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Abstract

The field of machine learning is concerned with methods that can automatically learn
from experience. The experience is usually given in the form of learning examples
from which machine learning methods can automatically learn a model. Sometimes
it is very important that the learned model can be read by human, and one of the
most understandable types of models are rule sets. The methods for learning models
in the form of rule sets are the topic of this thesis.

The predictive clustering approach to rule learning presented here is based on
ideas from two machine learning subareas, predictive modeling and clustering. Both
areas are usually regarded as completely different tasks. Predictive modeling is con-
cerned with the construction of models that can be used to predict some object’s
target property from the description of this object. Clustering, on the other hand,
is concerned with grouping of objects into classes of similar objects, called clusters;
there is no target property to be predicted, and usually no symbolic description of dis-
covered clusters. However, predictive modeling methods that partition the example
space, such as decision trees and rules are very similar to clustering. They partition
the set of examples into subsets in which examples have similar values of the target
variable, while clustering produces subsets in which examples have similar values
of all descriptive variables. Predictive clustering approach builds on this similarity.
It constructs clusters of examples that are similar to each other, but in general takes
both the descriptive and the target variables into account, and associates a predic-
tive model to each constructed cluster. Methods for predictive clustering enable us to
construct models for predicting multiple target variables, which are normally simpler
and more comprehensible than the corresponding set of models, each predicting a
single variable.

To this day, predictive clustering has been restricted to decision tree methods. The
goal of this thesis is to extend predictive clustering approach to methods for learn-
ing rules, i.e., to develop a method that deals with rule learning and clustering in
a uniform way. Of the existing rule learning methods, majority are based on the
sequential covering algorithm, originally designed for learning ordered rule lists for

xi



binary classification domains. We have developed a generalized version of this algo-
rithm that enables learning of ordered or unordered rules, on single or multiple target
classification or regression domains.

The newly developed algorithm is empirically evaluated on several single and
multiple target classification and regression problems. Performance of the new method
compares favorably to existing methods. Comparison of single target and multiple
target prediction models shows that multiple target models offer comparable perfor-
mance and drastically lower complexity than the corresponding sets of single target
models.
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Chapter 1

Introduction

There are several forms of learning, ranging from ‘learning by being told’ to ‘learning
by discovery’. In the first case, the learner is explicitly told what is to be learned,
while in the second case, the learner autonomously discovers new concepts from ob-
servations or by planning and performing experiments in the environment. Between
these two extremes lies learning from examples, also called inductive learning (Bratko,
2001). Depending on the feedback the learner gets during the learning process, the
learning can be supervised or unsupervised. In the former case, a tutor or domain expert
gives the learner direct feedback about the appropriateness of its performance, while
in the latter case, the feedback is absent (Langley, 1996).

Machine learning builds on concepts from the fields of artificial intelligence, statis-
tics, information theory, and many others. It studies computer programs that au-
tomatically improve with experience (Mitchell, 1997). The most researched type of
machine learning is inductive machine learning, where the experience is given in the
form of learning examples. Supervised inductive machine learning, sometimes also
called predictive modeling, assumes that each learning example includes some target
property, and the goal is to learn a model that accurately predicts this property. Un-
supervised inductive machine learning, on the other hand, assumes no such target
property to be predicted. The thesis at hand is concerned with methods for inductive
machine learning that result in models written in the form of rules.

The predictive clustering approach to rule learning presented in this thesis is based
on ideas from both supervised and unsupervised machine learning. As already men-
tioned, predictive modeling (supervised learning) is concerned with the construction
of models that can be used to predict some object’s target property from the descrip-
tion of this object. A predictive model is learned from a set of learning objects or
examples, where each example comprises a description and a target part. Many dif-
ferent languages can be used for the formulation of the description part, ranging from
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2 1. Introduction

propositional to first order logic, though the first one, also called attribute-value rep-
resentation, is by far the most commonly used. On the other hand, the target part is
almost always considered to be a single variable. In machine learning this variable is
called a class. In the simplest case, the class is a boolean variable, and each example
can either be positive or negative. The task of learning to predict a boolean variable
is also called concept learning, because it can be interpreted as the task of learning
whether an example belongs to a specific concept or not. In a more general case, the
class can have more than two possible values, i.e., it can be a nominal variable (with
more than two possible values). Regardless of the number of possible values, the task
of learning to predict the value of a nominal variable is called a classification task. An-
other possibility is that the class is a numeric variable; in this case we have a regression
task. Predictive models that address these tasks can take many different forms that
range from linear equations to logic programs. Two commonly used types of models
are decision trees (Quinlan, 1993) and rules (Flach and Lavrač, 2003). Their benefit is
that they are comprehensible and can easily be read and analyzed by a human. Unlike
some representations, e.g., linear regression equations, that treat the entire example
space simultaneously, trees and rules divide the space of examples into subspaces,
and for each subspace provide a simple prediction or a predictive (sub)model.

The second line of research related to this thesis comes from the field of unsu-
pervised learning, or more specifically, clustering (Kaufman and Rousseeuw, 1990).
Clustering in general is concerned with grouping of objects into classes of similar
objects, called clusters. Each object is described using some language, and, just like
in predictive modeling, the attribute-value representation is most commonly used for
this purpose. The most notable difference, when compared to predictive modeling, is
that the examples in clustering have no target property to be predicted. The task is to
find such clusters that the similarity of examples within individual clusters is high,
and, at the same time, the similarity of examples from different clusters is low. The
similarity of examples is measured using some metric defined over the object space.
Usually, the objects are described in terms of attribute’s values, and are considered
to be points in a multi-dimensional metric space where distances between all points
are uniquely determined. Each cluster of objects can also be represented by a pro-
totypical object or a prototype, which can be defined as the point in the metric space
with the lowest average distance to all objects in the cluster. This way, distances be-
tween clusters of objects are also defined. Commonly, the final result of clustering is
just a set of object clusters without their symbolic descriptions. Each cluster can be,
however, considered a separate concept, and symbolic descriptions can be added to
already constructed clusters; this approach is called conceptual clustering (Michalski,
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1980). Another approach that results in clusters with symbolic descriptions is cluster-
ing with clustering trees (Blockeel, 1998). Namely, a decision tree can be regarded as a
hierarchy of clusters where each node is a cluster. Here, every cluster has a symbolic
description formed by the conjunction of conditions on the path from the root of the
tree to the given node.

Because of the differences mentioned above, predictive modeling and clustering
are usually regarded as completely different machine learning techniques. On the
other hand, there are also several similarities that clustering shares with some predic-
tive modeling methods, most notably with methods that partition the example space,
such as decision trees (Langley, 1996). Decision trees partition the set of examples into
subsets in which examples have similar values of the target variable, while clustering
produces subsets in which examples have similar values of all descriptive variables.
Based on this similarity, the predictive clustering (Blockeel, 1998; Blockeel et al., 1998)
approach has been developed. As is common in ‘ordinary’ clustering, predictive clus-
tering constructs clusters of examples that are similar to each other, but in general
taking both the descriptive and the target variables into account. In addition, a pre-
dictive model is associated with each cluster which describes the cluster, and, based
on the values of the descriptive variables, predicts the values of the target variables.
Methods for predictive clustering enable us to construct models for predicting mul-
tiple target variables which are normally simpler and more comprehensible than the
corresponding set of models, each predicting a single variable. Because similarity
estimation is done by taking into account all the variables, predictive clustering is es-
pecially suitable for the analysis of noisy domains and domains with missing values
for the target variables (Blockeel, 1998). So far, this approach has been limited to the
tree learning methods. Our goal is to extend predictive clustering with methods for
learning rules, which offer an alternative description language. Such methods would
extend the applicability of the predictive clustering approach.

1.1 Goals

Our main goal is to extend the predictive clustering approach to methods for learning
rules, i.e., to develop methods for learning predictive clustering rules. There exist
many different methods for rule learning (Fürnkranz, 1999), however, they are almost
exclusively based on the covering algorithm (Michalski, 1969). The covering algorithm
was originally designed for concept learning in a way that only rules describing the
positive examples are learned, while examples not covered by any rule are assumed
to be negative. The algorithm can be naturally extended to learn ordered rules for
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both positive and negative values of a single target variable. Many of the rule learn-
ing methods extend the covering approach towards multi-class classification domains
(a single target variable with more than two possible values), somewhat fewer meth-
ods extend it towards unordered rule learning, and just a few methods extend it
towards regression domains. To our knowledge, however, there is no single method
that would enable the induction of rules in general, for multi-class classification and
regression domains, and would produce ordered and unordered rules. There is also
no rule learning method that can induce rules for predicting multiple target variables
simultaneously. The extension of predictive clustering towards rules calls for such
a general rule learning method, and the development of such a method became the
main subgoal of this thesis. Such a method would not only extend the applicability of
the predictive clustering approach, but would also extend the rule learning methods
themselves. In addition, our goal is also to evaluate the performance of the developed
methods on a range of tasks, and to compare them to existing methods.

1.2 Original contributions

The work presented in this thesis comprises several contributions to the area of ma-
chine learning. First, we have developed a new method for learning unordered single
target classification rules. It is loosely based on the commonly used rule learning
method CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991), but uses a general-
ized weighted covering algorithm (Gamberger and Lavrač, 2002).

Second, the developed method is generalized for learning ordered or unordered
rules, on single or multiple target classification or regression domains. It uses a search
heuristic that takes into account several rule quality measures and is applicable to all
the above mentioned types of domains.

The third contribution of the thesis is the extension of the predictive clustering
approach to models in the form of rules. The newly developed method combines rule
induction and clustering. The search heuristic takes into account the values of both,
the target and the descriptive attributes. Different weighting of these two types of
attributes enable us to traverse from the predictive modeling setting to the clustering
setting. Larger weights of the target attributes will result in rules with better pre-
dictive accuracy, while larger weights of the descriptive attributes will result in rules
that represent more compact clusters. We expect the extension of predictive cluster-
ing towards rules will propagate its usage in new domains where, besides predictive
accuracy, other properties of models, such as simplicity of models or compactness of
clusters, are also important.
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The final contribution is an extensive empirical evaluation of the newly developed
method on single target classification and regression problems, as well as multiple
target classification and regression problems. The performance of the new method is
compared to some existing methods. On multiple target problems, the performance
of single target and multiple target prediction is compared. The results show that
multiple target models are generally of comparable accuracy as single target models,
however, the former are much smaller than the corresponding sets of single target
models. In addition, the influence of some algorithm parameters, such as the weights
of target and descriptive attributes, is investigated.

1.3 Organization of the thesis

The thesis is organized as follows. This introductory chapter presented the immediate
context of the thesis topic. It specified the goals set at the beginning of the thesis
research and presented its main original contributions.

The second chapter gives the broader context of the thesis work. It gives some
background and a brief overview of the research related to the work presented in the
thesis. It includes the areas of predictive modeling, clustering, predictive clustering,
and rule learning.

Chapter 3 presents a selection of quality measures for rules and rule sets. These
measures are an essential part of the rule learning algorithm (presented in Chapter 4).
Quality measures for single rules are used in the rule search process as a part of
the search heuristic. Rule set quality measures are used for rule set evaluation in the
process of rule set construction as well as in the process of the final rule set evaluation.

Chapter 4 presents the main contribution of the thesis, the learning algorithm
for predictive clustering rules. We start by formally defining the task of learning
predictive clustering rules and then present the top level algorithm. The major parts
of the algorithm are presented, each in a separate section.

Chapter 5 presents the empirical evaluation of the newly developed method on
single and multiple target classification and regression problems.

Finally, the last chapter concludes with a summary of the thesis, its original con-
tributions, and a discussion of some directions for further research.
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Chapter 2

Background and related work

The work presented in this thesis is about learning predictive clustering rules, and
as such it is related to several areas of machine learning. Predictive clustering is an
approach that combines predictive modeling and clustering. Predictive modeling,
clustering, and predictive clustering are briefly presented in this chapter. Rule learn-
ing can be viewed as a part of predictive modeling, but because this area is of special
importance to the thesis, it is presented in a separate section. Each section briefly
presents the main ideas of the area as well as research in the area related to the topic
of this thesis.

2.1 Predictive modeling

Predictive modeling or supervised learning (Hastie et al., 2001) is one of the traditional
machine learning areas. The task of predictive modeling is defined as follows. Given
is a set of inputs, which are assumed to have some influence on an output. Given is also
a set of learning (or training) examples, each of them linking a specific instantiation of
the inputs to the corresponding values of the output. The goal is to use the learning
examples to learn a predictive model that predicts the output from the inputs.

The task described above is of practical importance to many domains, ranging
from medicine and social sciences to various areas of engineering. It can mostly be
interpreted in two ways. The first interpretation is common in system’s theory and is
the same as stated above. The inputs are regarded as influences of the environment
to the system and a description of the state of the system, while the outputs repre-
sent the response of the system. Learning examples are regarded as measurements
of the input and output quantities under different conditions, i.e., the environment’s
influences, states, and responses of the system. The task is then to construct a model
of the system that predicts the system’s response, based on the influences of the en-

7



8 2. Background and related work

vironment and the internal state of the system. In the second interpretation, every
learning example is a representation of an object. The inputs represent a descrip-
tion of an object, and the outputs are some object’s properties that we are interested
in. The constructed model should be able to predict the object’s properties from its
description. Both interpretations are, of course, equivalent, and which one we use
depends on the problem domain and personal taste. Still, the latter is more common
in machine learning, and is also used in this thesis.

Each learning example is regarded as a representation of an object. Various lan-
guages can be used for encoding examples, but the attribute-value representation is by
far the most commonly used. Here, the examples are represented by a set of variables
or attributes, and its values determine each example. Variables can be of different
types, but mostly we only deal with nominal and numeric variables. This representa-
tion comprises two parts, the input part, here we will call it the description part, and
the output part, which we will call the target part. In this context we are talking about
description and target variables or attributes. A description part of any nontrivial
domain needs to have more than one attribute, the target part, however, traditionally
consists of only one attribute, which in machine learning is called a class. If the class
is a nominal variable, we have a classification task, and if it is a numeric variable, we
have a regression task. In case we have more than one target attribute, the task is called
multiple target prediction.1

There exist many different types of predictive models and methods for their learn-
ing. The selection of a model type for a given problem domain depends on many
factors, one of them being also the intended use of the model. If the model is to be
used for prediction only, e.g., to diagnose new patients for a certain disease, it should
be as accurate as possible, while the comprehensibility of the model is not important.
However, if we would like to use the model to get some insight in the problem do-
main, e.g., to study what causes the disease, the model still has to be accurate, but
also (and sometimes above all) comprehensible. Unfortunately, many types of models,
which are often highly accurate, are also completely incomprehensible. Among the
comprehensible types of models the decision trees (Quinlan, 1993) and rules (Flach
and Lavrač, 2003) are, besides equations, very common. Unlike equations, that treat
the entire example space simultaneously, decision trees and rules divide the space of
examples into subspaces, and for each provide a predictive submodel. This submodel
is a constant value or, rarely, a simple equation. Models in the form of rules are the
topic of this thesis.

1The multiple target prediction task is sometimes called multi-objective or vector prediction.
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2.2 Clustering

Clustering (Kaufman and Rousseeuw, 1990), also called cluster analysis or data seg-
mentation, is an unsupervised learning (Hastie et al., 2001) approach. It is concerned
with grouping of objects into classes of similar objects, called clusters. The task is
to find such clusters that the similarity of objects within individual clusters is high,
while the similarity of objects from different clusters is low. Central to clustering is
the notion of a degree of similarity (or dissimilarity) between the individual objects
that are being clustered.

There are two types of clustering methods, hierarchical and partitional. Hierarchi-
cal methods construct successive clusters using previously constructed clusters, while
partitional methods determine all clusters at once. Hierarchical methods can be ag-
glomerative or divisive. Agglomerative methods use the ‘bottom-up’ approach; they
begin with each object as a separate cluster and merge them into successively larger
clusters. Divisive methods, on the other hand, use the ‘top-down’ approach; they
begin with the whole set of objects in one cluster and proceed to divide it into suc-
cessively smaller clusters. Conventional clustering methods construct crisp clusters,
meaning that each object belongs to exactly one cluster. An alternative, called fuzzy
clustering (Dunn, 1973), is that each object can belong to more than one cluster, and
associated with each object is a set of membership levels. These indicate the strength
of the association between that object and a particular cluster (Zadeh, 1965).

Each object in clustering is described using some language and, as in predictive
modeling, the attribute-value description is the most commonly used. The (dis)simi-
larity of objects can then be determined from the pairwise dissimilarities of the values
of each of their attributes. The pairwise dissimilarity between attribute values is
most often the squared distance for numeric attributes. For nominal attributes, it
is most often defined as being zero if the values of both objects are equal, and one
otherwise; however, in general, we can have a dissimilarity matrix in which every
element defines a pairwise dissimilarity between the possible values of the specific
attribute. The dissimilarities along single attributes are then combined into a single
overall measure of object dissimilarity. Most often, this is done using a weighted
average. In addition, each cluster of objects can also be represented by a prototypical
object or a prototype, which can be defined as the point in the attribute space with
the lowest average dissimilarity (distance) to all objects in the cluster. In this way, we
can also define the dissimilarity between two clusters of objects as the dissimilarity
between their prototypes.

When comparing clustering to predictive modeling, there are several important
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differences. Most important, in clustering, the objects usually have no target prop-
erty to be predicted, and consequently, the encoded examples have only a description
part and no target part. The second important difference is that the final result of
clustering is most often just a set of object clusters without symbolic descriptions.
Each cluster can be, however, considered a separate concept, and symbolic descrip-
tions can be added to already constructed clusters; this approach is called conceptual
clustering (Michalski, 1980). Despite these differences, there are also several similar-
ities, especially between clustering and predictive modeling methods that partition
the space of examples into subsets such as decision trees. Based on these similarities,
an approach called predictive clustering has been developed, which we describe in the
next section.

2.3 Predictive clustering

Predictive modeling and clustering are, because of their many differences, usually
regarded as completely different machine learning techniques. However, as we have
already mentioned, there are also several similarities between the two techniques. In
particular, the predictive modeling methods that partition the examples into subsets,
e.g., decision trees and decision rules, can also be viewed as clustering methods (Lan-
gley, 1996). Namely, a decision tree can be regarded as a hierarchy of clusters, where
each node is a cluster; such a tree is called a clustering tree (Blockeel, 1998). Likewise, a
decision rule can represent a cluster of examples which it covers. The benefit of using
these methods for clustering is that, in addition to the clusters themselves, we also get
symbolic descriptions of the constructed clusters. Every cluster in a tree has a sym-
bolic description in the form of a conjunction of conditions on the path from the root
of the tree to the given node, and every cluster represented by a rule is described by
the rule’s condition. There is, however, a difference between ‘tree’ clusters and ‘rule’
clusters. ‘Tree’ clusters are ordered in a hierarchy and do not overlap, while ‘rule’
clusters in general are not ordered in any way (they are flat) and can overlap (one
example can belong to more than one cluster). We can say that clustering trees are
a hierarchical clustering method, and clustering rules are a partitional (and possibly
fuzzy) clustering method.

Predictive clustering (Blockeel, 1998; Blockeel et al., 1998) combines aspects from
both predictive modeling and clustering. When the tree based representation is used,
we are talking about predictive clustering trees (Blockeel et al., 1998). Decision trees
partition the set of examples into subsets in which examples have similar values of
the target variable, while clustering produces subsets in which examples have similar
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Figure 2.1: Illustration of predictive modeling (a), clustering (b), and predictive clustering (c).
Figure taken from (Blockeel, 1998).

values of the descriptive variables. The task of predictive clustering is to find clusters
of examples which have similar values of both the target and the descriptive variables.
An illustration of all three cases is given in Figure 2.1 (taken from (Blockeel, 1998)).
Let us assume that each example has a description part (D ∈ D) and a target part
(T ∈ T). D and T are descriptive and target attribute spaces, and are in this figure
represented as one-dimensional axes, but can both be of higher dimensionality. A
(predictive) decision tree method constructs a tree with nodes that comprise examples
with similar values of the target value only, i.e., it finds clusters that are homogeneous
in the target attribute space T as shown in Figure 2.1.a. The reason is that the quality
criterion that is used to construct the tree (e.g., information gain (Quinlan, 1993)) is
based on the target attributes only.2 In clustering, on the other hand, there are no
target attributes defined and the clusters that are generated are homogeneous in the
descriptive attribute space D, as shown in Figure 2.1.b. Predictive clustering can now
be defined as a method which searches for clusters that are homogeneous in both the
descriptive attribute space D and the target attribute space T (Figure 2.1.c).

An important part of predictive clustering is its predictive aspect. Namely, each
cluster is associated with a predictive model, which gives a prediction of the target
variables T in terms of the descriptive variables D for all examples that belong to
that cluster. In the most common case, the predictive model associated to a cluster is
the projection of the prototype of the cluster on the target attribute space T, i.e., the
target part of the cluster’s prototype. Typically, the prototype of a cluster is the vector
of prototypes of the individual attributes.3 The prototype of an individual numeric

2Because the nodes of a decision tree have conjunctive descriptions in D, they comprise examples
that also have somewhat similar values of the descriptive attributes. However, this similarity is not
explicitly optimized.

3In other words, this means that we are using the Manhattan distance for the dissimilarity measure.
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attribute is simply the average of its values in the examples belonging to the cluster,
whereas the prototype of a nominal attribute is the probability distribution across its
possible values.

Methods for predictive clustering enable us to construct models for predicting
multiple target variables,4 which are normally simpler and more comprehensible than
the corresponding set of models, each predicting a single variable. Because similarity
estimation is done while taking into account all the variables, predictive clustering is
especially suitable for analysis of noisy domains and domains with missing values
for the target variables (Blockeel, 1998). So far,5 this approach has been limited to
tree learning methods. The goal of this thesis is to extend predictive clustering with
methods for learning rules, and rule learning is briefly presented in the next section.

2.4 Rule learning

Predictive models can be written in more or less understandable forms. Among them,
sets of ‘if-then’ rules are one of the most expressive and human readable model repre-
sentations (Flach and Lavrač, 2003; Mitchell, 1997). When compared to decision trees,
rules are generally considered to be more understandable. Each rule, namely, repre-
sents an independent piece of knowledge that can be interpreted separately without
other rules from the rule set,6 while the decision rule has to be interpreted as a whole.

A rule set consists of rules of the form ‘IF condition THEN prediction’; in addition,
the rule set usually also has a default rule, which is used for prediction of examples
that do not satisfy the condition of any other rule from the rule set. The examples
that satisfy the condition are said to be covered by this rule. In the case the examples
are represented in attribute-value form, the rule’s condition is a conjunction of atomic
conditions written in terms of the descriptive attributes. The values of the target
attributes of examples covered by a rule can be predicted by the prediction of this rule.

A rule set usually consists of more than just one rule, and the example whose
target attributes values we wish to predict can in principle be covered by more than
one rule. In this context, we distinguish ordered and unordered rule sets. Ordered rule
sets, also called decision lists, assume that the rules are ordered in a list, and the rule
that covers a given example and comes first in this list is used for predicting the target

4There exist also other approaches to multiple target learning, such as multi-task learning of neural
networks (Caruana, 1997), and stochastic vector decision trees (Šprogar et al., 2000)

5Independently and in parallel to the research presented in this thesis, Curk et al. (2006) presented
a method that also uses the predictive clustering approach for learning rules.

6This is less true for ordered rule sets, which is also the reason why unordered rule sets are usually
preferred.
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attribute values of this example. The rules that also cover the example, but come later
in the list, have no influence on the prediction for this example. In unordered rule sets,
on the other hand, all the rules that cover a given example participate in the prediction
for this example. Since each rule can give a different prediction, a combining scheme,
such as weighted voting, is needed for merging the predictions of all rules that cover
the example.

There has been a lot of interest in rule learning within the machine learning and
statistics communities. Most of the rule learning methods originate in the AQ series
of methods (Michalski, 1969; Michalski et al., 1986), which all employ the sequential
covering algorithm. The main problem of the covering algorithm, however, is that it
was originally designed for two-class (binary) classification problem domains, and its
extension towards more general problem domains is nontrivial. In addition, the rule
sets produced by the covering algorithm are by nature ordered, unless rules for only
one class value are constructed. We will now briefly describe the covering algorithm
as it is implemented in the CN2 method, which is one of more commonly used rule
learning methods.

Learning rules with CN2

The CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991) is an algorithm that it-
eratively constructs classification rules. In each iteration, a single rule is constructed
using a heuristic beam search. When a good rule has been found, it is added to the
rule set, and all the examples that are covered by this new rule are removed from the
learning set. This process, which is usually denoted as the sequential covering algorithm,
is repeated until no more good rules can be found or the learning set is empty.

The space of possible conditions that CN2 searches consists of conjunctions of
descriptive attribute tests. The construction of rules is done in a general-to-specific
fashion. It starts with the most general condition which covers all learning examples.
At each stage in the search, CN2 keeps a limited set, or a beam,7 of best conditions
found so far. In the next stage of search, it only considers specializations of partial
conditions in the beam. Specialization is done by adding attribute tests. The pre-
diction of each rule is the most common class value of the examples covered by the
rule. Each candidate rule is evaluated with the heuristic evaluation function. The
original version of CN2 (Clark and Niblett, 1989) used entropy as the heuristic eval-
uation function, while the later versions used accuracy as estimated by the Laplace
relative frequency estimate (Clark and Boswell, 1991) or the m-estimate (Cestnik, 1990;

7The beam is called a star in the original terminology.
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Džeroski et al., 1993).

Additionally, CN2 can test the significance of each rule as it is constructed. The
rule is considered to be significant, if it covers such a pattern of examples that it is un-
likely to have occurred by chance. To test the significance, the likelihood ratio statistic
is used, which measures the difference between the class probability distribution in
the set of examples covered by the rule, and the class probability distribution in the
entire learning set. If the test suggests that the rule is not significant, the rule is dis-
carded. Empirical evaluation shows that significance testing reduces the number of
learned rules, but also slightly reduces predictive accuracy.

The rules constructed in this way are ordered; when used for classification, each
rule is tried in order, and the first rule that covers the example is used for classification.
If no learned rule covers the example, the final default rule assigns the most common
class in the entire learning set to the example. Alternatively, CN2 can also construct
unordered rules. In this case, rules are learned iteratively for each possible class value
in turn. When a new rule is found, however, only the examples covered by this rule
which belong to the specified class are removed from the learning set. Of course, the
learning of rules for each class starts with the complete learning set. When using
unordered rules for prediction, several rules can cover each example. Associated to
each unordered rule is a vector with counts of covered learning examples for each
possible class value. The final prediction is obtained by summing the count vectors of
all rules that cover a given example, and predicting the class with the largest count.8

There exist many improvements of the original CN2 method. Here, we mention
just two, which are directly related to the rule learning method presented later in this
thesis. Todorovski et al. (2000) propose the use of weighted relative accuracy (WRAcc)
(Lavrač et al., 1999) as the heuristic evaluation function in the CN2, instead of the
accuracy. The weighted relative accuracy heuristic is defined as

WRAcc(rule) = Coverage(rule)[Accuracy(rule)−DefaultAccuracy]. (2.1)

It consists of two parts, thus providing a tradeoff between rule’s generality (rule’s
coverage) and it’s relative accuracy (the difference between rule’s accuracy and the
default accuracy of the domain). The empirical evaluation shows that the WRAcc
heuristic alone, without the significance testing, greatly reduces the number of learned
rules, at the expense of only a small decrease of accuracy of learned rule sets.

The second extension of the CN2 method comes from the field of subgroup discovery

8This combining scheme is equivalent to using weighted voting for combining rule prototypes (i.e.,
vectors of relative frequencies), where the rule’s weights are the numbers of learning examples covered
by each rule.
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(Klösgen, 1996). The task of subgroup discovery is to find ‘statistically most interest-
ing’ subgroups of examples, which are commonly described in terms of rules. In
rule sets constructed with the standard covering algorithm, the rules that are learned
first, are learned on learning sets with more examples, while the last learned rules are
learned using only few learning examples. As a consequence, rules at the beginning
have larger coverage and are statistically more significant than the rules learned later
on in the process. Because subgroup discovery focuses on statistically interesting (or
significant) rules, only the first few rules may be of interest. To increase the number
of possibly interesting and significant rules learned, a weighted covering algorithm has
been introduced (Gamberger and Lavrač, 2002). The weighted covering algorithm, as
opposed to the standard covering algorithm, does not remove the examples that are
covered by a newly learned rule. Instead, it only reduces the weights of these exam-
ples. This way, even the rules learned later in the learning process can be learned
on a larger and more representative number of examples, even though the contribu-
tion of some examples may be small. The empirical evaluation shows that the use
of weighted covering in combination with the above mentioned WRAcc heuristic, re-
sults in a reduced number of learned rules that have higher coverage and significance
when compared to the original CN2 method (Lavrač et al., 2004).

Learning regression rules

So far, we have only discussed the learning of classification rules. Unfortunately,
there are only a few approaches that can learn regression rules. A brief overview of
these follows. Weiss and Indurkhya (1993) have developed a system, called SWAP1R,
which transforms a regression problem into a classification problem. Target values
of the learning examples are grouped in into a set of user-defined bins, which act as
class values in the subsequent learning phase. In the learning phase a set of classifi-
cation rules is learned using the covering algorithm. Originally, the prediction of the
target value was computed as the average value of all examples covered by this rule.
Later, the authors added the possibility of combining this method with the k-nearest
neighbors method (Weiss and Indurkhya, 1995). The idea of transforming a regres-
sion problem into a classification one was further developed by Torgo and Gama
(1996). They developed a system called RECLA, which acts as a generic preprocessor
and makes it possible to use an arbitrary classification method to solve regression
problems.

A rule learning system that learns regression rules directly was proposed by Torgo
(1995). Rules learned with the system called R2 have linear regression models as the
prediction part of the rule, though in principle, many different types of regression
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models could be used. The system iteratively selects regions in the description at-
tributes space that are still not covered by any rule. Next, a regression model is
selected from the space of possible models that has small error in the selected region.
In the third step, the rule is specialized by adding conditions with the goal of improv-
ing the fit of the rule’s regression model. The specialization is guided by an evaluation
function that includes both the error and the coverage of the rule. This means that the
system searches rules that have low error and cover as many examples as possible.

