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Povzetek

Naslov: Analiza relacij med valutnim trgom in družabnimi omrežji

Družabna omrežja nezadržno rastejo, kot tudi njihov vpliv na vsa po-

dročja življenja. V naši nalogi smo raziskovali in analizirali odnose med

valutnim trgom (imenovanim tudi Forex) in družabnimi omrežji. Posebej

smo analizirali vsebine, ki zadevajo valutni tečaj EUR/USD zaradi velikega

trgovalnega obsega tega para. Družabno omrežje Twitter smo analizirali v

obdobju treh let.

Zbrali smo podatke o gibanjih valutnega tečaja, podatke o dogodkih in

tvite. Tvite smo anotirali na podlagi vsebine oziroma pričakovanj avtorjev

glede gibanja tečajev. Z analizo uporabnikov Twitterja in tvitov v povezavi

z EUR in USD smo odkrili skupine uporabnikov z različnimi obnašanji. Na

podlagi ugotovitev smo razvili model za klasifikacijo uporabnikov v skupine.

Ustvarjen model predstavlja osnovo raziskave in ugotovitev.

Razvili smo spletno aplikacijo za prikaz podatkov, pregled podatkov in

prikaz rezultatov analiz. Aplikacija nam omogoča hitro analizo in razhroščevanje

le-te.

Dogodki povezani z EUR in USD imajo velik vpliv na gibanje tečajev.

Analizirali smo povezave med gibanji tečajev na Forexu in sentimentom tvi-

tov v času okoli dogodkov. Analizirali smo uspešnost napovedovanja različnih

skupin uporabnikov v času dogodkov (npr. izjave vplivnih finančnih ustanov

v EU in ZDA). Običajno se to izrazi v povečanem številu tvitov. Skupine

uporabnikov se razlikujejo v moči napovedovanja valutnih gibanj. Nekatere

skupine uporabnikov so pri napovedovanju valutnih gibanj celo uspešneǰse



od poklicnih analitikov, kar potrjuje uspešnost našega modela.

Ključne besede

študija dogodkov, valutni trg, Twitter, umetna inteligenca, podatkovno rudar-

jenje



Abstract

Title: Analysis of Relations Between Currency Market and Social Networks

Social media are gaining an unprecedented momentum as well as impact

on many areas of our life. In this thesis we investigate and analyse the re-

lationship between foreign exchange market (also called Forex) and social

media. Specifically, we analyse topics concerning EUR/USD exchange rate

because of the large trading volume of the currency pair. We analysed Twit-

ter in the span of three years.

We gathered the data on market movements, events, and Twitter posts.

We annotated the tweets with authors’ expectation of the Forex movement.

By analysing tweets and users tweeting about EUR and USD, we discovered

groups of users that behave differently and devised a model for classifying

users into these groups. The model is the basis of our research and findings.

We developed a web application for visualisation and browsing the data

and results of the analyses. This application enabled fast analysis and de-

bugging of it.

Events connected to EUR and USD have high influence on market move-

ments. We studied the relations between Forex movements and Twitter

sentiment around the time of events. We analysed the performance of dif-

ferent user groups around the events (i.e. financial announcements in the

USA and EU), which usually result in significant increase of Twitter vol-

ume. Predictive performance of the user groups varies in terms of describing

market movements. Certain user groups give better results than professional

analysts which shows efficiency of our user classification model.



Keywords

event study, Forex, currency market, Twitter, artificial intelligence, data

mining



Razširjeni povzetek

Naloga analizira povezave med družabnimi omrežji (Twitter) in valutnimi

gibanji (EUR in USD). Analiza je sestavljena iz zbiranja, čǐsčenja in prika-

zovanja podatkov, študije dogodkov in analize različnih skupin uporabnikov

omrežja Twitter ter njihovih lastnosti.

Motivacija za naše delo so obetavni rezultati predhodnih analiz relacij

med trgom delnic in družabnimi omrežji. Naš cilj je bil nadaljevanje in iz-

bolǰsava predhodnih odkritij ter aplikacija metod na največjem in najbolj

priljubljenem finančnem trgu - Forexu. Naš namen je bil vzpostavitev me-

hanizmov za analizo in napovedovanje valutnih gibanj.

I Kratek pregled sorodnih del

Forex je v podatkovni znanosti zelo raziskano področje. Raziskovalci upo-

rabljajo metode strojnega učenja [1], kot so nevronske mreže[2, 3], metode

podpornih vektorjev [4, 5] in druge [6]. Določene raziskave uporabljajo tudi

študije dogodkov [7], statistične prijeme [8] in genetske algoritme [9].

Za analizo Forexa obstajajo številne metode. Vrsta raziskav uporablja

tehnične analize [2], ki temeljijo na preteklih valutnih gibanjih. Še pose-

bej obetavne rezultate kaže kombinacija Forexa in z njim povezanih novic.

S prihodom družabnih omrežij so finančne novice (ki vsebujejo tudi napo-

vedi gibanj finančnih trgov [10, 11, 12]) hitreje in bolj pogosto posredovane

javnosti.

Analize sentimenta finančnih trgov lahko razdelimo na dva dela. Prvi tip

i



ii

analiz uporablja gibanje finančnih trgov za učenje klasifikacijskih modelov

[13], drugi tip analiz pa s pomočjo ročno označenih besedil ǐsče povezave

med sentimentom novic in gibanji finančnih trgov [12, 14, 15, 16].

Zaradi velikih vplivov določenih dogodkov na finančne trge se število ob-

jav v družabnih omrežjih v času dogodkov močno poveča. Študije dogodkov

v povezavi z borznimi trgi [10, 14] so bile osnova za številne raziskave. Več

raziskav s študijo dogodkov je bilo opravljenih v povezavi z borznimi trgi kot

s Forexom, kar nam je dalo dodaten motiv za nalogo.

II Metode analize odnosov med kompleksnimi

sistemi

Analizirali smo medsebojne vplive med dvema kompleksnima sistemoma, Fo-

rexom in Twitterjem. Za analizo smo pridobili podatke o gibanju valut, o

dogodkih in tvite povezane s Forexom, vse troje za obdobje treh let. Za-

radi velike količine podatkov smo ustvarili spletno aplikacijo za vizualizacijo

podatkov in analiz. Z analizo teh podatkov smo ustvarili model za klasifi-

kacijo uporabnikov Twitterja v različne skupine. Opravljena je bila študija

dogodkov oziroma njihov vpliv na finančne trge glede na različne skupine

uporabnikov.

