
H
' B

12
.0

12
.0

10
.0

7.
0

3.
7

7.
1

11
.7

21
.3

p
H
A

9.
0

7.
0

21
.0

27
.0

3.
0

5.
6

15
.9

39
.2

p
H
' A

30
.0

30
.0

21
.0

30
.0

5.
9

13
.1

16
.1

41
.4

S
te
a
m
G
en

(y
1
)

2.
0

3.
0

28
.0

16
.0

35
5.
7

18
10
.5

47
39
.8

71
53
.2

S
te
a
m
G
en

(y
2
)

5.
0

8.
0

6.
0

6.
0

31
8.
6

18
34
.5

35
82
.6

65
62
.9

S
te
a
m
G
en

(y
3
)

1.
0

2.
0

1.
0

4.
0

35
2.
6

18
02
.3

34
88
.0

64
76
.2

S
te
a
m
G
en

(y
4
)

5.
0

3.
0

4.
0

4.
0

31
9.
0

17
60
.1

35
25
.3

64
99
.8

R
o
b
o
t
(τ

1
)

8.
0

8.
0

6.
0

13
.0

43
.2

23
6.
9

45
5.
6

99
3.
0

R
o
b
o
t
(τ

2
)

28
.0

20
.0

16
.0

19
.0

58
.3

26
4.
0

48
6.
0

98
2.
8

R
o
b
o
t
(τ

3
)

28
.0

20
.0

12
.0

14
.0

62
.4

28
6.
1

49
4.
7

98
1.
9

R
o
b
o
t
(τ

4
)

5.
0

9.
0

5.
0

4.
0

40
.4

21
8.
2

41
0.
2

81
1.
0

R
o
b
o
t
(τ

5
)

5.
0

7.
0

3.
0

13
.0

44
.2

23
2.
0

44
0.
5

98
7.
6

R
o
b
o
t
(τ

6
)

6.
0

4.
0

5.
0

3.
0

41
.1

20
5.
3

40
9.
1

79
9.
1

R
o
b
o
t
(τ

7
)

4.
0

3.
0

6.
0

2.
0

43
.9

22
3.
8

45
5.
8

88
3.
1

W
in
d
in
g
(T

1
)

7.
0

3.
0

10
.0

5.
0

49
.2

22
2.
2

46
4.
7

88
6.
4

W
in
d
in
g
(T

2
)

3.
0

21
.0

3.
0

3.
0

46
.5

27
4.
8

44
1.
4

87
8.
8

126 Appendix A. Complete Results

T
ab
le
A
.1
7:

E
va
lu
at
in
g
L
ol
im
ot

-
op
ti
m
iz
in
g
ov
er
la
ps
.
T
he

re
po
rt
ed

ru
nn
in
g
ti
m
es

ar
e
th
os
e
re
qu
ir
ed

fo
r
tu
ni
ng

of
th
e
pa
ra
m
et
er
s
an
d
bu
ild
in
g

th
e
m
od
el
tr
ee
.
T
he

ru
nn
in
g
ti
m
es

of
L
ol
im
ot
M
E
ar
e
si
m
ila
r,
bu
t
no
t
id
en
ti
ca
l,
to

th
os
e
re
po
rt
ed

in
T
ab
le
A
.1
6.

O
S
A

S
IM

n
u
m
L
M

ti
m
e

L
o
li
m
o
t M

E
L
o
li
m
o
t k
si
g

L
o
li
m
o
t M

E
L
o
li
m
o
t k
si
g

L
o
li
m
o
t M

E
L
o
li
m
o
t k
si
g

L
o
li
m
o
t M

E
L
o
li
m
o
t k
si
g

C
S
T
R
(C
a
)

0.
00
18

0.
00
18

0.
00
34

0.
00
31

30
.0
00
0

30
.0
00
0

28
6.
76
00

24
1.
38
90

C
S
T
R
'
(C
a
)

0.
01
69

0.
01
77

0.
01
84

0.
01
95

12
.0
00
0

14
.0
00
0

20
7.
06
90

17
1.
53
70

C
S
T
R
(T
)

0.
00
23

0.
00
21

0.
00
51

0.
00
39

25
.0
00
0

27
.0
00
0

27
3.
37
60

24
0.
20
40

C
S
T
R
'
(T
)

0.
01
41

0.
01
13

0.
01
51

0.
01
20

8.
00
00

10
.0
00
0

20
3.
35
90

16
7.
40
70

G
L
S
(h

1
)

0.
00
46

0.
00
45

0.
06
46

0.
11
39

2.
00
00

12
.0
00
0

6.
48
80

64
.1
19
0

G
L
S
(p

1
)

0.
10
63

0.
10
36

0.
17
54

0.
16
93

7.
00
00

16
.0
00
0

6.
95
40

60
.8
89
0

N
a
re
n
d
ra

0.
04
68

0.
03
42

0.
09
48

0.
06
80

14
.0
00
0

30
.0
00
0

34
.7
96
0

88
.1
65
0

N
a
re
n
d
ra
'

0.
07
59

0.
06
93

0.
14
00

0.
12
35

8.
00
00

12
.0
00
0

25
.3
80
0

60
.6
14
0

p
H
B

0.
06
75

0.
06
78

0.
19
88

0.
11
75

12
.0
00
0

18
.0
00
0

4.
05
20

22
.2
29
0

p
H
' B

0.
08
50

0.
07
70

0.
22
65

0.
21
08

12
.0
00
0

12
.0
00
0

3.
47
20

21
.7
10
0

p
H
A

0.
06
57

0.
05
78

0.
11
23

0.
09
90

9.
00
00

29
.0
00
0

4.
64
00

32
.6
94
0

p
H
' A

0.
09
99

0.
09
60

0.
12
32

0.
11
83

30
.0
00
0

29
.0
00
0

4.
95
10

27
.5
16
0

S
te
a
m
G
en

(y
1
)

0.
01
92

0.
02
05

0.
14
49

0.
18
29

2.
00
00

28
.0
00
0

36
6.
63
50

12
55
.8
66
0

S
te
a
m
G
en

(y
2
)

0.
23
25

0.
23
20

0.
29
50

0.
27
39

5.
00
00

30
.0
00
0

36
9.
20
10

12
59
.1
29
0

S
te
a
m
G
en

(y
3
)

0.
06
27

0.
06
27

0.
14
40

0.
14
40

1.
00
00

10
.0
00
0

28
4.
59
60

10
55
.5
62
0

S
te
a
m
G
en

(y
4
)

0.
04
88

0.
04
99

0.
15
35

0.
15
40

5.
00
00

1.
00
00

27
5.
60
80

99
3.
65
60

R
o
b
o
t
(τ

1
)

0.
07
68

0.
07
50

0.
08
27

0.
07
97

8.
00
00

11
.0
00
0

36
.4
08
0

20
7.
57
20

R
o
b
o
t
(τ

2
)

0.
07
91

0.
08
12

0.
19
33

0.
17
33

28
.0
00
0

13
.0
00
0

65
.1
31
0

24
8.
83
30

R
o
b
o
t
(τ

3
)

0.
07
27

0.
06
54

0.
11
00

0.
13
03

28
.0
00
0

6.
00
00

66
.4
21
0

24
5.
85
90

R
o
b
o
t
(τ

4
)

0.
05
58

0.
05
83

0.
06
15

0.
06
05

5.
00
00

18
.0
00
0

46
.5
19
0

26
2.
47
40

R
o
b
o
t
(τ

5
)

0.
16
22

0.
15
94

0.
23
48

0.
21
42

5.
00
00

5.
00
00

46
.4
23
0

24
5.
91
10

R
o
b
o
t
(τ

6
)

0.
07
14

0.
07
30

0.
09
78

0.
09
71

6.
00
00

8.
00
00

35
.3
03
0

20
1.
20
70

R
o
b
o
t
(τ

7
)

0.
05
68

0.
05
71

0.
06
75

0.
06
70

4.
00
00

8.
00
00

34
.8
41
0

20
1.
00
10

W
in
d
in
g
(T

1
)

0.
27
77

0.
27
49

0.
32
87

0.
32
51

7.
00
00

14
.0
00
0

57
.3
94
0

18
0.
80
80

W
in
d
in
g
(T

2
)

0.
08
13

0.
08
64

0.
18
93

0.
17
29

3.
00
00

28
.0
00
0

48
.6
08
0

19
1.
22
00

127

T
ab
le
A
.1
8:

E
va
lu
at
in
g
L
ol
im
ot

-
us
in
g
ou
tp
ut

er
ro
r
or

pr
ed
ic
ti
on

er
ro
r
w
hi
le
le
ar
ni
ng
.
In

bo
th

al
go
ri
th
m

va
ri
an
ts

th
e
tr
ee
s
ar
e
of

eq
ua
l
si
ze
.

O
S
A

S
IM

n
u
m
L
M

ti
m
e

L
o
li
m
o
t k
si
g

L
o
li
m
o
t o
sa

L
o
li
m
o
t k
si
g

L
o
li
m
o
t o
sa

L
o
li
m
o
t k
si
g

L
o
li
m
o
t o
sa

C
S
T
R
(C
a
)

0.
00
18

0.
00
20

0.
00
31

0.
00
32

30
.0
00
0

24
1.
38
90

24
1.
91
90

C
S
T
R
'
(C
a
)

0.
01
77

0.
01
65

0.
01
95

0.
01
77

14
.0
00
0

17
1.
53
70

17
1.
52
30

C
S
T
R
(T
)

0.
00
21

0.
00
24

0.
00
39

0.
00
44

27
.0
00
0

24
0.
20
40

24
0.
16
80

C
S
T
R
'
(T
)

0.
01
13

0.
01
03

0.
01
20

0.
01
10

10
.0
00
0

16
7.
40
70

16
7.
37
60

G
L
S
(h

1
)

0.
00
45

0.
00
40

0.
11
39

0.
48
26

12
.0
00
0

64
.1
19
0

64
.1
07
0

G
L
S
(p

1
)

0.
10
36

0.
10
66

0.
16
93

0.
18
24

16
.0
00
0

60
.8
89
0

61
.2
43
0

N
a
re
n
d
ra

0.
03
42

0.
03
45

0.
06
80

0.
07
69

30
.0
00
0

88
.1
65
0

88
.5
96
0

N
a
re
n
d
ra
'

0.
06
93

0.
06
83

0.
12
35

0.
12
13

12
.0
00
0

60
.6
14
0

60
.7
62
0

p
H
B

0.
06
78

0.
05
25

0.
11
75

0.
12
88

18
.0
00
0

22
.2
29
0

22
.6
04
0

p
H
' B

0.
07
70

0.
07
77

0.
21
08

0.
21
53

12
.0
00
0

21
.7
10
0

21
.5
22
0

p
H
A

0.
05
78

0.
04
05

0.
09
90

0.
07
59

29
.0
00
0

32
.6
94
0

33
.0
82
0

p
H
' A

0.
09
60

0.
10
70

0.
11
83

0.
15
31

29
.0
00
0

27
.5
16
0

27
.9
65
0

S
te
a
m
G
en

(y
1
)

0.
02
05

0.
02
11

0.
18
29

0.
16
82

28
.0
00
0

12
55
.8
66
0

12
56
.4
64
0

S
te
a
m
G
en

(y
2
)

0.
23
20

0.
23
73

0.
27
39

0.
30
19

30
.0
00
0

12
59
.1
29
0

12
59
.7
80
0

S
te
a
m
G
en

(y
3
)

