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Abstract  

The pollution of water with phytopharmaceuticals used in agriculture can make 
significant damage to environment and human health. The water can be polluted by two 
types of pesticide inputs: diffuse and point source pollution. Both have to be considered 
separately and have to be covered in mitigation strategies for water protection. 

The main paths of pesticide transfer from diffuse sources into the water are the water 
flows from a field, including runoff, drainage, lateral seepage and infiltration of water 
into the ground through the soil profile of the field. The water flows from a field play an 
important role in the process of water pollution. To reduce the water pollution, the 
amount of outflow of polluted water from the fields has to be reduced. The main question 
raised here is how to successfully reduce the outflow of polluted water from a field. 

The answer consists of several steps. First, we need to have accurate models for 
predicting the outflow. Second, while taking into account predictions of these models, a 
proper set of mitigation strategies needs to be proposed. Many studies offer solutions 
mainly based on mechanistic approaches, but these solutions are either too expensive for 
parameterization or too general in their predictions, which results in inappropriately 
proposed solutions. 

In this thesis, we address the problem of predicting the water flows from a field by 
methodology based on machine learning and data mining techniques. Our focus is mainly 
on the description of the process of water drainage, estimation of the critical periods of 
drainage events in an agricultural campaign and accurate prediction of the amount of 
drained water. The methodology being proposed is based on machine learning and data 
mining techniques. 

The proposed methodology exploits both, the available expert knowledge structured in 
decision tables and the data collected from the experimental fields of ARVALIS, located 
in the La Jaillière region in France. The models built from expert knowledge and field 
data can improve the general recommendations for reduction of water flows from the 
fields.  

The results of the thesis support the hypothesis that the available expert knowledge 
should be used in the process of supervised learning. Namely, a wide palette of data 
mining and machine learning methods, including regression trees, model trees, ensembles 
and polynomial equations has been implemented. The models were mainly learned in two 
different scenarios, namely using data from whole campaigns (12 months) and drainage 
season only, where a drainage season is defined as the period of a campaign with most 
intensive drainage events. Namely, the most accurate predictions have been achieved with 
the integrated predictive model for the drainage season (scenario two).  
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Povzetek  

Onesnaževanje vode s fitofarmacevtskimi sredstvi, ki se uporabljajo v kmetijstvu, lahko 
zelo škoduje okolju in zdravju ljudi.  Onesnaževanje vode s pesticidi poteka preko 
točkovnih ali prostorsko razpršenih virov zato mora obravnava problematike 
onesnaževanja potekati ločeno glede na vrsto vira, ki ga morajo upoštevati tudi strategije 
za varstva voda. 

Glavne poti prenosa pesticidov iz polja so vodni tokovi, ki polje zapustijo z 
izhlapevanjem, površinskim odtokom, bočnim pronicanjem  in infiltracijo vode skozi 
talni profil. Vodni tokovi s polj tako predstavljajo pomembno vlogo v procesu 
onesnaževanja voda. Da bi vplive onesnaževanja zmanjšali, je potrebno najprej zmanjšati 
količino odtoka onesnažene vode s polj, pri tem pa ostaja vprašanje, kako bi to lahko 
uspešno dosegli. 

Odgovor je sestavljen iz nekaj korakov. Najprej je potrebno pripraviti točne napovedi 
količine iztočne vode, nato pa na osnovi napovedi predlagati ukrepe za zmanjševanje 
količine iztoka vode. Številne študije ponujajo rešitve predvsem na podlagi mehanističnih 
pristopov, vendar pa so te rešitve največkrat predrage zaradi stroškov določanja vrednosti 
parametrov modelov ali pa so v svojih napovedih preveč splošne, kar povzroči, da so 
predlagane rešitve neprimerne. 

Naloga obravnava napovedovanje vodnih tokov s polja z uporabo metodologije, ki 
temelji na strojnem učenju in tehniki podatkovnega rudarjenja. Pri tem se osredotoča 
predvsem na opis procesa odvajanja vode, ugotavljanje obdobji intenzivnejših odtokov in 
na natančno napovedovanje količine odtečene vode. 

Predlagana metodologija temelji na razpoložljivem strokovnem znanju, ki je podano v 
obliki odločitvenih tabel in na podatkih, zbranih na poskusnih poljih, ki se nahajajo v 
regiji La Jaillière, Francija. Modeli, ki temeljijo tako na ekspertnih, kot dejanskih 
podatkih, lahko  izboljšajo splošna priporočila glede ukrepov za zmanjšanje odtoka 
količine vode s polj. 

Rezultati naloge podpirajo hipotezo o učinkovitosti vključitve razpoložljivega 
strokovnega znanja v proces nadzorovanega učenja. Široka paleta metod podatkovnega 
rudarjenja in metod strojnega učenja, vključno z regresijskimi drevesi, modelnimi drevesi, 
ansambli in polinomskimi enačbami, je bila namreč že uveljavljena. Modeli so bili 
zgrajeni na podlagi dveh scenarijev: z uporabo podatkov iz enoletnih obdobji spremljanja 
količine drenirane talne vode (12 mesecev) in z uporabo podatkov iz obdobji intenzivnega 
dreniranja, ki so bila časovno opredeljena na osnovi strokovne ocene ARVALIS-a. 
Največjo točnost napovedi smo dosegli z integriranim napovednim modelom za obdobje 
intenzivnega drenirana (drugi scenarij). 
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Abbreviations 

ARVALIS  = ARVALIS Institut du Végétal (France) 
KW   = Kinematic wave 
1D-DPM  = One-dimensional dual-porosity model 
2D   = Two-dimensional 
3D   = Three-dimensional 
DP-MIM  = Dual-permeability/Mobile-immobile 
EK   =  Expert knowledge 
ES   = Expert system 
RMSE   = Root mean squared error 
RRSE   = Root relative squared error 
Std.Dev.  = Standard deviation 
CIPER   = Constrained Induction of Polynomial Equations for 

Regression
 



XII  
 

 



 1 
 

 

1  Introduction  

The pollution of water with phytochemicals used in agriculture can make significant 
damage to aquatic ecosystems and human health. The water can be polluted by two types 
of pesticide inputs, diffuse and point source pollution, which have to be considered 
separately (Reichenberger et al, 2007). Furthermore, the risk of water pollution can be 
reduced by appropriate mitigation strategies (Kreuger & Nilsson, 2001). Mitigation of 
pesticide inputs into water includes the reduction of both diffuse and point source 
pollution. The main paths of pesticide transfer from diffuse sources into the water are the 
water flows from a field, including runoff, drainage, lateral seepage and infiltration of 
water into the ground. The water flows in a field play an important role in the process of 
water pollution. To reduce water pollution, the amount of outflow of polluted water from 
the fields has to be reduced. The main question raised here is how to successfully reduce 
the outflow of polluted water from a field. 

The answer consists of several steps. First, we need to have accurate models for 
making predictions of the outflow. Second, while taking into account these predictions, a 
proper set of mitigation strategies needs to be considered. The proper set of mitigation 
strategies needs to cover strategies valid for the analyzed type of water flow and its 
general characteristics. Finally, we need to make the final selection of the most 
appropriate mitigation strategy, which has to respect local field characteristics. 

Many studies offer solutions mainly based on mechanistic approaches, but these 
solutions are either too expensive for parameterization or too general in their predictions, 
which results in inappropriately proposed solutions. 

In this thesis, we address the problem of predicting the water flows from a field. Our 
focus is mainly on the description of the process of water drainage, estimation of the 
critical periods of drainage events in an agricultural campaign, and accurate prediction of 
the amount of drained water. The methodology being proposed is based on machine 
learning and data mining techniques.  

Machine learning approaches often give effective and accurate solutions for this kind 
of problems (Debeljak & Džeroski, 2011). Namely, machine learning is a very promising 
research area with numerous applications in the field of environmental sciences. There 
exist three types of machine learning: supervised, unsupervised and semi-supervised 
learning. The problem of prediction is addressed by supervised machine learning (also 
known as predictive machine learning). Supervised machine learning tries to build a 
predictive model (in the form of decision trees, decision rules, linear equations, etc.) that 
will accurately predict the values of the dependent target variable (class or output). The 
process of learning the model is based on experience, given in the form of learning 
examples and described with a feature (attribute) set. 

The proposed methodology exploits both the available expert knowledge structured in 
decision tables and the data collected from experimental fields of ARVALIS, located in 
the La Jaillière region in France. These are used by our machine learning methodology in 
order to obtain water flow models with high accuracy, resulting in efficient proposed 
mitigation measures. The built model improves the general recommendations made from 
expert knowledge by making them more specific and adjusting the knowledge, based on 
the data collected and the predictions of the models learned by data mining. 



2 Introduction 
 

The thesis is organized as follows. 
In Section 1, we briefly presented some background on the topic of the thesis and gave 

an overview of the related domain knowledge in the field of understanding the water flow 
through the soil in agriculture. In Section 2, we describe the related work on the topic of 
modeling the water flow in agriculture. In addition, a description of the topic of the thesis, 
its goals and the hypothesis are given. 

In Section 3, the data from the La Jaillière experimental site are described, followed by 
a description of the procedure of data collection. The dataset contains data for soil 
properties, climate data and crop and land management.  At the end, the expert 
knowledge, provided in the form of decision tables, is described. 

Next, in Section 4, we present the techniques for data pre-processing that we used with 
some data mining and machine learning methods for feature ranking and selection. First, 
we describe the pre-processing of the dataset from the experimental field, including 
database manipulation and feature set creation. We then describe the propositionalization 
of the expert knowledge and its decision tables.  

In Section 5, we present the machine learning techniques used in this thesis. These 
include classification, regression and model trees, and ensemble methods. The 
experiments are performed in two machine learning environments: WEKA and CLUS. In 
Section 6 the complete experimental setup is presented. 

Then, in Section 7, we present the evaluation of the results from different experiments 
performed in our study and presented in the experimental setup. This section also 
discusses the significance of the results relative to existing and default models, and the 
influence of the independent variables. Towards the end of Section 7, we summarize the 
content of the thesis.  

Finally, in Section 8, we state our conclusions; summarize the contributions and 
outline possible improvements in further work. 
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2  Problem description 

Modeling water flows or preferential flows has been the interest of many academic areas 
in the past 30 years, with the underlying aim to prevent groundwater from contamination. 
A number of laboratory and field experiments have been conducted to qualitatively 
describe water flow through unsaturated and saturated soil, and understand the 
mechanisms that control this type of flow (Ersahin et al. 2002). Even though many 
mechanistic and physically-based models have been developed to quantitatively describe 
water flow through soils, but very few of them are complete in terms of incorporation of 
data like soil structure and soil matrices. 

2.1  Background 

The consumption of water in the world is approximately doubling every 20 years i.e., 
much faster than the population increases. On the other hand, new sources of water are 
becoming scarcer and polluted water is becoming more expensive to remediate. Taking 
these facts into consideration, it is urgent to protect the existing water.  

Soil is the first filter of the earth’s water. The soil’s ecosystem processes of buffering 
and filtering are very important for achieving the quality of the surface and sub-surface 
water reserves. Land management can affect the ability of the soil to defend the receiving 
water and disturb the process of filtering. Statistics show that about 70 % of the world’s 
fresh water is consumed by agriculture (Clothier et al. 2008). Therefore, it is necessary to 
protect the water reserves from the land and crop management practices in agriculture. In 
addition, the performance of land-management practices can be both tracked and 
improved, so that policies for sustainable management can be developed. 

The traditional land management and agricultural production were based on traditional 
economics. It has viewed capital as simply being cash, investments and economic 
instruments. However, sustainable development is now seen to rely on four types of 
capital: the traditional capital finance; the manufactured capital of infrastructure; human 
capital in the form of intelligence, culture and organization; and the natural capital of the 
renewable and non-renewable stocks of natural resources that support life and economic 
activities (Hawken et al. 1998). Therefore, there is a need to develop an integrated and 
accepted system of valuing or measuring natural capital and ecosystem services. 
Furthermore, Fenech et al. (2003) point out that turning the idea of natural capital into a 
practical means of measuring or modeling both economic and ecological systems requires 
considerable study and innovation. 

The above statements define the needs of developing a system that will improve the 
land and crop management practices in order to protect the quality of the ecosystem, 
including water and environmental resources. The quality of the water resources is highly 
dependent on the water pollution with phytochemicals from agriculture. There exist two 
main types or sources of water pollution: point and diffuse source pollution. 

In this thesis, we focus on diffuse source water pollution. The main paths of pesticide 
transfer from diffuse sources into the water are the water flows from a field, including 
runoff and erosion, drainage, lateral seepage and infiltration of water into the ground. The 
water flows in a field play an important role in the process of water pollution. To reduce 
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the water pollution, the amount of outflow of polluted water from the fields has to be 
reduced.  

To achieve the aim of protecting the water, we need to consider the outflow of the 
polluted water and select sustainable mitigation strategies. The key step in selecting a 
sustainable mitigation strategy is the understanding of the outflow of the polluted water, 
and its dependence on the field’s properties. This could be obtained from predictions of 
high accuracy models. 

The study of water flow in soil begins nearly a century ago. In 1898, Colonel Moore of 
the Royal Engineers stated that “in undrained clay land, cracks of one and two inches 
wide and five feet deep are sometimes met with, with the result that direct passage of 
sewage and surface water into them has occurred, so that the effluent is not purified as 
intended. It is thus very unsuitable for irrigation, unless the surface is specially prepared” 
(Moore, 1898). 

Ever since, scientists and experts have studied the phenomena of water and solute 
movement along certain pathways, while bypassing or going through fractions of the 
porous matrix in the soil. First, they tried to understand the process and its characteristics. 
Second, they developed models for describing the process of movement using soil 
characteristics. In the next stage, some conceptual models were built, based on analytical 
and statistical observations. In the last 20 years, better mechanistic models were 
developed to incorporate water flow processes (Gerke & van Genuchten, 1993).  

A significant time was spent debating about the approaches that need to be considered 
regarding the main causes of water flow in the soil, the kind of characteristics that should 
be considered while developing models, as well as the kind of methodology that needs to 
be used for developing models. At the beginning, the experts thought that there is a direct 
relationship between the quality of soil and those soil characteristics that would initiate 
and sustain water flow and transport through it. In this group of experts the most 
numerous were pedologists. They noted that the soil characteristics are enough to 
understand and eventually predict the water flow in the soil (Clothier & Green, 1997). On 
the other hand, some soil physicists considered that flow through soil is not uniform 
phenomenon that would enable pedological theories to predict it easily (Köhne et al. 
2009). Furthermore, the main causes of water and solute flow in soil are not the forces of 
capillarity and gravity acting alone in a porous medium. Rather it is the constantly 
changing distributed pattern of the soil’s pressure created by plant roots that hold the 
major control over the hydrology of surface soil (Clothier & Green, 1997). 

In this thesis, we consider both the soil properties and crop management which are 
responsible for water flow through the soil. We, additionally, consider climate influence 
and land management. 

Furthermore, the conceptualization of the soil helps the scientists to recognize the 
trend of the flow through the soil. The traditional conceptualization defines the soil as a 
porous medium with continuous properties (Figure 1). Therefore, the water flow is 
uniform and at a local equilibrium is usually described with Richards’s equation 
(Richards, 1931) (1): 

)]1)(([ +=
dz

d
K

dz

d

dt

d ψ
θ

θ
         (1) 

 
 

where K is the hydraulic conductivity (cm/s), ψ  is static pressure head (m), z is elevation 
above a vertical datum (m) and θ  is the water content of the soil. 



Problem description 5 
 

 

Figure 1: Continuum conceptualization. A visualization of the continuum conceptualization of the 
soil regarding the water flow (Köhne et al. 2009). Left-to-right: Uniform flow, Dynamic flow and 
Stream tubes. 

Moreover, by defining dynamic flow and stream tubes flow, the experts provide 
additional descriptions of the possible water flow in the continuum conceptualization of 
the soil. 

Other conceptualizations of the soil are the bi- and multi-continuum which define soil 
as a composition of two or more domains (Figure 2). Therefore, the water flow can be 
horizontal (lateral seepage) and vertical (infiltration). In case of a horizontal flow, domain 
to domain exchange of water is noticed, while in a vertical flow only in-depth flow. 

 

Figure 2: Bi- and Multi-continuum conceptualization. A visualization of the bi- and multi-
continuum conceptualizations of the soil regarding the water flow (Köhne et al. 2009). Left-to-
right: Mobile-Immobile approach, dual-permeability approach and triple-permeability approach 

The bi- and multi-continuum conceptualizations assume that the porous medium 
consists of two overlapping pore domains, with water flowing relatively fast in one 
domain (often called the macro-pore, fracture, or inter-porosity domain) and slow in the 
other domain (often referred to as the micro-pore, matrix, or intra-porosity domain) 
(Köhne et al. 2009). Based on this knowledge and available schemes and 
conceptualizations, many models were developed for simulation and prediction of the 
water flow through the soil. Basically, all of them are modeling schemes with which we 
can, with caution, predict the features and impacts of water flow and transport in soils. 
However, the uncertainty in such prediction is unknown. Furthermore, when taking into 
account the deep structure of the soil, these models are very expensive for 
parameterization. Yet another major concern about the existing models is that their 
validation status is quite low (Dubus et al. 2002). This may be due to lack of data, poor 
parameter identification techniques, or the use of subjectivity in the parameterization 
process. 
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A strategy to overcome these problems is to build simplified models which are 
understandable and less complex. Furthermore, the model should not require expensive 
input data, which need to be provided by special analyses. In other words, the model must 
maintain the optimal relation between the complexity of the model, the cost of the input 
and the predictive accuracy of the model. We have achieved this goal by using machine 
learning and data mining techniques.  

Machine learning and data mining techniques, such as regression trees, artificial neural 
networks and support vector machines have been widely used in many applications 
(Witten and Frank, 2005). These techniques exploit the accumulated vast quantities of 
data because they rely on effective learning procedures. With the rapid development of 
these techniques, we can achieve more reliable and accurate results. Machine learning is 
part of the broader area of artificial intelligence. In artificial intelligence, one of the basic 
approaches, knowledge engineering (Feigenbaum and McCorduck, 1983) is to extract 
domain knowledge from an expert and encode it in computer-readable form. 

