
ANALYSIS OF RESULTS
OF ECOLOGICAL SIMULATION MODELS

WITH MACHINE LEARNING



Doctoral Dissertation
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Abstract

Simulation models are a widely used tool for modelling and simulating systems for which
it is hard to obtain real data. However, the simulation models are usually complex and
it is not an easy task to induce new knowledge and find relationships and dependencies
among different parts (parameters, processes, modules) of the simulation model.

Previous attempts to analyze the outputs from simulation models were using mostly
statistical methods and neural networks, where the main goal was to speed up the simu-
lation process, or to improve the parametrization of the simulation models. In this thesis
we are proposing a methodology for analyzing results of complex simulation models. The
methodology combines simulation outputs, background knowledge, and machine learning,
to obtain new and interesting knowledge about a certain problem of interest.

We apply our methodology to three different simulation models that simulate the co-
existence between genetically-modified and conventional crops at different levels. The
induced machine learning models provide us with new co-existence knowledge about the
positive and negative influences on the co-existence between genetically-modified and
conventional crops. The results encourage us to try the same methodology on different
types of simulation models and different scientific areas. They also pose other challenges
for development of new machine learning methods.
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Povzetek

Simulacijski modeli so pogosto uporabljeno orodje za modeliranje in simuliranje siste-
mov, za katere je težko pridobiti realne podatke. Ker so simulacijski modeli kompleksni,
ni enostavno generirati novega znanja in iskati relacij in odvisnosti med različnimi deli
(parametri, procesi, moduli) simulacijskega modela.

Predhodni poskusi analiziranja izhodnih podatkov iz simulacijskih modelov so temeljili
predvsem na statističnih metodah in nevronskih mrežah, kjer je glavni cilj pospešitev
simulacijskega procesa, ali izbolǰsava parametrizacije simulacijskih modelov. V tej diser-
taciji predlagamo metodologijo za analiziranje rezultatov kompleksnih simulacijskih mo-
delov. Metodologija združuje izhodne simulacijske podatke, ekspertno znanje in strojno
učenje, za pridobitev novega in zanimivega znanja o določenem problemu.

Našo metodologijo uporabimo na treh različnih simulacijskih modelih, ki simulirajo
ko-eksistenco med genetsko modificiranimi in konvencionalnimi rastlinami na različnih
nivojih. Modeli generirani s strojnim učenjem nam nudijo novo znanje o pozitivnih in neg-
ativnih vplivih na ko-eksistenco med genetsko modificiranimi in konvencionalnimi rastli-
nami. Rezultati spodbujajo uporabo iste metodologije na različnih vrstah simulacijskih
modelov v različnih raziskovalnih področjih in vzpodbujajo razvoj novih metod strojnega
učenja.
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Chapter 1

Introduction

1.1 Background

Large amounts of data are generated on a daily basis in every area of our lives. These
data become useful only when analyzed and turned into information that we can make
use of, for example, to make predictions (Alpaydin, 2004). Machine learning is a scientific
discipline that is concerned with the design and development of algorithms that are able
to automatically learn to recognize complex patterns and make intelligent decisions based
on data.

However, there are situations where there is a need of discovering new knowledge in a
certain area of interest, but collecting data from that area is difficult, slow, expensive or
even impossible. For example, in the area of agronomy, conducting field experiments is
a slow process, which yields in little data. Consequently scientists can only analyze few
scenarios. In the case of farming with genetically-modified (GM) crops, it is even harder
to conduct field experiments, because of the environmental activists who destroy the GM
crops in some places and with that prevent the field experiments.

Simulation models are a possible solution in situations like this, where it is impossible
to conduct real experiments, or when the process of generating real-life data is very slow
and expensive. They are capable of accurately simulating real-life processes, scenarios
and events and can generate large amounts of data that would be otherwise very hard or
impossible to get. Simulation models are nowadays used often in different areas of life
and science, including ecology, biology, medicine, mechanics, astronomy, etc.

However, these simulation models can easily grow very complex and extracting new
knowledge from their outputs is not an easy task. There exist different methodologies
for analyzing the outputs from simulation models, which are mostly based on statistics,
neural networks or sensitivity analysis (see Related work). Unfortunately, most of these do
not provide an insight into, nor interesting new knowledge about the simulated processes.

In this thesis, we propose a new methodology for analyzing complex simulation models
in the area of ecology and, more specifically, in the area of agroecology. This methodology
relies on the use of symbolic machine learning methods, that produce understandable pre-
dictive models. The problem we are trying to understand and model is the co-existence
issue between GM and conventional crops (oilseed rape and maize) in different field sce-
narios.

We consider three different simulation models, GeneSys (Colbach et al., 2001a,b),

1



2 1. Introduction

MAPOD (Messéan et al., 2006) and IBM-OSR (Begg et al., 2006) that simulate the crop
growth and rotation in a large-risk field plan, in a field-to-field scenario and in a within
field individual-based scenario, respectively. We will use different machine learning tech-
niques to analyze the outputs from these simulation models: relational classification trees
to learn co-existence rules for GM and conventional crops in a large region; equation
discovery to model the outcrossing between two neighboring maize fields and to induce
explanatory models of oilseed rape population dynamics from individual-based data, and
linear regression and model trees to validate and compare the results obtained with equa-
tion discovery.

We will show that the models obtained with machine learning provide us with impor-
tant new knowledge about the co-existence between GM and conventional crops. Further-
more, they are accurate when validated against real data (in the cases where real data
was available). This proves even further their usefulness and interestingness.

1.2 Related work

In this part we will present related work on the analysis of outputs of simulation models,
as well as related work on the application of machine learning to problems concerning the
co-existence between GM and conventional crops.

1.2.1 Analysis of results of simulation models

Scientists have tried different techniques to analyze the outputs of complex simulation
models. In most cases, the main reasons for the analyses of outputs from simulation
models are to speed up the simulation process, to validate the models, or to find some
simple statistical dependencies among the parameters of the model.

Mozetič (1990) presents some techniques for analyzing and extracting knowledge from
simulations of a qualitative model of the electrical activity of the heart - KARDIO (Bratko
et al., 1990). The model specifies causal relationships between objects and events in the
heart, which include electrical impulses, ECG signals, impulse generation, impulse con-
duction and summation, as well as a dictionary of arrhythmias related to heart disorders.
The model was then compiled to generate a surface level representation of the arrhythmia-
ECG relation, creating a complete arrhythmia-ECG knowledge base. This is done using
depth-first simulation (forward chaining) for each possible combined arrhythmia, and sort-
ing all its ECG manifestations. Finally, the arrhythmia-ECG knowledge base was used as
a dataset and inductive learning was applied to generate predictive (”What ECGs may be
caused by a given disorder in a heart’s component?”) and diagnostic rules (”What heart
disorders are indicated by a given ECG feature?”).

Another case of analysis of simulation models outputs with machine learning tech-
niques is presented by Mladenič et al. (1993). They apply regression trees and inductive
logic programming to analyze the outputs from two discrete event simulation models:
supermarket (customer and cashier ”utilization” in a supermarket) and pub (barmaid
and glass utilization, length of the customers and glasses wait cue). They have obtained
some interesting insights into the dependencies between the parameters of a discrete event
system and its performance, but do not report the predictive performance of the obtained
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machine learning models.
Chertov et al. (2005) apply exploratory spatial data analysis on the output of the

forest ecosystem simulation model for long-term prediction of forest growth - EFIMOD-
PRO. They use the interactive visualization system CommonGIS for analysis of spatial
and temporally related data. The interactive visualization helps experts to interpret the
simulation results and to formulate possible management scenarios. Using the graphical
representation of the simulation parameters in various silvicultural scenarios, they are
able to verify the model and source data, and to extract knowledge about forest dynamics
from the simulation results.

Neural networks are often used to speed up the simulation process and to improve the
computational efficiency of complex simulation models.
Krasnopolsky et al. (2002) and Krasnopolsky and Fox-Rabinovitz (2006) applied neural
networks to the outputs of different environmental simulation models. They used neural
networks to develop highly accurate and fast emulations for time consuming models of
physics components in climate modeling and weather prediction (Krasnopolsky and Fox-
Rabinovitz, 2006). Neural networks were also applied to other environmental models,
such as oceanic numerical models, atmospheric models, wave models, etc. (Krasnopolsky
and Chevallier, 2003).

Another approach to analyzing outputs from simulation models is to use statistical
methods. These are mainly used for verification and validation of the simulation models.
Law and Kelton (2000) give a detailed state-of-the-art presentation of the problems and
techniques for building simulation models, as well as a range of statistical methods for
analyzing outputs from different types of simulation models.

Kleijnen (1995) discusses several statistical methods for validation of simulation mod-
els in operational research. He proposes simple statistical tests for comparing simulated
and real data, like graphical, Schruben-Turing and t-tests, as well as sensitivity analysis
for estimating which inputs are really important.

Kleijnen and Rubinstein (1996) use the score function method for performance eval-
uation, sensitivity analysis, and optimization of complex discrete-event systems. This
method uses a single simulation run to simultaneously estimate the simulation response
and its derivatives, for different values of the parameters of the distribution function of
the simulation inputs, and can be applied to both discrete-event static and discrete-event
dynamic systems.

1.2.2 Analysis and modelling of farming with GM crops

There has been a significant amount of work on analyzing and modelling different aspects
of farming with GM crops with machine learning. Most of the work has been done using
data from field experiments, but some work has also been done on analyzing outputs of
simulation models.

In the study about spatial aspects of gene flow between rapeseed varieties and vol-
unteers (Colbach et al., 2005b), the influence of the farming region and the cropping
system on the contamination of non-GM crops with GM seeds was analyzed. Colbach
et al. (2005b) use regression trees to identify the major input variables, and apply a linear
model to a reduced set of input variables to quantify and rank both major and minor
explicative variables.
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Debeljak et al. (2007a) assess the effects of Bt maize on non-target soil organisms
using data from field experiments in Foulum, Denmark. They apply regression trees and
choose two of the obtained models for further interpretation. The models considered do
not find any effects of the Bt maize cropping system on functional groups of soil fauna.

Bohanec et al. (2008) develop a model for the assessment of ecological and economic
impacts at a farm-level of GM and non-GM maize crops. It is a qualitative multi-attribute
model developed according to the DEX methodology. The model is operational and can
be used for assessment, comparison, and what-if analysis of realistic cropping systems and
can contribute to the development of new agricultural practices.

The work described in this thesis is focusing on a methodology for analysis of simu-
lation models concerning the GM issues with different machine learning methods. The
scientific contributions of this study are described in the following section.

1.3 Scientific contributions

There are several scientific contributions that arise from this thesis. First, we are propos-
ing a new methodology for analyzing outputs from complex ecological simulation models
using machine learning techniques. There are several methodologies for analyzing out-
puts from simulation models, but most of them are mechanistic, complex, difficult to
construct and use and are computationally demanding and only very few of them are
validated against real data and provide a new and interpretable knowledge and insight
into the problem the simulation models are trying to simulate. Our methodology uses
simulated data and background knowledge to automatically derive new knowledge and
understanding about the problem that we are dealing with.

Second, we apply the methodology to the outputs from a regional scale gene-flow
simulation model for OSR, resulting in new co-existence knowledge about the influence
of the neighboring field on the GM contamination of a given field and the measures that
should be taken in order to satisfy different GM contamination levels.

The third contribution is the application of the methodology to the outputs from maize
gene-flow simulation model. We generate equation-based models that use background
knowledge for simulated, as well as empirical data, resulting in interesting conclusions
about the relative influence of the climatic (wind) and geographic (distance) parameters
on the outcrossing between two fields.

Finally, we apply the methodology to the outputs of field-level individual-based simu-
lation model for OSR, resulting in new knowledge about the structure and the parameters
of the individual-based model. The results from this analysis improve the understanding
of the domain experts of the processes that influence the OSR individuals in the IBM and
in nature in general.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 1 is the introductory chapter that presents the
background terminology and the immediate context of this thesis. Here we also present
the related work, which is relevant for this dissertation, and the original contributions of
this work to science.
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Chapter 2 describes the process of ecological modelling, as well as the main types of
ecological models that exist.

Chapter 3 presents the main problem we are trying to solve in this study, which is the
co-existence problem when farming with genetically-modified crops. Here we present the
three simulation models, GeneSys, MAPOD and IBM-OSR, whose outputs we use in
the main part of this dissertation for developing our methodology for analyzing outputs
from complex simulation models with machine learning.

In Chapter 4 we present the main machine learning methods that we use for analysis
of outputs from simulation models.

Chapters 5, 6 and 7 present the main work in this dissertation. Chapter 5 presents
a methodology for learning co-existence rules for GM and conventional oilseed rape in a
large region using relational data mining. In Chapter 6 we describe a methodology for
learning field-to-field co-existence rules for GM and conventional maize, while Chapter
7 presents a methodology for building explanatory models of oilseed rape population
dynamics from individual-based data.

In Chapter 8, we present the methodology we use in our study for analysis of complex
ecological simulation models. Each of the steps of the methodology is presented in detail.

Finally, we conclude with a summary of the thesis, its contributions to science and
provide some directions for further work in Chapter 9.
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Chapter 2

Ecological modelling

2.1 Modelling in general

There are many situations, where real-world behavior trials and experiments are impossi-
ble to conduct, although in general real-world trials minimize the loss of fidelity incurred
by a less direct approach. The reason for this might be that the costs and/or the risks
of conducting real-life experiments are too high, or we may be interested in generalizing
the conclusions beyond the specific conditions set by one trial. Developing models for
a certain system or problem of interest enables us to overcome these limiting factors.
Therefore, scientists very often use models that behave, as close as possible, to the actual
system they are trying to understand and analyze. They are interested in understand-
ing how a particular system works, what causes changes in the system, the sensitivity
of the system to certain changes and in predicting what changes might occur and when
(Giordano et al., 1997).

Models are simplified representations of reality (an observed or studied system).
They are a synthesis of what we know about the system with reference to the considered
problem, as opposed to statistical analysis, which only reveals relationships between the
data. They never contain all the features of the real system, because then they would be
the real system itself, but they contain the most characteristic features that are important
for the system or the problem it tries to describe. The models are able to describe our
whole knowledge about a system (Jorgensen and Bendoricchio, 2001):

• which components interact with each other,

• the processes, formulated with mathematical equations, which have been proved
valid generally, and

• the importance of the processes with reference to the problem.

Since the models can provide us with a deeper understanding of the system than a
statistical analysis can, they can be used to describe general characteristics and possi-
bilities of systems or populations. They can also provide us with specific predictions
about the likely futures of particular populations, communities, or systems. Figure 2.1
presents the modelling process as a closed system (Giordano et al., 1997). Given some
real-world system, we gather sufficient data to formulate a model. We then analyze the

7



8 2. Ecological modelling

model and generate some mathematical conclusions about it. After that, we interpret the
model and make predictions or offer some explanations. Finally, we test our conclusions
about the real-world system against new observations and data. This process might be
repeated several times until the model improves its predictive or descriptive capabilities.
In some cases, the model does not fit the real world accurately, so a new model should be
formulated.

Real-world 
data

Model

Mathematical
conclusions

Predictions/
explanations

Formulation

Analysis

Interpretation

Test

Figure 2.1: The modelling process (Giordano et al., 1997).

2.2 Ecology and ecological modelling

Ecology is a prototypical environmental science, which studies the relationships among
members of living communities and between those communities and their abiotic (non-
living) environment.

The use of mathematical equations or computer simulations to address questions in
the area of ecology that cannot be answered solely by experiments or observations is called
ecological modelling. The field of ecological modelling has developed rapidly during
the last two decades (Jorgensen and Bendoricchio, 2001). This is due to the development
of computer technology, which enables us to deal with complex mathematical systems, as
well as the increased knowledge of environmental and ecological problems. In particular,
we have gained more knowledge of the quantitative relationships in the ecosystems and
between ecological properties and environmental factors.

Ecological modelling deals with constructing and using models of ecosystems, which
includes modelling populations, ecological processes and environmental factors. When
these models of ecosystems are simulated by a computer program, they are called ecolog-
ical simulation models. The ecological models have two major aims: to provide general
insight into how ecological systems or ecological interactions work; and to provide specific
predictions about the likely futures of particular populations, communities, or ecosystems.

Models of virtually every possible type of ecological interaction have been developed.
The models vary in their level of detail. Some models simply keep track of the density of
organisms, treating all organisms of any species as identical (population-based models).
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At the other extreme, the movement and fate of each individual organism may be tracked
in an elaborate computer simulation (individual-based models).

2.3 Types of ecological models

There are many different types of ecological models, depending on their application area,
the scientific ideas behind the model, whether there is stochasticity included or not, to
what level of detail they are built, etc. In the following sections, three types of models
will be described, habitat suitability models, population dynamics models and
individual-based models. All these models are used to describe some population of
organisms, but they are focused on different aspects and characteristics of the popula-
tion. Habitat suitability models are trying to model the changes of a population in
space, while population-dynamics models are dealing with modelling the changes of
a population in time. Individual-based models, on the other hand, use the features of
the individuals of a population to derive population-level knowledge. This dissertation is
dealing mostly with population dynamics and individual-based models, so they are going
to be described in more detail.

2.3.1 Habitat suitability models

If ecology is defined as the study of the distribution and abundance of plants and animals,
habitat suitability modelling is concerned with the spatial aspects of the distribution and
abundance. Habitat suitability models connect the spatially varying characteristics of
the environment to the presence, abundance and diversity of a given group of organisms
(Džeroski, 2009).

The input to a habitat model is a set of environmental characteristics for a given
spatial unit of analysis. The output is a target property of the given group of organisms.
The size of the spatial unit, as well as the type of environmental variables, can vary
considerably, depending on the context, and so can the target property of the population.

The spatial unit considered can be of different size for different habitat models, from
centimeters to kilometers, depending on the type of population taken into consideration.
Habitat models can thus operate at very different spatial scales.

There are three kinds of environmental variables that may be an input to habitat
models. The first kind concerns abiotic properties of the environment. The second kind
concerns some biological aspects of the environment, which may be considered as an
external impact on the group of organisms under study. Finally, the third kind of variables
are related to human activities and their impacts on the environment.

The output of a habitat model is some property of the population of the target group
of organisms at the spatial unit of analysis. In the simplest case, the output is just the
presence/absence of a single species (or group). In this case, we talk about habitat
models.

We can also be interested in the abundance or the density of a population. If we
take these as indicators of the suitability of the environment for the group of organisms
studied, we talk about habitat suitability models: the output of these models can be
interpreted as a degree of suitability. The abundance of a population can be measured in
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terms of the number of individuals or their total size (e.g., biomass). If the population is
large enough, we can also consider the diversity of the population.

Observing the presence/absence of a species/group (or its abundance or density) within
a given spatial unit can be a nontrivial task. While most plants and certain animals (such
as sea cucumbers) are relatively immobile, many animals (e.g., brown bears) can move
fast and cover wide spatial areas. In these cases, a possible solution is to consider areas
of activity (home ranges) and sample from these to obtain data for learning habitat
suitability models (Jerina et al., 2003).

In sum, habitat modelling focuses on the spatial aspects of the distribution and abun-
dance of plants and animals. It studies the relationships between some environmental
variables and the presence/abundance of plants and animals, under the implicit assump-
tion that both are observed at a single point in time for a given spatial unit. It mostly
ignores the temporal aspects of the distribution/abundance, which is actually the focus of
population dynamics modelling. Still, some temporal aspects may be taken into account,
for example, averages of environmental variables over a period of time are sometimes
included in habitat models (e.g., average winter air temperature).

2.3.2 Population dynamics models

Population dynamics is the branch of life sciences that studies long-term and short-term
changes in the characteristic properties of a population. The properties typically con-
sidered include density (population size relative to available space), natality (birth rate),
mortality (death rate), age distribution, growth forms, etc. (Jorgensen and Bendoricchio,
2001). Population dynamics deals with the biological and environmental processes that
influence the changes of the population properties.

One of the earliest population (predator-prey) models, based on sound mathematical
principles, was developed in the 1920s, by Lotka and Volterra (Lotka, 1956; Volterra,
1926) and is still widely used today. It forms the basis of many models used today in
the analysis of population dynamics. A population is a changing entity and population
modelling enables us to keep track of the development of a population, i.e., of the four
components of population change: births, deaths, immigration and emigration. The most
applied unit is the number of individuals of a population, but it can be easily translated
to biomass.

In mathematical symbolism, the simplest population model can be expressed as (White,
2000):

Nt+1 = Nt +Bt −Dt + It − Et. (2.1)

This equation tells us that in general, the size of the population (N) at time t + 1 is
equal to the population size at time t plus births (B) minus deaths (D) plus immigrants
(I) minus emigrants (E). However, the simplicity of this relationships usually limits its
usefulness.

To obtain more realistic population dynamics models, complexity can be added on
different levels, which leads to differentiation of the population models. Therefore, we
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recognize several types of population models (White, 2000), based on their context and
the modelling formalisms used for their development.

Based on the context of the population models, we differ population models modelling
a single population of organisms or modelling multiple populations of organisms (e.g.,
predator-prey population dynamics models (Lotka, 1956; Volterra, 1926)). The differen-
tiation can further go to density-independent population models, where the population
growth is based on the concept that the population grows with the same rate, no matter
how large or small it has become, and density-dependent population models, where the
population growth is modelled by some saturation function of the population size. We
also recognize age-structured population models, which divide the population into discrete
age classes.

Based on the modelling formalism, the population dynamics models can have dis-
crete time, for which difference equations are usually used, or continuous time, for which
differential equations are most appropriate. Population dynamics models can also be de-
terministic or stochastic, the latter being able to predict the amount of random variation
that we would expect to see in a population.

An example of a density-dependent population dynamics model of two populations,
using continuous time, is the famous predator-prey Lotka-Volterra model. The model
consists of a pair of differential equations that describe the dynamics of biological systems
in which two species interact, one a predator and one - its prey:

dx

dt
= αx− βxy, (2.2)

dy

dt
= δxy − γy. (2.3)

The first equation models the dynamics of the prey population. The prey are assumed
to have an unlimited food supply, and to reproduce exponentially unless subject to pre-
dation; this exponential growth is represented in the equation above by the term αx. The
rate of predation upon the prey is assumed to be proportional to the rate at which the
predators and the prey meet; this is represented above by βxy. If either x or y is zero
then there can be no predation. With these two terms the first equation above can be
interpreted as: the change in the prey’s numbers is given by its own growth minus the
rate at which it is preyed upon.

The second equation models the dynamics of the predator population. In this equation,
δxy represents the growth of the predator population. This term is similar to the predation
rate. However, a different constant is used as the rate at which the predator population
grows is not necessarily equal to the rate at which it consumes the prey. γy represents the
natural death of the predators. It leads to an exponential decay in the absence of prey.
Hence, the equation expresses the change in the predator population as growth fueled by
the food supply, minus natural death.

The advantages of the population dynamics models are that they are very easy to
understand, interpret and develop and can easily take into account the age structure and
different impact factors on the population. However, all the individuals in the population
are treated as identical and the level of details in the population dynamics models is very
coarse. Therefore, finer details about the population can not be captured with this type
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of models. Also, population dynamics models can also be sometimes difficult to calibrate
or require a relatively homogeneous database (Jorgensen, 2008).

The main use of these models is to predict the results of some management actions, like
for example application of a certain herbicide on a crop. Population models are mainly
used to conceptualize the dynamics of a population in a mathematical notation, which
gives biologists a better insight of the dynamics of a population. They can also be used
to test some hypotheses about population dynamics from observed data.

2.3.3 Individual-based models

Individual-based models are considered as a reductionistic approach in modelling (Jor-
gensen and Bendoricchio, 2001), where the properties of a system are derived from the
properties and interactions among elements of the system, called individuals (Grimm and
Railsback, 2005). Individuals might represent plants and animals in an ecosystem, ve-
hicles in traffic, people in crowds, etc. The reason for developing this type of models
in ecology is that the individuals are the building blocks of the ecological systems and
the properties and behavior of the individuals determine the properties of the ecological
systems they compose.

Individual organisms are characterized by many properties, like growth, development,
reproduction, death, and they use resources which modify their environment. Each in-
dividual is different from all other individuals, even within the same species and age, so
each interacts with its environment in unique ways. Also, the individual processes of the
organisms depend on their internal and external environments (Grimm and Railsback,
2005). Therefore, individual-based models typically consist of an environment in which
the interactions among individuals occur and some number of individuals, defined by their
characteristic properties. They are mainly used to describe/model some population-level
properties of a system, as persistence, resilience, or patterns of abundance over space in
time. In individual-based models, we do not just by sum up the properties of the indi-
viduals, but get insight into the interactions of the individuals with each other and with
their environment.

Individual-based models track the characteristics of the individuals
through time (individual dynamics), which makes them somehow similar to population-
dynamics models. They can also be spatially explicit, mapping the individuals in a
geometrical space, which makes them also close to the habitat suitability models. De-
pending on the individuals modelled, whether they can move around in their environment
(e.g., animals in an ecosystem), some spatially explicit individual-based models exhibit
mobility, whereas some other (e.g., plants in an ecosystem) do not.

A disadvantage of the individual-based models is that they can sometimes be very
complex, because of the great number of properties that are considered. Individual-based
models also require many data points for calibration and validation. However, their
complexity is also an advantage over population dynamics models, because it enables
individual-based models to describe the characteristics of a population on a finer, more
detailed level (Jorgensen, 2008). Finally, just like ”classical” (population-level) models,
they are an indispensable and useful tool for modelling ecosystems.



Chapter 3

Simulation models in agriculture:
Farming with GM crops

The previous chapter gave an introduction to ecological modelling and discussed the dif-
ferent types of ecological models used in this thesis. In this chapter, we will narrow down
our focus to the problem of farming with genetically modified (GM) crops.

Since the introduction of GM crops for commercial production in 1996, agriculture has
an increased interest for new knowledge about GM crops, their distribution, co-existence
issues and risks associated with their usage. The most general definition of a genetically
modified organism defines it as an organism in which the genetic make-up has been altered
in a way that does not happen naturally (Defra-website, 2009). Genetic engineering in
agriculture allows simple genetic traits to be transferred from wild relatives or any other
organism to crop plants.