0.
06
27

0.
06
27

0.
14
40

0.
14
36

10
.0
00
0

10
55
.5
62
0

10
55
.8
67
0

S
te
a
m
G
en

(y
4
)

0.
04
99

0.
04
99

0.
15
40

0.
15
40

1.
00
00

99
3.
65
60

99
3.
65
10

R
o
b
o
t
(τ

1
)

0.
07
50

0.
07
45

0.
07
97

0.
07
74

11
.0
00
0

20
7.
57
20

20
7.
57
20

R
o
b
o
t
(τ

2
)

0.
08
12

0.
09
21

0.
17
33

0.
16
24

13
.0
00
0

24
8.
83
30

24
8.
76
10

R
o
b
o
t
(τ

3
)

0.
06
54

0.
06
17

0.
13
03

0.
11
82

6.
00
00

24
5.
85
90

24
5.
86
70

R
o
b
o
t
(τ

4
)

0.
05
83

0.
06
20

0.
06
05

0.
06
24

18
.0
00
0

26
2.
47
40

26
2.
77
70

R
o
b
o
t
(τ

5
)

0.
15
94

0.
15
81

0.
21
42

0.
22
37

5.
00
00

24
5.
91
10

24
5.
91
20

R
o
b
o
t
(τ

6
)

0.
07
30

0.
08
13

0.
09
71

0.
10
57

8.
00
00

20
1.
20
70

20
1.
24
10

R
o
b
o
t
(τ

7
)

0.
05
71

0.
05
33

0.
06
70

0.
06
90

8.
00
00

20
1.
00
10

20
0.
98
40

W
in
d
in
g
(T

1
)

0.
27
49

0.
28
98

0.
32
51

0.
32
79

14
.0
00
0

18
0.
80
80

18
0.
85
80

W
in
d
in
g
(T

2
)

0.
08
64

0.
11
23

0.
17
29

0.
29
98

28
.0
00
0

19
1.
22
00

19
1.
20
20

128 Appendix A. Complete Results

T
ab
le
A
.1
9:

E
va
lu
at
in
g
L
ol
im
ot

an
d
L
+
+
fo
r
m
ul
ti
-o
ut
pu
t
m
od
el
in
g.

O
S
A

S
IM

n
u
m
L
M

ti
m
e

L
o
li
m
o
t M

O
L
+
+
M
O

L
o
li
m
o
t M

O
L
+
+
M
O

L
o
li
m
o
t M

O
L
+
+
M
O

L
o
li
m
o
t M

O
L
+
+
M
O

C
S
T
R
(C
a
)

0.
00
25

0.
00
19

0.
03
72

0.
01
66

27
.0
00
0

30
.0
00
0

27
8.
31
30

18
.6
06
0

C
S
T
R
(T
)

0.
00
40

0.
00
22

0.
02
79

0.
01
34

27
.0
00
0

30
.0
00
0

27
8.
31
30

18
.6
06
0

C
S
T
R
'
(C
a
)

0.
02
36

0.
01
33

0.
03
32

0.
01
91

29
.0
00
0

17
.0
00
0

44
1.
81
60

7.
35
20

C
S
T
R
'
(T
)

0.
02
41

0.
01
36

0.
03
08

0.
02
00

29
.0
00
0

17
.0
00
0

44
1.
81
60

7.
35
20

G
L
S
(p

1
)

0.
09
55

0.
09
23

0.
23
15

0.
23
70

5.
00
00

30
.0
00
0

0.
60
00

4.
19
50

G
L
S
(h

1
)

0.
00
44

0.
00
40

0.
14
96

0.
14
62

5.
00
00

30
.0
00
0

0.
60
00

4.
19
50

S
te
a
m
G
en

(y
1
)

0.
01
92

0.
01
94

0.
14
16

0.
15
73

9.
00
00

21
.0
00
0

76
.2
57
0

11
7.
26
30

S
te
a
m
G
en

(y
2
)

0.
22
78

0.
23
73

0.
26
11

0.
28
78

9.
00
00

21
.0
00
0

76
.2
57
0

11
7.
26
30

S
te
a
m
G
en

(y
3
)

0.
06
46

0.
06
43

0.
20
31

0.
19
99

9.
00
00

21
.0
00
0

76
.2
57
0

11
7.
26
30

S
te
a
m
G
en

(y
4
)

0.
04
72

0.
04
68

0.
12
95

0.
13
65

9.
00
00

21
.0
00
0

76
.2
57
0

11
7.
26
30

R
o
b
o
t
(τ

1
)

0.
08
20

0.
08
79

0.
10
45

0.
09
95

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

R
o
b
o
t
(τ

2
)

0.
08
47

0.
09
18

0.
23
33

0.
17
45

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

R
o
b
o
t
(τ

3
)

0.
06
80

0.
07
68

0.
14
63

0.
11
02

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

R
o
b
o
t
(τ

4
)

0.
05
69

0.
06
18

0.
07
23

0.
08
12

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

R
o
b
o
t
(τ

5
)

0.
16
61

0.
19
28

0.
24
97

0.
23
01

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

R
o
b
o
t
(τ

6
)

0.
08
64

0.
07
34

0.
13
08

0.
09
96

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

R
o
b
o
t
(τ

7
)

0.
05
82

0.
05
75

0.
07
38

0.
07
77

19
.0
00
0

14
.0
00
0

64
.3
16
0

19
.8
54
0

W
in
d
in
g
(T

1
)

0.
28
16

0.
28
23

0.
35
34

0.
36
87

6.
00
00

19
.0
00
0

5.
91
30

10
.9
08
0

W
in
d
in
g
(T

2
)

0.
08
06

0.
10
45

0.
18
69

0.
21
49

6.
00
00

19
.0
00
0

5.
91
30

10
.9
08
0

129

T
ab
le
A
.2
0:

C
om

pa
ri
ng

th
e
si
ng
le
-o
ut
pu
t
pe
rf
or
m
an
ce

of
L
ol
im
ot

tr
ee
s
an
d
B
ag
gi
ng

of
L
ol
im
ot

tr
ee
s.

O
S
A

S
IM

ti
m
e

L
o
li
m
o
t

B
a
g
g
.L
o
li
m
o
t

L
o
li
m
o
t

B
a
g
g
.L
o
li
m
o
t

L
o
li
m
o
t

B
a
g
g
.L
o
li
m
o
t

C
S
T
R
(C
a
)

0.
00
34
±
0.
00
00

0.
00
24
±
0.
00
00

0.
00
73
±
0.
00
00

0.
00
49
±
0.
00
01

50
9.
30
90

24
09
92
.1
53
2

C
S
T
R
'
(C
a
)

0.
01
43
±
0.
00
00

0.
01
35
±
0.
00
02

0.
01
59
±
0.
00
00

0.
01
52
±
0.
00
02

55
.6
94
0

34
95
5.
91
90

C
S
T
R
(T
)

0.
00
20
±
0.
00
00

0.
00
20
±
0.
00
00

0.
00
36
±
0.
00
00

0.
00
35
±
0.
00
00

39
7.
40
90

15
10
48
.7
65
4

C
S
T
R
'
(T
)

0.
01
13
±
0.
00
00

0.
01
06
±
0.
00
03

0.
01
20
±
0.
00
00

0.
01
13
±
0.
00
03

25
.6
93
0

25
22
7.
98
96

G
L
S
(h

1
)

0.
00
46
±
0.
00
00

0.
00
46
±
0.
00
00

0.
06
46
±
0.
00
00

0.
06
64
±
0.
00
12

0.
10
00

16
.1
04
6

G
L
S
(p

1
)

0.
09
99
±
0.
00
00

0.
09
86
±
0.
00
03

0.
16
33
±
0.
00
00

0.
15
74
±
0.
00
09

1.
02
40

19
0.
45
70

N
a
re
n
d
ra

0.
05
05
±
0.
00
00

0.
04
93
±
0.
00
02

0.
10
36
±
0.
00
00

0.
09
76
±
0.
00
08

9.
15
30

34
20
.2
02
0

N
a
re
n
d
ra
'

0.
07
04
±
0.
00
00

0.
07
01
±
0.
00
01

0.
12
42
±
0.
00
00

0.
12
40
±
0.
00
01

3.
68
90

23
67
.7
39
0

p
H
B

0.
05
94
±
0.
00
00

0.
05
77
±
0.
00
03

0.
14
59
±
0.
00
00

0.
14
04
±
0.
00
23

0.
66
90

27
5.
42
48

p
H
' B

0.
09
84
±
0.
00
00

0.
08
93
±
0.
00
17

0.
28
36
±
0.
00
00

0.
25
12
±
0.
00
54

0.
49
80

16
7.
16
72

p
H
A

0.
06
57
±
0.
00
00

0.
06
38
±
0.
00
03

0.
11
23
±
0.
00
00

0.
11
26
±
0.
00
08

0.
35
90

14
2.
26
68

p
H
' A

0.
10
59
±
0.
00
00

0.
09
49
±
0.
00
07

0.
13
99
±
0.
00
00

0.
12
23
±
0.
00
15

2.
55
30

13
62
.2
58
0

S
te
a
m
G
en

(y
1
)

0.
01
91
±
0.
00
00

0.
01
90
±
0.
00
00

0.
14
46
±
0.
00
00

0.
14
69
±
0.
00
20

4.
51
00

27
58
.6
32
8

S
te
a
m
G
en

(y
2
)

0.
23
03
±
0.
00
00

0.
22
89
±
0.
00
02

0.
27
32
±
0.
00
00

0.
27
32
±
0.
00
09

27
.3
96
0

10
31
6.
58
24

S
te
a
m
G
en

(y
3
)

0.
06
27
±
0.
00
00

0.
06
26
±
0.
00
00

0.
14
40
±
0.
00
00

0.
14
40
±
0.
00
03

0.
06
40

31
.7
76
4

S
te
a
m
G
en

(y
4
)

0.
04
67
±
0.
00
00

0.
04
64
±
0.
00
00

0.
12
65
±
0.
00
00

0.
12
43
±
0.
00
03

16
.0
59
0

10
07
8.
06
38

R
o
b
o
t
(τ

1
)

0.
07
74
±
0.
00
00

0.
07
35
±
0.
00
01

0.
08
40
±
0.
00
00

0.
07
93
±
0.
00
03

6.
47
80

14
43
.3
16
2

R
o
b
o
t
(τ

2
)

0.
07
75
±
0.
00
00

0.
06
99
±
0.
00
03

0.
15
23
±
0.
00
00

0.
11
07
±
0.
00
19

71
.1
33
0

19
96
5.
37
36

R
o
b
o
t
(τ

3
)

0.
07
51
±
0.
00
00

0.
06
73
±
0.
00
04

0.
10
29
±
0.
00
00

0.
09
14
±
0.
00
10

80
.3
74
0

17
98
0.
04
36

R
o
b
o
t
(τ

4
)

0.
05
42
±
0.
00
00

0.
05
38
±
0.
00
00

0.
05
93
±
0.
00
00

0.
05
83
±
0.
00
02

1.
89
50

70
6.
05
00

R
o
b
o
t
(τ

5
)

0.
16
38
±
0.
00
00

0.
15
91
±
0.
00
04

0.
24
21
±
0.
00
00

0.
21
86
±
0.
00
13

3.
37
20

95
6.
99
10

R
o
b
o
t
(τ

6
)

0.
07
12
±
0.
00
00

0.
07
14
±
0.
00
03

0.
09
62
±
0.
00
00

0.
09
17
±
0.
00
04

4.
63
60

11
87
.6
19
6

R
o
b
o
t
(τ

7
)

0.
05
65
±
0.
00
00

0.
05
63
±
0.
00
01

0.
06
46
±
0.
00
00

0.
06
39
±
0.
00
03

2.
05
60

57
0.
61
76

W
in
d
in
g
(T

1
)

0.
28
37
±
0.
00
00

0.
27
00
±
0.
00
09

0.
33
59
±
0.
00
00

0.
32
13
±
0.
00
06

4.
76
60

21
34
.0
97
6

W
in
d
in
g
(T

2
)

0.
08
13
±
0.
00
00

0.
07
93
±
0.
00
04

0.
18
93
±
0.
00
00

0.
17
70
±
0.
00
16

1.
86
30

60
5.
59
82

130 Appendix A. Complete Results

T
ab
le
A
.2
1:

C
om

pa
ri
ng

th
e
si
ng
le
-o
ut
pu
t
pe
rf
or
m
an
ce

of
L
+
+
m
od
el
tr
ee
s
an
d
B
ag
gi
ng

of
L
+
+
m
od
el
tr
ee
s.