This study investigates the possibility of integrating expert knowledge within the 
process of learning predictive models from data. This approach gives more accurate and 
precise predictions about the water flow from a field, as compared individually with 
either the existing expert knowledge or the models learned from data only by using 
machine learning techniques.   

2.2  Related work 

Researchers have attempted to model processes from experimental observations into 
conceptual approaches and mathematical models. The governing equations can be 
implemented in computer simulation tools, which can then be tested, modified, and/or 
validated against new experimental data. Increasingly sophisticated models have been 
developed to analyze water flows in various environmental systems, where there exist 
considerable differences in spatial and temporal scales. 

A comprehensive literature survey on the existing models for describing (prediction 
and simulation) water flows emphasizes two major modeling approaches: conceptual and 
computer models. 

Classical physically-based conceptual models for water flows and solute transport in 
structured soils can be broadly classified into continuum, bi- continuum or multi-
continuum models, as we described before (Köhne et al. 2009). Each of these 
conceptualizations depends on a number of the considered domains. Namely, continuum 
conceptualization consider flow in the entire soil as being controlled by both capillary and 
gravity forces, while bi-continuum approaches assume that flow in the flowing domain is 
controlled by gravity only and is always directed downwards. On the other hand, the 
newest approaches from multi-continuum conceptualization, such as capacity or routing 
controlled approaches comprise simplified descriptions of macro-pore flow. Furthermore, 
in each of these conceptualizations there exist different approaches: uniform flow and 
stream tubes (Figure 1), mobile-immobile, dual and triple permeability approach. These 
approaches are based on the type of the water flow through the soil: “domain to domain” 
water exchange and in-depth water infiltration. 

In the continuum conceptualization, scientists model the water flow based on 
Richard’s equation (1), unlike the bi-continuum approaches which are based on the 
Kinematic Wave – KW (Lighthill and Whitham, 1955) equation (2) for the water flow in 
macro-pore regions and Richard’s equation for the water flow in the matrix regions of the 
soil. The KW equation is in the following form: 
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2

2

dx

hd
D

dx

dh
C

dt

dh
=+       (2) 

where h is the debris flow height, t is the time, x is the downstream channel position, C is 
the pressure gradient (depth dependent nonlinear variable wave speed) and D is a flow 
(height dependent variable diffusion term). 

These models, described above, are only conceptual and their accuracy is not 
satisfactory for the practical use. Additionally, Brederhoeft (2005) noted that while the 
foundations of modeling are the conceptual models, new data typically render invalid 
predictions from these conceptual models. Moreover, he suggests that the solution of this 
problem is twofold: to collect as much data as feasible, and for the model developer to 
keep open the possibility to change the conceptual models. 

The principle of conceptual model refinement was used during the development of 
computer models, which are still mechanistic. They are usually based on the dual-
permeability approach of Gerke and van Genuchten (1993). Hereafter, we give a brief 
description of the commonly used models. 

DUAL (Gerke and van Genuchten, 1993) is a 1-Dimensional Dual-Permeability Model 
(1D-DPM) based on two Richard’s equations (1) and convection dispersion equations for 
matrix and fracture pore systems. These are coupled by first-order terms for bi-directional 
exchange of water and solute. The original research model was later adapted for 
application to field conditions (Gerke and Köhne, 2004). 

HYDRUS-1D (Šimůnek et al., 1998, 2003, 2005, 2008a, b, c; Šimůnek and van 
Genuchten, 2008) describes water, heat, and solute movement in the vadose zone. It 
simulates water flow, solute and heat transport in one-dimension and is public domain 
software. HYDRUS (2D/3D) extends the simulation capabilities to the second and third 
dimensions, and is distributed commercially. 

The KW one-region model (Beven and Germann, 1982; Germann, 1985) is based on 
the boundary layer flow theory and was used for describing water flows. The KW model 
assumes that the wetting front proceeds by convective film flow in the mobile region and 
does not exchange water with the immobile region. 

MACRO (Jarvis, 1994; Larsbo and Jarvis, 2003; Larsbo et al., 2005) is a 1D-DPM that 
combines a KW equation (2) for describing the water flow and solute convection for the 
macro-pore region with Richards’s equation (1) for water flow and solute convection 
dispersion in the matrix. Water transfer into the matrix is treated as a first-order 
approximation to the water diffusion equation and is proportional to the difference 
between actual and saturated matrix water contents. 

The Root Zone Water Quality Model, RZWQM (Ahuja et al., 2000) utilizes a dual-
permeability/mobile-immobile (DP/MIM) description of 1D vertical soil water flow and 
chemical movement. Three transport regions are assumed to exist in the soil: cylindrical 
macro-pores, the mobile soil matrix, and the immobile soil matrix. In the macro-pores, 
water flow is calculated using the Poiseulle equation (3) and solutes are displaced by 
convection. The Poiseulle equation has the following form: 

4

8

r

QL
P

π

µ
=∆       (3) 

where P∆  is the pressure drop, L is the length of pipe, µ  is dynamic viscosity, Q is the 
volumetric flow rate, r is radius and d is the diameter. 

In the mobile matrix region, water flow is described using the Green-Ampt equation 
(4) approach during infiltration and the Richard’s equation (1) during redistribution, while 
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solute moves by convection (Köhne et al. 2009). The Green-Ampt approach is described 
by the following equation: 

 

a

iawa

Ki

SK
F

−

−
=

)( θθ
      (4) 

where aθ  and iθ  are the saturated and initial volumetric water contents, respectively,  Sw 

is the soil water suction at the wetting front, i is rainfall intensity and Ka is the saturated 
hydraulic conductivity.  

There are other models and approaches for qualitatively describing water flow through 
unsaturated and saturated soil, and understanding the mechanisms that control this type of 
flow. Among these, worth emphasizing is the FOOTWAYS (2009) web-based system 
which is basically developed to help farmers to protect the water and the environment 
from phytochemical products that come from agriculture (diffuse sources). As a part of 
the system, there exists one module for prediction and simulation of the water flow 
through and over the surface of the soil. Its structure is a composition of the MACRO and 
Pesticide Root Zone (PRZM) models, dealing with water flow through the soil and 
surface water flow, respectively.  

2.3  Problem 

In the previous section, we gave a brief description of existing conceptual and computer 
models for prediction and simulation of the water flow through the soil. All of the 
mentioned models are either physically-based or mechanistic. Basically, all of them are 
useable modeling schemes with which we can, with caution, predict the features and 
impacts of water flow and transport in soils. However, the uncertainty of these predictions 
is unknown. In addition, they are either too expensive for parameterization or too general 
in their predictions, which results in inappropriately proposed solutions. Therefore, the 
biggest concern in such a case is how much data we need to fit the input parameters in 
order to get the output, prediction or simulation. Yet another major concern about the 
existing models is that their validation status is quite low (Dubus et al. 2002). This may 
be due to lack of data, poor parameter identification techniques, or the use of subjectivity 
in the parameterization process. 

A strategy to overcome these problems is to build models that will establish an optimal 
tradeoff between the complexity of the induced models, expensiveness of the input data, 
and the model’s predictive accuracy. The input of the model should comprise data that 
can be taken from the field without any specific analyses of the soil and soil matrices, as 
well as hydraulic conductivity and moisture contents. On the other hand, the model’s 
output should be accurate. Our understanding of the mechanism of water flow that we 
gained from the experimental approaches and the observations from the La Jaillière 
experimental field, led us to a better concept of modeling and better parameterization of 
our models. We achieved this goal by using machine learning and data mining techniques 
on data available from the La Jaillière experimental site and available expert knowledge. 

2.4  Hypothesis 

The main hypothesis of our study is that the integration of structured expert knowledge 
with models built from data gives more accurate and precise predictions about the water 
flows through the soil and from the fields, as compared individually with the existing 
expert knowledge or the models built from data using machine learning techniques. The 
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outputs from the expert system (e.g., expert decision tables) are too general and cannot  
be adjusted to local specifics, while the models built from data can give wrong predictions 
if they are not correctly validated (supported by expert knowledge), or if they are 
overfitted  to local specifics. Therefore, the solution proposed in the thesis generates 
outputs that are adjusted to local specifics (like soil properties, surface properties and 
agriculture practice) and supported by expert knowledge. 
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3  Data description 

Today’s technology allows us to collect data from different sources and for different 
purposes. This fact encourages scientists to use a wide spectrum of data and progressively 
combine them for learning models by data mining in order to achieve more accurate 
results. Namely, our study is concerned with learning models based on real data and 
expert knowledge. Therefore, we used two types of input: the data collected from 
experimental fields and the available expert knowledge captured in decision tables. 

First, we describe the location and properties of the La Jaillière experimental site, 
where data were collected in the past 25 years. Second, a brief description of the 
procedure of collecting data is given. Then, we present the data of the soil properties, 
climate and on-field practices. Finally, the expert knowledge is described. 

3.1  Experimental site  

The experimental site, where data were collected, is located in western France (Figure 3). 
It is situated at the southern end of the Armorican massif, in the La Jaillière province. It is 
owned by ARVALIS - Institut du Végétal*.  

 

Figure 3: France. Location of the La Jaillière experimental site. 

                                                 
 
 
 
* More details at http://www.arvalisinstitutduvegetal.fr 
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The site has been dedicated to the study of the influence of agricultural management 
practices on water quality since 1987. It is a reference site for the European Commission 
FOCUS working group (FOCUS, 2001). The La Jaillière site is considered as a 
representative of the agricultural regions in Europe with shallow silt clay soils. 

Soils are hydromorphic brown with a silt clayed texture, and shallow schistose bedrock 
situated at about 0.90 m below the surface. The average clay content is 22 % (Madrigal, 
2004), but variations from 18 % to 30 % were observed depending on the soil horizons 
(Arlot, 1999). Organic matter content was found to be on average 2 % in the superficial 
soil horizon (Madrigal, 2004).  

The climate at the site is of oceanic type. The mean annual precipitation of 617 mm is 
evenly distributed along the year (monthly values between 40 and 62 mm). The mean 
annual potential evapotranspiration is 610 mm. 

The site contains many fields divided in north and south parts. Furthermore, each part 
contains blocks of fields (Figure 4). Each block is used for a different type of 
experimental analyses. Our data were collected from the fields in block A11 (Figure 5). 

 

Figure 4: La Jaillière site. All fields on the site (Selected papers from ARVALIS No.11). 
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Figure 5: Block A11. The fields within block A11 of the La Jaillière site (Selected papers from 
ARVALIS No.11). 

Table 1: Fields and water collection. The description and size for each field considered in our 
study, together with the type and starting year of water collection 

Field Block Surface (ha) Type of water collection Starting year 

T1 A11 0.83 Runoff 1987 
T2 A11 0.90 None 1987 
T3 A11 1.04 Drainage/Runoff 1987 
T4 A11 1.08 Drainage/Runoff 1987 
T5 A11 0.85 Drainage 1987 
T6 A11 1.01 Drainage/Runoff 1987 
T7 A10 0.43 Drainage/Runoff 1989 
T8 A10 0.43 Drainage/Runoff 1989 
T9 A10 0.34 Drainage/Runoff 1989 
T10 A11 0.42 Drainage/Runoff 1991 
T11 A11 0.42 Drainage/Runoff 1991 

 
In our study, we have included data from 8 fields within block A11, plus 3 fields from 

block A10 (Table 1). Each field is about, or less than, 1 ha of surface area and is 
cultivated following a traditional winter wheat/corn crop rotation. They are equipped with 
an independent tile drainage system and surrounded by metal cuttings for hydraulic 
isolation from the other farm fields and with a collecting trap for surface runoff 
measurement (Figure 6). Tile drains are located at depth d = 0.9 m below the soil surface, 
with a spacing of 10 m (Branger et al. 2006).  
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Figure 6: Field’s scheme. The layout of the fields with their names, runoff and drainage system 
characteristics and the location of the stations where water is collected (Beard, 2005) 

Three stations where water is collected are located in the block A11 (Figure 6). The 
water is collected from drainage and runoff separately for each field. Since 2005, a small 
meteorological station is installed on the site. This station gives information on the 
temperature, evaporation, and amount of rainfall. Furthermore, from the available 
meteorological data, the following is derived: minimal, average and maximal temperature 
per day, evapotranspiration per day, and amount of rainfall per day. 

Below we describe the procedure of collecting water from the experimental site in the 
La Jaillière region. Almost all fields, except field T1 and T2, have a drainage system 
installed. The drainage pipes are located 0.9 m below the soil surface, with a spacing of 
10 m (Branger et al. 2006). All of the pipes from one field are connected in a single pipe 
that ends up at the nearest station (Figure 7).  

On the other hand, at the experimental site, there is a system for channelizing the 
runoff water or water that flows over the surface horizon. As we are able to see from 
Figure 6, with the exception of T2 and T5 fields, all the remaining fields are equipped 
with runoff traps. The runoff traps are located on lower-elevation sides along the edges of 
the fields and end up in water station, as well. 
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Figure 7: Water collection at the La Jaillière fields. Schemes for the drainage and runoff systems: 
Piège à ruissellement – Runoff traps; Réseau de drainage: Tile drainage network (Selected papers 
from ARVALIS No.11). 

 

 

Figure 8: Water collector. Drainage and runoff collectors for measuring the flow rates and 
collecting water samples (Selected papers from ARVALIS No.11). 
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One water station consists of water collectors for measuring the flow rates and 
collecting water samples (Figure 8). Water collectors are separated for drainage water and 
runoff water. In a period of flow, an average sample is taken every week from each of the 
plots and is then sent to the laboratory for analysis. Otherwise, the flow is monitored at an 
hourly time step but recorded in the database as a cumulative daily amount of water for 
runoff and drainage, separately. 

3.2  The data 

As we mentioned before, our study is based on data for the traditional agricultural 
practices performed on the fields and the amount of water flown out of the fields (the 
PCQE database), the soil properties, and the meteorological data. Hereafter, we describe 
each type of data collected at the La Jaillière experimental site. 

3.2.1  Soil properties 

Soil properties are recorded in a soil database. This database covers different types of soil 
that can be found in France. The soil properties for the La Jaillière experimental site are 
included in this database. 

Namely, each soil type registered in the database has a unique code by which some 
type of soil can be recognized. The characteristics of the soil in the La Jaillière site can be 
found under the reference PL0133500. Although soil variability has been determined at 
six points across the site, the soil in La Jaillière is referenced under the same code, as the 
variability is not sufficient to represent different types of soils on the site.  

The soil is medium loamy over clay, affected by seasonal waterlogging, which is 
evident from the grey mottles in deeper layers. Furthermore, in the subsurface layer the 
soil is slightly to moderately stony, while at the depth of about 60 cm it is getting to 
become very to extremely stony. The soil across the site varies slightly in the texture, too. 
There are small differences in the stone content of top-soils, but it is not considered 
sufficient to affect the classification of the soil profiles. 

The database contains data about the physical, hydrological and chemical 
characteristics of the soil for each horizon. The substratum is described with its nature, 
texture, consistence and level of permeability.  

3.2.2  The PCQE database 

In the present work, we used the data available in the PCQE database owned by 
ARVALIS. The complete database consists of three types of data: agricultural practices, 
water flow monitoring data, and crop protection practices. The data were collected during 
the period of 1987–2011. 

In our study, we are trying to learn a model that will predict the amount of water going 
out of the field, based on the data from the PCQE database. For the task of water flow 
prediction, we need data related to water inputs (like rainfalls and irrigation), 
evapotranspiration, crop and land management, and water outputs (like drainage and 
runoff water flow). We used only these data from the PCQE database, while data related 
to crop protection practices were excluded. Furthermore, we used the meteorological data 
presented in Section 3.2.3.   

Hereafter, we present the data related to agricultural (crop and land management) 
practices. Next, we describe the monitored flow of drained water which was considered as 
the output of our study. Finally, we describe the meteorological data considering rainfall, 
temperature and evapotranspiration.  
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3.2.2.1  Agricultural practices 

The PCQE database records all crop and land management practices that have been 
performed on the fields. Since 1987, monitoring field practices is a standard procedure in 
order to produce better data, which can be further used in experiments and analyses. Each 
record from the database describes one operation: It contains the date when operation was 
performed, the type of the operation, the materials used, and some additional information. 
Moreover, the crop present on the field where the operation was performed is monitored 
and registered in the database. In Table 2, we present the complete set of information 
collected for a performed operation. 

Table 2: Field practices. The information recorded when some agricultural practice is performed.  

Practice Field Crop present Date Material Dose 

Fertilization 
 

���� ���� ���� ���� ���� 

Irrigation 
 

���� ���� ���� � ���� 

Phytochemical 
protection 
 

���� ���� ���� ���� ���� 

Harvesting 
 

���� ���� ���� ���� � 

Tillage ���� ���� ���� ���� � 

 
The process of water flow is highly dependent on irrigation, harvesting and tillage 

practices. Therefore, these practices have been considered in the process of learning our 
model for predicting the amount of drained water flow. Although some of these practices 
are not suitable to be included directly in the process of learning the model, the problem 
has been overcome with pre-processing techniques, which will be described in Section 4. 

3.2.2.2  Water flow 

As we described before, at the La Jaillière experimental site, two types of water flow are 
observed: drainage and surface (runoff) water flow. In this study, the drainage water flow 
has been considered as the output, and runoff as an input attribute, because it is a water 
flow on the surface of the soil and it is easily noticed. In addition, during a drainage 
season, the presence of runoff can be a significant aftereffect of extreme drainage events.  

The drainage and surface runoff rates are routinely monitored at an hourly time step, 
but the data recorded in the PCQE database are based on cumulative values per day. A 
day for water flow observations is defined as the time period that starts at 00:00 
(midnight) and lasts for 24 hours. Note that the day for meteorological data is defined 
differently as we will describe in the next sub-section. Furthermore, the water flow has 
been observed for each field, separately. 