There are different types of GM crops, but two of them dominate the market: herbicide
tolerant (referred to as Ht crops) and insect resistant (referred to as Bt crops, since the
gene conferring resistance comes from the soil bacterium Bacillus thuringiensis) (Gómez-
Barbero and Rodŕıguez-Cerezo, 2008). Herbicide tolerant (Ht) crops accounted for 71%
of the global GM crop area in 2005, while insect resistant (Bt) crops accounted for only
18% of the global GM crop area in 2005 (Gómez-Barbero and Rodŕıguez-Cerezo, 2008).
The major GM crops are: soybean, maize, cotton and oilseed rape.

The main purpose of growing GM crops in a developed European agriculture is not
to achieve higher yields, but to reduce producers’ inputs and operating costs. However,
GM crops were not primarily developed with environmental benefit in mind and the
introduction of transgenic crops and food into the existing food production system has
generated a number of questions about possible negative consequences (Ivanovska et al.,
2008). These concern:

• the co-existence issue, i.e., the economic damage caused by GM contamination of
conventional crops,

• the unwanted ecological influences of GM crops on habitats in natural and agricul-
tural environments, and

• the consequences of exposure of humans to transgenic proteins.

13
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The possible unwanted influence of consuming GM crops on the human health and the
influence of growing GM crops on the habitats in natural and agricultural environments
are topics of ongoing research. The main concern in this thesis is the co-existence issue,
i.e., the possibility of GM plants mixing with conventional or organic crops.

To study and assess the co-existence issue between GM and conventional crops, in the
ideal case, many field trials and empirical studies should be carried out. Unfortunately, in
this area of research, field trials are very time consuming and expensive. For example, to
make one field experiment (one crop rotation) and obtain one example in the dataset, one
should wait for a year for the crop to grow and measure all the needed variables. Therefore,
scientists are trying to model the crop growth and cultivation of GM and conventional
crops by using computer simulation models instead. There are different types of simulation
models, depending on the type of crop they are simulating, the problem and processes
they are trying to model, as well as the scale of detail that is incorporated in them.

An extensive research has been carried out on the problem of sustainable introduction
of GM crops in Europe as a part of the cross-disciplinary FP6 SIGMEA Research Project.
The project was set up to create a science-based framework to inform decision-makers
(Messéan et al., 2009). SIGMEA has (i) collated and analyzed European data on gene
flow and the environmental impacts of the major crop species which are likely to be
transgenic in the future (maize, oilseed rape, sugar beet, rice, and wheat), (ii) analyzed
the technical feasibility and economic impacts of co-existence in the principal farming
regions in Europe, (iv) developed novel GM detection methods, (v) addressed legal issues
related to co-existence, and (vi) proposed public and farm scale decision-making tools, as
well as guidelines regarding management and governance.

In this dissertation we are dealing with and try to simplify and analyze the outputs
from three different simulation models: GeneSys (Colbach et al., 2001a,b), MAPOD
(Messéan et al., 2006) and IBM-OSR (Begg et al., 2006). GeneSys is a population-based
simulation model that simulates the farming practices and contamination rates of oilseed
rape in a regional scale. MAPOD is also a population-based simulation model that simu-
lates field-to-field scenarios and predicts the cross-pollination rates between maize fields.
IBM-OSR, on the other hand, is an individual-based simulation model that simulates the
life-cycle and persistence of oilseed rape individuals (seeds, plants) within a single arable
field. Each of these models is concerned with a different aspect of the co-existence or
persistence of GM crops at different scales. These simulation models, the empirical data
(Chapter 6), as well as the methodology and analyses described in this dissertation, were
developed and carried out as a part of the SIGMEA project. Details about each of the
three simulation models are presented in the following sections.

3.1 Agricultural terminology

Before continuing with the description of the simulation models used in this dissertation,
I will give an introduction to the basic agricultural terminology and concepts.

A crop is the annual or season’s yield of any plant that is grown in significant quanti-
ties to be harvested as food, as livestock fodder, fuel, or for any other economic purpose.

A GM crop is a crop whose genetic material has been altered using genetic engineer-
ing techniques. Transgenic crops, a subset of GM crops, are crops which have inserted
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DNA that originated in a different species. Some GM organisms contain no DNA from
other species and are therefore not transgenic but cisgenic.

The simulation models used in this dissertation deal with two types of crops: maize
and oilseed rape.

Maize (Zea mays), also known as corn, is a domesticated form of a wild grass first
cultivated over 5,000 years ago in tropical Mexico that produces an adaptable and pro-
ductive grain and is the most widely grown crop worldwide. Maize is a versatile crop
producing a range of products. There are different types of maize. We will describe the
most common types. Grain maize is the type of maize produced for the grains and is
harvested when the kernels are dry and mature. Sweet maize is a variety of maize with a
high sugar content and prepared as a vegetable. It is picked when immature (milk stage)
and eaten as a vegetable, rather than a grain. Waxy maize is a type of maize which was
long used as a genetic marker to tag the existence of hidden genes in other maize breeding
programs. The waxy starch is nowadays used mainly in food products, but also in the
textile, adhesive, corrugating and paper industry.

Oilseed rape (Brassica napus), also known as rapeseed, rape, rapaseed and canola,
is a bright yellow flowering member of the family Brassicaceae (mustard or cabbage fam-
ily). Oilseed rape is grown for the production of animal feed, vegetable oil for human
consumption, and biodiesel. Besides that, oilseed rape is widely used as a ”break crop” -
one that helps improve the yield of the following cereal crops, in particular wheat. How-
ever, compared with many other crop plants, oilseed rape has some special characteristics.
Namely, it has retained some of the features of wild plants, which enable it to assert itself
outside cultivated fields. Flowering rape plants can often be seen alongside foot paths,
railway lines and on the central reservations of motorways. It is also very persistent. Rape
seed pods are not very stable and many seeds are shed during harvesting. The seeds can
survive in the soil for years. Because of that, oilseed rape often emerges as volunteer
plants in the years following crop rotation.

A volunteer is a plant that grows on its own, rather than being deliberately planted
by a human farmer or gardener. Unlike weeds, which are unwanted plants, a volunteer
may be encouraged once it appears, being watered, fertilized, or otherwise cared for.

Outcrossing means mating of unrelated (plant) individuals of the same breed. In
agriculture this also refers to cross-pollination (when pollen is delivered to a flower
from a different plant).

The term adventitious presence refers to the unintentional and incidental mixing
of trace amounts of one type of seed, grain or food product with another. In the case
of an adventitious presence of an unwanted material in a crop, we say that the crop is
contaminated with the unwanted material. Contamination rate is the percentage
of unwanted material in the crop.

The (soil) seedbank refers to the natural storage of seeds, often dormant, within
the soil of most ecosystems. Weed seedbanks have been studied intensely in agricultural
science because of their important economic impacts; other fields interested in soil seed
banks include forest regeneration and restoration ecology.

Crop rotation or crop sequencing is the practice of growing a series of dissimilar
types of crops in the same area in sequential seasons for various benefits such as to avoid
the build up of pathogens and pests that often occurs when one species is continuously
cropped. Crop rotation also seeks to balance the fertility demands of various crops to
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avoid excessive depletion of soil nutrients. Crop rotation can also improve soil structure
and fertility by alternating deep-rooted and shallow-rooted plants.

Cultivation techniques refer to the techniques used to cultivate arable land. These
include: sowing, fertilization, irrigation, plant treatments (herbicides, pesticides), har-
vesting, etc.

A cropping system refers to growing a combination of crops in space and time.
Cropping systems enable the management of crops so as to efficiently use the available
climatic and soil resources. The cropping systems that producers use are therefore greatly
influenced by the environmental conditions of a region. Socioeconomic and political fac-
tors also have a large effect on what producers grow.

Crop management refers to decisions and actions taken by farmers about the cul-
tivation of the field, managing specific crops, managing the weeds and pests, as well as
ensuring soil fertility and health.

3.2 The GeneSys simulation model

The computer model GeneSys was used to assess probable effects of changing farming
practices on contamination rates in oilseed rape (Colbach et al., 1999, 2001a,b). GeneSys
was developed by INRA (L’Institut National de la Recherche Agronomique) to rank crop-
ping systems according to their probability of gene flow from herbicide-tolerant winter
oilseed rape to rape volunteers and neighbor crops, both in time (via seeds) and in space
(via pollen and seeds). The model integrates the effects of crop succession and crop
management at the level of a region and works for seed, as well as for crop production.

GeneSys integrates various inputs (Figure 3.1):

• The field plan of the region, comprising cultivated fields as well as uncultivated
field- and road-margins (hence ”borders”). Borders consist of strips of spontaneous
vegetation where rape volunteers can appear, produce pollen and seeds that are
dispersed to fields and other borders;

• The crop rotation of each field;

• The crop management and cultivation techniques applied to each crop (summer
tillage, primary tillage and tillage for seed bed preparation, sowing date and den-
sity, herbicide application, cutting dates and seed loss at harvest), as well as the
management of borders (herbicides and/or cutting);

• The type of the simulated gene (dominant A or recessive a), as well as the genotype
of the rapeseed varieties used.

The model is based on the life-cycle of oilseed rape and includes both cropped and
volunteer plants, starting with the seedbank at harvest and continuing with seedling
emergence (Boch et al., 2002). Some of these seedlings become adults, flower and produce
new seeds, part of which replenish the seedbank at the end of the season. The model
calculates for each stage of the annual rapeseed life-cycle and for each field or border the
number of individuals per m2 (number of seeds in the seedbank, of seedlings, etc.) and the
proportions of these individuals with and without transgenes (e.g., contamination with
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GM seeds). A detailed example of the output of the GeneSys simulation model is given
in Chapter 5.

Field plan Crop 
succession

Crop
management

Rape
varieties

GeneSys

Plants
Seeds

produced Seedbank

For each field and year:

Figure 3.1: GeneSys inputs and outputs (Colbach et al., 1999).

GeneSys has already been evaluated using different data collected on farmers’ fields
and on the GMO trials set up and managed by INRA and CETIOM (Centre Technique
Interprofessionnel des Oléagineux Métropolitains, France) and other technical institutes
(Champolivier, 1996). The first comparisons of simulation and trial results show that
the rates of contamination of harvested seeds are underestimated, but that the orders of
magnitude are reliable and that the various situations are ranked correctly. GeneSys
may therefore be used to compare the effects of different cropping practices or of various
varietal characteristics for decreasing the probability of contamination in the field.

3.3 The MAPOD simulation model

The computer model MAPOD (Matrix based Approach to POllen Dispersal) is a de-
terministic model, especially designed to predict cross-pollination rates between maize
fields in a spatially explicit agricultural landscape under varying cropping and climatic
conditions (Angevin et al., 2008). MAPOD estimates the effects of farming practices on
the levels of in-field contamination and simulates the pollen exchanges between GM and
non-GM maize crops. It integrates influencing factors, such as field sizes and shapes,
distribution of GM and non-GM fields in the agricultural landscape, and flowering dates
and dynamics.

MAPOD takes into account several input parameters (Figure 3.2) (Boch et al., 2002):

• Field plan (form and size of the field and location of GM plants);

• Climate (daily data: temperature, wind speed, wind direction, rain);

• Parameters for the pollen dispersal function (tassel height of each variety and cob
height of the non-GM variety);
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• Cropping systems (sowing dates and densities, drought stress before and during
flowering);

• Variety (quantity of pollen per plant, pollen sensitivity to high temperature, tem-
perature needs between sowing and female flowering, and genotype of GMO: ho-
mozygous or heterozygous).

With the help of MAPOD, the dynamics of male and female flowering can be simulated,
making it possible to estimate the amounts of pollen produced by GM and non-GM
varieties and the number of receptive silks for non-GM varieties. Simulations generate
outputs in terms of the number of GM seeds in non-GM crops at different scales (within-
field, plot, group of plots feeding a silo), and under several spatial configurations, ranging
from the simple case of two adjacent plots to a much more complex landscape spreading
over several kilometers. An example of a MAPOD simulation output is given in Chapter
6.

Field
pattern

Sowind date
and density

Maize 
varieties

Climate

MAPOD

Proportion of GM grains in non
GM harvest

Figure 3.2: MAPOD inputs and output.

Since its design, the MAPOD model has been assessed for its ability to predict pollina-
tion rates by comparing the results of its simulations with those of experiments performed
in a field at short range, with data from the literature and with measurements of cross-
pollination between grain maize and waxy maize. To date, its predictions have proved to
be globally satisfactory. Therefore, MAPOD is used by the Joint Research Center to make
recommendations in the EU agriculture based on its simulations (Messéan et al., 2006).
A few weak points have nonetheless been identified, such as the difficulty in integrating
the effects of landscape heterogeneities (hedges, roads, other species, etc.). Research is
continuing to ensure that the MAPOD model predictions become even more reliable.

3.4 The IBM-OSR simulation model

The previously described models, GeneSys and MAPOD, are population-based sim-
ulation models that describe the population dynamics of GM oilseed rape and maize,
respectively, at different field scales. The IBM-OSR simulation model, on the other hand,
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is individual-based. It is developed at the Scottish Crop Research Institute in Dundee,
Scotland, and is designed to help understand how the life-history, agronomic and envi-
ronmental processes determine the persistence of genetically modified oilseed rape (Begg
et al., 2006). The model was constructed to represent a population of oilseed rape indi-
viduals within a single arable field.

The population dynamics of oilseed rape is principally driven by life-history processes
which determine the progression of individuals through their life-cycle. The individuals
in this simulation model can be: seeds, seedlings, plants, and seeds on plants. The life-
history processes modelled are germination, emergence, growth, flowering, pollination,
seed production, and survival. Interactions between individuals take place at the plant
stage through the processes of growth and pollination. Both processes are spatially ex-
plicit - growth is mediated by resource competition with neighboring individuals, while
pollination combines male and female gametes from neighboring individuals as determined
by the outcrossing rate and pollen dispersal.

The model also incorporates a number of management events: sowing, cultivation,
herbicide application, and harvesting. These generally act to modify the life-history pro-
cesses. For example, herbicide application reduces plant survival, while cultivation re-
duces plant survival and alters germination and emergence by repositioning seeds within
the seedbank. Top-down constraints are also imposed on the dynamics of the system
through the presence of environmental and agronomic drivers. For example, soil tempera-
ture and moisture are determinants of germination, while the crop type under cultivation
influences plant growth rates.

The IBM-OSR model takes the following information as input:

• Cultivation techniques for each year and for each crop grown (these include: crop
type, cultivation dates and techniques, herbicide application dates, herbicide types,
sowing date, pattern and density, etc.),

• Life-history parameters, which differ for each simulation, but are the same for every
year within a simulation (these include: death rate of an individual, germination
window, growth rate per unit resource capture area, etc.),

• Environmental parameters for each day of the 10-year simulations (these include:
air temperature, soil temperature, precipitation, wind, sunshine, etc.),

• Number of individuals in each stage (seeds, plants and seed on plants) and each
year before harvest.

The output of the model is the number and proportion of GM and non-GM individuals
in each stage (seeds, seedlings, plants, seeds on plants). In Chapter 7, the output from
the IBM-OSR simulation model is presented in more detail.

The IBM-OSR is a relatively new simulation model and therefore it is still not validated
against empirical data. Validation using empirical data from field trials and sensitivity
analyses are planned for further work.



20 3. Simulation models in agriculture: Farming with GM crops



Chapter 4

Machine learning

Ecology, and especially agroecology, are ever growing fields, with large amounts of data
and problems to be solved, modelled, or analyzed. In the last 25 years there has been a
tremendous growth in the application of statistical and modelling techniques to ecolog-
ical problems (Fielding, 1999). Many ecological problems are poorly described and lack
algorithmic solutions, so machine learning methods offer the right potential for a different
approach to these difficult problems.

Machine learning, in its most general sense, is a scientific discipline that is concerned
with the design and development of algorithms that allow computers to change behavior
and induce knowledge from data. Its major focus is to automatically learn to recognize
complex patterns and make intelligent decisions based on data.

Different machine learning techniques exist, based on the desired outcome of the algo-
rithm: prediction of a certain variable or description of the data that we have. According
to this, the machine learning techniques are divided in to two major groups: supervised
and unsupervised learning algorithms.

In supervised learning, the data (measurements, observations, etc.) are labeled
with predefined classes and the machine learning method learns a predictive model from
these labeled data. If the variable the model tries to predict (the class) is continuous, it is
a regression problem, and if it is discrete, it is a classification problem. The regression
problem (as well as classification) are described in more detail in the following section.

In unsupervised learning, the class labels of the data are unknown. In this case,
given a set of data, the task is to establish the existence of classes or clusters in the data.

A combination of both techniques is called semi-supervised learning, which makes
use of both labeled and unlabeled data for training - typically a small amount of labeled
data with a large amount of unlabeled data.

In this thesis we are proposing a new methodology for analyzing complex outputs
from ecological simulation models using machine learning. We explored several different
supervised machine learning methods based on regression to analyze and model different
aspects of the co-existence issue between GM and non-GM crops. In the following sec-
tions we first define the regression problem in more detail. Then, we will describe the
machine learning methods, which were used in our methodology for analysis of simulation
outputs. We will present in more detail the concepts of linear regression, decision trees,
more specifically regression trees, and the methods that use a combination of background
knowledge and data: relational classification trees and equation discovery.
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4.1 The regression problem

Regression analysis is the basic and most common approach to statistical and machine
learning analysis of data. Regression analysis is a method that analyses the rela-
tionship between two or more variables in a way that one variable can be predicted or
explained by using information on the others (Freund and Wilson, 2002). The purpose
of regression analysis is to observe sample measurements taken on different variables,
called independent variables, and to examine the relationships between these variables
and a dependent variable. The relationship can be expressed as a function between the
variables, which is called a regression function or regression model. This function
can be described geometrically by a line if there is only one independent variable, or a
multidimensional plane if there are more.

To present the regression problem formally, let X represent the independent variables,
Y is the dependent variable and β are unknown parameters. The regression problem is
described by the regression equation, which is a function of the variables X and β:

Y = f(X,β). (4.1)

When the dependent variable Y is numerical, it is a regression problem, and if it is
discrete, it is a classification problem. In the first case, f is a regression function and in
the second case it is the discriminant function, separating the instances of different classes
(Alpaydin, 2004).

Depending on the nature of the regression function f , we differ different regression
problems. If the function is linear, i.e., Y is a linear combination of the parameters X, we
are talking about a linear regression. In simple linear regression there is only one
independent variable, while in multiple linear regression there are several independent
variables or functions of independent variables. If the regression function is not linear, we
are talking about nonlinear regression.

The machine learning methods optimize the parameters β, such that the approxi-
mation error is minimized, i.e., the estimates of the dependent variable are as close as
possible to the correct values given. There exist different machine learning methods and
algorithms that are based on regression analysis, but differ in the way they optimize the
parameters β and the types of regression functions they induce.

4.2 Regression trees

Regression trees are the most common regression-based machine learning method. In
order to explain regression trees, we first describe decision trees (Breiman et al., 1984).
Regression trees are namely a special type of decision trees.

Decision trees predict the value of a dependent variable (called target) from the values
of a set of independent variables (called attributes), by partitioning the space of attributes
into axis-parallel rectangles and fitting a model for each of these partitions. A decision
tree has a test in each inner node that tests the value of a certain attribute and compares
it with a constant. Leaf nodes give a prediction that applies to all instances (examples)
that reach the leaf. To predict the target of an unknown instance, it is routed down the
tree according to the values of the attributes tested in successive nodes, and when a leaf
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is reached the instance is given the prediction, assigned to the leaf. If the dependent
variable is nominal, the task is called classification, the predictions in the leaves are called
classes, and the decision trees are called classification trees. If the dependent variable
is numeric, then in each leaf there is a model for predicting it: the model can be a linear
equation (model trees) or a constant (regression trees).

In order to build a decision tree, one makes use of a dataset of examples, for which
the target is known. This dataset is called the training set. Tree construction proceeds
recursively, starting with the entire training set. At each step a node is created and
the most discriminating attribute is placed in the node. A number of new branches are
created according to the values of the selected attribute. For discrete attributes, a branch
of the tree is typically created for each possible value of the attribute. For continuous
attributes, a threshold is selected and two branches are created based on that threshold.
Technically speaking, the most discriminating attribute test is the one that most reduces
the entropy/variance (for classification and regression trees respectively) of the values of
the target. The training set is split into subsets by sorting down each example following the
appropriate branch. For each subset, the tree construction algorithm is called recursively.
Tree construction stops when the entropy/variance of the target values of all examples
in a node is the smallest (or if some other stopping criterion is satisfied). Such nodes
are called leaves and are labeled with a class or a model (constant or linear equation) for
predicting the target value.

An important mechanism used to prevent trees from over-fitting data is tree pruning.
Pruning can be employed during tree construction (pre-pruning) or after the tree has been
constructed (post-pruning). Typically, a minimum number of examples in branches can
be prescribed for pre-pruning and a confidence level in the error estimates in the leaves
for post-pruning.

A number of systems exist for inducing regression trees, such as CART (Breiman et al.,
1984) and M5 (Quinlan, 1992). M5 is one of the most well-known programs for regression
and model tree induction.

A decision tree can be easily transformed into a set of rules. One rule is generated for
each leaf. The rules are of the form:

IF conditions THEN prediction

The antecedent of the rule includes a condition for every node on the path from the
root to that leaf, and the consequent of the rule is the constant or the linear model
assigned by the leaf. This procedure produces rules that are unambiguous in that the
order in which they are executed is irrelevant.

4.3 Background knowledge

Many studies of machine learning methods and their application to real-world problems
show the importance of background knowledge for the quality of the induced models.
Pazzani and Kibler (1992) show that the use of background knowledge improves the pre-
dictive performance of induced models on test examples unseen in the induction phase.
Background knowledge is also important for the acceptance of the induced models by hu-
man experts. This is especially important in complex scientific and engineering domains,
where a vast amount of knowledge is being systematically collected and well documented.
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However, most machine learning methods do not explicitly include background knowl-
edge in the induction process. Instead, knowledge is usually implicitly involved in the
phases that precede or follow the induction process, that is the data preparation and
preprocessing phase, or in the model interpretation phase.

An exception from this are machine learning methods developed within the area of
inductive logic programming (ILP) (Lavrač and Džeroski, 1994). The background knowl-
edge and its integration in the induction process is made explicit there and is a part of
the learning task specification. ILP methods deal with the induction of first-order logic
programs from examples and background knowledge. The background knowledge defines
the concepts that can be used in the induced theories, but it does not specify how to
combine them into proper programs or theories.

Another machine learning area where background knowledge is explicitly used is equa-
tion discovery. Here the background knowledge is integrated in the induction process
through the use of inductive bias, which refers to any kind of preference or mechanism
used by the induction algorithm to choose among candidate hypotheses. It actually de-
termines in which region of the candidate hypotheses we are more likely to find a solution.
There may be three types of bias (background knowledge) in the equation discovery pro-
cess. The first one is the language bias, which specifies the space of candidate equation-
based models. The second type is the search bias, which specifies the order in which the
hypotheses (equations) are considered during the induction process. The third type is the
validation bias, which specifies the stopping criteria for the induction process.

In the following sections two more regression-based machine learning methods that
were used in this dissertation will be presented. Both use background knowledge in the
induction process. We will first describe an ILP method - relational classification trees,
and then equation discovery.

4.3.1 Relational classification trees

Most machine learning algorithms assume that the training set is stored in a single table
where each example is represented by a fixed number of attributes. These are called
attribute-value or propositional techniques (as the patterns found can be expressed in
propositional logic). Propositional machine learning techniques (such as the classification
or regression decision trees discussed in the previous section) are popular, mainly because
they are efficient, easy to use and are widely accessible.

In practice, however, the single table assumption turns out to be a limiting factor for
many machine learning tasks that involve data residing in multiple related tables. An
example of such a problem is the analysis of co-existence of GM and non-GM crops in
a region with many fields, where there is a need to examine the relations among the
fields. Typically, the data consists of several pieces of information; one could imagine
having a table storing general information on each field (e.g. area), a table storing the
cultivation techniques for each field and each year, and a table storing relations (e.g.
distance) among pairs of fields. Data scattered over multiple relations (or tables) can
be transformed into a propositional table (attribute-value representation) by means of
propositionalization, so that conventional machine learning techniques can be applied to
the transformed data (Džeroski and Lavrač, 2001). This allows a wide choice of robust
and well known algorithms. A disadvantage is that propositionalization almost inevitably
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leads to a loss of information due to aggregation or to the generation of a (possibly huge)
amount of redundant data (Raedt, 1998). Also, if different examples can have a different
number of fields (e.g., by varying the field plan), the propositionalization approach is not
feasible. Alternatively, the relational approach takes into account the structure of the
original data by providing functionalities to navigate relational structure in its original
format and generate potentially new forms of evidence not readily available in a flattened
single table representation.

Since decision tree induction is one of the major approaches to machine learning,
upgrading this approach to a relational setting has been of great importance. Like in
the propositional case, a table or relation is given, which contains at least two columns
where the IDs of the examples and the values of the target variable are stored. An
example of such a relation is contamination(sim1, positive), which means that simulation
1 (example ID) is labeled as contaminated (target). (A field is considered as contaminated
if it contains more that 0.9% GM material.) In addition, a set of background knowledge
relations, stored in other tables, may be given, as illustrated above.

Relational decision trees have much the same structure as propositional decision trees.
Internal nodes contain tests, while leaves contain predictions for the target value. If the
target variable is discrete/continuous, we talk about relational classification/regression
trees. For regression, linear equations may be allowed in the leaves instead of constant
class-value predictions: in this case we talk about relational model trees.

The major difference between propositional and relational decision trees is in the tests
that can appear in the internal nodes. In the propositional case, the tests compare the
value of an attribute to a constant. In the relational case the tests are conjunctions of
relations, instantiated with variables (starting with upper case) and constants, and are
mapped against the examples. For each example, a test results in ’yes’ or ’no’. The
conjuncts in the tests refer to background relations, while the leaves predict a value for
the target in the target relation.

An example of a relational classification tree for predicting the contamination of the
central field of a large-risk field plan is given in Figure 4.1. The top node of the tree calls
FieldA the target field we are interested in (targetField(Sim,FieldA)) and checks whether
the sowing date of FieldA in the present year (year 0) is before the 252th day of the year,
i.e., 9 September (fieldDataYear(Sim,FieldA,0,Crop,SowingDate), SowingDate<252). If
not, then the field is predicted not to be contaminated. If yes, there is another test that
checks if the sowing date of FieldA in the present year is before the 233th day of the year
(21 August). If it is the case, then the field is predicted to be contaminated. If not, then
the contamination depends on whether the target field has a neighboring field (called
FieldB) with which it is adjacent (neighbor(Sim,FieldA,FieldB,adjacent)), and which had
GM oilseed rape in the previous year (fieldDataYear(Sim,FieldB,1,gm-OSR,SowingDate)).
This kind of test can not be found by a propositional system. A propositional decision tree
can only refer to a particular field, e.g., it can check whether field 20 had GM oilseed rape
in the previous year, but it can not check this for any neighbor field without enumerating
them all.