II.I Pridobivanje in obdelava podatkov

Za analizo smo podatke pridobili podatke v obdobju treh let (2014-2016) iz

različnih virov. Podatke o valutnih gibanjih na minutni resoluciji smo prido-

bili na spletni strani histdata.com. Podatke o dogodkih povezanih z EUR in

USD smo zbrali na spletni strani Forex Factory. Tvite nam je posredovalo

podjetje Sowa Labs. Del tvitov so ročno označili. Tviti so bili razporejeni v

tri skupine glede na pričakovano gibanje valutnega trga (pozitivno, nevtralno

in negativno).

S pomočjo že označene podmnožice tvitov smo naučili model za avto-



iii

matično klasifikacijo tvitov. Model smo zgradili z metodo podpornih vek-

torjev. Model je bil validiran z 10-kratnim prečnim preverjanjem. Rezultati

validacije modela so pokazali vidoko klasifikacijsko točnost. Po podrobneǰsi

analizi smo ugotovili, da razlog za to leži v visokem deležu robotskih tvi-

tov. Roboti imajo zelo omejen besednjak, kar omogoča enostavno določitev

sentimenta.

V primerjavi z ostalimi analizami smo mi uporabili bistveno večji nabor

ročno označenih tvitov za učenje našega modela.

II.II Arhitektura sistema

Obvladovanje podatkov je zaradi njihove velikosti in raznolikosti otežkočeno,

kar je bil povod za razvoj spletne aplikacije za vizualizacijo in analizo podat-

kov. Spletna aplikacija je sestavljena iz več delov: podatkovne baze, zaledja,

spletne strani in sistema za analizo podatkov.

Spletno stran smo razvili z uporabo modernih tehnologij. S HTML5 in

CSS3 smo oblikovali spletno stran. Dinamičnost spletne strani smo zagotovili

z Javascriptom, jQueryjem in Angularjem. Za vizualizacijo podatkov je bila

uporabljena spletna knjižnica Highcharts.

Zaledni sistem je bil implementiran v programskem jeziku Python. Zale-

dni sistem povezuje podatkovno bazo (PostgreSQL) in spletno stran (angl.

frontend).

Spletna stran omogoča podroben vpogled v gibanja valut, v dogodke po-

vezanih s Forexom, sentiment tvitov in podrobnosti uporabnikov družabnega

omrežja Twitter ter njihove tvite.

II.III Model za klasifikacijo uporabnikov

Pri analizi uporabnikov Twitterja smo jih razdelili v skupine glede na njihovo

aktivnost, vplivnost, besednjak itd. Z upoštevanjem teh lastnosti smo obliko-

vali štiri glavne skupine uporabnikov: trgovalni roboti, relevantna podjetja,

relevantne posameznike in spam uporabnike. Na podlagi lastnosti posame-
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znih skupin smo zgradili klasifikacijski model. Model štejemo za najpomemb-

neǰsi dosežek naloge. Model daje dobro osnovo tudi za nadaljnje študije, saj

bi z njegovo razširitvijo lahko definirali še natančneǰse skupine uporabnikov.

Uporabili bi ga lahko tudi na drugih področjih.

Nadaljnja analiza tvitov je potrdila pravilnost našega modela. Upoštevali

smo lastnosti tvitov posameznih skupin, ki se razlikujejo po statistikah re-

tvitov, količini dnevnega objavljanja, količini objav v času dogodkov itd.

Analiza je pokazala očitne razlike med posameznimi skupinami uporabnikov.

Skupine relevantnih podjetij in posameznikov so bile velikokrat retvitane, kar

nakazuje na njihovo relevantnost.

II.IV Študija dogodkov

Iz množice dogodkov povezanih z EUR in USD smo izbrali samo tipe do-

godkov z veliko frekvenco in vplivom na Forex. Večina dogodkov je bila v

povezavi z USD, dogodki povezani z EUR so bili v manǰsini, kar je verjetno

posledica razpršenosti objav po posameznih evropskih državah, medtem ko

so objave v ZDA centralizirane.

Za namen študije dogodkov smo izračunali njihovo polarnost (pozitivni,

nevtralni ali negativni) s pomočjo sentimenta tvitov v času dogodkov. Rezul-

tati polarizacije se med posameznimi skupinami uporabnikov Twitterja zelo

razlikujejo. Kljub velikemu vplivu na Forex v analizo nismo zajeli govorov

voditeljev centralnih bank EU in ZDA, ker jih je težko numerično ovrednotiti.

Ti dogodki so zanimivi za nadaljnje raziskave.

Študija dogodkov pokaže njihov vpliv na valutna gibanja in družabna

omrežja. Povprečili smo kumulativne abnormalne donose dogodkov z isto

polarnostjo. Krivulje donosov so se razlikovale, ko smo polarnost dogod-

kov določili z uporabo sentimenta tvitov različnih skupin uporabnikov, kar

potrjuje pravilnost klasifikacijskega modela.
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III Sklep

V nalogi smo izdelali model za klasificiranje uporabnikov Twitterja v različne

skupine. Izkazalo se je, da imajo različne skupine različno napovedno moč

glede gibanja valut, kar pomeni, da se določenim skupinam splača slediti,

drugim pa izogniti. Model predstavlja dobro osnovo za uporabo na drugih

področjih. Kljub dobrim rezultatom je še v začetni obliki, zato so možne še

številne izbolǰsave in nadgradnje.

Razvita spletna aplikacija je dober in uporaben pripomoček za pregled in

prikaz gibanja valut, dogodkov in tvitov. Aplikacija je nastala kot stranski

produkt naloge, kljub temu pa ni omejena le na Forex in se jo lahko uporabi

tudi na preostalih finančnih področjih.
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Chapter 1

Introduction

This thesis analyses the relation between social networks (Twitter) and the

currency market. The analysis consists of gathering and cleaning data, vi-

sualisation of data, event analysis and differentiation among the types of

users.

The motivation for this thesis are previous studies[10] that analyse the

relations between stock markets and the social media, which are showing

promising results. Our aim was to extend and improve previous findings to

the biggest and most popular financial market - Forex. Our intention was

to establish mechanisms for analysing and predicting movements of financial

markets.

1.1 Foreign Exchange Market

Foreign exchange market, also known as ”Forex”, is a global decentralised

market for trading with currencies. By means of trading volume, it is by

far the biggest market in the world. Daily trading volume exceeds 5 trillion

dollars.