We have observations for drained water flow for each day in a campaign. A campaign 
is defined as the time period that starts on September 1st, and finishes on August 31st. A 
total of 25 campaigns were observed for each field where a drainage system is installed 
(Fields T3 – T11, Table 1). The observations for runoff are similar and are available for 
each field where runoff traps bound the field’s edges (Fields T1, T3, T4, T6 – T11).    
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Figure 9: Drainage quantity value distributions. The distribution of the drainage quantities 

over each of the 25 campaigns. The frequency is the number of days when a particular drainage 
quantity was observed. 
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Figure 9 (Continued): Drainage quantity value distributions.  
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Figure 9 (Continued): Drainage quantity value distributions.  
 

Figure 9 presents the distribution of the drainage quantity values over the 25 
campaigns for each field, separately. The x-axis depicts the possible drainage quantity 
values, while the y-axis gives the number of the days with a specific drainage quantity. 
The histograms depict the drainage quantity values and their frequencies, showing that all 
of the fields have an exponential distribution of drainage quantity values. Furthermore, in 
Table 3, we present the basic properties of the distributions. The distributions of values 
for Fields T1 and T2 are not presented because there is no drainage system installed on 
these fields. 

Table 3: Properties of drainage quantity value distributions. Basic statistics of the Drainage 
attribute given across all 25 campaign. 

Field Min Value Max Value Mean Value Standard Deviation 

T3 0 45.05 0.631 1.976 

T4 0 34.79 0.591 1.881 

T5 0 35 0.499 1.913 

T6 0 37.25 0.675 2.279 

T7 0 37.42 0.357 1.471 

T8 0 28.94 0.338 1.499 

T9 0 28.66 0.459 1.711 

T10 0 46.83 0.542 2.064 

T11 0 37.61 0.672 2.253 
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3.2.3  Meteorological data 

The meteorological data were collected from two sources. Starting from 1987, data were 
taken from Météo France, the French national meteorological agency. Météo France has a 
wide range of stations in France, some of them being in the surroundings of La Jaillière. 
Therefore, the data were collected from the nearest meteorological station to La Jaillière, 
referenced with number 4499. During the year 2005, ARVALIS installed their own 
meteorological station at the La Jaillière experimental site. Since January 1st, 2006, the 
data were collected from the ARVALIS meteorological station located at the site. 

The meteorological data are distributed as a separate database and contain information 
about the minimal, mean and maximal temperature per day, cumulative 
evapotranspiration per day and cumulative rainfall per day. It is important to note that day 
here is defined as the period that starts at 06:00 and lasts for 24 hours, which is different 
from the PCQE database, described before, where it start at 00:00.  

 

 
(a) 

 
(b) 
Figure 10: Rainfall. The rainfall quantities for 3 different campaigns. 
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(c) 

Figure 10 (continued): Rainfall. 

In Figure 10, we present the distribution of rainfall over three campaigns, where each 
graph showing one campaign. One campaign is a period that starts on September 1st, and 
finishes on August 31st, the following year. One campaign is representative for one 
agricultural season. Each chart in Figure 10 is plotted from daily cumulative rainfalls 
measured in mm and stored in the meteorological database by ARVALIS. The 3 
presented campaigns are: 1987/1988, 1997/1998 and 2007/2008. 

In addition, Figure 11 presents the average temperature per day and evapotranspiration 
per day for three campaigns 1987/1988 (Figure 11a), 1997/1998 (Figure 11b) and 
2007/2008 (Figure 11c). It is worth mentioning that evapotranspiration is a derived value, 
which depends on temperature. On the charts, it is easy to perceive the dependence 
between temperature and evapotranspiration. 

 

 
(a) 
Figure 11: Average temperature and evapotranspiration. The average temperature and 
evapotranspiration for 3 different campaigns. 
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(b)  

 
(c) 

Figure 11 (continued): Average temperature and evapotranspiration.  

3.3  Drainage seasons 

Within a campaign, a few periods can be identified during which extreme drainage events 
are registered. These periods are named drainage seasons. Usually there are two drainage 
seasons during a campaign: a winter and a spring drainage season. Given the names of the 
drainage seasons, it is easy to roughly define the time of their appearance, but the 
beginning and ending days of the winter and spring drainage seasons are not the same 
with the starting and ending days of the summer and winter seasons. Instead, there are 
some rules and conditions for defining a drainage season.  

Based on their experience, the domain experts (B. Real & J. Maillet-Mezeray) defined 
a rule for the start of the winter drainage season. Namely, the winter drainage season 
starts on a day when the cumulative amount of drained water since the start of the 
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campaign (September 1st) exceeds the threshold of 5 mm.  The end of the winter drainage 
season depends on several conditions, but only one is well defined: a winter drainage 
season finishes when the cumulative amount of drained water in the previous 7 days has 
not exceeded the threshold of 1 mm. On the other hand, the actual dates obtained for the 
start and the end of a drainage season according to these rules, are not the same as those 
obtained from the experts. Therefore, we analyzed the dates obtained from the experts in 
order to extract new knowledge which is related to the conditions for defining the start 
and the end of a drainage season. The dates obtained from the experts are given in a data 
set which is presented in Appendix A. It contains the dates for the start and the end of the 
drainage periods for each field, for each campaign in the period 1987–2011. 

 

3.4  Expert knowledge 

In this study, we have considered that the available expert knowledge (EK) provided in 
the form of tables should be taken into account and integrated in the process of learning a 
predictive model from data. Therefore, besides using the data described in the previous 
sub-section, the process of learning predictive models for predicting the drained water 
flow from a field has been supported by the available expert knowledge. The available 
expert knowledge is manually formulated in the form of decision rules and written in 
tables. It is an integral part of the Aquanouveau system owned by ARVALIS - Institut du 
Vegetal. 

The complete structured expert knowledge contains 7 modules. In our study, we will 
use Module 1, Module 2, Module 4 and Module 6 (Figure 12). But, for this particular 
thesis we focus our attention on the tables from Module 1 and 2 only. These concern the 
diagnosis of water flows from the fields. 

 

Figure 12: The scheme of the Aquanouveau system. The modules of the available expert 
knowledge written in the form of decision rules in tables and their interactions. 

Module 1 consists of decision rules that assess the risk of different types of water flow 
from a field, which is cultivated with none of the known agricultural practices. The types 
of water flow considered in Module 1 are: runoff, lateral seepage (sub-surface flow), 
infiltration and erosion.  

Unlike Module 1, Module 2 refers to assessing the risk of water flow from both 
cultivated and uncultivated fields. The fields with a drainage network installed are 
considered in Module 2. Therefore, we include the rules from Module 2 in the process of 
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learning predictive models for predicting drained water flow. 
Namely, Module 2 contains 34 partial tables (such as the one given in Table 4), 

divided in 3 parts depending on the weather season: autumn-winter, spring and summer. 
Beside these tables, Module 2 contains some additional information, given in textual 
documents, which will be used as input attributes. The complete process of using the 
available expert knowledge is described in the Section 4. 

Table 4: Part of the EK. Assessment of the types of flow in the soil in summer, on permeable 
substrate with break in permeability, with drain performing poorly and with plough pan 

Depth of 
permeability 
disruption 

Cracks Lateral seepage  
on plough pan by 
cracks 

Infiltration by 
cracks 

Transfer by drainage 

<40 No Nonsense Nonsense Nonsense 
<40 Yes Nonsense Nonsense Nonsense 
40 to 80 No Null Null Null 
40 to 80 Yes Low High Low 
> 80 No Null Null Null 
> 80 Yes Null High Low 
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4  Data preprocessing 

The pre-processing phase starts with the tasks of available expert knowledge and 
converting these partial tables and accompanying text into a single table. A single table is 
a suitable format to use machine learning techniques in order to restructure the expert 
knowledge.  

The phase continues in the direction of database manipulation and data pre-processing. 
First, a feature set must be defined from the available data. Second, feature ranking and 
feature selection are performed in order to achieve a reduced feature set. The reduced 
feature set contains only attributes that are most relevant for the given problem. Finally, 
the pre-processing phase finishes by completing the feature set with features that describe 
the soil properties and some additional features recommended by the experts. 

4.1  Expert knowledge pre-processing 

As mentioned before, the expert knowledge is hand-crafted and all of the modules are 
distributed in the form of documents (ARVALIS internal report 1 from the IDV024 
project). The documents contain text, which gives additional information that will be used 
as input attributes (Table 4). Furthermore, the hand-crafted rules are divided in 3 groups. 
Each group represents one weather season (autumn-winter, spring and summer). 

In the first stage, techniques for feature engineering i.e. invention have been employed 
and new features have been introduced into the set of rules. These features were derived 
from the available information present in the text within the documents. Some invented 
features contained complex information. Such complex information can usually be 
represented by two or more features. Therefore, we used the pre-processing technique of 
feature extraction to represent these types of information contained in the complex 
features.  

 Table 5: Propositionalization of the expert knowledge. An example of the features constructed 
from the text and feature extracted from complex valued features.  

Season Soil Type Permeability Cracks in permeability 

Autumn-
Winter 

Permeable substrate with 
cracks in permeability 

Yes Yes 

Autumn-
Winter 

Impermeable substrate with 
cracks in permeability 

No Yes 

Spring Permeable substrate with 
cracks in permeability 

Yes Yes 

Spring Impermeable substrate with no 
cracks in permeability 

No No 

Summer Permeable substrate with 
cracks in permeability 

Yes Yes 

Summer Impermeable substrate with 
cracks in permeability 

No Yes 

Summer Permeable substrate with no 
cracks in permeability 

Yes No 
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For example, the introduced feature “SoilType” has a complex value, which contains 
information of the permeability of the soil and the presence or absence of cracks in 
permeability (Table 5). 

The phase of pre-processing the rules resulted in a dataset that contains all available 
partial tables provided by the expert and all important additional information given in the 
text documents. The last step of the rule preparation is the simple step of adding the 
already existing features, defined in the tables of expert knowledge. The number of 
instances, input and target attributes of the complete dataset are given in Table 6. 

 Table 6: Complete dataset constructed from the available expert knowledge. A quantitative 
description of Modules 1 & 2 of the available expert knowledge.  

 Module 1 Module 2 
No. of tables 12 34 
No. of input attributes 12 13 
No. of target attributes 11 12 
No. of instances 312 6816 

 
The final dataset is a single table that contains all the information that has been 

provided by the experts. This format is suitable for further processing of the expert 
knowledge, which includes the restructuring of the expert knowledge in the form of 
decision trees. Finally, the restructured expert knowledge has been validated with 100% 
correctly classified examples over the training set, due to the fact that it will not be used 
for classification of new examples, but only optimized for further integration 
(Kuzmanovski et al., 2012). We present the results of the completed processing of the 
expert knowledge in Section 7.3. 

4.2  Database pre-processing 

The data is stored in a relational database system, which represents information about the 
entities and the relationships among them. The representation of the entities and their 
relationships is in form of relational tables that consists of rows and columns. The rows 
and columns represent examples and features, respectively.  

First of all, we transformed all of the relational tables into one single table. This format 
is suitable for the further use of machine learning techniques. Then, we introduced new 
attributes from the existing once with the purpose of generating attributes that will 
describe the output in the best way. Finally, with feature ranking and feature selection 
techniques, we defined the final feature set, which describes the dependent variable or the 
target attribute, in the best way. 

4.2.1  Independent variables 

In this sub-section, we describe the explanatory or independent variables that have been 
defined from the data in the PCQE database. Next, we present the extraction of the 
meteorological data. Finally, we present the data from the soil properties database that has 
been included in the dataset. 

4.2.1.1  Crop management and agricultural practices 

Since the problem has been defined as the problem of predicting drained water flow per 
day, it is clear that the basic time step is one day. Therefore, one example (also referred to 
as an instance or record) was defined as a vector of feature recordings for one day. The 
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first day recorded in the dataset was September 1st, 1987, while the last day that will be 
considered in the analyses and recorded in the database is August 31st, 2011. Moreover, 
each day in a campaign has been recorded in the PCQE database. Therefore, we have 
examples for each day in a campaign. Data for 22–25 campaigns were available from the 
PCQE database, for each of the 11 fields in the La Jaillière experimental site. 

In total, 96426 examples were extracted from the relational PCQE database. Moreover, 
from the information extracted before, four features were introduced: Field, Campaign, 
Date, and Day (in a campaign). The Date and Campaign, which identify a day and the 
corresponding data record, due to possibility of overfitting, have been considered as 
features, only during the preprocessing phase and have been excluded from the dataset in 
the experimental phase of applying machine learning. 

All operations and practices performed on the field are recorded in a separate relational 
table in the PCQE database. As described before, the following 4 main practices have 
been recorded in the database since the experimental site has been established: tillage, 
irrigation, plant protection, and harvesting. Under tillage, the practices of sowing and 
ploughing were considered. Moving and production are recorded as a part of general 
harvesting practice.  

Each of the practices performed on the field is saved in the PCQE database, together 
with the date and the material used. Therefore, we have information of what crop is found 
on the field on each day that a practice is performed. That crop is on the field during the 
time period between the sowing and harvesting dates. This led to the introduction of a 
new feature into the dataset.  

The crop has a different influence on the water in the soil in different periods after 
sowing. Because of this, a crop development coefficient has been introduced as a new 
feature in the dataset, which describes the amount of water that the crop takes from the 
soil, while the crop is present on the field. The crop development coefficient depends on 
the type of the crop (Table 7). The list of all explanatory (independent) variables that have 
been defined from the data of PCQE database is given in Table 8.  

   Table 7: Crop development coefficient. This coefficient expresses the water taken by a crop at 
different stages of crop development, i.e. at different months during the year. 

Crop 1 2 3 4 5 6 7 8 9 10 11 12 
Wheat 1.00 1.00 1.00 1.10 1.20 1.10 0.70 0.60   0.60 0.80 
             
Maize     0.60 0.80 1.15 1.15 0.90 0.90 0.80 0.70 
             
Spring 
barley 

  0.60 1.00 1.10 1.20 0.70 0.60 0.60    

Table 8: Features constructed from PCQE database. Features defined by the data from the PCQE 
database and included in the constructed dataset. 

Source Feature Description 
PCQE database Field Name of the field 
 Campaign  A campaign is the period from September 1st, and 

finishes August 31st, following year. 
 Date  
 Day The consecutive day in the campaign, 1st of 

September being the first day.  
 Crop Crop that is on the field at the time of observation. 
 CDCoef Crop development coefficient 
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4.2.1.2  Meteorological and water input data 

The meteorological data are available in separate database. The time step is a day, as for 
the transformed data from the PCQE database. Therefore, no additional transformation 
was needed in order to incorporate the meteorological data in the constructed dataset. 

The process of water flow through the soil mostly depends on the water input as well 
as the crop and soil properties. The defined water input is described through the rainfall, 
irrigation and evapotranspiration (Figure 13). On its way from the input to the output, i.e. 
during its flow through the soil, the water is delayed. The delay is different for different 
geographical regions and soils. Therefore, we do not have exact information about the 
delay. This means that data about the input in the previous periods are required in order to 
approximate the time delay using machine learning and data mining techniques. Hence, 
we included the daily and cumulative water input information for several periods of time: 

� 1 day ago (yesterday) 
� 2 day(s) ago 
� 3 day(s) ago 
� 4 day(s) ago 
� 5 day(s) ago   

  

 

Figure 13: The water cycle for a field. The roles of rainfall, irrigation and evapotranspiration in 
the global water cycle (http://en.wikipedia.org/wiki/Evapotranspiration). 
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The water input, as described above, includes data on the cumulative amount of 
rainfall per day, cumulative evapotranspiration per day, and cumulative amount of 
irrigation per day. 

A comprehensive survey of the literature on the topic of water flow through the soil 
(referenced in background section) emphasizes that temperature influences the process of 
water flow and the amount of water that stays in the soil. The temperature is included in 
the calculation of the evapotranspiration, as we noted in the temperature and 
evapotranspiration charts, where we mentioned that there was a linear dependence 
between temperature and evapotranspiration values.  However, we include the average 
temperature per day and the averages from previous periods (days) in the dataset. The 
temperature for the previous periods are calculated in the same way as the water input, 
but instead of cumulative values, for temperature we used average values per day.  

Furthermore, beside the temperature and water input, the experts recommend that 
runoff should be considered as an input variable. Although, in reality, runoff is a product 
of saturated or capping soil, we considered that it gives important information about the 
drained water. Namely, when runoff appears on the surface of the soil because of soil 
saturation, then in the soil the drained water is flowing with full capacity. There are 
certain exceptions of this but until now we considered this to be sufficient information, 
which can bring some improvements to the learned predictive model.    

4.2.1.3  Soil properties data 

The soil at the La Jaillière experimental site is uniform. Therefore, this data will not give 
any advantages in the process of learning the predictive model. Hence, it is excluded from 
the process of learning from data, but will be considered when expert knowledge is 
integrated within the learned predictive model.   

The only relevant information from the soil properties is the slope. Namely, each field 
has a different slope of the surface layer. Therefore, the slope is included in the 
constructed dataset.  

4.2.2  Dependent variables 

In this thesis, we consider the drained water flow as a dependent variable or target 
attribute.  

The literature referenced in the introductory section, describes the process of drained 
water flow as a continuous process. Hence, the present state of the drained water is related 
to the previous states (Figure 14). Therefore, we include the data about the drained water 
flow at the previous time points as independent or descriptive variables. The previous 
values of drained water flow were derived by the same scheme as we derived features 
from meteorological data. This means that we include data for drained water for: 

� 1 day ago (yesterday) 
� 2 days ago 
� 3 days ago 
� 4 days ago 
� 5 days ago 

This completes the feature set for the constructed dataset. The complete list of 
attributes that were ranked by the feature ranking techniques is presented in Table 9. 
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Table 9: Features of the constructed dataset. Features derived from the different databases and 
included in the constructed dataset. 

Source Feature Description 
PCQE database Field Name of the field 
 Campaign  A campaign is the period from September 1st of the 

current year, and finishes August 31st, of the 
following year. 