O
S
A

S
IM

ti
m
e

L
+
+

B
a
g
g
L
+
+

L
+
+

B
a
g
g
L
+
+

L
+
+

B
a
g
g
L
+
+

C
S
T
R
(C
a
)

0.
00
18
±
0.
00
00

0.
00
18
±
0.
00
00

0.
00
31
±
0.
00
00

0.
00
31
±
0.
00
01

15
.3
01
0

38
35
.3
23
8

C
S
T
R
'
(C
a
)

0.
01
77
±
0.
00
00

0.
01
54
±
0.
00
02

0.
01
95
±
0.
00
00

0.
01
68
±
0.
00
02

3.
82
80

63
9.
39
32

C
S
T
R
(T
)

0.
00
21
±
0.
00
00

0.
00
21
±
0.
00
00

0.
00
39
±
0.
00
00

0.
00
41
±
0.
00
01

12
.9
89
0

20
47
.6
33
6

C
S
T
R
'
(T
)

0.
01
13
±
0.
00
00

0.
01
00
±
0.
00
01

0.
01
20
±
0.
00
00

0.
01
06
±
0.
00
01

2.
19
60

60
4.
76
48

G
L
S
(h

1
)

0.
00
45
±
0.
00
00

0.
00
42
±
0.
00
00

0.
11
39
±
0.
00
00

0.
18
20
±
0.
00
55

0.
54
90

14
5.
84
26

G
L
S
(p

1
)

0.
10
36
±
0.
00
00

0.
10
43
±
0.
00
02

0.
16
93
±
0.
00
00

0.
17
09
±
0.
00
06

0.
78
10

22
0.
28
94

N
a
re
n
d
ra

0.
03
42
±
0.
00
00

0.
03
55
±
0.
00
02

0.
06
80
±
0.
00
00

0.
06
94
±
0.
00
06

3.
28
80

89
4.
82
70

N
a
re
n
d
ra
'

0.
06
93
±
0.
00
00

0.
06
95
±
0.
00
01

0.
12
35
±
0.
00
00

0.
12
38
±
0.
00
01

0.
73
20

31
7.
85
62

p
H
B

0.
06
78
±
0.
00
00

0.
05
56
±
0.
00
07

0.
11
75
±
0.
00
00

0.
13
89
±
0.
00
35

0.
67
10

37
0.
03
52

p
H
' B

0.
07
70
±
0.
00
00

0.
07
90
±
0.
00
09

0.
21
08
±
0.
00
00

0.
21
75
±
0.
00
32

0.
79
70

10
1.
40
58

p
H
A

0.
05
78
±
0.
00
00

0.
05
14
±
0.
00
06

0.
09
90
±
0.
00
00

0.
08
44
±
0.
00
08

1.
98
80

77
3.
06
24

p
H
' A

0.
09
60
±
0.
00
00

0.
08
98
±
0.
00
07

0.
11
83
±
0.
00
00

0.
11
62
±
0.
00
15

1.
44
40

10
21
.2
26
4

S
te
a
m
G
en

(y
1
)

0.
02
05
±
0.
00
00

0.
01
94
±
0.
00
00

0.
18
29
±
0.
00
00

0.
16
80
±
0.
00
21

10
8.
25
70

46
13
0.
86
70

S
te
a
m
G
en

(y
2
)

0.
23
20
±
0.
00
00

0.
22
52
±
0.
00
04

0.
27
39
±
0.
00
00

0.
26
42
±
0.
00
11

82
.3
51
0

23
63
9.
00
56

S
te
a
m
G
en

(y
3
)

0.
06
27
±
0.
00
00

0.
06
26
±
0.
00
00

0.
14
40
±
0.
00
00

0.
14
38
±
0.
00
03

16
.0
14
0

13
89
0.
54
26

S
te
a
m
G
en

(y
4
)

0.
04
99
±
0.
00
00

0.
04
99
±
0.
00
00

0.
15
40
±
0.
00
00

0.
15
45
±
0.
00
02

0.
04
00

17
.8
83
6

R
o
b
o
t
(τ

1
)

0.
07
50
±
0.
00
00

0.
06
82
±
0.
00
01

0.
07
97
±
0.
00
00

0.
07
11
±
0.
00
02

4.
34
50

56
0.
94
24

R
o
b
o
t
(τ

2
)

0.
08
12
±
0.
00
00

0.
07
14
±
0.
00
01

0.
17
33
±
0.
00
00

0.
11
69
±
0.
00
14

5.
41
10

20
29
.3
10
6

R
o
b
o
t
(τ

3
)

0.
06
54
±
0.
00
00

0.
06
27
±
0.
00
01

0.
13
03
±
0.
00
00

0.
11
26
±
0.
00
12

1.
68
70

68
7.
94
30

R
o
b
o
t
(τ

4
)

0.
05
83
±
0.
00
00

0.
05
36
±
0.
00
02

0.
06
05
±
0.
00
00

0.
05
56
±
0.
00
02

6.
14
80

16
31
.5
21
4

R
o
b
o
t
(τ

5
)

0.
15
94
±
0.
00
00

0.
15
37
±
0.
00
03

0.
21
42
±
0.
00
00

0.
19
86
±
0.
00
05

1.
30
40

43
0.
75
52

R
o
b
o
t
(τ

6
)

0.
07
30
±
0.
00
00

0.
06
94
±
0.
00
03

0.
09
71
±
0.
00
00

0.
08
70
±
0.
00
05

2.
49
60

85
6.
14
18

R
o
b
o
t
(τ

7
)

0.
05
71
±
0.
00
00

0.
05
22
±
0.
00
01

0.
06
70
±
0.
00
00

0.
05
71
±
0.
00
02

2.
64
30

36
9.
74
46

W
in
d
in
g
(T

1
)

0.
27
49
±
0.
00
00

0.
26
59
±
0.
00
09

0.
32
51
±
0.
00
00

0.
31
98
±
0.
00
14

5.
21
40

17
83
.2
74
0

W
in
d
in
g
(T

2
)

0.
08
64
±
0.
00
00

0.
06
88
±
0.
00
06

0.
17
29
±
0.
00
00

0.
14
21
±
0.
00
10

16
.8
36
0

48
26
.6
71
2

131

T
ab
le
A
.2
2:

C
om

pa
ri
so
n
of

M
od
el
T
re
e
E
ns
em

bl
es

vs
.
N
eu
ra
l
N
et
w
or
ks

an
d
A
N
F
IS
.
P
re
di
ct
io
n
er
ro
rs

an
d
ou
tp
ut

er
ro
rs

ar
e
sh
ow

n.

O
S
A

S
I
M

B
a
g
g
.L
+
+

B
M
T

F
M
T

N
N

A
N
F
I
S

B
a
g
g
.L
+
+

B
M
T

F
M
T

N
N

A
N
F
I
S

C
S
T
R
(
C
a
)

0
.0
0
1
8
±
0
.0
0
0
0

0
.0
0
5
5
±
0
.0
0
1
4

0
.0
0
4
6
±
0
.0
0
0
5

0
.0
0
2
6
±
0
.0
0
0
0

0
.0
0
1
7
±
0
.0
0
0
0

0
.0
0
3
1
±
0
.0
0
0
0

0
.0
0
7
2
±
0
.0
0
1
8

0
.0
0
6
4
±
0
.0
0
0
8

0
.0
0
3
7
±
0
.0
0
0
0

0
.0
0
2
1
±
0
.0
0
0
0

C
S
T
R
'
(
C
a
)

0
.0
1
5
4
±
0
.0
0
0
0

0
.0
1
6
4
±
0
.0
0
1
3

0
.0
1
5
3
±
0
.0
0
0
9

0
.0
1
4
3
±
0
.0
0
0
0

0
.0
2
5
8
±
0
.0
0
3
8

0
.0
1
6
8
±
0
.0
0
0
0

0
.0
1
8
1
±
0
.0
0
1
4

0
.0
1
7
0
±
0
.0
0
1
1

0
.0
1
4
8
±
0
.0
0
0
0

0
.0
2
7
4
±
0
.0
1
0
0

C
S
T
R
(
T
)

0
.0
0
2
1
±
0
.0
0
0
0

0
.0
0
6
4
±
0
.0
0
0
2

0
.0
0
5
4
±
0
.0
0
0
3

0
.0
0
4
5
±
0
.0
0
0
0

0
.0
0
4
0
±
0
.0
0
0
0

0
.0
0
4
1
±
0
.0
0
0
0

0
.0
1
1
3
±
0
.0
0
0
3

0
.0
0
8
9
±
0
.0
0
0
3

0
.0
0
6
8
±
0
.0
0
0
0

0
.0
0
6
3
±
0
.0
0
0
0

C
S
T
R
'
(
T
)

0
.0
1
0
0
±
0
.0
0
0
0

0
.0
2
2
5
±
0
.0
0
1
2

0
.0
2
0
0
±
0
.0
0
1
9

0
.0
1
9
1
±
0
.0
0
0
0

0
.0
2
2
9
±
0
.0
0
0
1

0
.0
1
0
6
±
0
.0
0
0
0

0
.0
2
4
1
±
0
.0
0
1
4

0
.0
2
1
3
±
0
.0
0
1
9

0
.0
1
9
9
±
0
.0
0
0
0

0
.0
2
4
1
±
0
.0
0
0
0

G
L
S
(
h
1
)

0
.0
0
4
2
±
0
.0
0
0
0

0
.0
0
4
9
±
0
.0
0
0
1

0
.0
0
4
3
±
0
.0
0
0
8

0
.0
0
4
8
±
0
.0
0
0
0

0
.0
0
4
2
±
0
.0
0
0
0

0
.1
8
2
0
±
0
.0
1
0
0

0
.1
2
0
1
±
0
.0
2
6
3

0
.2
2
3
6
±
0
.0
7
2
7

0
.1
3
1
2
±
0
.0
2
0
0

0
.5
0
6
8
±
0
.0
0
0
0

G
L
S
(
p
1
)