For easier inspection and comprehensibility, relational decision trees can be trans-
formed/reformulated into relational decision lists, i.e., ordered lists of relational rules.
When applying a decision list to an example, we always take the first rule that applies
and return the answer produced. A decision list is produced by traversing the relational



26 4. Machine learning

targetField(SimID,FieldA),
 fieldDataYear(SimID,FieldA,0,Crop,SowingDate),

 SowingDate<=252

fieldDataYear(SimID,FieldA,0,Crop,SowingDate),
 SowingDate<=233

yes

contamination(SimID,neg)

no

contamination(SimID,pos)

yes

neighbor(SimID,FieldA,FieldB,noborder),
 fieldDataYear(SimID,FieldB,1,gmOSR,SowingDate)

no

contamination(SimID,pos)

yes

contamination(SimID,neg)

no

Figure 4.1: An example of relational classification tree predicting whether a field in a large-risk
field plan is contaminated by a GM crop (Section 5.1).

decision tree in a depth-first fashion, going down left branches first. At each leaf, a rule is
output that contains the prediction of the leaf and all the conditions along the left (yes)
branches leading to that leaf.

The two major algorithms for inducing relational decision trees are upgrades of the
two most famous algorithms for inducing propositional decision trees. SCART (Kramer,
1996; Kramer and Widmer, 2001) is an upgrade of CART (Breiman et al., 1984), while
Tilde (Blockeel and Raedt, 1998; Raedt et al., 2001) is an upgrade of C4.5 (Quinlan,
1992). Both SCART and Tilde have their propositional counterparts as special cases.
The actual algorithms thus closely follow CART and C4.5.

In our relational data analysis, we used the system Tilde for building relational
classification trees. The algorithm is included in the ACE-ilProlog data mining system
(Blockeel et al., 2009).

4.3.2 Equation discovery

Equation discovery refers to the task on inducing or learning equation-based models from
measurements and observations (Langley et al., 1987; Langley and Zytkow, 1989; Džeroski
and Todorovski, 1995; Washio and Motoda, 1997). Given a table with measured values
of a set of system variables, equation discovery method finds an equation that relates the
system variables. The predictions of the values of the system variables, obtained using
the learned equation, should closely match their measured values.

The task of equation discovery is closely related to the task of system identification,
where the focus is also on modelling systems from measurements and observations thereof.
The main difference between the equation discovery and system identification task is in
the modelling assumptions. System identification methods assume a very limited class of
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model structures (e.g., linear class or a single model structure provided by human expert)
and therefore focus on the parameter estimation task, i.e., the task of determining the
values of constant model parameters. On the other hand, equation discovery methods
aim at identifying both adequate model (equation) structure and appropriate values of
the model parameters.

In this study, we employ the equation discovery method Lagramge (Todorovski et al.,
1998; Todorovski and Džeroski, 2007), which lets the user specify modelling knowledge
in terms of the set of candidate model structures to be considered in the modelling pro-
cess. By doing so, a human expert can narrow down the search space to plausible model
structures, which assures the acceptance and comprehensibility of the obtained model.
The formalism used to specify the set of candidate models in Lagramge are context-free
grammars, widely used to describe natural and artificial languages.

To understand context-free grammars and their use for specifying the space of candi-
date equations, consider the example grammar from Table 4.1. The grammar specifies a
space of alternative expressions for the outcrossing between fields based on their distance.
The first line in the grammar specifies that the expression for modelling outcrossing is
a multiplication of a constant parameter and a term that models the influence of fields
distance on the outcrossing. Similarly, the next two lines specify two alternatives for
modelling distance influence. The first alternative is equivalent to an assumption that
distance does not influence the amount of outcrossing, while the second specifies that
the influence is inversely proportional to the distance. Finally, the last two lines specify
two alternative measurements for the distance between fields that are recorded in the
modelling data set.

Lagramge can use the example grammar from Table 4.1 to enumerate the alternative
models as follows. It uses the first grammar rule to establish the model Outcrossing =
const ∗ DistanceInfluence, which is incomplete since it contains the symbol DistanceIn-
fluence that does not directly relate to an observed variable. To complete the model,
Lagramge employs the next two rules that specify two alternative expressions for re-
placing the DistanceInfluence symbol. The first rule leads to the first complete model
structure: Outcrossing = const ∗ 1. Using the second rule, we obtain an incomplete al-
ternative Outcrossing = const ∗ 1/Distance, which is to be completed using the last two
rules for replacement of the Distance symbol. The first rule leads to the second complete
model Outcrossing = const ∗ 1/variable minDistance, while the second leads to the third
complete model Outcrossing = const ∗ 1/variable distanceCenter .

The process of generating an expression using a context-free grammar is formalized by
a parse tree. Figure 4.2 depicts the three parse trees corresponding to the three outcrossing
models that can be generated using the example grammar from Table 4.1. Note that the
first tree is the simplest (shallowest) one with a depth of 2. The other two parse trees
have a depth of 3.

Following the procedure outlined above, Lagramge enumerates all model structures
that can be derived using the grammar specified by the user along with the training data.
To limit a potentially infinite search space, the user should also specify the maximal depth
of the parse trees. Lagramge can perform exhaustive (systematic) search through the
search space or follow a beam-search strategy for heuristic (incomplete) search. The
beam search algorithm only stores the b most promising alternatives (equations) at each
step, where b is a fixed number, the ”beam width”. At each step of the beam search
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Table 4.1: An example grammar that specifies the space of alternative equation structures for
modelling outcrossing from one field to another based on the distance between fields.

Outcrossing → const ∗ DistanceInfluence;

DistanceInfluence → 1;
DistanceInfluence → 1/Distance;

Distance → variable minDistance;
Distance → variable distanceCenter ;

procedure, each of the equations of the beam is refined. Both search strategies enumerate
the candidate model structures in the order from simplest (shallowest parse trees) to more
complex ones (deeper trees) (Todorovski and Džeroski, 1997).

Outcrossing

const DistanceInfluence*

1

Outcrossing

const DistanceInfluence*

1 Distance/

variable_minDistance

Outcrossing

const DistanceInfluence*

1 Distance/

variable_distanceCenter

(a) (b) (c)

Figure 4.2: Three parse trees corresponding to the three outcrossing models that can be
generated using the example grammar from Table 4.1. In the beginning they all use the first
grammar rule to establish the incomplete model: Outcrossing = const ∗ DistanceInfluence. a).
The second rule is used to create the complete model structure: Outcrossing = const ∗1. b). and
c). Using the third rule, an incomplete alternative is obtained: Outcrossing = const∗1/Distance,
which is then completed by replacing the Distance symbol using the last two replacement rules.

Each model structure is evaluated with respect to its fit to the training data. To
this end, Lagramge fits the values of the constant parameters against training data
using a nonlinear least-squares algorithm (Bunch et al., 1993). Once the optimal values
of the model parameters are identified, Lagramge measures the discrepancy between
the observed values of the system variables and the values predicted by the model using
mean squared error (MSE) and employs it as a heuristic function for guiding the search.
An alternative heuristic function MDL (which stands for minimal-description length)
combines MSE with model complexity to introduce preference toward simpler models
(Todorovski and Džeroski, 1997). At the end of the search procedure, Lagramge reports
models with the optimal value of the heuristic function selected by the user (either MSE
or MDL).



Chapter 5

Co-existence rules for GM and
conventional crops in a large region

In this chapter, we study the co-existence of GM and conventional oilseed (OSR) crops
in a large region, consisting of many fields on which different types of crops are grown.
For that purpose, we used the outputs from the GeneSys simulation model (Colbach
et al., 2001a,b). The co-existence rules for GM and conventional crops were generated
from these outputs by using the relational data mining system Tilde (Blockeel et al.,
2009). The structure of the GeneSys outputs, the experimental setup and the results
from the analysis of these outputs are presented in more detail in the following sections.

5.1 Outputs from GeneSys simulation model

GeneSys was used to estimate how the properties of the farming region and the cropping
techniques influence the rate of contamination of non-GM crops with GM seeds. The focus
was on predicting the rate of adventitious presence of GM seeds in the central field of a
large-risk field plan (Figure 5.1). The field plan, as well as cropping techniques for each
of the fields therein were given as input to GeneSys.

The large-risk field plan consists of a small and rectangular central field (field number
14) surrounded by large neighbor fields, a combination which maximizes pollen and seed
input into the central field. The dataset we used was based on previous sensitivity analyses
of GeneSys to field patterns (Colbach et al., 2001a,b, 2005a). Each simulation starts
with an empty soil seedbank and covers a period of 25 years. Each year, the crops and the
management techniques for crops were chosen randomly, as well as the genetic variables
describing the oilseed rape varieties.

The crop grown during the 25th year in the central field was always non-GM oilseed
rape. Our target variable was the rate of harvest contamination (adventitious presence of
GM seeds) in this crop in the last (25th) year. 100,000 simulations of crop rotation on the
large-risk field plan without borders were performed. Of the 25 simulated years of each
simulation, full details were kept only for the last 4 years.

According to previous analyses of factors for the presence and abundance of GM oilseed
rape (Debeljak et al., 2008), a field is most likely to be contaminated if GM oilseed rape
has been grown in the same field previously. Having this in mind, we filtered the dataset
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Figure 5.1: Large-risk field plan. The out-crossing rate for the central field (dark-shadowed
field with number 14) was predicted. Neighbor fields are numbered from 1 to 13 and 15 to 35.
(Borders are numbered from 36 to 56 and are small grass strips between cultivated fields. In
our analysis, only the large-risk field plan without borders was used.) (Colbach et al., 2005a)

originally consisting of 100,000 examples, excluding the examples in which there was GM
oilseed rape grown on the target field in the last four years. The reason for this was to
avoid generating very obvious rules (for example: if there were GM oilseed rape on the
target field in the last four years, the probability that it will now be contaminated is
almost 100%) and try to see what is the role of the neighboring fields. At the end, the
dataset consisted of 64,877 examples.

5.2 Formulation of the problem

Our assumption was that the contamination of a field with GM seeds depends on the
cropping techniques and crops grown on the surrounding fields (e.g., the level of contam-
ination of a field may be influenced by the crop grown at or the level of contamination of
its neighboring fields). Consequently, the formulation of the problem uses neighborhood
relations in the predictive modelling task and a relational representation of the problem.
Another assumption was that the probability of contamination might increase if the field
plan contains many contaminated fields. Therefore we investigate the use of properties
at the regional level, which can be obtained by aggregating over the individual fields.

We analyzed outputs produced by GeneSys in the setting described above by using
relational decision trees and in particular the system Tilde (Blockeel and Raedt, 1998).
For that purpose, we needed to create a relational representation of the output of the
GeneSys simulation model. We used the following relational representation of the data.

The target relation was contamination(SimID,FieldID,RateAdvPres),
where RateAdvPres is the target variable, denoting the rate of adventitious presence of
GM varieties of the non-GM target field (FieldID) and SimID is the number (from 1
to 100,000) of the simulation. The background relations were related to the cultivation
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techniques, the year that oilseed rape was last planted at a given field, and the geometry of
the field plan. The relation targetField(SimID,FieldID) denotes that FieldID is the target
field of the field plan; in this analysis, FieldID always refers to field 14 (see Figure 5.1),
although the applied relational learning method allows us to vary the target field per
example.

In the relation fieldDataYear(SimID,FieldID,Year,CultivationTechniques), Cultivation-
Techniques is a list of variables describing the cropping techniques. Previous analyses on
the same dataset, using the propositional rule-based regression system CUBIST, showed
that the most important cultivation techniques that influence the adventitious presence
of a GM material in a field are the sowing date and the crop grown (the crop rotation)
on the field of interest (Ivanovska et al., 2006). In our study, we thus use only crop and
sowing date and ignore the other cropping techniques.

The possible crops grown in the region are: GM oilseed rape, non-GM oilseed rape,
winter crops, spring crops, autumn-sown set-aside, spring-sown set-aside, unsown set-aside
and permanent set-aside. The sowing date is measured in number of days since January
1st. Year takes values from [0, 1, 2, 3], 0 denoting the present year and 3 - three years
ago.

In the relation lastOSR(SimID,FieldID,LastGM,LastNonGM), LastGM is the number
of years ago ([1..25]) in which GM oilseed rape was last grown on FieldID, and LastNonGM
is the number of years ago in which non-GM oilseed rape was last grown on FieldID. As
an example, an excerpt from the information for the first of the 100,000 simulations, is
given in Table 5.1.

Table 5.1: Representation of the first example in the GeneSys dataset.

contamination(1, 14, 4.815339e-03).
lastOSR(1, 1, 7, 8).
lastOSR(1, 2, 2, 4).
...
lastOSR(1, 35, 7, 1).
fieldDataYear(1, 1, 3, autumn-sown set-aside, 301).
fieldDataYear(1, 2, 3, spring-sown set-aside, 97).
...
fieldDataYear(1, 35, 3, winter-crops, 272).
fieldDataYear(1, 1, 2, spring-crops, 127).
...
fieldDataYear(1, 35, 2, spring-sown set-aside, 56).
...
...
fieldDataYear(1, 35, 0, unsown set-aside, 213).

The background information further includes the following information for each field
in the field plan (we used a fixed field plan, so this information remains constant for all
simulations):
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• the area of the field,

• whether the field is a neighbor of the central field,

• the neighboring fields, including the neighbor type,

• the length of the common edge between the field and each of its neighbors,

• the distance of the field to the central field (the distance is taken between the
midpoints of the fields).

The relation neighbor(SimID,Field1ID,Field2ID,NeighType) holds if the minimum dis-
tance between Field1 and Field2 is zero. If they have a common edge of non-zero length,
NeighType is edge, and if they have only one point in common (touching with only one
corner), then NeighType is corner. Additional information on the area of fields, their
mutual distances (average and minimal), and length of the common edges was available,
but was not used in our analyses. An excerpt of the background knowledge described
above is given in Table 5.2.

Table 5.2: General background knowledge for the GeneSys dataset.

area(1, 1, 3.00).
area(1, 2, 3.00).
...
targetneigbor(1, 14, 8).
targetneigbor(1, 14, 12).
...
neighbor(1, 1, 2, edge).
neighbor(1, 1, 5, edge).
...
lengthOfCommonEdge(1, 1, 2, 300.00).
lengthOfCommonEdge(1, 1, 5, 100.00).
...
distance(1, 14, 1, 542.63).
distance(1, 14, 2, 480.51).
...

5.3 Goals and setup of the data analysis

The threshold of 0.9% is commonly recognized in EU regulations for labelling food prod-
ucts for accidental unavoidable presence of GM ingredients. For our experiments, we
discretized the target attribute (adventitious presence of GM material in the target field),
in order to obtain a classification problem. We used the threshold of 0.9% to classify a
field as positive (GM contaminated), if the amount of GM material in the field was above
the chosen threshold, or negative (not contaminated with GM), if the amount of GM
material in the field was below the chosen threshold.
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We introduced a new predicate, contamination(SimID,P), to represent the target pred-
icate of the classification task. The predicate is defined as follows:

contamination(SimID,pos):-contamination(SimID,FieldID,Rap),Rap≥0.009,!.
contamination(SimID,neg).

Two hypotheses were considered in our analysis: (1) the adventitious presence of GM
material in a field depends mostly on the cultivation techniques applied on the very same
field; and (2) of the other fields in the region, the neighboring fields have the greatest
influence on the adventitious presence of GM material in a field. Therefore, we conducted
two types of machine learning experiments, Propositional, where we used propositional
data about the target field only (cultivation techniques, crops grown, years since last GM
or non-GM OSR crop, etc.), and Neighbor, where beside the propositional data about the
target field, other fields were introduced through the neighbor relation.

The two types of tasks contained the following relations:

• Propositional: besides the target relation contamination(SimID, FieldID,
RateAdvPres), only (propositional) data for the target field is included (not using
any relations among the fields), i.e., the following predicates are used:

– fieldDataYear(SimID,FieldID,Year,Crop,SowingDate), for the target field

– lastOSR(SimID,FieldID,LastGM,LastNonGM), for the target field

• Neighbor: the same relations were used as in the Propositional setting, but now
other fields are introduced via the neighbor relation, starting at the target field:

– neighbor(SimID,Field1ID,Field2ID,NeighType)

Note that the information about the cultivation techniques used on the neighboring
fields (from the relations fieldDataYear and lastOSR) can also be used.

5.4 Results of the data analysis

As mentioned above, we used Tilde to build relational classification trees. The Tilde
parameters were set as follows.

The minimum number of examples a leaf has to cover was set to 600, and a random
proportion of 20% of the data was set aside as a validation set for pruning. Given the size
of the dataset, we used a sampling strategy to build the tree: at each node only 10,000
examples were used to evaluate the tests and select the best test. Afterwards, the whole
dataset is split according to this best test.

For each of the two tasks (Propositional and Neighbor), we report the predictive per-
formance. The predictive performance (accuracy) was measured by three-fold (and not
10-fold) cross-validation due to high computational complexity resulting from the large
size of the dataset.

The obtained results were interpreted with a help from experts from the domain. The
results for both tasks (Propositional and Neighbor) show that the most important attribute
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Table 5.3: The accuracy of the relational decision trees generated by Tilde on the two tasks
of predicting the GM contamination of the central field of a large-risk field plan.

Propositional Neighbor

accuracy 78.35% 79.66%

that influences the adventitious presence of GM material in the target field of our large-
risk field plan is the sowing date on the very same field. This was also shown by Ivanovska
et al. (2006). If the sowing date of winter oilseed rape is in early autumn (September,
or earlier), there is a higher probability of GM contamination due to the inability to
destroy the (possibly GM) volunteers that will start to germinate at approximately the
same time as the crop. If the sowing date is later, then the farmer will be able to destroy
the germinated volunteers prior to sowing the new crop, thus decreasing the possibility
of contamination with GM seeds and decreasing the input of new seeds in the seedbank.

The risk of GM contamination of the target field further increases if non-GM winter
oilseed rape was grown in the previous year (24th year of the simulations), also with
an early sowing date. Having oilseed rape crops grown two years in a row causes GM
volunteers to emerge in the non-GM crop. Since the GM volunteers of a crop cannot be
killed, they contaminate the non-GM crop.

An example rule learned for the Propositional task is given in Table 5.4. The rule
states that the target field will be contaminated, if the sowing date in the present and in
the previous year is early (before the 233rd day of the present year (21 August) and before
the 252nd day of the previous year (9 September)) and non-GM oilseed rape is grown on
it two years in a row (in the present year, which is a precondition in all simulations,
and in the previous year: fieldDataYear(S,B,1,non-GmOSR,SowingDate1)). The whole
relational classification tree obtained with the Propositional task is presented in table 5.5.

Table 5.4: An example rule learned for the Propositional task. It states that if we sow winter
oilseed rape early on the target field two years in a row, it will be GM contaminated.

contamination(S,pos) :- targetField(S,B),
fieldDataYear(S,B,0,Crop,SowingDate0), SowingDate0<233,
fieldDataYear(S,B,1,non-GmOSR,SowingDate1), SowingDate1<252,!.

An example rule from the relational model for the Neighbor task, which uses infor-
mation about a neighboring field, is given in Table 5.6. This rule can be interpreted as
follows: if the sowing date of the target field in the present year is before the 252nd day of
the year (9 September) and the target field has a neighboring field (FieldA) with which
it has a common edge, and the neighboring field had GM OSR last year, then the target
field is predicted to be contaminated. The whole relational classification tree obtained for
the Neighbor task is presented in table 5.7.

The neighbor relation in the results from the Neighbor task appears in the third level
of the relational classification tree and not in the first as expected. The relational model
contains only 3 nodes referring to neighboring fields. The accuracies of the two models
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Table 5.5: Relational classification tree obtained for the Propositional task with 0.9% GM
contamination threshold.

contamination(-A)
targetField(S, B),fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+yes: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| | + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | +–yes: [pos]
| | +–no: [neg]
| + no: fieldDataYear(S, B, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: lastOSR(S, B, Gm, NonGm), Gm>4 ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<213 ?
| | + yes: fieldDataYear(S, B, 2, Crop, SowingDate), SowingDate<112 ?
| | | + yes: [neg]
| | | + no: fieldDataYear(S, B, 2, Crop, SowingDate), SowingDate<268 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: lastOSR(S, B, Gm, NonGm), Gm>5 ?
| | + yes: fieldDataYear(S, B, 3, autumn-sown set-aside, SowingDate) ?
| | | + yes: [pos]
| | | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | | + yes: [pos]
| | | + no: fieldDataYear(S, B, 2, Crop, SowingDate), SowingDate<213 ?
| | | + yes: [neg]
| | | + no: [pos]
| | + no: [pos]
| + no: [pos]
+ no: [neg]

Table 5.6: An example rule learned for the Neighbor task. It states that if the target field had
a neighboring field with GM OSR in the previous year, it will be contaminated.

contamination(S,pos) :- targetField(S,B),
fieldDataYear(S,B,0,Crop,SowingDate0), SowingDate0<252,
neighbor(S,B,FieldA,edge),
fieldDataYear(S,FieldA,1,gm-OSR,SowingDate1),!.

are around 80%, with only a small improvement of 1% resulting from the use of relational
information.

5.5 Exploring different GM contamination

thresholds

In Section 5.4, we were dealing with a 0.9% threshold for adventitious presence of GM
material in non-GM harvests, which is a commonly accepted threshold in the European
regulations. However, at harvest even if the GM material in the crop is below the 0.9%
threshold, there is a possibility of exceeding this threshold in the final product (when
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Table 5.7: Relational classification tree obtained for the Neighbor task with 0.9% GM contam-
ination threshold.

contamination(-A)
targetField(S, B),fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | + yes: [pos]
| | + no: [neg]
| + no: neighbor(S, B, B2, edge), fieldDataYear(S, B2, 1, gmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: neighbor(S, B2, B3, corner) ?
| | + yes: [pos]
| | + no: [pos]
| + no: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: neighbor(S, B, P3, edge), fieldDataYear(S, P3, 2, gmOSR, SowingDate) ?
| | + yes: [pos]
| | + no: lastOSR(S, B, Gm, NonGm), Gm>6 ?
| | + yes: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, B, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: [neg]
+ no: targetfield(-Q4), fieldDataYear(S, Q4, 0, Crop, SowingDate), SowingDate<268 ?

+ yes: fieldDataYear(S, Q4, 1, unsown set-aside, SowingDate) ?
| + yes: [neg]
| + no: [neg]

+ no: [neg]

the crop is processed), for instance, as a result of the homogenization of the material.
Therefore, lower thresholds are used lately for recognizing the adventitious GM presence
in conventional crops.

In addition to the analyses in Section 5.4, we conducted more analyses of the adven-
titious presence of GM material in the central field of the large-risk field plan (Figure
5.1), exploring different thresholds of GM contamination. We used the same two tasks
as before and conducted two types of machine learning experiments - Propositional and
Neighbor with five different GM contamination thresholds: 0.1%, 0.3%, 0.5%, 0.7% and
0.9%. The obtained relational classification trees are presented in the Appendix.

5.5.1 Propositional task

For this task, we used data only for the target field (the central field of the field plan in
Figure 5.1).

Comparing the models obtained with different thresholds we notice that even though
they are not considerably different in their structure, the one using the 0.9% thresh-
old is the shallowest/simplest, while the one using 0.1% threshold is the most pre-
cise/complicated.

In all models, the sowing date of a crop in a field appears to be the most important
parameter that influences its contamination with GM material. As we concluded from
the previous analyses (Section 5.4), the later the sowing date of winter oilseed rape - the
smaller the chance of GM contamination, because of the time farmers gain to destroy the
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possible GM volunteers on the field.
The difference between the models with different thresholds is in the recommended

sowing dates for achieving the desired threshold. For example, the models suggest that
to achieve a 0.1% GM contamination threshold, the sowing date should not be before the
284th day of the year (11 October). For the 0.3%, 0.5% and 0.7% thresholds, an earlier
sowing date can be allowed - sowing is not recomended before the 268th day of the year (25
September), while for 0.9% the critical date is the 252nd day of the year (9 September).
This means that in order to keep the amount of GM material below the 0.1% threshold,
farmers should allow a longer period for the volunteers to germinate and destroy them,
and sow later in autumn. For higher thresholds this condition is less strict (earlier sowing
dates are allowed).

The second most important factor that influences the GM contamination of a field is
whether there was a set-aside on it in the previous years. The models indicate that the
set-aside (sown or unsown) on a field drastically increases the possibility of its contami-
nation with GM material no matter what the sowing date is. Set-aside means that the
field is left uncultivated for at least one season and no herbicides or pesticides are used
on it during this period. This allows the volunteers and weeds to grow freely on the field,
which increases the input of seeds to the seedbank and thus its possible contamination.

The difference between the models using different thresholds is in the number of years
for which set-aside is not recommended. The model using a 0.9% threshold only checks if
there was a set-aside in the target field on the previous year of the simulations (year 24).
To achieve a 0.5% or 0.7% GM contamination threshold, there should not be a set-aside
on the field for 3 and 2 years, respectively, while for achieving the smallest thresholds of
0.3% or 0.1% it is recommended that there is no set-aside for at least 4 years.

Another, more obvious parameter that influences the GM contamination of a field is
the number of years since the last GM crop on that field. It is common knowledge
that every crop changes the structure of the seedbank through the process of seed rain
from mature plants. If a GM crop was grown on a field, it increases the input of GM
seeds in the seedbank, which afterwards persist for many years.

To satisfy the 0.1%, or even 0.9% threshold, at least 4-5 years should pass from the
last GM crop on a field. However, taking into account only this condition is not enough
to minimize the adventitious presence of GM material in a field. It should be combined
with the previously explained measures.

Finally, an interesting rule that appeared only in the model that used the 0.1% thresh-
old is that having a spring crop in the crop rotation helps minimizing the adventitious
presence of GM material in the field and keeps it under the allowed threshold. The reason
for this may be the long period between the harvest of the previous crop and the sowing
of the spring crop; this gives enough time to volunteers to germinate and to the farmer
to destroy them.