 Date  
 Day The consecutive day in the campaign, 1st of 

September being the first day. 
 Crop Crop that is on the field at the time of observation. 
 CDCoef Crop development coefficient 
 Irrigation Today's amount of irrigation 
 IrrigationN1 Yesterday's amount of irrigation 
 IrrigationN2 Amount of irrigation 2 days ago 
 IrrigationN3 Amount of irrigation 3 days ago 
 IrrigationN4 Amount of irrigation 4 days ago 
 IrrigationN5 Amount of irrigation 5 days ago 
 IrrigationA1 Cumulative irrigation for today and yesterday 
 IrrigationA2 Cumulative irrigation for today and the 2 days before 
 IrrigationA3 Cumulative irrigation for today and the 3 days before 
 IrrigationA4 Cumulative irrigation for today and the 4 days before 
 IrrigationA5 Cumulative irrigation for today and the 5 days before 
 Runoff Today's measured runoff 
 RunoffN1 Yesterday's measured runoff 
 RunoffN2 Runoff measured 2 days ago 
 RunoffN3 Runoff measured 3 days ago 
 RunoffN4 Runoff measured 4 days ago 
 RunoffN5 Runoff measured 5 days ago 
 RunoffA1 Cumulative runoff for today and yesterday 
 RunoffA2 Cumulative runoff for today and the 2 days before 
 RunoffA3 Cumulative runoff for today and the 3 days before 
 RunoffA4 Cumulative runoff for today and the 4 days before 
 RunoffA5 Cumulative runoff for today and the 5 days before 
 DrainageN1 Yesterday's measured drained water 
 DrainageN2 Drained water measured 2 days ago 
 DrainageN3 Drained water measured 3 days ago 
 DrainageN4 Drained water measured 4 days ago 
 DrainageN5 Drained water measured 5 days ago 
   
Soil properties Slope Slope of the observed field  
   
Meteorological 
data 

Temp Today's temperature 
TempN1 Yesterday's temperature 

 TempN2 Temperature measured 2 days ago 
 TempN3 Temperature measured 3 days ago 
 TempN4 Temperature measured 4 days ago 
 TempN5 Temperature measured 5 days ago 
 TempA1 Average temperature for today and yesterday 
 TempA2 Average temperature for today and the 2 days before 
 TempA3 Average temperature for today and the 3 days before 
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Table 9 (continued): Features of the constructed dataset. 
 TempA4 Average temperature for today and the 4 days before 
 TempA5 Average temperature for today and the 5 days before 
 Evp Today's evapotranspiration 
 EvpN1 Yesterday's evapotranspiration 
 EvpN2 Evapotranspiration measured 2 days ago 
 EvpN3 Evapotranspiration measured 3 days ago 
 EvpN4 Evapotranspiration measured 4 days ago 
 EvpN5 Evapotranspiration measured 5 days ago 
 EvpA1 Cumulative evapotranspiration for today and 

yesterday 
 EvpA2 Cumulative evapotranspiration for today and the 2 

days before 
 EvpA3 Cumulative evapotranspiration for today and the 3 

days before 
 EvpA4 Cumulative evapotranspiration for today and the 4 

days before 
 EvpA5 Cumulative evapotranspiration for today and the 5 

days before 
 Rainfall Today's rainfall 
 RainfallN1 Yesterday's rainfall 
 RainfallN2 Rainfall measured 2 days ago 
 RainfallN3 Rainfall measured 3 days ago 
 RainfallN4 Rainfall measured 4 days ago 
 RainfallN5 Rainfall measured 5 days ago 
 RainfallA1 Cumulative rainfall for today and yesterday 
 RainfallA2 Cumulative rainfall for today and the 2 days before 
 RainfallA3 Cumulative rainfall for today and the 3 days before 
 RainfallA4 Cumulative rainfall for today and the 4 days before 
 RainfallA5 Cumulative rainfall for today and the 5 days before 
   
Target variable Drainage Today's amount of drained water, to be predicted 
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5  Methodology 

Machine learning is one of the most active research areas in the field of artificial 
intelligence. It studies computer programs that automatically improve with experience 
(Mitchell, 1997). It also has numerous applications in the field of environmental and 
agricultural sciences (Debeljak and Džeroski, 2011). 

In general, there are two types of learning: inductive and deductive learning (Machine 
learning, 2012). Inductive machine learning methods extract knowledge and patterns out 
of massive data sets. Deductive learning explains the rules and patterns and gives 
characteristic information about the data. Furthermore, inductive learning can be 
supervised or unsupervised, depending on the pattern that is presented as an outcome of 
the learning process.  

Supervised inductive learning is the machine learning approach to learn a model from 
a set of data. It is also referred to as predictive modeling. The main assumption is that the 
future can be predicted only if the past or history is considered. The history is described 
with examples or instances which represent rows in a dataset. Each example is 
characterized with a set of features (attributes) that represent columns in a dataset.  The 
features create the feature space, i.e. the space of independent properties of a given 
problem. Supervised learning assumes that each learning example includes some 
dependent property (attribute), and the goal is to learn a model that accurately predicts 
this property. Unsupervised learning aims to find hidden knowledge among data and 
examples, such as clusters, independently from a target attribute. 

The data are usually given as a set of examples. An example represents one 
observation, object or measurement. Each example is described with a set of values of the 
attributes. The attributes can be continuous or discrete if they have numeric or nominal 
values, respectively.  

A dependent variable is a property of interest that is associated with each example. 
Therefore, the typical machine learning task is to learn a model from a training dataset 
with the aim of predicting the value of the dependent variable for unseen examples. 

In this study, the machine learning task is to learn a model that will be able to 
accurately predict the drained water flow from a field. The Machine Learning (ML) 
methodology includes regression and model trees, ensemble methods and learning 
polynomial equations. The data analysis is done by using these predictive modeling 
approaches implemented in the Waikato Environment for Knowledge Analysis (WEKA) 
(Witten and Frank, 2005), the Predictive Clustering System (CLUS) (Struyf and 
Džeroski, 2005), and the CIPER system for learning polynomial equations (CIPER) 
(Todorovski et al., 2004). 

5.1  Decision trees 

Decision tree learning is one of the most widely used and practical methods for inductive 
learning. As predictive model it uses decision trees, which map observations about an 
item to conclusions about the item's dependent value. Namely, it is a method for 
approximating target variables with discrete values and represents the learned function in 
form of a decision tree (Mitchell, 1997).  
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A decision tree is a classifier expressed as a recursive partition of the instance space. 
The decision tree consists of edges and nodes that form a rooted tree. This is a directed 
tree, with a node called a “root” that has no incoming edges. All other nodes have exactly 
one incoming edge. A node with outgoing edges is referred to as an “internal” or “test” 
node. All other nodes are called “leaves” (also known as “terminal” or “decision” 
nodes).A node is labeled by an attribute name and an arc by a valid value of the attribute 
associated with the node from which the arc originates. Each leaf is labeled by a class 
(value of the target attribute). In the decision tree, each internal node splits the instance 
space into two or more sub-spaces according to a certain discrete function of the input 
attribute values. In the simplest and most frequent case, each test considers a single 
attribute, such that the instance space is partitioned according to the attributes value. In 
the case of numeric attributes, the condition refers to a range. 

Decision tree induction algorithms (Table 10) are algorithms that automatically 
construct a decision tree from a given dataset. Typically the goal is to find the optimal 
decision tree by minimizing the generalization error. However, other target functions can 
be also defined, for instance, minimizing the number of nodes or minimizing the average 
depth of the tree.  

Table 10: Algorithm for Decision Trees. Top-Down Algorithmic Framework for Decision Trees 
Induction (Rokach and Maimon, 2008) 

TreeGrowing (S,A,y,SplitCriterion,StoppingCriterion) 
Where: 
S - Training Set 
A - Input Feature Set 
y - Target Feature 
SplitCriterion - the method for evaluating a certain split 
StoppingCriterion - the criteria to stop the growing process 
Create a new tree T with a single root node. 
 IF StoppingCriterion(S) THEN 
  Mark T as a leaf with the most common value of y in S as a label. 
 ELSE 
  ∀ai ∈ A find a that finds the best SplitCriterion(ai, S). 

Label t with a 
FOR each outcome vi of a: 
 Set Subtreei= TreeGrowing (σa=vi S, A, y). 

Connect the root node of tT to Subtreei  
with an edge that is labelled with vi 

END FOR 
 END IF 
RETURN TreePruning (S,T ,y) 
TreePruning (S,T ,y) 
Where: 
S - Training Set 
y - Target Feature 
T - The tree to be pruned 
DO 

Select a node t in T such that pruning it  
maximally improves some evaluation criteria 
IF t != Ø THEN T = pruned(T, t) 

UNTIL t = Ø 
RETURN T  
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Most algorithms that have been developed for learning decision trees are variants of a 
core algorithm that employs a top-down, greedy search thought the space of possible 
decision trees. This approach is exemplified by the ID3 algorithm (Quinlan, 1986) and its 
successor C4.5 (Quinlan, 1993). A simplified version of the top-down algorithm for 
learning decision trees by using growing and pruning is presented in Table 10. 

5.2  Classification, Regression and Model trees 

The problem of predictive learning can be viewed as a problem of finding a function 
that maps each point from the input/instance space to a point in output/target space. The 
construction of the function that will map the input values to output values requires a 
history in the form of example pairs of input/output values.  

The tasks of classification and regression are the two most commonly addressed tasks 
in machine learning. They are concerned with predicting the value of the dependent 
variable (class or target) based on the values of explanatory variables (attributes). If the 
target is continuous, the task is called regression. If the target is discrete-valued, the task 
is called classification.  

In both cases, a set of data is taken as input, and a predictive model is learned. The 
model can be in the form of decision trees that are referred to as classification and 
regression trees, if the problem solved is a classification or regression problem, 
respectively. Furthermore, the problem of regression can be addressed with linear 
regression model or with regression trees, the leaves of which can also be in the form of 
linear regression models. This type of a regression tree is called a model tree. 

Model trees have leaves with linear regression functions. The regression models in the 
leaves represent a linear dependence between the descriptive variables and the target 
variable. Unlike regression trees, where the prediction of a leaf is a real value, model trees 
require an additional step to give result in real value predictions. This complexity of 
model trees is one of the disadvantages, and the reason to use regression tree instead of 
model trees. On the other hand, model trees have an advantage over regression trees in 
terms of predictive accuracy. Furthermore, the model trees are able to make predictions 
outside the range of the target attribute in the training examples, which is not the case 
with regression trees.   

Several methods have been proposed for the construction of regression and model 
trees. Some of them have been implemented in some well-known tree induction systems 
such as M5 (Quinlan, 1992), RETIS (Karalic, 1992) and M5’ (Wang and Witten, 1997). 
Regarding the problem of classification, the commonly used decision tree approach is the 
C4.5 algorithm (Quinlan, 1993). In this study, we use the J48 java implementation of the 
C4.5 algorithm provided within the WEKA (Witten and Frank, 2005) data mining suite. 
Furthermore, we also used the M5’ regression and model trees implemented in the 
WEKA data mining suite (Witten and Frank, 2005), and the CLUS system (Struyf and 
Džeroski, 2005).    

5.3  Ensembles 

Ensemble methods are machine learning methods that construct a set of predictive models 
and combine their outputs into a single prediction. In the literature they are also referred 
to as multiple classifier systems, committees of classifiers, classifier fusion, combination 
or aggregation (Džeroski et al. 2008). The main idea is to follow the behavior of wise 
people when making critical decisions. Namely, they usually take into account the 
opinions of several experts rather than relying on their own judgment or that of a single 
trusted advisor. The same principle is followed by ensemble methods: learning the entire 
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set of models and then combining their predictions. This approach is computationally 
more expensive than learning just one simple model, but the predictions are usually more 
accurate. 

There are several reasons why ensemble methods are useful and have more prominent 
predictions. From a statistical point of view, when we learn a model on the learning data 
it can result in, more or less, good predictive performance on the learning data. However, 
even if this performance is good, this does not guarantee good performance on unseen 
data. Therefore, when learning single models, we can easily end up with a bad model 
(although there are evaluation techniques that minimize this risk). By building ensembles, 
taking into account several models, and averaging their predictions, we can reduce the 
risk of selecting a very bad model. 

Another reason why ensemble methods are useful is the lack of data. Very often, we 
are facing the need of learning a model from a very small dataset. As a result, the learned 
model can be unstable, i.e. can drastically change if we add or remove just one or two 
examples. A possible remedy to this problem is to draw several overlapping subsamples 
from the original data, learn one model for each subsample, and then combine their 
outputs. 

In addition, complex data sources could be a problem, as well. Namely, in some cases, 
we have data sets from different sources where the same types of objects are described in 
terms of different attributes. It can be very difficult to learn a single model with all of 
these attributes. However, we can train a separate model for data from each source and 
then combine them. In this way, we can also emphasize the importance of a given data 
source, if we know, for example, that it is more reliable than the others. 

An ensemble method constructs a set of predictive models (also referred to as 
ensemble) (Dietterich, 2000). It gives a prediction for a new instance by combining the 
predictions of its models for that instance. The outputs from the set of models can be 
provided by majority voting or by averaging in the case of regression. 

The learning of ensembles consists of two steps (Džeroski et al. 2008). In the first step, 
we have to learn the base models that make up the ensemble. In the second step, we have 
to figure out how to combine these models (or their predictions) into a single prediction.  

The base models need to be diverse, i.e. make errors on different learning examples. 
Combining identical or very similar models clearly does not improve the predictive 
accuracy of the base models. Moreover, it only increases the computational cost of the 
final model. By learning diverse models, their predictions can be combined in a smart 
way and the resulting prediction can be more accurate. 

Once the set of diverse models is generated, their outputs need to be combined so that 
a single prediction can be obtained from the ensemble. The combination of the outputs 
can be performed in two different ways, by selection or by fusion. In model selection, the 
performance of the outputs of each base model is evaluated. The prediction of the base 
model that showed best performance is taken as the prediction of the ensemble. On the 
other hand, with model fusion, a real combination of the outputs of base models is 
considered.  

The most commonly used technique for combining model outputs is voting. Namely, 
voting combines the predictions of the base models according to a static voting scheme, 
which does not depend on the learning data or on the base models. It corresponds to 
taking a linear combination of the models. The simplest type of voting is the plurality 
vote (also called majority vote), where each base model casts a single vote for its 
prediction. The output that collects most votes is the final prediction of the ensemble. 

Several machine learning techniques have been developed to learn an ensemble of 
models and use them in combination. Most prominent among these are the schemes called 
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bagging (Breiman, 1996), boosting (Freund and Schapire, 1996), and random forests 
(Breiman, 2001). 

Random forests (Breiman, 2001) is an ensemble method which generates a set of trees. 
The diversity between generated base models is obtained from two main sources: by 
using the bagging scheme and by changing the set of attributes during the learning 
process (Džeroski et al. 2008). Furthermore, during the stage of combining base models, 
it uses an aggregation scheme, i.e. majority voting and averaging for classification and 
regression, respectively.  

During the learning process, at each node in the tree, a random subset of the input 
attributes is considered and the best split is selected from this subset. Namely, instead of 
considering all possible splits, the random forest method searches for an optimal attribute 
split within a small subset of randomly selected attributes. The best one is chosen from 
this subset.  

Random forests also provide an estimate of which variables are important, at the same 
time generating an internal unbiased estimation of the generalization error as the forest 
building progresses. It has an effective method for estimating missing data and maintains 
accuracy when a large proportion of the data are missing. The generated forest can be 
saved for future use on other data and offers an experimental method for detecting 
variable interactions. 

Random forests are a robust and typically very accurate ensemble method applicable to 
classification and regression problems. Furthermore, this method can be used for ranking 
the attributes in an attribute set. However, random forests can also suffer from the task of 
learning from an imbalanced training data set. As it is constructed to minimize the overall 
error rate, it will tend to focus more on the prediction accuracy for the majority class, 
which often results in poor accuracy for the minority class. 

5.4  Polynomial equations 

Polynomial equations are simple models that can be highly accurate on standard 
regression tasks. Despite the fact that piecewise regression models prevail over simple 
once, the simple polynomial equations can be induced efficiently and have competitive 
performance with piecewise models.  

The method for inducing polynomial equation is called CIPER – Constrained 
Induction of Polynomial Equations for Regression (Todorovski et al., 2004). The method 
performs heuristic search through the set of candidate polynomial equations to find the 
one that has an optimal value of the heuristic function. The heuristic function is based on 
minimal description length principle and combines the degree of fit of the model to the 
data with model complexity. CIPER can be viewed as a kind of stepwise regression 
method for inducing polynomial equations (Todorovski et al., 2004). 

The CIPER method allows constrained induction. The constraints that can be specified 
are related to the size of the equations. Furthermore, the right-hand side of the polynomial 
equation can be constrained with the maximum depth of a single term and maximum 
number of terms. In addition, the induced polynomial equations can be constrained with a 
sub-polynomial and super-polynomial. However, we do not use the constrained-learning 
capabilities of CIPER in our analyses.  

The CIPER method is implemented in the C++ programming language. 

5.5  ReliefF 

In our study we used ReliefF for selection of the most prominent features among the 
previously defined feature set.  



40 Methodology 
 

ReliefF (Relief-F) is a successful estimator of feature relevance. It is trying to solve the 
problem of estimating the quality of attributes (features), which is an important issue in 
the machine learning. It has commonly been viewed as feature subset selection method 
that is applied in a prepossessing step before the model is learned (Kira and Rendell, 
1992). It is one of the most successful preprocessing algorithms (Dietterich, 1997). 

ReliefF is actually a general feature estimator and has been used successfully in a 
variety of circumstances. It can be used to select splits in the building phase of decision 
tree learning (Kononenko et al., 1997) or as an attribute weighting method (Wettschereck 
et al., 1997). The basic idea of the ReliefF algorithm is to estimate the quality of given 
attributes according to how well their values distinguish between instances that are near 
each other. The algorithm is very robust and can deal with incomplete and noisy data.  