FORS (Karalič and Bratko, 1997) is an inductive logic programming system for
learning regression rules. The learning examples are described in terms of first order
logic. Like CN2, it uses the covering algorithm. It iteratively constructs rules; each
time a new rule is found, all the examples covered by this rule are removed from the
learning set. The procedure is repeated while there are enough examples left. At the
end, a default rule is added, if the previous rules do not guarantee the coverage of
all examples. As in the R2 system, the prediction model in each rule can either be a
constant or a linear regression model.

Another approach for learning regression rules is the patient rule induction method
(PRIM) (Friedman and Fisher, 1999). The method seeks subspaces (boxes) in the
description attribute space where the average value of the target attribute is high
(or low), i.e., it looks for maxima (minima) of the target attribute, the task which is
also known as bump hunting. The construction of a rule starts with a box containing
all learning examples (top down). The original box is then reduced along one of the
attributes as to get the maximal mean of the target attribute values within the box. The
procedure is repeated until only a minimal number of examples remains within the
box. At this point, the process reverses and the box is being expanded, if this increases
the box mean. The process of reducing and expanding the box depends on parameters
which have to be set in accordance with background knowledge. As a result of this
process, we have a series of boxes, each containing a different number of examples.
The optimal box size is selected by the user with the help of cross-validation. Now,
the examples that are within the selected box (rule) are removed from the learning set,
and the process is repeated. The system needs human interaction to set the algorithm
parameters in accordance with the background knowledge.

The methods presented so far learn rules directly. An alternative is to first learn
a decision tree, and then convert it to a set of rules. The approach is applicable
to both classification and regression problems. The problem, however, is that rule
sets constructed in this way are relatively large as compared to rule sets learned
with rule learning methods. In addition, the conditions in the rules contain many
attribute tests which describe the path from the root to the leaf of the tree, and many
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of these may be redundant. Because of this, rule sets constructed via trees may not
be so understandable as rule sets constructed directly. A solution to this problem is
post-processing of rules which results in smaller and more understandable rule sets
(Quinlan, 1995; Holmes et al., 1999; Friedman and Popescu, 2005).
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Chapter 3

Estimating quality of rules
and rule sets

Before we can start learning rules and combining them into rule sets, which is the
topic of the next chapter, we have to establish the quality criteria that each single rule
or the rule set as a whole has to satisfy. In practice, these criteria can be conflicting and
we have to either select the most important criterion, or find a suitable compromise
between several of them. For example, we usually want the rule set to be small and
to have a small error rate, but very small rule sets tend to have high error rates.
Additionally, the criteria can be different for different tasks and different problem
domains, they can even be regarded as a part of the domain knowledge. In this
chapter we present the measures that are used as quality criteria in the process of rule
and rule set learning (Chapter 4) and rule set evaluation (Chapter 5).

3.1 Single rules

Each single rule within a rule set should represent a novel and general piece of knowl-
edge. For a rule to be regarded as knowledge, it first has to be accurate, or have a
small error rate. As we will show later, error rate can be regarded as a special case
of dispersion. Second, for a rule to be general, it has to generalize over many learning
examples or have a large coverage. Third, for a rule to represent novel knowledge, it
should not cover examples that other rules from the rule set are already covering, i.e.,
its distance to existing rules should be large. In addition, the prototype1 of the examples
covered by a rule should be different from the prototype of the entire set of examples,
since such a rule would not provide any new information. So, dissimilarity of a rule’s

1A prototype is a representation of a set of examples with a single example. It is defined later in
this chapter.
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prototype and the prototype of the entire learning set should be high. Definitions of
these measures follow.

3.1.1 Dispersion

Normally, error measures in machine learning are specifically tailored to either clas-
sification or regression single target prediction tasks. But for predictive clustering
rules we need a measure that can be used in both classification and regression tasks,
and also in multiple target tasks. This means that the measure, we call it dispersion,2

should take as input one or more nominal or numeric variables and return an aggre-
gated numeric value, preferably within the [0, 1] interval.

Let E′ be the set of N examples that are covered by a specific rule or cluster

E′ =
N⋃

i=1

ei = {e1, e2, . . . , eN}.

Each example ei is represented as a vector of K attribute values xji

ei = [x1i, x2i, . . . , xKi],

where xji stands for the value of the attribute aj of the example ei. In general, and
depending on the background knowledge, some attributes may be more important
than others. The weights

w = [w1, w2, . . . , wK]

can be used to emphasize certain attributes; by default all weights can be set to 1.

We define our dispersion measure as a weighted average of the dispersions along
each attribute. The dispersion of a set of examples E′ is then

disp(E′; w) =
1
K

K

∑
j=1

wj disp(E′, aj). (3.1)

The definition of dispersion along a single attribute depends on its type. For
a nominal attribute, it is the average distance of a single example from a set to the
prototype of this set. Let the attribute aj have L possible values with labels l1 to lL. The
prototype of a set of examples E′ of an attribute aj is a vector of relative frequencies

2In statistics, dispersion (also called variability) is a measure of variation of measurements of a
random variable. It is a non-negative real number that is zero if all the data are identical, and increases
as the data becomes more diverse. Examples of dispersion measures are standard deviation for numeric
and entropy for nominal variables.
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fk of possible values within the set

pE′ = p(E′; aj) = [ f1, f2, . . . , fL]; fk =
nk
N

;
L

∑
k=1

nk = N, (3.2)

where nk stands for the number of examples in the set E′ whose value of attribute
aj equals lk. Accordingly, (the prototype of) a single example ei with the value of
attribute aj equal to lk is

pei = p({ei}; aj) = [ f ′1, f ′2, . . . , f ′L]; f ′k =

{
1, if xji = lk,
0, otherwise.

(3.3)

The distance between the two prototypes can be measured using any of the distance
measures defined on vectors; we have decided to use the Manhattan distance. Now
the distance between an example ei with the value of attribute aj equal to lk (i.e., the
prototype pei) and prototype of the entire set E′ is

d(pei , pE′) = |1− fk|+
L

∑
m=1
m,k

| fm| = 2(1− fk); (3.4)

where we have taken into account that fk < 1 and ∑ fm = 1. Finally, the dispersion
of the set of examples E′ along the nominal attribute aj is the normalized average
distance

disp(E′, aj) =
1

2N
L

L− 1

N

∑
i=1

d(pei , pE′). (3.5)

The normalization factor normalizes the value of dispersion to the [0, 1] interval which
is necessary, if we want the dispersions between different attributes to be comparable.

Dispersion along a numeric attribute could be defined in a similar way, using the
mean of the attribute’s values as the prototype and the absolute difference as the
distance between the example and the prototype. However, we have decided to use
variance as the dispersion measure for numeric attributes instead, because variance
is a standard measure in statistics and is most commonly used in this context. The
variance of an attribute can be estimated as

s2
N(E

′, aj) =
1
N

N

∑
i=1
(xji − xj)

2, (3.6)

where xji is the value of attribute aj of example ei and xj is the mean of values of
attribute aj in set E′. The variance values are not limited to the [0, 1] interval, so we
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have to normalize them. The dispersion of the set of examples along one numeric
attribute is then

disp(E′, aj) =
1
ν2

j
s2

N(E
′, aj). (3.7)

One way of setting the normalization factor νj would be the range of values of the
attribute aj in the set of examples E′

νj = arange
j = amax

j − amin
j . (3.8)

However, the problem with range normalization is that it is very sensitive to noise and
outliers. A better solution is to link the normalization factor to the standard deviation
of the values of the attribute. If we select

νj = 4 σaj , (3.9)

and if the values of the attribute are normally distributed, we can be sure that most
of the values will be within the [0, 1] interval. This is due to the fact that 95% of the
values of a normally distributed variable lie within the [xj − 2σaj , xj + 2σaj ] interval.

3.1.2 Coverage

Each rule should represent a general piece of knowledge. More generalization means
that the rule covers more examples and in the end, it also means that the final rule
set will have fewer rules and will be more comprehensible. Unfortunately, more
generalization most often also means larger error in the model, and a compromise
between the two must be found. The definition of relative coverage is straightforward.
Let the complete set of examples E have N examples, and let E′ be the set of examples
that satisfy the condition of rule r, i.e., the set of examples covered by rule r; let
M = |E′|. The relative coverage of rule r is then

cov(r; E) =
|E′|
|E| =

M
N

. (3.10)

The above formula assumes that all examples are equally important, i.e., they all have
equal weight. Sometimes, however, it is useful to introduce example weights that are
not uniform. Each example ei then has an associated weight wi. The relative coverage
of rule r in this case is simply the sum of weights of the examples covered by r divided
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by the sum of weights of all examples

cov(r; E, w) =

∑
ei∈E′

wi

∑
ei∈E

wi
. (3.11)

In case all example weights are equal to one, the above formula reduces to Equa-
tion 3.10.

3.1.3 Distance to existing rules

Learning rules is an iterative procedure, we learn one rule after another until a stop-
ping criterion is met. When learning a new rule, we should take into account already
learned rules (except when learning the first rule). Namely, we want our rules to be
novel, i.e., we do not want to have many rules that cover the same examples, but we
want our rules to each cover a different part of the example space. In rule learning,
this problem is usually solved by modifying the learning set, as in the case of the
covering algorithm. An alternative approach is to define a distance from a given rule
to already learned rules in terms of covered examples.

Let E be the learning set with N examples, R = {rk}
$
1 be the set of existing rules

with $ rules, and r be the rule we are evaluating. The distance between a rule r and a
set of rules R can be defined as the average distance between the rule r, and each rule
from the set R

dist(r, R) =
1
$

$

∑
k=1

d(r, rk), (3.12)

where the distance between two rules is defined as

d(rj, rk) =
1
N

N

∑
i=1

d1(rj, rk; ei), (3.13)

and the distance between two rules on example ei as

d1(rj, rk; ei) =






0, if both rj and rk cover example ei,
0, if both rj and rk do not cover example ei,
1, otherwise.

(3.14)

An alternative to the above defined distance measure would be, for example, set
similarity measure such as the Jacquard coefficient.
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3.1.4 Prototype dissimilarity

As already mentioned in Section 3.1, we should learn rules that cover examples with
a prototype that is different from the default prototype, i.e., the prototype of the whole
learning set of examples. Namely, a rule with a prototype equal to the default pro-
totype would give the same predictions as the default rule, which is usually always
in the rule set. Predictions of such a rule would not be useful since they would not
provide any new information, i.e., their information score3 would be zero (Kononenko
and Bratko, 1991). Measuring prototype dissimilarity is in principle similar to the
significance testing (or measuring of significance) of rules as implemented in the CN2
algorithm (Clark and Niblett, 1989; Clark and Boswell, 1991). In CN2, the likelihood
ratio statistic is used to measure the difference between the class probability distribu-
tion in the set of examples covered by the rule, and the class probability distribution of
the entire learning set. If the value of the statistic suggests that the class distribution
of the rule is not significantly different, the rule is discarded. Originally, the reasoning
for significance testing was to avoid adding rules that are due to chance. The proto-
type dissimilarity measure presented here can be regarded as a generalization of this
approach since it can take into account more than one attribute.

We define our prototype dissimilarity measure as a weighted average of the pro-
totype dissimilarities along each attribute

diss(r; E, w) =
1
K

K

∑
j=1

wj diss(r; E, aj), (3.15)

where r is the rule we are evaluating, E is the entire learning set, and w is the at-
tribute’s weight vector. The attributes, namely, can be of different importance, and
assuming some domain knowledge, weights enable us to take this into account.

Prototype dissimilarity along a single attribute is different for nominal and for
numeric attributes

diss(r; E, aj) =






1
L

d(pr, pE), if aj is a nominal attribute,

1
σaj

d(pr, pE), if aj is a numeric attribute.
(3.16)

Normalization factors are used for limiting the values to the [0, 1] interval, so that the
contributions of different attributes are comparable. The d measure can, in principle,
be any dissimilarity measure; for simplicity, we have again selected the Manhattan

3The information score is only defined for single target classification tasks.
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distance. Prototypes of examples along a single nominal attribute are vectors with L
components, where L is the number of possible values of this attribute; they have
already been discused in Section 3.1.1, Equation 3.2. The distance between the proto-
types is then

d(pr, pE) =
L

∑
k=1
|prk − pEk|. (3.17)

Prototypes of examples along a single numeric attribute are themselves numeric val-
ues. We can define them as the average value of the attribute aj

p(E′; aj) =
1
N

N

∑
i=1

xji, (3.18)

where E′ is the set of N examples whose prototype we are seeking and xji are the
values of attribute aj in example ei. The distance between two prototypes of numeric
attributes is simplified Equation 3.17

d(pr, pE) = |pr − pE|. (3.19)

3.2 Rule sets

There are many measures for rule set evaluation and model evaluation in general
that are used in machine learning. In classification tasks, the most commonly used
measure is classification accuracy, or its complement, classification error. Some other
standard measures, such as precision, recall, or area under ROC curve are specifically
tailored for binary classification problems and therefore inappropriate for multiple
class, let alone multiple target problems. In regression tasks, the common evaluation
measures are relative root mean squared error (RRMSE) and correlation coefficient, but root
mean squared error (RMSE), mean squared error (MSE), and mean absolute error (MAE) are
also widely used. The measures presented here are by no means all possible measures
that can be used for this purpose, they are a selection of commonly used measures
that have been extended towards multiple target tasks. A more extensive preview of
quality measures can be found in general textbooks on machine learning or statistics,
e.g., (Kononenko, 2005; Hastie et al., 2001). Depending on the set of examples that we
use for estimating, for instance, classification error, we are talking about classification
error on learning set or classification error on testing set. Additionally, we can use a
cross-validation procedure to get the cross-validated classification error.
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3.2.1 Classification error

Classification error is a standard quality measure for single target classification tasks.
Let E be the set of N examples which we use to estimate the classification error of
rule set R. If Nerr is the number of examples with incorrectly predicted value of target
attribute aj, the classification error for attribute aj is

err(R; E, aj) =
Nerr

N
. (3.20)

Although this relative frequency estimate of the classification error is unbiased, its use
as a heuristic function in the search through a large space of possible hypotheses
(in our case rules or rule sets) can lead to overfitting. Namely, because of a large
number of required error estimations, random hypotheses can be found that have
overly optimistic error estimate. The problem can be alleviated by using the m-estimate
(Cestnik, 1990) or the extreme value correction (EVC) (Možina et al., 2006) of probability.

A faithfull extension of the above classification error measure (Equation 3.20) to-
wards multiple target problems is not straightforward. Here we present just a simple
solution, weighted average classification error over all target attributes

err(R; E, w) =
1
T

T

∑
j=1

wj err(R; E, aj), (3.21)

where T is the number of target attributes. We have added attribute weights wj here
for generality and they can be used to put more emphasis on certain target attributes.
The most serious objection to this type of averaging is that we are basically adding
apples and oranges, meaning that the classification errors of different target attributes
are not comparable quantities (see e.g., (Demšar, 2006) for a more in-depth discussion
of the topic). Still, we believe that the use of this measure is justified, as long as we
are aware of its deficiencies.

3.2.2 Relative root mean squared error

In contrast to classification, where classification error is by far the most important
quality measure, in regression, we have a set of commonly used measures. The values
of most of them are not even remotely comparable across different problem domains;
they change with the scale of variable values. Among the few exceptions are the
relative root mean squared error (RRMSE)4 and the correlation coefficient. The root mean

4The relative root mean squared error (RRMSE) can also be called root relative squared error (RRSE),
however, we decided to use the former name since it more clearly expresses the fact that this is a
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squared error (RMSE) of the attribute aj is defined as

RMSE(R; E, aj) =

√√√√ 1
N

N

∑
i=1
(x̂ji − xji)2, (3.22)

where x̂ji is the value predicted by rule set R, xji is the true value of the attribute aj

of example ei, and N is the number of examples. The value of RMSE depends on the
actual values of domain variables and their scales. In order to make it independent of
these, we normalize it with the RMSE of the default model, i.e., the model that always
predicts the average value of the attribute. This gives rise to the relative root mean
squared error

RRMSE(R; E, aj) =

√√√√∑N
i=1(x̂ji − xji)2

∑N
i=1(xj − xji)2

, (3.23)

where xj is the mean value of the attribute aj on the set of examples E.

Everything said about extending classification error towards multiple target prob-
lems also holds for RRMSE; the weighted average over all target attributes is defined
as

RRMSE(R; E, w) =
1
T

T

∑
j=1

wj RRMSE(R; E, aj), (3.24)

where T is the number of attributes and w is their weight vector.

3.2.3 Correlation coefficient

The correlation coefficient, also referred to as Pearson’s correlation coefficient, is a measure
of linear relation between two variables. If one variable refers to the true values of
the target attribute aj (denoted as xji) and another refers to the values of the attribute
as predicted by the model (denoted as x̂ji), the correlation coefficient measures the
correlation between the true and the predicted values. The coefficient is equal to the
covariance between the two variables divided by the product of their variances

r(R; E, aj) =
s2

N−1(E, aj, âj)√
s2

N−1(E, aj) s2
N−1(E, âj)

. (3.25)

‘relative RMSE’.
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The covariance and variances are estimated as

s2
N−1(E, aj, âj) =

1
N − 1

N

∑
i=1
(xji − xj)(x̂ji − x̂j), (3.26)

s2
N−1(E, aj) =

1
N − 1

N

∑
i=1
(xji − xj)

2, (3.27)

s2
N−1(E, âj) =

1
N − 1

N

∑
i=1
(x̂ji − x̂j)

2, (3.28)

where E is the set of N examples. The values of the correlation coefficient are limited
to the [−1, 1] interval, with a value of 1 meaning a perfect linear relation between the
values of the two variables, and a value of 0 meaning no correlation at all.

On multiple target problems we can, as for classification error and RRMSE, com-
pute the weighted average correlation coefficient as

r(R; E, w) =
1
T

T

∑
j=1

wj r(R; E, aj). (3.29)

Of course, we should be aware of the shortcomings of such an estimate.

3.2.4 Complexity

The complexity of a model, in our case, the complexity of a rule set, can be directly
linked to its comprehensibility. It is generally true that the smaller the complexity
of a model, the better are the chances that humans will be able to understand it and
interpret its meaning. The most straightforward measure of the complexity of the rule
set R is its size, i.e., the number of rules it comprises

cplx1(R) = |R|. (3.30)

However, not all rules are the same, and some have many tests, while others can
have just one. Obviously, a rule with more tests has a larger complexity than a rule
with a single test. An alternative, or additional, rule set complexity measure can be
the number of all tests in the rule set

cplx2(R) = ∑
ri∈R

nri , (3.31)

where nri is the number of tests in rule ri.
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3.3 Summary

In this chapter we presented measures for evaluation of single rules and complete
rule sets. Rule learning (the topic of the next chapter) is usually a sequential process
during which the evaluation of single rules is of decisive importance. Single rule
quality measures are used in the learning algorithm as a search heuristic and directly
influence the quality of learned rules. Measures for rule set quality are also used in
the rule learning algorithm, for example when deciding whether to include the newly
learned rule in the rule set or not. In addition, rule set measures are also used in the
final evaluation of the learned rule sets as discussed in Chapter 5.
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Chapter 4

Learning predictive clustering rules

An algorithm for learning predictive clustering rules is presented in this chapter. Pre-
dictive clustering rules are in a way a generalization of ordinary classification and re-
gression rules, so this chapter can be seen as a presentation of a general rule learning
algorithm. We start with a definition of the learning task and continue with the top
level of the algorithm. Specific aspects of the algorithm, such as learning single rules,
combining these rules into a rule set, modification of the learning set between sub-
sequent iterations of the algorithm, and optimization and interpretation of the final
rule set, are discussed in separate sections. At the end, we summarize the algorithm’s
parameters and options for selecting specific parts of the algorithm.

4.1 Task definition

Let us define the task of learning predictive clustering rules more formaly. We are
given

• a description attribute space D,

• a target attribute space T,

• a set of N examples E = {ei | ei = [xi, yi] ∈ D× T},

• a declarative language bias B over D,

• a distance measure d : (D× T)2 → R that computes the distance between two
examples, and

• a prototype function p : 2(D×T) → D× T that computes the prototype of a set of
examples.

31
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The attribute spaces D and T are Cartesian products of the respective attributes’
ranges

D =

nd�
j=1

Dj, T =
nt�

j=1

Tj,

where nd is the number of descriptive, and nt the number of target attributes. At-
tribute ranges are real numbers for numeric attributes, and sets of labels for nominal
attributes

Dj, Tj =

{
R, if aj is a numeric attribute
{l1, l2, . . . , lLj}, if aj is a nominal attribute with Lj possible values.

A declarative language bias B defines the language in which hypotheses are described
and the space of hypotheses that the learning algorithm can consider. Basically it
defines a predictive clustering rule (PCR) as a rule of the form

IF <cluster description> THEN <cluster prototype>,

where the cluster description (or rule condition) is a conjunction of tests on descriptive
attributes or “true”, if the cluster contains all examples (i.e., the cluster description is
empty)

<cluster description> =
∧

k

tk | “true”,

and each test can be one of the following (aj ∈ Dj)

tk =






aj ≤ ck, if aj numeric attribute,
aj > ck, if aj numeric attribute,
aj ∈ Lk, if aj nominal attribute with Lj possible values.

Here ck is some numeric constant and Lk is a proper subset of all possible values of
attribute aj

Lk ⊂ {l1, l2, . . . , lLj}.

Such a definition of Lk means that we are not limited to simple tests of the form aj = lk
for nominal attributes, but something like aj ∈ {l1, l3, l4} is also allowed.

The cluster prototype in a predictive clustering rule is the target part of the proto-
type of examples that satisfy its description. It has the form

<cluster prototype> = pT = [pax , pay , . . . , paz ]; ax, ay, . . . , az ∈ Tx, Ty, . . . , Tz,
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where the attributes ax, ay, to az are the target attributes. A prototype along a sin-
gle nominal attribute is defined by Equation 3.2, while the prototype of a numeric
attribute is the average of its values1 (See Section 3.1.1 for more details.)

Now the task is to find a set of predictive clustering rules R where each rule
represents a cluster of examples. For these clusters we request that

• distances between examples within each cluster are low, and

• distances between examples from different clusters are high.

In other words, we want the clusters to comprise similar examples and, at the same
time, different clusters to comprise dissimilar examples. The algorithm for finding
such clusters is discussed in the next section.

4.2 Top level algorithm

Some existing approaches to rule learning were discussed in Section 2.4 and we saw
that most of them are based on the covering algorithm (Michalski, 1969; Michalski et al.,
1986). Here we present a more general approach to rule learning, which subsumes
the covering algorithm as a special case. The top level of the algorithm is described
here, while its details are discussed in subsequent sections.

The algorithm for learning predictive clustering rules2 is presented in Table 4.1.
We start with an empty rule set R and a set of learning examples E. In each iteration
we learn a set of candidate rules Rc and, if there is any good rule ri among them, we add
this rule to the rule set. Next we modify the current learning set Ec and, unless some
stopping criterion is met, repeat the loop. Before the learning procedure is finished, we
have to add the default rule and, optionally, optimize the rule set.

The above brief algorithm description includes several vague expressions (type-
set in italics) that need to be discussed in more detail. Learning the set of candidate
rules is discussed in Section 4.3, for now let us assume that the procedure ‘FindCan-
didateRules’ takes as input the current learning set Ec and returns a set of rules Rc

that we then consider as potential members of the rule set. If there is a rule in Rc that
satisfies certain quality criteria, we add it to the rule set. This part of the algorithm is
discussed in Section 4.4. The next step is the modification of the current learning set,
which should reflect the influence of the newly added rule, e.g., one can remove the
learning examples covered by the new rule, so that these examples do not influence

1A possible improvement to this approach would be a definition of numeric attribute prototypes in
a form of (linear) equations, but we do not consider such prototypes in this thesis.

2An earlier version of this algorithm was presented in (Ženko et al., 2006).
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Table 4.1: Top level of the algorithm for learning predictive clustering rules.

E . . . initial learning set
Ec . . . learning set in the current iteration
R . . . set of rules being learned
Rc . . . set of candidate rules
ri . . . rule added in the current iteration

procedure LearnRuleSet(E)
R = ∅
Ec = E
repeat

Rc = FindCandidateRules(Ec) ← Section 4.3
ri = BestRule(Rc, R) ← Section 4.4
if (ri , ∅) then

R = R ∪ {ri}
Ec = ModifyLearningSet(Ec, ri) ← Section 4.5

until StopLearning(Ec, R, ri)
R = R ∪DefaultRule(E)
R = OptimizeRuleSet(R, E) ← Section 4.6
return R

the learning of candidate rules in the next iteration. Some strategies for modifying
the learning set, as well as stopping criteria within the ‘StopLearning’ procedure are
discussed in Section 4.5. When the rule learning loop of the algorithm is finished, the
default rule has to be added to the rule set. The default rule is a rule with an empty
cluster description and is used for examples that are not covered by any other rule. Its
cluster prototype can be constructed either from the complete learning set E, or from
the modified learning set Ec, but the first possibility is more commonly used. The last
step, the optimization of the rule set, is a step where final changes to the rule set are
made; it can roughly be compared to the post pruning step in decision tree learning.
This topic is discussed in Section 4.6.

4.3 Learning single rules

In each iteration of the learning algorithm in Table 4.1 the procedure ‘FindCandi-
dateRules’ should return one or more candidate rules, or no rules, if no rule can be
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found. The procedure takes the current learning set Ec as input, but also has access
to the initial learning set E and the set of rules found so far R. One can think of many
approaches to the implementation of this procedure, here we present three of them.

Random rules. The set of candidate rules can be randomly generated. While one
can argue if random rule generation can be called learning at all, we can nevertheless
use the learning set to determine the ranges of the attribute values, especially of the
numeric attributes. The random rule generation can be implemented in many differ-
ent ways, one of the simplest being as follows. Let us choose to generate only one
candidate rule at a time. First, as already mentioned, we use the learning set Ec to
determine the ranges of attribute values. Then we randomly generate the number of
tests in the rule’s cluster description, the attributes in these tests, the values for these
tests (which are within the determined ranges), and, finally, the cluster prototype of
the rule. Of course, the total number of candidate rules generated in this way must be
high, in order for this approach to deliver a reasonable rule set in the end. An alterna-
tive and ‘less random’ approach is to randomly generate only the cluster descriptions
in the rules, while the cluster prototypes are the prototypes of the learning examples
covered by the generated cluster descriptions. Intuitively, the latter approach should
give better results.

Rules from trees. Another candidate rule generating approach, that we discuss here
only briefly, is the generation of rules via decision tree learning. Every decision tree
can also be written as a set of rules, and therefore, we can learn a predictive clustering
tree (Blockeel et al., 1998) on the current learning set Ec and transcribe it into a set
of rules. This is our set of candidate rules. For this approach to work as part of the
learning algorithm for predictive clustering rules, we must make sure that the learning
set Ec is changing from one iteration of the algorithm to the next iteration, otherwise
the same rule set is generated each time. We have mentioned some approaches that
employ decision trees for classification and regression rule learning in Section 2.4.
There, however, the entire rule set in usually learned from the learning set in one
iteration, e.g., (Quinlan, 1995; Holmes et al., 1999), or rule sets from a predefined
number of iterations are joined in one large rule set, e.g., (Friedman and Popescu,
2005).

Heuristic search. Heuristic search is by far the most common method for generating
rules in rule learning algorithms. Here we present a general-to-specific beam search
algorithm which is very similar to the one implemented in the CN2 system (Clark and
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Table 4.2: General-to-specific beam search algorithm for finding candidate rules.

Ec . . . learning set
nr . . . number of candidate rules to be returned
bw . . . width of the search beam
Cbest . . . set of best nr conditions
clast . . . worst condition in Cbest

Tp . . . set of possible tests
pi . . . prototype of examples covered by condition ci

h(c) . . . heuristic function { h+ | h∗ } (larger value is better)

procedure FindCandidateRules(Ec)
clast = “true”
C = Cbest = {clast}
while (C , ∅)

Cnew = ∅
foreach c ∈ C

foreach (t ∈ Tp ∧ t < c)
cnew = c ∧ t
if (h(cnew) > h(clast)) then

Cnew = Cnew ∪ {cnew}
Cbest = Cbest ∪ {cnew}
if (|Cnew| > bw) then

Cnew = Cnew \ arg minc′∈Cnew h(c′)
if (|Cbest| > nr) then

Cbest = Cbest \ arg minc′∈Cbest
h(c′)

clast = arg minc′∈Cbest
h(c′)

C = Cnew

Rbest = {(ci, pi) | ci ∈ Cbest}
return Rbest

Niblett, 1989; Clark and Boswell, 1991). The algorithm is presented in Table 4.2. The
input to the procedure is the learning set of examples Ec, and we also have to specify
the number of candidate rules nr to be returned by the procedure, and the width of
the beam bw, i.e. the number of partial rules maintained during the search. A set
of nr best rules (or actually conditions) found so far as evaluated by the heuristic
function h is denoted as Cbest. We start with the most general cluster description
or condition (“true”) that is satisfied by all examples in the learning set Ec. Now we
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begin specialization of all conditions in the current set of conditions C by conjunctively
adding an extra test. Here we consider all possible tests (Tp) that are not already in the
condition that we are specializing. In addition, we only consider conditions that cover
at least a predefined minimal number of examples µ, which is also a parameter to the
learning algorithm. Every specialization is evaluated using the heuristic function h. If
any specialization is better than the worst condition in the set Cbest, we add it to this
set and to set Cnew. We remove the worst conditions, if the sizes of these sets increase
over their predefined maximum sizes. When all specializations of the current set of
conditions C are examined, the set C becomes set Cnew, and the search is continued
until no better specializations can be found. At the end, the nr best conditions from
the set Cbest are coupled with the prototypes of examples that they cover and returned
as a resulting set of candidate rules.