0
.1
0
4
3
±
0
.0
0
0
0

0
.1
2
0
1
±
0
.0
0
1
1

0
.1
1
6
0
±
0
.0
1
1
3

0
.1
1
9
6
±
0
.0
2
0
0

0
.0
9
7
4
±
0
.0
0
0
0

0
.1
7
0
9
±
0
.0
0
0
0

0
.2
0
4
5
±
0
.0
0
3
2

0
.1
8
0
9
±
0
.0
0
3
4

0
.2
2
8
4
±
0
.0
7
0
0

0
.1
4
7
7
±
0
.0
0
0
0

N
a
r
e
n
d
r
a

0
.0
3
5
5
±
0
.0
0
0
0

0
.0
2
7
0
±
0
.0
0
2
1

1
.9
4
6
7
±
2
.5
2
4
7

0
.0
0
0
8
±
0
.0
0
0
0

0
.0
0
9
7
±
0
.0
0
0
0

0
.0
6
9
4
±
0
.0
0
0
0

0
.0
3
9
9
±
0
.0
0
3
5

0
.0
4
4
0
±
0
.0
1
6
4

0
.0
0
2
0
±
0
.0
0
0
0

0
.0
2
8
3
±
0
.0
0
0
0

N
a
r
e
n
d
r
a
'

0
.0
6
9
5
±
0
.0
0
0
0

0
.0
6
8
6
±
0
.0
0
3
5

0
.0
6
3
7
±
0
.0
0
3
6

0
.0
3
8
8
±
0
.0
0
0
0

0
.0
4
0
8
±
0
.0
0
0
0

0
.1
2
3
8
±
0
.0
0
0
0

0
.1
2
5
6
±
0
.0
0
5
3

0
.1
1
3
8
±
0
.0
0
7
0

0
.0
8
6
0
±
0
.0
1
0
0

0
.0
7
8
7
±
0
.0
0
0
0

p
H

B
0
.0
5
5
6
±
0
.0
0
0
0

0
.0
9
3
2
±
0
.0
1
7
9

0
.0
7
4
5
±
0
.0
0
6
5

0
.0
6
4
1
±
0
.0
2
0
0

0
.0
7
0
4
±
0
.0
0
0
1

0
.1
3
8
9
±
0
.0
0
0
0

0
.2
1
7
2
±
0
.0
1
8
8

0
.1
9
5
1
±
0
.0
1
9
4

0
.1
9
0
8
±
0
.1
0
0
0

0
.2
0
1
3
±
0
.0
0
0
0

p
H
' B

0
.0
7
9
0
±
0
.0
0
0
0

0
.0
8
3
8
±
0
.0
0
2
6

0
.0
7
6
5
±
0
.0
0
1
1

0
.1
3
3
2
±
0
.0
9
0
0

0
.0
8
2
1
±
0
.0
1
4
9

0
.2
1
7
5
±
0
.0
0
0
0

0
.2
1
1
0
±
0
.0
0
7
7

0
.1
9
7
3
±
0
.0
0
5
5

0
.2
6
5
2
±
0
.0
7
0
0

0
.2
1
2
0
±
0
.0
5
0
0

p
H

A
0
.0
5
1
4
±
0
.0
0
0
0

0
.0
5
5
0
±
0
.0
0
2
3

0
.0
5
5
0
±
0
.0
0
3
6

0
.0
8
0
5
±
0
.0
2
0
0

0
.0
4
7
3
±
0
.0
0
0
0

0
.0
8
4
4
±
0
.0
0
0
0

0
.1
0
9
8
±
0
.0
0
5
8

0
.1
0
1
3
±
0
.0
0
5
3

0
.2
1
1
8
±
0
.0
7
0
0

0
.0
7
6
6
±
0
.0
0
0
0

p
H
' A

0
.0
8
9
8
±
0
.0
0
0
0

0
.1
0
4
3
±
0
.0
0
5
3

0
.0
9
7
4
±
0
.0
1
6
6

0
.1
2
3
9
±
0
.0
2
0
0

0
.0
9
4
9
±
0
.0
0
0
0

0
.1
1
6
2
±
0
.0
0
0
0

0
.1
8
5
6
±
0
.0
1
5
7

0
.1
3
1
4
±
0
.0
3
0
0

0
.2
2
5
0
±
0
.0
5
0
0

0
.1
2
8
4
±
0
.0
0
0
0

S
t
e
a
m
G
e
n
(
y
1
)

0
.0
1
9
4
±
0
.0
0
0
0

0
.0
1
9
5
±
0
.0
0
0
2

0
.0
1
9
3
±
0
.0
0
0
1

0
.0
1
9
8
±
0
.0
0
0
0

0
.0
1
9
5
±
0
.0
0
0
0

0
.1
6
8
0
±
0
.0
0
0
0

0
.1
4
4
4
±
0
.0
0
7
4

0
.1
4
0
7
±
0
.0
0
5
2

0
.1
7
4
9
±
0
.0
5
0
0

0
.1
4
9
5
±
0
.0
0
0
0

S
t
e
a
m
G
e
n
(
y
2
)

0
.2
2
5
2
±
0
.0
0
0
0

0
.2
1
9
0
±
0
.0
0
2
9

0
.2
2
1
6
±
0
.0
0
4
0

0
.2
2
3
0
±
0
.0
0
0
0

0
.2
4
6
8
±
0
.0
0
0
0

0
.2
6
4
2
±
0
.0
0
0
0

0
.2
4
8
8
±
0
.0
0
8
3

0
.2
5
4
2
±
0
.0
1
0
0

0
.2
4
2
1
±
0
.0
0
0
0

0
.3
8
1
3
±
0
.0
0
0
0

S
t
e
a
m
G
e
n
(
y
3
)

0
.0
6
2
6
±
0
.0
0
0
0

0
.0
6
5
5
±
0
.0
0
1
0

0
.0
6
7
4
±
0
.0
0
3
5

0
.0
6
3
9
±
0
.0
0
0
0

0
.0
6
4
3
±
0
.0
0
0
0

0
.1
4
3
8
±
0
.0
0
0
0

0
.1
4
9
7
±
0
.0
0
1
7

0
.1
5
3
8
±
0
.0
0
8
7

0
.1
5
1
6
±
0
.0
0
0
0

0
.1
5
7
6
±
0
.0
0
0
0

S
t
e
a
m
G
e
n
(
y
4
)

0
.0
4
9
9
±
0
.0
0
0
0

0
.0
5
0
5
±
0
.0
0
0
3

0
.0
5
0
5
±
0
.0
0
0
3

0
.0
5
0
4
±
0
.0
0
0
0

0
.0
5
0
2
±
0
.0
0
0
0

0
.1
5
4
5
±
0
.0
0
0
0

0
.1
5
0
4
±
0
.0
0
0
4

0
.1
5
0
4
±
0
.0
0
0
4

0
.1
5
1
4
±
0
.0
1
0
0

0
.1
7
4
6
±
0
.0
0
0
0

R
o
b
o
t
(
τ
1
)

0
.0
6
8
2
±
0
.0
0
0
0

0
.0
8
8
6
±
0
.0
0
0
9

0
.0
8
9
6
±
0
.0
2
0
1

0
.0
9
7
7
±
0
.0
1
0
0

0
.0
9
9
2
±
0
.0
0
0
0

0
.0
7
1
1
±
0
.0
0
0
0

0
.1
6
7
5
±
0
.0
3
9
7

0
.0
9
6
7
±
0
.0
0
6
9

3
.3
8
6
0
±
7
.3
2
0
0

0
.1
2
0
8
±
0
.0
0
0
0

R
o
b
o
t
(
τ
2
)

0
.0
7
1
4
±
0
.0
0
0
0

0
.1
0
3
6
±
0
.0
0
1
9

0
.1
7
7
0
±
0
.0
1
1
3

0
.1
0
4
7
±
0
.0
1
0
0

0
.2
1
5
2
±
0
.0
4
8
4

0
.1
1
6
9
±
0
.0
0
0
0

N
a
N

0
.2
1
2
1
±
0
.0
1
9
6

1
.2
8
4
9
±
1
.3
8
0
0

1
.0
1
5
3
±
0
.2
1
0
0

R
o
b
o
t
(
τ
3
)

0
.0
6
2
7
±
0
.0
0
0
0

0
.0
7
2
0
±
0
.0
0
0
8

0
.1
5
9
1
±
0
.0
6
4
2

0
.0
8
6
3
±
0
.0
1
0
0

0
.0
9
9
7
±
0
.0
0
5
3

0
.1
1
2
6
±
0
.0
0
0
0

0
.2
1
4
9
±
0
.0
0
3
3

0
.2
1
4
7
±
0
.0
3
8
7

0
.2
8
5
6
±
0
.1
4
0
0

0
.1
4
1
5
±
0
.0
1
0
0

R
o
b
o
t
(
τ
4
)

0
.0
5
3
6
±
0
.0
0
0
0

0
.0
6
9
0
±
0
.0
0
1
4

0
.0
5
9
2
±
0
.0
0
2
1

0
.0
7
4
5
±
0
.0
1
0
0

0
.0
8
2
7
±
0
.0
0
8
1

0
.0
5
5
6
±
0
.0
0
0
0

0
.1
9
0
4
±
0
.0
0
9
5

0
.0
7
7
2
±
0
.0
0
6
8

0
.8
7
6
9
±
1
.6
7
0
0

0
.0
7
6
3
±
0
.0
1
0
0

R
o
b
o
t
(
τ
5
)

0
.1
5
3
7
±
0
.0
0
0
0

0
.1
8
9
7
±
0
.0
0
0
1

0
.1
7
0
4
±
0
.0
0
9
6

0
.2
3
8
5
±
0
.0
6
0
0

0
.1
8
5
9
±
0
.0
0
7
1

0
.1
9
8
6
±
0
.0
0
0
0

0
.3
6
6
0
±
0
.0
0
4
4

0
.2
5
1
3
±
0
.0
2
6
7

0
.3
2
0
8
±
0
.1
4
0
0

0
.2
3
9
5
±
0
.0
1
0
0

R
o
b
o
t
(
τ
6
)

0
.0
6
9
4
±
0
.0
0
0
0

0
.0
8
8
6
±
0
.0
0
3
9

0
.1
1
7
8
±
0
.0
8
7
1

0
.0
8
2
9
±
0
.0
0
0
0

0
.0
8
0
2
±
0
.0
0
1
3

0
.0
8
7
0
±
0
.0
0
0
0

0
.1
6
1
3
±
0
.0
1
3
5

0
.1
2
2
5
±
0
.0
2
0
1

0
.1
6
7
4
±
0
.0
3
0
0

0
.1
3
8
4
±
0
.0
0
0
0

R
o
b
o
t
(
τ
7
)

0
.0
5
2
2
±
0
.0
0
0
0

0
.0
6
0
3
±
0
.0
0
0
2

0
.0
5
5
8
±
0
.0
0
1
7

0
.0
7
0
7
±
0
.0
0
0
0

0
.0
6
2
4
±
0
.0
0
0
0

0
.0
5
7
1
±
0
.0
0
0
0

0
.0
7
0
9
±
0
.0
0
1
6

0
.0
6
4
9
±
0
.0
0
2
8

0
.0
8
6
7
±
0
.0
1
0
0

0
.0
9
7
2
±
0
.0
0
0
0

W
in
d
in
g
(
T
1
)

0
.2
6
5
9
±
0
.0
0
0
0

0
.2
8
1
8
±
0
.0
0
8
0

0
.2
7
5
3
±
0
.0
1
0
8

0
.3
0
2
2
±
0
.0
3
0
0

0
.3
1
5
0
±
0
.0
3
6
6

0
.3
1
9
8
±
0
.0
0
0
0

0
.3
4
7
7
±
0
.0
0
5
0

0
.3
4
4
5
±
0
.0
1
5
0

0
.5
4
0
7
±
0
.3
0
0
0

0
.5
8
1
7
±
0
.3
8
0
0

W
in
d
in
g
(
T
2
)