5.5.2 Neighbor task

In these analyses, besides the data for the target field, we used data for its neighboring
fields, by introducing the neighbor relation. The goal of these analyses was to check the
influence of the neighboring fields to the adventitious presence of GM material in a field.
Again, a model (relational classification tree) was generated for each of the chosen GM
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contamination thresholds: 0.1%, 0.3%, 0.5%, 0.7% and 0.9%.

Just as in the previous task, the parameters of the target field are the most important
influences on its contamination with GM material. The sowing date and the set-aside on
the target field in the previous years influence the contamination of the target field the
most.

In addition, the neighboring fields and the crops grown on them are also important.
Having a neighbor with GM oilseed rape in the recent years influences the contamination
of the target field by cross-pollination. However, the neighbor relations appear later in
the trees, which indicates that in order to keep the GM contamination of a field below
a desired threshold, one should first take care of the cropping techniques and cultivation
characteristics on the very same field. The influence of the neighboring fields only adds
up to the influences of the field’s cultivation techniques and characteristics and it is not
the most important thing that influences the adventitious presence of GM material in it.

Table 5.8: Predictive performance (accuracy) of the two types of tasks Propositional and
Neighbor and different GM contamination thresholds.

Threshold Propositional Neighbor

0.1% 77.63% 80.74%
0.3% 74.16% 75.13%
0.5% 75.75% 76.19%
0.7% 77.46% 78.10%
0.9% 78.35% 79.66%

Table 5.8 presents the predictive accuracies for the two tasks (Propositional and Neigh-
bor) with the five chosen thresholds (0.1%, 0.3%, 0.5%, 0.7% and 0.9%). The small dif-
ference between the accuracies on the Propositional and Neighbor tasks is consistent with
the above discussion: one can predict whether a field is contaminated or not by analyzing
the cultivation and management history of that field. Information about the neighboring
fields gives us only additional information about the contamination of the field of interest.
However, when considering low thresholds, this information can become more important.
The gain in performance when using relational information is here largest for the 0.1%
threshold.

5.6 Summary and discussion

In this chapter, we learned co-existence rules for GM and conventional oilseed rape in a
large region by using relational learning methods. We created a relational representation
of the output of the GeneSys simulation model and analyzed it with the relational
learning system Tilde. The goal of these analyses was to check how important is the
influence of the surrounding fields on the GM contamination of a field. Therefore, we
addressed two learning tasks: in the first we used only data about the central field of a
large-risk field plan, and in the second we also used information about its neighboring
fields.



5.6 Summary and discussion 39

In the first part of the analyses, we used a 0.9% GM contamination threshold to
discretize the target (the adventitious presence of GM material in the central field of the
large-risk field plan) and build relational classification trees. In the second part of the
analyses, we tried different GM contamination thresholds, because lower thresholds are
lately considered in the EU regulations, and compared the results. We used the following
thresholds: 0.1%, 0.3%, 0.5%, 0.7%, and 0.9%.

From both learning tasks and the different thresholds tried, we can conclude that the
most important parameters that influence the adventitious presence of GM material in
a field are its cultivation and management parameters: these include the sowing date,
whether there was a spring crop on the field in the previous years, and the number of
years since the last GM crop on the field. The models using different thresholds have
very similar structure and choose the same parameters as most important, but with
slightly different values. For example, to achieve a 0.1% GM contamination threshold,
the sowing date should be later in autumn, while for higher thresholds it can be earlier.
The recommended values for the most important cultivation parameteres that influence
the contamination of a field with GM material are summarized in Table 5.9.

Table 5.9: The recommended values for the most important parameters that influence the
adventitious presence of GM material in a field for achieving the desired GM contamination
thresholds. Sowing date is given in days since January 1st. For achieving lower thresholds (0.1%
or 0.3%) set-aside should be avoided for more years than for achieving higher thresholds. It is
important that there are at least 4-5 years since the last GM crop on the field in any case. The
influence of the neighbors is more important when trying to achieve lower thresholds than for
higher thresholds.

0.1% 0.3% 0.5% 0.7% 0.9%
Sowing date 284 268 268 252-268 252
No set-aside 4y. 4y. 3y. 2y. 2y.
Years since GM OSR 4-5 years
Neighboring fields more important ←→ less important

From the results on the task that includes information on neighboring fields, we can
conclude that the neighboring fields also have influence on the GM contamination of the
field. However, contrary to what we expected, the information about the neighboring
fields is less important for predicting the adventitious presence of GM material in a field:
this information only adds up to the management and cultivation information about our
field.

We can see that the information on the neighboring fields is less important because the
relations describing the neighboring fields of the field of interest appear lower in the trees
after the cultivation parameters of the target field: this indicates they are less important.
This can also be seen from the predictive accuracies on the two tasks, where the addition
of the information on neighboring fields results in only a slight improvement. However,
note that the difference in performance increases as we lower the contamination threshold
and is largest for the 0.1% threshold. This indicates that for lower levels of contamination
the cultivation methods for the neighboring fields play an increasingly important role for
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our target field of interest.
The relatively low importance of information on neighboring fields may also be due to

the fact that the GeneSys simulation output that we took as input uses only one fixed
field plan and one target field. This does not allow us to fully exploit the advantages of
the relational learning methods. Therefore, a natural direction for further work would be
to use a larger amount of simulation data, which means running GeneSys simulations
with different field plans, as well as with different target fields within each field plan. In
this way, we would exploit the relational capability of the learning methods better and
obtain more accurate and more general co-existence rules.



Chapter 6

Field-to-field co-existence rules for
GM and conventional crops

In this chapter, we build models of outcrossing between transgenic (GM) and conventional
maize in a field-to-field setting. To this end, we use outputs from the MAPOD simulation
model (Angevin et al., 2008), as well as data collected in field studies.

In the following sections, we first describe the datasets we used to develop outcrossing
models. These include outputs from the simulation model MAPOD, as well as the empir-
ical data obtained on three different field trials in two locations (Germany and Slovenia).
We will then give an overview of related work, on which we base the formalism of the
machine learning/data analysis problem, which is presented next.

The formulation of the problem discusses different modelling alternatives considered
for equation discovery. These are formalized as grammars, which are discussed in Sec-
tion 6.1, together with the parameter settings for the equation discovery system La-
gramge. The last two sections present the results of using machine learning and a
summary/discussion.

6.1 Gene-flow datasets for maize

This section presents the datasets used for the modelling of outcrossing of maize in a
field-to-field setting. We first describe the output from the simulation model MAPOD.
We then describe the empirical data obtained in field trials in Germany and Slovenia.

6.1.1 Simulations of MAPOD

The MAPOD model is designed to predict cross-pollination rates between maize fields in
a spatially explicit agricultural landscape under varying cropping and climatic conditions
(Angevin et al., 2008). In this part of our study we are trying to model the oucrossing
rate of GM maize in a field-to-field setting. Two fields were considered, with their sizes
and other conditions varying as described below.

The MAPOD simulation model can consider different field-to-field scenarios, varying
the climatic, agricultural and landscape conditions. We were provided with an output
from the MAPOD model having a field setting consisted of two fields, a GM maize and a

41
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conventional maize field. The area of the GM field is fixed (15 ha), while the area of the
conventional field varies (2, 3, 5, 7.5, 10, 12.5 and 15 ha).

The two fields can be at different isolation distances from each other, from 0 m to 400
m. The conventional field can have different discard widths. The GM field can also have
a (non GM) buffer area with different widths.

Non-GM crop:

 - Area

 - Earliness
   of flowering

Discard width

GM crop (15 ha)

Non-GM
width

Isolation
distance

Wind

Figure 6.1: MAPOD simulation setup. Two fields were considered, at different distances from
each other. The area of the GM field is fixed to 15 ha and the area of the non-GM field varies.
Wind is presented as upwind, downwind and orthogonal. Earliness of flowering (time lag) is also
present and varying. The discard and non-GM width were not taken into account.

The wind is presented in discrete values: upwind, if the direction of the wind is from
the conventional to the GM field, downwind, if the direction of the wind is from the GM
to the conventional field, and orthogonal, if the direction of the wind is orthogonal to both
fields. Finally, the difference in flowering (time lag) is given in degree days (0, 30, 60, 90).
A schematic figure of the MAPOD simulation settings is given in Figure 6.1.

Each MAPOD simulation takes as input a combination of the above mentioned pa-
rameters. The output is the outcrossing rate of GM material in the conventional field.

In our study, we model the outcrossing between two fields as a function of the time
lag, isolation distance between the fields, area of the fields and the wind direction. We
neglect the influence of the buffer and discard widths in the conventional and the GM
field, primarily for comparison with field data, where no buffer/discard areas were present.
We thus filter the data and choose only those simulations, where the discard width and
the non-GM width are both zero, leaving us with a dataset of 672 examples (simulations).

6.1.2 Empirical data from field experiments:
BBA and KIS

Besides using simulation model outputs for modelling the field-to-field outcrossing be-
tween GM and conventional maize, we also used empirical data from field trials with an
experimental setting slightly different from the MAPOD experiments. The empirical data
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were generated in three different field trials. Two of the field experiments were performed
in Germany in 2000 and 2001, while the third was performed in Slovenia in 2006.

The first two trials (BBA2000 and BBA2001) were designed in order to study the
factors that impact the outcrossing between transgenic and non-transgenic maize (Meier-
Bethke and Schiemann, 2002). The experimental field of 6.5 ha was located near Sickte/
Braunschweig in northern Germany. A central 1 ha donor field was planted with transgenic
maize (variety ”Acrobat”, glufosinate tolerant line) and surrounded by recipient non-
transgenic maize field (variety ”Anjou”) in a width of at least 25 m.

In the first trial, a total of 96 sampling plots were chosen on 6 concentric squares
surrounding the central donor field (16 sampling plots per square, at distances of 3, 4.5,
7.5, 13.5, 25.5 and 49.5 m from the border with the central donor field). In the second
trial, 80 sampling plots were chosen on 5 concentric squares (at distances of 3, 4.5, 7.5,
13.5, 20 m) surrounding the central donor field. The distances were chosen according to
agricultural practice. A scheme of the experimental setting is shown in Figure 6.2.

Figure 6.2: Scheme of the field experiments. The inner gray square represents the transgenic
maize donor field surrounded by a non-transgenic maize recipient field. The sampling plots
(small squares) are placed on the concentric squares around the donor field.

If possible, 60 large cobs were sampled at each sampling plot (i.e., an area of approx.
3 square meters). Cobs were dried and shelled, and 2497 kernels were pooled for further
preparation. This allows for determination of a 0.5% outcrossing rate (= herbicide tolerant
seedlings) at a 95% confidence interval.

At the field site, field meteorological data (wind velocity, wind direction, temperature
and humidity) were recorded. Flowering periods were estimated and plant morphology
was observed during visits of the field according to visual impression (botanical rating).
Outcrossing rates were estimated at each of the 96 (80 in the second year) sampling plots,
using the procedure described above.

The third field trial (KIS2006) took place in 2006 (Debeljak et al., 2007b). The
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experimental field of 1.44 ha (120 by 120 m) was located in the central part of Slovenia.
A central donor field (20 by 20 m) was sown with yellow kernel variety of maize (hybrid
Bc462, simulating a transgenic maize variety), surrounded by white kernel variety of maize
(variety Bc38W, simulating a non-GM variety). The general scheme of the experimental
setting in Germany (as shown in Figure 6.2) was followed. The distances between the
samples nearest to the field were 1 m, and between the ones further from the field 2.8 m.
In total, 2267 samples from the recipient field were collected.

A yellow kernel in a white kernel variety was considered as an outcrossing event. Every
sampling location was determined with spatial coordinates for further spatial modelling
of pollen distribution. During the growing period, the meteorological parameters were
monitored and data describing properties of the boundary layer (temperature, humidity,
air pressure, wind direction and wind velocity) were measured.

6.2 Related work on modelling gene-flow in maize

Many studies explore the feasibility of co-existence between genetically modified (GM)
and conventional (non-GM) crops. In this context pollen dispersal presents the potential
risk of outcrossing (i.e., gene flow) between crops. The dispersal has become even more
important with the introduction of transgenic crops, where the potential of transgenic
pollen to cross-pollinate with non-transgenic varieties needs to be estimated and regulated.
The cultivation of maize is prone to cross-pollination with other maize varieties (e.g., GM
maize) because its pollen can be very easily spread with airflow.

Due to the increasing importance of the topic related to the introduction of GM crops,
a number of studies focus on building and analysis of models of outcrossing. Authors have
proposed different models of outcrossing based on a variety of modeling formalisms and
approaches. Most of the models deal with the problem of dispersal and deposition of
pollen. They are usually mechanistic steady-state compartment models and serve as
simulation models.

The most common approach to model the pollen flow from genetically-modified to
conventional crops is by using the Lagrangian Stochastic method. Jarosz et al. (2004) used
the Lagrangian Stochastic model to simulate the wind dispersion of pollen by calculating
individual pollen trajectories from their emission point to their deposition location. The
model predicts the pollen concentration and deposition rate downwind from an emitting
field. It was validated against measured field experiments conducted in 2000 in France
(Jarosz et al., 2003). The model shown to give good predictions of the airborne pollen
concentration pattern in small-sized recipient maize fields downwind a donor field, but
underestimate the deposition rates.

Kuparinen et al. (2007a) extended the Lagrangian Stochastic dispersal model to in-
clude non-Gaussian turbulence in the upper parts of the atmospheric boundary layer, as
well as the reduction of the autocorrelation time in trajectories due to high terminal veloc-
ity of particles. They have developed guidelines for modelling airborne particle dispersal
based on their simulations.

Kuparinen et al. (2007b) developed another mechanistic simulation model to simu-
late pollen dispersal by wind in different agricultural scenarios over realistic pollination
periods. They examined the relative importance of landscape-related variables, such as
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isolation distance, topography, spatial configuration of the fields, GM field size and bar-
rier, and environmental variation, in order to find ways to minimize gene flow and detect
possible risk factors. However, none of these models were validated against empirical
data.

Arritt et al. (2007) constructed a three-dimensional random flight model for numerical
simulations of maize pollen dispersion. The model simulates the paths of tracer particles
which are interpreted as individual pollen grains, with particle motion determined by the
mean flow and a stochastic turbulent velocity. It was validated against measurements for
a small maize canopy isolated within a large field of soybeans near Ames, Iowa, USA in
2003. However, the model tended to over-predict particle deposition near the source field
and underestimate deposition at larger distances.

Goggi et al. (2006) performed statistical analysis of the outcrossing between adjacent
maize grain production fields. They used field measurements from Ankeny, Iowa in 2003
and 2004. The statistical model describes the proportion of outcrossed kernels to de-
crease exponentially with distance from the GM pollen source and linearly with the wind
speed and direction during silking of the non-GM maize variety. However, no validation
estimates of the correlation of the model with the measured data were presented.

Almost all studies on gene flow and outcrossing between GM and non-GM crops are
based on mechanistic models. Such models are very complex, difficult to construct and
use, and are computationally very demanding (Žnidarsič et al., 2008). In addition, only
few of them are validated against real data, and even for those claimed to be validated,
no estimates about the accuracy of the models have been reported.

6.3 Formulation of the problem

In this chapter, we are developing equation-based models of the outcrossing between GM
and non-GM maize. These are induced automatically by the equation discovery system
Lagramge (Todorovski et al., 1998; Todorovski and Džeroski, 2007), from simulated
data (MAPOD) or empirical data from field trials. In addition to this, Lagramge can
also take into account domain (background) knowledge (see Section 4.3) in the form of
grammars. In this section, we discuss the machine learning problem formulation, focusing
on the domain knowledge. Here we discuss the content part, while the technical part
(formulation as grammars) is discussed in the next section.

The background knowledge we used for the MAPOD data was slightly different from
the background knowledge developed for field trial data, as explained in more detail in
the following sections. We discuss the different modelling alternatives that we consider.
We first describe the domain knowledge used for modelling the outcrossing from simu-
lated data (MAPOD). We then describe the domain knowledge used for modelling the
outcrossing from empirical data from field trials.

6.3.1 Domain knowledge for analyzing the MAPOD simulation
outputs

Previous analyses and experience in dealing with the problem of outcrossing between fields
(Debeljak et al., 2005; Džeroski et al., 2006) showed that the factors that most influence
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the outcrossing between GM and non-GM crops are the wind and the distance between
GM and non-GM fields. Time lag and the areas of the fields also play an important role in
defining the outcrossing of pollen between fields. Therefore, in collaboration with domain
experts, we defined the outcrossing as a product combination of linear, exponential and
rational functions of the distance between the fields, the wind direction, the difference in
flowering (time lag) and the area of the fields:

Outcrossing = const · (DistanceInfluence) · (WindInfluence) ·
·(TimeLagInfluence) · (AreaInfluence). (6.1)

Outcrossing is inversely proportional to the distance between fields: the increase of
the distance between the fields leads to a decrease in the outcrossing. In the modelling
alternatives we consider, the distance influence can have one of the following structures:

DistanceInfluence = e−Distance , (6.2)

DistanceInfluence =
1

Distance
, (6.3)

DistanceInfluence =
1

Distance2 , (6.4)

DistanceInfluence = Distance−const . (6.5)

As presented in the previous section, the wind parameter in the MAPOD simulations
can have one of the three values: upwind, downwind and orthogonal. Since the MAPOD
simulation model does not output numeric values for the wind direction or strength, in
order to include it in the equations, we transformed its values into 0 and 1. The wind is 0
when it is upwind or orthogonal and 1 if it is downwind. We use a simple linear equation
that presents the influence of the wind on outcrossing:

WindInfluence = 1 + const ·Wind . (6.6)

In this way, if the wind blows from the GM toward the non-GM field (downwind),
its influence on the outcrossing in our model will be presented with a positive constant
greater than 1, otherwise, it will be 1 and will not have any influence on the outcrossing.

The influence of the time lag on the outcrossing is again inversely proportional. There-
fore, we used the same functional forms as for the distance influence:

TimeLagInfluence = e−TimeLag , (6.7)

TimeLagInfluence =
1

TimeLag
, (6.8)

TimeLagInfluence =
1

TimeLag2 , (6.9)

TimeLagInfluence = TimeLag−const . (6.10)

It is suspected that the surface area of the GM and non-GM fields has an important
influence on the outcrossing between the fields. If the area of the GM field is bigger
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than the area of the non-GM field, the outcrossing is bigger than if the area is smaller.
However, there is a critical area of the GM field, after which it does not have any further
influence on the outcrossing (personal communication with Florence Leprince (Leprince,
2009)). This means that when the GM field is big enough, the outcrossing is maximal
and if the area of the GM field increases further, it will not have any additional influence
on the outcrossing - it will still be maximal. So the dependence of the outcrossing on the
area of the GM field follows a saturation function.

In the MAPOD simulations, the area of the GM field is fixed and the area of the non-
GM field varies. Therefore, we can model the outcrossing as a function of the non-GM
area using some common saturation functions found in literature. In these functions, we
are using the reciprocal value of the non-GM area, instead of the GM area (the outcrossing
is inversely proportional to the non-GM area). The area influence on the outcrossing is
presented with the following saturation functions:

AreaInfluence =
1

const · NonGMarea + 1
, (6.11)

AreaInfluence =
const

NonGMarea ·
√

1 + ( const
NonGMarea

)2
, (6.12)

AreaInfluence =
1

const · NonGMarea2 + 1
, (6.13)

AreaInfluence = 1− e−
const

NonGMarea . (6.14)

6.3.2 Domain knowledge for analyzing the BBA and KIS field
data

In the field experiments conducted by BBA and KIS, we again have two maize fields, GM
and conventional. At the field sites, different types of parameters were monitored and
recorded, although not on field-to-field basis, but for a number of sampling points in the
conventional field. Besides the spatial parameters, like the location and coordinates of the
sampling points and the area of the donor and recipient field, meteorological data (wind
velocity, wind direction, temperature and humidity) were also recorded. The outcrossing
rate was determined for each sampling point in the recipient field. In these experiments,
there is no difference in flowering (time lag = 0) and the areas of the fields do not change.
Therefore, we model the outcrossing as a function of the wind and the distance of the
sampling points to the donor (GM) field.

Outcrossing = const · DistanceInfluence ·WindInfluence. (6.15)

From the existing data we calculated new, aggregated variables that describe the wind
and the distance influence on the outcrossing. We described the distance between the non-
GM sampling plots and GM field by two variables: minimum distance of the sampling
plot to the border of the donor field and its distance to the center of the donor field.
The choice of a term for the distance influence on the outcrossing is the same as for the
MAPOD data (Section 6.3.1) and is limited to one or a combination of terms selected



48 6. Field-to-field co-existence rules for GM and non-GM crops

from the four options given in the background knowledge, where we can replace Distance
with either of the two distance variables.

DistanceInfluence = e−Distance , (6.16)

DistanceInfluence =
1

Distance
, (6.17)

DistanceInfluence =
1

Distance2 , (6.18)

DistanceInfluence = Distance−const . (6.19)

For each sampling plot, the wind was described by two variables: the percentage of
appropriate wind and the wind tunnel length. The percentage of appropriate wind is the
percentage of flowering time when the sampling plot was downwind the donor field, i.e,
the wind was blowing over the donor field towards the sampling plot. The wind tunnel
length, or wind ventilation route, is the cumulative value of the lengths of the wind paths
over the donor field during flowering period, multiplied by the wind strength.

Sampling point

Donor field

1.8m|3.75m/s

4.8m|1.5m/s 5m|2.25m/s 4.5m|0.75m/s

2m|2m/s

Tunnel length

Wind direction

Figure 6.3: Wind tunnel length - cumulative lengths of wind paths over the donor field mul-
tiplied by wind strength in the period of flowering.

For example, in Figure 6.3, the donor field, a sampling plot and five different wind
paths over the donor field downwind the sampling plot are presented. The wind direction
and velocity were measured in equal time intervals. At the first time point, the length of
the wind path over the donor field is 1.8 m and its velocity is 3.75 m/s. At the second
time point the wind path is 4.8 m and its velocity is 1.5 m/s, and so on, as presented in
Figure 6.3. To calculate the wind tunnel length for this sampling point, we first calculate
the cumulative lengths of wind paths over the donor field and multiply them by the wind
velocity: 1.8·3.75+4.8·1.5+5·2.25+4.5·0.75+2·2 = 32.575. We then divide the obtained
number with the number of times (time points) when the wind was blowing towards our
sampling point (in this example it is five) and we obtain the actual wind tunnel length
(6.515). The wind tunnel length is unitless.

There are a few cases in the literature of modelling the influence of the wind on
outcrossing (Jarosz et al., 2004; Kuparinen et al., 2007b; Arritt et al., 2007). These
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models are mechanistic, complex and difficult to understand and interpret, so in our
background knowledge we used a simple polynomial equation for the wind influence on
outcrossing:

WindInfluence = const +
∑
n

Windn. (6.20)

6.4 Machine learning setup

Having slightly different background knowledge for simulated and empirical data, we
generated separate context free grammars (see Section 4.3.2) for each type of data. These
grammars were then used in the equation discovery system Lagramge together with the
respective datasets to produce equation-based models of the outcrossing between maize
fields. The machine learning setup for learning from simulated (MAPOD) and empirical
data (BBA and KIS) is presented in the following sections and includes the grammars,
and parameter settings for Lagramge. We conclude this section with an overview of the
best analyses performed with Lagramge and a discussion of their overall goals.

6.4.1 Lagramge parameter settings and error measures

Lagramge allows the user to set some parameters to guide the process of equation dis-
covery. These include the beam width, equation complexity and the heuristics. Therefore,
we carried out a set of experiments, changing the values for each of these parameters.

For the beam width we chose the values 0 and 25, which means that Lagramge
will perform either an exhaustive search through the space of possible equations (beam
width = 0), or a beam search with beam width 25. For the equation complexity, i.e., the
depth of the parse tree, we chose the values of 5 and 10. The larger value allows for more
complex equations.

We also used two different heuristic functions to guide the search, MSE and MDL.
The parameter settings for the different equation discovery experiments carried out are
presented in Table 6.1.

Table 6.1: Parameter settings for each of the equation discovery experiments performed with
Lagramge.

Experiment No. Beam-width Tree-depth Heuristic
1 0 5 MSE
2 25 5 MSE
3 0 10 MSE
4 25 10 MSE
5 0 5 MDL
6 25 5 MDL
7 0 10 MDL
8 25 10 MDL
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To evaluate the learned equations, we use several measures of the error, between mea-
surements and predictions. The most common measure of error is the mean squared error
(MSE), the average of the square of the error (the difference between the measured and
predicted value). If we divide this error with the error of the simple predictor that always
predicts the average value, we are talking about relative mean squared error (reMSE).
MSE and reMSE take nonnegative values: the lower, the better. In our analyses, we have
also used the correlation coefficient (r). The correlation coefficient takes values between
-1 and 1: the higher, the better.

For each of the equation discovery experiments carried out in this study, with simulated
and empirical data, we used the parameter setting in Lagramge as described above, thus
obtaining eight equation-based models for each dataset (one for each of the Lagramge
settings).

6.4.2 Grammar and parameter settings for the
MAPOD dataset

In Section 6.3.1, we defined the outcrossing between a GM and conventional maize field
as a function of the distance between the fields, the wind direction, the time lag and the
area of the non-GM field. The formal context free grammar we used in the Lagramge
system is presented in Table 6.2.

The grammar follows closely the equations given in the previous section. Each of the
equations 6.1 to 6.14 corresponds to a product rule in the grammar: Equation 6.1, for
example, corresponds to the first product rule in Table 6.2.

Two types of additions in the grammar require explanation: A product rule XInfluence →
1 (when X ∈ Distance,Wind ,TimeLag ,Area), allows Lagramge to skip the corre-
sponding item and ignore that influence in the outcrossing equation. The productions
Y → variable Yname allow Lagramge to connect the symbols in the grammar (Y) to
the measured variables (Yname).

6.4.3 BBA and KIS

The grammar we used for equation discovery from the empirical data (BBA and KIS) is
given in Table 6.3. In this grammar, outcrossing is defined as a combination of influences
of distance and wind, the combination being a product of exponents of the two influences.
Through the values of the α and β exponents of the distance and wind influence, respec-
tively, (in the first rule in the grammar), we can adjust the relative importance of distance
and wind: when α = 1 and β = 1, we assume an equal influence of wind and distance.

If we fit the values of α and β exponents of the wind and distance influence in the
outcrossing equation against the data (α, β 6= 0, 1), we will be able to examine the relation
between the wind and the distance influence, i.e., to examine which one of them has a
greater contribution to outcrossing. The greater the exponent, the greater the influence
the variable has on outcrossing. We can also set one of α/β to zero, excluding the
corresponding influence from the model. If we set α to 0, we only take into account wind.
If we set β to 0, we only take into account distance.