The crucial part of the algorithm described above is the search heuristic function
h. The heuristic function is used for the evaluation of rules under construction and
basically leads the search procedure towards rules of the desired quality. Therefore,
the heuristic function should reflect the qualities we expect from each individual rule
in the rule set. In Section 3.1 we have discussed a number of rule evaluation measures,
let us just briefly recall them. First, we want the rules to be accurate and we have
proposed a measure called dispersion to measure their accuracy. Next, we want the
rules to be general, which we can measure with coverage. For the rule to be novel, it
should not cover examples that other rules from the rule set are already covering, and
we have proposed a distance to existing rules to measure this. Finally, a rule should
be useful, meaning that it should provide some new information. A precondition for
this is that the rule covers a part of the example space that is different from the whole
learning set; we have proposed a prototype dissimilarity measure to evaluate this rule
property. Now, we have to combine all four measures into a single heuristic function.
There are, of course, many ways to do this, but we will discuss here only two simple
possibilities. We can sum up all four measures or multiply them together.

Let c be the condition (cluster description) of rule r that we are evaluating, and E
be the set of all learning examples. Er is the subset of E with examples that satisfy
condition c (i.e., are covered by rule r), and R is the set of rules found so far. The
additive version of the heuristic function can then be written as

h+(c) = [doff − disp(Er; wa)] + α cov(r; E, we) + β dist(r, R) + γ diss(r; E, wa), (4.1)



38 4. Learning predictive clustering rules

and the multiplicative version as

h∗(c) = [doff − disp(Er; wa)] · cov(r; E, we)
α · dist(r, R)β · diss(r; E, wa)

γ. (4.2)

In both equations we have introduced several parameters and weights whose mean-
ing is as follows. The parameters α, β, and γ enable us to put more emphasis on one
measure or the other. We assume that the dispersion measure is crucial in the evalua-
tion of rules, so the influence of the other three measures is set relative to dispersion.
Rules with larger heuristic function values are better.

The dispersion offset doff is a parameter introduced analogously with the weighted
relative accuracy (WRAcc) heuristic (Lavrač et al., 1999; Todorovski et al., 2000) briefly
described in Section 2.4 (Equation 2.1). By setting the value of the doff parameter to
the default dispersion (i.e., the dispersion of the entire learning set E), the first term
of Equation 4.1 (and the first factor of Equation 4.2) can be regarded as the relative
dispersion loss. In order to emulate the WRAcc heuristic we additionaly have to select
the multiplicative version of the heuristic, and set α = 1 and β, γ = 0. On the other
hand, if we want to emulate the accuracy heuristic from the CN2 method, we set the
parameters doff , α, β, and γ to zero.

Another thing we have to discuss are the attribute weights wa and example weights
we. The attribute weight vector wa appears as a parameter of dispersion and proto-
type dissimilarity measures (the other two measures, coverage and rule distance, are
attribute independent). Its role is to determine the influence of individual attributes
when calculating both measures, and in general, the weights can be set for each at-
tribute differently, based on some domain knowledge. In practice, though, we always
divide the attributes into two groups, descriptive and target attributes, and we pro-
pose that each group be weighted differently

waj = waj =

{
τ, aj is a target attribute,
1− τ, otherwise,

(4.3)

where the target weight parameter τ should satisfy 0 < τ ≤ 1. If our sole objective is
to learn rules that are as accurate (on the learning set) as possible, then we should
set τ to 1. On the other hand, setting τ to less than 1 should lead to rules that cover
examples that are more similar with regard to the values of all attributes. Actually,
τ is a parameter that can be used to traverse from the predictive modeling setting on
one side to the clustering setting on the other.

The coverage part of Equations 4.1 and 4.2 needs also the example weight vector
we as a parameter. Namely, it is not necessary for all the examples to have equal
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weight; by means of example weights we can give preference to selected examples,
which should more likely lead to the construction of rules covering these examples.
This is the approach also employed by the weighted covering algorithm (presented
later in Section 4.5).

4.4 Adding rules to the rule set

While in the previous section we have presented the algorithms for finding candidate
rules, it is now time to discuss the criteria by which these candidate rules can be added
to the rule set. More technically, we have to provide a description of the ‘BestRule’
procedure of the top level algorithm in Table 4.1. We limit ourselves to three possible
solutions presented in an algorithmic form in Table 4.3.

For a start, let the procedure ‘FindCandidateRules’ return only one candidate rule

Table 4.3: ‘BestRule’ procedure for adding rules to the rule set.

Rc . . . set of nr candidate rules
R . . . set of rules found so far
Madd . . . rule adding method {“Always” | “If-Better” | “Check-All-If-Better”}
Q(R′) . . . rule set quality measure {err(R′; E, wa) | RRMSE(R′; E, wa)}

procedure BestRule(Rc, R)
case (Madd = “Always”) # nr = 1, Rc = {r}

return r
case (Madd = “If-Better”) # nr = 1, Rc = {r}

if (Q(R ∪ {r}) < Q(R)) then
return r

else
return ∅

case (Madd = “Check-All-If-Better”) # nr > 1

rbest = ∅
qbest = Q(R)
foreach (r ∈ Rc)

if (Q(R ∪ {r}) < qbest) then
rbest = r
qbest = Q(R ∪ {r})

return rbest
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at a time (nr = 1). The most obvious option is to always add the candidate rule to the
rule set (Madd=“Always”). This is also the most common approach used in, e.g., the
CN2 algorithm (Clark and Niblett, 1989; Clark and Boswell, 1991). On the other hand,
one can argue that it does not make any sense to add a rule, unless this rule somehow
improves the rule set. In Section 3.2, we have discussed some measures for rule set
evaluation that we can use for this purpose. Classification rule sets can be evaluated
using the average classification error (Equation 3.21), and regression rule sets can be
evaluated using the average relative root mean squared error (Equation 3.24). Here it
makes sense to use only the target attributes for the rule set evaluation, i.e., we set the
attribute weights (wa) as

waj = waj =

{
1, aj is a target attribute,
0, otherwise.

(4.4)

Now we simply evaluate the rule set with and without the candidate rule and we
only add the candidate rule, if it improves the rule set quality (Madd=“If-Better”). This
rather strict criterion can lead to the premature termination of the learning process,
if no rule can be found that improves the quality of the rule set. The problem can be
somewhat alleviated, if the procedure ‘FindCandidateRules’ returns more candidate
rules (nr > 1). In this case, we can check all candidate rules; if any improves the rule
set quality, we add the one that improves it most (Madd=“Check-All-If-Better”).

Of course, some other strategies for adding rules, and rule set quality measures
could also be used. In addition, the candidate rules could also be optimized before
being added to the rule set. For example, the I-REP algorithm (Fürnkranz and Wid-
mer, 1994) greedily prunes the candidate rule until further pruning would increase
the rule set error, which is estimated on a separate pruning set. The pruned candidate
rule is then added to the rule set.

4.5 Modifying the learning set

The next part of the top level algorithm that we need to discuss is the modifying of the
current learning set within each iteration, i.e., the procedure ‘ModifyLearningSet’ of
the algorithm in Table 4.1. Modification of the current learning set (Ec) from one itera-
tion to the next should lead to finding different rules within the ‘FindCandidateRules’
procedure. This part of the algorithm is especially important if the influence of the
‘distance to existing rules’ part of the heuristic function is small or zero (parame-
ter β in Equations 4.1 and 4.2). Here we present four possibilities for modifying the
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learning set, they are given in Table 4.4.

Table 4.4: ‘ModifyLearningSet’ procedure for modifying the current learning set.

E . . . initial learning set
Ec . . . current learning set
ri . . . newly added rule
wei . . . current weight of example ei

Mmod . . . modifying method {“Std-Covering” | “Err-Weight-Covering” |
| “Sampling” | “None”}

g(ei, ri) . . . example re-weighting function
ε . . . covering weight threshold parameter

procedure ModifyLearningSet(Ec, ri)
case (Mmod = “Std-Covering”)

foreach (ei ∈ Ec)

if (ri covers ei) then
wei = 0

return Ec

case (Mmod = “Err-Weight-Covering”)
foreach (ei ∈ Ec)

if (ri covers ei) then
wei = wei · g(ei, ri)

if (wei < ε) then
wei = 0

return Ec

case (Mmod = “Sampling”)
Ec = RandomSubSample(E)
return Ec

case (Mmod = “None”)
return Ec

The most common approach is the covering algorithm (Michalski, 1969; Michalski
et al., 1986). We have discussed this algorithm in Section 2.4. The idea is that we put
more emphasis on the learning examples that have not yet been adequately covered.
This should force the ‘FindCandidateRules’ procedure to focus on these examples and
find rules to describe them. In the original covering algorithm (Mmod=“Std-Covering”),
examples that are already covered by a rule are removed from the current learning
set. Rule learning in the next iteration will therefore focus only on examples that have
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not yet been covered. This approach is used by the CN2 algorithm (Clark and Niblett,
1989; Clark and Boswell, 1991) for the induction of ordered rules.

The weighted covering algorithm (Gamberger and Lavrač, 2002), on the other
hand, assigns a weight to each learning example. Instead of removing the covered
example completely, weighted covering only decreases its weight. It does this, how-
ever, only for examples that have been correctly classified by the newly added rule.
The notion of ‘correctly classified example’ unfortunately only makes sense for single
target classification problems. To overcome this limitation, we develop a more general
covering scheme, which we call error weighted covering, that is applicable to single and
multiple target classification and regression problems (Mmod=“Err-Weight-Covering”).
Error weighted covering is similar to ‘ordinary’ weighted covering, except that the
amount by which example’s weight is reduced is proportional to the error the newly
added rule makes when predicting the example’s target attributes’ values. The exact
weighting scheme is as follows.

Let every learning example ei have an assigned weight wei. At the beginning, the
weights of all examples are set to one. Then, whenever a new rule r is added to the
rule set, the weight of each covered example ei is multiplied by the value of g(ei, r),
which is defined separately for classification and for regression problems

g(ei, r) =

{
gcls(ei, r), nominal target attributes (classification),
greg(ei, r), numeric target attributes (regression).

(4.5)

The multiplier value for classification is further defined as

gcls(ei, r) = 1+ (ζ − 1)kcls(ei, r), (4.6)

where kcls(ei, r) is the proportion of correctly classified target attributes of example ei

by rule r

kcls(ei, r) =
number of correctly predicted target attributes of ei by r

number of all target attributes
, (4.7)

and ζ is the covering weight parameter, which we discuss below. The multiplier value
for regression is proportional to ζ and is limited upward to 1, so that example weights
can only decrease

greg(ei, r) =

{
ζ kreg(ei, r), kreg(ei, r) ≤ 1
ζ, otherwise.

(4.8)



4.5 Modifying the learning set 43

The value of kreg(ei, r) is equal to the average normalized absolute error of all target
attributes

kreg(ei, r) =
1
nt

nt

∑
j=1

|x̂ji − xji|√
var(E, aj)

; (4.9)

where nt is the number of target attributes, x̂ji is the value of attribute aj of example
ei as predicted by rule r, and xji is the true value; var(E, aj) is the variance of attribute
aj values in the entire learning set E and can be estimated using Equation 3.27.

The covering weight parameter ζ enables us, together with the covering weight thresh-
old parameter ε, to control the pace of removing covered examples from the current
learning set. It should take values between 0 and 1. Setting ζ to 0 means that exam-
ples, whose target attributes are correctly predicted by rule r, are imediately removed
from the current learning set, i.e., their weights are set to zero. Setting ζ to values
greater than 0, on the other hand, means that their weights are reduced less rigor-
ously. The parameter ε defines the threshold under which the example weights are
considered to be too small to be still included in the learning set; when the example
weight falls below this value, it is set to zero.

Another approach by which we can modify the current learning set, and conse-
quently achieve diversity of the learned rules, is sampling of the initial learning set
(Mmod=“Sampling”). The most obvious choice for the sampling procedure is bootstrap
sampling (Efron and Tibshirani, 1994), which is a form of random sampling with re-
placement. In each iteration, the candidate rules are learned on a different sample
of the learning set, which should result in different candidate rules. The approach is
somewhat similar to the ensemble method of bagging (Breiman, 1996).

The fourth approach to modifying the current learning set is not to modify the
learning set during each iteration at all (Mmod=“None”). Not modifying the learning
set only makes sense if the heuristic function within the ‘FindCandidateRules’ pro-
cedure can force the learning of rules that cover examples not yet covered, i.e., the
influence of the ‘distance to existing rules’ part of the heuristic function is non-zero
(parameter β in Equations 4.1 and 4.2).

Stopping criteria. The stopping criteria of the top level algorithm, the ‘StopLearn-
ing’ procedure in Table 4.1, are closely linked to the modification of the current learn-
ing set, and therefore it makes sense to discuss them at this point. The simplest
stopping criterion is the total number of rules in the rule set (χ), but its use is not
very convenient since the optimal number of rules differs from one problem domain
to another. A better solution is to stop learning when no good rule has been found by
the ‘BestRule’ procedure, i.e., when the rule returned by this procedure is empty. In
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Table 4.5: ‘StopLearning’ procedure with stopping criteria for PCR learning.

Ec . . . current learning set
R . . . set of rules found so far
ri . . . rule added in this iteration
χ . . . maximal number of rules

procedure StopLearning(Ec, R, ri)
s = “false”
if (|R| < χ) then

s = “true”
if (ri = ∅) then

s = “true”
if (|Ec| = 0) then # |Ec| = ∑ wei

s = “true”
return s

addition, the learning process should also terminate when the current learning set is
empty (or when the weights of all examples are zero). The latter two criteria are also
used in that CN2 algorithm (Clark and Niblett, 1989; Clark and Boswell, 1991). For
clarity the above mentioned criteria are presented in Table 4.5.

4.6 Interpretation and optimization of the rule set

So far we have discussed the process of learning the rule set, which is actually a
process of finding single rules and building them into a coherent rule set. Now
that we have a rule set, the question arises of how we interpret this rule set to get
predictions of the target attribute’s values. There are two major possibilities, where
the rules can be regarded as ordered or as unordered.

Ordered rules. Ordered rules are interpreted in sequence, one by one, and the first
rule that covers an example is used to predict the target values. The rest of the rules
in the list are discarded. If there is no rule that covers the example, the default rule is
used. Ordered rules are also refered to as a decision list. The interpretation of rules as
ordered is closely linked to the learning algorithm. For the rules to be interpreted as
ordered they should be learned using the standard covering approach, i.e., once a rule
is added to the rule set, all covered examples are removed from the current learning
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Table 4.6: ‘OptimizeRuleSet’ procedure for (optional) rule set optimization.

E . . . learning set
R . . . rule set
wr . . . rule weights
Mpred . . . prediction method {“Ordered” | “Unordered-Cov-W” |

| “Unordered-Uni-W” | “Unordered-Opt-W”}

procedure OptimizeRuleSet(R, E)
case (Mpred = “Ordered”)

wr = ∅
case (Mpred = “Unordered-Cov-W”)

foreach (ri ∈ R)
wri = cov(r; E)

case (Mpred = “Unordered-Uni-W”)
foreach (ri ∈ R)

wri = 1
case (Mpred = “Unordered-Opt-W”)

wr = wopt(R, E)
return R

set (Mmod=“Std-Covering” in Table 4.4). The interpretation of rules as ordered has a
major disadvantage, however. The rules cannot be interpreted individually, i.e., sep-
arately from the rule set, and this seriously decreases their understandability. In the
case of ordered rules, no rule set optimization is necessary and the ‘OptimizeRuleSet’
procedure presented in Table 4.6 does not set any weights to the rules.

Unordered rules. An alternative interpretation is to regard the rules as an unordered
set. In this case, more than one rule can cover a given example, which means that the
example is at the intersection of the underlying clusters. Each of the rules can be
used to obtain a prediction of the target values, and we need a method for combin-
ing these predictions into a single one. A method commonly used for this purpose
is the weighted voting scheme. Now, the question arises of how we set the weights.
A common solution is to set the weight of a rule proportionally to the number of
examples it covers (Mpred=“Unordered-Cov-W”). Here, the underlying assumption is
that the rules covering more examples are more reliable and that their votes should
have more weight. This is also the approach the CN2 uses (Clark and Niblett, 1989;
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Clark and Boswell, 1991). In some cases, however, the small influence of rules with
small coverage can be a drawback. For example, this issue arises in subgroup discov-
ery, where the task is to find ‘statistically most interesting’ subgroups or clusters of
examples (Lavrač et al., 2004). Here, the interesting clusters are often small and a
uniform weighting scheme (Mpred=“Unordered-Uni-W”), i.e., all weights are equal, is
recommended (Lavrač et al., 2004). Another possibility, somewhat computationally
expensive, is to derive the weights via optimization (Mpred=“Unordered-Opt-W”). This
is the topic of the next subsection.

Optimizing the rule set. Instead of using predefined rule weights when combining
predictions from different rules, we can determine the weights with an optimization
procedure. The property that we are trying to optimize is the accuracy of the entire
rule set. In addition, through a procedure called regularization, we can also achieve
that a significant number of weights is set to zero. This, of course, means that these
rules can be discarded and the resulting rule set is smaller and more comprehensible.
Such an optimization for single target prediction has been introduced by (Friedman
and Popescu, 2004, 2005). A brief presentation of the optimization task for multiple
target prediction follows.

Each example ei consists of a descriptive and a target part ei = [xi, yi]. The rule
set R = {rk(x)}K

1 consists of K rules which can predict y from the values of x. The
final prediction can be obtained by weighted voting of all the rules

ŷ = F(x; wr) =
K

∑
k=1

wrk rk(x), (4.10)

where wrk is the weight of rule rk. From the learning set we can estimate the rule
weights wr which minimize the loss function L(y, F(x; wr))

ŵr = arg min
wr

1
N

N

∑
i=1

L

(

yi,
K

∑
k=1

wrk rk(x)

)

. (4.11)

The loss function can be the same as the rule set quality measure used in procedure
‘BestRule’ (Section 4.4), i.e., the average classification error (Equation 3.21) for classi-
fication problems, and the average relative root mean squared error (Equation 3.24)
for regression problems. It is well known (Friedman and Popescu, 2004) that, because
of the variability of the learning data, Equation 4.11 often provides poor estimates of
the true value of wr, especially in the case where the learning set size is not large
compared to the number of rules. A common remedy is to ‘regularize’ Equation 4.11
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by adding a penalty function

wopt(R, E) = ŵr(λ) = arg min
wr

1
N

N

∑
i=1

L

(

yi,
K

∑
k=1

wrk rk(x)

)

+ λ
K

∑
k=1
|wrk|. (4.12)

The penalty function (the last term) is a so-called lasso penalty. It is independent
of the learning data and has a stabilizing influence on the estimated weights. The
λ parameter controls the stabilizing effect; larger values provide more stable, but
also more deterministic weight estimates. It was shown (Tibshirani, 1996) that larger
values of λ produce increased dispersion among the values of |wrk|, often with many
values being set to zero. In our case, this means that many rules are discarded because
their weights are set to zero. This is exactly the effect we want to achieve, i.e., simplify
the rule set as much as possible, and, at the same time, preserve or even increase its
accuracy.

The authors of (Friedman and Popescu, 2004, 2005) propose a sophisticated opti-
mization procedure for solving the above task for single target domains. In addition,
the procedure also finds the optimal value of the λ parameter. Unfortunately, the pro-
cedure has not yet been extended to multiple target domains. However, in principle, it
should be possible to solve the optimization problem using some general and robust
optimization procedure such as differential evolution (Price et al., 2005).

4.7 Summary

In this chapter we have presented a general algorithm for learning predictive cluster-
ing rules (Table 4.1). The algorithm is composed of building blocks and for most of
them we provide several possible implementations. Using these building blocks one
can construct a number of different rule learning algorithms. Table 4.7 collects all pa-
rameters and options of the algorithm together with their short description. Through
these parameters one can select specific parts of the algorithm as well as set their
behavior.
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Table 4.7: Parameters of the algorithm for learning predictive clustering rules.

Parameter Possible values, location in the text, and description

h heuristic type (h+|h∗); Section 4.3, Table 4.2, Equations 4.1 and 4.2;
heuristic function used for rule search

Madd rule adding method (“Always”|“If-Better”|“Check-All-If-Better”);
Section 4.4, Table 4.3; method for adding candidate
rules to the rule set

Mmod learning set
modifying method

(“Std-Covering”|“Err-Weight-Covering”|“Sampling”|
“None”); Section 4.5, Table 4.4; method for modifying
the current learning set

Mpred prediction method (“Ordered”|“Unordered-Cov-W”|“Unordered-Uni-W”|
“Unordered-Opt-W”); Section 4.6, Table 4.6; method
used when interpreting rules

bw beam width (>1); Section 4.3, Table 4.2; number of the best can-
didate rules that are kept during the heuristic beam
search procedure

µ minimal number of
examples

(>0); Section 4.3; minimal number (or weight) of ex-
amples covered by each rule

doff dispersion offset (default dispersion, R); Section 4.3, Equations 4.1 and
4.2; offset in the dispersion part of the search heuristic

α coverage heuristic
weight

([0, 1]); Section 4.3, Equations 4.1 and 4.2; weight of
the coverage part in the search heuristic

β ‘distance to existing
rules’ heuristic
weight

([0, 1]); Section 4.3, Equations 4.1 and 4.2; weight
of the ‘distance to existing rules’ part in the search
heuristic

γ ‘prototype
dissimilarity’
heuristic weight

([0, 1]); Section 4.3, Equations 4.1 and 4.2; weight of
the ‘prototype dissimilarity’ part in the search heuris-
tic

τ target attributes
weight

([0, 1]); Section 4.3, Equation 4.3; weight of the tar-
get attributes within the search heuristic, non-target
attributes are assumed to have weight of 1−τ

ζ covering weight Section 4.5, ([0, 1]); Equations 4.6 and 4.8; weight con-
trolling the amount by which weights of covered ex-
amples are reduced within the error weighted cover-
ing algorithm

ε covering weight
threshold

[0, 1]); Section 4.5, Table 4.4; (value of example
weights within the error weighted covering algorithm
below which they are set to zero, i.e., removed from
the current learning set

χ maximal number of
rules

(> 1); Section 4.5, Table 4.5; maximal number of
learned rules

λ regularization
parameter

(≥ 0); Section 4.6, Equation 4.12; influence of the reg-
ularization in optimization of the rule’s weights



Chapter 5

Experimental evaluation

In this chapter, we experimentally evaluate the newly developed methods for induc-
tion of predictive clustering rules. First, we define our evaluation methodology and
describe problem domains used in the evaluation. Next, we present several groups of
experiments, each designed to investigate a different issue. These include a compari-
son to existing approaches, a comparison of multiple target to single target prediction,
and investigation of the influence of some learning algorithm parameters.

5.1 Evaluation methodology and test domains

When evaluating the newly developed methods, we are mainly interested in the pre-
dictive error of the learned models. Estimating predictive error of rule sets was dis-
cussed in Section 3.2. In this chapter, we confine ourselves to classification error for
classification tasks, while for regression tasks, we use the relative root mean squared
error (RRMSE) and the correlation coefficient. All error measures are estimated us-
ing 10-fold cross-validation. The folds for a specific data set are the same for all
experiments, and are, in the case of single target classification, stratified. The error
of multiple target prediction tasks is estimated as the average error over all target
attributes. Besides the predictive error, we also consider the complexity of models,
which we measure as the number of rules.1 Trees can be converted to rules and their
complexity estimated in the same way. When comparing the error rates (and other
quality measures) of two algorithms on multiple data sets, one wants to test whether
the observed differences are significant. As recommended by Demšar (2006), we do
this with the Wilcoxon signed-rank test (Wilcoxon, 1945).

All experiments with predictive clustering rules (PCRs) were performed with the

1Measuring the complexity of rule sets only as the number of rules in them does not take into
account the complexity of each separate rule (i.e., the number of tests within the rule’s condition).

49
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Table 5.1: Default settings of the algorithm for learning predictive clustering rules.

Parameter Default value

bw beam width 10
µ minimal number of examples 2.0
h heuristic type h∗ (i.e., product ver.)
doff dispersion offset default dispersion
α coverage heuristic weight 1.0
β ‘distance to existing rules’ heuristic weight 0.0 (i.e., not used)
γ ‘prototype dissimilarity’ heuristic weight 0.0 (i.e., not used)
τ target attributes weight 1.0 (i.e., tar. atts. only)
ζ covering weight 0.0 (i.e., remove immediately)
ε covering weight threshold 0.1
χ maximal number of rules 1000
λ regularization parameter 0.0 (i.e., not used)

default parameter settings, except where written differently. The default parame-
ter values are presented in Table 5.1. These are set so as to emulate the CN2 and
CN2-WRAcc algorithms as closely as possible. Ordered rules were induced with
the learning set modifying method (Mmod) set to “Std-Covering” and the prediction method
(Mpred) set to “Ordered”, which corresponds to the CN2 algorithm for learning ordered
rules. Unordered rules were induced with the newly proposed error weighted cov-
ering algorithm (Mmod set to “Err-Weight-Covering”) and were interpreted in the same
way as unordered CN2 rules (Mpred set to “Unordered-Cov-W”), i.e., rules are weighted
proportionally to their coverage. The rule adding method (Madd) is set to “Always” for
classification problems, which is also the same as in the CN2 algorithm. The fact that
the covering algorithm learns new rules independently of the already learned rules
can be problematic in regression tasks (see Section 5.2.4). The preliminary experi-
ments have shown that this problem can be somewhat alleviated by setting the rule
adding method (Madd) to “If-Better”. This way, a new rule is added to the rule set only
if it improves the performance of the whole rule set, which prevents from adding
a new rule which is not compatible with the current rule set. Among the two pre-
sented heuristic functions (Equations 4.1 and 4.2) we selected the product version (h∗)
which together with the dispersion offset (doff ) set to the default dispersion, and coverage
heuristic weight (α) set to 1 corresponds to the WRAcc heuristic. The target attributes
weight (τ) is set to 1 which means that the search heuristic takes into account only the
target attributes. The covering weight (ζ) is set to 0 which means that correctly pre-
dicted learning examples are immediately removed from the learning set (like CN2),
while others are removed when their weight falls below the covering weight threshold
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Table 5.2: Single target classification data sets and their characteristics: number of examples,
percentage of missing values, numbers of nominal and numeric attributes, number of target
attributes (here always 1), and number of all attributes.

Data set # exs % miss # nom # num # tar # all

vals atts atts atts atts

australian 690 0 8 6 1 15
balance 625 0 0 4 1 5
breast-w 699 0.25 9 0 1 10
bridges-td 102 5.04 4 3 1 8
car 1728 0 6 0 1 7
glass 214 0 0 9 1 10
heart 270 0 6 7 1 14
image 2310 0 0 19 1 20
iris 150 0 0 4 1 5
sonar 208 0 0 60 1 61
soya 683 9.78 35 0 1 36
tic-tac-toe 958 0 9 0 1 10
vote 435 5.63 16 0 1 17
waveform 5000 0 0 21 1 22
wine 178 0 0 13 1 14

(ε) which we arbitrarily set to 0.1. The parameters linked to the algorithm features
presented in Chapter 4 but not used in the following experimental evaluation are set
to zero.

Predictive clustering rules can be applied to (at least)2 four different predictive
tasks: single target classification, single target regression, multiple target classifica-
tion, and multiple target regression. The descriptions of the problem domains used
for evaluation on each of these types of tasks follow below.

5.1.1 Single target classification problems

Single target classification is a standard machine learning task for which many data
sets are publicly available. We have selected 15 data sets from the UCI Machine Learn-
ing Repository (Newman et al., 1998) which are widely used in various comparative
studies. A brief overview of the selected data sets and their characteristics is given in
Table 5.2.

2In principle, predictive clustering rules can also be used for multiple mixed target classification
and regression problems, but no evaluation has been done for this type of problems.
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Table 5.3: Single target regression data sets and their characteristics: number of examples,
percentage of missing values, numbers of nominal and numeric attributes, number of target
attributes (here always 1), and number of all attributes.

Data set # exs % miss # nom # num # tar # all

vals atts atts atts atts

auto-horse 203 1.12 8 17 1 26
auto-mpg 398 0.22 3 4 1 8
auto-price 159 0 0 15 1 16
breast-tumor 286 0.35 8 1 1 10
cloud 108 0 2 4 1 7
cpu 209 0 1 6 1 8
echo-months 130 8.29 3 6 1 10
housing 506 0 1 12 1 14
meta 528 4.55 2 19 1 22
pbc 418 16.47 8 10 1 19
quake 2178 0 0 3 1 4
sensory 575 0 11 0 1 12
servo 167 0 4 0 1 5
strike 625 0 1 5 1 7
veteran 137 0 4 3 1 8

5.1.2 Single target regression problems

Single target regression is another standard machine learning task for which many
publicly available data sets exist. We have selected 15 data sets from the UCI Machine
Learning Repository (Newman et al., 1998) and the StatLib Data Sets Archive (StatLib). A
brief overview of the selected data sets and their characteristics is given in Table 5.3.

5.1.3 Multiple target classification problems

Multiple target classification is a relatively new machine learning task and conse-
quently there are few publicly available data sets. Nevertheless, some data sets from
the UCI Machine Learning Repository (Newman et al., 1998) can also be regarded as
multiple target problems (bridges, monks, solar-flare, and thyroid). Several prob-
lems that are originally multiple target regression problems can be simply discretized
(edm-dis, sigmea-dis, and water-quality-dis). In addition, we use the data set medi-
ana which is a multiple target classification problem in its original form. An overview
of the selected data sets and their characteristics are given in Table 5.4. A brief de-
scription of the data sets follows.
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Table 5.4: Multiple target classification data sets and their characteristics: number of examples,
percentage of missing values, numbers of nominal and numeric attributes, number of target
attributes, and number of all attributes.

Data set # exs % miss # nom # num # tar # all

vals atts atts atts atts

bridges 102 6.05 4 3 5 12
edm-dis 154 0 0 16 2 18
mediana 7953 0 21 58 5 84
monks 432 0 6 0 3 9
sigmea-real-dis 817 0 0 6 2 8
sigmea-sim-dis 10368 0 2 9 2 13
solar-flare-dis 323 0 10 0 3 13
thyroid-0387 9172 4.56 22 7 7 36
water-quality-dis 1060 0 0 16 14 30

BRIDGES

The Pittsburgh Bridges data set from the UCI repository contains 102 bridges described
in terms of 7 attributes (e.g., year of construction, purpose, number of lanes, etc.) and
each bridge has 5 properties or target attributes (e.g., construction material, span, type
of construction, etc.) which we try to predict.