0
.0
6
8
8
±
0
.0
0
0
0

0
.1
0
9
5
±
0
.0
0
8
8

0
.0
8
6
3
±
0
.0
0
4
3

0
.0
9
4
0
±
0
.0
1
0
0

0
.0
7
8
8
±
0
.0
0
0
1

0
.1
4
2
1
±
0
.0
0
0
0

0
.2
8
9
7
±
0
.0
5
9
6

0
.1
8
3
9
±
0
.0
3
3
4

0
.2
0
6
4
±
0
.0
4
0
0

0
.1
6
7
7
±
0
.0
0
0
0

132 Appendix A. Complete Results

T
ab
le

A
.2
3:

C
om

pa
ri
so
n
of

M
od
el

T
re
e
E
ns
em

bl
es

vs
.
N
eu
ra
l
N
et
w
or
ks

an
d
A
N
F
IS
.
M
od
el

co
m
pl
ex
it
ie
s
an
d
ti
m
es

re
qu
ir
ed

fo
r
le
ar
ni
ng

ar
e

sh
ow

n.

co
m
p
le
x
it
y

ti
m
e

B
a
g
g
.L
+
+

B
M
T

F
M
T

N
N

A
N
F
IS

B
a
g
g
.L
+
+

B
M
T

F
M
T

N
N

A
N
F
IS

C
S
T
R
(C
a
)

30
.0
0

9.
95

28
.1
6

15
.0
0

2.
00

38
35
.3
2

80
.0
3

55
.6
8

3.
90

47
90
.1
5

C
S
T
R
'
(C
a
)

14
.0
0

2.
90

2.
65

4.
00

6.
00

63
9.
39

11
6.
83

83
.7
8

2.
60

57
8.
73

C
S
T
R
(T
)

27
.0
0

1.
19

3.
64

3.
00

3.
00

20
47
.6
3

53
.7
6

40
.0
8

13
.4
3

17
91
.5
5

C
S
T
R
'
(T
)

10
.0
0

2.
00

1.
56

6.
00

4.
00

60
4.
76

12
0.
10

64
.3
6

0.
92

20
5.
41

G
L
S
(h

1
)

12
.0
0

1.
62

1.
90

1.
00

2.
00

14
5.
84

5.
90

3.
25

2.
96

24
9.
29

G
L
S
(p

1
)

16
.0
0

4.
67

5.
28

3.
00

2.
00

22
0.
29

7.
78

8.
52

1.
53

41
.1
7

N
a
re
n
d
ra

30
.0
0

67
.6
7

76
.4
2

15
.0
0

3.
00

89
4.
83

13
.3
0

9.
52

16
.3
7

10
92
.7
3

N
a
re
n
d
ra
'

12
.0
0

4.
00

5.
02

7.
00

3.
00

31
7.
86

36
.8
3

36
.8
0

0.
55

11
38
.7
8

p
H
B

18
.0
0

5.
86

5.
11

8.
00

4.
00

37
0.
04

4.
57

5.
02

0.
49

5.
70

p
H
' B

12
.0
0

4.
90

1.
41

4.
00

5.
00

10
1.
41

9.
23

7.
98

0.
24

7.
93

p
H
A

29
.0
0

6.
24

5.
63

2.
00

3.
00

77
3.
06

4.
42

3.
32

0.
34

29
.8
9

p
H
' A

29
.0
0

1.
00

1.
19

4.
00

3.
00

10
21
.2
3

5.
60

3.
67

0.
18

20
1.
76

S
te
a
m
G
en

(y
1
)

28
.0
0

1.
00

1.
00

2.
00

2.
00

46
13
0.
87

99
.7
0

10
1.
97

3.
32

71
5.
67

S
te
a
m
G
en

(y
2
)

30
.0
0

16
.7
1

37
.1
8

1.
00

2.
00

23
63
9.
01

19
8.
22

22
7.
33

0.
47

70
2.
18

S
te
a
m
G
en

(y
3
)

10
.0
0

4.
33

32
.8
5

1.
00

2.
00

13
89
0.
54

79
8.
72

73
3.
95

5.
36

57
81
.8
2

S
te
a
m
G
en

(y
4
)

1.
00

1.
05

6.
04

1.
00

3.
00

17
.8
8

16
2.
63

17
4.
57

1.
67

13
33
.7
8

R
o
b
o
t
(τ

1
)

11
.0
0

1.
00

4.
38

4.
00

3.
00

56
0.
94

30
.8
3

23
.2
7

0.
52

21
9.
42

R
o
b
o
t
(τ

2
)

13
.0
0

85
.9
0

15
.0
1

7.
00

10
.0
0

20
29
.3
1

48
.8
8

38
.1
7

0.
47

16
40
.9
3

R
o
b
o
t
(τ

3
)

6.
00

1.
00

8.
50

13
.0
0

6.
00

68
7.
94

47
.2
0

40
.3
3

0.
97

63
3.
16

R
o
b
o
t
(τ

4
)

18
.0
0

1.
00

1.
69

10
.0
0

6.
00

16
31
.5
2

36
.7
3

28
.0
3

0.
57

65
7.
80

R
o
b
o
t
(τ

5
)

5.
00

6.
38

1.
53

13
.0
0

5.
00

43
0.
75

31
.6
5

17
.2
3

0.
75

39
34
.2
0

R
o
b
o
t
(τ

6
)

8.
00

1.
00

1.
45

2.
00

2.
00

85
6.
14

15
2.
17

69
.7
5

0.
63

81
.4
3

R
o
b
o
t
(τ

7
)

8.
00

1.
00

1.
28

11
.0
0

2.
00

36
9.
75

13
1.
27

77
.9
2

0.
85

39
43
.9
7

W
in
d
in
g
(T

1
)

14
.0
0

2.
90

4.
40

5.
00

3.
00

17
83
.2
7

14
4.
45

15
5.
68

0.
72

14
4.
14

W
in
d
in
g
(T

2
)

28
.0
0

2.
24

2.
90

10
.0
0

2.
00

48
26
.6
7

26
5.
47

24
9.
07

1.
27

37
33
.2
8

133

T
ab
le
A
.2
4:

C
om

pa
ri
ng

th
e
pe
rf
or
m
an
ce

of
m
ul
ti
pl
e-
ou
tp
ut

L
+
+

an
d
B
ag
gi
ng

of
m
ul
ti
pl
e-
ou
tp
ut

L
+
+

m
od
el
tr
ee
s.

T
he

ta
bl
e
re
po
rt
s
id
en
ti
ca
l

nu
m
be
rs

un
de
r
th
e
ti
m
e
co
lu
m
n,

fo
r
ea
ch

of
th
e
ou
tp
ut
s
of

a
dy
na
m
ic
sy
st
em

m
od
el
.

O
S
A

S
IM

ti
m
e

L
+
+
M
O

B
a
g
g
L
+
+
M
O

L
+
+
M
O

B
a
g
g
L
+
+
M
O

L
+
+
M
O

B
a
g
g
L
+
+
M
O

C
S
T
R
(C
a
)

0.
00
19
±
0.
00
00

0.
00
20
±
0.
00
00

0.
01
66
±
0.
00
00

0.
01
59
±
0.
00
02

18
.6
06
0

50
89
.3
00
0

C
S
T
R
(T
)

0.
00
22
±
0.
00
00

0.
00
22
±
0.
00
00

0.
01
34
±
0.
00
00

0.
01
25
±
0.
00
01

18
.6
06
0

50
89
.3
00
0

C
S
T
R
'
(C
a
)

0.
01
33
±
0.
00
00

0.
01
10
±
0.
00
01

0.
01
91
±
0.
00
00

0.
02
07
±
0.
00
05

7.
35
20

21
11
.0
93
0

C
S
T
R
'
(T
)

0.
01
36
±
0.
00
00

0.
01
12
±
0.
00
01

0.
02
00
±
0.
00
00

0.
01
81
±
0.
00
02

7.
35
20

21
11
.0
93
0

G
L
S
(p

1
)

0.
09
23
±
0.
00
00

0.
08
89
±
0.
00
05

0.
23
70
±
0.
00
00

0.
23
26
±
0.
00
10

4.
19
50

24
27
.0
58
0

G
L
S
(h

1
)

0.
00
40
±
0.
00
00

0.
00
38
±
0.
00
00

0.
14
62
±
0.
00
00

0.
14
14
±
0.
00
25

4.
19
50

24
27
.0
58
0

S
te
a
m
G
en

(y
1
)

0.
01
94
±
0.
00
00

0.
01
91
±
0.
00
00

0.
15
73
±
0.
00
00

0.
15
74
±
0.
00
09

11
7.
26
30

30
34
7.
26
90

S
te
a
m
G
en

(y
2
)

0.
23
73
±
0.
00
00

0.
23
32
±
0.
00
02

0.
28
78
±
0.
00
00

0.
28
97
±
0.
00
12

11
7.
26
30

30
34
7.
26
90

S
te
a
m
G
en

(y
3
)

0.
06
43
±
0.
00
00

0.
06
36
±
0.
00
00

0.
19
99
±
0.
00
00

0.
20
02
±
0.
00
05

11
7.
26
30

30
34
7.
26
90

S
te
a
m
G
en

(y
4
)

0.
04
68
±
0.
00
00

0.
04
67
±
0.
00
01

0.
13
65
±
0.
00
00

0.
13
80
±
0.
00
06

11
7.
26
30

30
34
7.
26
90

R
o
b
o
t
(τ

1
)

0.
08
79
±
0.
00
00

0.
06
91
±
0.
00
03

0.
09
95
±
0.
00
00

0.
07
45
±
0.
00
06

19
.8
54
0

40
05
.1
43
0

R
o
b
o
t
(τ

2
)

0.
09
18
±
0.
00
00

0.
07
24
±
0.
00
03

0.
17
45
±
0.
00
00

0.
14
94
±
0.
00
22

19
.8
54
0

40
05
.1
43
0

R
o
b
o
t
(τ

3
)

0.
07
68
±
0.
00
00

0.
06
03
±
0.
00
01

0.
11
02
±
0.
00
00

0.
09
81
±
0.
00
09

19
.8
54
0

40
05
.1
43
0

R
o
b
o
t
(τ

4
)

0.
06
18
±
0.
00
00

0.
04
95
±
0.
00
02

0.
08
12
±
0.
00
00

0.
05
35
±
0.
00
04

19
.8
54
0

40
05
.1
43
0

R
o
b
o
t
(τ

5
)

0.
19
28
±
0.
00
00

0.
14
37
±
0.
00
06

0.
23
01
±
0.
00
00

0.
17
78
±
0.
00
08

19
.8
54
0

40
05
.1
43
0

R
o
b
o
t
(τ

6
)

0.
07
34
±
0.
00
00

0.
06
62
±
0.
00
06

0.
09
96
±
0.
00
00

0.
09
04
±
0.
00
06

19
.8
54
0

40
05
.1
43
0

R
o
b
o
t
(τ

7
)

0.
05
75
±
0.
00
00

0.
04
97
±
0.
00
01

0.
07
77
±
0.
00
00

0.
05
73
±
0.
00
05

19
.8
54
0

40
05
.1
43
0

W
in
d
in
g
(T

1
)

0.
28
23
±
0.
00
00

0.
26
81
±
0.
00
14

0.
36
87
±
0.
00
00

0.
35
00
±
0.
00
15

10
.9
08
0

14
49
.9
78
2

W
in
d
in
g
(T

2
)

0.
10
45
±
0.
00
00

0.
08
48
±
0.
00
05

0.
21
49
±
0.
00
00

0.
17
91
±
0.
00
06

10
.9
08
0

14
49
.9
78
2

134 Appendix A. Complete Results

T
ab
le
A
.2
5:

C
om

pa
ri
ng

si
ng
le
-o
ut
pu
t
m
od
el
tr
ee
s,
ea
ch

pr
ed
ic
ti
ng

on
e
ou
tp
ut

va
ri
ab
le
,
to

on
e
m
ul
ti
-o
ut
pu
t
m
od
el
tr
ee
.