The ReliefF algorithm randomly selects an instance and then searches for k nearest 
neighbors from the same class. These k nearest neighbors are called nearest hits. The 
algorithm then searches for k nearest neighbors from each of the other classes. These 
neighbors are called nearest misses. The last step in an iteration of the process is to update 
the quality estimation array for all attributes depending on their values for the selected 
instance. The quality estimation for one attribute is calculated as the difference between 
hits and misses during the given iteration. Furthermore, the whole process is repeated m 
times, where m is a user-defined parameter. 

5.6  Evaluation 

Given a set of data, only a part of it is typically used to learn a predictive model. This part 
is referred to as the training set. The remaining part is reserved for evaluating the 
predictive performance of the learned model and is called the testing set. The testing set is 
used to estimate the performance of the model on unseen data. 

More reliable estimates of the performance on unseen data are obtained by using cross-
validation, which partitions the entire data available into n (in this study n is set to 10) 
subsets of approximately equal size. Each of these subsets is in turn used as a testing set, 
with all of the remaining data are used as training set. The performance figures for each of 
the testing sets are averaged to obtain an overall estimate of the performance on unseen 
data. 

For assessing the performance of the predictive models we used the measures of Root 
Mean Squared Error (RMSE), Root Relative Squared Error (RRSE) and the correlation 
coefficient. Namely, RMSE is a frequently-used measure of the differences between the 
values predicted by the model and the values actually observed from the experiments 
being modeled. The RRSE is an accuracy measure of the differences between the 
predicted and measured values relative to the standard deviation of the target variable. 
Finally, in statistics the correlation coefficient indicates the strength and direction of a 
linear relationship between two random variables, while in machine learning it indicates 
the linear relationship between the predicted and measured values of the target variable.
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6  Experimental setup 

Our task consists of building models for predicting the drained water flow from a field by 
using machine learning algorithms, and validating the models by using standard 
validation techniques. The problem requires the use of techniques that can learn an 
accurate model that is simple and understandable. Furthermore, the available expert 
knowledge gives us a possibility of model validation. Therefore, the solution proposed in 
the thesis generates outputs that are adjusted to local specifics (like soil properties, 
surface properties and agricultural practices) and validated by expert knowledge. 

The general scheme for our experimental setup is shown in Figure 14. It presents all 
phases and steps of performing machine learning experiments that which will be 
described in the following sub-sections. 
 

 

Figure 14: Experimental setup. The overall scheme of the machine learning experiments 
performed in our study. 
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For the purposes of integration of the available expert knowledge, in the first stage we 
consider its restructuring in a format suitable for further integration. Next, we present the 
process of feature selection and feature set creation from the available dataset and the 
defined features. Next, the learning of predictive models from data is explained. Finally, 
the integration of the expert knowledge with predictive modeling from data is described. 

6.1  Restructuring the expert knowledge 

The first step in the integration of the expert knowledge with the learned predictive 
models for water flow is the restructuring of the available expert knowledge into decision 
trees. The available expert knowledge is structured in the form of decision rules stored in 
tables. This format is inappropriate for the methodology that we are trying to develop, 
which is based on integration of the learned data mining models with the available expert 
knowledge. Therefore, we restructure the expert knowledge in the form of decision trees. 
We chose decision trees because they are the most appropriate type of model for realizing 
the integration with the CLUS tool. The integration will be described in Section 7.   

First of all, the decision rules from all tables were stored in one single table. The 
complete size of the created dataset is shown in Table 6. Next, we used the WEKA suite 
to build a model that covers all the existing decision rules. The coverage space is 
estimated to 100 % accuracy over training dataset. This means that for each possible rule 
there is a path through the decision tree that gives the correct value of the target attribute, 
in this case the intensity of drainage water flow. 

6.2  Learning predictive models 

The next task was to predict the amount of drained water in a field per day. For this task, 
we were able to either use the whole dataset or choose a field and learn models only from 
the data of the selected field. Moreover, according to the experts, the prediction of drained 
water flow is more suitable when only the drainage seasons are considered.  

A drainage season is a period of intensive drainage events that roughly lasts until the 
first week that is registered without a drainage event. Visually, drainage seasons cover the 
extremes on a chart of drainage events and can appear during winter and spring. 
Therefore, we have two main scenarios within this phase: (1) learning a predictive model 
for a campaign and (2) learning a predictive model for a drainage season.  

The phase of learning a predictive model for a drainage season includes the learning of 
predictive models for predicting the start and the end of the winter drainage seasons. 
Namely, there is a simple expert rule for determining the start of the winter drainage 
period, which states that the winter drainage period starts when the cumulative drainage 
from the start of the agricultural season (September 1st – August 31st) reaches 5 mm. 
However, the quantity of drained water is measured in an experimental setting, and the 
analyses on the field are expensive so that the farmers usually do not have any measured 
data for the drained water. Therefore, we need to predict the start of the winter drainage 
period from data that are easily obtainable, such as meteorological data. 

The meteorological data (rainfall, temperature, evapotranspiration) have been already 
introduced and were provided for each field and each day for the period 1987–2011. For 
the purpose of this study, we used only rainfall and temperature data. For explanatory 
purposes we introduced two new attributes based on the existing ones: “Rainfall_Cumul” 
which describes the cumulative amount of rainfall for each day since the beginning of a 
campaign (September 1st); and “Temp_weekly_avg” which keeps information about the 
average temperature in the previous 7 days.  

 
The target variable has been constructed with two possible values: no_drainage – in 
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case when a winter drainage season has not started yet; and start_drainage for the days 
within a winter drainage season. 

For the second study, prediction of the end of a winter drainage season, there are no 
clearly defined conditions. Therefore, we used data mining and machine learning 
techniques to find some regularity in the data and obtain a model for predicting the end of 
winter drainage season. The predictive models were learned with the J48 algorithm for 
induction of classification trees. The target variable has been defined as nominal with two 
possible values: drainage – which covers the period of the drainage season; and 
end_drainage which emphasizes the ending of a drainage season. The full attribute set 
used in the data analyses consists of meteorological data for the previous and next 14 days 
from the observed day: 

• “Avg_temp_past_1-7_days” — the average temperature in the previous 7 days 

• “Avg_temp_past_8-14_days” — the average temperature in the 7 days before 
last week   

• “Avg_temp_past_1-14_day” — the average temperature in the previous 14 
days 

• “Tot_rainfall_past_1-7_days” — the cumulative rainfall in the previous 7 
days 

• “Tot_rainfall_past_8-14_days” — the cumulative rainfall in 7 days before last 
week 

• “Tot_rainfall_past_1-14_days” — the cumulative rainfall in the previous 14 
days 

• “Avg_temp_next_1-7_days” — the average temperature in the following 7 
days 

• “Avg_temp_next_8-14_days” — the average temperature in the 7 days after 
that   

• “Avg_temp_next_1-14_day” — the average temperature in the following 14 
days 

• “Tot_rainfall_next_1-7_days” — the cumulative rainfall in the following 7 
days 

• “Tot_rainfall_next_8-14_days” — the cumulative rainfall in the 7 days after 
that 

• “Tot_rainfall_next_1-14_days” — the cumulative rainfall in the following 14 
days 

 
 

For the task of learning predictive model for a campaign, we used machine learning 
and data mining methods for learning regression trees, model trees and ensembles 
implemented in the CLUS system (Blockeel, 1998). For the second scenario we 
considered regression trees, ensembles implemented in the CLUS system and polynomial 
equations (CIPER (Todorovski, 2004)) as prominent patterns for knowledge 
representation. Moreover, before we attempted to learn the predictive model for 
predicting water flow as part of the second scenario, the model for estimating the start and 
end of a winter drainage season has been learned. 

In the previous section we have described the feature (attribute) set which consists of 
about 85 attributes. This is a massive feature set, which needs to be reduced and only the 
most important features (attributes) need to be selected. For the task of attribute selection, 
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we consider a few scenarios which include feature ranking and a wide range of analysis 
with different combination of the attributes. The results are presented in Section 7. 

The next sub-task covers the selection of the most suitable fields used for learning the 
predictive model on predicting drainage water flow in both scenarios: in a campaign and 
in a drainage season. We learned models on data from one field, because the data are with 
lower variance and sometimes give better results compared with models learned on data 
from a whole region. As mentioned before, the experimental site La Jaillière has 11 fields. 
Some of the fields are drained, but there are also two of them (Fields: T1 and T2) which 
do not have a drainage system (Figure 6), and later are excluded from the “field selection” 
task. The final selection concludes that fields T3 and T6 are the most suitable fields for 
learning a predictive model.  

Finally, we created 3 sub-scenarios for learning predictive models for predicting 
drainage water flow. First, we took all the available data including soil properties data and 
built a predictive model. Second, a model has been learned from data for field T3. Finally, 
we used data for field T6 (Figure 3) to build a predictive model.  

Estimations of performances on unseen data are obtained by using cross-validation. 
We use 10-fold cross-validation, which partitions the entire data available into 10 subsets 
of roughly equal size. The results are presented and discussed in the next section. 

6.3   Learning a predictive integrated model 

The last step in building a model that will achieve better performance on the task of 
prediction of drainage water flow from a field is to integrate the already learned data 
mining models with the available restructured expert knowledge. Namely, the integrated 
predictive model is learned in two stages: (1) support the learning predictive integrated 
model for a campaign and (2) support the learning predictive integrated model for a 
drainage season. The integration of these two concepts can be described as the usage of 
an available expert knowledge to define the most important attribute(s) and then learning 
the rest of the model from data. From the data available in the PCQE database, the only 
attribute that can be considered as the most important in the new data mining model is 
“Season”. The available expert knowledge recognizes the attribute “Season” as the most 
important and the most prominent in the root of the new model. In the second stage, 
instead of “Season” we used the “Drainage Season” attribute which defines the existence 
of drainage season on the reviewed example (day) and the type of drainage season: winter 
or spring drainage season. Therefore, we “supervised” the process of learning a model 
from the data by defining a constraint which is in the form of a partial decision tree. The 
rest of the decision tree has been learned by the algorithm for learning regression trees 
implemented within the CLUS tool. 

In the next section, we will discuss and compare the results from all the defined stages 
in the experimental design and the learned predictive models that predict the daily amount 
of drained water or intensity of drainage water flow from a field.
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7  Results  

We are interested in predicting the target variable which represents the amount of drained 
water from a field. To achieve this goal, we proceed as follows. We first select the 
attributes and the fields that will be used for further analyses (Section 7.1). We then build 
predictive models from data only, either from entire campaigns or from drainage seasons 
only (Section 7.2). We next restructure the expert knowledge provided by the domain 
expert and test its predictive power (Section 7.3). Finally, we build integrated models that 
take as input both the data and parts of the expert knowledge (Section 7.4).  

Hereafter, we present the results from the data analyses and discuss how they support 
our hypothesis. We present the results through several dimensions of evaluation: 
estimating the best combination of explanatory attributes that explain the drainage water 
flow in the most accurate way; estimating the quality of the prediction of the target 
variable by applying several data mining and machine learning methods; and visual 
comparison of the predictions from the learned predictive models and the measured data. 

Furthermore, we present a set of tables of the obtained results from the data analyses 
using three types of accuracy and performance measurements: RMSE (Root Mean 
Squared Error) which presents the square root of the mean squared difference between the 
predicted and actual values; RRSE is the RMSE relative to the standard deviation of the 
target variable; and the correlation coefficient, which measures the correlation (linear 
dependence) between the predicted and actual values. 

Bellow, we give a brief discussion for each of the learned models regarding their 
accuracy and possible usage, while a general discussion of the results achieved by this 
thesis is given in Section 8. 

7.1  Attributes and fields selection 

At the beginning, we need to find the best combination of explanatory attributes (that 
explain the drained water flow in the most accurate way) and fields from the experimental 
site. We first define attribute set by attribute/feature selection. We then choose the most 
prominent fields for learning predictive models on reduced data, i.e. data from only one 
field. 

For the task of attribute selection, we used several scenarios which include feature 
ranking and a wide range of exploratory analysis with different combinations of the 
attributes. For feature ranking, we used the ReliefF algorithm from the WEKA data 
mining suite. The results of the preliminary analyses of the data from each individual field 
are shown in Table 12. 
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Table 11: The relevant features. The list of most relevant attributes chosen by feature selection. 

Attribute Description 

Day 
The consecutive day in the campaign, 1st of 
September being the first day. 

Season Autumn-Winter, Spring or Summer 

DrainageSeason 

Existence and type of drainage season 
(possible values: ND – No drainage season, 
WD – Winter drainage season, and SD – 
Spring drainage season) 

Crop 
Crop that is on the field at the time of 
observation. 

CDCoef Crop development coefficient 

Slope Slope of the observed field 

RainfallA1 Cumulative rainfall for today and yesterday 

Temp Today's average temperature 

Runoff Today's measured runoff 

DrainageN1 Yesterday's measured drained water 

 
The next sub-task covers the selection of the most suitable fields to be used for 

learning the predictive models for predicting drainage water flow in both scenarios: in a 
campaign and in drainage season. As mentioned before, the experimental site La Jaillière 
has 11 fields. Some of the fields are drained, but there are also two of them (fields T1 & 
T2) which do not have a drainage system (Figure 6), so they are excluded from the “field 
selection” task. 

Furthermore, we analyzed each field by learning models from data of the selected 
field. It is worth mentioning here that the preliminary analyses were performed without 
soil properties data, unlike the final learning models. The results were compared and two 
the most two prominent fields were selected for further model learning (Table 12). The 
fields T3 and T6 were best suited for learning predictive models for drained water flow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results 47 
 

Table 12: Preliminary analyses of individual fields. Results of the preliminary analyses performed 
for each field, separately. The fields T3 and T6 will be considered in further analyses. 

Field Regression/Model tree Correlation RRSE 

T3 Regression tree 0.8124 58.37 % 

T3 Model tree 0.8926 45.09 % 

    
T4 Regression tree 0.7926 61.02 % 
T4 Model tree 0.8698 49.36 % 
    
T5 Regression tree 0.6985 71.56 % 
T5 Model tree 0.7519 65.95 % 
    

T6 Regression tree 0.8383 54.66 % 

T6 Model tree 0.8978 44.08 % 

    
T7 Regression tree 0.7917 61.48 % 
T7 Model tree 0.8555 51.80 % 
    
T8 Regression tree 0.711 70.31 % 
T8 Model tree 0.811 58.54 % 
    
T9 Regression tree 0.7901 61.34 % 
T9 Model tree 0.845 53.51 % 
    
T10 Regression tree 0.7913 61.43 % 
T10 Model tree 0.8571 51.51 % 
    
T11 Regression tree 0.8147 58.13 % 
T11 Model tree 0.8758 48.31 % 
 

7.2  Evaluation of the predictive models 

As described before, in the phase of learning predictive models from data, we learn 
predictive models based on data for whole campaign. We also learn predictive models 
that predict the amount of drained water within drainage seasons. The next two sub-
sections discuss the predictive performance for each of these two types of models. 

7.2.1  Campaign based predictive models 

The models have been learned within two different environments (data mining suites): 
WEKA, and CLUS. Three machine learning algorithms were used for building predictive 
models to predict the amount of drained water from a field: regression trees, model trees, 
and ensembles (random forests). The ensembles from the random forest algorithm 
implemented in the CLUS system were learned in 10 iterations, i.e. included 10 
regression trees. The decision trees (including regression trees and random forests) were 
constrained to a maximal depth of 4 levels.   
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The attribute set used in this phase is the same as defined in the previous sub-section 
(Table 11). The performance of the induced models on unseen data was estimated by 10-
fold cross validation. The results from the data analyses are presented in Table 13 and 
Table 14 with performance measured by training data and by 10-fold cross validation, 
respectively. The performance measure: RMSE, RRSE and correlation coefficient (r) are 
presented. The models were built from data of all fields, field T3, and field T6.  

 Table 13: The accuracy of campaign based models on the training data. Std. Dev. stands for 
standard deviation of the target variable on the training data set.   

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 1.918 1.0457 54.51 % 0.8384 

All Model tree 1.918 0.9547 46.76 % 0.8674 

All Random forest 1.918 1.0860 56.61 % 0.8596 

T3 Regression tree 1.976 0.9765 49.42 % 0.8694 

T3 Model tree 1.976 1.0313 52.19 % 0.8530 

T3 Random forest 1.976 0.9869 49.95 % 0.8734 

T6 Regression tree 2.279 0.9359 41.07 % 0.9118 

T6 Model tree 2.279 0.9510 41.73 % 0.9088 

T6 Random forest 2.279 0.9633 42.28 % 0.9112 

Table 14: The predictive performance of campaign based models estimated on unseen data by 10-

fold cross validation. Std. Dev. stands for standard deviation of the target variable on the training 
data set.   

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 1.918 1.0792 56.25 % 0.8268 

All Model tree 1.918 0.9700 50.55 % 0.8628 

All Random forest 1.918 1.1094 57.83 % 0.8440 

T3 Regression tree 1.976 1.1193 56.64 % 0.8256 

T3 Model tree 1.976 1.0347 52.35 % 0.8520 

T3 Random forest 1.976 1.0907 55.20 % 0.8491 

T6 Regression tree 2.279 1.0688 46.91 % 0.8832 

T6 Model tree 2.279 1.0194 44.73 % 0.8945 

T6 Random forest 2.279 1.2004 52.68 % 0.8610 

 
The results showed that field T6 was the most prominent for learning predictive 

models for drained water predictions. The algorithm M5P for building model trees, 
implemented in WEKA suite, gave the best results. The most accurately learned model 
(Model tree for field T6) is shown in Figure 15. 
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Figure 15: Model tree. The model tree for predicting drained water flow learned from whole 
campaign data of field T6. 