Table 6.4 reports the predictive performance of the models induced for each dataset
by using the variations of the grammar, mentioned above. In the first variation of the
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Table 6.2: The grammar used to model the outcrossing between a GM and conventional maize
field using data from the MAPOD simulation model.

Outcrossing → const ·DistanceInfluence ·WindInfluence·
·TimeLagInfluence ·AreaInfluence;

DistanceInfluence → 1; WindInfluence → 1;
DistanceInfluence → D; WindInfluence →W ;

D → e−Dist ; W → const + const · PWind ;
D → 1

Dist ;
D → 1

Dist2
; PWind → variable wind ;

D → Dist−const ;

Dist → variable distance;

TimeLagInfluence → 1; AreaInfluence → 1;
TimeLagInfluence → T ; AreaInfluence → A;

T → e−TLag ; A→ 1
const ·Area+1 ;

T → 1
TLag ; A→ const

Area·
√

1+( const
Area

)2
;

T → 1
TLag2 ; A→ 1

const ·Area2+1
;

T → TLag−const ; A→ 1− e−
const
Area ;

TLag → variable timeLag ; Area → variable nonGMarea;

grammar, both exponents have value 1. In the second variation they are both fitted
against the data. In the third variation α is fixed to 1 and β to 0, while in the fourth
variation α is fixed to 0 and β to 1.

The results show that the equations derived by using each of the two variations of the
grammar perform very well for the BBA2000 and KIS2006 datasets, with only a slight
difference in their predictive performance. The correlation coefficients for BBA2000 data
were 0.89 for both variations of the grammar, while the correlation coefficients for KIS2006
data were 0.83. The correlation coefficients obtained on the BBA2001 data were smaller
than the other (0.68 and 0.66 for the first and the second variation respectively).

For each of the datasets, almost identical results were generated by the first two
variations of the grammar, where only α = 1 and β = 1 were used. Therefore, in Section
6.5 we will present only the equations obtained with the first variation of the grammar.
For the last two variations of the exponents, we record a significant drop in performance
for each dataset. The reasons for this are discussed in Section 6.5.3.

The aim of fitting the α and β parameter to the data was to allow different weights of
the influence of the wind and distance on outcrossing. The values of the exponents would
increase/decrease the influence of the parameters in modelling the outcrossing between
GM and non-GM maize. However, the best equations from the second variation of the
grammar did not have the expected exponential form.
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Table 6.3: The grammar used to model the outcrossing between a GM and conventional maize
field using empirical data (BBA and KIS).

Outcrossing → const · (DistanceInfluenceα) · (WindInfluenceβ);

DistanceInfluence → 1;
DistanceInfluence → D;
DistanceInfluence → D ·D;

D → e−Distance ;
D → 1/Distance;
D → 1/Distance2;
D → Distance−const ;

Distance → variable minDistance;
Distance → variable distanceCenter ;

WindInfluence → 1;
WindInfluence → PWind ;

PWind → (PWind) ·Wind + const |const ;

Wind → variable appropriateWindProc;
Wind → variable windTunnelLength;

Table 6.4: Correlation coefficients (r) and relative mean squared error (reMSEs) for the exper-
iments carried out on BBA2000, BBA2001 and KIS2006 data with four different variations of
the grammar. In the first variation, α and β are fixed to 1; in the second variation, their values
are fitted against the data; in the third variation α is fixed to 1 and β to 0, while in the fourth
variation α is fixed to 0 and β to 1.

α = 1, β = 1 α =?, β =? α = 1, β = 0 α = 0, β = 1
BBA2000 0.89 (0.50) 0.89 (0.50) 0.55 (1.57) 0.61 (1.77)
BBA2001 0.68 (0.90) 0.66 (0.91) 0.64 (1.50) 0.48 (1.44)
KIS2006 0.83 (0.33) 0.83 (0.33) 0.71 (0.34) 0.65 (0.34)

Excluding one of the influences on the outcrossing (wind or distance) in our analyses,
would allow us to examine their importance in modelling the outcrossing. We assume
that the performance of the models will drop when removing one of the two variables.
For example, a larger performance drop when removing the distance variables indicates
that the distance is more important for outcrossing.
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6.4.4 Experimental goals

For the purpose of our study, we have defined several experimental questions/goals (work-
ing hypotheses), according to which we designed and carried out our equation discovery
analyses.

The first goal was to find out the predictive power of the models. We carried out several
analyses and developed equation-based models for the simulation data (MAPOD), as well
as for the real data (BBA2000, BBA2001 and KIS2006) separately. We evaluated the
expected predictive power of each model by cross-validation.

We then developed a more general model for the BBA region, by combining the data
of the two years (2000 and 2001). Finally, we developed a general outcrossing model using
the empirical data from all datasets. To avoid any bias in the results because of the great
difference in the number of examples in the different datasets, we chose a random sample
of examples from the KIS2006 dataset with a size equal to the size of the BBA datasets
(2000 and 2001) taken together. The predictive power of these was also estimated by
cross-validation.

The second goal was to interpret the different equation-based models and compare the
structure of the models obtained on simulation data to the models obtained on empirical
data.

The third goal was to find out the relative influence of the wind and the distance on
outcrossing. To do this, we varied the values of the α and β exponents of the distance
and wind influence on outcrossing in the first rule of the grammar of the empirical data,
as described in Section 6.4.3: this included experiments where only the wind and only the
distance part of the grammar were used.

Finally, we were interested in the transferability of the models obtained on empirical
data across the BBA and KIS datasets. This is an important question that shows how
general and independent from a specific region the models are.

The equation discovery experiments were structured and carried out in a way that
would enable us to address each of these four working hypotheses. In the following
section, we present the results from the analyses, as answers to the goals we have stated.

6.5 Results

6.5.1 Predictive performance of the induced models

Several equation discovery experiments were carried out on each of the datasets, as well
as a combination of those. We first developed equation-based models for the MAPOD
simulation data, modelling the outcrossing between a GM and a non-GM maize field as
a function of the distance between the fields, the wind direction, the area of the non-GM
field and the time lag. We obtained the most accurate equations with the Lagramge
setting, where we are using beam search through the space of possible equations with beam
width = 25, most complex equations (tree depth = 10) and MDL as a search heuristic
(see Section 6.4.2).

With the BBA and KIS datasets, we developed models of outcrossing that depend only
on the distance and the wind direction and strength. Since the BBA2000 and BBA2001
data were from the same region, but from different years, we wanted to induce a general
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model (equation) for that region, independent of time. Therefore, we combined the two
datasets (BBA2000+2001).

We also combined all three datasets, to obtain a universal outcrossing model from the
empirical data. Because of the big difference in the number of examples in the KIS and
BBA datasets, we chose a random sample of examples from the KIS2006 dataset with
size equal to the size of both BBA datasets taken together. The best equations for these
datasets were obtained with the Lagramge setting, where we used exhaustive search,
more complex equations (tree depth = 10) and MDL as a heuristic function.

Table 6.5: Correlation coefficients (r), relative mean squared error (reMSEs) and best equations
of the experiments carried out on MAPOD data, BBA2000, BBA2001, KIS2006, all BBA, and
all BBA+KIS datasets.

Correlation Best equation
coefficient
(reMSE)

MAPOD 0.81 (0.23) Outcrossing = 0.18
Distance0.18 × (1.82×Wind + 1)× 1

TimeLag0.15×

×(1− e−
5.92

nonGMarea )

BBA2000 0.89 (0.50) Outcrossing = 0.02
minDistance1.8 × [0.007× windTunnelLength2×

×appropriateWindProc + 602.93]

BBA2001 0.68 (0.90) Outcrossing = 0.01
distanceCenter×minDistance2 × [windTunnelLength3+

+windTunnelLength2 + windTunnelLength + 1]

KIS2006 0.83 (0.33) Outcrossing = 531.12
distanceCenter×eminDistance

BBA 0.86 (0.48) Outcrossing = 0.01
distanceCenter×minDistance2 × [appropriateWindProc×

2000+2001 ×windTunnelLength2 + windTunnelLength2+

+windTunnelLength + 1]

KIS+BBA 0.64 (1.52) Outcrossing = 0.01
distanceCenter×minDistance0.1 × [appropriateWindProc2+

+appropriateWindProc + 1]

The predictive performance estimated by 10-fold cross-validation and the best equation
found on each dataset are given in Table 6.5. In terms of correlation coefficient, the
model constructed on the BBA2000 data shows the best predictive performance, having a
correlation coefficient of 0.89. In terms of relative MSE, the model obtained from MAPOD
simulation data has the best predictive performance, with a reMSE = 0.23.

When we combined both BBA datasets, the outcrossing model for the BBA region
had good predictive performance, with a correlation coefficient of 0.86. The model con-
structed on all datasets had the worst performance of all, with a correlation coefficient
0.64. Combining the two BBA datasets, which came from the same region and experimen-
tal setup, made sense, while mixing them with the KIS data, which used different maize
varieties, was apparently not sensible. Combining the simulated with empirical data was
not feasible, due to the different field settings and parameters simulated or measured.

In addition, we generated model trees for each of the dataset, to compare their pre-
dictive performance with the predictive performance of the equation-based models. We
obtained correlation coefficients of 0.63, 0.76, 0.63, and 0.82, for the MAPOD, BBA2000,
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BBA2001, and KIS2006 data respectively. The predictive performance of the model trees
is significantly lower than the predictive performance of the equation-based models. Only
in the case of the KIS data, the predictive performance is almost the same for the model
trees, as well as for the equation-based models. We assume that this is because of the
nature of the data. Here, the distance between the donor and recipient fields has a big
influence on the outcrossing (this is discussed in more detail in Section 6.5.3). However,
these results prove that equation discovery is very useful for modelling the outcrossing
between two maize fields.

6.5.2 Interpretation and comparison of the induced models from
simulation and real data

In this section, we will take a look at the best models obtained for each of the datasets
analyzed with Lagramge.

Table 6.5 (last column) reports the best equations obtained for each of the datasets
used in the analyses. In the MAPOD model, all of the given influences were chosen,
indicating that all of them are important in modelling the outcrossing between a GM
and non-GM maize field. The outcrossing is decreasing with distance following the func-
tion Distance−const. For the time lag influence, Lagramge similarly chose the function
TimeLag−const. The wind was present in the model, while for the non-GM area, La-
gramge chose the last of the four saturation functions as the best.

In the background knowledge for the BBA and KIS data, only distance and wind influ-
ences were used to model the outcrossing. However, there were two measures of distance,
the minimum distance from the sampling point to the donor field and the distance from
the sampling point to the center of the donor field. There were also two parameters for
wind, appropriate wind percent and wind tunnel length.

In the BBA2000 model, only one of the distance variables was chosen - the minimum
distance of the sampling plot to the donor field. Here, the outcrossing is inversely pro-
portional to approximately the square of the minimum distance between the non-GM
recipient and the GM donor. Among the variables describing the wind influence, both
the appropriate wind percent and the wind tunnel length were chosen in a polynomial
equation.

The BBA2001 model has a form different to that of BBA2000. It defines the influence
of the distance on the outcrossing using both distance parameters - minDistance and
distanceCenter. The wind influence is described by a polynomial equation in which only
the wind tunnel length parameter appears.

The model obtained from the KIS2006 data differs from the other models the most.
Here both distance influence parameters appear in the equation, but none of the wind
parameters does. This implies that the outcrossing in this situation can be modeled as an
exponential function of the distance parameters only, while the wind does not have any
influence at all.

The general model for the BBA region has almost identical structure as the BBA2001
model, except that it uses both wind parameters. It successfully generalizes over both
datasets. Its high correlation coefficient (0.86) makes it suitable for predicting the out-
crossing rate in the Braunschweig region.



56 6. Field-to-field co-existence rules for GM and non-GM crops

The last model developed on all three empirical datasets (both BBA datasets and
the KIS dataset) has again a similar structure to the BBA2001 model. Here appropriate
wind percent is used instead of wind tunnel length. This demonstrates that, in general,
the outcrossing can be described as an inverse function of the distance influence and a
polynomial function of the appropriate wind percent in the region.

The two models that have worse predictive performance (BBA2001 and BBA+KIS) use
only one of the wind variables in their models, windTunnelLength or appropriateWindProc.
On the other hand, the models with good predictive performance, incorporate both wind
variables in a polynomial function. This leads us to the conclusion that in order to model
the outcrossing accurately, we need both information about the amount of the wind in
the region, as well as its strength during the flowering period.

Finally, to compare the models obtained on simulated and empirical data, we created
seven smaller datasets from the MAPOD dataset, for each of the seven possible areas
of the non-GM field, choosing only data where the time lag was 0. The best equation
obtained (r = 0.85) is the following:

Outcrossing =
0.23

Distance0.18 × (1.78×Wind + 1). (6.21)

Comparing the structure of this equation to the structures of the equations obtained
on empirical data (Table 6.5), we can see that the distance influence on the outcrossing in
all models is presented with the same form of function. However, different values of the
parameters are used, i.e., the exponent of the distance parameter in the models obtained
from simulated data is ten times smaller than the exponent of the distance parameter
in the models obtained from empirical data. The reason for this might be the different
field settings in the different types of data. Namely, in the MAPOD simulations, the area
between the fields is not cultivated with any other crop, i.e., there is an ”empty” distance
between the fields, which means that nothing acts as a physical barrier that catches the
pollen that comes from the GM field. Therefore, the outcrossing decreases with distance
at a slower rate.

In contrast, in the field experiments, the GM and non-GM fields are not separated
(the minimum distance between the fields is 0 m), but there is a ”non-empty” distance
between each sampling point and the donor field, i.e., there are conventional maize plants
between each sampling point and the donor field that act as a physical barrier for the
pollen. Therefore, the outcrossing decreases with distance at a faster rate, hence the
higher exponent for the distance parameter.

In all models, the wind is presented by a linear or a polynomial equation. However,
there are different wind parameters in the simulated and empirical data (qualitative and
quantitative, respectively), so we can not directly compare the wind influence in the
models learned from simulated and real data respectively.

6.5.3 Relative influence of wind and distance on
outcrossing in the BBA and KIS models

In Section 6.4.3, we explained that in order to check which of the two influences (distance
or wind) in the BBA and KIS data has a stronger impact on the outcrossing, we will
exclude one of them from the analyses, by fixing its exponent (α or β) to 0, and see what
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will be the performance drop as a result. A bigger performance drop when excluding one
of the factors from the analyses means that it is more important for the analyses than the
other. We carried out equation discovery analyses for each of the BBA and KIS datasets,
first using only the distance parameters, then using only the wind parameters. In Figure
6.4, we compare the correlation coefficients obtained for each dataset, when using only
distance variables, only wind variables and using all the variables (distance and wind
influence).

Figure 6.4: Comparison of the correlation coefficients for the equations learned for each of the
BBA and KIS datasets, when using only distance variables, only wind variables and using all
the variables (distance and wind influence).

In the case of the BBA2000 dataset, we record a bigger performance drop when ex-
cluding the wind parameters, which indicates that in this dataset the wind has a greater
influence on outcrossing than the distance. In the case of the BBA2001 dataset, a bigger
performance drop happens when excluding the distance parameters, so in this case the
distance parameters influence the outcrossing more. The same happens with the KIS2006
data. It is interesting that this dataset, even in the case where we allowed both influences
to appear, Lagramge decided to use only the distance parameters in the best model
learned on all data (Table 6.5).

In different datasets, the relative influences of the parameters are different, which does
not give us a general conclusion concerning which one of the influences (wind or distance)
has a greater impact on the outcrossing. This leads us to the question of how the relative
influence of the two factors changes with the specific data for a specific region or year
in the different datasets. To find out why the wind was very important in the BBA2000
data, less important in the BBA2001 data, and of no importance in the KIS2006 data, we
will analyze Figure 6.5, which presents the wind roses for each dataset. The wind roses
represent the average percentage of wind in each direction of the field in the period of
flowering. The directions are presented in azimuth, starting with 0◦ at North, 90◦ - East,
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180◦ - South and 270◦ - West. The predominant direction and strength of the wind were
also calculated as a vector sum of all 16 wind directions for each dataset. In Figure 6.5,
they are presented with an arrow. The length of the arrow indicates the strength of the
wind, while its direction indicates the prevailing direction of the wind.

Figure 6.5: Wind roses for the three field studies. They represent the average percentage
of time the wind was blowing in each direction of the field. The directions are presented as
azimuth, having 0◦ to be North, 90◦ - East, 180◦ - South and 270◦ - West. The arrows represent
the prevailing direction and strength of the wind for each dataset.

The wind rose for the BBA2000 data is the biggest, which indicates that there were
strong winds during the flowering period in the Braunschweig region in the year 2000.
It is the most directed and intense towards the East. The predominant direction of the
wind was around 106 degrees azimuth.

The predominant direction of the wind in the BBA2001 is not that obvious as in the
BBA2000 data, although we record strong wind here as well. The prevailing direction of
the wind in the Braunschweig region in 2001 was around 82 degrees azimuth. In general,
it was much weaker than in 2000.

From the wind rose for the KIS2006 data we can see that the magnitude of the wind
was very small, compared to the wind in the BBA2000 and BBA2001 data. Also, the
wind does not have a specific direction, but is uniformly distributed over the region. The
resultant vector of the wind direction and strength is close to zero.

The weak and uniformly distributed wind in the KIS region provided us with variables
(appropriate wind percent and wind tunnel length) that have no discriminative power in
predicting the outcrossing rate. This is the reason the wind influence did not appear in
the KIS outcrossing model.

From the analyses of the wind roses of the different datasets, we can conclude that the
specific weather and geographic characteristics of the regions have a significant influence
on the obtained models. The importance of the wind in the BBA2000 dataset was a result
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of the strong and directed wind in the BBA region in year 2000. The wind in the same
region was weaker in the following year, thus decreasing the influence of the wind in the
models. The KIS region is characterized with weak and uniformly distributed wind, and
therefore wind did not appear in the equation-based models at all.

6.5.4 Transferability of models across datasets

The question of transferability of the models across datasets is only sensible in the case of
empirical data, because all datasets had the same field setting and parameters measured.
The transferability of the models shows us how the equation-based models from one region
perform when applied on data from other regions, i.e., how general they are for modelling
the outcrossing. To find out, we first took the model built on the BBA data and tested it
on the KIS2006 data, and vice versa, we tested the model learned from the KIS2006 data
on the BBA data.

Table 6.6: Predictive performance of the models learned on data from one region and tested
on data from the other region.

Train Test Correlation coefficient
BBA2000+2001 KIS 0.77
KIS BBA2000+2001 0.63

Table 6.6 shows the predictive performance of the equation-based models learned for
one of the two regions (BBA and KIS) and tested on the data for the other region.
The correlation coefficient of the BBA model tested on the KIS data is 0.77, while the
correlation coefficient of the KIS model tested on the BBA data is smaller: 0.63. The
BBA model, which uses all distance and wind variables (Table 6.5) appears to be a good
predictive model even for the KIS region in which the wind does not have a great influence.
The KIS model, on the other hand, which uses only the distance variables will not be
suitable for predicting the outcrossing in regions in which there is more wind.

We can conclude that the outcrossing model that contains distance, as well as wind
parameters, is more general and can be used for accurate prediction of the outcrossing in
regions with different weather and geographic characteristics, while the distance parame-
ters only do not have the necessary explanatory predictive power.

6.6 Summary and discussion

In this study, we presented a new approach for modelling the outcrossing between trans-
genic and conventional maize. We used equation discovery on simulation data, from the
MAPOD simulation model, as well as empirical data, generated in three different field
trials. The first two field trials were performed on an area located in Germany in the
years 2000 and 2001, while the third was performed in Slovenia in 2006.

We used background knowledge encoded in the form of a grammar and applied the
equation discovery system Lagramge to build equation-based models. We carried out a
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number of equation discovery experiments for each dataset separately and built equation-
based models with relatively high correlation coefficients. In all models, the outcrossing
appeared to be inversely proportional to the distance variables.

In the model generated from MAPOD simulation data, the outcrossing is also in-
versely proportional to the time lag, while the influence of the non-GM field area on the
outcrossing is described by a negative exponential function. The wind influence on the
outcrossing was presented by a linear function in the model generated from the MAPOD
data, in the BBA data there was a polynomial relation between the outcrossing and the
wind, while in the KIS model the wind did not appear at all, indicating that the wind
did not have any influence on the outcrossing in the specific field experiment.

Comparing the models obtained on simulated and empirical data, we noticed that the
part of the equations describing the distance influence on the outcrossing has the same
structure, only using different exponents for the distance variable. The reason for this is
the nature of the area between the GM and the non-GM field, whether it is an ”empty”
area, where no other crops (or volunteers) grow, like in the MAPOD simulation data,
or there are crops between the donor and the recipient, which act as a physical barrier
for the GM pollen (like in the empirical data). Having an ”empty” distance between the
GM and the non-GM field means that the pollen concentration and also the outcrossing
decrease slower with distance, resulting in a smaller exponent for the distance variable in
the models generated from MAPOD simulation data. If there is any kind of crop between
the GM donor field and the recipient field (or point), the outcrossing decreases much
faster rate.

The relative influence of the wind and distance on the outcrossing was assessed using
the empirical data (BBA and KIS) and using several variations of the background knowl-
edge (grammar). We conducted several equation discovery experiments on each dataset
(BBA2000, BBA2001 and KIS2006), first using only the distance variables, then using
only the wind variables. The wind had more influence on outcrossing in the case of the
BBA2000 data, while for the BBA2001 and KIS2006 the distance had a greater impact on
outcrossing. We further analyzed this issue, by analyzing the wind roses for each dataset:
The BBA region was characterized by a strong and directed wind, which increased its
importance in the outcrossing models, while the KIS region was characterized by a weak
and diffuse wind, thus minimizing its role in the outcrossing models.

Finally, we tested the transferability of the models across datasets. Again, we did
this only for the empirical datasets, because of the difference in the field settings and
parameters measured/simulated in the empirical and the simulation data. We tested the
model built for the BBA region on the KIS data and vice versa. The BBA model, in which
both distance and wind parameters appear, turned out to have greater predictive power
than the KIS model that used only the distance variables. From this, we can conclude
that both distance and wind related variables are essential for predicting outcrossing
accurately. Although the specific characteristics of a region influence the structure in
the outcrossing models, the models that use both types of variables are more flexible
and reliable and can be used for accurate prediction of outcrossing between transgenic
and conventional maize under various geographic specifics (e.g., wind direction and its
strength).

To emphasize the contribution of our work, we have used machine learning methods
that take into account data from a simulation model and data collected from field studies,
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as well as existing background knowledge about the studied domain, to produce models
of outcrossing between GM and non-GM crops. While many models exist of gene flow
between GM and non-GM crops, few of them have been validated with respect to measured
data, with validation results reported in the literature. In our work, we use simulated
data from the MAPOD simulation model and also data from several field studies and in
this way produce more reliable and fully validated models of gene flow.

This study also shows that while applying machine learning to empirical data is highly
valued and necessary, in the cases where conducting field experiments for assessing the
feasibility of co-existence between GM and conventional crops is difficult or limited, us-
ing simulation models and analyzing simulated data can appear to be very useful. The
simulation models are able to simulate different geographical, climatic and agricultural
scenarios of co-existence between GM and conventional crops, which is sometimes hard
to do with field studies. Analyzing the outputs from the simulation models with machine
learning can help us obtain accurate, faster and cheaper way to study the co-existence
between GM and conventional crops.

While data analysis and machine learning methods had previously been used to model
the outcrossing between a GM and non-GM field, the use of background knowledge and
equation discovery is a novelty and a unique contribution of our study. Equation discovery
is a powerful tool for modelling ecological and environmental systems and combined with
strong background knowledge and domain expert involvement can produce very good
models. A general idea for further work would be to construct more complex equation-
based models of outcrossing, by using richer background knowledge and including more
parameters. More field studies would yield more reliable and accurate models. Other
plants than maize can be considered as well.
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Chapter 7

Explanatory models of oilseed rape
population dynamics

In the previous chapters, we addressed the tasks of learning large region and field-to-field
co-existence rules from the population-based simulation models GeneSys and MAPOD.
In this chapter, we will deal with a different type of model, an individual based model of
oilseed rape persistence (see Chapter 3).

In contrast to the regional scale and field-to-field settings considered by GeneSys and
MAPOD, the simulation model considered here concerns a single arable field. The IBM-
OSR model (Begg et al., 2006; Ivanovska et al., 2009) models the population dynamics of
oilseed rape in a single arable field. By simulating the model and recording population-
level properties of the output, such as total number of individuals (plants, seeds) in the
field each year before harvest, we obtain input data for constructing population-level
dynamic models. To this data, we apply the equation discovery system Lagramge.

The remainder of this chapter is organized as follows: We first describe the output
from the IBM-OSR model that we use in this part of the study. We then formulate the
problem, define the domain knowledge in a form of a grammar, and describe the machine
learning setup used for the analyses. Finally, we present the results obtained from the
analyses and conclude with a discussion.

7.1 Dataset: Output from the IBM-OSR

simulation model

The IBM-OSR simulation model (Begg et al., 2006; Ivanovska et al., 2009) is an individual-
based model designed to understand and predict the persistence of genetically modified
oilseed rape in a single field. Like in all other individual-based models, the properties
of the system/population are derived from the properties and interactions among the
individuals in the system/population.

Contrary to the outputs from the simulation models explained in the previous chapters,
which were generated for other purposed than our study, the simulations from the IBM-
OSR model were specifically designed for the task of modelling the population dynamics
of oilseed rape. Each simulation of the IBM-OSR simulation model simulates a 10 year
crop rotation on a 5 m × 5 m area of field. The simulations start with a contaminated
seedbank with GM oilseed rape seeds. In the 10 years of simulations, only conventional
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crops are grown, such as winter wheat, oilseed rape and field beans.
The input of the simulation model consists of different types of information about the

system:

• Cultivation techniques for each year and for each crop grown (these include: crop
type, cultivation dates and techniques, herbicide application dates, herbicide types,
sowing date, pattern and density, etc.),

• Life-history parameters, which differ for each simulation, but are the same for ev-
ery year within a simulation (these include: death rate of an individual, germination
window, growth rate per unit resource capture area, etc.),

• Environmental parameters for each day of the 10-year simulations (these include:
air temperature, soil temperature, precipitation, wind, sunshine, etc.).