Forex has some properties, which distinguish it from other markets:

• Huge trading volume.

• Geographical dispersion as it allows trading anywhere in the world.

1



2 CHAPTER 1. INTRODUCTION

• Operating continuously 24 hours a day with exception of weekends.

• Leverage can be used to enhance one’s profit.

Forex is attractive to many people since it is not taxable in some countries

(one of them is Slovenia at the time of writing this thesis) unlike most other

financial instruments.

When talking about Forex, some terms should be explained for easier

orientation:

• Forex brokers are companies that offer trading with currencies to in-

dividuals and companies.

• Leverage is a technique involving the use of borrowed funds for trading

with currencies (or any other asset in general). It increases the value

of investments up to 500 times.

• Spread is the difference between bid and ask price. Swap is the

amount of money, that is charged to investors over midnight.

• Brokers and other institutions provide analyses as a service to the

investors. There are many types of analyses: fundamental analysis,

technical analysis, wave analysis, ...

Some analyses try to predict future movements based solemnly on his-

torical price movements, while other analyses take into account other

factors, such as financial events, global events, social media, ...

1.2 Twitter

Social media are nowadays deeply anchored in our society and are still gaining

momentum. Methodically studying the social media can give us answers

to many questions in various fields, such as politics, culture, trends, and

financial markets.
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Twitter is currently one of the most used social networks. Every day,

around 100 million users post 340 million posts or messages called tweets.

Tweets are 140 characters long at the most and are mainly public. The

content on Twitter is very diverse, however in this thesis, we are interested

in content related to euro (EUR) and US dollar (USD), only.

Although social networks provide a lot of useful data, there are also useless

and misleading posts (trash), providing misleading and manipulative content,

which we try to detect and avoid.

1.3 Related Work

Forex is a well-researched area in the data science. Researchers use machine

learning methods [1], such as neural networks [2, 3], support vector machine

[4, 5], and others [6]. There are studies involving event study methodology

[7], statistics [8], and genetic algorithms [9].

There are various approaches to the analysis of the Forex market. A lot of

research has been done on technical analysis [2], which means studying histor-

ical price movements. The combination of Forex and news shows promising

results. With arrival of social networks, the financial news is coming sooner

and more frequently to individuals. They contain information about future

movements of financial markets [10, 11, 12].

Sentiment analysis of the market can be divided into two parts. The first

one uses financial data to teach the models for labelling the texts [13] and the

second one uses labelled news to search for relation between the sentiment

and future financial market movements [12, 14, 15, 16].

Information can also be extracted from events, which cause increased

volume in social network posting and in other news sources. There was more

research using event study done on stock market [10, 14] in comparison to

Forex.
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1.4 Thesis content

In Chapter 2, we describe the collection and preparation of the financial,

event and Twitter data. We adapted time zones to UTC, annotated tweets,

excluded redundant data, and stored the data in the database.

In Chapter 3, we describe the development of the web application which

enables browsing and visualisation of the data. The chapter also contains

the description of the system.

In Chapter 4, we devise a user classification model, which is the core of

the thesis. We analysed different aspects of the data, including event study.

Chapter 5 concludes the work and represents ideas for the future work.



Chapter 2

Data

In this thesis, we analyse three types of data. Twitter data is needed to

extract sentiment of the currency market of our interest, as well as analyse

different groups of users and their reliability. Financial data is needed to

test our models and to see how the market behaves in different situations. Fi-

nally, event data is needed to measure the impact of events on the currency

market and to compare our models with the financial analysts.

The used data is gathered over the span of three years (2014-2016). We

focus on two currencies, EUR and USD, since they have the largest share

of the Forex market. The volume of tweets for these two currencies is large,

therefore the analysis should be reliable.

The data is stored in the PostgreSQL database. Analysing data in the

database takes considerably less time than analysing the data stored in files.

A lot of data pre-processing is done directly in the database.

The data is diverse since it is obtained from different sources and in

different formats.

Figure 2.1 shows the offset of different time zones and shifts, which occurs

with daylight saving time (DST). All the data was converted from their own

time zone to UTC to avoid daylight saving time related problems.

Figure 2.1 shows London and New York Forex sessions, which are two out

of four most important ones. The other two are Sydney and Tokyo. Session

5



6 CHAPTER 2. DATA

represents the activity time of particular stock exchange. These four stock

exchanges together ensure the 24 hour ongoing trading.

Figure 2.1: Time line, daylight saving time and Forex sessions.

2.1 Financial Data

Our main focus is the analysis of movements of the exchange rate between

EUR and USD. The historical movement of a currency is usually described

with one minute resolution with timestamps, open and close prices, and

highest and lowest prices on that interval. This graphical representation is

called a candle, as shown in Figure 2.2.

Figure 2.2: Example of bullish candle (left) - open price is lower than close

price - and bearish candle (right) - open price is higher than close price.
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The historical data of accumulated price movements with one minute

resolution can be freely obtained on the internet. On the other hand, the

precise historical data can only be purchased at a high price from ECB1.

Depending on the orientation of the candle, we call it either a bullish or

a bearish. The bullish candle has the opening price lower than the closing

price, which means that on the given time interval, the price has risen. On

the other hand, bearish candle has the opening price higher than the closing

price, which means that the price went down in the given time interval. Both

candles have high and low price, which represent the highest and lowest value

that the price reached in that interval.

This financial data is aggregated to larger resolutions. Typical resolutions

in Forex are one minute (m1), five minutes (m5), 15 minutes (m15), 30

minutes (m30), one hour (h1), four hours (h4), one day (d1), one week (w1),

one month (mn) and one year (y1). In our thesis, we use resolutions up to 1

day.

Sometimes (but very rarely), currency data includes trading volume in-

formation, but this data usually does not represent actual trading volume,

because every broker has its own volume information, and may not match

global trading volume. For example, certain brokers operate in Europe only.

The volume increases during working hours, so the movement after working

hours does not match the volume of the global Forex movement. A hypo-

thetical example is shown in Figure 2.3.

The financial data needed for this thesis was retrieved from histdata.com2.

Timestamps of this data are in ET (Eastern Time Zone), which was converted

to UTC.

The span of the gathered data starts on 1/1/2013 and ends on 31/12/2016.

For the purpose of the event study analysis, we need a financial market model

which requires data from before the analysed period.