EDM-DIS

The Electrical Discharge Machining is originally a two target regression problem and
is described in Section 5.1.4. Both target attributes have been discretized to three
nominal values; ‘-1’ for negative values, ‘1’ for positive values and ‘0’ otherwise.

MEDIANA

The data on the Slovene media space were collected by the Institute for Market and Me-
dia Research, Mediana (www.mediana.si). The data set consists of 7953 questionnaires
tracking all important printed, audio, and visual mass media in Slovenia. Originally,
each questionnaire contains about 1200 questions about a person’s relation to spe-
cific media, their activities, interests, and lifestyle, as well as demographic data. The
data set has been used within the European project Data Mining and Decision Sup-
port for Business Competitiveness: A European Virtual Enterprise (SolEuNet), and some
results of the analysis of these data are presented in (Škrjanc et al., 2001). From the
complete data set we have selected 79 descriptive attributes from which we try to pre-
dict whether a person reads each of the five major Slovenian daily newspapers (Delo,

www.mediana.si
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Dnevnik, Večer, Slovenske novice, and Ekipa). These are the target attributes with pos-
sible values ‘yes’ and ‘no’. The descriptive attributes describe the person’s spare time
interests (e.g., reading books, going to the cinema, doing sports, etc.), media inter-
ests (e.g., science, politics, nature, etc.), their ability to recognize trademarks (of, e.g.,
cars, beers, washing powders, etc.), whether they own specific items (e.g., apartment,
personal computer, mountain bike, etc.), and some other demographic data (e.g., edu-
cation level, income, age, etc.). Most of the descriptive attributes have either numeric
values or nominal values graded on a Likert scale (Likert, 1932) with 2, 5, or 9 levels.

MONKS

The Monks problems are based on an artificial robots domain (Thrun et al., 1991). Each
example is a robot described with 6 nominal attributes (a1, a2, ..., a6) each having
between 2 and 4 possible values. There are 432 possible robots and three classes,
defined as follows:

monk-1 = (a1 = a2) ∨ (a5 = 1)
monk-2 = exactly two of {a1 = 1, a2 = 1, a3 = 1, a4 = 1, a5 = 1, a6 = 1}
monk-3 ' ((a5 = 3) ∧ (a4 = 1)) ∨ ((a5 , 4) ∧ (a2 , 3)).

To the last class (monk-3), 5% of noise has been added. A robot either belongs to a
class or not. Each of the monk’s tasks is therefore is a binary classification task with 3
target attributes.

SIGMEA-REAL-DIS

The Sigmea Real is originally a two target regression problem and is described in
Section 5.1.4. Both target attributes have been discretized to two nominal values; ‘1’
for positive values and ‘0’ for zero values.

SIGMEA-SIM-DIS

The Sigmea Simulated is originally a two target regression problem and is described in
Section 5.1.4. Both target attributes have been discretized to two nominal values; ‘1’
for positive values and ‘0’ for zero values.

SOLAR-FLARE-DIS

Solar Flares are sudden and intense variations in the brightness of the Sun. In this data
from the UCI repository, each flare producing region of the Sun is one example. Its
status within the previous 24 hours is described in terms of 10 attributes (e.g., area
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of the region, area of the largest Sun spot, activity, etc.). The task is to predict the
flares production (i.e., the number of flares) of each class (C – common, M – moderate,
or X – severe flares) in the following 24 hours. The numbers of flares of each class
are the target attributes. Because the common flares are much more common than,
say, severe, the distribution of the classes is highly skewed. The data were collected
between February 13 and March 27, 1969.

THYROID-0387

In the UCI repository one can find several variants of the Thyroid Disease data set. We
are using the one with the label 0387 which consists of 9172 patient records from 1984
to early 1987 and originates from the Garvan Institute of Sydney, Australia. For each
patient we have given her or his condition and treatment history in the form of 29
attributes. The task is to diagnose 7 different conditions for each patient. Each of
these conditions is one target attribute.

WATER-QUALITY-DIS

The Water Quality data set is originally a 14 target regression problem and is described
in Section 5.1.4. The target attributes have been discretized to two nominal values; ‘1’
for positive values and ‘0’ for zero values (abundances have been transformed into
presences or absences).

5.1.4 Multiple target regression problems

Just like multiple target classification, multiple target regression is a relatively new
machine learning task, and there are few publicly available data sets. In fact, we
could only find one data set in the UCI Repository that can be regarded as a multiple
target regression data set (solar-flare). All the other data sets used here are not
publicly available. A description of each of the data sets follows.

EDM

Electrical Discharge Machining (EDM) is a machining method primarily used for hard
materials that are electrically conductive. The workpiece surface is machined by elec-
trical discharges occurring in the gap between two electrodes, the tool and the work-
piece. The gap is continuously flushed by the dielectric fluid. The process consists of
numerous randomly ignited monodischarges generating crater-textured surface. The
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Table 5.5: Multiple target regression data sets and their characteristics: number of examples,
percentage of missing values, numbers of nominal and numeric attributes, number of target
attributes, and number of all attributes.

Data set # exs % miss # nom # num # tar # all

vals atts atts atts atts

edm 154 0 0 16 2 18
microarthropods 1944 5.3×10−2 0 142 3 145
sigmea-real 817 0 0 6 2 8
sigmea-sim 10368 0 2 9 2 13
solar-flare 323 0 10 0 3 13
water-quality 1060 0 0 16 14 30

stability and quality of the process depend on many parameters such as the work-
piece material, dielectric fluid type, size of the gap between the electrodes, flow of
the dielectric fluid, electric voltage between the electrodes, electric current between
the electrodes, characteristics of discharges, and others. While these parameters have
some predefined values, machining time can often be shortened by their dynamic
control. A human operator is normally employed for this purpose. The task is to
automatically reproduce the operator’s behavior. The data set describes 154 actions
taken by the operator where he controlled two variables (target attributes), the flow
and the gap. For each variable, three actions were possible: he increased the variable
(numerical value 1), decreased the variable (value -1), or took no action (value 0). The
reasons for each action are described in terms of 16 numeric attributes which define
the type and size of electrical pulses and their history (e.g., mean value and standard
deviation of effective pulses within the last 5 seconds). A more detailed description
of the data, as well as their analysis can be found in (Karalič and Bratko, 1997).

MICROARTHROPODS

In agricultural soil, a suite of anthropogenic events shape the ecosystem processes
and populations including factors like crop and tillage practices. This data set de-
scribes agricultural events (e.g., crops planted, packing, tillage, fertilizer and pesticide
use, etc.) and soil biological parameters (e.g., abundances of various species of mi-
croarthropods) for each soil sample. The task is to induce a model that predicts soil
quality from agricultural measures and events. Soil quality is described in terms of
acari and collembolan species, as well as Shannon biodiversity. The data have previously
been analyzed in (Demšar et al., 2006), where a detailed description can also be found.
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SIGMEA-REAL

The large scale release of Genetically Modified Organisms (GMOs) raises many agro-
nomic and ecological concerns. The primary concern is to limit the uncontrolled
escape of the introduced genes from the genetically modified organisms. A key pro-
cess to assessing the risks of genetically modified crops, such as oilseed rape, is the
study of dispersal capacity of pollen grains. The data were collected within the Eu-
ropean project Sustainable Introduction of GMOs into European Agriculture (SIGMEA).
A field experiment was conducted, where a pollen donor plot of 10m by 10m was
sown with the herbicide resistant, male-fertile (MF) transgenic line of oilseed rape.
The donor plot was surrounded by an area of 90m by 90m, sown with two lines of
oilseed rape: the herbicide susceptible, near-isogenic MF line, and the non-transgenic
male-sterile (MS) line. Seeds were sown on every node of a 29 by 29 grid through-
out the field. Later, the seeds of MS and MF plants from the surrounding area were
harvested separately on each of the nodes in the grid, sown again, and the seedlings
tested on herbicide resistance. The herbicide resistance rate is used as a measure of
pollen dispersal. The task is to model the rate of herbicide resistance of the two lines
of plants (MF and MS) in dependence of the position, cardinal direction and distance
from the center of the donor field, the visual angle between the sampling plot and the
donor field, and the shortest distance between the plot and the nearest edge of the
donor field. Each plot in the grid represents one example in the data set. The data
have previously been analyzed in (Demšar et al., 2005), where a detailed description
can also be found.

SIGMEA-SIM

Just like the sigmea-real data set, this data set is also concerned with gene flow
between the genetically modified and conventional oilseed varieties, and it also origi-
nates from the SIGMEA project. It was not, however, collected during a field experi-
ment, but was generated using the GeneSys model. GeneSys (Colbach et al., 2001a,b)
is a complex numeric model that quantifies the effects of cropping systems (crop
distribution, crop succession, cultivation techniques oilseed varieties) on gene flow
between oilseed varieties and volunteers in time and space. The task is to investigate
the effects of the individual field characteristics and cropping systems on pollen and
seed dispersal. A set of different individual fields with different cropping systems
was generated. Field characteristics were varied over a large range of values, and dif-
ferent cropping systems were selected in order to form contrasted situations of gene
flow, ranging from maximum risk to risk free. GeneSys was used to simulate the
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Table 5.6: The attributes of the water-quality and water-quality-dis data sets.

Independent attributes Target attributes

physical & chemical properties abundance of taxa

water temperature Cladophora sp.
alkalinity (pH) Gongrosira incrustans

electrical conductivity Oedogonium sp.
dissolved O2 Stigeoclonium tenue

O2 saturation Melosira varians

CO2 conc. Nitzschia palea

total hardness Audouinella(Chantransia) chalybea

NO2 conc. Erpobdella octoculata

NO3 conc. Gammarus fossarum

NH4 conc. Baetis rhodani

PO4 conc. Hydropsyche sp.
Cl conc. Rhyacophila sp.
SiO2 conc. Simulium sp.
chemical oxygen demand – KMnO4 Tubifex sp.
chemical oxygen demand – K2Cr2O7
biological oxygen demand (BOD)

rate of pollen and seed dispersal rate, which are the target attributes of this data set.
The data have previously been analyzed in (Džeroski et al., 2005), where a detailed
description can also be found.

SOLAR-FLARE

The same data set that we use as a multiple target classification problem can also
be used as a multiple regression problem, since the target attributes are basically the
numbers of solar flares, and can be regarded as numeric attributes. For more details
on this data set, see Section 5.1.3.

WATER-QUALITY

This data set concerns the water quality of the Slovenian rivers. The data set comprises
biological and chemical data that were collected through regular monitoring of rivers
in Slovenia. The data source is the Environmental Agency of the Republic of Slovenia
that performs water quality monitoring for most Slovenian rivers and maintains a
database of water quality samples. The data cover a six year period, from 1990 to 1995,
and have been previously analyzed by Džeroski et al. (2000). Biological samples are



5.2 Comparison to existing methods 59

taken twice a year, once in summer and once in winter, while physical and chemical
analyses are performed several times a year for each sampling site. The physical
and chemical samples include the measured values of 16 different parameters. The
biological samples include a list of all taxa (plant and animal species) present at the
sampling site, together with their abundances. All the attributes of the data set are
listed in Table 5.6. In total, 1060 water samples are available in the data set. In our
experiments we have considered the physical and chemical properties as independent
attributes, and the abundance of taxa as target attributes.

5.2 Comparison to existing methods

First, we compare the performance of predictive clustering rules to some existing
methods. There are many rule learners for single target classification; we selected
the CN2 rule learner (Clark and Niblett, 1989; Clark and Boswell, 1991) and a mod-
ification of CN2, the CN2-WRAcc (Todorovski et al., 2000), because our approach is
a generalization of these algorithms. Additionally, we compare predictive clustering
rules to two modern classification rule learners: Ripper (Cohen, 1995) and CN2-EVC
(Možina et al., 2006). The latter one is, as the name implies, also an upgrade of the
CN2 method. Rule learners for regression3 are scarce; in fact, we were unable to find
any working version of a regression rule learner, except for the FRS system (Demšar,
1999), which is a reimplementation of the FORS system (Karalič and Bratko, 1997).
Unfortunately, this system cannot handle missing values, and we were only able to
use it on a subset of the problems from Table 5.3. There are no existing rule learn-
ers for multiple target prediction, so we compare our system on these problems to
predictive clustering trees (Blockeel et al., 1998) as implemented in the Clus system
(Blockeel and Struyf, 2002). For completeness, we also compare predictive clustering
rules to predictive clustering trees on single target problems. The overall significance
of differences between a pair of methods is estimated using the Wilcoxon signed-rank
test (Wilcoxon, 1945); in single target domains, each data set is a data point, while
in multiple target domains, each target attribute of each data set corresponds to one
data point. Comparison of many algorithms based on pair-wise comparisons can
be difficult to follow (and is also theoreticaly flawed). For this reason we addition-
ally perform the Nemenyi (Nemenyi, 1963) test on tasks where we compare more
than three algorithms, and the results are visualised using the average rank diagrams

3Here we do not consider algorithms that generate rules via regression trees, e.g., M5 Rules (Holmes
et al., 1999), or algorithms that use discretization to transform regression problems to classification
problems, e.g., SWAP1R (Weiss and Indurkhya, 1993).
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Table 5.7: Single target classification, comparison of error rates of CN2, CN2-WRAcc, CN2-EVC,
JRip and PCR algorithms. Significances (p-values) of differences in error rates and rule set sizes
for the pairs of algorithms. The sign < (>) right of a p-value means that the first (second)
algorithm tends to induce rule sets with smaller error rate or size. Significant differences are
typeset in bold.

Compared algorithms error size

p-value p-value

cn2 ordered pcr ordered 0.978 < 0.151 >
cn2wracc ordered pcr ordered 0.359 > 0.003 <
jrip ordered pcr ordered 0.073 < 0.934 >
cn2evc unordered pcr ordered 0.421 < <0.001 >
cn2 unordered pcr unordered 0.002 > 0.804 <
cn2wracc unordered pcr unordered 0.003 > <0.001 <
jrip ordered pcr unordered 0.847 > 0.007 <
cn2evc unordered pcr unordered 0.978 < 0.007 >
cn2 ordered cn2 unordered 0.144 < 0.359 <
cn2wracc ordered cn2wracc unordered 0.524 < 0.804 >
pcr ordered pcr unordered 0.018 > <0.001 <

(Demšar, 2006). When talking about significant differences we assume the standard
p-value threshold of 0.05, however, one should not forget that significance is a contin-
uous quantity.

5.2.1 CN2, CN2-WRAcc, CN2-EVC, and Ripper

The CN2 and CN2-WRAcc algorithms can induce ordered or unordered rules. CN2
can use significance testing for rule pruning, while there is no need for significance
testing in CN2-WRAcc, since the number of induced rules by this algorithm is al-
ready much smaller (see Section 2.4 for more details). We use the p-value of 0.99 for
significance testing in the CN2 algorithm. The CN2-EVC algorithm can only induce
unordered rules and is implemented in the Orange data mining suite (Demšar et al.,
2004). The Ripper algorithm can originally learn ordered or unordered rules, how-
ever, we used the JRip implementation from the Weka data mining suite (Witten and
Frank, 2005) which can only learn ordered rules. Parameters of all algorithms were
set to their default values.

Table 5.7 presents the results of significance testing; algorithms were compared
pairwise, for both ordered rules and unordered rules. For each of the three algorithms
that can induce ordered and unordered rules we also compared ordered vs. unordered
rules. The error rates and rule set sizes for ordered and unordered rules are presented
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Table 5.8: Single target classification, comparison of error rates of CN2, CN2-WRAcc, JRip, and
PCR algorithms for ordered rules. For each data set, the smallest error rate is typeset in bold.
Size is given as the number of learned rules. The last row gives the averages over all data sets.

Data set cn2 cn2-wracc jrip pcr

% error # size % error # size % error # size % error # size

australian 21.6 ±6.1 17 15.2 ±3.5 3 14.4 ±4.1 5 16.8 ±6.6 14
balance 21.8 ±4.8 31 27.7 ±5.8 6 19.7 ±5.3 12 17.3 ±4.3 36
breast-w 5.1 ±2.7 13 6.3 ±3.1 11 5.6 ±3.6 13 4.6 ±2.8 5
bridges-td 21.6 ±12.2 2 21.6 ±13.6 3 22.6 ±12.6 2 25.5 ±15.8 4
car 4.6 ±2.1 37 18.9 ±4.6 11 12.6 ±3.7 50 3.5 ±1.3 40
glass 39.8 ±13.1 10 38.8 ±17.5 4 30.4 ±12.7 9 37.4 ±14.1 13
heart 24.1 ±11.5 12 21.8 ±9.0 3 18.9 ±10.2 3 22.2 ±7.8 11
image 4.5 ±1.3 28 10.0 ±2.1 8 4.7 ±3.8 22 17.4 ±1.7 11
iris 7.3 ±6.6 2 8.0 ±7.6 3 5.3 ±7.6 4 4.7 ±5.5 4
sonar 23.4 ±14.7 10 28.8 ±9.3 4 26.9 ±9.1 5 32.7 ±6.5 5
soya 13.5 ±5.9 22 52.0 ±8.4 8 8.4 ±4.5 28 28.7 ±14.7 15
tic-tac-toe 5.9 ±6.6 32 30.3 ±6.8 5 2.2 ±3.4 9 4.3 ±3.2 18
vote 7.1 ±2.6 7 4.8 ±3.0 5 4.6 ±4.3 4 5.7 ±4.0 7
waveform 21.9 ±1.7 182 24.2 ±2.4 6 19.9 ±2.4 32 19.7 ±1.9 16
wine 5.0 ±4.9 3 3.4 ±5.4 3 8.4 ±6.0 3 9.0 ±6.6 3

Average 15.2 27.2 20.8 5.5 13.6 13.4 16.7 13.5

in Table 5.8 and 5.9 respectively.

For ordered rules, we can see that there are no significant differences between
the CN2, CN2-WRAcc, and PCR algorithms in terms or error, but rule sets induced
by CN2-WRAcc have a significantly smaller number of rules. JRip is better than
PCR in terms of error (p-value=0.073). Next, if we compare unordered rules, we see
that predictive clustering rules have a significantly smaller error than CN2 and CN2-
WRAcc algorithms. However, the PCR rule sets are much larger than the CN2-WRAcc
rule sets. Even larger are the CN2-EVC rule sets. Finally, if we compare ordered
and unordered rules induced by CN2, CN2-WRAcc, and PCR, the only significant
difference is in the case of PCRs; unordered PCRs have a significantly smaller error,
but this accuracy comes at a price, since their size is much larger.

The overall comparison of all mentioned algorithms (including predictive cluster-
ing trees, comparison to which is presented in Section 5.2.3) can be visually presented
using the average ranks diagrams (Demšar, 2006). The diagrams comparing error rates
and rule set sizes are given in Figures 5.1 and 5.2 respectively. The ruler in the diagram
is the axis on which we plot the average ranks of compared methods. The methods
with lower (i.e., better) ranks are on the right side of the diagram. The critical dif-
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Table 5.9: Single target classification, comparison of error rates of CN2, CN2-WRAcc, CN2-EVC
and PCR algorithms for unordered rules. For each data set, the smallest error rate is typeset in
bold. Size is given as the number of learned rules. The last row gives the averages over all
data sets.

Data set cn2 cn2-wracc cn2-evc pcr

% error # size % error # size % error # size % error # size

australian 16.1 ±5.2 12 15.1 ±3.6 2 14.2 ±5.1 66 13.6 ±5.1 26
balance 23.2 ±5.4 51 30.3 ±7.9 7 16.8 ±5.2 68 17.4 ±4.2 74
breast-w 7.0 ±3.2 14 11.0 ±5.1 5 20.0 ±6.8 50 3.6 ±1.8 10
bridges-td 15.8 ±11.8 3 19.6 ±10.4 3 16.5 ±12. 5 17.6 ±11.5 8
car 8.3 ±2.5 96 30.0 ±3.0 7 26.0 ±3.4 87 3.7 ±1.7 68
glass 42.4 ±13.0 19 37.4 ±18.1 7 36.0 ±16. 36 38.8 ±14.7 22
heart 27.4 ±9.4 8 22.2 ±7.2 3 16.7 ±6.4 48 20.4 ±9.3 17
image 13.7 ±3.7 34 9.0 ±2.6 7 19.2 ±10. 72 8.9 ±2.8 21
iris 11.4 ±9.5 4 8.0 ±7.6 3 6.0 ±4.9 9 7.3 ±6.6 5
sonar 37.0 ±9.2 9 33.1 ±7.8 5 19.7 ±9.6 24 24.5 ±12.1 8
soya 12.2 ±4.0 37 47.7 ±7.3 18 31.3 ±7.8 50 13.6 ±4.7 35
tic-tac-toe 3.2 ±5.2 22 25.3 ±6.5 7 1.8 ±1.5 28 4.0 ±3.6 52
vote 6.0 ±3.1 8 4.4 ±3.0 2 5.1 ±3.6 36 3.9 ±3.5 11
waveform 31.2 ±2.9 78 27.1 ±1.6 3 17.8 ±1.5 308 18.9 ±2.4 24
wine 7.3 ±7.6 6 5.7 ±5.3 4 5.2 ±5.8 10 7.3 ±5.3 6

Average 17.5 26.7 21.7 5.5 16.8 59.8 13.6 25.8

ference (CD) interval as computed by the Nemenyi test (Nemenyi, 1963) is plotted
in the upper left corner; algorithms whose average ranks difference is larger than
this critical difference can be considered significantly different with 95% probability.
Algorithms that do not differ significantly are connected by a thick horizontal line.
From the diagram comparing error rates (Figure 5.1) we can see that the algorithms
can be roughly grouped in three groups: unordered PCRs, JRip, and CN2-EVC are
ranked best, unordered CN2 and CN2-WRAcc are ranked worst, while the other three
algorithms are in the middle. However, only the difference between the unordered
PCRs and unordered CN2 is strictly significant (this suggests that the Nemenyi test
is less powerful than the Wilcoxon signed-rank test which detects three significant
differences). The algorithms on the diagram comparing rule set sizes (Figure 5.2) can
also be grouped in three groups: CN2-WRAcc rule sets are ranked smallest, CN2-EVC
and PC trees are ranked largest, while all other methods are in between. Taking both
diagrams into account we can see that some methods trade accuracy for simplicity4

4The fact that gain in accuracy usually comes at a price of losing model simplicity is well known
from decision trees (Bohanec and Bratko, 1994).
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Figure 5.1: Average ranks diagram for single target classification, comparison of error rates of
all algorithms compared to each other with the Nemenyi test. Algorithms that do not differ
significantly (p-value=0.05) are connected.
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Figure 5.2: Average ranks diagram for single target classification, comparison of rule set sizes of
all algorithms compared to each other with the Nemenyi test. Algorithms that do not differ
significantly (p-value=0.05) are connected.

(e.g., CN2-WRAcc) and vice versa (e.g., CN2-EVC) while others represent a compro-
mise (e.g., JRip). A good rank of the JRip algorithm on both criteria can be explained
with the fact that it includes the reduced error pruning algorithm, which the other
algorithms do not. The fact that unordered PCRs are ranked first in terms of error
rates, but only sixth in terms of rule sets sizes suggest that here also, some simplicity
is traded for accuracy. A different parameter setting could change the relation be-
tween accuracy and simplicity. Ordered PCRs, however, seem to be a compromise in
this regard.

From these results, we can conclude that the performance of predictive cluster-
ing rules on single target problems is comparable to the performance of the other
algorithms for ordered rules, and comparable or better for unordered rules.
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Table 5.10: Single target regression, comparison of RRMSE and correlation coefficients of FRS and
PCR algorithms. Significances (p-values) of differences in RRMSE, correlation coefficients and
rule set sizes for different algorithms. The sign < (>) right of a p-value means that the first
(second) algorithm tends to induce rule sets with smaller RRMSE, correlation coefficients or
size. Significant differences are typeset in bold.

Compared algorithms rrmse corr size

p-value p-value p-value

frs ordered pcr ordered 0.359 > 0.020 < 1.000 =
frs ordered pcr unordered 0.129 > 0.012 < 0.496 >
pcr ordered pcr unordered 0.301 > 0.910 < 0.004 >

5.2.2 FRS

The FRS system (Demšar, 1999) is a reimplementation of the FORS system (Karalič
and Bratko, 1997). It can learn ordered regression rules. The prediction model in
each rule can either be a constant or a linear regression model. In order to compare
FRS to predictive clustering rules (PCRs), we have disabled the construction of linear
regression models, and set the minimal number of examples covered by each rule to
be the same in both algorithms (i.e., 2). All the other FRS settings were set to their
default values. Unfortunately, the FRS system cannot handle missing values, and we
were only able to use it on a subset of the problems from Table 5.3. At this point we
should note that the FRS was designed as an inductive logic programming system for
linear regression and we use it here for a task for which it was not originally intended.
However, since this was the only regression rule learner we were able to find, and it
uses a similar rule learning as CN2, we believe such a comparison is beneficial.

The significances of differences between the FRS and PCR algorithms are presented
in Table 5.10; the relative root mean squared errors (RRMSE), correlation coefficients,
and rule set sizes are presented in Table 5.11 and 5.12, respectively. When looking at
the RRMSE, we can see that ordered and unordered PCRs perform better than rules
generated by FRS, but this difference is not significant. In the correlation coefficient
comparison, the correlation coefficients of PCRs are larger, and this time the difference
is significant.

There is virtually no difference in the rule set sizes between FRS and the ordered
PCR rule sets; the unordered PCR rule sets are smaller, the difference being almost
significant (p-value=0.129). The differences between ordered and unordered PCRs are
not significant, except for the rule set size: unordered PCR rule sets are significantly
smaller. Based on these results, we can conclude that PCRs are comparable or better
than the FRS rules.
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Table 5.11: Single target regression, comparison of RRMSE of FRS and PCR algorithms. For
each data set, the smallest RRMSE is typeset in bold. Size is given as the number of learned
rules. The last row gives the averages over all data sets.

Data set frs ordered pcr ordered pcr unordered

rrmse # size rrmse # size rrmse # size

auto-price 0.91 ±0.01 19 0.52 ±0.13 3 0.52 ±0.15 3
cloud 0.94 ±0.03 1 0.72 ±0.24 3 0.81 ±0.25 3
cpu 0.88 ±0.01 18 0.52 ±0.29 3 0.65 ±0.42 3
housing 0.80 ±0.00 126 0.67 ±0.12 7 0.67 ±0.11 7
quake 1.00 ±0.00 4 1.16 ±0.05 129 1.02 ±0.04 8
sensory 1.00 ±0.00 1 1.07 ±0.10 34 1.00 ±0.10 10
servo 1.01 ±0.02 1 0.61 ±0.32 5 0.49 ±0.20 3
strike 0.99 ±0.01 19 1.26 ±0.48 14 1.10 ±0.41 13
veteran 1.02 ±0.04 1 1.22 ±0.48 8 1.09 ±0.27 5

Average 0.95 21.1 0.86 22.9 0.82 6.1

Table 5.12: Single target regression, comparison of correlation coefficients of FRS and PCR algo-
rithms. For each data set, the largest correlation coefficient is typeset in bold. Size is given as
the number of learned rules. The last row gives the averages over all data sets.

Data set frs ordered pcr ordered pcr unordered

corr # size corr # size corr # size

auto-price 0.41 ±0.04 19 0.86 ±0.07 3 0.86 ±0.08 3
cloud 0.35 ±0.10 1 0.71 ±0.28 3 0.64 ±0.19 3
cpu 0.50 ±0.22 18 0.86 ±0.31 3 0.76 ±0.29 3
housing 0.62 ±0.03 126 0.76 ±0.09 7 0.76 ±0.08 7
quake 0.09 ±0.02 4 0.01 ±0.06 129 0.02 ±0.05 8
sensory -0.08 ±0.06 1 0.27 ±0.18 34 0.22 ±0.19 10
servo -0.22 ±0.21 1 0.82 ±0.22 5 0.87 ±0.16 3
strike 0.17 ±0.03 19 0.14 ±0.24 14 0.19 ±0.22 13
veteran -0.03 ±0.07 1 0.10 ±0.31 8 0.19 ±0.36 5

Average 0.20 21.1 0.50 22.9 0.50 6.1
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Table 5.13: Single target classification, comparison of error rates of predictive clustering trees
(PCTs), and PCR algorithms for ordered and unordered rules. Significances (p-values) of dif-
ferences in error rates and rule set sizes for the pairs of algorithms. The sign < (>) right of
a p-value means that the first (second) algorithm tends to induce rule sets with smaller error
rate or size. Significant differences are typeset in bold.

Compared algorithms error size

p-value p-value

pc trees pcr ordered 0.679 < <0.001 >
pc trees pcr unordered 0.303 > <0.001 >

5.2.3 Predictive clustering trees

Predictive clustering trees (PCTs) are the original predictive clustering method intro-
duced by Blockeel (1998); Blockeel et al. (1998). We have used PCTs as implemented
in the Clus machine learning toolkit (Blockeel and Struyf, 2002). Where applicable,
both the PCT algorithm and the PCR algorithm used the same settings, while all tree-
specific settings were set to their defaults. PCTs can be used to learn models on the
same types of tasks as PCRs can, i.e., they can learn models in single and multiple
target, classification and regression problem domains. We present the results for each
problem domain type separately.

Trees on single target classification problems

The significances of differences between predictive clustering trees (PCTs) and PCRs
are given in Table 5.13, while the error rates are presented in Table 5.14. Trees have a
slightly lower error rate than ordered rules (p-value<0.679), and a slightly higher error
rate than unordered rules (p-value<0.303). The differences, however, are not signifi-
cant. On the other hand, the number of rules produced in each case is significantly
smaller (p-value<0.001) than the number of leaves in the trees (i.e., the number of rules
produced by the conversion of trees to rules). The comparison of PCTs to all other
rule learning algorithms in terms of average ranks is given in Figures 5.1 and 5.2.