O
S
A

S
IM

n
u
m
.L
M
s

ti
m
e

S
ep
.S
O
L
+
+

L
+
+
M
O

S
ep
.S
O
L
+
+

L
+
+
M
O

S
ep
.S
O
L
+
+

L
+
+
M
O

S
ep
.S
O
L
+
+

L
+
+
M
O

C
S
T
R
(C
a
)

0.
00
18

0.
00
19

0.
01
30

0.
01
66

57
.0
00
0

30
.0
00
0

25
.8
69
0

18
.6
06
0

C
S
T
R
(T
)

0.
00
24

0.
00
22

0.
01
14

0.
01
34

57
.0
00
0

30
.0
00
0

25
.8
69
0

18
.6
06
0

C
S
T
R
'
(C
a
)

0.
01
71

0.
01
33

N
aN

0.
01
91

24
.0
00
0

17
.0
00
0

4.
90
50

7.
35
20

C
S
T
R
'
(T
)

0.
01
42

0.
01
36

N
aN

0.
02
00

24
.0
00
0

17
.0
00
0

4.
90
50

7.
35
20

G
L
S
(p

1
)

0.
22
75

0.
09
23

1.
23
34

0.
23
70

39
.0
00
0

30
.0
00
0

3.
56
60

4.
19
50

G
L
S
(h

1
)

2.
34
51

0.
00
40

2.
75
23

0.
14
62

39
.0
00
0

30
.0
00
0

3.
56
60

4.
19
50

S
te
a
m
G
en

(y
1
)

0.
02
00

0.
01
94

0.
21
11

0.
15
73

69
.0
00
0

21
.0
00
0

18
9.
55
80

11
7.
26
30

S
te
a
m
G
en

(y
2
)

0.
24
26

0.
23
73

0.
29
82

0.
28
78

69
.0
00
0

21
.0
00
0

18
9.
55
80

11
7.
26
30

S
te
a
m
G
en

(y
3
)

0.
06
46

0.
06
43

0.
22
22

0.
19
99

69
.0
00
0

21
.0
00
0

18
9.
55
80

11
7.
26
30

S
te
a
m
G
en

(y
4
)

0.
04
99

0.
04
68

0.
16
32

0.
13
65

69
.0
00
0

21
.0
00
0

18
9.
55
80

11
7.
26
30

R
o
b
o
t
(τ

1
)

0.
07
51

0.
08
79

0.
11
43

0.
09
95

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

R
o
b
o
t
(τ

2
)

0.
08
31

0.
09
18

0.
33
48

0.
17
45

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

R
o
b
o
t
(τ

3
)

0.
06
55

0.
07
68

0.
17
47

0.
11
02

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

R
o
b
o
t
(τ

4
)

0.
06
77

0.
06
18

0.
07
21

0.
08
12

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

R
o
b
o
t
(τ

5
)

0.
16
22

0.
19
28

0.
30
19

0.
23
01

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

R
o
b
o
t
(τ

6
)

0.
07
08

0.
07
34

0.
14
39

0.
09
96

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

R
o
b
o
t
(τ

7
)

0.
05
71

0.
05
75

0.
07
29

0.
07
77

69
.0
00
0

14
.0
00
0

19
.9
88
0

19
.8
54
0

W
in
d
in
g
(T

1
)

0.
27
70

0.
28
23

0.
35
65

0.
36
87

42
.0
00
0

19
.0
00
0

16
.9
24
0

10
.9
08
0

W
in
d
in
g
(T

2
)

0.
07
80

0.
10
45

0.
16
85

0.
21
49

42
.0
00
0

19
.0
00
0

16
.9
24
0

10
.9
08
0

135

T
ab
le
A
.2
6:

C
om

pa
ri
ng

a
se
pa
ra
te

en
se
m
bl
e
of

si
ng
le
-o
ut
pu
t
L
+
+
M
T
s,
an
d
a
si
ng
le
en
se
m
bl
e
of

m
ul
ti
pl
e-
ou
tp
ut

L
+
+
M
T
s.

O
S
A

S
I
M

n
u
m
.L
M

t
im
e

S
e
p
.B
a
g
g
.L
+
+

B
a
g
g
.L
+
+

M
O

S
e
p
.B
a
g
g
.L
+
+

B
a
g
g
.L
+
+

M
O

S
e
p
.B
a
g
g
.L
+
+

B
a
g
g
.L
+
+

M
O

S
e
p
.B
a
g
g
.L
+
+

B
a
g
g
.L
+
+

M
O

C
S
T
R
(
C
a
)

0
.0
0
1
8
±
0
.0
0
0
0

0
.0
0
2
0
±
0
.0
0
0
0

0
.0
1
2
9
±
0
.0
0
0
1

0
.0
1
5
9
±
0
.0
0
0
2

5
7
.0
0
0
0

3
0
.0
0
0
0

2
0
2
8
5
.2
7
9
0

5
0
8
9
.3
0
0
0

C
S
T
R
(
T
)

0
.0
0
2
2
±
0
.0
0
0
0

0
.0
0
2
2
±
0
.0
0
0
0

0
.0
1
0
9
±
0
.0
0
0
0

0
.0
1
2
5
±
0
.0
0
0
1

5
7
.0
0
0
0

3
0
.0
0
0
0

2
0
2
8
5
.2
7
9
0

5
0
8
9
.3
0
0
0

C
S
T
R
'
(
C
a
)

0
.0
1
3
5
±
0
.0
0
0
3

0
.0
1
1
0
±
0
.0
0
0
1

N
a
N

0
.0
2
0
7
±
0
.0
0
0
5

2
4
.0
0
0
0

1
7
.0
0
0
0

1
5
9
3
.0
9
9
0

2
1
1
1
.0
9
3
0

C
S
T
R
'
(
T
)

0
.0
1
2
8
±
0
.0
0
0
3

0
.0
1
1
2
±
0
.0
0
0
1

N
a
N

0
.0
1
8
1
±
0
.0
0
0
2

2
4
.0
0
0
0

1
7
.0
0
0
0

1
5
9
3
.0
9
9
0

2
1
1
1
.0
9
3
0

G
L
S
(
p
1
)

0
.2
1
4
0
±
0
.0
0
0
7

0
.0
8
8
9
±
0
.0
0
0
5

1
.3
1
9
1
±
0
.0
4
5
8

0
.2
3
2
6
±
0
.0
0
1
0

3
9
.0
0
0
0

3
0
.0
0
0
0

1
1
7
2
.0
4
1
0

2
4
2
7
.0
5
8
0

G
L
S
(
h
1
)

1
.8
9
1
9
±
0
.1
1
3
0

0
.0
0
3
8
±
0
.0
0
0
0

3
.3
3
5
5
±
0
.0
8
2
3

0
.1
4
1
4
±
0
.0
0
2
5

3
9
.0
0
0
0

3
0
.0
0
0
0

1
1
7
2
.0
4
1
0

2
4
2
7
.0
5
8
0

S
t
e
a
m
G
e
n
(
y
1
)

0
.0
1
9
3
±
0
.0
0
0
0

0
.0
1
9
1
±
0
.0
0
0
0

0
.1
8
8
1
±
0
.0
0
2
0

0
.1
5
7
4
±
0
.0
0
0
9

6
9
.0
0
0
0

2
1
.0
0
0
0

5
2
1
9
6
.4
7
4
0

3
0
3
4
7
.2
6
9
0

S
t
e
a
m
G
e
n
(
y
2
)

0
.2
2
7
6
±
0
.0
0
0
4

0
.2
3
3
2
±
0
.0
0
0
2

0
.2
7
5
1
±
0
.0
0
1
3

0
.2
8
9
7
±
0
.0
0
1
2

6
9
.0
0
0
0

2
1
.0
0
0
0

5
2
1
9
6
.4
7
4
0

3
0
3
4
7
.2
6
9
0

S
t
e
a
m
G
e
n
(
y
3
)

0
.0
6
2
3
±
0
.0
0
0
0

0
.0
6
3
6
±
0
.0
0
0
0

0
.2
1
4
9
±
0
.0
0
0
2

0
.2
0
0
2
±
0
.0
0
0
5

6
9
.0
0
0
0

2
1
.0
0
0
0

5
2
1
9
6
.4
7
4
0

3
0
3
4
7
.2
6
9
0

S
t
e
a
m
G
e
n
(
y
4
)

0
.0
4
9
9
±
0
.0
0
0
0

0
.0
4
6
7
±
0
.0
0
0
1

0
.1
6
1
6
±
0
.0
0
0
4

0
.1
3
8
0
±
0
.0
0
0
6

6
9
.0
0
0
0

2
1
.0
0
0
0

5
2
1
9
6
.4
7
4
0

3
0
3
4
7
.2
6
9
0

R
o
b
o
t
(
τ
1
)

0
.0
6
9
9
±
0
.0
0
0
2

0
.0
6
9
1
±
0
.0
0
0
3

0
.0
8
3
6
±
0
.0
0
0
3

0
.0
7
4
5
±
0
.0
0
0
6

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

R
o
b
o
t
(
τ
2
)

0
.0
7
5
7
±
0
.0
0
0
3

0
.0
7
2
4
±
0
.0
0
0
3

0
.1
8
7
7
±
0
.0
0
2
3

0
.1
4
9
4
±
0
.0
0
2
2

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

R
o
b
o
t
(
τ
3
)

0
.0
6
3
2
±
0
.0
0
0
1

0
.0
6
0
3
±
0
.0
0
0
1

0
.1
2
0
5
±
0
.0
0
0
8

0
.0
9
8
1
±
0
.0
0
0
9

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

R
o
b
o
t
(
τ
4
)

0
.0
5
4
6
±
0
.0
0
0
7

0
.0
4
9
5
±
0
.0
0
0
2

0
.0
6
0
2
±
0
.0
0
0
6

0
.0
5
3
5
±
0
.0
0
0
4

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

R
o
b
o
t
(
τ
5
)

0
.1
5
8
7
±
0
.0
0
0
1

0
.1
4
3
7
±
0
.0
0
0
6

0
.2
2
5
5
±
0
.0
0
1
5

0
.1
7
7
8
±
0
.0
0
0
8

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

R
o
b
o
t
(
τ
6
)

0
.0
6
9
2
±
0
.0
0
0
4

0
.0
6
6
2
±
0
.0
0
0
6

0
.1
0
1
2
±
0
.0
0
1
1

0
.0
9
0
4
±
0
.0
0
0
6

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

R
o
b
o
t
(
τ
7
)

0
.0
5
2
1
±
0
.0
0
0
1

0
.0
4
9
7
±
0
.0
0
0
1

0
.0
6
2
0
±
0
.0
0
0
4

0
.0
5
7
3
±
0
.0
0
0
5

6
9
.0
0
0
0

1
4
.0
0
0
0

1
2
1
5
3
.7
3
8
0

4
0
0
5
.1
4
3
0

W
in
d
in
g
(
T
1
)