1https://www.ecb.europa.eu/home/html/index.en.html
2http://www.histdata.com/download-free-forex-historical-data/
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Figure 2.3: Comparison of global Forex trading volume and trading volume

of European broker.

2.2 Twitter Data

Tweets related to currencies EUR and USD were acquired by the Sowa Labs3

company. All tweets are from 14/2/2014 to 12/12/2016. Tweets were gath-

ered through Twitter search API, where the query contained: ”eurusd”, ”us-

deur”, ”eur” or ”usd”.

For every currency and currency pair, there was a separate data source,

which were then merged. The process of merging demands special care, since

sentiment of tweets concerning EUR is usually opposite to the sentiment of

tweets talking about USD. Prior to further processing of the tweets, the

sentiment was converted accordingly. For example, positive sentiment of

tweet mentioning currency pair USDEUR is converted to negative, because

we are interested in the pair EURUSD, which has the opposite meaning of

the sentiment.

All tweets are stored in PostgreSQL. They have the following attributes:

tweet id, currency, time of creation, text, retweet count, language, retweet

reference, user id, label (sentiment), group (bot, company, individual, ...).

3http://www.sowalabs.com/
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2.2.1 Annotated Tweets

A subset of tweets was annotated by Sowa Labs. We received two sets of

tweets: the training and the application set. The training set contains man-

ually annotated tweets. Tweets were annotated by annotators, who were

previously instructed on the process. Annotators used three possible labels:

positive, neutral or negative. Labels represent annotators’ opinion about the

tweet’s expectation about the price movement (rise, stay, fall) [17].

The annotation was done by about 20 annotators. Some tweets were

annotated by more than one annotator to calculate inter annotator agreement

and to react to wrong annotations.

2.2.2 Sentiment/Stance Model

We created a prediction model using 44,000 manually annotated tweets. The

model was created with the help of the Latino4 library, which uses double

plane SVM algorithm. The model is verified by 10-fold cross validation. The

results of validation are shown in Table 2.1. Surprisingly, the obtained model

was very accurate. The reason for that will be explained in the later text

(tweets from trading robots are the main reason).

Measure Value

Accuracy 0.811 ± 0.014

Precision 0.814 ± 0.012

Recall 0.811 ± 0.014

F1 0.810 ± 0.014

Table 2.1: Results of the validation of tweet labelling model.

The procedure of labelling tweets is shown in Figure 2.4. Obtained model

was applied to non-annotated tweets, so we ended up with 14,679,466 labelled

tweets.

4https://github.com/LatinoLib/LATINO
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Figure 2.4: The process of labelling the tweets with the help of manually

annotated tweets.

2.2.3 Tweet Processing

Tweets with calculated sentiment are aggregated on common Forex resolu-

tions. Separate tweets are used for analysis of users to detect user relevance

and possibly harmful and deceiving users. Users with high relevance (relevant

companies and individuals) are used for further analysis.

We extracted user ids from tweets. We also calculated certain properties

of users: user id, number of tweets, how many times users retweeted (and

the ratio), how many times all user’s tweets were retweeted (and the ratio),

Hirsch index (defined in subsection 4.1.1), user group (bot, company, ...) and

length of activeness counted in days.

We checked if tweets and users still exist by checking the response status.

If the response status was 200, the tweet/user still exists, if it was 404, it

does not. If the response was neither 200 nor 404, checking the existence

of the tweet/user was postponed. The task of checking the existence of 14

million tweets was very time consuming since Twitter does not allow too

many connections at the time, so the computer could run only five processes
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simultaneously.

2.3 Event Data

Events, which are related to Forex, are financial announcements provided by

governments or central banks [18, 19, 20]. Events are especially interesting

to study because their dates are known in advance and we can await them

prepared. The Twitter and the trading volumes increase around the time of

the events.

We found no service or web page with historical data for longer periods

of time available for simple downloading. On average, there is usually a year

worth of data available, instead of the needed 3 years. Finally, data was

obtained from Forex Factory5 using some hacking and trickery.

We gathered the details of the events in the time span from 1/1/2014 to

31/12/2016. We aligned the events with the UTC time.

Event data was obtained for all the currencies, but only events concern-

ing EUR and USD were analysed. We excluded events of the type ALL,

that concern all the currencies. Events of this type are globally important

meetings: G20, G7, IMF, WEF, OPEC meetings, as well as the Jackson Hole

Symposium.

Every event has a different impact. Concerning Forex Factory, there are

four different impact types: high, medium, low, holiday. We retrieved all

of them but in our analysis we used high impact events only. In a span

of three years, there were between 730 and 770 (depending on sufficient

amount of twitter data of different groups of Twitter users) high impact

events considered, which we find sufficient for our analysis.

5https://www.forexfactory.com/calendar.php
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Figure 2.5: Number of events with respect to impact and region (currency).



Chapter 3

System Architecture

We implemented a web application that enables convenient browsing, dis-

playing and analysing of the data.

The web application consists of two parts: back-end and front-end. The

back-end communicates with the front-end and retrieves data from the database.

The front-end receives response from the back-end and displays the content.

The analysis is implemented in Python.

3.1 Database, Back-end and Front-end

The data is stored in the PostgreSQL database. The same database is used

for both the analysis and the data visualisation.

Back-end is implemented in Python 3. Back-end retrieves the data from

the database with psycopg2 library. The data is sent to front-end with the

help of http.server library. Libraries JSON and pandas are used to format

the data to be usable in the front-end.

Front-end visualises the data. HTML5 and CSS3 are used for web page

framework and the design. JavaScript, jQuery1 and Angular 2 are used for

communication with back-end and the dynamics of the web page. The pur-

1https://jquery.com
2https://angularjs.org

13
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pose of the Highstock 3 and datetimepicker 4 is to select and display the time

series of currency movements, Twitter sentiment and the events.

The schema of our application is shown in Figure 3.1.

Figure 3.1: Schema of the application.

3.2 Use of Web Page

The web page consists of two subpages. The first subpage visualises the

currency movements, events and the Twitter sentiment. The second subpage

shows the details of the selected user and their tweets.

The following sections describe the use-case scenario of the advanced user.

3.2.1 Currency & Events

On the first subpage, we can browse EUR/USD currency pair movements.

We can choose the time of our interest and the web page will display an

3https://www.highcharts.com/products/highstock
4https://github.com/xdan/datetimepicker
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interval around it, as shown in Figure 3.2. Vertical red lines represent high

impact events.