Trees on single target regression problems

The significances of pairwise differences between predictive clustering trees (PCTs),
and ordered and unordered PCR rule sets are presented in Table 5.15; the relative
root mean squared errors (RRMSE), correlation coefficients, and rule set sizes are
given in Tables 5.16 and 5.17, respectively. Ordered rules are comparable to trees
in size, but much worse (p-value<0.001) in terms of RRMSE, as well as in terms of
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Table 5.14: Single target classification, comparison of error rates of predictive clustering trees
(PCTs), and PCR algorithms for ordered and unordered rules. For each data set, the smallest
error rate is typeset in bold. Size is given as the number of learned rules, trees are converted
to rules. The last row gives the averages over all data sets.

Data set pc trees pcr ordered pcr unordered

% error # size % error # size % error # size

australian 19.4 ±5.6 62 16.8 ±6.6 14 13.6 ±5.1 26
balance 21.6 ±4.7 101 17.3 ±4.3 36 17.4 ±4.2 74
breast-w 6.3 ±2.4 19 4.6 ±2.8 5 3.6 ±1.8 10
bridges-td 14.7 ±8.4 4 25.5 ±15.8 4 17.6 ±11.5 8
car 2.1 ±1.3 67 3.5 ±1.3 40 3.7 ±1.7 68
glass 29.4 ±13.0 34 37.4 ±14.1 13 38.8 ±14.7 22
heart 27.0 ±9.2 31 22.2 ±7.8 11 20.4 ±9.3 17
image 4.2 ±1.5 49 17.4 ±1.7 11 8.9 ±2.8 21
iris 6.7 ±4.4 5 4.7 ±5.5 4 7.3 ±6.6 5
sonar 26.9 ±6.7 19 32.7 ±6.5 5 24.5 ±12.1 8
soya 13.0 ±6.1 56 28.7 ±14.7 15 13.6 ±4.7 35
tic-tac-toe 7.4 ±3.7 58 4.3 ±3.2 18 4.0 ±3.6 52
vote 5.1 ±2.4 17 5.7 ±4.0 7 3.9 ±3.5 11
waveform 23.4 ±1.6 421 19.7 ±1.9 16 18.9 ±2.4 24
wine 10.7 ±9.9 8 9.0 ±6.6 3 7.3 ±5.3 6

Average 14.5 63.4 16.6 13.5 13.6 25.8

Table 5.15: Single target regression, comparison of RRMSE and correlation coefficients of predictive
clustering trees (PCTs), and PCR algorithms for ordered and unordered rules. Significances (p-
values) of differences in RRMSE, correlation coefficients and rule set sizes for the pairs of
algorithms. The sign < (>) right of a p-value means that the first (second) algorithm tends to
induce rule sets with smaller RRMSE, correlation coefficients or size. Significant differences
are typeset in bold.

Compared algorithms rrms corr size

p-value p-value p-value

pc trees pcr ordered <0.001 < <0.001 > 0.978 >
pc trees pcr unordered <0.001 < <0.001 > 0.095 >
pcr ordered pcr unordered 0.048 > 0.762 < 0.015 >
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Table 5.16: Single target regression, comparison of RRMSE of predictive clustering trees (PCTs),
and PCR algorithms for ordered and unordered rules. For each data set, the smallest RRMSE is
typeset in bold. Size is given as the number of learned rules. The last row gives the averages
over all data sets.

Data set pc trees pcr ordered pcr unordered

rrmse # size rrmse # size rrmse # size

auto-horse 0.41 ±0.17 23 0.68 ±0.18 4 0.63 ±0.16 4
auto-mpg 0.45 ±0.08 16 0.70 ±0.10 4 0.66 ±0.11 4
auto-price 0.49 ±0.15 9 0.52 ±0.13 3 0.52 ±0.15 3
breast-tumor 0.96 ±0.13 3 1.12 ±0.19 17 1.03 ±0.15 9
cloud 0.58 ±0.24 9 0.72 ±0.24 3 0.81 ±0.25 3
cpu 0.33 ±0.17 12 0.52 ±0.29 3 0.65 ±0.42 3
echo-months 0.68 ±0.19 3 0.85 ±0.32 3 0.81 ±0.29 3
housing 0.43 ±0.08 32 0.67 ±0.12 7 0.67 ±0.11 7
meta 1.03 ±0.83 0 1.16 ±0.99 1 1.15 ±1.10 1
pbc 0.94 ±0.15 6 1.01 ±0.18 18 0.94 ±0.15 4
quake 0.99 ±0.04 3 1.16 ±0.05 129 1.02 ±0.04 8
sensory 0.94 ±0.07 7 1.07 ±0.10 34 1.00 ±0.10 10
servo 0.42 ±0.19 11 0.61 ±0.32 5 0.49 ±0.20 3
strike 0.98 ±0.44 12 1.26 ±0.48 14 1.10 ±0.41 13
veteran 0.99 ±0.37 2 1.22 ±0.48 8 1.09 ±0.27 5

Average 0.71 9.9 0.88 16.9 0.84 5.3

correlation coefficient. Unordered rules are also much worse than trees in terms of
RRMSE and correlation coefficient (p-value<0.001), but the rule sets are smaller than
trees (p-value<0.095). Comparison between ordered and unordered rules shows that
unordered rules are better in terms of RRMSE (p-value<0.048), while there are no
significant differences in terms of correlation coefficient (p-value<0.762); unordered
rule sets are smaller than ordered rule sets (p-value<0.015). Possible reasons for the
worse performance of rules in comparison to trees are discussed in Section 5.2.4.

Trees on multiple target classification problems

The significances of differences between predictive clustering trees (PCTs) and PCRs
on multiple target classification domains are given in Table 5.18, while the error rates
are presented in Table 5.19. The results show that, in most cases, one method has
a lower error rate on all or most of the target attributes within each data set, e.g.,
unordered PCRs are better on the bridges, mediana, and water-quality-dis data
sets, while PCTs are better on the edm-dis, monks, solar-flare-dis, and thyroid-
0387 data sets. The overall comparison (Table 5.18) shows that PCTs have comparable
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Table 5.17: Single target regression, comparison of correlation coefficients of predictive clustering
trees (PCTs), and PCR algorithms for ordered and unordered rules. For each data set, the largest
correlation coefficient is typeset in bold. Size is given as the number of learned rules. The last
row gives the averages over all data sets.

Data set pc trees pcr ordered pcr unordered

corr # size corr # size corr # size

auto-horse 0.91 ±0.21 23 0.74 ±0.19 4 0.78 ±0.16 4
auto-mpg 0.89 ±0.03 16 0.73 ±0.07 4 0.76 ±0.07 4
auto-price 0.88 ±0.05 9 0.86 ±0.07 3 0.86 ±0.08 3
breast-tumor 0.29 ±0.17 3 0.20 ±0.23 17 0.12 ±0.17 9
cloud 0.82 ±0.10 9 0.71 ±0.28 3 0.64 ±0.19 3
cpu 0.94 ±0.06 12 0.86 ±0.31 3 0.76 ±0.29 3
echo-months 0.74 ±0.22 3 0.57 ±0.32 3 0.60 ±0.32 3
housing 0.90 ±0.04 32 0.76 ±0.09 7 0.76 ±0.08 7
meta 0.04 ±0.33 0 0.07 ±0.35 1 0.05 ±0.37 1
pbc 0.39 ±0.20 6 0.37 ±0.13 18 0.40 ±0.17 4
quake 0.12 ±0.10 3 0.01 ±0.06 129 0.02 ±0.05 8
sensory 0.37 ±0.06 7 0.27 ±0.18 34 0.22 ±0.19 10
servo 0.91 ±0.06 11 0.82 ±0.22 5 0.87 ±0.16 3
strike 0.33 ±0.24 12 0.14 ±0.24 14 0.19 ±0.22 13
veteran 0.24 ±0.34 2 0.10 ±0.31 8 0.19 ±0.36 5

Average 0.58 9.9 0.48 16.9 0.48 5.3

error rates to ordered PCRs. Unordered PCRs are somewhat better than trees, but the
difference is only weakly significant (p-value=0.13). Unordered PCRs are, however,
significantly better than ordered PCRs (p-value=0.014).

When considering the rule set sizes (trees are converted to rules), we see that
ordered PCR rule sets are significantly smaller than unordered PCRs and PCTs (p-
value<0.001), and unordered PCR rule sets are in turn significantly smaller than rule
sets obtained from trees (p-value<0.001). The results suggest that ordered PCRs tend to
produce smaller, while unordered PCRs produce more accurate rule sets, compared
to the other two methods. These results are similar as in the case of single target
classification.

Trees on multiple target regression problems

The significances of differences between predictive clustering trees (PCTs), as well
as ordered and unordered PCRs on multiple target regression domains are given in
Table 5.20. The relative root mean squared errors (RRMSE), correlation coefficients,
and rule set sizes are presented in Tables 5.21 and 5.22 respectively. The results from
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Table 5.18: Multiple target classification, comparison of error rates of predictive clustering trees
(PCTs), and PCR algorithms for ordered and unordered rules. Significances (p-values) of differ-
ences in error rates and rule set sizes for the pairs of algorithms over all data sets and all target
attributes. The sign < (>) right of a p-value means that the first (second) algorithm tends to
induce rule sets with smaller error rate or size. Significant differences are typeset in bold.

Compared algorithms error size

p-value p-value

pc trees pcr ordered 0.819 < <0.001 >
pc trees pcr unordered 0.130 > <0.001 >
pcr ordered pcr unordered 0.014 > <0.001 <

the first table, i.e., the overall comparison of differences across all target attributes and
all data sets suggest that PCRs are much worse than the trees, since the RRMSE and
correlation coefficients are significantly worse (in all cases p-value<0.003). However,
if we take a look at the results for each data set separately (Tables 5.21 and 5.22),
we can see that there exist data sets (e.g., the microarthropods and sigmea-real)
on which ordered or unordered PCRs are comparable to or even slightly better than
the trees. When comparing ordered and unordered rules, unordered are better in
terms of RRMSE (p-value=0.104) and worse in terms of correlation coefficients (p-
value=0.388), which suggests that there are no significant differences between the two
algorithms in terms of accuracy. This results are somewhat different from the single
target regression case, where unordered rules were better.

When comparing the rule set sizes, ordered PCR rule sets are significantly larger
than rule sets obtained from trees. On the other hand, unordered PCR rule sets
are a smaller than trees (p-value=0.238) and much smaller than ordered PCRs (p-
value<0.001). This results are in accordance with the results on single target regression
problems.
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Table 5.19: Multiple target classification, comparison of error rates of predictive clustering trees
(PCTs), and PCR algorithms for ordered and unordered rules. For each data set, the average error
rate over all target attributes is given first, and then for each target attribute separately. In
each row, the smallest error rate is typeset in bold. Size is given as the number of learned
rules, trees are converted to rules. The final row (next page) gives the average error rate over
all target attributes of all data sets and the average rule set size over all data sets.

Data set pc trees pcr ordered pcr unordered

tar. att. % error # size % error # size % error # size

bridges 34.8 28 40.5 7 32.2 12
t-or-d 14.1 ±7.3 24.7 ±0.0 10.6 ±8.7
material 27.1 ±0.0 20.0 ±10.1 18.8 ±10.4
span 35.3 ±15.2 43.5 ±11.3 40.0 ±11.0
rel-l 41.2 ±0.0 44.7 ±0.0 35.3 ±15.7
type 56.5 ±0.0 69.4 ±0.0 56.5 ±0.0

edm-dis 22.8 22 25.0 9 29.2 11
d-flow 11.7 ±6.0 11.7 ±8.1 12.3 ±9.0
d-gap 33.8 ±15.9 38.3 ±8.2 46.1 ±13.4

mediana 19.6 1948 17.2 271 16.6 685
read-delo 26.2 ±1.7 22.0 ±1.5 21.7 ±1.2
read-dnevnik 19.5 ±1.6 16.6 ±1.4 15.4 ±0.9
read-ekipa 8.3 ±0.7 7.1 ±0.8 6.3 ±0.8
read-sl-nov 32.0 ±1.3 28.8 ±1.1 29.2 ±0.9
read-vecer 11.8 ±1.3 11.6 ±0.9 10.4 ±1.0

monks 17.2 68 21.7 4 23.5 10
monk-1 9.3 ±7.7 30.1 ±9.1 17.6 ±7.3
monk-2 41.9 ±11.6 33.1 ±8.0 35.9 ±5.9
monk-3 0.5 ±1.5 1.9 ±3.0 17.1 ±5.4

sigmea-real-dis 29.4 187 24.9 38 24.9 72
mfo 29.9 ±6.6 24.5 ±5.2 25.1 ±4.6
mso 28.9 ±4.6 25.3 ±3.8 24.6 ±3.3

sigmea-sim-dis 0.1 35 2.1 3 2.1 4
disp-rate 0.3 ±0.2 4.3 ±0.7 4.3 ±0.7
disp-seeds 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0

solar-flare-dis 9.6 26 11.0 23 10.4 39
c-class 13.3 ±9.5 15.2 ±6.7 13.6 ±6.9
m-class 13.3 ±4.8 14.6 ±4.7 14.9 ±4.6
x-class 2.2 ±3.2 3.1 ±3.2 2.8 ±3.4

Continued on the next page.
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Table 5.19: Continued from the previous page.

Data set pc trees pcr ordered pcr unordered

tar. att. % error # size % error # size % error # size

thyroid-0387 1.0 298 2.4 497 2.5 560
hyper-thyro 1.1 ±0.3 2.5 ±0.6 2.5 ±0.5
hypo-thyro 0.8 ±0.3 3.1 ±0.8 3.7 ±0.5
bind-prot 1.6 ±0.4 3.2 ±0.8 3.4 ±0.6
gen-health 1.0 ±0.4 3.6 ±0.6 2.7 ±0.9
repl-theory 1.0 ±0.3 2.1 ±0.4 3.0 ±0.8
antithyro-tr 0.3 ±0.1 0.3 ±0.2 0.4 ±0.2
disc-results 1.0 ±0.2 2.0 ±0.5 2.0 ±0.6

water-quality-dis 34.3 444 33.3 89 31.8 153
clad-sp 40.8 ±3.4 39.5 ±5.6 40.4 ±4.9
gong-inc 33.6 ±3.4 29.5 ±3.6 28.4 ±3.2
oedo-sp 30.2 ±4.2 29.7 ±4.5 29.9 ±5.1
tige-ten 23.9 ±4.2 23.2 ±4.6 20.8 ±2.4
melo-var 43.2 ±7.6 41.7 ±4.8 41.4 ±3.7
nitz-pal 35.4 ±6.6 31.3 ±2.3 30.6 ±4.3
audo-cha 30.2 ±6.4 29.3 ±5.0 24.2 ±5.2
erpo-oct 31.1 ±3.7 29.0 ±2.6 26.5 ±3.3
gamm-foss 37.8 ±4.5 38.1 ±4.5 37.8 ±3.7
baet-rhod 32.4 ±5.3 31.8 ±3.1 32.5 ±2.4
hydro-sp 39.5 ±5.2 39.1 ±4.6 38.2 ±4.9
rhya-sp 31.6 ±3.6 36.1 ±5.5 30.8 ±6.8
simu-sp 40.6 ±5.1 38.5 ±5.5 37.3 ±4.7
tubi-sp 29.8 ±3.4 28.8 ±4.0 27.1 ±3.1

Average 22.0 339.6 22.6 104.6 21.4 171.8

Table 5.20: Multiple target regression, comparison of RRMSE and correlation coefficients of pre-
dictive clustering trees (PCTs), and PCR algorithms for ordered and unordered rules. Significances
(p-values) of differences in RRMSE, correlation coefficients, and rule set sizes for the pairs of
algorithms over all data sets and all target attributes. The sign < (>) right of a p-value means
that the first (second) algorithm tends to induce rule sets with smaller RRMSE, correlation
coefficients or size. Significant differences are typeset in bold.

Compared algorithms rrmse corr size

p-value p-value p-value

pc trees pcr ordered <0.001 < 0.003 > <0.001 <
pc trees pcr unordered <0.001 < <0.001 > 0.238 <
pcr ordered pcr unordered 0.104 > 0.388 > <0.001 >
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Table 5.21: Multiple target regression, comparison of RRMSE of predictive clustering trees (PCTs),
and PCR algorithms for ordered and unordered rules. For each data set, the average RRMSE over
all target attributes is given first, and then for each target attribute separately. In each row,
the smallest RRMSE is typeset in bold. Size is given as the number of learned rules, trees are
converted to rules. The final row gives the average RRMSE over all target attributes of all data
sets and the average rule set size over all data sets.

data set pc trees pcr ordered pcr unordered

tar. att. rrmse # size rrmse # size rrmse # size

edm 0.72 11 0.88 9 0.92 4
d-flow 0.69 ±0.42 0.94 ±0.43 1.04 ±0.37
d-gap 0.76 ±0.10 0.82 ±0.09 0.80 ±0.09

microarthropods 0.87 50 0.85 108 0.96 7
acari 0.91 ±0.19 0.89 ±0.17 0.99 ±0.22
collembolan 0.92 ±0.20 0.90 ±0.19 0.96 ±0.20
sh-biodiv 0.78 ±0.03 0.76 ±0.04 0.93 ±0.06

sigmea-real 0.61 7 0.61 9 0.60 7
mfo 0.62 ±0.38 0.74 ±0.47 0.70 ±0.38
mso 0.61 ±0.44 0.49 ±0.32 0.50 ±0.30

sigmea-sim 0.03 166 0.13 2 0.40 2
disp-rate 0.03 ±0.01 0.15 ±0.00 0.44 ±0.00
disp-seeds 0.03 ±0.01 0.11 ±0.00 0.35 ±0.00

solar-flare 1.00 2 1.15 13 1.10 12
c-class 0.99 ±0.31 1.04 ±0.30 1.02 ±0.31
m-class 0.98 ±0.39 1.09 ±0.36 1.05 ±0.36
x-class 1.02 ±0.73 1.32 ±0.77 1.24 ±0.74

water-quality 0.96 5 1.09 185 0.99 31
clad-sp 0.99 ±0.06 1.10 ±0.10 0.99 ±0.00
gong-inc 0.99 ±0.09 1.14 ±0.11 1.01 ±0.10
oedo-sp 0.99 ±0.11 1.17 ±0.18 0.99 ±0.10
tige-ten 0.93 ±0.14 1.08 ±0.10 0.97 ±0.16
melo-var 0.98 ±0.08 1.09 ±0.05 1.00 ±0.08
nitz-pal 0.90 ±0.07 0.98 ±0.08 0.96 ±0.06
audo-cha 0.98 ±0.00 1.19 ±0.00 1.00 ±0.13
erpo-oct 0.95 ±0.12 1.06 ±0.09 0.98 ±0.13
gamm-foss 0.93 ±0.06 1.00 ±0.07 0.96 ±0.05
baet-rhod 0.98 ±0.12 1.05 ±0.00 0.99 ±0.13
hydro-sp 0.97 ±0.08 1.11 ±0.08 1.00 ±0.07
rhya-sp 0.95 ±0.15 1.12 ±0.12 0.99 ±0.14
simu-sp 1.00 ±0.05 1.15 ±0.00 1.03 ±0.05
tubi-sp 0.89 ±0.08 1.00 ±0.11 0.94 ±0.12

Average 0.84 40.2 0.94 54.3 0.92 10.5
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Table 5.22: Multiple target regression, comparison of correlation coefficients of predictive clustering
trees (PCTs), and PCR algorithms for ordered and unordered rules. For each data set, the average
correlation coefficient over all target attributes is given first, and then for each target attribute
separately. In each row, the largest correlation coefficient is typeset in bold. Size is given as
the number of learned rules, trees are converted to rules. The final row gives the average
correlation coefficient over all target attributes of all data sets and the average rule set size
over all data sets.

data set pc trees pcr ordered pcr unordered

tar. att. corr # size corr # size corr # size

edm 0.71 11 0.60 9 0.49 4
d-flow 0.75 ±0.49 0.61 ±0.39 0.39 ±0.32
d-gap 0.66 ±0.12 0.59 ±0.13 0.60 ±0.13

microarthropods 0.48 50 0.52 108 0.27 7
acari 0.41 ±0.08 0.47 ±0.09 0.17 ±0.08
collembolan 0.40 ±0.05 0.43 ±0.08 0.28 ±0.08
sh-biodiv 0.64 ±0.04 0.66 ±0.06 0.37 ±0.07

sigmea-real 0.79 7 0.79 9 0.81 7
mfo 0.79 ±0.21 0.72 ±0.24 0.75 ±0.24
mso 0.79 ±0.25 0.87 ±0.26 0.87 ±0.25

sigmea-sim 1.00 166 0.99 2 0.95 2
disp-rate 1.00 ±0.00 0.99 ±0.00 0.94 ±0.00
disp-seeds 1.00 ±0.00 0.99 ±0.00 0.97 ±0.00

solar-flare 0.13 2 0.09 13 0.10 12
c-class 0.16 ±0.25 0.17 ±0.31 0.19 ±0.30
m-class 0.21 ±0.30 0.12 ±0.19 0.15 ±0.16
x-class 0.03 ±0.15 -0.03 ±0.03 -0.04 ±0.04

water-quality 0.26 5 0.19 185 0.19 31
clad-sp 0.14 ±0.11 0.13 ±0.09 0.19 ±0.00
gong-inc 0.12 ±0.06 -0.02 ±0.09 0.04 ±0.08
oedo-sp 0.12 ±0.07 0.12 ±0.11 0.20 ±0.10
tige-ten 0.37 ±0.09 0.27 ±0.12 0.26 ±0.16
melo-var 0.21 ±0.14 0.19 ±0.12 0.13 ±0.07
nitz-pal 0.43 ±0.09 0.34 ±0.11 0.30 ±0.12
audo-cha 0.21 ±0.00 0.11 ±0.00 0.12 ±0.08
erpo-oct 0.33 ±0.08 0.24 ±0.12 0.23 ±0.14
gamm-foss 0.38 ±0.15 0.31 ±0.10 0.30 ±0.08
baet-rhod 0.20 ±0.11 0.21 ±0.00 0.18 ±0.10
hydro-sp 0.26 ±0.04 0.12 ±0.09 0.13 ±0.09
rhya-sp 0.32 ±0.09 0.20 ±0.07 0.21 ±0.14
simu-sp 0.10 ±0.10 0.07 ±0.00 0.06 ±0.10
tubi-sp 0.45 ±0.10 0.33 ±0.15 0.36 ±0.13

Average 0.40 40.2 0.35 54.3 0.32 10.5
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Table 5.23: An example of single target regression rules learned on the echo-months domain.
Starting from the top we are given rules transcribed form the PCT trees, ordered PCR rules,
and unordered PCR rules.

Rules from a tree

Rule 1: IF (still_alive = 0) THEN [survival = 29.9]

Rule 2: IF (still_alive = 1) ∧ (alive_at_1 = 0) THEN [survival = 18.0]

Rule 3: IF (still_alive = 1) ∧ (alive_at_1 = 1) THEN [survival = 3.3]

RRMSE = 0.68, Corr. coeff. = 0.74

Ordered rules

Rule 1: IF (still_alive = 0) ∧ (wall_score ≤ 21.5) THEN [survival = 29.9]

Rule 2: IF (still_alive = 1) THEN [survival = 5.9]

Rule 3: IF (wall_index ≤ 2.2) ∧ (age > 55) THEN [survival = 18.3]

Otherwise: [survival = 54]

RRMSE = 0.85, Corr. coeff. = 0.57

Unordered rules

Rule 1: IF (still_alive = 0) ∧ (wall_score ≤ 21.5) THEN [survival = 29.9]

Rule 2: IF (still_alive = 1) THEN [survival = 5.9]

Rule 3: IF (wall_index ≤ 2.2) ∧ (age > 55) THEN [survival = 18.3]

Otherwise: [survival = 54]

RRMSE = 0.81, Corr. coeff. = 0.60

5.2.4 Discussion on regression rules

Previous sections (5.2.1, 5.2.2, and 5.2.3) presented the comparison of predictive clus-
tering rules (PCR) to some existing methods. On the classification problems the re-
sults indicate that PCRs yield models of roughly comparable accuracy as predictive
clustering trees (PCT). On the regression problems, however, PCRs are much worse
than PCTs. On the other hand, comparison of PCRs to the regression rules learning
method FRS shows no significant difference in accuracy. This can be illustrated by an
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example of ordered and unordered PCRs, as well as rules transcribed from a regres-
sion tree given in Table 5.23 (the examples were learned on a single target domain
echo-months). We can see that all three rule sets have an equal number of rules,
however the ‘tree’ rules are better than unordered PCRs, which are in turn slightly
better than ordered PCRs. It is interesting that ordered and unordered PCR rule sets
comprise exactly the same rules, however, unordered rules are slightly better because
of the rule set interpretation by weighted voting. Unfortunately, these rule sets are
less accurate than the rule set obtained from the tree. It seems that the PCT rule learn-
ing algorithm was unable to find the most discriminative attributes: the ‘tree’ rule set
comprises attributes ‘still_alive’ and ‘alive_at_1’, while the PCR rule sets include, be-
sides ‘still_alive’, the attributes ‘wall_score’, ‘wall_index’, and ‘age’, which are obviously
less appropriate.

We can think of two main reasons why PCTs are more accurate than PCRs. The
first reason is that the regression PCTs use the tree post-pruning approach from the
M5 algorithm (Quinlan, 1992). This method is known to improve the accuracy and
understandability of M5 regression and model trees. The PCR algorithm, on the other
hand does not use any form of rule post-pruning. We believe this is the main reason
why PCTs are much better than PCRs. A remedy to this problem should be the
inclusion of post-pruning in the PCR algorithm, e.g., the reduced error pruning (Brunk
and Pazzani, 1991) as in the Ripper algorithm (Cohen, 1995).

An additional reason why the regression rules are worse than regression trees
could be the fact that the covering algorithm with its separate and conquer strategy is
less appropriate for learning of regression rules than the divide and conquer strategy
used in the top down induction algorithm for learning regression trees. In the process
of tree learning, the entire learning set is always considered, and a new split is added
to the tree only if it improves the accuracy of a tree on a certain part of the example
space, and as a consequence, also on the entire example space. On the other hand,
when generating a new rule with the standard covering algorithm, only the examples
that have not yet been covered are considered. This means that new rules are learned
independently of the already learned rules. The new rule learned in this way may
be optimal for the current learning set, but not for the entire learning set, and in
addition, it might not be optimal when taking into account the previously learned
rules. In the experiments performed in previous sections we tried to alleviate this
problem by setting the rule adding method (Madd) of the PCR algorithm to “If-Better”,
which means that a newly learned rule is added to the rule set only if it improves its
overall performance (see Section 4.4).

In addition, we have noticed an interesting effect that the overlapping of rules,
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Figure 5.3: Unordered regression rules transcribed from a regression tree learned on the
artificial data synth-1.

0 2 4 6 8 10

0

1

2

3

4

attribute a1

ta
rg

et
at

tr
ib

ut
e

a t

Rule 2

Rule 1
Ordered rules

Rule 1: IF (a1 > 6) THEN [at = 3]

Rule 2: IF (a1 > 3) THEN [at = 2]

Otherwise: [at = 1]

Figure 5.4: Ordered regression rules learned on the artificial data synth-1.
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Figure 5.5: Unordered regression rules learned on the artificial data synth-1.
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i.e., when one example is covered by more than one rule (this effect is only relevant
for unordered rules), can decrease the overall accuracy. We illustrate the problem on
a very simple artificial data set with only one descriptive and one target attribute.
The data set (synth-1) consists of 9 examples with different values of the descriptive
attribute (a1), and three different monotonically increasing values (1, 2, and 3) of
the target attribute (at). On this data set we learn predictive clustering trees (PCTs),
and ordered as well as unordered predictive clustering rules (PCRs). The resulting
rule sets (tree was converted into rules) are presented in Figures 5.3, 5.4, and 5.5,
respectively. In each figure we have a plot representing the example space with the
descriptive attribute values on the x-axis and the target attribute values on the y-axis;
each learning example is depicted as a dot. On the right of the plot we have the rules
that were learned on this data set.

Let us first look at the rules which correspond to a tree (Figure 5.3). Such rules
are unordered and all together cover the entire example space; there is no need for
a default rule. We can see that in the process of building the tree the examples were
first split at the point a1=6, and in the second stage the larger cluster of examples
was again split at point a1=3. If we write this tree in the form of rules, we get three
rules that do not overlap and cover the entire example space (each rule covers three
examples). We can also see that these rules predict the target attribute values of the
synth-1 data perfectly. Now let us consider the ordered rules (Figure 5.4). We only
have two ‘ordinary’ rules and a default rule, of which every one again covers three
examples. We can see that the first rule is the same as the first ‘tree’ rule, but the
second rule has one condition less than the corresponding ‘tree’ rule, and the default
rule has no condition at all. However, if we take into account that these rules are
ordered and must be interpreted in a sequence, we see that each rule covers exactly
the same part of the example space. As a consequence, ordered rules also predict
the target attribute values of the synth-1 data perfectly. Finally, let us examine the
unordered rules (Figure 5.5). The learned unordered rules are exactly the same as the
ordered ones, but since they are interpreted as unordered they no longer perfectly
predict the values of the target attribute. Namely, the three examples with the target
attribute value 3 are covered by two rules, each predicting a different target value. The
final prediction is a combination of the two separate predictions, and is, depending
on the weighting scheme we use for combining rule predictions, somewhere between
2 and 3, instead of the accurate value which is 3. Therefore, this simple example
suggests that unordered regression rules induced with a covering algorithm could
perform worse than regression trees even on simple monotonic regression problems.
However, we have not noticed this effect in our experiments, which suggests that this
effect is not significant in real life problem domains.
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5.3 Comparison of multiple target to single target

prediction

One of the main motives that lead us to the development of predictive clustering rules
(PCRs) was the possibility to use them for multiple target prediction. The main benefit
of multiple target prediction is that a set of models (rule sets) each predicting one
target attribute can be replaced by just one model that predicts all target attributes
at once. Assuming that the target attributes are correlated, the complexity of the
multiple target model should be much lower than the complexity of the corresponding
set of models. In this section, we evaluate and compare PCRs used for multiple target
prediction and PCRs used for single target prediction. For each data set, we have
learned one multiple target PCR model and compared it to a set of single target PCR
models. This set consists of the same number of models as is the number of target
attributes in a given domain. The sizes of the single target PCR rule sets for each
target attribute are summed and compared to the size of the multiple target PCR
rule set. The overall significance of differences is estimated using the Wilcoxon signed-
rank test (Wilcoxon, 1945), where each target attribute of each data set corresponds to
one data point. Additionally, we visually present the performance of all four types
of PCRs (single and multiple target prediction, ordered and unordered rules) using
the average ranks diagrams (Demšar, 2006) and the Nemenyi test (Nemenyi, 1963) (see
Section 5.2.1 for explanation of how to read these diagrams). We also present some
examples of rules learned in all four settings of the PCR algorithm. The comparison
is done separately for classification and for regression.