 
In the learned model (Figure 15), the attribute “Drainage season” appears as the most 

important attribute at the root of the model tree. Paramount importance of this attribute 
has been confirmed by the domain experts. Furthermore, “Runoff” is considered as the 
next most important attribute (in the case of winter or spring drainage season). This is due 
to the fact that the soil is very often saturated during these drainage seasons, when 
extreme drainage events and rainfalls are registered. Otherwise, out of the drainage 
seasons, the drainage water flow is highly dependent on the cumulative amount of rainfall 
in the last two days. This is a logical dependence under no drainage season’s 
circumstances, when the soil is not saturated.  

  The complexity of the model is acceptable because the model is easily 
understandable. Namely, the decision tree has 12 leaves and 6 levels in depth. At each 
leaf of the model, a linear regression model is included. The full list of linear regression 
models is presented in Table 15, followed by a visualization of the predicted values 
(Figure 16). Moreover, visualizations of the predictions from the other learned models 
(regression trees and random forests) are shown in Figure 17 & 18. 
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Table 15: Set of linear regression models. The given set of linear regression models contains the 
models located in the leaves of the model tree shown above (Figure 15).   

Leaf Model 
LM1 Drainage = 0.0001 * CDCoef  

+ 0.0001 * RainfallA1  
+ 0.0017 * DrainageSeason=SD,WD  
+ 0.0255 * Runoff  
+ 0.0021 * DrainageN1 
+ 0.0134 

  

LM2 Drainage = 0.0021 * CDCoef  
+ 0.0001 * RainfallA1 
+ 0.0017 * DrainageSeason=SD,WD  
+ 0.154 * Runoff  
+ 0.0139 * DrainageN1 
+ 0.0198 

  

LM3 Drainage = 0.0267 * CDCoef  
+ 0 * Temp 
+ 0.0034 * RainfallA1 
+ 0.0017 * DrainageSeason=SD,WD  
+ 2.0575 * Runoff  
+ 3.4986 * DrainageN1  
– 0.1439 

  

LM4 Drainage = 0.0628 * CDCoef  
+ 0.0017 * DrainageSeason=SD,WD  
+ 8.4902 * Runoff  
+ 0.116 * DrainageN1  
– 0.1567 

  

LM5 Drainage = 0.0458 * Crop=Winter_peas,Spring_peas, Winter_horse_bean, 
Rapeseed, Rgi, Barley(spring), Wheat, CIPAN  
+ 0.0058 * CDCoef  
+ 0.0001 * Temp  
+ 0.0105 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD  
+ 4.464 * Runoff  
+ 0.8678 * DrainageN1  
– 0.0399 

  

LM6 Drainage = – 0.0001 * Day  
– 0.0038 * Crop=Winter_peas, Spring_peas,Winter_horse_bean, 
Rapeseed, Rgi,Barley(spring),Wheat,CIPAN  
+ 0.1218 * CDCoef  
+ 0.0001 * Temp  
+ 0.0072 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD  
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Table 15 (continued): Set of linear regression models. 

                  + 0.3544 * Runoff  
                 + 0.6398 * DrainageN1  
                 + 0.0445 

  

LM7 Drainage = – 0.0001 * Day  
– 0.0038 * Crop=Winter_peas, Spring_peas, Winter_horse_bean, 
Rapeseed, Rgi, Barley(spring), Wheat, CIPAN  
+ 0.0277 * CDCoef  
+ 0.0001 * Temp  
+ 0.0537 * RainfallA1 
+ 0.0034 * DrainageSeason=SD,WD  
+ 2.9046 * Runoff  
+ 0.4525 * DrainageN1  
+ 0.3282 

  

LM8 Drainage = – 0.0001 * Day  
– 0.2997 * Crop=Winter_peas, Spring_peas,Winter_horse_bean, 
Rapeseed, Rgi, Barley(spring), Wheat, CIPAN  
+ 0.0342 * CDCoef  
+ 0.0001 * Temp  
+ 0.0851 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD  
+ 4.2892 * Runoff  
+ 0.4291 * DrainageN1  
+ 0.2593 

  

LM9 Drainage = – 0.0006 * Day  
– 0.1156 * Crop=Winter_peas, Spring_peas,Winter_horse_bean, 
Rapeseed, Rgi, Barley(spring), Wheat, CIPAN  
+ 0.0413 * CDCoef  
+ 0.0001 * Temp  
+ 0.0568 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD   
+ 5.8283 * Runoff  
+ 0.232 * DrainageN1  
+ 0.9682 

  

LM10 Drainage = – 0.0053 * Day  
– 1.5115 * Crop=Winter_peas, Spring_peas,Winter_horse_bean, 
Rapeseed, Rgi, Barley(spring), Wheat, CIPAN  
+ 0.0413 * CDCoef  
+ 0.0001 * Temp  
+ 0.1745 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD  
+ 0.243 * Runoff  
+ 0.0349 * DrainageN1  
+ 3.975 



52 Results 
 

Table 15 (continued): Set of linear regression models. 

LM11 Drainage = – 0.0058 * Day  
+ 0.5052 * Crop=Winter_peas, Spring_peas,Winter_horse_bean, 
Rapeseed, Rgi, Barley(spring), Wheat, CIPAN  
+ 0.0707 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD  
+ 8.5731 * Runoff  
+ 0.163 * DrainageN1  
+ 0.6737 

  

LM12 Drainage = – 0.0322 * Day  
+ 0.0618 * Crop=[Winter_peas, Spring_peas,         
Winter_horse_bean, Rapeseed, Rgi, Barley(spring), Wheat, 
CIPAN]  
+ 0.2281 * RainfallA1  
+ 0.0034 * DrainageSeason=SD,WD  
+ 1.8235 * Runoff  
+ 0.2364 * DrainageN1  
+ 6.378 

 
 
 
 

 

Figure 16: Amount of drained water (mm) predicted by the model tree learned on field T6. 
Visualization of the amount of drained water predicted for filed T6 by model tree learned on data 
from field T6, compared with the measured (original) values. The period of September 1st, 2009 – 
August 31st, 2010 was considered. 
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(a) 

 
(b) 

Figure 17: Amount of drained water (mm) predicted by the regression tree and ensemble models 

learned on all fields. Visualization of the amount of drained water predicted (for fields T3 (a) and 
T6 (b)) by RT (regression tree model) and ensembles (random forests) learned on data from all 
fields, compared with the measured (original) values. The period of September 1st, 2009 – August 
31st, 2010 was considered. 
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(a) 

 

  
(b) 

Figure 18: Amount of drained water (mm) predicted by the regression tree and ensemble models 

learned on field T3 & T6. Visualization of the amount of drained water predicted by RT 
(regression tree models) and ensembles (random forests) learned on data from field T3 – given in 
(a) and T6 given in (b), compared with the measured (original) values: The period of September 
1st, 2009 – August 31st, 2010 was considered. 

The visualization of the predicted values from the learned models is in accordance 
with the performance measures given above (Table 13). Namely, all models have 
difficulties when it comes to the prediction of the amount of drained water during the 
winter, when extreme drainage events are registered. It is the case when the amount of 
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drained water is higher than usual. Otherwise, predictions successfully follow the trend of 
the measured (original) values. 

Although the learned models do not cover the extremes well, they still can be used and 
eventually improved with additional knowledge. Hence, we used the available expert 
knowledge in order to improve this predictive performance. The results are presented in 
the Section 7.3. 

7.2.2  Drainage season based predictive models 

As mentioned before, two different tasks have been considered for drainage season based 
predictive models. For the first task we used classification trees in order to predict the 
start and the end of the winter drainage season. Furthermore, these models explain the 
conditions under which a day can be considered as a part of the drainage season.  

For the second task we explored different machine learning techniques for prediction 
of the amount of drained water flow from a field during the drainage seasons only. With 
this, we are trying to get more accurate predictions of the amount of drained water during 
the most critical period within a campaign. Previously, we have seen that the learned 
models based on the data from the whole campaign do not have ability to closely predict 
the amount of drained water. 

7.2.2.1     Predicting the start and the end of the winter drainage season 

Here we address the task of predicting the days when a winter drainage period is 
beginning and ending. The predictive models that we build are based on easily accessible 
meteorological data, including rainfall and temperature. 

For the task of predicting the beginning of the winter drainage season, a classification 
tree model has been obtained. The model has been learned with the J48 algorithm for 
induction of classification trees, implemented in the WEKA data mining suite. The model 
itself is presented in Figure 19.  

 
 

Figure 19: Classification tree. The predictive model for predicting the start of the winter drainage 
season 
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The obtained predictive model is simple, with a total of 5 leaves. Moreover, the 
predictive accuracy of the learned model on unseen data is 93.5 %, estimated by 10-fold 
cross validation. Although the domain experts cannot clearly define the rules for the 
beginning of a winter drainage season, the accuracy of the learned model shows that the 
beginning of the winter drainage season can be accurately predicted from easily 
accessible data. 

On the other hand, the task of predicting the end of a winter drainage season requires 
more attention, especially because the defining conditions are not clearly defined. 
Therefore, with machine learning techniques, we explored the possible conditions which 
need to be fulfilled in order to determine the end of a winter drainage season. Different 
scenarios were taken into account by constructing different attribute sets for learning the 
predictive model for the end of a winter drainage season. Here, we present the two most 
accurate models.  

The first predictive model (Figure 20) uses only meteorological data from the previous 
days. The second one (Figure 21) uses meteorological data both from the previous days 
and the following 7 days. The historical data for the following 7 days are given in the data 
set (Appendix A, Table A.1) that contains the dates for the start and end of the drainage 
seasons. On the other hand, in real situations, the weather forecast for the next 7 days 
should be considered.  

Table 16: The accuracy of the models for predicting the end of a drainage season. The accuracy 
of learned predictive models is estimated by 10-fold cross validation  

Model Attributes Accuracy 

Model 1 

Avg_temp_past_1-7_days 
Avg_temp_past_8-14_days 
Tot_rainfall_past_1-7_days 
Tot_rainfall_past_8-14_days 

85.9383 % 

   

Model 2 

Avg_temp_past_1-7_days 
Avg_temp_past_8-14_days 
Avg_temp_next_1-7_days 
Tot_rainfall_past_1-7_days 
Tot_rainfall_past_8-14_days 
Tot_rainfall_next_1-7_days 

88.0911 % 
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Figure 20: Classification tree for predicting the end of the winter drainage season learned from 

past meteorological data. The predictive model for predicting the end of the winter drainage 
season 

The accuracy of the learned models is given in Table 16. The learned models are 
simple/small, with a size of 4 levels and 5 leaves. This is an additional advantage of these 
models. Namely, their accuracy and complexity makes them applicable in real situations.  

The learned models show high accuracy in the prediction of the start and end of a 
winter drainage season. Therefore, they can be used in order to give a reliable estimation 
for a drainage season and extreme drainage events for the La Jaillière region. 
Furthermore, the data input of the learned models are based on meteorological data for the 
past and the near future, which can be easily obtained from the nearest meteorological 
station. Thus, the learned models and their predictions can be used as practical 
information for planning of those agricultural practices, whose application depends on the 
drainage seasons and possibly extreme drainage events. 
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Figure 21: Classification tree for predicting the end of the winter drainage season with 

combination of past and future meteorological data.  

 

7.2.2.2  Predicting the amount of drained water during drainage seasons 

We next considered the learning of predictive models only from data during the drainage 
seasons (Appendix A, Table A.1), because these periods are most important and most 
critical for very intensive drainage water flow. Furthermore, these periods are critical for 
the leaching of phytochemicals used in agriculture. Therefore, we consider only these 
periods of a campaign in order to predict the amount of drained water flow more 
accurately.  

The models have been learned by 3 different machine learning algorithms: regression 
trees, ensembles, and constrained induction of polynomial equations for regression. The 
regression trees have been constrained to a maximal depth of 4 levels, while the 
ensembles were constructed in 10 iterations, i.e. contains 10 trees. 

The attribute set used in this study is the same as defined previously, except in the case 
of polynomial equation induction, where only the real valued attributes were used. The 
complete set of attributes used in the polynomial equation induction is listed in Table 17. 
As compared to Table 11, the attributes Day, Season, Drainage Season and Crop are 
excluded. 
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Table 17: Attributes used for polynomial equation induction. All of the selected attributes are 
numeric. 

Attributes  

CDCoef Slope 

Temp Runoff 

RainfallA1 DrainageN1 

 
The results from the data analyses with ensembles and regression trees are presented in 

Table 18 and Table 19, while Table 20 presents the results from polynomial equation 
discovery. The models learned with ensembles and regression trees are tested on the 
training data set and with 10-fold cross validation, respectively. On the other hand, the 
polynomial equation induction has been evaluated with test sets. Namely, the polynomial 
equations were induced from data of 8 fields, while one field has been used for the test 
set. This has been done in 9 iterations, where data from each field has been used as a test 
set in exactly one iteration. The ensembles and regression trees were built from data of all 
fields, field T3, and field T6. 

Table 18: The accuracy of the drainage season based predictive model over the training data. Std. 

Dev. stands for standard deviation of the target variable on the training data set. 

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 3.17 1.7023 53.71 % 0.8437 

All Random forest 3.17 2.0717 65.36 % 0.8209 

T3 Regression tree 3.056 1.5927 52.12 % 0.8534 

T3 Random forest 3.056 1.6550 54.16 % 0.8782 

T6 Regression tree 3.6 1.5709 43.64 % 0.8997 

T6 Random forest 3.6 1.7084 47.46 % 0.8961 

Table 19: The predictive performance of the learned drainage season predictive model on unseen 

data, estimated by 10-fold cross validation. Std. Dev. stands for standard deviation of the target 
variable from the training data set. 

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 3.17 1.7262 54.46 % 0.8388 

All Random forest 3.17 1.8865 59.52 % 0.8305 

T3 Regression tree 3.056 1.9880 65.06 % 0.7637 

T3 Random forest 3.056 1.8177 59.49 % 0.8210 

T6 Regression tree 3.6 1.8076 50.22 % 0.8659 

T6 Random forest 3.6 1.9639 54.56 % 0.8500 
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Table 20: The predictive performance of the models learned by polynomial equation induction. 
Models learned from data on 8 fields are tested on the data from the remaining one field. The Std. 

Dev. stands for standard deviation of the target variable on the training data set. 

Fields Test field Std. Dev. RMSE RRSE Corr. coeff. (r) 

All T3 3.187 2.1119 66.26 % 0.7855 

All T4 3.188 1.7220 54.01 % 0.8273 

All T5 3.163 2.2478 71.06 % 0.7467 

All T6 3.096 2.1784 70.36 % 0.8096 

All T7 3.229 1.3286 41.15 % 0.7812 

All T8 3.210 1.3813 43.03 % 0.7839 

All T9 3.210 1.5927 49.62 % 0.7434 

All T10 3.130 1.6672 53.26 % 0.7766 

All T11 3.108 1.6274 52.36 % 0.7841 

      

T3 T6 3.056 2.1251 69.54 % 0.8125 

T6 T3 3.600 2.0961 58.22 % 0.7745 

 
The regression tree learned on data from field T6 was the most accurate. In this case, 

“Runoff” appears as most important attribute. Second most important attribute is the 
amount of drained water from a day before, “DrainageN1”. Apparently, the model (Figure 
22) has a similar structure as right sub-tree of the model (Figure 15) built on data for a 
whole campaign. Namely, the same attributes are recognized as most important for 
predicting amount of drained water during the drainage seasons.  

The size of the model (Figure 22) is 4 levels in depth and it has 16 leaves. Unlike the 
model tree (Figure 15) learned on a data from while campaign, this model (Figure 22) 
contains real values in the leaves. These values are predictions of amount of drained water 
under circumstances defined in upper part of the model.  

The regression tree model is shown in Figure 22, followed by the visualization of its 
predictions for the 2009/2010 campaign. Furthermore, the best polynomial equation 
model is presented in Table 21. The remaining models are given in Appendix B. 
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Figure 22: Regression tree model for predicting the daily amount of drained water during a 

drainage season. This was the most accurately predictive model for the task of predicting daily 
amount of drained water flow. 
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Table 21: Most accurate polynomial equation model for predicting drained water flow within a 

drainage season. The polynomial equation model has been learned from data of all fields, except 
field T4, which has been used as test set. 

Model (All/T4) 
Drainage =   0.0196445 * RainfallA1 * Temp   

+ 0.33246 * DrainageN1  
+ 0.000662861 * CDCoef 

2
 * RainfallA1

2 * Slope  
+ 0.00000107253 * Runoff * DrainageN1 * Temp

2 * RainfallA1
2  

– 0.00115983 * Runoff 
2 * DrainageN1 * Slope

3  
– 0.00114057 * Temp

2
 * RainfallA1  

+ 0.00153725 * RainfallA1
2  

+ 1.63563 * Runoff * Slope  
– 1.90622 * Runoff  
– 0.0231748 * Slope

2
 * RainfallA1  

+ 0.0654042 * RainfallA1 * Slope   
– 0.00755737 * Slope

3
 * CDCoef 3 * Runoff 

2
  

+ 0.0675951 * Slope  
– 0.146702 

 
 

 

Figure 23: Predicted amount of drained water (mm) for field T6. Visualization of the predicted 
values from a RT – regression tree model, learned on data from field T6, compared with the 
measured (original) values. The winter drainage season period of November 28th, 2009 – April 9th, 
2010, was considered. 
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Figure 24: Predicted amount of drained water (mm) for field T6. Visualization of the predicted 
values from an ensemble model, learned on data from field T6, compared with the measured 
(original) values. The winter drainage season period of November 28th, 2009 – April 9th, 2010, 
was considered. 

 
 

 

Figure 25: Predicted amount of drained water (mm) for field T6. Visualization of the predicted 
values from a PE - polynomial equation, learned on data from field T6, compared with the 
measured (original) values. The winter drainage season period of November 28th, 2009 – April 9th, 
2010, was considered. 
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The most accurate regression tree model (Figure 22) successfully follows the trend of 
extreme drainage events with lower amplitude. Moreover, the learned predictive model is 
stable and almost never overestimates the drained water flow. The other two learned 
models, however, overestimate the drained water flow. Furthermore, the complexity of 
the regression tree model is small, which in a positive way supports the hypothesis.  