The web page enables us to choose the resolution for the currency graph,

with which we would like to display the data. When we want to see the

movements of the currency ratio around a specific event, we use fine resolu-

tion, e.g. m1, m5, m15. In case that we would like to see the global trend,

we use a higher resolution, e.g. h1, h4, d1.

Figure 3.2: Currency movement and events in selected time window.

The currency movement is followed by volume and sentiment distribution

of the tweets on the displayed interval (Figure 3.3). Sentiment can be viewed

for different user groups defined in section 4.2.

The Twitter sentiment shows stacked volume of the negative, neutral,

and positive tweets so we can see the relations among them. Together they

represent a full Twitter volume.

At the bottom of the web page, there are details of the events (Figure

3.4) that are visible in Figure 3.2.
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Figure 3.3: Twitter sentiment for all users in selected time interval.

Figure 3.4: Details of events on selected interval.

3.2.2 Twitter Users

Statistics of the users and tweets that were retrieved are shown in Figures 3.5

and 3.6. Details of the selected user are shown in Figure 3.5. We display the

number of tweets retrieved, the number of retweets, how many times their

tweets were retweeted, the Hirsch index (defined in subsection 4.1.1), active

days, and whether Twitter account was still active at the time of checking

(July 2017). There is also a link to their Twitter profile.
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At the most 100 of their tweets are displayed. An example can be seen

in Figure 3.6. We display the creation time of the tweets, their content,

how many times they were retweeted (if at all), their sentiment and whether

tweets were deleted (do not exist anymore).

Figure 3.5: Details of the selected user.

Figure 3.6: Tweets (max. 100) of the selected user.

3.3 Analysis

For the analysis we use Python 3. To retrieve and prepare the data from

the database we use libraries called psycopg2, pandas and re (regular ex-

pressions). The scipy library is used to create the market model for the
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cumulative abnormal return. To plot the results of the analysis we use the

matplotlib library.

For the purpose of the analysis, we use Python and some common meth-

ods of data science. Details of the analysis are explained in the next chapter.



Chapter 4

Analyses

In this section, we analyse Twitter users and their tweets. Based on the

findings, we then analyse the relationship between the users and the currency

movements. We end the chapter with analysis of relevant events.

4.1 Twitter Users

In order to analyse the tweets, we have to understand the behaviour of the

Twitter users. Inspection of the tweets revealed sizeable content variety. We

speculate that this occurs because of different types of users.

After an in-depth inspection, we identified four major user groups. Ac-

cording to our findings, we devised a simple classification model. The model

automatically classifies users into groups with respect to their properties.

The groups are analysed separately in section 4.5.

Although this model is very simple (see section 4.2), it gives promising

results. In the future, the user groups are worthy of examination and further

development.

4.1.1 User Properties

For the purpose of devising a classification model which classifies users into

different groups (see section 4.2), we have to look into Twitter user properties

19



20 CHAPTER 4. ANALYSES

in detail.

Beside unique user id, provided by Twitter, every user also has the fol-

lowing properties:

• The number of tweets (tweets) tweeted by the Twitter user. The

distribution of users with respect to the number of tweets is shown in

Figure 4.1.

Figure 4.1: Distribution of users with respect to the number of tweets.

• Days active property is defined as following:

dactive = max(dateuser) −min(dateuser) + 1

The property gives the time span of the users’ tweeting. This property

helps to calculate the average tweet and retweet rate. It does not reveal

for how many days the user was actually active (it also includes days

without tweeting).

• Tweet rate. Definition:

trate =
tweets(user)

dactive
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This property reveals how many tweets per day the user produced on

average.

• Retweets (retweets), how many tweets of each separate user are retweets.

• Retweets ratio:

retweetsratio =
retweets

tweets

The ratio between retweets and tweets of the user.

• Retweeted (retweeted), how many times tweets of a particular user

were retweeted. The number of retweeted tweets can be higher than

the number of users’ own tweets.

• Retweeted ratio:

retweetedratio =
retweeted

tweets

The ratio between retweeted and tweets of the user.

• Hirsch index [21] describes the influence of the user and is defined as:

h-index(user) = maximin(RT (i), i)

where RT is a function that returns the number of times the tweet i

was retweeted, and i is the index of the tweet in the ascending sequence

of tweets sorted by retweet count. In short, a Hirsch index of five means

that a user has five tweets that were retweeted at least five times.

• Existence, whether a user is still active or not.

• user type is one of the following:

trading robot, relevant company, relevant individual, spam.

The classification of the user types is explained in section 4.2.
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4.2 User Classification

By collected Twitter user properties (subsection 4.1.1) we can devise a model

to classify users into five groups. Four of them are important for our analysis,

and the last one contains the undefinable users. Not all the user properties

are used, remaining properties can be used in further development of our

model.

Tweets of the four user groups are later used to analyse Forex events. The

goal is to establish the relation between Twitter sentiment of each group and

Forex market movements caused by the events. The users are not limited to

be members of a single group only. Groups Trading robots and Spam have

more users in common than other groups.

4.2.1 Forex Trading Robots

A large proportion of all the tweets have a similar format. For example:

• Bought 0.08 Lots $EURUSD 1.39223 SL 1.38308 TP 1.39608

• Sold 0.08 Lots $EURUSD 1.38391 SL 1.39399 TP 1.37899

• Closed Sell 1.7 Lots EURUSD 1.29617 for +4.9 pips, total for today

+114.5 pips #best #forex

• Closed Buy 1.2 Lots EURUSD 1.29602 for -5.8 pips, total for today

+114.3 pips #trade #results #forex

It is obvious that such type of tweets belong to Forex trading robots.

These robots should not be confused with the tweetbots [22, 23] which main

purpose is to tweet periodically to advertise or otherwise deliver content to

the Twitter sphere.

The Forex trading robots are programs that follow currency movements

and trade with currencies. We speculate that this is a group of commercially

available robots which advertise themselves by tweeting about their results.
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It is likely that users of Forex robots get some sort of an incentive by allowing

trading robots to tweet on their Twitter accounts about their trades.

We recognise a tweet as robotic (trobotic) when it starts with phrases shown

in Table 4.1. Such phrases are commonly used in the Forex trading. Rule to

classify a user as a Forex trading robot is when more than 75% of its tweets

are robotic:

• troboticrate > 0.75

We manually checked 2000 random tweets classified as robotic but we found

that only four of them were not created by robots. The accuracy of this

classification is then 99.8%.