0
.2
6
1
8
±
0
.0
0
0
9

0
.2
6
8
1
±
0
.0
0
1
4

0
.3
4
2
6
±
0
.0
0
2
3

0
.3
5
0
0
±
0
.0
0
1
5

4
2
.0
0
0
0

1
9
.0
0
0
0

4
8
3
8
.2
2
5
0

1
4
4
9
.9
7
8
2

W
in
d
in
g
(
T
2
)

0
.0
6
8
7
±
0
.0
0
0
8

0
.0
8
4
8
±
0
.0
0
0
5

0
.1
5
5
1
±
0
.0
0
0
6

0
.1
7
9
1
±
0
.0
0
0
6

4
2
.0
0
0
0

1
9
.0
0
0
0

4
8
3
8
.2
2
5
0

1
4
4
9
.9
7
8
2

137

References

Aizerman, A., Braverman, E. M., & Rozoner, L. (1964). Theoretical foundations of the
potential function method in pattern recognition learning. Automation and remote

control, 25, 821�837.
Aleksovski, D., Kocev, D., & Dºeroski, S. (2009). Evaluation of distance measures for hier-

archical multilabel classi�cation in functional genomics. In 1st Workshop on Learning

from Multi-Label Data (MLD) (pp. 5�16).
Aleksovski, D., Kocijan, J., & Dºeroski, S. (2013). Model tree ensembles for modeling

dynamic systems. Lecture notes in computer science, 8140, 17�32.
Aleksovski, D., Kocijan, J., & Dºeroski, S. (2014a). Ensembles of linear model trees for the

identi�cation of multiple-output systems.
Aleksovski, D., Kocijan, J., & Dºeroski, S. (2014b). Model tree ensembles for the iden-

ti�cation of multiple-output systems. In 2014 European Control Conference (ECC)

(pp. 750�755). IEEE.
Aleksovski, D., Kocijan, J., & Dºeroski, S. (2014c). Model-Tree Ensembles for noise-

tolerant system identi�cation. Advanced Engineering Informatics. doi:http : / /dx .
doi.org/10.1016/j.aei.2014.07.008

Alexander, W. P. & Grimshaw, S. D. (1996). Treed regression. Journal of Computational

and Graphical Statistics, 5 (2), 156�175.
Appice, A. & Dºeroski, S. (2007). Stepwise induction of multi-target model trees. In

Proceedings of the 18th European Conference on Machine Learning (pp. 502�509).
Springer.

Asuncion, A. & Newman, D. (2007). Uci machine learning repository. Retrieved from http:
//archive.ics.uci.edu/ml%20(Accessed:%20June%202013)

Aºman, K. & Kocijan, J. (2011). Dynamical systems identi�cation using Gaussian pro-
cess models with incorporated local models. Engineering Applications of Arti�cial

Intelligence, 24 (2), 398�408.
Bastogne, T., Garnier, H., & Sibille, P. (2001). A pmf-based subspace method for continuous-

time model identi�cation. application to a multivariable winding process. Interna-
tional Journal of Control, 74 (2), 118�132.

Billings, S. (2013). Nonlinear system identi�cation: narmax methods in the time, frequency,

and spatio-temporal domains. John Wiley & Sons.
Billings, S. & Voon, W. (1987). Piecewise linear identi�cation of non-linear systems. Inter-

national journal of control, 46 (1), 215�235.
Bishop, C. M. et al. (2006). Pattern recognition and machine learning. springer New York.
Blockeel, H. & De Raedt, L. (1998). Top-down induction of �rst-order logical decision

trees. Arti�cial intelligence, 101 (1), 285�297.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin

classi�ers. In Proceedings of the �fth annual workshop on Computational Learning

Theory (pp. 144�152). ACM.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123�140.

http://dx.doi.org/http://dx.doi.org/10.1016/j.aei.2014.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.aei.2014.07.008
http://archive.ics.uci.edu/ml%20(Accessed:%20June%202013)
http://archive.ics.uci.edu/ml%20(Accessed:%20June%202013)

138 References

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5�32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classi�cation and regression

trees. Wadsworth Inc.
Connally, P., Li, K., & Irwin, G. W. (2007). Prediction- and simulation-error based per-

ceptron training: solution space analysis and a novel combined training scheme. Neu-
rocomputing, 70 (4�6), 819�827. Advanced Neurocomputing Theory and Methodol-
ogy Selected papers from the International Conference on Intelligent Computing
2005 (ICIC 2005) International Conference on Intelligent Computing 2005. doi:http:
//dx.doi.org/10.1016/j.neucom.2006.10.013

Cristianini, N. & Shawe-Taylor, J. (2000). An introduction to support vector machines and

other kernel-based learning methods. Cambridge University Press.
De Moor, B. (2013). Database for the identi�cation of systems (DaISy). Department of

Electrical Engineering, ESAT/SCD, KU Leuven, Belgium, http://www.esat.kuleuven.ac.be/sista/daisy.
Accessed September 2013.

Dem²ar, D., Debeljak, M., Lavigne, C., & Dºeroski, S. (2005). Modelling pollen dispersal
of genetically modi�ed oilseed rape within the �eld, 2005. In Abstract papers at The

Annual Meeting of the Ecological Society of America (pp. 7�12).
Dobra, A. & Gehrke, J. (2002). Secret: a scalable linear regression tree algorithm. In Pro-

ceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (pp. 481�487). ACM.
Dºeroski, S., Dem²ar, D., & Grbovi¢, J. (2000). Predicting chemical parameters of river

water quality from bioindicator data. Applied Intelligence, 13 (1), 7�17.
Espinosa, J. J. & Vandewalle, J. (1999). Predictive control using fuzzy models. In Advances

in soft computing (pp. 187�200). Springer.
Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for

classi�cation. Machine Learning, 32 (1), 63�76.
Gama, J. (2004). Functional trees. Machine Learning, 55 (3), 219�250.
Giri, F. & Bai, E.-W. (2010). Block-oriented nonlinear system identi�cation. Lecture Notes

in Control and Information Sciences. Springer.
Grandvalet, Y. (2004). Bagging equalizes in�uence. Machine Learning, 55 (3), 251�270.
Haber, R. & Unbehauen, H. (1990). Structure identi�cation of nonlinear dynamic systems-a

survey on input/output approaches. Automatica, 26 (4), 651�677.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The WEKA data mining software: an update. ACM SIGKDD Explorations, 11 (1),
10�18.

Henson, M. A. & Seborg, D. E. (1994). Adaptive nonlinear control of a pH neutralization
process. IEEE Transactions on Control Systems Technology, 2 (3), 169�182.

Ho�mann, F. & Nelles, O. (2001). Genetic programming for model selection of tsk-fuzzy
systems. Information Sciences, 136 (1�4), 7�28. doi:http ://dx .doi . org/10 .1016/
S0020-0255(01)00139-6

Ikonomovska, E. (2012). Algorithms for learning regression trees and ensembles on evolving

data streams (Doctoral dissertation, Joºef Stefan International Postgraduate School,
Ljubljana, Slovenia).

Ikonomovska, E., Gama, J., & Dºeroski, S. (2011). Learning model trees from evolving
data streams. Data mining and knowledge discovery, 23 (1), 128�168.

Jang, J.-S. R. (1994). Structure determination in fuzzy modeling: a fuzzy CART approach.
In Proceedings of the Third IEEE Conference on Fuzzy Systems (pp. 480�485). IEEE.

Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing�a com-

putational approach to learning and machine intelligence. Prentice Hall.

http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2006.10.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2006.10.013
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-0255(01)00139-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-0255(01)00139-6

References 139

Johansen, T. & Babu²ka, R. (2003). Multiobjective identi�cation of Takagi-Sugeno fuzzy
models. IEEE Transactions on Fuzzy Systems, 11 (6), 847�860.

Johansen, T. & Foss, B. A. (1995). Identi�cation of non-linear system structure and pa-
rameters using regime decomposition. Automatica, 31 (2), 321�326.

Johansen, T. & Foss, B. A. (1997). Operating regime based process modeling and identi-
�cation. Computers & Chemical Engineering, 21 (2), 159�176.

Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of
�uxnet eddy covariance observations: validation of a model tree ensemble approach
using a biosphere model. Biogeosciences, 6 (10), 2001�2013.

Kampichler, C., Dºeroski, S., & Wieland, R. (2000). Application of machine learning tech-
niques to the analysis of soil ecological data bases: relationships between habitat
features and collembolan community characteristics. Soil Biology and Biochemistry,
32 (2), 197�209.

Karali£, A. (1992). Employing linear regression in regression tree leaves. In Proceedings of

the 10th European Conference on Arti�cial Intelligence (pp. 440�441). John Wiley
& Sons.

Karali£, A. & Bratko, I. (1997). First order regression. Machine Learning, 26 (2-3), 147�
176.

Keesman, K. J. (2011). System identi�cation: an introduction. Springer.
Kocev, D., Struyf, J., & Dºeroski, S. (2006). Beam search induction and similarity con-

straints for predictive clustering trees. In Proceedings of the 5th International Con-

ference on Knowledge Discovery in Inductive Databases (pp. 134�151). Springer.
Kocijan, J. & Grancharova, A. (2010). Gaussian process modelling case study with multiple

outputs. Comptes Rendus de l'Academie Bulgare des Sciences, 63, 601�607.
Kocijan, J. & Likar, B. (2008). Gas�liquid separator modelling and simulation with Gaussian-

process models. Simulation Modelling Practice and Theory, 16 (8), 910�922.
Kocijan, J. & Petelin, D. (2011). Output-error model training for Gaussian process mod-

els. In A. Dobnikar, U. Lotri£, & B. �ter (Eds.), Adaptive and natural computing

algorithms (Vol. 6594, pp. 312�321). Lecture Notes in Computer Science. Springer.
Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active

learning. In Proceedings of the 8th International Conference on Advances in Neural

Information Processing Systems (pp. 231�238). MIT Press.
Lemos, A., Caminhas, W., & Gomide, F. (2011). Evolving fuzzy linear regression trees with

feature selection. In Proceedings of the IEEE Workshop on Evolving and Adaptive

Intelligent Systems (pp. 31�38). IEEE.
Lightbody, G. & Irwin, G. W. (1997). Nonlinear control structures based on embedded

neural system models. IEEE Transactions on Neural Networks, 8 (3), 553�567.
Ljung, L. (1987). System identi�cation: theory for the user. Prentice Hall.
Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction de-

tection. Statistica Sinica, 12 (2), 361�386.
Malerba, D., Esposito, F., Ceci, M., & Appice, A. (2004). Top-down induction of model

trees with regression and splitting nodes. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26 (5), 612�625.
Marsala, C. (2009). Data mining with ensembles of fuzzy decision trees. In Proceedings of

the IEEE Symposium on Computational Intelligence and Data Mining (pp. 348�354).
IEEE.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5 (4), 115�133.

Murray-Smith, R. & Johansen, T. (Eds.). (1997). Multiple model approaches to modelling

and control. Taylor & Francis.

140 References

Narendra, K. S. & Parthasarathy, K. (1990). Identi�cation and control of dynamical sys-
tems using neural networks. IEEE Transactions on Neural Networks, 1 (1), 4�27.