The output from the model is the number of individuals in each stage of development
(seeds, plants and seed on plants) just before harvest for each year.

The main focus in this part of the study was the persistence of GM oilseed rape
seeds in a 10-year rotation and the influence of the life-history parameters and cultivation
techniques on it. The environmental parameters were at this stage omitted.

After careful consultations with domain experts, we filtered the data we had, choosing
21 attributes for further analyses, most of them being life-history parameters and a few
cultivation techniques parameters. The target attributes were the number of individuals
in each stage and each year of the simulations. We had two hundred 10-year simulations,
leaving us with 2 000 examples. In Table 7.1, the names, description, and range of values
of the used attributes are presented.

7.2 Formulation of the domain knowledge

The main focus of this chapter is on learning explanatory models for the population
dynamics of oilseed rape. The background knowledge used in our analyses was defined
througha tight collaboration with domain experts. The life-cycle of the oilseed rape
population is structured into three different states in which an individual (plant) can be
found: sown seed (C), seed rain (Y) and seedbank (S), each of which can be GM (G)
or conventional (C). The transitions of individuals between these states are defined as
functions of life-history characteristics and gene flow.

The population dynamics associated with the life-cycle of oilseed rape can be formal-
ized as a set of difference equations, which relate the state of the system at time t+ 1 to
the state of the system at time t:

Nt+1 = ANt, (7.1)

Nt+1 =


YC t+1

YG t+1

SC t+1

SG t+1

CC t+1

CG t+1

, Nt =


YC t

YG t

SC t

SG t

CC t

CG t

, A =


a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

.
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Table 7.1: Names, description, and range of values of the used attributes for learning explana-
tory models of oilseed rape population dynamics

Attribute name Description Values
deathRate Probability that a seed in the seed bank 0.0001-0.001

will die in a given time step (day)
dormDepthMax Maximum probability of dormancy 0.01-1.00

that is achieved with increasing depth
dormDepthFifty Depth at which 0.05-0.2

dormancy probability = 0.5*dormDepthMax
cultDelay Number of days between the harvest 1-62

of a crop and the cultivation of the next crop
seedLoss Proportion of seeds that are returned 0.01-0.1

to soil surface on harvest
outcrossingRate Rate of outcrossing between plants 0-0.3
pollenFractionGM The fraction from the produced pollen 0-1

in the field which is GM
pollenFractionCon The fraction from the produced pollen 0-1

in the field which is conventional
pdimMax Maximum density independent mortality 0.001-0.01

(this occurs at 0 grammes)
density Number of individuals per unit of area ≥ 1
preherbMort Probability that a seedling will die 0.8-1.0

on emergence if a pre-herbicide
application is active

preherbDuration Number of days a preemergence herbicide 31-93
remains active after application

postherbMort Probability that a plant will die
if present when the post-emergence herbicide 0.8-1
is applied

postherbFreq Number of post-emergence herbicide 1-2
applications in a year

maxBiomass Maximum biomass that a plant can reach 50-250
conYield Conventional OSR seedrain ≥ 0

(number of seeds on grown up plants)
gmYield GM OSR seedrain ≥ 0

(number of seeds on grown up plants)
conSeedbank Number of conventional OSR seeds ≥ 0

in the seedbank
gmSeedbank Number of GM OSR seeds ≥ 0

in the seedbank
conSownSeeds Number of conventional OSR sown seeds ≥ 0
gmSownSeeds Number of GM OSR sown seeds ≥ 0

The transition coefficients in the transition matrix A are interpreted as functions of the
life-history characteristics of oilseed rape and gene flow. We are interested in the oilseed
rape population dynamics in the field (seedbank and seed rain), while the dynamics of
sown seeds is not important at the moment: they are included in the model only as an
influence on the seedbank and seed rain dynamics. Therefore, the matrix representation
of the oilseed rape population dynamics can be transformed into four difference equations,
with parameters as explained below:
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YCt+1 = f(1−m)[(1− p)gyrYCt + qgyrYGt + (1− p)gsSCt +

+qgsSGt + (1− p)gcCCt + qgcCGt], (7.2)

YGt+1 = f(1−m)[pgyrYCt + (1− q)gyrYGt + pgsSCt +

+(1− q)gsSGt + pgcCCt + (1− q)gcCGt], (7.3)

SCt+1 = s[(1− gy)rYCt + (1− gs)SCt + (1− gc)CCt], (7.4)

SGt+1 = s[(1− gy)rYGt + (1− gs)SGt + (1− gc)CGt]. (7.5)

The above equations present the population of oilseed rape at time t+ 1 as a function
of the oilseed rape population at time t (the time units are years) and other life-history pa-
rameters. The life-history parameters that influence the oilseed rape population dynamics
are:

• s - annual seedbank survival rate

• g - annual germination rate

• r - seed rain (proportion of seed on individual plants returned to the seedbank at
harvest)

• p - proportion of seeds produced by a conventional plant that are GM

• q - proportion of seeds produced by a GM plant that are conventional

• m - annual survival rate of plants

• f - total seed production per plant

As an illustration, we will give an interpretation to the equation (7.5). This equation
models the population of GM oilseed rape seeds in the seedbank in year t + 1. The GM
seedbank in year t + 1 depends on the: (1) GM seeds from grown up plants in year t
that are returned to the seedbank at harvest (rYG t) and do not germinate (1 − gy), (2)
GM seeds already in the seedbank from the previous year (SG t) that do not germinate
(1 − gs), and (3) sown GM seeds (CG t) that do not germinate (1 − gc). Having a seed
germinate means that it leaves the seedbank and is not considered as a seed, but as a
seedling. The number of GM seeds in the seedbank in year (t + 1) is consisted of the
surviving proportion (s) of the sum of all above mentioned types of seeds that enter or
are already in the seedbank.

The model structure described above provides a fixed framework within which simpli-
fication of the existing individual based model of transgenic oilseed rape populations can
be pursued. To achieve this, the parameters of the population model need to be expressed
as functions of parameters or input variables from the IBM. In principle, it is possible to
derive these functions exactly, however, the increase in organizational and temporal scales
combined with the process complexity of the individual based model means that this is
not generally possible. Instead, we are able to derive a number of alternative approximate
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functions and discriminate between them on the basis of the fit of the resulting population
based models to data from the IBM by using equation discovery.

In the following sections, we derive the functions that we use in the background knowl-
edge. This is included as a context free grammar used in equation discovery. The task
addressed is to relate the population parameters to individual plant parameters.

Annual per capita seedbank survival rate (s)

While seeds are in the seedbank, they lose viability at a constant daily rate. So the
seedbank density u declines according to a daily recurrence relation ud+1 = ud−deathRate ·
ud. This can be transformed to un = u0 · (1− deathRate)n, where n is the number of days
seeds are in the seedbank and deathRate is the daily mortality probability for seeds in
the seedbank. Consequently, the proportion of seeds surviving over a year is given by
s = (1− deathRate)365. 365 can be replaced by any other constant depending on the time
frame we are taking into account.

This gives rise to the following equation that describe the annual per capita seedbank
survival rate (s):

s = (1− deathRate)365·const , (7.6)

where const ∈ [0, 1]. Here deathRate is an IBM parameter and const is to be fitted by
equation discovery.

Annual germination rate (g)

In the IBM, seed germination is determined by a sequence of processes controlling dor-
mancy and, conditional on this, germination itself. Seeds enter the seedbank in a non-
dormant state. Seeds are tested daily for dormancy and non-dormant seeds are subject
to a depth and temperature dependent induction of dormancy. Those that remain non-
dormant accrue hydrothermal time and germinate conditional on their hydrothermal time
threshold having been attained. Dormant seeds remain dormant until they are exposed
to dormancy-breaking triggers (cultivation, sowing) at which point they have a 0.8 prob-
ability of becoming non-dormant.

The population stages crop (C), seedbank (S) and yield (Y) are qualitatively different
and are experiencing different triggers, as well as temperatures and depth. For example,
seedrain seeds (yield) experience an immediate flush plus triggering by cultivation events
and sowing; seedbank seeds experience depth dependent triggering by cultivation and
then sowing; and crop seeds experience germination on sowing only. Therefore, for each
of these stages, the annual germination rate is presented as a different function, gc, gs and
gy, respectively.

In reality, the germination rate is a complex function of many parameters, like dor-
mancy rates, soil depth, temperatures, duration of flushes, water potential, etc. In our
analyses, we are reconsidering these functions in an attempt to reduce their complexity
and obtain a set of plausible alternative functions for testing.

Assuming that all cultivations take place simultaneously (e.g. ploughing immediately
followed by discing), we define the germination rates as follows:
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gs = const · (1−Dcult)
const , (7.7)

where Dcult is a daily dormancy rate caused by a cultivation event. The dormancy rate
(Dcult) can be further defined by one of the following equations:

Dcult = const · dormDepthMax

dormDepthFifty
, (7.8)

Dcult = dormDepthMax · 0.2− dormDepthFifty

0.2
. (7.9)

In the above equations, dormDepthMax is the maximum probability of dormancy that
is achieved with increasing depth, while dormDepthFifty is the depth at which dormancy
probability equals 0.5 · dormDepthMax . Both are parameters of the IBM. The choice
of an equation structure and the corresponding constants will be made by the equation
discovery system Lagramge.

For the germination rate of the seedrain seeds (gy), we assume that germination is
dominated by the first flush as seeds are returned to the seedbank at harvest and we
define it with the function

gy =
cultDelay

const
. (7.10)

Here cultDelay is the number of days between the harvest of a crop and the cultivation
of the next crop and is calculated from the IBM parameters. The constant is again to be
estimated by ED.

Finally, with respect to germination gc, we assume that the dormancy rate of sowed
seeds is close to zero (dsow ≈ 0) and that they all germinate, yielding

gc = 1. (7.11)

Seed rain (r)

Seed rain takes place annually and is represented in the IBM by the proportion of seed
on individual plants returned to the seedbank at harvest. This allows seed rain (r) to be
related directly to the IBM seed loss parameter, i.e., r = seedLoss .

Introgression rates (p, q)

The transfer of transgenes at the population level from GM plants to conventional plants
(and vice versa), is a function of the outcrossing rate, the relative frequency of pollen
containing 0, 1, or 2 transgenes, the proportion of male sterile plants and the pollen
dispersal function. Given the classification of the population into conventional (C) and
GM (G) plants, we are unable to estimate gene frequency in the population so that we
will consider introgression as a function of outcrossing rate, pollen dispersal, and the
relative frequency of GM and conventional pollen. However, even here the estimation of
GM versus conventional pollen frequency may be inadequate.



7.2 Formulation of the domain knowledge 69

Setting this aside, the proportion of off-spring falling into the same GM/C class as
the mother is given by 1 − (outcrossing · pollenProportion) where the reduction in the
proportion of plants producing similar offspring is maximally the outcrossing rate. If all
non-self pollen is GM, then pollen proportion = 1, and if all non-self pollen is conventional,
then pollen proportion = 0. The difficulty lies in estimating the pollen proportion, i.e.,
the relative frequency of GM and conventional pollen.

The level of complexity precludes direct derivation of the population level introgression
rates from the IBM parameters. Therefore, we assume that the proportion of seeds
produced by a conventional plant that are GM, p, is dependent on the outcrossing rate
and the fraction of pollen that is GM, i.e.,

p = outcrossingRate · pollenFractionGM . (7.12)

We then assume that the GM pollen fraction is proportional to the fraction of GM seeds
in the population,

pollenFractionGM ∝ YG t + SG t

YC t + YG t + SC t + SG t

. (7.13)

The precise nature of this relationship is dependent on the frequency of heterozygosity
in the population, the frequency of male sterile genotypes, and the spatial heterogeneity
in genotype distribution. The later point may be disregarded by assuming that pollen
dispersal is high relative to the scale of heterogeneity. Though we can not readily disregard
the effect of genotype frequency, we may assume that it is constant between years and
simulations. This allows the GM pollen proportion to be calculated by

pollenFractionGM = const · YG t + SG t

YC t + YG t + SC t + SG t

. (7.14)

The const is to be estimated by ED. This results in

p = const · outcrossingRate · YG t + SG t

YC t + YG t + SC t + SG t

. (7.15)

From the derivation of p, it is easy to obtain the proportion of seeds produced by a
conventional plant that are themselves conventional as this is simply the complement of
p, 1− p.

The proportion of conventional seeds produced by GM plants can be determined in a
similar way,

q = outcrossingRate · pollenFractionCon, (7.16)

where

pollenFractionCon ∝ YC t + SC t

YC t + YG t + SC t + SG t

. (7.17)

In the same way we calculate q as

pollenFractionCon = const · YC t + SC t

YC t + YG t + SC t + SG t

, (7.18)
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which results in

q = const · outcrossingRate · YC t + SC t

YC t + YG t + SC t + SG t

. (7.19)

Finally, the proportion of GM seeds produced by GM plants is the complement of q,
1− q.

Annual per capita plant mortality rate (m)

There are several components to plant mortality, which are considered independently
before being combined in an estimate of annual per capita plant mortality.

Failed emergence (me)

Failure of the plant to emerge is depth dependent and so varies between population stages
(yield and seedbank). The failed emergence for each population stage can be represented
with the following relations:

meY = 1− e−emerge·0, (7.20)

meS = 1− e−emerge·9.5. (7.21)

emerge is an IBM parameter, taken from the IBM parameter input file.
Now 1− e−emerge·0 = 0, so we do not take it into account in the equations of the GM

or conventional seedrain (yield) population (YG and YC). e−emerge·9.5 is constant across
years, assuming an even distribution of seeds in the seedbank with respect to depth and
across simulations, given only minor changes in emerge. Therefore, we approximate it
with a constant in the background knowledge for the GM and conventional seedbank
population.

Seedling mortality (ms)

In the IBM, merged plants experience biomass dependent mortality which follows a sig-
moidal decline with increasing biomass:

mortality =
pdimMax

1 + epdimShape(biomass−pdimMassThresh)
. (7.22)

In the above equation, pdimMax is the maximum density independent mortality (this
occurs at 0 grammes), pdimShape sets the steepness of the transition from max to min
mortality and can have values from 0.75 to 1.25, while pdimMassThresh is the biomass
at which the density independent mortality of seedlings is half pdimMax .

Representing this with a step function we have:

mortality =

{
pdimMax , if biomass < pdimMassThresh

0, if biomass ≥ pdimMassThresh.
(7.23)
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From this daily per capita mortality rate, we can derive an annual rate by accumulating
its effect over n, the number of days taken for plant biomass to reach pdimMassThresh,
i.e.,

ms = 1− (1− pdimMax )n. (7.24)

In the absence of interactions between individual plants, the time taken to reach
pdimMassThresh is dependent on the growth of the plants as follows:

n = − ln(1− pdimMassThresh/maxBiomass) ·maxBiomass

rcpdimMassThresh2/3
, (7.25)

where r is the initial maximum growth rate, c the scaling between area and plant mass
and maxBiomass is the maximum plant biomass. All the parameters mentioned so far
are parameters from the IBM.

This is further modified where plants overlap with the daily growth increment being
inversely related to the degree of overlap, as overlap reduces the effective resource capture
area of a plant. However, due to asymmetric competition between the plants, the precise
relationship is dependent on the relative size of the interacting plants: Although the
degree of overlap is in some way proportional to the average plant density, it is difficult
to see how the average overlap, its influence on growth rate and ultimately how the time
taken to reach pdimMassThresh might be derived directly from the IBM. To accommodate
this, we simply assume that the time taken to reach pdimMassThresh is constant across
years and simulations and allow it to be estimated from the data by ED, i.e., we use the
following equation in our context free grammar:

ms = 1− (1− pdimMax )const . (7.26)

Density dependent mortality (md)

The probability of individual plant mortality resulting from density dependent effects is
given in the IBM by pddmMax

1+e−pddmShape(density−pddmThresh) , where pddmMax is the maximum density
dependent mortality which plants tend to as density increases, pddmShape sets the steep-
ness of the transition from max to min mortality and pddmThresh is the density at which
half of the maximum mortality is achieved. In principle, the daily mortality rate can be
integrated over the year to give an annual rate, i.e.,

md = 1−
∏
i

[1− pddmMax

1 + e−pddmShape(densityi−pddmThresh)
], (7.27)

for the i days from germination to the onset of flowering. Here density is given as 1 -
Effective Resource Capture Area of the plant as a proportion of the plants’ total resource
capture area with the reduction in effective area resulting from overlap with other plants.
On any given day the average population density can be estimated by the total plant
resource capture area divided by the ground area, where total plant resource capture area
can be estimated by the product of the number of plants per unit area and their average
resource capture area. Assuming we can derive an estimate of the average density for the
n days over which density dependent mortality is experienced, then



72 7. Explanatory models of oilseed rape population dynamics

md = 1− [1− pddmMax

1 + e−pddmShape(density−pddmThresh)
]n, (7.28)

where n is the duration over which density dependent mortality is assumed to act. How-
ever, deriving the density vector and the subsequent estimation of its expectation is a
challenge, as both plant number and population resource capture area are nonlinear func-
tions of density.

To simplify this process, we may assume that the average density is a function of the
number of individuals per unit area, i.e.

density = YC t + YG t + SC t + SG t. (7.29)

Finally, we can set n = timeToFlower , i.e., the number of days from germination to
the onset of flowering. Despite this last step, the function relating density dependent
mortality in the IBM to the population based model (PBM) is overly complex. A radical
simplification is to assume that density dependent mortality is, conditional on density,
constant across year and simulation. Given this, mortality may be related to density by
one of a number of simple functional forms, e.g.

md = 1− e−const ·density . (7.30)

Cultivation mortality (mc)

The mortality effect of cultivation acts solely on the seed rain (YC, YG). The proportion of
germinable seeds at this time is given by (1−dharv)nharv , where dharv is the daily dormancy
rate that follows the triggering of a germination by harvest, while nharv is the duration
in days from harvest to cultivation. Of this proportion of germinable seeds, only those
seeds that have accrued sufficient hydro-thermal time and reached their hydro-thermal
time threshold will have germinated. Though the IBM allows for individual variability
in the hydro-thermal time threshold we can simplify things by assuming all seeds possess
the same threshold. In this case cultivation mortality is given by

mc =

{
(1− dharv)nharv , if days to hydrothermal time threshold > nharv

0, if days to hydrothermal time threshold < nharv .
(7.31)

Now hydrothermal time accrues at the daily rate of 1
2
[(ψ − ψbase)(T − Tbase)], where

ψ is the soil water potential, ψbase is the base soil water potential below which the seed
does not imbibe water, T is the soil temperature and Tbase the base soil temperature
below which no development takes place. With these, the number of days to achieving
the hydrothermal time threshold (nHTTt) can be obtained,

nHTTt =
HTTt

1
2
[(ψ − ψbase)(T − Tbase)]

. (7.32)

Setting aside the preceding points, we can assume that a constant proportion close to
1 of the seeds that have germinated at the time of cultivation are killed. As the annual
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germination rate for seed rain seeds (gy) is already determined, cultivation mortality may
applied directly as a constant, i.e.

mc = const . (7.33)

Herbicide mortality (mpre and mpost)

Pre-emergence herbicides act by killing a proportion (preherbMort) of seedlings as they
emerge from the seedbank during the effective life-span of the herbicide application
(preherbDuration). Consequently, the cumulative mortality rate that population is ex-
posed to is given by

mpre = 1− (1− preherbMort)preherbDuration . (7.34)

Post-emergence herbicides are only active on the day of application, killing a constant
proportion (postherbMort) of the emerged plants so that the cumulative effect of number
of applications (postherbFreq) is given by

mpost = 1− (1− postherbMort)postherbFreq . (7.35)

Combined plant mortality

After defining all the components of the annual per capita plant mortality, we can define
the plant mortality as a function of them. As we are interested in establishing the relative
importance of the various sources of mortality on the total plant mortality, we define it
as a linear combination of all mortality components:

m = const0 + const1me + const2ms +

+const3md + const4mc + const5mpre + const6mpost , (7.36)

where the constants are to be estimated by equation discovery. It should be noted that
the failed emergence mortality (me) acts only on seedbank seeds (SC and SG), while
cultivation mortality (mc) acts only on seed rain seeds (YC and YG) and thus only
appears in those equations.

Seed production (f)

Seed production is a function of plant biomass, which in turn is a function of density
through the growth function of the IBM. Maximum seed production is given by 100 ·
biomass at the time of flowering, but is dependent on the plant density seed production.
Hence,

f =
100 ·maxBiomass

econst ·density
, (7.37)

where maxBiomass is a parameter from the IBM and presents the maximum biomass a
plant can reach and density is defined in the previous section.
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Alternative functions can be considered that meet the basic requirements of f , namely
that f ∈ [0, 100 ·maxBiomass ] and f ∝ density−1 with the full range of functional forms
being provided by

f = 100 ·maxBiomass − const · density (7.38)

and

f = 100 ·maxBiomass − econst ·density . (7.39)

Table 7.2: The grammar used to model the GM seedbank in year t + 1 as a function of the
GM seed rain (yield), seedbank and sown seeds in year t using difference equations.

GMseedbankNEXT → S · [(1−Gy) ·R ·YG + (1−Gs) · SG+
+(1−Gc) · CG ];

Gy → HarvCultDelay
const ;

Gy → const ;

HarvCultDelay → variable cultDelay ;

Gs → const · (1−Dcult)const ;
Gs → const ;

Dcult → DDM
DDF · const ;

Dcult → DDM · 0.2−DDF
0.2 ;

DDM → variable dormDepthMax ;
DDF → variable dormDepthFifty ;

Gc → 1;

S → (1−DR)365;
S → (1−DR)const ;
S → const ;

DR → variable deathRate;

R→ variable seedLoss;

YG → variable gmYield ;
SG → variable gmSeedbank

CG → variable gmSownSeeds;

7.3 Machine learning setup

Having derived all the equations needed to model the population dynamics of oilseed
rape seeds, we coded this knowledge into four context free grammars, one for each of the
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population stages modelled (SG, SC, YG, YC). The grammars are presented below.
In Table 7.2, the grammar for modelling the dynamics of the GM seedbank is pre-

sented. GMseedbankNEXT is the number of GM individuals (seeds) in the seedbank in
year t + 1, while YG , SG and CG are the numbers of GM individuals in different life
states in year t. The influence of the life-history parameters is described in the previous
section.

Table 7.3: The grammar used to model the conventional seedbank in year t+1 as a function of
the conventional seed rain (yield), seedbank and sown seeds in year t using difference equations.

ConSeedbankNEXT → S · [(1−Gy) ·R ·YC + (1−Gs) · SC +
+(1−Gc) · CC ];

Gy → HarvCultDelay
const ;

Gy → const ;

HarvCultDelay → variable cultDelay ;

Gs → const · (1−Dcult)const ;
Gs → const ;

Dcult → DDM
DDF · const ;

Dcult → DDM · 0.2−DDF
0.2 ;

DDM → variable dormDepthMax ;
DDF → variable dormDepthFifty ;

Gc → 1;

S → (1−DR)365;
S → (1−DR)const ;
S → const ;

DR → variable deathRate;

R→ variable seedLoss;

YC → variable conYield ;
SC → variable conSeedbank ;

CC → variable conSownSeeds;

Table 7.3 presents the grammar for modelling the conventional seedbank dynamics.
ConSeedbankNEXT is the number of conventional individuals (seeds) in the seedbank in
year t+1, while YC , SC and CC are the numbers of conventional individuals in different
life states in year t.

The two grammars for GM and conventional seedbank are very similar. The only
differences are in the top line and in the bottom three lines. These refer to the different
stages of GM and conventional crops, respectively.

The grammar modelling the GM seed rain dynamics is presented in Table 7.4.
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Table 7.4: The grammar used to model the GM seed rain in year t + 1 as a function of
the conventional seed rain (yield), seedbank and sown seeds, as well as GM seed rain (yield),
seedbank and sown seeds in year t.

GMyieldNEXT → F · (1−My) · [P ·Gy ·R · Y C + (1−Q) ·Gy ·R · Y G+
+P ·Gs · SC + (1−Q) ·Gs · SG+
+P ·Gc · CC + (1−Q) ·Gc · CG ];

F → 100·BM
econst·Dens ; Gs → const · (1−Dcult)const ;

F → 100 · BM − const ·Dens; Gs → const ;
F → 100 · BM − econst·Dens ;
F → const ; Dcult → DDM

DDF · const ;
Dcult → DDM · 0.2−DDF

0.2 ;
BM → variable maxBiomass;

DDM → variable dormDepthMax ;
P → const ·OC · PfP ; DDF → variable dormDepthFifty ;
P → const ;

Gc → 1;
Q→ const ·OC · PfQ ;
Q→ const ; S → (1−DR)365;

S → (1−DR)const ;
OC → variable outcrossingRate; S → const ;
PfP → variable pollenFractionGM ;
PfQ → variable pollenFractionCon;

My → const + const ·Mseed + const ·Md+
+const ·Mc + const ·Mpre + const ·Mpost ;

My → const ;

Mseed → 1− (1− PDIM )const ; Gy → HarvCultDelay
const ;

Md → 1− e−const·Dens ; Gy → const ;
Mc → const ;
Mpre → 1− (1− PreM )PreDur ; HarvCultDelay → variable cultDelay ;
Mpost → 1− (1− PostM )HerbF ; DR → variable deathRate;

R→ variable seedLoss;
PDIM → variable pdimMax ; YC → variable conYield ;
Dens → variable density ; YG → variable gmYield ;
PreM → variable preherbMort ; SC → variable conSeedbank ;
PreDur → variable preherbDuration; SG → variable gmSeedbank ;
PostM → variable postherbMort ; CC → variable conSownSeeds;
HerbF → variable postherbFreq ; CG → variable gmSownSeeds;

GMyieldNEXT is the number of GM seed rain individuals in year t+ 1, while YC , YG ,
SC , SG , CG and CC are the numbers of individuals in all other life states in year t.

Finally, Table 7.5 presents the grammar for modelling the dynamics of conventional
seed rain. Here ConYieldNEXT is the number of conventional seed rain individuals in
year t + 1, while YC , YG , SC , SG , CG and CC are the numbers of individuals in all
other life states in year t.

The grammars for the GM and conventional yield are almost identical. They differ
in the first production for the starting symbol. In these grammars, the occurrences of
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Table 7.5: The grammar used to model the conventional seed rain in year t+ 1 as a function
of the conventional seed rain (yield), seedbank and sown seeds, as well as GM seed rain (yield),
seedbank and sown seeds in year t.