Starts with Count Share [%]

Bought 156,553 1.1

Sold 154,264 1.1

Closed Buy 4,770,414 32.5

Closed Sell 4,833,488 33.0

Buy Limit 1,537 0.0

Sell Limit 2,627 0.0

Buy Stop 2,760 0.0

Sell Stop 2,703 0.0

Total: 9,924,346 67.6

Table 4.1: Beginning phrases of twitter bots and corresponding number of

tweets.

Out of all the studied users, 4,580 belong to this group. They represent

around 2.7% of all our users. This is a small percentage compared to the

volume of tweets they produce. But it is not a surprise, since we believe that

these Twitter accounts are typically machines and not humans.
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4.2.2 Relevant Forex Companies and Analysts

We want to identify a group of reliable and relevant Twitter users with at

least moderately large activity, so one could in principle follow them in the

future.

Rules to classify the users into this group are:

• dactive > 30

• trate > 0.5

• retweetedratio > 0.25

The model classified 195 users (0.12%) into this group. They produced

210,733 tweets, which is 1.44% of all the tweets in our analysis. Users in this

group are mostly Forex brokers and their analysts as identified upon manual

checking.

The content of gathered tweets of this group are predictions and reports

of these users. Although there is a very small number of users in this group,

the relation between the sentiment of their tweets and the Forex movement

around events is significant, actually of the highest quality of all the groups.

4.2.3 Relevant Individuals

Relevant individuals are recreational Forex traders or retired forex analysts.

They are trading but not professionally.

They tweet about their observations on unusual currency movement, ref-

erences to technical analyses and also some forecasts regarding Forex. The

performance of this group is similar to relevant companies but with lower

influence and relevance.

Relevant individuals have the below stated properties, but should not fall

into the group of relevant Forex companies and analysts:

• dactive > 30

• retweetedratio > 0.05
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The model classified 6,660 (3.9%) users into this group. They produced

810,511 tweets (5.5%).

4.2.4 Spam/scam/advertisement

Spam/scam/advertisement. This group of users provide malicious or

non-informative content related to Forex. They usually have a very large

amount of tweets in a short period of time.

Many users of this group also belong to the trading robot group.

Spam/scam/advertisement:

• tweets > 1000

• retweetedratio < 0.01

The model classified 869 (0.5%) users into this group. They produced

10,266,836 tweets (69.9%), 1,597,782 (10.9%) of which do not belong to

users categorised as Forex trading robots.

4.2.5 Other

This group covers users that were not classified in any of four major groups

by our model. This group includes users with the following properties:

• They produce small amount of tweets.

• They mostly retweet other users.

• Unpopular users with tweets, that were rarely retweeted or not at all.

• Users that usually tweet about topics unrelated to Forex.

We found 157,823 users in this group producing only 2,215,224 tweets.

This group contains a large amount of users that could belong to other groups

but failed to be classified due to the simplicity of our model.
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4.3 Tweets

In this section we analyse tweets and their properties. We analyse 14,679,466

tweets which were collected in the time span of three years by Sowa Labs.

4.3.1 Tweet Properties

Below are listed properties of tweets used in our analysis:

• Twitter id (idtweet) is a unique identifier of every tweet, as provided

by Twitter.

• Created at is the timestamp of tweet’s creation.

• Text is the content of the tweet.

• Retweet count (retweeted) is the number of times the tweet was

retweeted within our data set.

• Retweet reference (retweetref ) is the id of the original tweet which

was retweeted.

• User id is the id of the Twitter user, the author of the tweet.

• Label (sentiment) denotes the sentiment of the tweet. This property

was not provided by Twitter but was annotated by Sowa Labs company

as described in subsection 2.2.1.

• Existence (exists) denotes whether the tweet still existed in July 2017.

4.3.2 Sentiment Distribution

The distribution of the sentiment in our set of tweets is different compared

to the previous state-of-the-art articles [10]. The proportion of positive and

negative tweets is unusually high (Figure 4.2) in comparison to previous

analyses [21, 24]. We notice that the distribution of the sentiment among
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groups varies considerably. This is a confirmation that separating the users

into groups is necessary.

Figure 4.2: Relative sentiment distribution of user groups (bars are sup-

plemented with tweets count).

The most unusual sentiment distribution of the tweets belonging to the

group of Forex trading robots (see subsection 4.2.1). This set of tweets con-

tains an almost negligible amount of tweets with a neutral sentiment. Upon

further inspection, it turns out that this is caused by the specific vocabu-

lary used in these tweets. As shown in Table 4.1, the vocabulary of these

tweets is specific and leaves almost no option for sentiment to be neutral.

For example:

• Tweets beginning with ”Bought” or ”Closed sell” express the expecta-

tion that the price will move in the favour of EUR, so the exchange

rate EURUSD will rise.

• For tweets beginning with ”Sold” or ”Closed buy” the situation is the

opposite: tweet expects the rate to drop.
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Group of Spam/Scam/Advertisement users behaves similarly to the group

of Forex trading robots. Obviously, the majority of the users belong to both

groups.

On the other hand, the distribution of the groups Relevant companies,

Relevant individuals and Other users match the sentiment distribution in

previous studies.

Figure 4.2 shows that the volume of negative tweets in the last three

groups is much higher than the volume of the positive ones. The reason

is the predominant down trend of the EURUSD exchange rate during the

period that our thesis covers.

4.3.3 Retweeting

We analyse two different aspects of the retweeting activity. One aspect is

when the user retweets and the other is when the tweets of the user are

retweeted. Out of all the analysed tweets, 247,237 tweets were retweeted and

they were retweeted 492,648 times (on average 1.99 times per each retweeted

tweet).

Retweets Retweeted

Forex trading robots 707 (0%) 39,426 (0.4%)

Robots without spam 513 (0%) 20,101 (1.6%)

Relevant Companies 9,563 (4.5%) 205,059 (97.3%)

Relevant individuals 46,059 (5.7%) 206,488 (25.5%)

Spam/Advertisement 29,090 (0.3%) 25,776 (0.3%)

Spam without robots 28,896 (1.8%) 6,451 (0.4%)

Other users 429,873 (19.4%) 42,683 (1.9%)

Total 515,033 (3.5%) 492,648 (3.4%)

Table 4.2: Retweet count for the analysed groups.