Therefore, the learned regression tree model can be used in further practices in order to 
predict the amount of the drained water. Namely, the learned model used in combination 
with the models presented previously for predicting the start and the end of a drainage 
season gives us the possibility to make on field analysis, which could present practical 
information for planning agricultural practices, whose application depends on the 
drainage season and the intensive drainage events that appear at that time. 

7.3  Evaluation of the integrated predictive model 

The last part of our study of building models for predicting the amount of drained water 
from a field focuses on integration of the available expert knowledge with the models 
learned from data. The integration can be described as the support from an expert in the 
form of defining the most important attribute(s). We then use this knowledge to define the 
root of the tree that should be then learned from data.  

However, the available expert knowledge provided by ARVALIS was in format    
inappropriate for the integration that we proposed. Therefore, we first used data mining 
and machine learning methods for restructuring the available expert knowledge. We then 
integrated these two approaches by using the regression tree algorithm implemented in 
the CLUS system. 

7.3.1  Structuring the expert knowledge 

First, in order to use data mining and machine learning methods for restructuring the 
available expert knowledge, we transform the tables from the expert knowledge and 
merge them into a single table. Then, the additional information in the form of text was 
extracted and appended to the created table. This process is described in detail in Section 
4.1. Next, the created table was saved as a data set that was used for training decision 
trees.  

Finally, the algorithm J48 for learning decision (classification) trees, implemented in 
the WEKA data mining suite was applied to the data set. The outcome is a set of learned 
decision trees, one for each of the 12 targets defined in the data set. For the purpose of 
this study, we consider only the learned model for predicting the intensity of the drained 
water flow (Figure 26). 
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Figure 26: Restructured expert knowledge for classification of intensity of drainage water flow. 
The learned decision tree contains a path from the root of the tree to a leaf for each existing rule 
defined in the expert knowledge. 
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The learned model was tested on the training data set, which resulted in 100 % of 
correctly classified examples (rules). The accuracy of 100 % proves the “coverage” of 
each existing rule in the expert knowledge. This means that each existing rule has a path 
from the root of the decision tree to a leaf that predicts the correct value for the intensity 
of drained water flow. 

Furthermore, the restructured expert knowledge can be validated with existing 
measured data. Therefore, we use the data from the La Jaillière experimental site to 
validate the model. For this purpose, the data of drained water flow were discretized with 
thresholds shown in Table 22. 

Table 22: Defined intervals for discretization of drained water flow. Range of real values of 
drained water (mm). The corresponding to each discrete value is given. 

Discrete value Range of real values 

Null 0 

Low (0–1] 

Medium (1–10] 

High 10 + 

The model was validated with the discretized measured data, resulting in 40 % of 
correctly classified examples. The reason for the low accuracy of the restructured EK is 
due to the fact that it is constructed in a general way and aimed to be applicable on 
different fields with different local specifics with additional support from experts for 
applying to local circumstances. Furthermore, the available expert knowledge does not 
take in account the meteorological properties. 

The resulting predictive model defines the “Season” attribute as most important 
attribute.  Hence, it must be included in the model for predicting the amount of drained 
water flow. Also, the other two attributes (“Permeability” and “Depth of permeability 
disruption”) that follow the top most one are important in the process of predicting the 
amount of drained water flow. However, they depend on the soil properties. Therefore, 
we did not consider them in a process of integration due to the lack of data from different 
sites. Namely, the data from La Jaillière experimental site have uniform soil properties. 

7.3.2    Integration of expert knowledge in model learning 

The last step in learning a model that achieves better performance for predicting the 
amount of drained water flow from a field is to integrate the existing expert knowledge in 
the process of model learning. The integration is achieved by a process of constrained 
learning of models from data where the constraints are in the form of partial decision 
trees. Therefore, we “supervised” the process of learning a model from data by defining 
constraints in this form. The remainder of the decision tree has been learned by the 
algorithm for learning regression trees, implemented in the CLUS system.  

We proceed as follows. First, we use the whole data set defined from data for all fields 
over whole campaigns. The enforced expert knowledge to be integrated contains 
information for the actual season. Therefore, the partial decision tree is consists of one 
root node representing the “Season” attribute. 

Second, only the data from the defined drainage seasons were considered in the 
learning process. Furthermore, as improvements in seeking the most “active” periods 
when extreme drainage events are registered, we use the information from the “Drainage 
Season” attribute instead of “Season”. Therefore, the partial decision tree consists of one 
root node representing the “Drainage Season” attribute. 
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Hereafter, we present the results and performance of the integrated predictive model. 
The models have been evaluated on the training data and by 10-fold cross validation. 
Moreover, the results are compared using RMSE, RRSE and correlation coefficient as 
performance measures. The results are shown in Tables 23–24 and Tables 25–26 for 
campaign based and drainage season based predictive models. The campaign based 
predictive model that has been learned from data of field T6 is shown in Figure 27 and its 
predictions are visualized for fields T3 and T6 with data from the campaign 2009/2010 
(Figure 28–30). 

Table 23: The accuracy of constrained campaign based predictive models on training data. Std. 

Dev. stands for standard deviation of the target variable from the training data set.   

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 1.918 0.9738 50.76 % 0.8617 

T3 Regression tree 1.976 0.9174 46.43 % 0.8857 

T6 Regression tree 2.279 0.8712 38.24 % 0.9240 

Table 24: The predictive performance of constrained campaign based predictive model. The 
accuracy on unseen data is estimated by 10-fold cross validation. Std. Dev. stands for standard 
deviation of the target variable on the training data set.   

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 1.918 1.0137 52.84 % 0.8490 

T3 Regression tree 1.976 1.1526 58.33 % 0.8155 

T6 Regression tree 2.279 1.1274 49.48 % 0.8705 

 
Table 25: The accuracy of constrained drainage season based predictive models on training data. 
Std. Dev. stands for standard deviation of the target variable on the training data set.   

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 3.17 0.95 49.52 % 0.8689 

T3 Regression tree 3.056 0.9328 47.21 % 0.8816 

T6 Regression tree 3.6 0.9162 40.21 % 0.9156 

Table 26: The predictive performance of constrained drainage season based predictive model. 
The accuracy on unseen data is estimated by 10-fold cross validation. Std. Dev. stands for 
standard deviation of the target variable on the training data set.   

Fields Model Std. Dev. RMSE RRSE Corr. coeff. (r) 

All Regression tree 3.17 0.9724 50.69 % 0.8621 

T3 Regression tree 3.056 1.1384 57.61 % 0.8206 

T6 Regression tree 3.6 1.0845 47.59 % 0.8802 
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Figure 27: Integrated predictive model for predicting the amount of drained water flow. The 

campaign based regression tree has been built on data from field T6. 
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Figure 28: Predicted amount of drained water (mm) for Field T3. Visualization of the predicted 
values from an integrated campaign based predictive model, learned on data from field T6, 
compared with the measured (original) values. The period of September 1st, 2009 – August 31st, 
2010 was considered. 

 

 

Figure 29: Predicted amount of drained water (mm) for Field T6. Visualization of the predicted 
values from the integrated campaign based predictive model, learned on data from field T6, 
compared with the measured (original) values. The period of September 1st, 2009 – August 31st, 
2010 was considered. 
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Figure 30: Predicted amount of drained water (mm) – Field T6. Visualization of the predicted 
values from the integrated drainage season based predictive model, learned on data from field T6, 
compared with the original values. The winter drainage period of November 28th, 2009 – April 
29th, 2010, was considered. 

The integrated models, which are based on both expert knowledge and the available 
data performed better than the models learned from data only. Although, in the case of 
campaign based predictive model learned from the data of field T6 (Figure 27) the model 
overestimates the values in some periods of the campaign, the model is still enough 
accurate and can be considered for further usage as it is or with other some 
improvements. On the other hand, the drainage season based model (Figure 30) shows 
that these overestimations are corrected. Therefore, this model is the most accurate in the 
prediction of the amount of drained water flow from a field. Overall, the integrated 
models are better than either the models built from data only or the restructured expert 
knowledge. 

They improve the general recommendations of the expert knowledge by adjusting the 
existing expert knowledge based on the data collected and the predictions of the 
integrated predictive models. 

The integrated models give a better explanation and the possibility of additional 
understanding of the interactions between the features (attributes) involved in the process 
of water flow from a field. 
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8  Conclusion 

The thesis presents a study where data mining and machine learning methods have been 
used to predict the intensity drained water flow. The predictive models have been learned 
from data collected at the La Jaillière experimental site, considering expert knowledge at 
some stages. The data have been analyzed along several dimensions of feature 
combination and data mining and machine learning method selection.  

The feature combination includes feature generation and feature selection. First, 
features based on existing knowledge were generated from the available data. We defined 
a feature set that can well describe the process of drainage. Second,  various techniques 
for feature selection and feature ranking were applied in order to define the final feature 
set that can describe the dependences between explanatory and target variables in a best 
way. 

A successful study relies on good methodological design. The methodology used in 
this study is based on data mining/machine learning models that predict the amount of 
drained water flow from a field. This kind of methodology is a powerful way of 
integrating the available expert knowledge and existing data from an experimental site. 
Namely, the machine learning approach includes predictive models that represent the 
obtained knowledge in patterns such as regression and model trees, ensembles, and 
polynomial induced equations. We select regression and model trees patterns, because 
they express the gained knowledge in the most understandable way. Furthermore, the 
possibility of model trees to include within a rule a linear regression model additionally 
improves the accuracy of the learned model. In addition, with ensembles we investigated 
the range of accuracy, since they aim to improve the predictive performance of their base 
classifier. The algorithms that have been applied in this study are implemented in the 
WEKA data mining suite, the CLUS system, and the CIPER tool.  

In addition, the experimental design of our study has been created in order to solve the 
previously defined problem and support the hypothesis in the most accurate way. The 
study has been organized in phases and step by step the obtained results have been 
improved. 

First, we used all the data from the La Jaillière experimental site and learned three 
different types of predictive models: regression trees, model trees and ensembles. These 
were used for learning predictive models from data of all fields, as well as particular 
fields (T3 and T6). The most accurate predictive model was the model learned on data 
from field T6. This model performed well during the whole campaign, except for the 
extreme drainage events. Hence, the model accurately predicts the amount of drained 
water when no drainage or a low amount of drained water is registered. This is due to the 
fact that the target variable (Drainage) has an exponential distribution over the test set. 
This means that further splitting is required for particular periods during a campaign. 

Therefore, in the second step, we used the dates estimated from experts that defined 
the periods in a campaign with intensive drainage events. These periods are defined as 
drainage seasons.  Thus, in this phase we consider only these periods and not a whole 
campaign. Also, three machine learning approaches have been used: regression trees, 
ensembles and polynomial equations. Again, the regression tree learned on data from 
field T6 performed in a most accurate way compared with the other two models 
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(ensembles and polynomial equations). Since we learned these models only for prediction 
of the amount of drained water during the drainage season, the most accurate models 
(regression tree) have reduced the errors that were high in the previous phase and more 
accurately “followed” the trend of real data. More importantly, in this phase, the best 
model overestimates the predicted (as compared to actual value) in very few cases, unlike 
the other two models (learned by ensembles and polynomial equations) that have this 
disadvantage. 

In addition, in this phase, we tried to predict the start and the end of the winter 
drainage period based on easily accessible meteorological data (rainfall and temperature). 
This goal was set due to the availability of the data (expert’s estimated dates), which are 
estimated under not very well defined conditions. Namely, the start of a drainage season 
is constrained with 5 mm of cumulative drainage amount since the beginning of a 
campaign. On the other hand, the winter drainage season ends when the weekly 
cumulative drainage is below 1 mm, which is not very informative. Therefore, we learned 
classification trees that preformed very accurately with 10-fold cross validation. Namely, 
the models consist of data, which could be obtained from weather forecasts, so that they 
can give predictions whether the drainage will begin soon (some day in the next week) or 
whether it will stop in the following week. While the data from the experimental station 
can be used only for ex post analysis, the models we induced give us the possibility to 
make also ex ante analysis, which could present a practical tool for planning agricultural 
practices, whose application depends on the drainage period. 

In the last phase, the study focuses on the integration of the available expert 
knowledge with standard data mining and machine learning methods in order to achieve 
better performance of the learned models. We consider the available expert knowledge 
written in the form of decision rules in tables. First, we restructured the knowledge in a 
suitable format – decision trees. Then, we constrained the standard learning process with 
a partial decision tree generated from the expert knowledge. This phase covers both 
learning predictive models for entire campaigns and learning predictive models for 
drainage seasons only. The results present improvements for the integrated models which 
are based on both expert knowledge and the available data. Consequently, we can say that 
if we consult the expert knowledge during the learning of the data mining models it will 
lead us to improvements in performance of the models. The topmost attributes of the 
restructured expert knowledge were selected to form the partial decision trees that we 
used in constrained learning process. But, due to the lack of data from different regions 
where the soil has different properties, we were not able to support the learning process 
with a wider “expert’s recommendation” from the expert knowledge. Hence, only the 
most important attribute “Season” was selected to take the root position in the integrated 
predictive model. The rest of the decision tree was learned from data.  

Compared with other previously learned models, the integrated predictive models 
performed better. In addition, the built models improve the general recommendations 
from expert knowledge by adjusting the existing expert knowledge based on the data 
collected and the predictions of the models learned by data mining. Finally, the integrated 
model allowed us to better understand the interactions between the features (attributes) 
involved in the process of water flow in a field and the amount of drained water as the 
target variable.  

To summarize, the study presented in this thesis justifies our expectation in general. 
The results from this study are better than the results or predictions from the expert 
knowledge, which is general and not accurately applicable to local circumstances. Hence, 
higher correlation coefficients and lower error rates are obtained. The study results in 
highly accurate predictive models for prediction of the amount of drained water from a 
field. Furthermore, we successfully learned a model for estimating the beginning and 
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ending of a winter drainage season. The existence of spring drainage seasons and their 
estimation of start and end of a period appeared as an additional task that needs to be 
addressed and was not considered in this study. Finally, we expand the approach of 
integration of an expert knowledge within the process of learning predictive models.  

8.1  Contributions 

Because of the interdisciplinary of the thesis, it contributes to two scientific areas: 
information technologies and agriculture. 

From the information technologies point of view, it improves and extends the 
application of different machine learning techniques to a new area and raises interesting 
application issues. The main contributions in this scientific area are: 

• A new methodology, based on machine learning, to predict the amount of drained 
water from a field. The methodology integrates existing expert knowledge and 
data from experimental fields. The main improvement is that the methodology is 
general and re-useable across different geographic areas, with the ability of 
downscaling to respect local characteristics (features). 

• The evaluation of the methodology, from different relevant aspects. We evaluate 
the methodology with data from different data sources (fields in the experimental 
area) and compare the results of different machine learning algorithms (regression 
and model trees, ensembles and polynomial equations).  

 
From the agricultural point of view, the thesis makes the following main contributions: 

• Structuring of the expert knowledge improves its interpretability and the 
understanding of water flows in the fields. This will make knowledge easy for 
distribution among agricultural experts. 

• Comparisons of the existing expert knowledge with the knowledge learned from 
data, which can lead to new expert knowledge.  
 

8.2  Further work 

In future work, we plan to extend the role of the expert knowledge in the process of 
learning models for predicting water flows. This is highly related to the availability of 
data from experimental sites at different locations. We will try to apply the approach of 
integration of expert knowledge and data to the learning models for other types of water 
flows such as runoff.  

Modelling water flows is the first step towards our overall goal. Having this step 
completed, we will move towards modeling pesticide leaching in agriculture. Finally, the 
developed and upgraded models will be used for building a decision support system for 
proposing appropriate mitigation measures for water protection from phytochemicals.  

Due to the complexity of the overall problem, we will develop our approach in several 
stages. The present thesis covers the stage of modeling drainage water flow, while the 
stages of modeling pesticide leaching in agriculture and developing a decision support 
system for proposing mitigation measures will be completed during my doctoral studies.   
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Appendix A. Additional information on data 

In this section we present some additional information and explanation of the data used in 
our study. First, all of the dates of the start and end of the drainage seasons are presented. 
Then, the amount of drained water from field T6 is visualized for each campaign in the 
period 1987–2011. The field T6 has been selected as most prominent field. 