ConYieldNEXT → F · (1−My) · [(1− P ) ·Gy ·R ·YC +Q ·Gy ·R ·YG+
+(1− P ) ·Gs · SC +Q ·Gs · SG+
+(1− P ) ·Gc · CC +Q ·Gc · CG ;

F → 100·BM
econst·Dens ; Gs → const · (1−Dcult)const ;

F → 100 · BM − const ·Dens; Gs → const ;
F → 100 · BM − econst·Dens ;
F → const ; Dcult → DDM

DDF · const ;
Dcult → DDM · 0.2−DDF

0.2 ;
BM → variable maxBiomass;

DDM → variable dormDepthMax ;
P → const ·OC · PfP ; DDF → variable dormDepthFifty ;
P → const ;

Gc → 1;
Q→ const ·OC · PfQ ;
Q→ const ; S → (1−DR)365;

S → (1−DR)const ;
OC → variable outcrossingRate; S → const ;
PfP → variable pollenFractionGM ;
PfQ → variable pollenFractionCon;

My → const + const ·Mseed + const ·Md+
+const ·Mc + const ·Mpre + const ·Mpost ;

My → const ;

Mseed → 1− (1− PDIM )const ; Gy → HarvCultDelay
const ;

Md → 1− e−const·Dens ; Gy → const ;
Mc → const ;
Mpre → 1− (1− PreM )PreDur ; HarvCultDelay → variable cultDelay ;
Mpost → 1− (1− PostM )HerbF ; DR → variable deathRate;

R→ variable seedLoss;
PDIM → variable pdimMax ; YC → variable conYield ;
Dens → variable density ; YG → variable gmYield ;
PreM → variable preherbMort ; SC → variable conSeedbank ;
PreDur → variable preherbDuration; SG → variable gmSeedbank ;
PostM → variable postherbMort ; CC → variable conSownSeeds;
HerbF → variable postherbFreq ; CG → variable gmSownSeeds;

P/(1− P ) and Q/(1−Q) are interchanged.

After defining the grammars, we employed the equation discovery system Lagramge
(Todorovski et al., 1998; Todorovski and Džeroski, 2007) for obtaining equation-based
models of oilseed rape population dynamics. Besides the grammars, Lagramge also
takes into account measured data.
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7.4 Experiments and results

Using the 4 different grammars explained in the previous section, we generated equations
for each of the stages of individuals: GM seedbank, conventional seedbank, GM seed rain
(yield), and conventional seed rain (Ivanovska et al., 2009). Because of the complexity
of the grammars and thus the computational complexity of the equation discovery ex-
periments (for instance, it took about one week to obtain results for the GM seed rain
grammar), we run the experiments only on training data. Validation of the models with
cross-validation was very time-consuming and hard to conduct. The Lagramge heuris-
tics used for inducing the models was MSE (see Section 6.4.1).

Table 7.6 presents the best equations that describe the population dynamics of GM and
conventional seedbank and seed rain. The equations describing the oilseed rape seed rain
population (ConYieldNEXT and GMyieldNEXT) are very complex due to the extensive
grammar we are using to generate them. More specifically, the production for My, which
only allows for a drastically simple (const) and a very complex form of My is causing the
equations to be complex. The equations describing the oilseed rape seedbank population
are simpler and reveal some interesting dependencies between the life-history parameters
and the number of GM (or conventional) seeds in the seedbank. The interpretation of the
obtained equations was done by a domain expert.

From the equations describing the GM (or conventional) seedbank population dynam-
ics, we can see that the GM (or conventional) seedbank in year t+ 1 depends on the GM
(or conventional, respectively) seed rain (yield), seeds in the seedbank and sown seeds in
year t. The structure of both equations is consistent with the domain expert knowledge
and is very similar, differing only in the coefficients of the equations.

The survival rate of the seeds in the seedbank is presented by the form (1−deathRate)n,
where deathRate is the daily mortality probability for seeds in the seedbank. Consequently,
the proportion of seeds surviving over a year is given by S = (1− deathRate)365. 365 can
be replaced by any other constant to give flexibility to the time frame we are taking
into account, so the previous expression is transformed into S = (1− deathRate)365·const ,
where const ∈ [0, 1]. In this case Lagramge fitted the constant to the data and chose the
values 164.31 and 117.67 for the GM and conventional seedbank survival rate respectively.
These estimates are substantially below the 365 that was expected. This means that the
mortality of seeds in the seedbank is less than expected and this could be because the seeds
spend fewer days in the seedbank than anticipated. Reconsidering this point, it could be
that the seeds from different components of the population spend differing amounts of
time in the seedbank. E.g., seeds already in the seedbank can spend up to 365 days in
the seedbank, but seeds that are sown or shed at harvest will spend less than 365 days in
the seedbank. The derivation described in Section 7.2 does not account for this.

The parameters that determine the proportion of the seeds in the seedbank, coming
from the seed rain or from the sown seeds, that become dormant (do not germinate:
(1 − Gy(s,c)) are set to constants. From the results, we estimate Gy, the germination
rate of seeds from derived from the seed rain, which is around 0.85. The estimates
for Gs (germination rate of seeds from the seedbank) are 0.18 and -0.09. The -0.09
does not make sense but we could take it that Gs should be close to zero. Finally, Gc

is estimated as 0.19 for sown GM seed or 1 for conventional seed. The latter implies
complete germination of the sown conventional seed, which is reasonable. The parameter
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describing the germination of GM sown seeds is very low (19%), but the reason for that
is in the simulation seeting. Namely, the simulations start with a GM contamination
seedbank and then only conventional crops are sown in the following 10 years.

Table 7.6: The four best equations describing the population dynamics of GM and conventional
seedbank and seed rain seeds, obtained with Lagramge.

ConYieldNEXT = (100 ·maxBiomass − 0.45 · density)·

·
[
0.72− 0.08 · (1− (1− pdimMax)0.1)− 0.55 · (1− e−0.15·density )−

−0.17 · (1− (1− preherbMort)preherbDuration ) + 0.0002 · (1− (1− postherbMort)postherbFreq )
]
·

·
[
0.002 · seedLoss · conYield− 0.02 · cultDelay

0.55
· seedLoss · gmYield+

+2.1 · conSeedbank + 1.38 · gmSeedbank−

−1.44 · conSownSeeds + 0.1 · gmSownSeeds
]

GMyieldNEXT = (100 ·maxBiomass − 0.4 · density)·

·
[
0.73 + 0.09 · (1− (1− pdimMax)0.8)− 0.4 · (1− e−0.001·density )−

−0.28 · (1− (1− preherbMort)preherbDuration )− 0.05 · (1− (1− postherbMort)postherbFreq )
]
·

·
[
0.03 · outcrossingRate · pollenFractionGM · seedLoss · conYield−
−(0.002 + 0.01 · outcrossingRate · pollenFractionCon) · seedLoss · gmYield+

+0.16 · outcrossingRate · pollenFractionGM · conSeedbank+

+(0.02− 0.2 · outcrossingRate · pollenFractionCon) · gmSeedbank+

+0.001 · conSownSeeds + 0.9 · gmSownSeeds
]

ConSeedbankNEXT = (1− deathRate)117.67 ·
[
0.16 · seedLoss · conYield+

+0.82 · conSeedbank
]

GMseedbankNEXT = (1− deathRate)164.31 ·
[
0.13 · seedLoss · gmYield+

+1.09 · gmSeedbank + 0.81 · gmSownSeeds
]

Because of the high complexity, the obtained models were checked for accuracy only on
training data and no cross-validation was performed. The predictive performance (reMSE
and r) of the obtained models is given in Table 7.7.

Table 7.7: The accuracy (on the training data) of the four best equation-based models of
oilseed rape population dynamics obtained with Lagramge.

SC SG YC YG
reMSE 0.74 0.70 1.05 0.77
r 0.51 0.55 0.17 0.48

Even on training data, their predictive performance is very low. The best model, with
highest correlation coefficient (0.30) and lowest reMSE (0.70), is SG (GMseedbankNEXT ),
while the worst model, with correlation coefficient 0.03 and reMSE 1.05 is YC
(ConYieldNEXT ). The obtained models are thus not very suitable for accurate modelling
of the population dynamics of oilseed rape seeds.

To check whether the low predictive performance of the models is a result of the
experimental settings of the equation discovery experiments or the structure of the output
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data of the individual-based simulation model, we performed several more experiments,
using linear regression and model trees. A comparison of the predictive performance of
all three methods applied to the data from the individual-based simulation model is given
in Table 7.8.

Table 7.8: Comparison of the accuracies (on the training data) of the methods of equation
discovery (ED), linear regression (LR) and model trees (MT) on the output from the IBM-OSR.

SC SG YC YG

ED
reMSE 0.74 0.70 1.05 0.77
r 0.51 0.55 0.17 0.48

LR
reMSE 0.87 0.84 0.95 0.98
r 0.49 0.54 0.32 0.22

MT
reMSE 0.83 0.81 0.86 0.94
r 0.55 0.58 0.50 0.34

When we compare the accuracies of the models obtained with the three machine
learning methods, we can see that in terms of reMSE, the equation-based models of
oilseed rape population dynamics perform the best, i.e., they have the lowest reMSE.
In terms of correlation coefficient, linear regression and model trees perform better than
equation discovery in the SG and YC cases, while equation discovery performs better in
the SC and YG cases. However, all models had in general low accuracies and cannot be
used for prediction or modelling the population dynamics of oilseed rape.

We further investigated the structure of the output data from the IBM-OSR model
(seedbank and seeds on plants) and examined the statistical distribution of the results of
the model runs. The frequency histograms of the results of the model runs for each of the
cases, YC, YG, SC, and SG, are presented in Figures 7.1 and 7.2. For each of the cases
(YC, YG, SC, and SG), the histograms show that more than 90% of the examples from
the simulation model outputs have values 0, i.e., the number of conventional or GM seeds
in the seedbank or seed rain is 0. The many zeros indicate that many scenarios from the
IBM-OSR model lead to extinction, i.e., the persistence of oilseed rape seeds is very low.

From the equation discovery analyses and the statistical analyses of the simulation
model output data, we can conclude that the problem causing the low performance of
the different machine learning methods applied on the output from the IBM-OSR model
are most likely the unbalanced data. Re-evaluating the IBM-OSR model input parame-
ters may prove to be useful to check the accuracy of the output scenarios. Namely, the
IBM-OSR is a new model and its parameters and output have not yet been validated and
verified. Also, other machine learning methods that deal with unbalanced data can be ap-
plied. However, this is a first approach of modelling the oilseed rare population dynamics
with equation discovery from individual-based data, hence the obtained results are not
completely unexpected. There is still a strong need for improvements and optimizations
of the IBM-OSR simulation model, as well as of the background knowledge used in the
equation discovery experiments, in order to obtain useful models from the simulations by
using machine learning.
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Figure 7.1: Frequency histograms for the conventional and GM seed rain output from the
IBM-OSR model
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Figure 7.2: Frequency histograms for the conventional and GM seedbank output from the
IBM-OSR model
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7.5 Summary

In this chapter, we presented an individual-based model, which simulates the dynamics
of transgenes within oilseed rape populations. We also presented a new approach of
modelling the population dynamics of oilseed rape seeds from the output of this individual-
based model. We analyzed the output of the IBM model by using equation discovery.

We used background knowledge encoded in the form of a grammar and applied the
equation discovery system Lagramge to build equation-based models. We carried out
four different equation discovery experiments, one for each combination of the stage the
OSR population can be found in (yield/seed rain and seedbank).

The structure of the produced models, although consistent with domain expertise, is
complex and needs further modification and improvements to reach the needed level of
simplicity for interpretation.

This is the first attempt to analyze outputs from an individual-based simulation model
with machine learning to generate population level models of the dynamics of oilseed rape.
The generated models by equation discovery have low accuracy (in terms of correlation
coefficients). We also carried out some experiments using linear regression and model
trees: The models generated were in general worse than the equation-based models. Also,
we analyzed the statistical distribution of the IBM-OSR output data and concluded that
it is highly unbalanced, where most of the output scenarios of oilseed rape persistence
lead to extinction. This may also be the reason for the lower accuracy of the machine
learning models. Therefore, we suspect that the low accuracy of the models found by
equation discovery is not likely due to the experimental setting, but rather the quality of
the output data from the simulation model.

Further work in improving the accuracy of the models should first include improving
and validating the IBM-OSR model. Also, re-evaluating the input parameters of the
model in order to get outputs of higher oilseed rape persistence would be very useful.
If higher persistence cannot be achieved, then reformulating the problem to take into
account smaller time window than 10 years, or the decline rate of oilseed rape seeds
instead of their actual annual numbers, can be a possible solution. Then new simulations
with diverse and representative examples of the OSR population should be generated.
Finally, equation discovery should be applied on top of these, generating better and more
useful models.

Another direction for further work is reconsidering the background knowledge used
in the equation-discovery process. Some of the complexity of the generated equations is
due to the complexity (absence of simple alternatives) in the background knowledge. In
future work, we should provide a range of complexities of the equations included in the
background knowledge (from letting everything be a constant, to having more complex
functional forms) from which Lagramge can choose.

Finally, the use of equation discovery is a new way of analyzing outputs of individual-
based models and building population dynamics models of oilseed rape. Equation discov-
ery is a powerful tool for modeling ecological and environmental systems and combined
with background knowledge and domain expert involvement has the potential to produce
very good models. We expect that it would be applicable to the analysis of other types
of ecological individual-based models.
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Chapter 8

Generating ecological knowledge by
analyzing simulation outputs:
A methodology

The case studies described in Chapters 5, 6, and 7, follow the general methodology that we
describe in more detail in this section. With this methodology we can generate ecological
knowledge by analyzing the simulation outputs of complex ecological models. We first list
the major steps in the methodology, then describe each of them in some detail. At the
end of this chapter, we contrast our methodology to related work on analyzing simulation
outputs in ecology and elsewhere.

8.1 The methodology

The methodology we propose consists of the following steps:

1. Select an appropriate simulation model of the system of interest

2. Select a set of inputs for the simulation model and generate simulation outputs (a
representative sample for the system under study)

3. Define background knowledge for the problem of interest

4. Select an appropriate machine learning technique, which combines the background
knowledge and data, and apply it to generate models of the problem of interest

5. Interpret the models with a help of a domain expert

Each of these steps is described in more detail in the following sections.

8.2 Simulation model

In many situations, it is not possible to obtain empirical data for modelling the problem
of interest. The reasons for this might be that the process of collecting the data is very
slow and/or expensive, or even impossible. In these situations, simulation models play an

85
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important role in approximating the scenarios from real life we are interested in. They
produce output data, which describe the real-life processes as closely as possible.

There exist different types of simulation models. In the area of ecology we recognize
three major types, according to the model contents and the aspects that are captured:
habitat suitability models, population dynamics, and individual-based models (see Chap-
ter 2). According to the modelling formalism, there exist many different types of simu-
lation models, such as discrete event simulation models, continuous dynamic simulation
models, distributed models, etc. The choice of a simulation model depends on the real-life
system under study and the tasks we are trying to model and understand.

In this thesis, we are dealing with three different ecological simulation models, simu-
lating the co-existence between GM and conventional crops. Two of them are population-
based and one is an individual-based model. Although the methodology we are proposing
takes into account ecological simulation models, it can be used with simulation models of
other types of systems, e.g., economic or social.

There are several issues that arise when we talk about simulation models. The first
issue is whether a simulation model already exists for the task at hand, or the need for a
simulation model appears with the need of solving the task. When the simulation model
already exists, the next and very important issue that appears is the accuracy/correctness
of the model, i.e., how good the model is in approximating the behavior of the studied
system. Before the simulation model is put into use, it should be verified and validated.

Verification of the simulation model takes place before validation and provides objec-
tive evidence that the output of the simulation model meets all the needed requirements,
is consistent, complete, and correct for the task it is intended for. Verification answers the
question: ”Was the simulation model built right?”. Validation of the simulation model
can be done during, or at the end of the development of the model. It checks whether the
model confirms the needs and its intended requirements. Validation answers the question:
”Was the right model built for the problem at hand?”. Testing the simulation model for
correctness is a serious issue and if not done correctly (or at all), can greatly compromise
the results of further analyses and conclusions carried out from its outputs.

To illustrate these issues, consider the MAPOD model (Chapter 6). While it takes into
account wind, it only does so in a very coarse manner (upwind, downwind, orthogonal).
This limits the usefulness of the simulation outputs for building co-existence rules: The
simulated data were complemented by field experiments, where more detailed information
on wind was available, to obtain better co-existence rules.

Also, consider the analyses made on the output from the IBM-OSR simulation model
(see Chapter 7), where we used different machine learning methods to obtain population
dynamics models of oilseed rape population. Different machine learning methods were
tried and the accuracy of all obtained models was similar and not very high, which leads
us to the conclusion that the reason for that are not the machine learning methods, but the
data themselves, or rather the model from which the simulation data were generated: This
is not surprising given that the IBM-OSR model lacks proper verification and validation.

In the MAPOD model, gene-flow between two parallel fields is considered. This is
different from the field experiments, where gene-flow from a central field to points around
it was studied. Simulations from MAPOD are thus not immediately representative of or
compatible with data from the field experiments.

These issues related to the development, quality and purpose of the simulation models,
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emphasize the complexity of the simulation models themselves, as well as the analyses
carried out on their outputs.

8.3 Simulation output data

We next run the model to produce a set of simulation outputs. Having selected a simula-
tion model, the next task we face is to select appropriate inputs for it. The input/output
pairs should correspond to a representative set of situations/behaviors of the studied
system.

To derive ecological knowledge applicable across a range of situations, a representative
set of such situations should be taken as input to the machine learning process. Special
care should thus be exercised when selecting the simulation input/output pairs.

Unfortunately, in many cases, the simulations are collected for other purposes and not
necessarily for the task we are dealing with. This significantly reduces the possible analysis
and complicates the analyses of the simulation outputs. In cases like this, much more
effort should be put in defining the problem and background knowledge, and choosing
and describing the simulated data.

For example, in the analyses described in this thesis, the simulations of the simulation
models GeneSys and MAPOD were not collected for the purposes of our study, but for
other purposes. Therefore, although the machine learning analyses of the outputs of these
models were successful, there was an obvious need for more and different kinds of simula-
tion outputs to further improve the obtained machine learning models. The simulations
produced by the GeneSys model (Chapter 5), were originally produced with the aim to
perform a sensitivity analysis of the GeneSys model. In the setting considered, the sim-
ulations were designed to predict the adventitious presence of GM material in the central
field of a large field region. In our study, the fixed field plan and target field prevented
us from fully exploiting the advantages of the relational machine learning techniques and
obtaining more accurate models. The simulations of the IBM-OSR (Chapter 7) model
were partially created for the problem we were trying to model: However, the IBM-OSR
model lacks proper verification and validation.

The problem of the purpose of the simulations becomes a problem of creating a rep-
resentative set of simulations, i.e., choosing the right inputs to the simulation model, for
which the model will generate outputs, that will correctly describe the population we
are trying to model. So the question is how to design a set of simulations so that the
input/output space is right for the needed analyses/modelling task? This can be done
in different ways and depends on the type of simulations we wish to generate and the
scenarios we want to simulate.

One possibility is to generate batches of simulations at a time, for each of the simulated
scenarios. Another, novel approach, which is interleaved with machine learning, would be
to generate simulations in an incremental way, by using active learning (Cohn et al., 1994,
1996; Luo et al., 2005). Using this approach, every new simulation is generated/selected,
based on the past simulations and responses, in order to select the most informative set
of parameters for the new simulation. This approach can increase the efficiency of the
simulation models and the quality of the output simulations.

Finally, it is also possible to combine empirical and simulated data in cases where there
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are some empirical data, but they are not complete or sufficient. This can be done if the
structure of the data is the same for the simulated, as well as for the empirical data. An
example of such situation is described in Chapter 6, where we had similar field settings
in the field experiments and in the simulation model. However, here we did not combine
simulated and empirical data, because the measured and simulated variables were not of
the same type and structure.

8.4 Background knowledge

Another important step in our methodology is the inclusion of background (domain)
knowledge in the analysis process, which, combined with machine learning methods, helps
improve the quality of the induced models (for more details see Chapter 4). Pazzani
and Kibler (1992) show that the use of background knowledge improves the predictive
performance of induced models on test examples unseen in the induction phase.

When it comes to background knowledge, it naturally raises the question where does
it come from, and in what phase of the analysis process do we need it. Usually, the
background knowledge is defined by domain experts, since the need for machine learning
analyses is triggered by a problem in a certain area of expertise of the domain expert.
Implicitly, the background knowledge is already included and generated during the de-
velopment of the simulation models, through planing and defining the simulations, the
processes they simulate, and the constraints and relations among the input and output
variables, with reference to the existing problem we are trying to solve.

In the methodology we are proposing, we include the background knowledge in the
machine learning analysis part, which guides the analyses and improves the quality of
the obtained models. Most machine learning methods do not include background knowl-
edge explicitly, but it is usually implicitly included in the phases that precede or follow
the induction process, i.e., the data preprocessing, or in the model interpretation phase.
Background knowledge is explicitly included in the machine learning methods developed
within the area of inductive logic programming (ILP) (Lavrač and Džeroski, 1994) and
equation discovery (Todorovski and Džeroski, 2007).

The background knowledge in the ILP methods defines the concepts that can be used in
the induced theories, but it does not specify how to combine them into proper programs or
theories. In equation discovery, the background knowledge is integrated in the induction
process through the use of declarative bias, which refers to any kind of preference or
mechanism used by the induction algorithm to choose among candidate hypotheses.

In this thesis, we presented the advantage of using background knowledge in machine
learning analyses in studying the co-existence between GM and conventional crops in
different field scenarios. However, there are many ways of defining and presenting the
domain knowledge, which, together with the output data, greatly influence the outcome
of the machine learning analyses.

8.5 Machine learning methods

There exist numerous machine learning methods, suitable for analysis and modelling of
wide variety of problems in different domains. This methodology introduces machine
learning methods that include background knowledge. In this thesis, we presented and
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used relational classification trees with the relational data mining system Tilde, and
equation discovery with the equation discovery system Lagramge (see Section 4).

Relational classification trees are handy when we have data, which are not stored in
a single table attribute-value format, but are scattered over multiple related tables. The
relational approach takes into account the structure of the original data by providing func-
tionalities to navigate relational structure in its original format and generate potentially
new forms of evidence not readily available in a flattened single table. The relational clas-
sification trees have the same structure as propositional classification trees, except that
the tests in the internal nodes are conjunctions of relations, instantiated with variables
and constants and mapped against the examples. This machine learning method uses
background knowledge in the form of relational concepts that can be used in the induced
theories.

Equation discovery also combines data and background knowledge to induce or learn
equation-based models. It finds an equation that relates the system variables and matches
the predictions of the values of the system variables to their measured values. Here, the
background knowledge is presented in a form of context free grammar and specifies the
space of candidate equations for the problem we are trying to model.

Besides these two methods, one can also use inductive process modelling (Bridewell
et al., 2008), which also combines data and background knowledge. Here, the background
knowledge is given in the form of generic processes that specify causal relations among
variables using generalized functional forms, and constraints, such as variable type in-
formation, that determine which processes may relate particular variables. This method
outputs process models that, when given initial values for the modelled variables, explains
the data and accurately predicts unseen data.

Finally, the choice of the machine learning method we use depends on the problem we
are trying to model/solve, the data we have at hand, as well as the type of background
knowledge that is available. A right combination of simulation output data, background
knowledge and machine learning method, can lead to very accurate, powerful and in-
terpretable models, that can be applied in solving complex ecological (or of any other
domain) problems.

8.6 Interpretation of the models

Machine learning analyses are usually carried out to find out relations, dependencies and
explanations about the problem we are working on. Domain experts, especially from the
environmental sciences, such as ecology, biology, medicine, etc., are more interested in
models that have strong descriptive and explanatory power, and are easily interpretable,
than in their technical performance. This methodology proposes machine learning meth-
ods that incorporate domain expert knowledge in the learning process and generate models
that are descriptive and suitable for interpretation by domain experts.

Interpretability and understandability of the induced machine learning models in this
methodology are the main goals and motivation of the analysis process. All the previously
mentioned steps in this methodology, the design of a simulation model, its outputs, the
definition of background knowledge and selecting a machine learning technique, are carried
out with the purpose of understanding the problem we are concerned with.
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The task of interpreting the machine learning models obtained with the analyses of
outputs from simulation models is not easy. It requires joint efforts of the domain experts
and machine learning experts to analyze the structure and content of the obtained machine
learning models. A successful interpretation and understanding of the results of the
machine learning analyses enables easier implementation of the newly obtained knowledge
in solving real-life problems and decision making in the given area.

8.7 Comparison of the methodology with

related work

In this section, we will revisit Section 1.2 and emphasize what sets our work apart from
the related work on analysis of outputs from simulation models.

There have been several attempts of analyzing outputs from simulation models so
far, for which different techniques have been used. In most cases, the main reasons for
the analyses of outputs from simulation models were to speed up the simulation pro-
cess. Neural networks are often used to speed up the simulation process and to improve
the computational efficiency of complex simulation models (Krasnopolsky et al., 2002;
Krasnopolsky and Chevallier, 2003; Krasnopolsky and Fox-Rabinovitz, 2006).

Another approach to analyzing outputs from simulation models is to use statistical
methods. These are mainly used for verification and validation of the simulation models,
or for discovering some simple statistical dependencies among the parameters of the model
(Law and Kelton, 2000; Kleijnen, 1995; Kleijnen and Rubinstein, 1996). Interactive visu-
alization is also used for verifying and understanding of the simulation models (Chertov
et al., 2005).

Unlike neural networks and statistical methods, whose main purpose is mostly speed-
ing up the simulation process or verifying/validating the simulation model, with our
methodology we are able to provide a deeper understanding of the processes simulated in
the simulation models and upscale the knowledge from simulation models to higher level,
which will make it easier to comprehend and apply in everyday ecological problems.

There are also few cases of using machine learning to analyze outputs from simulation
models (Mozetič, 1990; Mladenič et al., 1993). Mozetič (1990) used inductive learning to
generate predictive and diagnostic rules from a qualitative model of the electrical activity
of the heart - KARDIO (Bratko et al., 1990). This is done from a flattened arrhythmia-
ECG knowledge base, where the data are qualitative. In our case of a large region setting
we also use relational learning, but from a more complex relational dataset, which consists
of quantitative data. While KARDIO is set in the medical domain, there are no examples
like this in the area of ecology.