The column ”Retweets” in Table 4.2 shows that users of different groups

behave differently. Forex trading robots do not retweet. Spam/Scam/Advertisement
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retweet rarely (they are either tweetbots [22, 23] or they advertise and do

not bother to retweet).

The column ”Retweeted” was used as an attribute in the user classifica-

tion model, hence it should not be used as reference for determination of the

quality of the model. It is interesting that the value distribution of columns

”Retweeted” and ”Retweets” coincide.

4.3.4 Daily Twitter Volume

Figure 4.3 shows average daily Twitter volume. There are global movements,

where peaks coincide with opening times of largest forex sessions:

• peak around minute 100 of a day, approximately 1:30 (UTC), coincides

with the opening time of the Tokyo session.

• peak around minute 400 of a day, approximately 7:30 (UTC), coincides

with the opening time of the London session.

• peak around minute 800 of a day, approximately 13:00 (UTC), coincides

with the opening time of the New York session.

We also notice peaks which are not part of a global Twitter volume move-

ment. These peaks happen on regular intervals, mostly hourly, at the top of

the hour. The peaks are especially noticeable for Spam users (Figure 4.4).

Presumably these tweets belong to tweetbots which post periodically.

4.3.5 Twitter Volume Around Events

We are especially interested in tweets around the time of events. Increase of

the Twitter volume (apart from regular 24 hour cycles) seen in Figures 4.5

and 4.6, around events tells us that Twitter users are following events, which

confirms that it is worth focusing on them.

The increase of volume around the time of events is consistent with each

group, the least pronounced change of volume of tweets occurs in the Spam

group.
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Figure 4.3: Average daily Twitter volume.

Figure 4.4: Average daily Twitter volume of spam users.
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Figure 4.5: Average Twitter volume around the time of events of all users.

4.3.6 Deleting tweets (and Users)

There is an interesting phenomenon, where certain tweets and users are being

deleted after a while. There are two main types of motives to delete tweets,

harmless and fraudulent. We are interested in the fraudulent ones. We

speculate that after events, certain users delete their tweets with the false

predictions and keep the true predictions. This way, they want to improve

their reputation.

The analysis shows that there is a very small amount of such users, so we

did not bother to remove them from our analysis. The community typically

recognises such users and ignores them (or even reports them).

4.4 Events

Due to the large number of events, we only consider the high impact events

[19] that happen at least once per month. Other events would probably not
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Figure 4.6: Average Twitter volume of relevant companies and analysts

around the time of events.

add much to the value of the analysis. The list of the analysed events as

listed on Forex Factory is shown in Table 4.3.

Every event has the following properties:

• forecast tells us the expectation of the analysts.

• actual tells us the actual state after the event.

• previous tells us the state of previous event of the same type, this prop-

erty does not enter our analysis and is listed for the sake of completeness

only.

Properties of different event types can have different formats. They can

be expressed as percentage, numerical values (in thousands, millions, ...) or

non-numerical values (e.g. talks by the ECB [25] chief Draghi, or FED chief

Yellen). We omitted events with non-numerical values, although they can

have a large impact on the market. They tend to be complex to analyse.
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Event Name Related Currency

Crude Oil Inventories USD

Non-Farm Employment Change USD

CB Consumer Confidence USD

ISM Non-Manufacturing PMI USD

ADP Unemployment Claims USD

Core Retail Sales m/m USD

Core CPI m/m USD

Building Permits USD

Unemployment Rate USD

German Ifo Business Climate EUR

Retail Sales m/m USD

Prelim UoM Consumer Sentiment USD

PPI m/m USD

Philly Fed Manufacturing Index USD

ISM Manufacturing PMI USD

Table 4.3: Analysed event types and currencies related to them.

Due to different formats and meanings, every event has its own rules to

be classified as positive/neutral/negative. In general, the interpretation of

events’ falls into two groups:

• Events ”Unemployment rate” and ”ADP Unemployment Claims” have

a positive effect on the currency if actual < forecast and vice versa.

• Other events in Table 4.3 have the opposite set of rules: the event has

a positive effect on the currency if actual > forecast and vice versa.

We also consider classifying a part of events as neutral. As usual in event

studies [26] we take a 2.5% threshold:∣∣∣∣∣actual − forecast

forecast

∣∣∣∣∣ < 0.025
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4.5 Event Study

The core of our analysis is the event study. We compare the signal in the

social media (Twitter sentiment) about market movements with the measures

used by the professional analysts.

In our analysis we use the following measures:

• Market return is a quantity which is computed as the price of the

asset changes during a given period of time. Market return is defined

as follows:

r =
p1 − p0

p0

where p0 represents the price at the beginning of the interval (opening

price) and p1 represents the price at the end of the interval (closing

price).

• Event study methodology analyses activities that deviate from the nor-

mal behaviour. For this purpose we have to calculate the return of ab-

normal activity (abnormal return) which usually happens after the

event. This is done by subtracting the normal price movement (market

model) from the abnormal movement.

• Market model is created by using the data of the market movement

before the event. We use a simple linear regression of the market move-

ment 30 days prior to the event. The slope coefficient k of the linear

regression is then used for subtracting it from the market movement

after the event.

After obtaining the market model for the event, we subtract it from

the price movement (i.e. on one minute resolution) after the event to

get the abnormal price:

pai = pi − k ∗ i

where pi is actual price at the time i after the event and pai is abnormal

price at the same time.
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Once we have abnormal price movement, we can calculate abnormal

return:

rai =
pai+1

− pai
pai

• Cumulative abnormal return (CAR) is a quantity usually used in

the event studies. CAR measures aggregated returns over longer period

of time, called the event window. We calculate CAR which computes

the abnormal return from the event at the given time:

cari =
n∑

j=0

raj

Examples of CAR are shown in Figure 4.9.

• Twitter sentiment score measures how positive or negative were the

tweets in a selected time frame. Its value is in the interval [−1, 1].

sentiment score(T ) = (+1)
pos + 1

n + k
+ (0)

neu + 1

n + k
+ (−1)

neg + 1

n + k

where pos, neu and neg represent the number of positive, neutral and

negative tweets in the time interval T , n represents the number of all

the tweets in T (n = pos+neu+neg), k is a number of different types

of sentiment (in our case three, positive, neutral and negative). This is

a part of the Laplace correction (along with a ”+1” in the numerator

of the fractions) used to avoid zero and low volume problems.