Nelles, O. (1995). On training radial basis function networks as series-parallel and parallel
models for identi�cation of nonlinear dynamic systems. In Proceedings of the 1995

IEEE International Conference on Systems, Man and Cybernetics (pp. 4609�4614).
IEEE.

Nelles, O. (1996). Local linear model trees for on-line identi�cation of time-variant nonlin-
ear dynamic systems. In Proceedings of the 1996 arti�cial neural networks conference

(ICANN 96) (pp. 115�120). Springer.
Nelles, O. (1999). Nonlinear system identi�cation with local linear neuro-fuzzy models.

Shaker.
Nelles, O. (2001). Nonlinear system identi�cation: from classical approaches to neural net-

works and fuzzy models. Springer.
Nelles, O. (2006). Axes-oblique partitioning strategies for local model networks. In Proceed-

ings of the 2006 ieee international symposium on intelligent control (pp. 2378�2383).
IEEE.

Olaru, C. & Wehenkel, L. (2003). A complete fuzzy decision tree technique. Fuzzy Sets and
Systems, 138 (2), 221�254.

Nonlinar System Identi�cation. (2014). Retrieved August 1, 2014, from http://en.wikipedia.
org/wiki/Nonlinear_system_identi�cation

Pellegrinetti, G. & Bentsman, J. (1996). Nonlinear control oriented boiler modeling-a
benchmark problem for controller design. IEEE Transactions on Control Systems

Technology, 4 (1), 57�64.
Pfahringer, B. (2011). Semi-random model tree ensembles: an e�ective and scalable re-

gression method. In Proceeding of the 2011 Australasian Conference on Arti�cial

Intelligence (pp. 231�240).
Piroddi, L. [L.] & Spinelli, W. (2003). An identi�cation algorithm for polynomial narx

models based on simulation error minimization. International Journal of Control,
76 (17), 1767�1781.

Piroddi, L. [Luigi]. (2008). Simulation error minimisation methods for narx model iden-
ti�cation. International Journal of Modelling, Identi�cation and Control, 3 (4), 392�
403.

Potts, D. & Sammut, C. (2007). Learning to control (Doctoral dissertation, School of
Computer Science and Engineering, University of New South Wales).

Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the 5th Australian
Joint Conference on Arti�cial Intelligence (Vol. 92, pp. 343�348). World Scienti�c.

Rasmussen, C. E. & Williams, C. K. I. (2006). Gaussian processes for machine learning.
MIT Press.

Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323, 533�536.

Segal, M. R. (2004). Machine learning benchmarks and random forest regression. Center
for Bioinformatics and Molecular Biostatistics, University of California.

Stojanova, D. (2009). Estimating forest properties from remotely sensed data by using

machine learning (Master's thesis, Joºef Stefan International Postgraduate School,
Ljubljana, Slovenia).

Suarez, A. & Lutsko, J. (1999). Globally optimal fuzzy decision trees for classi�cation
and regression. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
21 (12), 1297�1311.

http://en.wikipedia.org/wiki/Nonlinear_system_identification
http://en.wikipedia.org/wiki/Nonlinear_system_identification

References 141

Takagi, T. & Sugeno, M. (1985). Fuzzy identi�cation of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man and Cybernetics, (1),
116�132.

Torgo, L. (1997). Functional models for regression tree leaves. In Proceedings of 14th the

International Conference on Machine Learning (pp. 385�393). Morgan Kaufmann.
Torgo, L. (2013). Regression datasets. http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html

Accessed: June 2013).
Vens, C. & Blockeel, H. (2006). A simple regression based heuristic for learning model

trees. Intelligent Data Analysis, 10 (3), 215�236.
Vijayakumar, S. & Schaal, S. (2000). Locally weighted projection regression: incremental

real time learning in high dimensional space. In Proceedings of the Seventeenth In-

ternational Conference on Machine Learning (pp. 1079�1086). San Francisco, CA,
USA: Morgan Kaufmann.

Wang, Y. & Witten, I. H. (1997). Inducing model trees for continuous classes. In Poster

Papers of the 9th European Conference on Machine Learning (pp. 128�137). Springer.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics bulletin, 80�

83.
Witten, I. H. & Frank, E. (2005). Data mining: practical machine learning tools and tech-

niques. Morgan Kaufmann.

143

Bibliography

Publications Related to the Thesis

Original Scienti�c Articles

Aleksovski, D., Kocijan, J., & Dºeroski, S. (2013). Model tree ensembles for modeling
dynamic systems. Lecture notes in computer science, 8140, 17�32.

Aleksovski, D., Kocijan, J., & Dºeroski, S. (2014c). Model-Tree Ensembles for noise-
tolerant system identi�cation. Advanced Engineering Informatics. doi:http : / /dx .
doi.org/10.1016/j.aei.2014.07.008

Published Scienti�c Conference Contributions

Aleksovski, D., Kocijan, J., & Dºeroski, S. (2014b). Model tree ensembles for the iden-
ti�cation of multiple-output systems. In 2014 European Control Conference (ECC)

(pp. 750�755). IEEE.

Articles Pending for Publication Related to the Thesis

Aleksovski, D., Kocijan, J., & Dºeroski, S. (2014a). Ensembles of linear model trees for the

identi�cation of multiple-output systems.

Publications not related to the Thesis

Published Scienti�c Conference Contributions

Aleksovski, D., Kocev, D., & Dºeroski, S. (2009). Evaluation of distance measures for hier-
archical multilabel classi�cation in functional genomics. In 1st Workshop on Learning

from Multi-Label Data (MLD) (pp. 5�16).

http://dx.doi.org/http://dx.doi.org/10.1016/j.aei.2014.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.aei.2014.07.008

145

Biography

Darko Aleksovski was born on 10 May 1983 in Skopje, Macedonia. In 2007 he completed
the Bachelor of Science degree at the Faculty of Natural Sciences and Mathematics, Ss.
Cyril and Methodius University in Skopje. He completed his studies with a grade point
average of 9.86 on a 10 scale.

During his primary school, high school and studies he successfully participated in na-
tional competitions in mathematics and physics, and national and international competi-
tions in informatics. He won two gold medals on the Macedonian national olympiad in
informatics. During high school he held a state scholarship, while during studies he was
partly funded by the Institute of Informatics, Faculty of Natural Sciences and Mathematics.

In the fall of 2008 he enrolled in the PhD program "New Media and e-Science" at
the Joºef Stefan International Postgraduate School, in Ljubljana, Slovenia. He held a
scholarship from the Slovene Human Resources Development and Scholarship Fund. His
PhD studies were also partly funded by the Joºef Stefan Institute, through the EU projects
PHAGOSYS (Systems biology of phagosome formation and maturation - modulation by
intracellular pathogens), SUMO (Supermodeling by combining imperfect models), and
MAESTRA (Learning from Massive, Incompletely annotated, and Structured Data).

	Title
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 Introduction
	1.1 Aims and Goals
	1.2 Methodology
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Background
	2.1 System Identification
	2.1.1 Discrete-time vs Continuous-time Modeling
	2.1.1.1 Continuous-time modeling
	2.1.1.2 Discrete-time modeling

	2.1.2 System Identification in Discrete Time

	2.2 Machine Learning Approaches to Regression
	2.3 System Identification with Machine Learning: Prior Work
	2.3.1 One Global Model vs Multiple Model Approaches
	2.3.2 Optimization of the Output Error

	3 Tree-based Methods
	3.1 Introduction
	3.2 Model Tree Learning Algorithms
	3.3 The M5' Model Tree Learning Algorithm
	3.3.1 Tree Growing Phase
	3.3.2 Tree Post-pruning Phase
	3.3.3 Handling Discrete Attributes

	3.4 Lolimot
	3.4.1 Estimation of Local Models' Parameters
	3.4.2 Multi-target Lolimot Model Trees
	3.4.3 Optimal Complexity of a Lolimot Tree

	3.5 Properties of Existing Approaches
	3.5.1 Existing Tree Approaches
	3.5.2 Existing Ensembles of Model Trees and Their Limitations

	4 Model Trees and Ensembles for Dynamic System Modeling
	4.1 Crisp Model Trees
	4.1.1 Smoothing the Crisp Model Tree Predictions
	4.1.1.1 The Built-in M5' Smoothing
	4.1.1.2 Smoothing Using Fuzzification

	4.1.2 Multi-target M5'

	4.2 Fuzzy Model Trees
	4.2.1 Modifying the Evaluation of Candidate Splits
	4.2.1.1 Utilization of the Output Error While Learning

	4.2.2 Modifying the Search for an Optimal Tree Structure
	4.2.2.1 Considering Several Split Cut-points
	4.2.2.2 Considering Different Overlaps

	4.2.3 Global Parameter Estimation in Lolimot

	4.3 Model Tree Ensembles
	4.3.1 Ensemble Construction
	4.3.2 Ensemble Selection

	4.4 Illustrative Example
	4.4.1 Derivatives of the Models

	5 Evaluation on Benchmark Machine Learning Regression Datasets
	5.1 Datasets
	5.1.1 Preprocessing

	5.2 Experimental Design
	5.2.1 Performance Measures

	5.3 Experimental Results
	5.3.1 Evaluating the Performance of Different Tree Learning Algorithms
	5.3.1.1 Single-target Regression
	5.3.1.2 Multi-target Regression

	5.3.2 Comparing Model Trees to Ensembles
	5.3.2.1 Single-target Regression
	5.3.2.2 Multi-target Regression

	5.3.3 Ensemble Size
	5.3.4 Summary

	6 Evaluation for Modeling Dynamic Systems
	6.1 Dynamic System Case Studies
	6.1.1 Case Study: Continuous-stirred Rank Reactor
	6.1.2 Case Study: Gas-liquid Separator
	6.1.3 Case Study: Narendra System
	6.1.4 Case Study: pH Neutralization
	6.1.5 Case Study: Steam Generator
	6.1.6 Case Study: Robot Arm
	6.1.7 Case Study: Winding Process

	6.2 Datasets
	6.2.1 Preprocessing
	6.2.2 Dataset Summary

	6.3 Selected Methods for Comparison
	6.4 Experimental Design
	6.4.1 Performance Measures

	6.5 Evaluating Modifications of the Model Tree Learning Algorithms
	6.5.1 Evaluating M5' Modifications
	6.5.1.1 Comparing M5' to Lolimot
	6.5.1.2 Replacing the Crisp Local Model Estimation with Fuzzy
	6.5.1.3 Evaluating Smoothing Variants

	6.5.2 Evaluating Lolimot Modifications
	6.5.2.1 Modified Evaluation of Candidate Splits
	6.5.2.2 Modified Search for an Optimal Tree Structure
	6.5.2.3 Utilization of the Output Error While Learning
	6.5.2.4 Global Parameter Estimation
	6.5.2.5 Evaluating Multi-target Model Trees

	6.5.3 Summary

	6.6 Model Trees and Ensembles for Single-output Modeling
	6.6.1 Lolimot vs Ensembles
	6.6.2 Modified Lolimot vs Ensembles
	6.6.3 Model Tree Ensembles vs Neural Networks and ANFIS
	6.6.4 Auto-correlation of the Output Error

	6.7 Model Trees and Ensembles for Multiple-output Modeling
	6.7.1 Modified Lolimot vs Ensembles
	6.7.2 Several Single-output Models vs One Multi-output

	6.8 Summary

	7 Conclusions
	7.1 Summary and Discussion
	7.2 Scientific Contribution
	7.3 Further Work

	Appendix A Complete Results
	References
	Bibliography
	Biography

