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Keywords 

• Data 
– Attribute, example, attribute-value data, target variable, class, 

discretization 

• Algorithms 
– Decision tree induction, entropy, information gain, overfitting, 

Occam’s razor, model pruning, naïve Bayes classifier, KNN, 
association rules, support, confidence, numeric prediction, 
regression tree, model tree, heuristics vs. exhaustive search, 
predictive vs. descriptive DM 

• Evaluation 
– Train set, test set, accuracy, confusion matrix, cross 

validation, true positives, false positives, ROC space, error, 
precision, recall 



Overfitting and Model Pruning 
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YES 



Overfitting & Model Pruning 

Properly fitted = regularised  

4 By Chabacano - Own work, GFDL, 

https://commons.wikimedia.org/w/index.php?curid=3610704 

Overfitted 



Model complexity and 
performance on train set 
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Performance on train and test set 
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Occam’s raisor 
• Suppose there exist two explanations for a 

phenomena. In this case, the simpler one is 
usually better. 

 

 

 

 

 

 

 

• Note: classifiers can/should also assign each 
prediction a confidence score. 
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ROC curve and AUC 
• Receiver Operating Characteristic curve (or ROC curve) is a 

plot of the true positive rate (TPr=Sensitivity=Recall) against the 
false positive rate (FPr) for different possible cutpoints. 

• It shows the tradeoff between sensitivity and specificity (any 
increase in sensitivity will be accompanied by a decrease in 
specificity). 

• The closer the curve to the top 

 left corner,  the more accurate 

 the classifier. 

• The diagonal represents a  

 baseline classifier. 
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AUC - Area Under (ROC) Curve 
• Performance is measured by the area under the ROC curve 

(AUC). An area of 1 represents a perfect classifier; an area 
of 0.5 represents a worthless classifier. 

• The area under the curve (AUC) is equal to the probability 
that a classifier will rank a randomly chosen positive 
example higher than a randomly chosen negative example.  
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ROC curve and AUC 
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Actual class

Confidence 

classifier 

forclass Y FP TP FPr TPr

P1 Y 1

P2 Y 1

P3 Y 0.95

P4 Y 0.9

P5 Y 0.9

P6 N 0.85

P7 Y 0.8

P8 Y 0.6

P9 Y 0.55

P10 Y 0.55

P11 N 0.3

P12 N 0.25

P13 Y 0.25

P14 N 0.2

P15 N 0.1

P16 N 0.1

P17 N 0.1

P18 N 0

P19 N 0

P20 N 0



ROC curve and AUC 
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Actual class

Confidence 

classifier 

forclass Y FP TP FPr TPr

P1 Y 1 0 2 0 0.2

P2 Y 1 0 2 0 0.2

P3 Y 0.95 0 3 0 0.3

P4 Y 0.9 0 5 0 0.5

P5 Y 0.9 0 5 0 0.5

P6 N 0.85 1 5 0.1 0.5

P7 Y 0.8 1 6 0.1 0.6

P8 Y 0.6 1 7 0.1 0.7

P9 Y 0.55 1 9 0.1 0.9

P10 Y 0.55 1 9 0.1 0.9

P11 N 0.3 2 9 0.2 0.9

P12 N 0.25 3 9 0.3 0.9

P13 Y 0.25 3 10 0.3 1

P14 N 0.2 4 10 0.4 1

P15 N 0.1 7 10 0.7 1

P16 N 0.1 7 10 0.7 1

P17 N 0.1 7 10 0.7 1

P18 N 0 8 10 0.8 1

P19 N 0 9 10 0.9 1

P20 N 0 10 10 1 1



ROC curve and AUC 
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Area under curve 
AUC = 0.93 

Actual class

Confidence 

classifier 

forclass Y FPr TPr

P1 Y 1 0 0.2

P2 Y 1 0 0.2

P3 Y 0.95 0 0.3

P4 Y 0.9 0 0.5

P5 Y 0.9 0 0.5

P6 N 0.85 0.1 0.5

P7 Y 0.8 0.1 0.6

P8 Y 0.6 0.1 0.7

P9 Y 0.55 0.1 0.9

P10 Y 0.55 0.1 0.9

P11 N 0.3 0.2 0.9

P12 N 0.25 0.3 0.9

P13 Y 0.25 0.3 1

P14 N 0.2 0.4 1

P15 N 0.1 0.7 1

P16 N 0.1 0.7 1

P17 N 0.1 0.7 1

P18 N 0 0.8 1

P19 N 0 0.9 1

P20 N 0 1 1
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Predicting with Naïve Bayes 

Given 

• Attribute-value data with nominal target variable 

Induce 

• Build a Naïve Bayes classifier and  estimate its 
performance on new data 
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Naïve Bayes classifier 

Will the spider catch these two ants? 

• Color = white, Time = night 

• Color = black, Size = large, Time = day 
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Assumption: conditional 

independence of attributes 

given the class. 
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Naïve Bayes classifier -example 



Estimating probability 

Relative frequency 

• P(c) = n(c) /N  

• A disadvantage of using 
relative frequencies for 
probability estimation arises 
with small sample sizes, 
especially if they are either 
very close to zero, or very 
close to one. 

• In our spider example: 

P(Time=day|caught=NO) =  

= 0/3 = 0 

 

Laplace estimate 

• Assumes uniform prior 
distribution of k classes 

• P(c) = (n(c) + 1) / (N + k) 

• In our spider example: 
P(Time=day|caught=NO) = 
(0+1)/(3+2) = 1/5 

• With lots of evidence 
approximates relative 
frequency 

• If there were 300 cases when the 
spider didn’t catch ants at night: 
P(Time=day|caught=NO) = 
(0+1)/(300+2) = 1/302 = 0.003 

• With Laplace estimate 
probabilities can never be 0. 
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n(c) … number of examples where c is true 

N … number of all examples 

k … number of classes 

 

 



K-fold cross validation 
1. The sample set is partitioned into K subsets ("folds") of about 

equal size 

2. A single subset is retained as the validation data for testing the 
model (this subset is called the "testset"), and the remaining K - 1 
subsets together are used as training data ("trainset").  

3. A model is trained on the trainset and its performance (accuracy 
or other performance measure) is evaluated on the testset 

4. Model training and evaluation is repeated K times, with each of 
the K subsets used exactly once as the testset. 

5. The average of all the accuracy estimations obtained after each 
iteration is the resulting accuracy estimation. 
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Discussion 
1. Compare naïve Bayes and decision trees (similarities and 

differences) . 

2. Compare cross validation and testing on a separate test set. 

3. Why do we prune decision trees? 

4. What is discretization. 

5. Why can’t we always achieve 100% accuracy on the training set? 

6. Compare Laplace estimate with relative frequency. 

7. Why does Naïve Bayes work well (even if independence 
assumption is clearly violated)? 

8. What are the benefits of using Laplace estimate instead of 
relative frequency for probability estimation in Naïve 
Bayes? 
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