Classification. The significances of differences between PCRs used for single target
and multiple target prediction are given in Table 5.24. The error rates and rule set
sizes are presented in Table 5.25 for ordered PCRs and in Table 5.26 for unordered

Table 5.24: Comparison of error rates of PCR algorithms for ordered and unordered rules used
for single target and multiple target classification. Significances (p-values) of differences in error
rates and rule set sizes over all data sets and all target attributes. The sign < (>) right of a
p-value means that the first (second) algorithm tends to induce rule sets with smaller error
rate or size. Significant differences are typeset in bold.

Compared algorithms error size

p-value p-value

pcr ordered: single multiple 0.066 < <0.001 >
pcr unordered: single multiple 0.067 > <0.001 >
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1234
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Figure 5.6: Average ranks diagram for multiple target classification problems, comparison of
error rates of single and multiple target, ordered and unordered PCRs compared to each other
with the Nemenyi test. Algorithms that do not differ significantly (p-value=0.05) are connected.
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Figure 5.7: Average ranks diagram for multiple target classification problems, comparison of
rule set sizes of single and multiple target, ordered and unordered PCRs compared to each
other with the Nemenyi test. Algorithms that do not differ significantly (p-value=0.05) are
connected.
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Figure 5.8: Multiple target classification problems, influence of the correlation between the target
attributes on the relative improvement of error rates and rule set sizes.
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Table 5.25: Comparison of error rates of ordered PCRs used for single target and multiple target
classification. For each data set, the average error rate over all target attributes is given first,
and then for each target attribute separately. Sizes of single target prediction rule sets are
summed and compared to multiple target prediction sule set. In each row, the smallest error
rate is typeset in bold. Size is given as the number of learned rules, trees are converted to
rules. The final row (next page) gives the average error rate over all target attributes of all
data sets and the average rule set size over all data sets.

data set pcr single pcr multiple

tar. att. % error # size % error # size

bridges 35.0 34 40.5 7
t-or-d 19.4 ±14.1 4 24.7 ±0.0
material 21.6 ±13.5 6 20.0 ±10.1
span 31.8 ±14.9 6 43.5 ±11.3
rel-l 47.5 ±21.5 7 44.7 ±0.0
type 54.9 ±17.2 11 69.4 ±0.0

edm-dis 24.7 17 25.0 9
d-flow 13.6 ±15.5 7 11.7 ±8.1
d-gap 35.7 ±11.8 10 38.3 ±8.2

mediana 18.2 1297 17.2 271
read-delo 23.1 ±0.9 306 22.0 ±1.5
read-dnevnik 21.9 ±1.2 436 16.6 ±1.4
read-ekipa 9.2 ±0.9 296 7.1 ±0.8
read-sl-nov 26.3 ±1.4 100 28.8 ±1.1
read-vecer 10.3 ±1.7 159 11.6 ±0.9

monks 3.3 39 21.7 4
monk-1 0.0 ±0.0 7 30.1 ±9.1
monk-2 10.0 ±6.4 28 33.1 ±8.0
monk-3 0.0 ±0.0 4 1.9 ±3.0

sigmea-real-dis 24.8 76 24.9 38
mfo 26.1 ±5.4 52 24.5 ±5.2
mso 23.5 ±6.1 24 25.3 ±3.8

sigmea-sim-dis 0.7 14 2.1 3
disp-rate 1.4 ±0.4 12 4.3 ±0.7
disp-seeds 0.0 ±0.0 2 0.0 ±0.0

solar-flare-dis 11.1 58 11.0 23
c-class 15.8 ±7.6 25 15.2 ±6.7
m-class 13.0 ±3.7 19 14.6 ±4.7
x-class 4.6 ±4.1 14 3.1 ±3.2

Continued on the next page.
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Table 5.25: Continued from the previous page.

data set pcr single pcr multiple

tar. att. % error # size % error # size

thyroid-0387 1.8 666 2.4 497
hyper-thyro 2.0 ±0.5 107 2.5 ±0.6
hypo-thyro 0.9 ±0.4 53 3.1 ±0.8
bind-prot 2.9 ±0.8 135 3.2 ±0.8
gen-health 2.6 ±0.8 125 3.6 ±0.6
repl-theory 2.1 ±0.5 129 2.1 ±0.4
antithyro-tr 0.3 ±0.2 24 0.3 ±0.2
disc-results 1.6 ±0.3 93 2.0 ±0.5

water-quality-dis 32.1 736 33.3 89
clad-sp 38.5 ±3.7 31 39.5 ±5.6
gong-inc 34.4 ±4.2 64 29.5 ±3.6
oedo-sp 29.8 ±3.6 62 29.7 ±4.5
tige-ten 25.1 ±2.6 80 23.2 ±4.6
melo-var 34.2 ±4.0 30 41.7 ±4.8
nitz-pal 29.6 ±3.0 23 31.3 ±2.3
audo-cha 30.5 ±5.0 88 29.3 ±5.0
erpo-oct 31.7 ±3.7 75 29.0 ±2.6
gamm-foss 32.3 ±3.8 27 38.1 ±4.5
baet-rhod 32.0 ±4.8 49 31.8 ±3.1
hydro-sp 34.9 ±4.5 29 39.1 ±4.6
rhya-sp 29.1 ±4.4 59 36.1 ±5.5
simu-sp 37.6 ±4.5 59 38.5 ±5.5
tubi-sp 29.2 ±3.8 60 28.8 ±4.0

Average 20.3 326.3 22.6 104.6

PCRs. Additionally, Figures 5.6 and 5.7 present the average ranks of ordered and un-
ordered PCRs for single and multiple target prediction as compared by error rates and
rule set size. From Table 5.24 we can conclude that ordered PCRs are better in single
target setting than in the multiple target setting (p-value=0.066). Unordered rules, on
the other hand, are better in multiple target setting than in single target setting (p-
value=0.067). We believe the reason for improvement of unordered rules in multiple
target setting is that learning rules for several targets simultaneously enables a more
cautious rule specialization and prevents unordered rules from overfitting. Namely,
each rule must cover examples with homogeneous values of all target attributes, and
not just one. This automatically decreases the problem of noise in the learning data,
and also promotes more general rules. This effect should in principle be beneficial also
for ordered rules. However, it seems that the single target ordered PCRs are very well
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Table 5.26: Comparison of error rates of unordered PCRs used for single target and multiple target
classification. For each data set, the average error rate over all target attributes is given first,
and then for each target attribute separately. Sizes of single target prediction rule sets and
summed and compared to multiple target prediction sule set. In each row, the smallest error
rate is typeset in bold. Size is given as the number of learned rules, trees are converted to
rules. The final row (next page) gives the average error rate over all target attributes of all
data sets and the average rule set size over all data sets.

data set pcr single pcr multiple

tar. att. % error # size % error # size

bridges 37.3 36 32.2 12
t-or-d 19.4 ±14.1 4 10.6 ±8.7
material 26.5 ±17.8 6 18.8 ±10.4
span 35.2 ±13.3 6 40.0 ±11.0
rel-l 46.5 ±20.6 8 35.3 ±15.7
type 58.8 ±12.7 12 56.5 ±0.0

edm-dis 28.2 16 29.2 11
d-flow 16.2 ±15.2 7 12.3 ±9.0
d-gap 40.3 ±0.0 9 46.1 ±13.4

mediana 20.1 1505 16.6 685
read-delo 24.0 ±1.3 353 21.7 ±1.2
read-dnevnik 20.4 ±1.7 493 15.4 ±0.9
read-ekipa 7.4 ±0.9 362 6.3 ±0.8
read-sl-nov 38.0 ±4.6 100 29.2 ±0.9
read-vecer 10.5 ±1.1 197 10.4 ±1.0

monks 17.5 40 23.5 10
monk-1 11.1 ±4.9 7 17.6 ±7.3
monk-2 33.3 ±13.1 29 35.9 ±5.9
monk-3 8.1 ±7.2 4 17.1 ±5.4

sigmea-real-dis 24.5 91 24.9 72
mfo 26.2 ±5.8 60 25.1 ±4.6
mso 22.8 ±5.3 31 24.6 ±3.3

sigmea-sim-dis 1.2 15 2.1 4
disp-rate 2.4 ±0.7 13 4.3 ±0.7
disp-seeds 0.0 ±0.0 2 0.0 ±0.0

solar-flare-dis 13.1 79 10.4 39
c-class 18.3 ±8.2 36 13.6 ±6.9
m-class 15.8 ±4.0 27 14.9 ±4.6
x-class 5.3 ±5.3 16 2.8 ±3.4

Continued on the next page.
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Table 5.26: Continued from the previous page.

data set pcr single pcr multiple

tar. att. % error # size % error # size

thyroid-0387 2.1 727 2.5 560
hyper-thyro 1.7 ±0.5 115 2.5 ±0.5
hypo-thyro 2.4 ±0.7 40 3.7 ±0.5
bind-prot 3.0 ±0.6 157 3.4 ±0.6
gen-health 3.0 ±0.7 134 2.7 ±0.9
repl-theory 2.2 ±0.7 148 3.0 ±0.8
antithyro-tr 0.4 ±0.2 24 0.4 ±0.2
disc-results 2.1 ±0.6 109 2.0 ±0.6

water-quality-dis 33.9 788 31.8 153
clad-sp 39.9 ±4.9 28 40.4 ±4.9
gong-inc 39.2 ±6.6 77 28.4 ±3.2
oedo-sp 30.9 ±4.7 78 29.9 ±5.1
tige-ten 23.9 ±4.8 83 20.8 ±2.4
melo-var 38.9 ±3.3 27 41.4 ±3.7
nitz-pal 30.0 ±4.8 25 30.6 ±4.3
audo-cha 30.8 ±5.9 90 24.2 ±5.2
erpo-oct 32.7 ±4.3 79 26.5 ±3.3
gamm-foss 33.0 ±5.9 23 37.8 ±3.7
baet-rhod 33.5 ±5.4 57 32.5 ±2.4
hydro-sp 39.1 ±4.2 33 38.2 ±4.9
rhya-sp 32.8 ±4.2 69 30.8 ±6.8
simu-sp 39.3 ±4.6 55 37.3 ±4.7
tubi-sp 31.0 ±3.9 64 27.1 ±3.1

Average 22.7 366.3 21.4 171.8

suited for the problems used in our (single vs. multiple target) experimental evalua-
tion. Namely, from the diagram in Figure 5.6 we can see that on these data sets, single
target ordered PCRs significantly outperform single target unordered PCRs, while in
the comparison in Section 5.2.1 unordered PCRs were significantly better than or-
dered PCRs. Therefore, we believe the more cautious specialization introduced by the
multiple target learning prevented ordered rules from achieving maximal accuracy.

Now if we consider the rule set sizes (Table 5.24 and Figure 5.7), we see that
multiple target PCR rule sets are significantly smaller the the corresponding single
target rule sets (p-value<0.001). This finding confirms our hypothesis that the PCR
algorithm can indeed learn multiple target classification rule sets that are significantly
smaller than the corresponding single target rule sets. From Figure 5.7 we can also
see that ordered multiple target rules are always smaller (average rank is 1) than
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Table 5.27: An example of ordered single target and multiple target PCR classification rules
learned on the sigmea-sim-dis domain.

Ordered single target rules : disp_rate

Rule 1: IF (donor_equals_reciever = true) THEN [disp_rate = 1]

Rule 2: IF (distance > 100) ∧ (area_d ≤ 10, 000) THEN [disp_rate = 0]

Rule 3: IF (distance ≤ 50) ∧ (ratio_l_wr > 0) THEN [disp_rate = 1]

Rule 4: IF (circumfer_d ≤ 20) ∧ (distance > 10) THEN [disp_rate = 0]

Rule 5: IF (ratio_l_wd > 0.001) ∧ (distance ≤ 500) ∧ (circum_r ≤ 1, 924) THEN [disp_rate = 1]

Rule 6: IF (distance > 50) THEN [disp_rate = 0]

Rule 7: IF (distance ≤ 10) ∧ (donating_plot > 955) ∧ (circumfer_d > 13.9) THEN [disp_rate = 1]

Rule 8: IF (area_d > 100) ∧ (ratio_l_wd > 0.001) ∧ (donating_plot > 2, 731) THEN [disp_rate = 1]

Rule 9: IF (orientation = 1) ∧ (distance > 0) THEN [disp_rate = 0]

Rule 10: IF (distance ≤ 0) THEN [disp_rate = 1]

Rule 11: IF (area_d > 100) THEN [disp_rate = 1]

Rule 12: IF (donating_plot > 953) THEN [disp_rate = 0]

Otherwise: [disp_rate = 1]

Error rate = 1.4%

Ordered single target rules : disp_seeds

Rule 1: IF (donor_equals_reciever = true) THEN [disp_seeds = 1]

Rule 2: IF (distance > 0) THEN [disp_seeds = 0]

Otherwise: [disp_seeds = 1]

Error rate = 0%

Average error rate = 0.7%

Ordered multiple target rules

Rule 1: IF (donor_equals_reciever = true) THEN [disp_rate = 1, disp_seeds = 1]

Rule 2: IF (distance > 50) THEN [disp_rate = 0, disp_seeds = 0]

Rule 3: IF (distance > 0) THEN [disp_rate = 1, disp_seeds = 0]

Otherwise: [disp_rate = 1, disp_seeds = 1]

Error rate = [disp_rate = 4.3%, disp_seeds = 0%]

Average error rate = 2.1%
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Table 5.28: An example of unordered single target and multiple target PCR classification rules
learned on the sigmea-sim-dis domain.

Unordered single target rules : disp_rate

Rule 1: IF (donor_equals_reciever = true) THEN [disp_rate = 1]

Rule 2: IF (distance > 100) ∧ (area_d ≤ 10, 000) THEN [disp_rate = 0]

Rule 3: IF (ratio_l_wr > 0) ∧ (distance ≤ 50) THEN [disp_rate = 1]

Rule 4: IF (circumfer_d ≤ 20) ∧ (distance > 10) THEN [disp_rate = 0]

Rule 5: IF (distance ≤ 500) ∧ (ratio_l_wd > 0.001) ∧ (circum_r ≤ 1, 924) THEN [disp_rate = 1]

Rule 6: IF (distance > 50) ∧ (donating_plot ≤ 4, 940) THEN [disp_rate = 0]

Rule 7: IF (distance ≤ 10) ∧ (donating_plot > 955) ∧ (circumfer_d > 13.9) THEN [disp_rate = 1]

Rule 8: IF (area_d > 100) ∧ (circumfer_d ≤ 461.9) ∧ (donating_plot > 2, 731) THEN [disp_rate = 1]

Rule 9: IF (orientation = 1) ∧ (distance > 0) THEN [disp_rate = 0]

Rule 10: IF (ratio_l_wr ≤ 0) ∧ (area_d > 100) THEN [disp_rate = 1]

Rule 11: IF (distance > 10) THEN [disp_rate = 0]

Rule 12: IF (distance ≤ 0) THEN [disp_rate = 1]

Rule 13: IF (donating_plot > 89) THEN [disp_rate = 1]

Otherwise: [disp_rate = 0]

Error rate = 2.4%

Unordered single target rules : disp_seeds

Rule 1: IF (donor_equals_reciever = true) THEN [disp_seeds = 1]

Rule 2: IF (distance > 0) THEN [disp_seeds = 0]

Otherwise: [disp_seeds = 1]

Error rate = 0%

Average error rate = 1.2%

Unordered multiple target rules

Rule 1: IF (donor_equals_reciever = true) THEN [disp_rate = 1, disp_seeds = 1]

Rule 2: IF (distance > 50) THEN [disp_rate = 0, disp_seeds = 0]

Rule 3: IF (distance > 0) THEN [disp_rate = 1, disp_seeds = 0]

Rule 4: IF (distance ≤ 0) THEN [disp_rate = 1, disp_seeds = 1]

Otherwise: [disp_rate = 0, disp_seeds = 0]

Error rate = [disp_rate = 4.3%, disp_seeds = 0%]

Average error rate = 2.1%
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unordered multiple target rules (with average rank 2). This speaks in favor of our
previously stated hypothesis, that the ordered rules accuracy is worse in the multiple
target than in the single target setting because ordered multiple target rules are overly
small.

One of our initial hypotheses was, that multiple target learning should be more
appropriate and efficient on problem domains with target attributes that are more
strongly correlated. In order to test this we have plotted the relative improvement5

in average error rates and rule sets sizes against the average pair-wise correlation6

between the target attributes in each domain. These plots separately for ordered
and unordered rules are given in Figure 5.8. If our hypothesis is correct, the rela-
tive improvement in error rates and rule set sizes (when switching from single target
to multiple target prediction) should increase with increasing average pair-wise cor-
relation between the target attributes in each domain. However, even with a lot of
imagination, it is hard to observe such a trend. The absence of such a trend suggests
that the correlation between target attributes in the entire example space is not a key
factor in the effectiveness of multiple target PCR learning. We believe that multiple
target PCRs perform well on domains where clusters of examples can be found such
that within each cluster the target attributes are correlated. It is therefore not neces-
sary for the target attributes to be correlated within the entire example space. We can
illustrate this by inspecting an example of single and multiple target PCRs; ordered
rules learned on the sigmea-sim-dis are given in Figure 5.27 and unordered in Fig-
ure 5.28. If we compare ordered single and multiple target rule sets (or unordered,
since they are both very similar) we can see that the first rule in both single target
rule sets, and in the multiple target rule set is the same. This means that both target
attributes demand a similar clustering of the attribute space in order to describe them
well. A counter example is the monks domain (Section 5.1.3). Its target attributes
assume completely different clustering of the attribute space, and as a consequence,
multiple target PCRs are much less accurate than single target PCRs (Tables 5.25 and
5.26).

Regression. The significances of differences between the PCRs used for single tar-
get and multiple target prediction are given in Table 5.29. The relative root mean
squared errors (RRMSE), correlation coefficients, and rule set sizes are presented in
Tables 5.30 and 5.31 for ordered PCRs, and in Tables 5.32 and 5.33 for unordered
PCRs. In addition, Figures 5.9, 5.10 and 5.11 present the average ranks of ordered and

5The relative improvement in error rates, for example, was calculated as 1− errmultiple/errsingle.
6The correlation between two nominal attributes was measured with the Cramér’s V coefficient.
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Table 5.29: Comparison of RRMSE and correlation coefficients of PCR algorithms for ordered
and unordered rules used for single target and multiple target regression. Significances (p-values)
of differences in RRMSE, correlation coefficients, and rule set sizes over all data sets and all
target attributes. The sign < (>) right of a p-value means that the first (second) algorithm tends
to induce rule sets with smaller RRMSE, correlation coefficients, or rule set sizes. Significant
differences are typeset in bold.

Compared algorithms rrmse corr size

p-value p-value p-value

pcr ordered: single multiple <0.001 > 0.970 < 0.002 >
pcr unordered: single multiple 0.461 > 0.042 > <0.001 >

1234
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Figure 5.9: Average ranks diagram for multiple target regression problems, comparison of
RRMSE of single/multiple target, ordered/unordered PCRs compared to each other with
the Nemenyi test. Algorithms that do not differ significantly (p-value=0.05) are connected.
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Figure 5.10: Average ranks diagram for multiple target regression problems, comparison of
correlation coefficients of single/multiple target, ordered/unordered PCRs compared to each
other with the Nemenyi test. Algorithms that do not differ significantly (p-value=0.05) are
connected.
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Figure 5.11: Average ranks diagram for multiple target regression problems, comparison of rule
set sizes of single/multiple target, ordered/unordered PCRs compared to each other with the
Nemenyi test. Algorithms that do not differ significantly (p-value=0.05) are connected.
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Figure 5.12: Multiple target regression problems, influence of target attribute correlation on the
relative improvement in RRMSE, correlation coefficients, and rule set sizes.
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Table 5.30: Comparison of RRMSE of ordered PCRs used for single target and multiple target
regression. For each data set, the average RRMSE over all target attributes is given first, and
then for each target attribute separately. Sizes of single target prediction rule sets and summed
and compared to multiple target prediction sule set. In each row, the smallest RRMSE is
typeset in bold. Size is given as the number of learned rules, trees are converted to rules. The
final row gives the average RRMSE over all target attributes of all data sets and the average
rule set size over all data sets.

data set pcr single pcr multiple

tar. att. rrmse # size rrmse # size

edm 0.93 20 0.88 9
d-flow 0.97 ±0.47 9 0.94 ±0.43
d-gap 0.89 ±0.10 11 0.82 ±0.09

microarthropods 0.75 191 0.85 108
acari 0.75 ±0.15 35 0.89 ±0.17
collembolan 0.75 ±0.13 48 0.90 ±0.19
sh-biodiv 0.76 ±0.04 108 0.76 ±0.04

sigmea-real 0.81 14 0.61 9
mfo 1.06 ±0.65 8 0.74 ±0.47
mso 0.56 ±0.39 6 0.49 ±0.32

sigmea-sim 0.25 3 0.13 2
disp-rate 0.15 ±0.00 2 0.15 ±0.00
disp-seeds 0.35 ±0.01 1 0.11 ±0.00

solar-flare 1.34 65 1.15 13
c-class 1.32 ±0.31 28 1.04 ±0.30
m-class 1.39 ±0.53 25 1.09 ±0.36
x-class 1.32 ±0.81 12 1.32 ±0.77

water-quality 1.24 1375 1.09 185
clad-sp 1.27 ±0.11 124 1.10 ±0.10
gong-inc 1.42 ±0.09 122 1.14 ±0.11
oedo-sp 1.37 ±0.18 95 1.17 ±0.18
tige-ten 1.21 ±0.22 79 1.08 ±0.10
melo-var 1.24 ±0.00 86 1.09 ±0.05
nitz-pal 1.13 ±0.10 89 0.98 ±0.08
audo-cha 1.26 ±0.00 72 1.19 ±0.00
erpo-oct 1.27 ±0.18 93 1.06 ±0.09
gamm-foss 1.09 ±0.06 87 1.00 ±0.07
baet-rhod 1.21 ±0.17 112 1.05 ±0.00
hydro-sp 1.23 ±0.11 114 1.11 ±0.08
rhya-sp 1.25 ±0.16 103 1.12 ±0.12
simu-sp 1.28 ±0.16 108 1.15 ±0.00
tubi-sp 1.14 ±0.11 91 1.00 ±0.11

Average 1.06 278.0 0.94 54.3
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Table 5.31: Comparison of correlation cofficients of ordered PCRs used for single target and mul-
tiple target regression. For each data set, the average correlation coefficient over all target at-
tributes is given first, and then for each target attribute separately. Sizes of single target
prediction rule sets and summed and compared to multiple target prediction sule set. In each
row, the largest correlation coefficient is typeset in bold. Size is given as the number of learned
rules, trees are converted to rules. The final row gives the average correlation coefficient over
all target attributes of all data sets and the average rule set size over all data sets.

data set pcr single pcr multiple

tar. att. corr # size corr # size

edm 0.58 20 0.60 9
d-flow 0.56 ±0.47 9 0.61 ±0.39
d-gap 0.60 ±0.14 11 0.59 ±0.13

microarthropods 0.66 191 0.52 108
acari 0.66 ±0.11 35 0.47 ±0.09
collembolan 0.66 ±0.05 48 0.43 ±0.08
sh-biodiv 0.66 ±0.06 108 0.66 ±0.06

sigmea-real 0.66 14 0.79 9
mfo 0.48 ±0.41 8 0.72 ±0.24
mso 0.83 ±0.33 6 0.87 ±0.26

sigmea-sim 0.96 3 0.99 2
disp-rate 0.99 ±0.00 2 0.99 ±0.00
disp-seeds 0.94 ±0.00 1 0.99 ±0.00

solar-flare 0.01 65 0.09 13
c-class 0.03 ±0.16 28 0.17 ±0.31
m-class 0.03 ±0.24 25 0.12 ±0.19
x-class -0.03 ±0.03 12 -0.03 ±0.03

water-quality 0.20 1375 0.19 185
clad-sp 0.20 ±0.08 124 0.13 ±0.09
gong-inc 0.03 ±0.05 122 -0.02 ±0.09
oedo-sp 0.07 ±0.08 95 0.12 ±0.11
tige-ten 0.23 ±0.16 79 0.27 ±0.12
melo-var 0.18 ±0.00 86 0.19 ±0.12
nitz-pal 0.31 ±0.11 89 0.34 ±0.11
audo-cha 0.16 ±0.00 72 0.11 ±0.00
erpo-oct 0.18 ±0.15 93 0.24 ±0.12
gamm-foss 0.37 ±0.06 87 0.31 ±0.10
baet-rhod 0.24 ±0.14 112 0.21 ±0.00
hydro-sp 0.18 ±0.11 114 0.12 ±0.09
rhya-sp 0.19 ±0.12 103 0.20 ±0.07
simu-sp 0.15 ±0.16 108 0.07 ±0.00
tubi-sp 0.31 ±0.10 91 0.33 ±0.15

Average 0.35 278.0 0.35 54.3
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Table 5.32: Comparison of RRMSE of unordered PCRs used for single target and multiple target
regression. For each data set, the average RRMSE over all target attributes is given first, and
then for each target attribute separately. Sizes of single target prediction rule sets and summed
and compared to multiple target prediction sule set. In each row, the smallest RRMSE is
typeset in bold. Size is given as the number of learned rules, trees are converted to rules. The
final row gives the average RRMSE over all target attributes of all data sets and the average
rule set size over all data sets.

data set pcr single pcr multiple

tar. att. rrmse # size rrmse # size

edm 0.95 7 0.92 4
d-flow 1.03 ±0.43 5 1.04 ±0.37
d-gap 0.86 ±0.13 2 0.80 ±0.09

microarthropods 0.87 31 0.96 7
acari 0.84 ±0.18 11 0.99 ±0.22
collembolan 0.85 ±0.19 13 0.96 ±0.20
sh-biodiv 0.93 ±0.06 7 0.93 ±0.06

sigmea-real 0.77 13 0.60 7
mfo 0.98 ±0.49 7 0.70 ±0.38
mso 0.55 ±0.35 6 0.50 ±0.30

sigmea-sim 0.59 3 0.40 2
disp-rate 0.44 ±0.01 2 0.44 ±0.00
disp-seeds 0.75 ±0.02 1 0.35 ±0.00

solar-flare 1.13 40 1.10 12
c-class 1.11 ±0.27 13 1.02 ±0.31
m-class 1.08 ±0.37 19 1.05 ±0.36
x-class 1.20 ±0.78 8 1.24 ±0.74

water-quality 0.99 181 0.99 31
clad-sp 0.99 ±0.06 14 0.99 ±0.00
gong-inc 1.04 ±0.09 12 1.01 ±0.10
oedo-sp 0.99 ±0.11 11 0.99 ±0.10
tige-ten 0.98 ±0.00 9 0.97 ±0.16
melo-var 1.00 ±0.08 15 1.00 ±0.08
nitz-pal 0.93 ±0.07 12 0.96 ±0.06
audo-cha 1.02 ±0.13 13 1.00 ±0.13
erpo-oct 1.00 ±0.11 14 0.98 ±0.13
gamm-foss 0.95 ±0.06 8 0.96 ±0.05
baet-rhod 1.00 ±0.11 21 0.99 ±0.13
hydro-sp 0.99 ±0.07 12 1.00 ±0.07
rhya-sp 0.97 ±0.15 6 0.99 ±0.14
simu-sp 1.01 ±0.06 17 1.03 ±0.05
tubi-sp 0.94 ±0.11 17 0.94 ±0.12

Average 0.94 45.8 0.92 10.5
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Table 5.33: Comparison of correlation cofficients of unordered PCRs used for single target and
multiple target regression. For each data set, the average correlation coefficient over all target
attributes is given first, and then for each target attribute separately. Sizes of single target
prediction rule sets and summed and compared to multiple target prediction sule set. In each
row, the largest correlation coefficient is typeset in bold. Size is given as the number of learned
rules, trees are converted to rules. The final row gives the average correlation coefficient over
all target attributes of all data sets and the average rule set size over all data sets.

data set pcr single pcr multiple

tar. att. corr # size corr # size

edm 0.46 7 0.49 4
d-flow 0.39 ±0.41 5 0.39 ±0.32
d-gap 0.52 ±0.22 2 0.60 ±0.13

microarthropods 0.49 31 0.27 7
acari 0.55 ±0.06 11 0.17 ±0.08
collembolan 0.54 ±0.07 13 0.28 ±0.08
sh-biodiv 0.37 ±0.07 7 0.37 ±0.07

sigmea-real 0.67 13 0.81 7
mfo 0.50 ±0.37 7 0.75 ±0.24
mso 0.84 ±0.30 6 0.87 ±0.25

sigmea-sim 0.94 3 0.95 2
disp-rate 0.94 ±0.00 2 0.94 ±0.00
disp-seeds 0.94 ±0.00 1 0.97 ±0.00

solar-flare 0.04 40 0.10 12
c-class 0.06 ±0.22 13 0.19 ±0.30
m-class 0.09 ±0.18 19 0.15 ±0.16
x-class -0.03 ±0.03 8 -0.04 ±0.04

water-quality 0.27 181 0.19 31
clad-sp 0.27 ±0.08 14 0.19 ±0.00
gong-inc 0.10 ±0.06 12 0.04 ±0.08
oedo-sp 0.23 ±0.06 11 0.20 ±0.10
tige-ten 0.28 ±0.00 9 0.26 ±0.16
melo-var 0.24 ±0.12 15 0.13 ±0.07
nitz-pal 0.41 ±0.08 12 0.30 ±0.12
audo-cha 0.16 ±0.14 13 0.12 ±0.08
erpo-oct 0.25 ±0.07 14 0.23 ±0.14
gamm-foss 0.37 ±0.10 8 0.30 ±0.08
baet-rhod 0.27 ±0.12 21 0.18 ±0.10
hydro-sp 0.26 ±0.05 12 0.13 ±0.09
rhya-sp 0.30 ±0.08 6 0.21 ±0.14
simu-sp 0.20 ±0.14 17 0.06 ±0.10
tubi-sp 0.38 ±0.09 17 0.36 ±0.13

Average 0.36 45.8 0.32 10.5
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Table 5.34: An example of ordered single target and multiple target PCR regression rules learned
on the sigmea-sim domain.