The formula for our case:

sentiment score(T ) =
pos− neg

n + 3

4.5.1 Analyses

In this section we present the results of our event study. The analyses are

straightforward because all the prepared tools are ready to use.
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Sentiment Analysis

Our goal is to compare the sentiment of Twitter users and Forex Factory1 an-

alysts. The sentiment of the analysts is defined in section 4.4 as the difference

between the forecast of the analysts and the actual event outcome.

The sentiment of Twitter users in our analysis is the sentiment score

of tweets one hour after (nowcast) or before (forecast) the event. We have

chosen the time span of one hour because smaller time interval would not

contain sufficient amount of tweets, while longer time intervals would not

contain specific enough information about the event.

Our main focus is nowcasting because the sentiment of the analysts is

known only after the event so the comparison between analysts and Twitter

users can be done with nowcasting only.

Categorising Events

We analyse the sentiment of the analysts and Twitter users for three cate-

gories of the events: positive, neutral and negative. We make several different

analyses: events are categorised according to the types of entities (analysts

or Twitter users), among different Twitter users, and whether we analyse

tweets before or after the events.

When categorising the events according to the sentiment of the analysts

we use the event classification method defined in section 4.4. For the cat-

egorisation of the events according to the Twitter users we set a threshold

for the sentiment score so that one third of the events fall into each group.

Sentiment score distribution and thresholds for users are shown in Figure

4.7.

Using the categorisation of the events and the sentiment of different en-

tities, we get the result in form of CAR curves shown in Figure 4.8. The

analyst curves can be separated around the events, but soon the effect of the

event waters down. On the other hand, events categorised by the sentiment

1http://www.forexfactory.com
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Figure 4.7: Sentiment distribution for tweets one hour after events.

of the tweets, display larger movements but in the wrong direction, events

classified as positive give negative returns and vice versa.

Figure 4.8: CAR for events according to the sentiment of the analysts (left)

and Twitter users (right).
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Twitter Groups

The analysis of different Twitter user groups demands the calculation of

different thresholds for the distribution of sentiment score for each group

separately. We do not use universal thresholds (obtained from all tweets)

because every group of users has its own characteristics (as determined in

Figure 4.2) thus should be treated differently.

The CAR curves for events of classification according to different groups of

Twitter users are shown in Figure 4.9. Movements follow the correct direction

when events are categorised by more relevant users, but when categorised

with sentiment from less relevant users the movement is either chaotic (group

Spam) or follow a wrong direction (group Trading robots). This results

confirm correctness of our user classification model.

Nowcast vs. Forecast

We compare Twitter sentiment before and after the event. The results are

shown in Figure 4.10. As we can see, no group shows promising results in

forecasting. CAR curves categorised by trading robots show certain move-

ments in the right direction, but not more than 500 minutes after the event,

when the effects of the events no longer have any influence.

The forecast analysis cannot be done for the Forex Factory analysts be-

cause one can not calculate the sentiment prior to the event without the

event outcome.
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Figure 4.9: Cumulative abnormal return for all the user groups according

to Twitter sentiment after the events.
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Figure 4.10: Cumulative abnormal return for all the user groups according

to Twitter sentiment prior to the events.



Chapter 5

Conclusions

We analyse interactions between two complex systems, Forex and Twitter.

Each system has its own characteristics. Forex is by far the largest financial

market. There are several established methods for analysis of this system,

such as technical analyses, mathematical modelling, statistical methods etc.

Our focus is an application of event study methodology on Forex. Social

media are another complex system, we focus on Twitter. We analyse the

tweets with the content related to EUR and USD [27].

We used three years of data. The currency pair (EUR/USD) movements

data were retrieved from histdata.com web page. The events data were re-

trieved from the Forex Factory web page. The tweets were provided by Sowa

Labs company, which manually annotated a subset of tweets.

We annotated all collected tweets with the machine learning model trained

on the manually annotated subset. We used a multi-class SVM algorithm.

We validated the classifier using 10-fold cross validation and obtained sur-

prisingly high classification accuracy of the model (81.4%). We found that

the reason for this was a high share of robotic tweets, which have limited

vocabulary and thus it is easy to determine their sentiment. Comparing to

other published analyses, we used by far the largest set of labelled tweets for

training the classifier.

We created a web application for visualisation and analysis of the data.

41
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Front-end was created with state-of-the-art technologies. HTML5, CSS3,

Javascript, Angular and Highcharts were used for the the design and dy-

namics of the front-end. Back-end was implemented in Python, which was

used to connect the front-end and the database. Web application displays

Forex movements, high impact events and their details, Twitter sentiment,

as well as properties of the Twitter users and their tweets.

We analysed Twitter users and defined groups of users with distinct be-

haviour based on their activity, impact, vocabulary etc. According to these

properties we named four major user groups: Forex trading robots, Relevant

companies, Relevant individuals and Spam. We built a user classification

model based on the properties of the groups. We consider this model to be

an interesting achievement. In future work, the model can be improved by

defining more user groups, using additional user properties and extending

the model to other fields.

We analysed the tweets to confirm the correctness of the user model. We

analysed the properties of the tweets for each user group, such as retweeting

statistics, daily volume movement, volume movement around the time of

events, etc. The analysis shows clear differences among the user groups.

We noticed that groups of relevant companies and individuals are highly

retweeted (thus relevant).

The events concerning EUR and USD are diverse so we focused on the

events of high impact and frequency. The majority of analysed events are

connected to USD rather than to EUR. We speculate that the reason is

dispersion of announcements in Europe while the announcements in the USA

are centralised. The results of the event analysis show different polarisations

of the events with respect to the different user groups and analysts. In our

analysis, we did not use speeches of presidents of major central banks (EU

and USD) in spite of their high impact on currencies. The reason is that

they cannot be simply numerically assessed. These types of events are left

for further analyses.

The event study shows the impact of the events on financial markets
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and social media. By using the sentiment of different user groups in time

close to the events, we calculated their polarity. According to the polarity

of the events we computed an average cumulative abnormal returns (CAR).

Detected differences in CAR curves between user groups confirm our user

classification model.

5.1 Contributions

In the thesis we devised a classification model for classifying Twitter users.

Model separates the users into distinct groups: users relevant to Forex pre-

diction, irrelevant users and spam users. This classification enables us to

follow or avoid certain groups of users. The model can be adapted to various

other fields.

Our analysis shows the relation between Forex market movements and

groups of users in connection with certain events.

We developed a web application that enables browsing through the cur-

rency movement, Twitter and events data.
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