Finally, there are also many attempts of modelling gene-flow in the area of ecology
(and agriculture) (Jarosz et al., 2004; Kuparinen et al., 2007a,b; Goggi et al., 2006).
However, most of them are mechanistic, complex, difficult to construct and use and are
computationally demanding. Also, very few of them are validated against real data and
provide a new and interpretable knowledge and insight into the problem the simulation
models are trying to simulate. The advantage of our methodology is that it uses simulated
data and background knowledge to automatically derive new knowledge and understand-
ing about the problem that we are dealing with. It also allows for the use of real-world
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data: The models built from real-world data by our methodology were both accurate and
understandable.
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Chapter 9

Conclusions

In this chapter we summarize the most important results, present the original contribu-
tions of this dissertation and give directions for further work.

9.1 Summary

In this thesis, we proposed a new methodology for the analysis of outputs of complex
simulation models with machine learning. We described the need for computer simulation
models in the area of ecology, and more specifically agronomy. Simulation models can be
a solution to the problem of lack of real-life experiments and empirical data.

We considered three different simulation models from the area of agronomy, concern-
ing the co-existence issue of GM and conventional crops. The first simulation model
considered was GeneSys (Colbach et al., 2001a,b), which is used to assess the probable
effects of changing farming practices on contamination rates in oilseed rape in a large
region. The second simulation model was MAPOD (Angevin et al., 2008), which predicts
the cross-pollination rates between two maize fields in a spatially explicit agricultural
landscape under varying cropping and climatic conditions. The third simulation model
considered was IBM-OSR (Begg et al., 2006; Ivanovska et al., 2009), a spatially explicit
and individual-based simulation model, designed to help understand how the life-history,
agronomic and environmental processes determine the persistence of genetically modified
oilseed rape.

We used different machine learning techniques, including relational classification trees,
equation discovery, linear regression and model trees, to learn co-existence rules for GM
and conventional crops in a large region, in field-to-field scenarios, as well as build ex-
planatory models of oilseed rape population dynamics, from the outputs of the simulation
models presented above.

9.1.1 Co-existence rules for a large region

In Chapter 5, we used the methodology to learn co-existence rules of GM and conventional
oilseed rape in a large region. For that purpose, we used the relational data mining system
Tilde (Blockeel et al., 2009), which generates relational classification trees. We analyzed
the output of the GeneSys simulation model with Tilde.

93
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The hypothesis we had in this part of the study was that the contamination of a field
with GM material is mainly influenced by the cropping techniques and crops grown on the
surrounding (neighboring) fields. Therefore, we first created a relational representation
of the data and then carried out two types of experiments. In the first, we used data for
the target field only, while in the second, we also used information about the neighboring
fields. We also explored different GM contamination thresholds (0.1%, 0.3%, 0.5%, 0.7%
and 0.9%), and carried out experiments for each of them.

The results from these analyses indicated that although the crops grown and the
cropping techniques of the surrounding fields are very important for determining the
adventitious presence of GM material in a field, the most important parameters are the
cropping techniques of the very same field. These parameters include the sowing date, as
the most important, the set-aside and the number of years since the last oilseed rape crop
was grown on the field.

The models using different contamination thresholds had very similar structure and
chose the same parameters as most important, but with slightly different values. The
model for the lowest GM contamination threshold proposes stricter measures to be taken
on the target field, like very late sowing date and not having a set-aside for at least four
years, in order to satisfy that threshold, while the model of the highest GM contamination
threshold is the most flexible of all.

In sum, we obtained novel and interesting insights into the problem of co-existence of
GM and conventional crops in a large field plan, concerning the influence of the neigh-
boring fields on a given field, as well as the different thresholds of GM contamination.
A limiting factor of these analyses was the single set of GeneSys simulations describing
only one fixed field plan and one target field of interest, preventing us from fully exploiting
the relational learning setting. We assume that having more simulations, with different
field plans and target fields, would lead to even better and more interesting results, that
would better describe the co-existence issue on a large scale.

9.1.2 Field-to-field co-existence rules

In Chapter 6, we used the methodology to learn co-existence rules for GM and conventional
maize in field-to-field scenarios. In this case, we used simulation data from the simulation
model MAPOD (Angevin et al., 2008), as well as empirical data from field studies in
Germany and Slovenia.

In this part of our study, we combined background knowledge and simulation data to
build equation-based models of the outcrossing between GM and non-GM maize.We used
the equation discovery system Lagramge (Todorovski and Džeroski, 1997; Todorovski
et al., 1998). We generated outcrossing models for each of the datasets, most of which
with very high correlation coefficients. The datasets also included empirical real-world
data from a setup similar to the simulated one.

Given the different field-to-field settings of the simulation and empirical data, we were
able to obtain interesting conclusions about the influence of the distance between the
fields on the outcrossing. Namely, we can make a difference between an ”empty”, where
no other crops (or volunteers) grow, and a ”non-empty” distance, where there are crops
between the donor and the recipient. The outcrossing decreases ten times faster with a
”non-empty” distance, than with an ”empty” distance.
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We also investigated the relative influence of the wind and the distance on the out-
crossing, using the empirical data (where we had more obtained data about the wind).
This led us to the conclusion that the relative influence of the distance and the wind
depends mostly on the geographic and micro-climate characteristics of the region taken
into consideration.

Checking the transferability of the models across datasets showed that both distance
and wind related variables are essential for predicting outcrossing accurately. The specific
geographic characteristics of the region taken into account influence the structure of the
models, but in general, models that include both wind and distance parameters are more
flexible and reliable and can be used for accurate prediction of the oucrossing between
transgenic and conventional maize under various geographic and climate specifics (e.g.,
wind direction and its strength).

This study shows the advantage of using simulated data over empirical data, as well as
using machine learning to analyze them. The combination of background knowledge and
simulated data proved to be a very efficient tool for modelling the outcrossing between
two maize fields. The simulation models are able to simulate different geographical,
climatic and agricultural scenarios of co-existence between GM and conventional crops,
while machine learning provides us with accurate, faster and cheaper way to study the co-
existence between GM and conventional crops. Some directions for further work include
more complex equation-based models of outcrossing between GM and non-GM fields, by
using richer background knowledge and including more parameters. We can also consider
other plants than maize and more simulation data on different field-to-field scenarios.

9.1.3 Oilseed rape population dynamics

In Chapter 7, we presented an individual-based model (IBM-OSR) (Begg et al., 2006;
Ivanovska et al., 2009), which simulates the dynamics of transgene within oilseed rape
populations. We then applied our methodology to model the population dynamics of
oilseed rape from the output of this individual-based model by using equation discovery.

In this study, we again used the equation discovery system Lagramge (Todorovski
and Džeroski, 1997; Todorovski et al., 1998), this time to learn equation-based models for
the dynamics of oilseed rape. We carried out four different equation discovery experiments,
for each of the stages in which the OSR population can be found.

We obtained very complex equation-based models, which were consistent with domain
knowledge, but had low predictive performance. We carried out some more machine
learning experiments, using linear regression and model trees to compare their predictive
performance with the one obtained with equation discovery. The models generated using
linear regression and model trees appeared to be worse in terms of fit, which implies
that the reason for the low predictive performance of the equation discovery experiments
is probably the quality of the output data from the simulation model. Namely, the
individual-based model of oilseed rape population dynamics is a new model and has not
been validated against real data, so inconsistencies in the simulation output data (that
lead to inconsistencies in the results of the analysis of that data) are not excluded.

However, this is a novel approach of analyzing outputs from individual-based models
and there is still a lot of space left for further improvements. For instance, new and
improved simulated data with different parameters may prove useful and improve the
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equation discovery results. Also, the background knowledge in the equation discovery
process can be reconsidered to provide a range of complexities of the equations.

9.2 Scientific contributions

The work presented in this thesis comprises several contributions to ecological modelling,
machine learning, and ecology.

• A methodology for generating ecological knowledge by analyzing the outputs from
simulation models by machine learning. The unique aspects of this methodology
include the use of domain knowledge and learning methods that employ expressive
formalisms and domain knowledge.

• An application of the methodology to the outputs from a regional scale gene-flow
simulation model for OSR, resulting in new co-existence knowledge about the in-
fluence of the neighboring fields on the GM contamination of a given field. New
knowledge was also found about the measures that should be taken in order to
satisfy different GM contamination levels.

• An application of the methodology to the outputs from maize gene-flow simulation
model, resulting in new co-existence knowledge in a field-to-field setting. Equation-
based models that use background knowledge were obtained for simulated, as well as
empirical data, which resulted in interesting conclusions about the relative influence
of the climatic (wind) and geographic (distance) parameters on the outcrossing
between two fields.

• An application of the methodology to the outputs from a field-level individual-based
simulation model for OSR, resulting in new knowledge about the structure and the
parameters of the individual-based model. The results from this analysis improve
the understanding of the domain experts of the processes that influence the OSR
individuals in the individual-based model and in the field.

9.3 Further work

There are different directions for further work that arise from the different parts of our
study analyzing different simulation models.

For each of the approaches tried on the different simulation models and different as-
pects of the problem of co-existence between GM and conventional crops, there is still a
lot of work left for modification and improvement. For the GeneSys model, the immedi-
ate further work would be to obtain more simulations describing different field plans and
target fields, in order to fully exploit the relational learning setting. For the MAPOD
model, we can consider more complex background knowledge, including more variables
that influence the outcrossing between two maize fields. Other types of crops may be
considered in this setting as well. Concerning the IBM-OSR model, it is necessary to first
verify and validate it, to improve the output data and generate a representative sample
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of the OSR population. Then, the background knowledge should be reconsidered and
simplified, which might lead to better models of the population-level behavior of OSR.

Another direction for further work is to consider other problems and other simula-
tion models concerning GM crops and their co-existence with conventional crops. Our
methodology can deal with any kind of simulation model in different domains, so we can
also spread the focus of our work to other simulation models in agriculture and in ecology
in general. For example, we can apply our methodology for analyzing the outputs from an
individual-based model in forestry, EFIMOD-PRO (Chertov et al., 2005), for long term
prediction of forest growth.

Individual-based models are becoming increasingly popular and the need for their
analysis is increasing. Therefore, we can consider analyzing more outputs from different
individual-based models, to study the connections between behavior at the individual and
population level. We can analyze individual-based models in the area of ecology, or other
areas, such as economy, sociology, etc.

When dealing with ecological problems, we are often facing the problem of lack of
more diverse and ”appropriate” simulated data needed to induce good models and obtain
new and valid knowledge. For example, in our study, the limited set of simulations was
an issue for each of the simulation models. A way of solving this problem and improving
even further the effectiveness of the machine learning methods, is combining the proposed
methodology with active learning.

Active learning, as an additional step in the data analysis process, means leading
the process of selecting new instances/examples, based on past instances/examples and
responses, to select the most informative instances and induce better machine learning
models (Cohn et al., 1994, 1996; Luo et al., 2005). In this way, the machine learning pro-
gram could decide which simulations to run and invoke them. This poses new challenges
for further development of machine learning methods, e.g., incorporating active learning
in equation discovery.

Finally, this study also poses other challenges for the development of new machine
learning methods. One of these is handling complex aggregates in relational learning
(Vens, 2008), needed for handling neighboring fields in the case of a multi-source GM con-
tamination. Another challenge is to simultaneously analyze different datasets of the same
type. One way to do this in equation discovery would be generic models (Čerepnalkoski
et al., 2007), where same model structure and different parameters are used to model
several datasets simultaneously.
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M. Debeljak, A. Ivanovska, D. Kocev, S. Džeroski, and K. Rostohar. Application of regres-
sion models and polynomial equations to predict out-crossing rate of maize. In Book of
Abstracts: International Conference Applied Statistics 2007, pages 43–45, Ribno (Bled),
Slovenia, September 2007b. 43
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L. Todorovski and S. Džeroski. Computational Discovery of Scientific Knowledge, chapter
Integrating domain knowledge in equation discovery, pages 69–97. Springer, Berlin,
Germany, 2007. 27, 45, 77, 88
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Appendix 1: Relational classification
trees for Propositional task

Table 10.1: Relational classification tree obtained for the Propositional task with 0.1% GM
contamination threshold.

contamination(-A)
targetField(S, B), fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: [pos]
+ no: targetfield(S, P), fieldDataYear(S, P, 0, Crop, SowingDate), SowingDate<268 ?

+ yes: [pos]
+ no: targetField(S, D1), fieldDataYear(S, D1, 0, Crop, SowingDate), SowingDate<284 ?

+ yes: [pos]
+ no: targetField(S, R1), fieldDataYear(S, R1, 1, unsown set-aside, SowingDate) ?

+ yes: [pos]
+ no: targetField(S, E2), fieldDataYear(S, E2, 1, autumn-sown set-aside, SowingDate) ?

+ yes: [pos]
+ no: targetField(S, R2), fieldDataYear(S, R2, 3, Crop, SowingDate), SowingDate<284 ?

+ yes: fieldDataYear(S, R2, 2, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: lastOSR(S, R2, Gm, NonGm), Gm>4 ?
| + yes: fieldDataYear(S, R2, 3, Crop, SowingDate), SowingDate<71 ?
| | + yes: [neg]
| | + no: fieldDataYear(S, R2, 3, spring crops, SowingDate) ?
| | + yes: [neg]
| | + no: fieldDataYear(S, R2, 1, winter crops, SowingDate) ?
| | + yes: [neg]
| | + no: fieldDataYear(S, R2, 3, unsown set-aside, SowingDate) ?
| | + yes: [pos]
| | + no: lastOSR(S, R2, Gm, NonGm), Gm>6 ?
| | + yes: lastOSR(S, R2, Gm, NonGm), Gm>11 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [pos]
| + no: [pos]

+ no: [neg]
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Table 10.2: Relational classification tree obtained for the Propositional task with 0.3% GM
contamination threshold.

contamination(-A)
targetField(S, B), fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: [pos]
+ no: targetField(S, P), fieldDataYear(S, P, 0, Crop, SowingDate), SowingDate<268 ?

+ yes: fieldDataYear(S, P, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: fieldDataYear(S, P, 2, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: fieldDataYear(S, P, 3, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: lastOSR(S, P, Gm, NonGm), Gm>4 ?
| + yes: fieldDataYear(S, P, 1, Crop, SowingDate), SowingDate<213 ?
| | + yes: [neg]
| | + no: fieldDataYear(S, P, 1, Crop, SowingDate), SowingDate<252 ?
| | + yes: [pos]
| | + no: [neg]
| + no: [pos]

+ no: targetField(S, P3), fieldDataYear(S, P3, 1, unsown set-aside, SowingDate) ?
+ yes: fieldDataYear(S, P3, 0, Crop, SowingDate), SowingDate<284 ?
| + yes: fieldDataYear(S, P3, 2, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: [neg]
| + no: [neg]

+ no: [neg]

Table 10.3: Relational classification tree obtained for the Propositional task with 0.5% GM
contamination threshold.

contamination(-A)
targetField(S, B), fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | + yes: [pos]
| | + no: lastOSR(S, B, Gm, NonGm), Gm>7 ?
| | + yes: [neg]
| | + no: [pos]
| + no: [pos]

+ no: targetField(S, D2), fieldDataYear(S, D2, 0, Crop, SowingDate), SowingDate<268 ?
+ yes: fieldDataYear(S, D2, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: fieldDataYear(S, D2, 2, unsown set-aside, SowingDate) ?
| + yes: lastOSR(S, D2, Gm, NonGm), Gm>8 ?
| | + yes: [neg]
| | + no: [pos]
| + no: [neg]

+ no: [neg]
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Table 10.4: Relational classification tree obtained for the Propositional task with 0.7% GM
contamination threshold.

contamination(-A)
targetField(S, B), fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | + yes: [pos]
| | + no: lastOSR(S, B, Gm, NonGm), Gm>5 ?
| | + yes: [neg]
| | + no: [pos]
| + no: [pos]

+ no: targetField(S, D2), fieldDataYear(S, D2, 0, Crop, SowingDate), SowingDate<268 ?
+ yes: fieldDataYear(S, D2, 1, unsown set-aside, SowingDate) ?
| + yes: fieldDataYear(S, D2, 2, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: [neg]
| + no: [neg]

+ no: [neg]

Table 10.5: Relational classification tree obtained for the Propositional task with 0.9% GM
contamination threshold.

contamination(-A)
targetField(S, B),fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+yes: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| | + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | +–yes: [pos]
| | +–no: [neg]
| + no: fieldDataYear(S, B, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: lastOSR(S, B, Gm, NonGm), Gm>4 ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<213 ?
| | + yes: fieldDataYear(S, B, 2, Crop, SowingDate), SowingDate<112 ?
| | | + yes: [neg]
| | | + no: fieldDataYear(S, B, 2, Crop, SowingDate), SowingDate<268 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: lastOSR(S, B, Gm, NonGm), Gm>5 ?
| | + yes: fieldDataYear(S, B, 3, autumn-sown set-aside, SowingDate) ?
| | | + yes: [pos]
| | | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | | + yes: [pos]
| | | + no: fieldDataYear(S, B, 2, Crop, SowingDate),

SowingDate<213 ?
| | | + yes: [neg]
| | | + no: [pos]
| | + no: [pos]
| + no: [pos]

+ no: [neg]
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Appendix 2: Relational classification
trees for Neighbor task

Table 10.6: Relational classification tree obtained for the Neighbor task with 0.1% GM con-
tamination threshold.

contamination(-A)
targetField(S, B),fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<268 ?
+ yes: [pos]
+ no: targetField(S, P), fieldDataYear(S, P, 1, unsown set-aside, SowingDate) ?

+ yes: neighbor(S, P, C1, edge), fieldDataYear(S, C1, 0, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: fieldDataYear(S, P, 0, Crop, SowingDate), SowingDate<284 ?
| + yes: [pos]
| + no: [neg]

+ no: targetField(S, C2), fieldDataYear(S, C2, 0, Crop, SowingDate), SowingDate<284 ?
+ yes: neighbor(S, C2, Q2, edge), fieldDataYear(S, Q2, 0, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: neighbor(S, C2, D3, edge), fieldDataYear(S, D3, 1, gmOSR, SowingDate) ?
| + yes: fieldDataYear(S, D3, 0, Crop, SowingDate), SowingDate<252 ?
| | + yes: fieldDataYear(S, D3, 0, Crop, SowingDate), SowingDate<213 ?
| | | + yes: [neg]
| | | + no: [pos]
| | + no: [neg]
| + no: [neg]

+ no: targetField(S, Q4), fieldDataYear(S, Q4, 1, autumn-sown set-aside, SowingDate) ?
+ yes: neighbor(S, Q4, D5, edge), fieldDataYear(S, D5, 0, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: [neg]

+ no: targetField(S, Q5), fieldDataYear(S, Q5, Year, unsown set-aside, SowingDate) ?
+ yes: neighbor(S, Q5, E6, edge), fieldDataYear(S, E6, 0, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: [neg]

+ no: targetField(S, R6), fieldDataYear(S, R6, 3, Crop, SowingDate), SowingDate<284 ?
+ yes: neighbor(S, R6, F7, edge), fieldDataYear(S, F7, 0, gmOSR, SowingDate) ?
| + yes: neighbor(S, F7, S7, corner) ?
| | + yes: [pos]
| | + no: [neg]
| + no: [neg]

+ no: [neg]
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Table 10.7: Relational classification tree obtained for the Neighbor task with 0.3% GM con-
tamination threshold.

contamination(-A)
targetField(S, B),fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: neighbor(S, B, P, edge), fieldDataYear(S, P, 1, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: [pos]
| + no: neighbor(S, B, P1, edge), fieldDataYear(S, P1, 0, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: [pos]

+ no: targetField(S, C2), fieldDataYear(S, C2, 0, Crop, SowingDate), SowingDate<268 ?
+ yes: neighbor(S, C2, Q2, edge), fieldDataYear(S, Q2, 0, gmOSR, SowingDate) ?
| + yes: neighbor(S, Q2, D3, corner), fieldDataYear(S, D3, Year, Crop, SowingDate),

SowingDate<284 ?
| | + yes: [pos]
| | + no: fieldDataYear(S, C2, Year, Crop, SowingDate), SowingDate<112 ?
| | + yes: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, C2, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: neighbor(S, C2, S4, edge), fieldDataYear(S, S4, 1, gmOSR, SowingDate) ?
| + yes: neighbor(S, S4, F5, corner), lastOSR(S, F5, Gm, NonGm), NonGM>3 ?
| | + yes: neighbor(S, F5, I5, edge), fieldDataYear(S, I5, 0, unsown set-aside,

SowingDate) ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [neg]
| + no: [neg]

+ no: targetField(S, V5), fieldDataYear(S, V5, 1, unsown set-aside, SowingDate) ?
+ yes: neighbor(S, V5, I6, edge), fieldDataYear(S, I6, 0, gmOSR, SowingDate) ?
| + yes: neighbor(S, I6, V6, corner), lastOSR(S, V6, Gm, NonGm), NonGm>2 ?
| | + yes: fieldDataYear(S, V5, 0, Crop, SowingDate), SowingDate<284 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [neg]
| + no: [neg]

+ no: targetField(S, L7), fieldDataYear(S, L7, 0, Crop, SowingDate), SowingDate<284 ?
+ yes: neighbor(S, L7, Z7, edge), fieldDataYear(S, Z7, 0, gmOSR, SowingDate) ?
| + yes: neighbor(S, Z7, M8, corner), fieldDataYear(S, M8, Year, Crop,

SowingDate),SowingDate<268 ?
| | + yes: neighbor(S, Z7, B9, edge), fieldDataYear(S, B9, 0, gmOSR,

SowingDate) ?
| | | + yes: [pos]
| | | + no: fieldDataYear(S, Z7, 1, Crop, SowingDate), SowingDate<213 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [neg]
| + no: [neg]

+ no: [neg]
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Table 10.8: Relational classification tree obtained for the Neighbor task with 0.5% GM con-
tamination threshold.

contamination(-A)
targetField(S, B),fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: neighbor(S, B, P, edge), fieldDataYear(S, P, 1, gmOSR, SowingDate) ?
| + yes: [pos]
| + no: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: [pos]
| + no: fieldDataYear(S, B, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: neighbor(S, B, B2, edge), fieldDataYear(S, B2, 0, gmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<213 ?
| | + yes: [neg]
| | + no: [pos]
| + no: [neg]

+ no: targetField(S, B3), fieldDataYear(S, B3, 0, Crop, SowingDate), SowingDate<268 ?
+ yes: fieldDataYear(S, B3, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: neighbor(S, B3, B4, edge), fieldDataYear(S, B4, 0, gmOSR, SowingDate) ?
| + yes: neighbor(S, B4, O4, corner) ?
| | + yes: fieldDataYear(S, B3, 2, unsown set-aside, SowingDate) ?
| | | + yes: [pos]
| | | + no: neighbor(S, B3, B5, edge), fieldDataYear(S, B5, 1, gmOSR,

SowingDate) ?
| | | + yes: neighbor(S, B5, O5, corner), fieldDataYear(S, O5, 25, Crop,

SowingDate), SowingDate<213 ?
| | | | + yes: [pos]
| | | | + no: neighbor(S, B4, C6, edge), fieldDataYear(S, C6, 0, gmOSR,

SowingDate) ?
| | | | + yes: [pos]
| | | | + no: [neg]
| | | + no: [neg]
| | + no: [neg]
| + no: [neg]

+ no: [neg]
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Table 10.9: Relational classification tree obtained for the Neighbor task with 0.7% GM con-
tamination threshold.

contamination(-A)
targetField(S, B), fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: neighbor(S, B, P, edge), fieldDataYear(S, P, 1, gmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| | + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<233 ?
| | | + yes: [pos]
| | | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<268 ?
| | | + yes: [pos]
| | | + no: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| | + yes: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, B, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: lastOSR(S, B, Gm, NonGm), Gm>5 ?
| + yes: neighbor(S, B, B4, edge), fieldDataYear(S, B4, 2, gmOSR, SowingDate) ?
| | + yes: [neg]
| | + no: [neg]
| + no: [pos]

+ no: targetField(S, O4), fieldDataYear(S, O4, 0, Crop, SowingDate), SowingDate<268 ?
+ yes: fieldDataYear(S, O4, 1, unsown set-aside, SowingDate) ?
| + yes: neighbor(S, O4, O5, edge), fieldDataYear(S, O5, 2, gmOSR, SowingDate) ?
| | + yes: [pos]
| | + no: [neg]
| + no: neighbor(S, O4, B6, edge), fieldDataYear(S, B6, 0, gmOSR, SowingDate) ?
| + yes: neighbor(S, B6, O6, corner) ?
| | + yes: fieldDataYear(S, O4, Year, unsown set-aside, SowingDate) ?
| | | + yes: fieldDataYear(S, O4, Year, Crop, SowingDate), SowingDate<213 ?
| | | | + yes: [neg]
| | | | + no: [pos]
| | | + no: [neg]
| | + no: [neg]
| + no: [neg]

+ no: [neg]
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Table 10.10: Relational classification tree obtained for the Neighbor task with 0.9% GM con-
tamination threshold.

contamination(-A)
targetField(S, B), fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<252 ?
+ yes: fieldDataYear(S, B, 1, non-GmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: fieldDataYear(S, B, 1, Crop, SowingDate), SowingDate<252 ?
| | + yes: [pos]
| | + no: [neg]
| + no: neighbor(S, B, B2, edge), fieldDataYear(S, B2, 1, gmOSR, SowingDate) ?
| + yes: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| | + yes: [pos]
| | + no: neighbor(S, B2, B3, corner) ?
| | + yes: [pos]
| | + no: [pos]
| + no: fieldDataYear(S, B, 0, Crop, SowingDate), SowingDate<233 ?
| + yes: neighbor(S, B, P3, edge), fieldDataYear(S, P3, 2, gmOSR, SowingDate) ?
| | + yes: [pos]
| | + no: lastOSR(S, B, Gm, NonGm), Gm>6 ?
| | + yes: [neg]
| | + no: [pos]
| + no: fieldDataYear(S, B, 1, unsown set-aside, SowingDate) ?
| + yes: [pos]
| + no: [neg]
+ no: targetField(S, Q4), fieldDataYear(S, Q4, 0, Crop, SowingDate), SowingDate<268 ?

+ yes: fieldDataYear(S, Q4, 1, unsown set-aside, SowingDate) ?
| + yes: [neg]
| + no: [neg]

+ no: [neg]
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