 

A1. Start and end of drainage seasons 

 Table A.1: Start and end of drainage seasons. Complete table of dates when drainage seasons 
starts and ends. The dates are for each field for all campaigns in period 1987–2011 

Season Field Provided dates for start of winter 
drainage season 

Provided dates for end of winter 
drainage season 

1987-1988 

T01 16.12.87 01.03.88 
T03 16.12.87 07.04.88 
T04 16.12.87 07.04.88 
T05 16.12.87 07.04.88 
T06 16.12.87 07.04.88 
T07 N/A N/A 
T08 N/A N/A 
T09 N/A N/A 
T10 N/A N/A 
T11 N/A N/A 

    

1988-1989 

T01 21.02.89 28.03.89 
T03 21.02.89 30.03.89 
T04 21.02.89 27.03.89 
T05 21.02.89 27.03.89 
T06 21.02.89 28.03.89 
T07 N/A N/A 
T08 N/A N/A 
T09 N/A N/A 
T10 N/A N/A 
T11 N/A N/A 

    

1989-1990 

T01 23.01.90 30.01.90 
T03 20.12.89 02.03.90 
T04 N/A N/A 
T05 15.12.89 02.03.90 
T06 20.12.89 08.03.90 
T07 N/A N/A 
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T08 N/A N/A 
T09 N/A N/A 
T10 N/A N/A 
T11 N/A N/A 

    

1990-1991 

T01 03.01.91 29.03.91 
T03 29.12.90 05.04.91 
T04 N/A N/A 
T05 29.12.90 05.04.91 
T06 01.01.91 05.04.91 
T07 30.12.90 27.03.91 
T08 30.12.90 27.03.91 
T09 30.12.90 23.03.91 
T10 N/A N/A 
T11 N/A N/A 

    

1991-1992 

T01 N/A N/A 
T03 N/A N/A 
T04 N/A N/A 
T05 N/A N/A 
T06 N/A N/A 
T07 N/A N/A 
T08 N/A N/A 
T09 N/A N/A 
T10 N/A N/A 
T11 N/A N/A 

    

1992-1993 

T01 20.11.92 16.02.93 
T03 19.11.92 30.01.93 
T04 21.11.92 30.01.93 
T05 17.11.92 04.02.93 
T06 21.11.92 10.02.93 
T07 18.11.92 31.01.93 
T08 20.11.92 10.02.93 
T09 19.11.92 15.02.93 
T10 19.11.92 08.02.93 
T11 21.11.92 07.02.93 

    

1993-1994 

T01 16.10.93 04.03.94 
T03 13.12.93 25.04.94 
T04 22.12.93 05.03.94 
T05 14.12.93 09.03.94 
T06 26.12.93 16.03.94 
T07 15.10.93 02.03.94 
T08 15.10.93 02.03.94 
T09 12.10.93 06.03.94 
T10 11.12.93 16.03.94 
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T11 15.12.93 14.03.94 
    

1994-1995 

T01 30.09.94 19.03.95 
T03 29.10.94 27.03.95 
T04 29.09.94 02.04.95 
T05 22.10.94 22.03.95 
T06 04.11.94 05.04.95 
T07 04.11.94 26.03.95 
T08 04.11.94 22.03.95 
T09 30.10.94 24.03.95 
T10 09.10.94 27.03.95 
T11 24.09.94 02.04.95 

    

1995-1996 

T01 02.01.96 05.03.96 
T03 24.12.95 06.03.96 
T04 02.01.96 06.03.96 
T05 23.12.95 07.03.96 
T06 08.01.96 09.03.96 
T07 02.01.96 28.02.96 
T08 24.01.96 28.02.96 
T09 02.01.96 01.03.96 
T10 23.12.95 08.03.96 
T11 08.01.96 07.03.96 

    

1996-1997 

T01 21.12.96 22.03.97 
T03 01.12.96 14.03.97 
T04 06.12.96 11.03.97 
T05 27.11.96 06.03.97 
T06 30.11.96 15.03.97 
T07 02.12.96 05.03.97 
T08 29.11.96 01.03.97 
T09 29.11.96 05.03.97 
T10 01.12.96 08.03.97 
T11 19.12.96 13.03.97 

    

1997-1998 

T01 25.12.97 11.03.98 
T03 12.12.97 01.02.98 
T04 11.12.97 01.02.98 
T05 11.12.97 27.01.98 
T06 12.12.97 04.02.98 
T07 11.12.97 24.01.98 
T08 11.12.97 21.01.98 
T09 11.12.97 23.01.98 
T10 18.12.97 25.01.98 
T11 24.12.97 25.01.98 

    
1998-1999 T01 14.11.98 15.03.99 
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T03 25.10.98 17.03.99 
T04 10.12.98 22.03.99 
T05 24.10.98 13.03.99 
T06 25.10.98 25.03.99 
T07 26.10.98 14.03.99 
T08 25.10.98 12.03.99 
T09 25.10.98 13.03.99 
T10 14.11.98 15.03.99 
T11 13.12.98 14.03.99 

    

1999-2000 

T01 20.09.99 04.03.00 
T03 21.09.99 10.03.00 
T04 22.09.99 11.03.00 
T05 20.09.99 05.03.00 
T06 23.09.99 13.03.00 
T07 29.09.99 08.03.00 
T08 29.09.99 07.03.00 
T09 21.09.99 08.03.00 
T10 20.09.99 03.03.00 
T11 20.09.99 15.05.00 

    

2000-2001 

T01 21.10.00 05.05.01 
T03 16.10.00 12.05.01 
T04 17.10.00 10.05.01 
T05 19.10.00 04.05.01 
T06 14.10.00 15.05.01 
T07 21.10.00 09.05.01 
T08 30.10.00 11.05.01 
T09 18.10.00 10.05.01 
T10 30.10.00 05.05.01 
T11 17.10.00 11.05.01 

    

2001-2002 

T01 29.12.01 25.03.02 
T03 20.10.01 06.04.02 
T04 29.12.01 25.03.02 
T05 20.10.01 22.03.02 
T06 29.12.01 29.03.02 
T07 29.12.01 25.03.02 
T08 29.12.01 22.03.02 
T09 29.12.01 22.03.02 
T10 20.10.01 23.03.02 
T11 29.12.01 29.03.02 

    

2002-2003 

T01 02.11.02 11.03.03 
T03 25.10.02 23.03.03 
T04 03.11.02 10.03.03 
T05 25.10.02 05.03.03 
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T06 03.11.02 20.03.03 
T07 02.11.02 07.03.03 
T08 26.10.02 05.03.03 
T09 25.10.02 07.03.03 
T10 09.11.02 07.02.03 
T11 04.11.02 11.03.03 

    

2003-2004 

T01 01.12.03 22.03.04 
T03 17.11.03 28.04.04 
T04 26.11.03 30.03.04 
T05 01.12.03 05.03.04 
T06 18.11.03 19.04.04 
T07 27.11.03 04.02.04 
T08 01.12.03 30.01.04 
T09 17.11.03 05.03.04 
T10 29.11.03 05.03.04 
T11 01.12.03 24.03.04 

    

2004-2005 

T01 N/A N/A 
T03 11.01.05 05.02.05 
T04 23.01.05 28.01.05 
T05 23.01.05 24.01.05 
T06 23.01.05 22.02.05 
T07 N/A N/A 
T08 N/A N/A 
T09 N/A N/A 
T10 N/A N/A 
T11 N/A N/A 

    

2005-2006 

T01 18.02.06 05.04.06 
T03 10.01.06 11.04.06 
T04 30.12.05 07.04.06 
T05 17.01.06 06.04.06 
T06 05.12.05 15.04.06 
T07 19.01.06 04.04.06 
T08 19.02.06 02.04.06 
T09 02.01.06 03.04.06 
T10 18.02.06 05.04.06 
T11 12.01.06 12.04.06 

    

2006-2007 

T01 19.11.06 30.03.07 
T03 23.10.06 09.04.07 
T04 24.10.06 04.04.07 
T05 21.10.06 09.03.07 
T06 25.10.06 06.04.07 
T07 24.10.06 16.03.07 
T08 23.11.06 11.03.07 
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T09 21.10.06 11.03.07 
T10 20.11.06 09.03.07 
T11 20.11.06 01.04.07 

    

2007-2008 

T01 09.12.07 08.04.08 
T03 04.12.07 15.јун.08 
T04 07.01.08 12.05.08 
T05 08.12.07 13.03.08 
T06 05.01.08 14.05.08 
T07 07.01.08 01.04.08 
T08 07.01.08 24.03.08 
T09 10.12.07 11.05.08 
T10 03.12.07 14.03.08 
T11 07.12.07 08.05.08 

    

2008-2009 

T01 18.01.09 24.03.09 
T03 12.11.08 21.03.09 
T04 19.12.08 19.03.09 
T05 12.11.08 09.02.09 
T06 12.11.08 27.03.09 
T07 19.01.09 09.03.09 
T08 19.01.09 11.02.09 
T09 11.11.08 09.03.09 
T10 18.01.09 12.02.09 
T11 06.12.08 15.03.09 

    

2009-2010 

T01 07.12.09 08.03.10 
T03 04.12.09 08.03.10 
T04 29.11.09 12.04.10 
T05 29.11.09 02.03.10 
T06 28.11.09 09.04.10 
T07 29.11.09 07.03.10 
T08 29.11.09 06.03.10 
T09 28.11.09 08.03.10 
T10 29.11.09 05.03.10 
T11 05.12.09 11.03.10 

    

2010-2011 

T01 19.12.10 20.03.11 
T03 07.12.10 09.03.11 
T04 10.12.10 07.04.11 
T05 14.11.10 02.03.11 
T06 08.12.10 16.05.11 
T07 08.12.10 07.03.11 
T08 07.12.10 07.03.11 
T09 14.11.10 07.03.11 
T10 08.12.10 05.03.11 
T11 19.12.10 17.03.11 
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A2. Drained water flow field T6 

 

 

 

Figure A.2: Amount of drained water (mm) – Field T6. Visualization of the actual amount of 
drained water from field T6 in period 1987–2011 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Figure A.2 (continued): Amount of drained water (mm) – Field T6 
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Appendix B. The models learned by machine learning 

In this section we present the models learned with machine learning and data mining 
methods. In following figures are presented learned regression and model trees for All 
fields, only field T3, and only field T6. The models listed in previous sections are not 
included in this appendix. 
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(a) 

Figure B.1: Campaign based predictive models – Regression trees. The models have been learned 
on data from all fields (a), only field T3 (b), and only field T6 (c), respectively. 
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 (b) 

Figure B.1 (continued): Campaign based predictive models – Regression trees. 
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(c) 

Figure B.1 (continued): Campaign based predictive models – Regression trees. 
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(a) 

Figure B.2: Drainage season based predictive models – Regression trees. The models have been 
learned on data from all fields (a), only field T3 (b), and only field T6 (c), respectively. 
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(b) 

Figure B.2 (continued): Drainage season based predictive models – Regression trees. 
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(c) 

Figure B.2 (continued): Drainage season based predictive models – Regression trees. 
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(a) 

Figure B.3: Campaign based predictive models – Model trees. The models have been learned on 
data from all fields (a), only field T3 (b), respectively. 
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(b) 

Figure B.3 (continued): Campaign based predictive models – Model trees. 
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The following are linear models that have been built as part of model tree learned from 
data of all fields (Figure B.3 (a)): 

 
LM1 

Drainage =  
 0.0002 * DrainageSeason=WD  
 + 0.0011 * Runoff  
 + 0.0003 * DrainageN1  
 + 0.0082 
 
LM2 

Drainage =  
 – 0.0001 * Day  

– 0.0271 * CDCoef  
 – 0.0029 * Temp  
 + 0.0038 * RainfallA1  
 + 0 * DrainageSeason=SD,WD  
 + 0.0002 * DrainageSeason=WD  
 + 0.8776 * Runoff  
 + 0.4598 * DrainageN1  
 + 0.0581 
 
LM3 

Drainage =  
 0.1607 * CDCoef  
 – 0.0243 * Temp  
 + 0.0143 * RainfallA1  
 + 0 * DrainageSeason=SD,WD  
 + 0.0002 * DrainageSeason=WD  
 + 1.7458 * Runoff  
 + 0.6303 * DrainageN1  
 – 0.0248 
 
LM4 

Drainage =  
 – 0.0001 * Day  
 + 0.0002 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0193 * RainfallA1  
 + 0.0001 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0011 * DrainageSeason=WD  
 + 0.7271 * Runoff  
 + 0.8432 * DrainageN1  
 – 0.0215 
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LM5 

Drainage =  
 + 0.0008 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0481 * RainfallA1  
 + 0.0003 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0011 * DrainageSeason=WD  
 + 0.012 * Runoff  
 + 0.4885 * DrainageN1  
 + 0.2036 
 
LM6 

Drainage =  
 + 0.0008 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.1759 * RainfallA1  
 + 0.0003 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0011 * DrainageSeason=WD  
 + 0.0195 * Runoff  
 + 0.6544 * DrainageN1  
 – 0.5662 
 
LM7 

Drainage =  
 + 0.2241 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0129 * Temp  
 + 0.174 * RainfallA1  
 + 0.0967 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0011 * DrainageSeason=WD  
 + 0.0119 * Runoff  
 + 0.1263 * DrainageN1  
 + 0.6724 
 
LM8 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0099 * RainfallA1  
 – 0.001 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0136 * DrainageSeason=WD  
 + 0.1666 * Runoff  
 + 0.0069 * DrainageN1  
 + 0.2937 
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LM9 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.1624 * RainfallA1  
 – 0.001 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0136 * DrainageSeason=WD  
 + 2.5947 * Runoff  
 + 0.0069 * DrainageN1  
 – 0.856 
 
LM10 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.2093 * RainfallA1  
 – 0.001 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0136 * DrainageSeason=WD  
 + 0.0499 * Runoff  
 + 0.438 * DrainageN1  
 – 0.6719 
 
LM11 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0115 * RainfallA1  
 – 0.001 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0136 * DrainageSeason=WD  
 + 0.0499 * Runoff  
 + 0.0145 * DrainageN1  
 + 3.5582 
 
LM12 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0101 * RainfallA1  
 – 0.001 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0136 * DrainageSeason=WD  
 + 0.0785 * Runoff  
 + 0.2112 * DrainageN1  
 + 3.9982 
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LM13 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0102 * RainfallA1  
 – 0.0066 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 1.7618 * DrainageSeason=WD  
 + 0.0381 * Runoff  
 + 0.0157 * DrainageN1  
 + 0.8439 
 
LM14 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.1839 * RainfallA1  
 – 0.0066 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.1152 * DrainageSeason=WD  
 + 0.0381 * Runoff  
 + 0.1847 * DrainageN1  
 + 0.9917 
 
LM15 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0088 * RainfallA1  
 – 0.0743 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.1275 * DrainageSeason=WD  
 + 0.0628 * Runoff  
 + 0.0128 * DrainageN1  
 + 9.7515 
 
LM16 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.0088 * RainfallA1  
 – 0.034 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.1275 * DrainageSeason=WD  
 + 0.0628 * Runoff  
 + 0.0128 * DrainageN1  
 + 8.1495 
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LM17 

Drainage =  
 + 0.0003 * Crop=Wheat,Winter_horse_bean,Winter_peas,Rgi  
 + 0.3514 * RainfallA1  
 – 0.006 * Slope  
 + 0.0001 * DrainageSeason=SD,WD  
 + 0.0723 * DrainageSeason=WD  
 + 1.2498 * Runoff  
 + 0.3046 * DrainageN1  

 – 3.6868 
 
 

The following are linear models that have been built as part of model tree learned from 
data of field T3 (Figure B.3 (b)): 

 
LM1 

Drainage =  
 0.0006 * Season=Spring,AW  
 + 0.0014 * Season=AW  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0002 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.0091 * Runoff  
 + 0.0029 * DrainageN1  
 + 0.007 
 
LM2 

Drainage =  
 0.0021 * Season=Spring,AW  
 + 0.0054 * Season=AW  
 + 0.0001 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0004 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.0352 * Runoff  
 + 0.042 * DrainageN1  
 - 0.0025 
 
LM3 
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Drainage =  
 0.0021 * Season=Spring,AW  
 + 0.0054 * Season=AW  
 + 0.001 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0006 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.0352 * Runoff  
 + 0.2359 * DrainageN1  
 – 0.0855 
 
LM4 

Drainage =  
 0.0021 * Season=Spring,AW  
 + 0.0054 * Season=AW  
 + 0.0009 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0006 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.0352 * Runoff  
 + 0.3487 * DrainageN1  
 – 0.0575 
 
LM5 

Drainage =  
 0.0021 * Season=Spring,AW  
 + 0.0054 * Season=AW  
 + 0.0009 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0006 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.0352 * Runoff  
 + 0.49 * DrainageN1  
 + 0.1518 
 
 



120 Appendix B. The models learned by machine learning 
 

LM6 

Drainage =  
 0.0021 * Season=Spring,AW  
 + 0.0054 * Season=AW  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0003 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.0352 * Runoff  
 + 0.0251 * DrainageN1  
 – 0.0004 
 
LM7 

Drainage =  
 0.0234 * Season=Spring,AW  
 + 0.0656 * Season=AW  
 + 0.0002 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 – 0.0004 * Temp  
 + 0.0012 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.4674 * Runoff  
 + 0.2514 * DrainageN1  
 – 0.0911 
 
LM8 

Drainage =  
 0.0234 * Season=Spring,AW  
 + 0.0656 * Season=AW  
 + 0.0002 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 – 0.0008 * Temp  
 + 0.0012 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.5748 * Runoff  
 + 0.3382 * DrainageN1  
 – 0.0366 
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LM9 

Drainage =  
 0.0234 * Season=Spring,AW  
 + 0.0656 * Season=AW  
 – 0.0005 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0012 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 2.6787 * Runoff  
 + 0.6299 * DrainageN1  
 + 0.093 
 
LM10 

Drainage =  
 0.0234 * Season=Spring,AW  
 + 0.0656 * Season=AW  
 – 0.0005 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0289 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 4.38 * Runoff  
 + 0.4328 * DrainageN1  
 + 0.1469 
 
LM11 

Drainage =  
 0.0624 * Season=Spring,AW  
 + 0.9494 * Season=AW  
 + 0.0024 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0179 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.7167 * Runoff  
 + 0.9865 * DrainageN1  
 – 1.1612 
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LM12 

Drainage =  
 0.0624 * Season=Spring,AW  
 + 0.7086 * Season=AW  
 + 0.005 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0071 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.6125 * Runoff  
 + 1.2544 * DrainageN1  
 – 0.3346 
 
LM13 

Drainage =  
 0.0624 * Season=Spring,AW  
 + 1.1715 * Season=AW  
 + 0.0039 * Day  
 – 0.0002 * Crop=CIPAN,Rgi  
 + 0.0011 * Crop=Rgi  
 + 0.0001 * Temp  
 + 0.0108 * RainfallA1  
 + 0.0011 * DrainageSeason=SD,WD  
 + 0.0008 * DrainageSeason=WD  
 + 0.5701 * Runoff  
 + 0.9718 * DrainageN1  
 – 1.4305 
 
LM14 

Drainage =  
 0.001 * Season=Spring,AW  
 + 0.4886 * Season=AW  
 – 0.1648 * Crop=Spring_peas, Winter_peas, RGA, Winter_horse_bean, Rapeseed, 

Barley(spring), Wheat, CIPAN, Rgi  
 – 0.0004 * Crop=CIPAN,Rgi  
 + 0.8263 * Crop=Rgi  
 + 0.0167 * Temp  
 + 0.1794 * RainfallA1  
 + 0.0021 * DrainageSeason=SD,WD  
 + 0.3181 * DrainageSeason=WD  
 + 1.2638 * Runoff  
 + 0.2849 * DrainageN1  

 –0.5682
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