Ordered single target rules : disp_rate

Rule 1: IF (donor_equals_reciever = false) THEN [disp_rate = 0.0057]

Rule 2: IF (ratio_l_wd > 0.11) ∧ (circumfer_d > 13.9) THEN [disp_rate = 0.88]

Otherwise: [disp_rate = 0.40]

RRMSE = 0.15, Corr. coeff. = 0.99

Ordered single target rules : disp_seeds

Rule 1: IF (donor_equals_reciever = false) THEN [disp_rate = 0.0042]

Otherwise: [disp_seeds = 0.75]

RRMSE = 0.35, Corr. coeff. = 0.94

Average RRMSE = 0.25, Average corr. coeff. = 0.96

Ordered multiple target rules

Rule 1: IF (donor_equals_reciever = false) THEN [disp_rate = 0.0057, disp_seeds = 0.0042]

Rule 2: IF (ratio_l_wd > 0.11) ∧ (area_d > 9) THEN [disp_rate = 0.88, disp_seeds = 0.93]

Otherwise: [disp_rate = 0.39, disp_seeds = 0.56]

RRMSE = [disp_rate = 0.15, disp_seeds = 0.11], Corr. coeff. = [disp_rate = 0.99, disp_seeds = 0.99]

Average RRMSE = 0.13, Average corr. coeff. = 0.99

unordered PCRs for single and multiple target prediction as compared by RRMSE,
correlation coefficient, and rule set size. From Table 5.29, it follows that ordered
multiple target PCRs have a significantly lower RRMSE than the single target ones
(p-value<0.001). However, if we look at correlation coefficients, we see virtually no
difference (p-value=0.97). In the case of unordered rules, the RRMSE and correlation
coefficient show contradictory picture; judging by the correlation coefficient single tar-
get PCRs are better (p-value=0.042), while the RRMSE shows a very small difference in
the opposite direction (p-value=0.461). Based on these conflicting and rather confus-
ing results from two different error measures, one can hardly make any solid claims
about the accuracy of the four types of PCRs; perhaps the most sound conclusion is
that there are no distinctive differences between the four.

When comparing rule set sizes of single and multiple target regression PCRs, we
get a much clearer picture (Table 5.29 and Figure 5.11). Multiple target rule sets
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Table 5.35: An example of unordered single target and multiple target PCR regression rules
learned on the sigmea-sim domain.

Unordered single target rules : disp_rate

Rule 1: IF (donor_equals_reciever = false) THEN [disp_rate = 0.0057]

Rule 2: IF (ratio_l_wd > 0.11) ∧ (circumfer_d > 13.9) THEN [disp_rate = 0.88]

Otherwise: [disp_rate = 0.64]

RRMSE = 0.44, Corr. coeff. = 0.94

Unordered single target rules : disp_seeds

Rule 1: IF (donor_equals_reciever = false) THEN [disp_rate = 0.0042]

Otherwise: [disp_seeds = 0.38]

RRMSE = 0.75, Corr. coeff. = 0.94

Average RRMSE = 0.59, Average corr. coeff. = 0.94

Unordered multiple target rules

Rule 1: IF (donor_equals_reciever = false) THEN [disp_rate = 0.0057, disp_seeds = 0.0042]

Rule 2: IF (ratio_l_wd > 0.11) ∧ (area_d > 9) THEN [disp_rate = 0.88, disp_seeds = 0.93]

Otherwise: [disp_rate = 0.64, disp_seeds = 0.75]

RRMSE = [disp_rate = 0.44, disp_seeds = 0.35], Corr. coeff. = [disp_rate = 0.94, disp_seeds = 0.97]

Average RRMSE = 0.40, Average corr. coeff. = 0.95

are significantly smaller (p-value=0.002 for ordered and p-value<0.001 for unordered
rules). The average ranks diagram also shows that unordered rule sets are always
smaller than their single/multiple target counterparts, and that there is only a small
difference in size between multiple target ordered and single target unordered rule
sets. Assuming that the above stated conclusion that all four types of PCRs are of
comparable accuracy, one should prefer multiple target unordered rules, since they
are the smallest.

As in the case of classification, we can test the connection of the improvement
that the multiple target prediction achieves in a domain, to the correlation7 of its
target attributes, also for regression. The separate plots for ordered and unordered
rules are presented in Figure 5.12. The trend supporting our hypothesis can be seen

7The correlation between the numeric attributes was estimated with the Pearson’s correlation coef-
ficient (Equation 3.25).
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Figure 5.13: Single target classification problems, influence of target attribute weights on average
error rate and rule set size for ordered and unordered PCRs. Averages are computed over all
single target classification data sets.

for relative improvement of RRMSE for both ordered and unordered rules. For the
relative improvements of correlation coefficients and rule sets size, however, the trends
are more or less the opposite.

For the sake of completeness, let us present also an example of single and multiple
target regression PCRs. Ordered and unordered rules learned on the original, non-
discretized version of the sigmea-sim data set are given in Figures 5.27 and 5.28.
Again, ordered and unordered rule sets are very similar. The reduction of rule set
size is smaller than in the case of classification, because the single target rule set
modeling the disp_rate already comprises a small number of rules. As before, the
first rule in single target rule sets and in the multiple target rule set are the same,
meaning that both target attributes demand similar clustering of the attribute space.
Interestingly, though, the attribute that appears in this rule is different from the one
that appears in the first rules of the classification rule sets.

5.4 Influence of target attribute weights

The search heuristic that guides the single rule learning process (see Section 4.3) can
take into account the target, as well as the non-target attributes, i.e., the descriptive
attributes. The proportion of influence of each group of attributes can be set by means
of the target weight parameter τ (see Equation 4.3). It should be set to a value from
the (0, 1] interval. In principle, its influence should be as follows. If our goal is to
learn rules that are as accurate on the learning set as possible then we should set the
parameter to one. On the other hand, setting the parameter to less than one should
lead to rules that cover examples that are more similar with regard to the values of all
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Figure 5.14: Single target regression problems, influence of target attribute weights on average
RRMSE, correlation coefficients, and rule set size for ordered and unordered PCRs. Averages
are computed over all single target regression data sets.

attributes. In this section we empirically investigate the influence of this parameter
for each of the four types of problem domains; we have been changing the value of
the parameter between 0.5 and 1.

Single target classification problems. The target weight parameter influence is il-
lustrated in Figure 5.13, separately for ordered and unordered rules. The figure shows
average error rates and rule set sizes over all single target classification data sets. The
results are very similar for ordered and unordered rules. As expected, the parame-
ter value of one, i.e., no influence of the descriptive attributes, gives rise to rule sets
with the lowest average error rate. In fact, even a slight influence of the descriptive
attributes causes a large increase of average error rates. As for the size of the rule
sets, we can conclude that a moderate influence of descriptive attributes within the
search heuristic tends to decrease the number of learned rule sets, while even larger
influence increases the number again. This regularity is somewhat broken in the
case of unordered rules, because rule sets with the parameter set to 1 are on aver-
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Figure 5.15: Multiple target classification problems, influence of target attribute weights on aver-
age error rate and rule set size for ordered and unordered PCRs. Averages are computed over
all target attributes of all multiple target classification data sets.

age the smallest and most accurate. The initial drop of the number of rules could be
explained by a more cautious specialization of rules, since the non-target attributes
represent additional constraints to homogeneity of examples covered by a rule. In
addition, irrelevant non-target attributes can hinder the learning of accurate rules.

Single target regression problems. The target weight parameter influence is illus-
trated in Figure 5.14, separately for ordered and unordered rules, and separately for
RRMSE and the correlation coefficient. The figure shows the average RRMSE, corre-
lation coefficient, and rule set sizes over all single target regression data sets. When
considering the accuracy (RRMSE and correlation coefficient), the results are the same
as in the case of single target classification. Even a slight influence of the descriptive
attributes drastically increases the RRMSE and decreases the correlation coefficient.
As in the case of single target classification, parameter values of less than one decrease
the size of ordered PCRs. The differences in sizes of unordered rules are very small,
however, the trend is similar as in the case of unordered classification rules.

Multiple target classification problems. The target weight parameter influence is
illustrated in Figure 5.15, separately for ordered and unordered rules. The figure
shows average error rates over all target attributes of all multiple target classification
data sets, and average rule set sizes over all multiple target classification data sets.
The results are, again, very similar for ordered and unordered rules, and also similar
to the single target classification case (with the exception of the unordered rule sets
at τ=1 being the smallest). The larger the influence of the non-target (descriptive)
attributes, the larger the average error rate, and smaller average rule set size. The
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Figure 5.16: Multiple target regression problems, influence of target attribute weights on average
RRMSE, correlation coefficients, and rule set size for ordered and unordered PCRs. Averages
are computed over all target attributes of all multiple target regression data sets.

trends, however, are not completely monotonic.

Multiple target regression problems. The target weight parameter influence is il-
lustrated in Figure 5.16, separately for ordered and unordered rules, and separately
for RRMSE and the correlation coefficient. The figure shows the average RRMSE, cor-
relation coefficient, and rule set sizes over all target attributes of all multiple target
regression data sets. Again, the results are similar as in the case of single target re-
gression. The larger the influence of the non-target (descriptive) attributes, the larger
the average RRMSE, and the smaller the correlation coefficient. The influence on the
rule set size of ordered rules very similar as in all previous cases. The trend in the un-
ordered rule set sizes is less obvious, though some similarities with other unordered
rules exist, e.g., the rule sets at τ=1 tend to be rather small.

The presented results suggest that, as expected, the target weight parameter must be
set to the value of one (the search heuristic should not take into account the descriptive
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attributes), in order to get the best predictive accuracy. The parameter’s influence on
the rule set size is somewhat different for ordered and unordered rules. In the case of
ordered rules, the rule set size decreases with inclusion of the descriptive attributes in
the search heuristic. The size of unordered rule sets, however, with the decreasing of
the τ sometimes briefly peaks before decreasing as in the case of ordered rules. The
drop of the number of rules can be explained by a more cautious specialization of
rules, since the non-target attributes represent additional constraints to rule learning,
and by the influence of irrelevant non-target attributes.

5.5 Influence of covering weight

Unordered predictive clustering rules (PCRs) are learned using the error weighted
covering algorithm (see Section 4.5). When this algorithm learns a rule, it modifies
the current learning set, namely, it reduces the weights of examples covered by this
rule. The amount by which the weights are reduced is inversely proportional to the
error the rule makes when predicting the values of target attributes for each example,
and to the covering weight parameter ζ (see Equations 4.6 and 4.8). It should be set to a
value between (or equal to) zero and one. If its value is set to zero, this means that all
examples covered by a new rule are removed from the learning set (since their weight
is set to zero); this is the standard (non-weighted) covering algorithm. In principle,
a larger value of the parameter should keep the examples in the learning set longer,
which should result in more iterations of the learning process, which in turn, should
lead to a larger number of learned rules. In this section, we empirically investigate the
influence of this parameter for each of the four types of problem domains. Based on
some preliminary experiments, we have decided to investigate values of the parameter
between 0 and 0.3.

Single target classification problems. The covering weight parameter influence is
illustrated in Figure 5.17. The figure shows average error rates and rule set sizes over
all single target classification data sets. The graph shows that setting the parameter
value from 0 (or 0.01) to 0.1 drastically reduces the average error rate. This drop
of error rate is combined with an increase of the average rule set size. Additional
increase of the parameter value causes further increase of the rule set size, but does
not reduce the error rate. The results suggest that the covering weight parameter
value of 0.1 is a reasonable compromise between the rule set’s error rate and its size
for the single target classification domains, though the actual optimal value may be
domain dependent.
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Figure 5.17: Single target classification problems, influence of the covering weight parameter on
error rate and rule set size of unordered PCRs. Averages are computed over all single target
classification data sets.

Single target regression problems. The covering weight parameter influence is il-
lustrated in Figure 5.18, separately for RRMSE and correlation coefficient. The figure
shows average RRMSE, correlation coefficient, and rule set sizes over all single tar-
get regression data sets. The results are showing the opposite picture as compared
to the case of classification. The increase of the parameter value increases the aver-
age RRMSE and decreases the average correlation coefficient and the average rule set
size. This suggest that most accurate unordered PCRs can be learned by the standard
covering algorithm, i.e., by setting the covering weight parameter to the value of 0.
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Figure 5.18: Single target regression problems, influence of the covering weight parameter on
RRMSE, correlation coefficients, and rule set size of unordered PCRs. Averages are computed
over all single target regression data sets.

Multiple target classification problems. The covering weight parameter influence
is illustrated in Figure 5.19. The figure shows average error rates over all target at-
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tributes of all multiple target classification data sets, and average rule set sizes over all
multiple target classification data sets. The results are very similar to the single target
classification case. By increasing the parameter value the average error rate drops,
while the average rule set size increases. This results suggest that the optimal values
for the covering weight parameter are between 0.1 and 0.2.

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 21.6

 21.8

 0  0.05  0.1  0.15  0.2  0.25  0.3
 160

 180

 200

 220

 240

 260

 280

 300

av
er

ag
e 

%
 e

rr
o

r

av
er

ag
e 

si
ze

covering weight

unordered rules

average % error average size

Figure 5.19: Multiple target classification problems, influence of the covering weight parameter
on error rate and rule set size of unordered PCRs. Averages are computed over all target
attributes of all multiple target classification data sets.

Multiple target regression problems. The covering weight parameter influence is
illustrated in Figure 5.20, separately for RRMSE and correlation coefficient. The fig-
ure shows average RRMSE, correlation coefficient, and rule set sizes over all single
target regression data sets. Again, the results are showing a rather different picture
as compared to the case of classification, and are similar to those for single target re-
gression. With some exceptions, the increase of the parameter value tends to increase
the average RRMSE and decrease the average correlation coefficient and the average
rule set size.

The presented results suggest that for classification problems, the covering weight
parameter can be used to balance between the accuracy of the learned rule sets and
their size. For the regression problems, however, setting the parameter to a very low
value seems work best. We believe the main reason for different influence of the
parameter in classification and in regression tasks is the fact that it is defined in a
somewhat different way for each of the tasks (Equations 4.6 and 4.8).
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Figure 5.20: Multiple target regression problems, influence of the covering weight parameter on
RRMSE, correlation coefficients, and rule set size of unordered PCRs. Averages are computed
over all target attributes of all multiple target regression data sets.

5.6 Summary

In this chapter, the empirical evaluation of the the newly developed methods for
induction of predictive clustering rules (PCRs) is presented. The performed experi-
ments compare PCRs to some existing approaches, compare multiple target prediction
to single target prediction, and investigate the influence of some learning algorithm
parameters. Let us briefly summarize the results.

Comparison to existing methods. The experiments on single target classification
problems show that the performance of ordered predictive clustering rules (PCRs)
is not significantly different from that of ordered rules learned with CN2 and CN2-
WRAcc methods. Ordered PCRs are also not significantly different from that of pre-
dictive clustering trees (PCTs) (though somewhat worse). Ordered JRip rules are also
somewhat better than ordered PCRs (p-value=0.07). Unordered PCRs are better than
unordered CN2 and CN2-WRAcc rules, due to the error weighted covering algorithm
used for learning unordered PCRs. The unordered PCRs are not significantly dif-
ferent from unordered CN2-EVC and ordered JRip rules, and trees (PCTs), though
somewhat better. Unordered PCRs are better than ordered PCRs.

The results of the evaluation on single target regression problems suggest that both
ordered and unordered PCRs are better than (ordered) FRS rules. The comparison to
trees (PCTs), however, shows that PCRs are significantly worse than trees.

The evaluation on multiple target classification problems shows that ordered PCRs
are somewhat worse than trees (PCTs), but not significantly. In addition they tend to
produce a smaller number of rules than (transcribed) trees. The same holds true for
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unordered PCRs, but this time PCRs are (not significantly) better than trees.
The experiments on multiple target regression problems and the comparison of

PCRs to trees show a similar picture as in the case of single target regression. Ordered,
as well as unordered, PCRs are significantly worse than trees (PCTs). We believe the
main reason that PCTs are better than PCRs on single and multiple target regression
problems is the fact that PCTs use the state-of-the-art post-pruning method, while
PCRs use no post-pruning.

Comparison of single target and multiple target prediction. The comparison of
multiple target prediction PCRs to the corresponding sets of single target prediction
PCRs on classification problems shows that in the case of ordered rules, the single
target prediction models are better, while in the case of unordered rules, the multiple
target prediction PCRs are better. The differences in both cases are almost (but not
quite) significant. The difference in the rule set sizes, on the other hand, is very
significant. Multiple target prediction ordered and unordered rule sets are much
smaller than the corresponding single target prediction rule sets.

The results of the evaluation on the multiple target regression problems are some-
what contradicting: we believe there is not enough evidence to conclude that the
accuracy of single and multiple target PCRs are significantly different. The sizes of
the multiple target PCRs, on the other hand, are again significantly smaller.

Influence of target attribute weights. Adding weight to the non-target (descrip-
tive) attributes decreases the accuracy of the learned PCR rule sets. It also generally
decreases the rule set size, though in the case of unordered rules there are some ex-
ceptions.

Influence of covering weight. For classification problems, the covering weight pa-
rameter can be used to balance between the accuracy of the learned rule sets and their
size. The larger the parameter’s value, the better the accuracy, but also the larger rule
set size. For the regression problems, however, setting the parameter to a very low
value produces the most accurate rule sets.



Chapter 6

Conclusions

In this thesis we developed and empirically evaluated a method for learning predic-
tive clustering rules. The method combines ideas from supervised and unsupervised
learning and extends the predictive clustering approach to methods for rule learn-
ing. In addition, it generalizes rule learning and clustering. The newly developed
algorithm is empirically evaluated, in terms of performance, on several single and
multiple target classification and regression problems. The new method compares
favorably to existing methods. The comparison of single target and multiple target
prediction models shows that multiple target models offer comparable performance
and drastically lower complexity than the corresponding sets of single target models.

6.1 Original contributions

The work presented in this thesis comprises several contributions to the area of ma-
chine learning. First, we have developed a new method for learning unordered single
target classification rules. It is loosely based on the commonly used rule learning
method CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991), but uses a general-
ized weighted covering algorithm (Gamberger and Lavrač, 2002).

Second, the developed method is generalized for learning ordered or unordered
rules, on single or multiple target classification or regression domains. It uses a search
heuristic that takes into account several rule quality measures and is applicable to all
the above mentioned types of domains.

The third contribution of the thesis is the extension of the predictive clustering
approach to models in the form of rules. The newly developed method combines rule
learning and clustering. The search heuristic takes into account the values of both
the target and the descriptive attributes. Different weighting of these two types of
attributes enable us to traverse from predictive modeling to clustering.

105
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The final contribution is an extensive empirical evaluation of the newly developed
method on single target classification and regression problems, as well as multiple
target classification and regression problems. Performance of the new method is com-
pared to some existing methods. The results show that on single target classification
problems, the performance of predictive clustering rules (PCRs) is comparable to that
of CN2 rules and predictive clustering trees (PCTs), while in the case of unordered
rules, PCRs are better than CN2 rules. Unordered PCRs are in general better than
ordered PCRs. On multiple target classification problems, PCRs are comparable to
PCTs, but PCRs tend to produce smaller rule sets than (transcribed) trees. Single
target regression PCRs are comparable to FRS rules, however, their performance is
much worse than that of PCTs; on multiple target regression problems, PCRs are also
much worse than PCTs. We believe the main reason that PCTs are better than PCRs on
regression problems is the fact that PCTs use a state-of-the-art post-pruning method,
while PCRs use no post-pruning. The comparison of the performance of single target
and multiple target PCRs on multiple target problems shows, that multiple target pre-
diction provides comparable accuracy as single target prediction, but multiple target
prediction rule sets are much smaller than the corresponding single target rule sets.

6.2 Further work

Let us conclude with some guidelines for further work. The thesis proposes a rel-
atively general algorithm for rule learning which covers several possible methods
for rule learning. We were only able to investigate and evaluate the basic covering
approach to predictive clustering rules. The algorithm includes several other rule
learning approaches, which have not yet been evaluated. These include the ‘distance
to existing rules’ and ‘prototype dissimilarity’ parts of the heuristic search function
(Section 4.3, Equations 4.1 and 4.2), “Sampling” and “None” learning set modifying
methods (Section 4.5, Table 4.4), and optimization of rule weights, i.e., the “Unordered-
Opt-W” prediction method (Section 4.6, Table 4.6).

In addition, there exist several newer methods, e.g., Ripper (Cohen, 1995), Slipper
(Cohen and Singer, 1999), and CN2-EVC (Možina et al., 2006), which tend to give
better results on single target classification problems. Incorporating ideas from these
methods into predictive clustering rules could lead to improved performance.

The evaluation showed that the performance of current regression rules methods
based on the covering approach is significantly worse than the performance of regres-
sion trees, and that a further development of regression rules learning algorithms is
necessary. We believe the inclusion of reduced error pruning (Brunk and Pazzani,
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1991) into the PCR algorithm would significantly improve its performance. Addition-
ally, introduction of prototypes in the form of (linear) regression models into PCRs
should also lead to increased performance of regression rules.

The search heuristic used in our algorithm is multi-objective. It comprises sev-
eral criteria and we have combined these in a relatively simple manner. Employing
approaches developed within the decision support (Keeney and Raiffa, 1993) and
multi-objective optimization (Deb, 2001) areas could lead to improved performance of
predictive clustering rules.
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I. Kononenko. Strojno učenje. Založba FE in FRI, Ljubljana, Slovenia, 2005. In Slovene.
25

I. Kononenko and I. Bratko. Information-based evaluation criterion for classifier’s
performance. Machine Learning, 6(1):67–80, 1991. 24

P. Langley. Elements of Machine Learning. Morgan Kaufmann, San Francisco, CA, USA,
1996. 1, 3, 10, 121
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learning system AQ15 and its testing application to three medical domains. In
Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI 86), pages
1041–1047, Philadelphia, PA, USA, 1986. Morgan Kaufmann. 13, 33, 41, 122, 125

T. Mitchell. Machine Learning. McGraw-Hill, New York, NY, USA, 1997. 1, 12, 122

M. Možina, J. Demšar, J. Žabkar, and I. Bratko. Why is rule learning optimistic and
how to correct it. In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Machine
Learning: ECML 2006, Proceedings of the Seventeenth European Conference on Machine
Learning, Berlin, Germany, September 18-22, 2006, Lecture Notes in Computer Science,
pages 330–340. Springer, 2006. 26, 59, 106

P. B. Nemenyi. Distribution-free multiple comparisons. PhD thesis, Princeton University,
Princeton, NY, USA, 1963. 59, 62, 79

D. Newman, S. Hettich, C. Blake, and C. J. Merz. UCI repository of machine learning
databases, 1998. URL http://www.ics.uci.edu/~mlearn/MLRepository.html. 51,
52, 128

K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical Approach
to Global Optimization. Natural Computing Series. Springer, Berlin, Germany, 2005.
47

J. R. Quinlan. Learning with continuous classes. In A. Adams and L. Sterling, edi-
tors, Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, Hobart,
Australia, November 16-18, 1992, pages 343–348, Singapore, 1992. World Scientific. 76

http://www.ics.uci.edu/~mlearn/MLRepository.html


114 BIBLIOGRAPHY

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco,
CA, USA, 1993. ISBN 1-55860-238-0. 2, 8, 11, 120

J. R. Quinlan. MDL and categorial theories (continued). In A. Prieditis and S. Russel,
editors, Proceedings of the Twelfth International Conference on Machine Learning, pages
464–470, San Francisco, CA, USA, 1995. Morgan Kaufmann. 17, 35

M. Škrjanc, M. Grobelnik, and D. Zupanič. Insights offered by data-mining when
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Dodatek A

Razširjeni povzetek
Učenje pravil za napovedno razvrščanje

Učenje pravil za napovedno razvrščanje, predstavljeno v pričujoči disertaciji, temelji
na idejah z dveh področij strojnega učenja, napovednega modeliranja in razvrščanja
v skupine. Omenjeni področji sta običajno obravnavani popolnoma ločeno. Napo-
vedno modeliranje se ukvarja z gradnjo modelov za napovedovanje določenih ciljnih
lastnosti objektov v odvisnosti od opisov teh objektov, razvrščanje pa se po drugi
strani ukvarja z razvrščanjem objektov v skupine medseboj podobnih si objektov. V
tem primeru nimamo ciljnih lastnosti, ki naj bi jih napovedovali, in navadno tudi ne
simboličnega opisa zgrajenih skupin objektov. Kljub temu pa je med metodami za
napovedno modeliranje, ki delijo prostor primerov, kot so na primer odločitvena dre-
vesa in pravila, ter razvrščanjem v skupine tudi nekaj podobnosti. Omenjene metode
napovednega modeliranja delijo prostor primerov v podskupine primerov s čim bolj
podobnimi vrednostmi ciljne spremenljivke, medtem ko razvrščanje išče skupine pri-
merov, ki so si čim bolj podobni v vrednostih vseh opisnih spremenljivk. Napovedno
razvrščanje temelji na tej podobnosti. Išče skupine primerov, ki so si čim bolj po-
dobni, pri tem pa upošteva tako opisne kot tudi ciljne spremenljivke. Ob tem vsaki
skupini primerov določi tudi napovedni model. Metode napovednega razvrščanja
nam omogočajo gradnjo modelov za napovedovanje več ciljnih spremenljivk hkrati.
Taki modeli so običajno preprostejši in bolj razumljivi kot ustrezna množica modelov
za napovedovanje zgolj ene ciljne spremenljivke.

Doslej je bilo napovedno razvrščanje omejeno na metode za gradnjo odločitve-
nih dreves. Cilj te disertacije je razširiti pristop napovednega razvrščanja na metode
za učenje pravil oz. razviti metodo, ki bo obravnavala učenje pravil in razvrščanje v
skupine na enoten način. Večina obstoječih metod za učenje pravil temelji na prekriv-
nem algoritmu, ki je bil prvotno zasnovan za učenje odločitvenih seznamov pravil
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za binarne klasifikacijske probleme. Razvili smo posplošeno verzijo tega algoritma,
ki nam omogoča učenje urejenih in neurejenih množic pravil na klasifikacijskih ali
regresijskih problemih z eno ali več ciljnimi spremenljivkami.

Novo razvito metodo smo empirično ovrednotili na množici problemov z eno ali
več ciljnimi spremenljivkami. Rezultati so primerljivi z že obstoječimi metodami za
učenje pravil in drevesi za napovedno razvrščanje. Primerjava modelov za napovedo-
vanje več ciljnih spremenljivk hkrati z modeli za napovedovanje posameznih ciljnih
spremenljivk pokaže, da prvi ponujajo podobno ali boljšo točnost napovedi, ob tem
pa vsebujejo bistveno manj pravil.

A.1 Izhodišča in obstoječe metode

Področje pričujoče disertacije je učenje pravil za napovedno razvrščanje in je pove-
zana z več področji strojnega učenja. Napovedno razvrščanje združuje pristope na-
povednega modeliranja in razvrščanja v skupine. V nadaljevanju bomo na kratko
predstavili napovedno modeliranje, razvrščanje v skupine in napovedno razvrščanje.
Učenje pravil je sicer podpodročje napovednega modeliranja, vendar mu bomo zaradi
pomembnosti za pričujočo disertacijo namenili poseben razdelek. Vsako od omenje-
nih področij bomo na kratko predstavili ter omenili raziskave povezane s pričujočo
disertacijo.

A.1.1 Napovedno modeliranje

Napovedno modeliranje (Hastie et al., 2001) se v splošnem ukvarja z gradnjo mode-
lov, ki nam na osnovi opisa nekega objekta omogočajo napovedovanje določene ciljne
lastnosti tega objekta. Napovedni model gradimo, oziroma se ga učimo, na osnovi
učne množice objektov ali učnih primerov. Opis objekta je največkrat podan kot vek-
tor atributnih vrednosti, čeprav se uporabljajo tudi drugi opisni jeziki, kot na primer
logika prvega reda. Ciljna lastnost objekta je običajno predstavljena z eno samo ciljno
spremenljivko, ki jo imenujemo razred. V kolikor je ta spremenljivka nominalna, go-
vorimo o klasifikacijskem problemu, če je numerična oziroma zvezna, pa o regresijskem
problemu. Napovedni model, ki ga dobimo kot rezultat učenja, je lahko predstavljen
v veliko različnih oblikah, od enačb do logičnih programov. Različne oblike modelov
se med drugim razlikujejo tudi po napovedni točnosti in razumljivosti. Med razu-
mljivimi oblikami modelov se poleg enačb zelo pogosto uporabljajo tudi odločitvena
drevesa (Quinlan, 1993) in pravila (Flach in Lavrač, 2003). Za razliko od enačb, ki
napovedujejo vrednost ciljne spremenljivke v celotnem prostoru primerov, drevesa in
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pravila ta prostor najprej razdelijo, nato pa za vsak podprostor zgradijo poseben (bolj
preprost) model. Napovedni modeli v obliki pravil so tema pričujoče disertacije.

A.1.2 Razvrščanje v skupine

Razvrščanje v skupine (Kaufman in Rousseeuw, 1990) se v splošnem ukvarja z razvr-
ščanjem objektov v skupine ali razrede podobnih objektov. Podano imamo množico
opisov objektov oziroma primerov, ki jih želimo razvrstiti v razrede tako, da so si
posamezni primeri v isti skupini med seboj čim bolj podobni ter hkrati, da so si pri-
meri v različnih skupinah med seboj čim bolj različni. Primeri so, podobno kot pri
napovednem modeliranju, običajno opisani z množico vrednosti neodvisnih spremen-
ljivk ali atributov, vendar pa nimajo določene ciljne lastnosti, ki bi jo napovedovali.
Za razvrščanje potrebujemo neko mero podobnosti, s katero določamo razdalje med
posameznimi objekti. Objekti so predstavljeni kot točke v večdimenzionalnem metrič-
nem prostoru, v katerem so razdalje med posameznimi objekti enoznačno določene.
Skupino objektov lahko predstavimo s prototipnim objektom, ki je na primer točka
v prostoru z najmanjšo povprečno razdaljo do vseh elementov skupine. Na ta način
lahko računamo tudi razdalje med skupinami objektov. Pri računanju razdalj moramo
biti pozorni na normalizacijo posameznih atributov oziroma nijhovo uteževanje, ker
lahko vsak atribut predstavlja različno meritev, ki je lahko podana v različnih eno-
tah. Končni rezultat razvrščanja so skupine objektov, ne pa tudi njihovi simbolni
opisi. Kljub temu lahko na zgrajene skupine gledamo kot na razrede pri klasifikaciji
ter naknadno zgradimo simbolne opise že zgrajenih skupin. Ta pristop imenujemo
konceptualno razvrščanje (Michalski, 1980). Za razvrščanje lahko uporabimo tudi odlo-
čitvena drevesa. Vsako vozlišče drevesa obravnavamo kot skupino in celotno drevo
nam predstavlja hierarhično urejene skupine. Takemu drevesu pravimo razvrščevalno
drevo (Blockeel, 1998) in vsaka skupina v njem je opisana s konjunkcijo pogojev, ki se
nahajajo na poti od korena drevesa do danega vozlišča. Skupine v razvrščevalnem
drevesu, ki niso v isti veji, se med seboj ne prekrivajo.

A.1.3 Napovedno razvrščanje

Na podlagi povedanega lahko sklepamo, da so metode napovednega modeliranja, ki
delujejo na principu deljenja množice primerov v podmnožice, v bistvu zelo podobne
metodam za razvrščanje (Langley, 1996). Glavna razlika je v tem, da prve delijo pri-
mere v skupine, ki imajo homogene vrednosti ciljne spremenljivke, razvrščanje pa
deli primere v skupine, ki imajo homogene vrednosti vseh opisnih spremenljivk. Na
osnovi te podobnosti je nastala ideja napovednega razvrščanja (Blockeel, 1998; Blockeel
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et al., 1998), ki združuje oba pristopa. Pri napovednem razvrščanju, enako kot pri obi-
čajnem razvrščanju, iščemo skupine medseboj podobnih si elementov, vendar pri tem
upoštevamo tako opisne (neodvisne) spremenljivke, kot tudi ciljne (odvisne) spre-
menljivke. Poleg tega vsaki skupini pripišemo model, ki to skupino opisuje in hkrati
na osnovi vrednosti opisnih spremenljivk napoveduje vrednosti ciljnih spremenljivk.
Z metodami napovednega razvrščanja lahko gradimo modele za napovedovanje več
spremenljivk hkrati, ki so velikokrat bolj enostavni in bolj razumljivi kot ustrezno
število modelov za napovedovanje posameznih spremenljivk. Ker iskanje podobnih
primerov poteka ob upoštevanju vseh atributov, dosega napovedno razvrščanje pose-
bej dobre rezultate na domenah z veliko šuma ali z veliko manjkajočimi vrednostmi
ciljne spremenljivke (Blockeel, 1998). Do sedaj je bilo napovedno razvrščanje omejeno
na metode za gradnjo odločitvenih dreves (Blockeel, 1998; Blockeel et al., 1998).

A.1.4 Učenje pravil

Množice odločitvenih pravil »če-potem« sodijo med človeku najbolj razumljive oblike
napovednih modelov (Flach in Lavrač, 2003; Mitchell, 1997). V primerjavi z odločitve-
nimi drevesi, kjer moramo celotno drevo interpretirati kot celoto, lahko posamezna
pravila interpretiramo vsako posebej. Pravila znotraj množice so oblike ‘ČE pogoj PO-
TEM napoved’, poleg tega pa imamo v množici pravil običajno tudi privzeto pravilo s
katerim klasificiramo primere, ki ne ustrezajo pogojem nobenega drugega pravila. Za
primere, ki ustrezajo pogoju nekega pravila pravimo, da jih to pravilo pokriva. Ločimo
urejene in neurejene množice pravil. V urejenih množicah pravil, ali odločitvenih sezna-
mih, so pravila urejena v seznam in prvo pravilo v seznamu, ki pokrije dani primer,
uporabimo za napoved razreda primera. Pri neurejenih množicah pravil pa zberemo
napovedi vseh pravil, ki pokrijejo primer ter jih sestavimo v končno napoved razreda
primera.

Večina metod za gradnjo klasifikacijskih pravil temelji na prekrivnem algoritmu
(Michalski, 1969; Michalski et al., 1986). Med njimi je zelo znana metoda CN2 (Clark
in Niblett, 1989; Clark in Boswell, 1991). Metoda CN2 iterativno gradi pravila, ki po-
krivajo primere s podobnimi vrednostmi ciljne spremenljivke. Za preiskovanje pro-
stora vseh možnih pravil uporablja hevristično iskanje, pri čemer je hevristika kar
natančnost grajenih pravil. Zgrajeno pravilo dodamo v množico pravil, hkrati pa iz
učne množice odstranimo vse primere, ki jih je to pravilo pokrilo. Nato postopek
ponavljamo, dokler v učni množici ne zmanjka primerov ali ne moremo več najti no-
benega pravila. Pravila zgrajena na ta način so urejena. Z metodo CN2 lahko gradimo
tudi neurejena pravila, če pri gradnji pravil iz učne množice vsakič odstranimo le tiste
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primere, ki jih novo pravilo pravilno klasificira in če postopek gradnje ponovimo za
vsako možno vrednost ciljne spremenljivke. Večina metod za gradnjo pravil je name-
njena gradnji klasifikacijskih pravil, obstaja pa tudi nekaj metod za regresijska pravila.
Sistem R2 (Torgo, 1995) uporablja nekoliko spremenjen prekrivni algoritem, model v
vsakem pravilu je lahko linearna funkcija ali pa le konstantna vrednost. Zgrajena
pravila so neurejena. FORS (Karalič in Bratko, 1997) je sistem za induktivno logično
programiranje in kot tak za opis učnih primerov uporablja logiko prvega reda. Gradi
urejena pravila in pri tem, tako kot CN2, uporablja prekrivni algoritem.

Z gradnjo pravil je povezano tudi področje odkrivanja podskupin (Lavrač et al.,
2004), ki se ukvarja z iskanjem in opisovanjem zanimivih (pod)skupin primerov. Same
metode za odkrivanje podskupin so zelo podobne metodam za gradnjo pravil, vendar
pa uporabljajo nekatere zanimive rešitve, kot je na primer uteženi prekrivni algoritem,
ki je predstavljal izhodišče za razvoj bolj splošnega prekrivnega algoritma, ki deluje
na klasifikacijskih in regresijskih problemih z eno ali večimi ciljnimi spremenljivkami.

A.2 Pregled vsebine

Disertacija je sestavljena iz šestih poglavij. Prvo poglavje podaja uvod v disertacijo s
poudarkom na zastavljenih ciljih in poglavitnih prispevkih znanosti. Drugo poglavje
poda ozadje napovednega modeliranja, razvrščanja v skupine, napovednega razvršča-
nja in učenja pravil. Tretje poglavje opisuje mere za ocenjevanje kvalitete posameznih
pravil in množic pravil. Te mere so uporabljene v samem učnem algoritmu za pravila
za napovedno razvrščanje, ki je opisan v naslednjem, četrtem poglavju. To poglavje
predstavlja glavni del disertacije. Peto poglavje predstavlja empirično evalvacijo me-
tode za učenje pravil za napovedno razvrščanje. Zadnje poglavje podaja sklep diser-
tacije in na kratko izpostavi izvirne prispevke disertacije ter rezultate evalvacije novo
razvitih metod. Poglavje se konča s smernicami za nadaljnje delo. V nadaljevanju
tega razdelka bomo predstavili nekaj bistvenih prispevkov disertacije.

A.2.1 Ocenjevanje kvalitete pravil in množic pravil

Preden lahko začnemo z učenjem posameznih pravil in množic pravil, moramo dolo-
čiti zahteve, katerim mora zadoščati vsako posamezno pravilo ter množica pravil kot
celota. V praksi si te zahteve med seboj pogosto nasprotujejo, in si moramo bodisi
izbrati eno najpomembnejšo zahtevo, ali pa med večimi poiskati primeren kompro-
mis. Od množice pravil tako na primer pogosto zahtevamo, da je majhna, in da ima
majhno napovedno napako, vendar imajo lahko zelo majhne množice pravil veliko
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napovedno napako. V nadaljevanju bomo našteli nekaj mer za ocenjevanje kvalitete
pravil in množic pravil s katerimi si pomagamo pri učenju in ocenjevanju ze naučenih
množic pravil.

Posamezna pravila

Za vsako posamezno pravilo želimo, da nam podaja neko novo in splošno informa-
cijo o obravnavani problemski domeni. Zato mora biti pravilo najprej točno oz. mora
imeti majhno napovedno napako. Nadalje, če naj bo pravilo splošno, mora pokrivati ve-
liko število učnih primerov. Vsako pravilo naj bi nam podajalo neko novo informacijo o
obravnavani domeni, zato naj ne bi pokrivalo primerov, ki jih že pokrivajo ostala pra-
vila iz množice; želimo torej veliko razdaljo med novim pravilom in ze obstoječimi pravili.
Poleg tega naj bi vsako pravilo pokrivalo skupino primerov katere statistični opis (prototip)
se razlikuje od statističnega opisa celotne učne množice. Vsako od omenjenih zahtev lahko
bolj natančno podamo z definicijo ustrezne mere. V strojnem učenju v ta namen (npr.
za napovedno napako) običajno uporabljamo mere, ki so primerne le za eno samo
nominalno ali numerično spremenljivko. Za potrebe napovednega razvrščanja pa po-
trebujemo mere, ki so uporabne tudi na domenah z več nominalnimi ali numeričnimi
ciljnimi spremenljivkami (atributi).

Namesto napovedne napake lahko npr. definiramo bolj splošno mero, poimeno-
vali smo jo disperzija, ki je uporabna tudi za ocenjevanje točnosti (oziroma bolje rečeno
kompaktnosti primerov, ki jih pravilo pokrije) pravil za napovedno razvrščanje z več
ciljnimi atributi. Disperzijo prek več atributov zapišemo kot uteženo povprečje di-
sperzij po posameznih atributih. Uteži nam na primer omogočajo, da damo večji
poudarek atributom, za katere na podlagi domenskega predznanja sklepamo, da so
pomembnejši od ostalih. Disperzijo vzdolž enega nominalnega atributa definiramo
kot (normirano) povprečno razdaljo enega primera iz množice do prototipa te mno-
žice. Prototip ali prototipni primer množice primerov vzdolž nominalnega atributa je
enak vektorju relativnih frekvenc vrednosti, ki jih ta atribut lahko zavzame. Po ena-
kem principu bi lahko definirali tudi disperzijo za numerične atribute, vendar smo se
raje odločili, da disperzijo numeričnih atributov merimo z varianco. Varianca je na-
mreč v statistiki in strojnem učenju pogosto uporabljana mera z znanimi lastnostmi,
ki ustreza tudi našim potrebam.

Množice pravil

V strojnem učenju se uporablja veliko različnih mer za ocenjevanje množic pravil in
napovednih modelov v splošnem. Za klasifikacijske naloge je daleč najbolj pogosta
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klasifikacijska točnost, oziroma klasifikacijska napaka. Nekatere druge pogosto upora-
bljane mere, kot na primer preciznost, priklic, in ploščina pod krivuljo ROC niso primerne
za klasifikacijske probleme z več kot dvema možnima razredoma, kaj šele za klasifi-
kacijske probleme z več ciljnimi spremenljivkami. Za regresijske naloge sta najbolj
pogosto uporabljani meri relativni koren srednje kvadratne napake (angl. relative root mean
squared error (RRMSE)) in korelacijski koeficient, pogosto pa se uporabljajo tudi koren sre-
dnje kvadratne napake (angl. root mean squared error (RRMSE)), srednja kvadratna napaka
(angl. mean squared error (MSE)), in srednja absolutna napaka (angl. mean absolute error
(MAE)).

A.2.2 Učenje pravil za napovedno razvrščanje

Problem gradnje napovednih pravil definiramo na naslednji način. Podane imamo:
opisni atributni prostor D, ciljni atributni prostor T, množico N primerov {ei}N

1 , kjer
je ei = [xi, yi] ∈ D × T, opisni jezik B nad D, mero razdalje med dvema prime-
roma d(ei, ej) in prototipno funkcijo p({ek}K

1 ), ki množici primerov pripiše prototipni
primer. Iščemo množico skupin primerov, za katere velja naslednje. Vsaki skupini
pripada opis v jeziku B in vsaki skupini pripada napoved izražena kot prototip te
skupine. Poleg tega so razdalje med primeri znotraj skupin majhne in razdalje med
primeri v različnih skupinah so velike. Vsaka skupina naj bo predstavljena s pravi-
lom oblike ‘ČE <opis skupine> POTEM <prototip skupine>’. Takšna definicija problema
hkrati zaobjema nalogo razvrščanja (prostor T = ∅), nalogi klasifikacije in regresije
(mera razdalje d upošteva le projekcijo primerov na prostor T) ter nalogo napovedo-
vanja več (nominalnih ali numeričnih) ciljnih spremenljivk hkrati (prostor T je večdi-
menzionalen).

Učni algoritem

Kot smo že omenili, velika večina metod za učenje pravil temelji na prekrivnem algo-
ritmu (Michalski, 1969; Michalski et al., 1986). Za učenje pravil za napovedno raz-
vrščanje smo razvili bolj splošen algoritem, ki zaobjema tudi prekrivni algoritem.
Algoritem za učenje pravil za napovedno razvrščanje, oziroma njegov zgornji nivo,
je predstavljen v tabeli A.1. Učenje začnemo s prazno množico pravil R in z mno-
žico učnih primerov E. V vsaki iteraciji poiščemo množico kandidatnih pravil Rc.
Kandidatna pravila nato ovrednotimo ter najboljše med njimi (ri) (če obstaja in do-
sega podane minimalne kriterije) dodamo v množico pravil R. Nato z namenom, da
bomo v naslednji iteraciji našli drugačna kandidatna pravila, spremenimo trenutno
učno množico primerov Ec. Zanko ponavljamo, dokler ni izpolnjen ustavitveni pogoj
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Tabela A.1: Zgornji nivo algoritma za učenje pravil za napovedno razvrščanje.

E . . . začetna učna množica
Ec . . . učna množica v trenutni iteraciji
R . . . množica pravil
Rc . . . množica kandidatnih pravil
ri . . . pravilo dodano v trenutni iteraciji

procedure NaučiMnožicoPravil(E)
R = ∅
Ec = E
repeat

Rc = PoiščiKandidatnaPravila(Ec)

ri = NajboljšePravilo(Rc, R)
if (ri , ∅) then

R = R ∪ {ri}
Ec = SpremeniUčnoMnožico(Ec, ri)

until KončajUčenje(Ec, R, ri)
R = R ∪ PrivzetoPravilo(E)
R = OptimirajMnožicoPravil(R, E)
return R

(‘KončajUčenje’). Nato dodamo še privzeto pravilo, to je pravilo za klasificiranje pri-
merov, ki jih ne pokrije nobeno drugo pravilo iz množice. Preden končamo z učenjem
množice pravil, lahko naučena pravila še optimiramo, na primer tako, da pravila v
množici poenostavimo.

Hevristično preiskovanje prostora vseh možnih pravil je daleč najbolj pogosto upo-
rabljena metoda učenja pravil znotraj algoritmov za učenje pravil. Algoritem za učenje
pravil za napovedno razvrščanje uporablja zelo podoben algoritem kot metoda CN2
(Clark in Niblett, 1989; Clark in Boswell, 1991). Ključno vlogo pri tem algoritmu
igra hevristična funkcija, katere namen je ocenjevanje različnih pravil in nam služi
za vodenje iskanja v smeri pravil željene kvalitete. Hevristična funkcija naj bi merila
kvaliteto vsakega pravila posebej in v kombinaciji s celotno množico pravil. V prvem
delu razdelka A.2.1 smo govorili o zahtevanih lastnostih pravil, kot tudi o merah za
njihovo ocenjevanje. V najbolj splošnem primeru lahko v hevristično funkcijo vklju-
čimo vse štiri omenjene mere. Seveda je možnih načinov za kombinacijo mer več, mi
si bomo za vzor vzeli hevristiko WRAcc (Lavrač et al., 1999) ter omenjene mere med
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sebo pomnožili. Naj bo torej c pogoj pravila r, ki ga ocenjujemo, in naj bo E množica
vseh učnih primerov. Er je podmnožica primerov, ki izpolnjujejo pogoj c (primeri, ki
jih pokriva pravilo r) in R je množica do sedaj zgrajenih pravil. Hevristično funkcijo
sedaj zapišemo kot (večja vrednost funkcije pomeni boljše pravilo)

h∗(c) = [doff − disp(Er; wa)] · cov(r; E, we)
α · dist(r, R)β · diss(r; E, wa)

γ. (A.1)

Pri tem disperzija disp(Er; wa) meri točnost pravila, cov(r; E, we) pomeni število pri-
merov (oz. vsoto njihovih uteži), ki jih pokriva pravilo, dist(r, R) pomeni oddaljenost
pravila od ostalih pravil v množici R in diss(r; E, wa) pomeni različnost prototipa
pravila od prototipa celotne učne množice. Parametri α, β in γ nam omogočajo, da
bolj poudarimo eno ali drugo mero. Parameter doff smo uvedli po vzoru hevristike
WRAcc (Lavrač et al., 1999); če ga nastavimo na vrednost disperzije celotne učne
množice E, lahko na prvi faktor enačbe gledamo kot na relativno zmanjšanje disper-
zije. Če hočemo v celoti posnemati hevristiko WRAcc, moramo dodatno nastaviti še
α=1 in β, γ=0. Poleg omenjenih parametrov v hevristični funkciji nastopajo še uteži
atributov wa in uteži učnih primerov we. Slednje pridejo v poštev v kombinaciji z
uteženim prekrivnim algoritmom, ki ga bomo opisali v nadaljevanju. Uteži atributov
nam načeloma omogočajo, da določamo vpliv vsakega atributa posebej. V praksi pa
atribute vedno razdelimo na opisne in ciljne ter njihove uteži določimo takole:

waj = waj =

{
τ, aj je ciljni atribut,
1− τ, sicer,

(A.2)

pri čemer naj parameter τ zadošča pogoju 0 < τ ≤ 1. Če je naš glavni cilj učenje
čim bolj točnih pravil, potem nastavimo τ = 1. Po drugi strani pa z nastavitvijo τ

na vrednost manjšo od 1 zahtevamo, da vsako pravilo pokriva primere, ki so si čim
bolj podobni po vrednostih vseh atributov. Parameter τ nam pravzaprav omogoča
prehajanje med napovednim modeliranjem na eni strani in razvrščanjem v skupine
na drugi strani.

Standardni prekrivni algoritem spremeni množico Ec (procedura ‘SpremeniUčno-
Množico’) tako, da iz nje odstrani primere, ki jih je pokrilo pravilo dodano v tej
iteraciji. Na ta način pri iskanju novih pravil (procedura ‘PoiščiKandidatnaPravila’)
bolj poudarimo primere, ki še niso bili primerno pokriti. Ta pristop uporablja tudi
algoritem CN2 (Clark in Niblett, 1989; Clark in Boswell, 1991). Nekoliko drugače
spremeni trenutno učno množico primerov uteženi prekrivni algoritem (Gamberger in
Lavrač, 2002). Le-ta vsakemu učnemu primeru priredi utež, ki je na začetku enaka
ena. Namesto, da bi novo pokrite primere popolnoma odstranil iz učne množice, jim
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le zmanjša utež. Vendar uteži ne zmanjša vsem novo pokritim primerom, pač pa le
tistim, ki jih je novo dodano pravilo pravilno klasificiralo. Žal je pojem »pravilno
klasificiranega primera« definiran le za klasifikacijske probleme z eno ciljno spremen-
ljivko. Zato smo razvili bolj splošno prekrivno metodo, poimenovali smo jo z napako
uteženi prekrivni algoritem, ki deluje na klasifikacijskih in regresijskih domenah z eno
ali več ciljnimi spremenljivkami. Z napako uteženi prekrivni algoritem je podoben
»običajnemu« uteženemu prekrivnemu algoritmu, le da je vrednost za katero zmanj-
šamo utež danega učnega primera sorazmerna z napako, ki jo novo dodano pravilo
naredi pri napovedovanju vrednosti ciljnih spremenljivk tega primera.

A.2.3 Eksperimentalna evalvacija

Učinkovitost novo razvitih metod za učenje pravil za napovedno razvrščanje smo em-
pirično ovrednotili z več skupinami poskusov. Predvsem nas je zanimala napovedna
točnost (klasifikacijska napaka za klasifikacijske ter relativni koren srednje kvadra-
tne napake in korelacijski koeficient za regresijske probleme) ter velikost naučenih
množic pravil. Vse ocene napak so bile narejene s postopkom 10-kratnega prečnega
preverjanja. Signifikantnost opaženih razlik med posameznimi metodami smo pre-
verili z uporabo Wilcoxonovega testa rangiranih predznakov (angl. signed-rank test)
(Wilcoxon, 1945). Najprej smo nove metode preizkusili na klasifikacijskih in regresij-
skih problemih z eno ciljno spremenljivko ter jih primerjali z nekaterimi obstoječimi
metodami (CN2, CN2-WRAcc, CN2-EVC, JRip in FRS); pri tem smo uporabili izbor
standardnih testnih podatkov (Newman et al., 1998). Učinkovitost napovedovanja
več ciljnih spremenljivk hkrati smo ovrednotili s primerjavo z modeli za napovedo-
vanje ene same ciljne spremenljivke ter z modeli, zgrajenimi z drevesi za napovedno
razvrščanje; pri tem smo uporabili več realnih množic podatkov.

Primerjava z obstoječimi metodami

Poskusi na klasifikacijskih problemih z eno ciljno spremenljivko kažejo, da se točnost
urejenih pravil za napovedno razvrščanje (PNR) signifikantno ne razlikuje od urejenih
pravil naučenih z metodama CN2 in CN2-WRAcc. Urejena PNR se tudi ne razlikujejo
signifikantno od dreves za napovedno razvrščanje (DNR), čeprav so nekoliko manj
točna. Urejena pravila JRip so boljša od urejenih PNR (p-vrednost=0.07). Neurejena
PNR so boljša kot neurejena pravila metod CN2 in CN2-WRAcc zaradi uporabe z na-
pako uteženega prekrivnega algoritma za učenje neurejenih PNR. Točnost neurejenih
PNR se signifikantno ne razlikuje od točnosti neurejenih pravil CN2-EVC, urejenih
pravil JRip in dreves (DNR), čeprav so omenjene metode nekoliko manj točne.
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Rezultati evalvacije na regresijskih problemih z eno ciljno spremenljivko kažejo,
da so tako urejena kot neurejena PNR bolj točna od (urejenih) pravil FRS. Po drugi
strani pa primerjava z drevesi (DNR) kaže, da so PNR signifikantno slabša od dreves.

Evalvacija na klasifikacijskih problemih z več spremenljivkami kaže, da so urejena
PNR nekoliko slabša od dreves (DNR), vendar razlika ni signifikantna. Poleg tega so
množice PNR običajno manjše od (v pravila prepisanih) dreves. Podobno velja tudi
za neurejena PNR, le da so tokrat PNR nekoliko boljša od dreves.

Poskusi na regresijskih problemih z več ciljnimi spremenljivkami in primerjava
PNR z drevesi nam kažejo podobno sliko kot v primeru regresije ene ciljne spremen-
ljivke. Tako urejena kot neurejena PNR so signifikantno slabša od dreves (DNR). Do-
mnevamo, da je glavni razlog za omenjeno razliko pri regresijskih problemih v tem,
da DNR uporabljajo zelo učinkovito metodo naknadnega rezanja regresijskih dreves,
medtem ko algoritem PNR ne vsebuje nobene metode poenostavljanja in izločanja
nepotrebnih pravil.

Primerjava med napovedovanjem ene in večih ciljnih spremenljivk

Primerjava PNR za napovedovanje več ciljnih spremenljivk z ustreznimi množicami
PNR za napovedovanje ene ciljne spremenljivke na klasifikacijskih problemih kaže,
da so v primeru urejenih pravil boljša pravila za napovedovanje ene ciljne spremen-
ljivke, medtem ko so v primeru neurejenih pravil boljša pravila za napovedovanje več
spremenljivk. Razlike v obeh primerih niso signifikantne (p-vrednost=0.07). Po drugi
strani pa so razlike v velikosti množic pravil zelo signifikantne. Urejene in neure-
jene množice pravil za napovedovanje več ciljnih spremenljivk so veliko manjše od
ustreznih zbirk množic pravil za napovedovanje ene ciljne spremenljivke.

Rezultati evalvacije na regresijskih problemih z več ciljnimi spremenljivkami si
med seboj nekoliko nasprotujejo, vendar na njihovi osnovi ne moremo sklepati, da
sta točnost PNR za napovedovanje več ciljnih spremenljivk in točnost PNR za napo-
vedovanje ene ciljne spremenljivke signifikantno različni. Po drugi strani pa je veli-
kost množic pravil za napovedovanje več ciljnih spremenljivk ponovno signifikantno
manjša.

A.3 Izvirni prispevki disertacije

Pričujoča doktorska disertacija vsebuje več izvirnih prispevkov k področju strojnega
učenja. Tako smo razvili novo metodo za učenje neurejenih pravil za klasifikacijo
ene ciljne spremenljivke. Metoda temelji na znani metodi CN2 (Clark in Niblett,
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1989; Clark in Boswell, 1991), vendar uporablja posplošeni uteženi prekrivni algoritem
(Gamberger in Lavrač, 2002).

Omenjeno metodo smo nadalje posplošili tako, da omogoča učenje urejenih ali
neurejenih pravil, na klasifikacijskih ali regresijskih problemih z eno ali več ciljnimi
spremenljivkami. Metoda uporablja iskalno hevristiko, ki upošteva več mer za kvali-
teto pravil hkrati in je uporabna na vseh zgoraj omenjenih tipih problemskih domen.

Tretji prispevek disertacije je razširitev pristopa napovednega razvrščanja na mo-
dele predstavljene v obliki pravil. Novo razvita metoda enotno obravnava učenje
pravil in razvrščanje v skupine. Uporabljena iskalna hevristika upošteva tako ciljne
kot tudi opisne spremenljivke. Različna obtežitev obeh skupin spremenljivk nam
omogoča prehajanje med napovednim modeliranjem in razvrščanjem v skupine. Ve-
čja obtežitev ciljnih spremenljivk nam zagotavlja večjo napovedno točnost naučenih
pravil, medtem ko ob večji obtežitvi opisnih spremenljivk dobimo pravila, ki opisu-
jejo bolj kompaktne skupine primerov. Pričakujemo, da bo razširitev napovednega
razvrščanja na modele zapisane v obliki pravil omogočila njegovo uporabo na no-
vih problemskih domenah, kjer so poleg napovedne točnosti pomembne tudi druge
lastnosti zgrajenih modelov, kot je na primer njihova razumljivost.

Sklepni prispevek disertacije je obširna empirična evalvacija novo razvite metode
na klasifikacijskih in regresijskih problemih z eno in več ciljnimi spremenljivkami.
Metodo smo primerjali z obstoječimi metodami. Rezultati primerjave na klasifikacij-
skih problemih z eno ciljno spremenljivko kažejo, da je točnost pravil za napovedno
razvrščanje (PNR) primerljiva s točnostjo pravil, zgrajenih z metodo CN2 ter dreves
za napovedno razvrščanje (DNR), medtem ko so neurejena PNR boljša od neurejenih
CN2 pravil. Neurejena PNR so v splošnem boljša od urejenih PNR. Na klasifikacij-
skih problemih z več ciljnimi spremenljivkami so PNR primerljiva z DNR, vendar z
metodo PNR običajno dobimo manj pravil, kot če DNR prepišemo v pravila. Regre-
sijska PNR za napovedovanje ene ciljne spremenljivke so primerljiva s pravili FRS,
vendar pa so precej slabša kot DNR; enako velja za regresijske probleme z več ciljnimi
spremenljivkami, kjer so PNR tudi precej slabša od DNR. Primerjava točnosti PNR za
napovedovanje ene ciljne spremenljivke ter PNR za napovedovanje več ciljnih spre-
menljivk hkrati pokaže, da nam oba tipa modelov omogočata primerljivo napovedno
točnost, vendar pa so množice PNR za napovedovanje več ciljnih spremenljivk hkrati
bistveno manjše od ustreznih množic PNR za napovedovanje le ene ciljne spremen-
ljivke.

V pričujoči disertaciji smo predstavili precej splošen algoritem za učenje pravil, ki
zaobjema več različnih metod za učenje pravil. Raziskali in empirično evalvirali smo
le osnovni pristop k učenju pravil za napovedno razvrščanje, ki temelji na prekrivnem
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algoritmu. V disertaciji smo poleg tega predstavili več idej in odprtih problemov, ki
odpirajo obilo možnosti za nadaljnje raziskave.
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