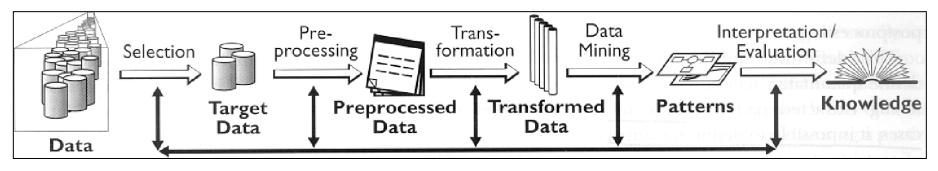
Data Mining and Knowledge Discovery: Practice Notes

dr. Petra Kralj Novak <u>Petra.Kralj.Novak@ijs.si</u> 2016/11/15

1

- Prof. Nada Lavrač:
 - Data mining overview
 - Advanced topics
- Dr. Petra Kralj Novak
 Data mining basis

Keywords



- Data
 - Attribute, example, attribute-value data, target variable, class, discretization
- Algorithms
 - Decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, numeric prediction, regression tree, model tree, heuristics vs. exhaustive search, predictive vs. descriptive DM
- Evaluation
 - Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, error, precision, recall

Decision tree induction

Given

- Attribute-value data with nominal target variable Induce
- A decision tree and estimate its performance on new data

Attr	ibu	te-va	alue	data		iominal) target	
			attributes		V	ariable	
						Ţ	
	Doroon	A 70	Dropprintion	Actiomotic	Toor Data		
o vo manto o	Person	Age	Prescription	Astigmatic	Tear_Rate		
examples	P1	young	myope	no	normal	YES >	> classes
	P2	young	myope	no	reduced	NO	
	P3	young	hypermetrope	no	normal	YES	=
	P4	young	hypermetrope	no	reduced	NO	
	P5	young	myope	yes	normal	YES	values of
	P6	young	myope	yes	reduced	NO	the
-	P7	young	hypermetrope	yes	normal	YES	
	P8	young	hypermetrope	yes	reduced	NO	(nominal)
	P9	pre-presbyopic	myope	no	normal	YES	target
	P10	pre-presbyopic	myope	no	reduced	NO	variable
	P11	pre-presbyopic	hypermetrope	no	normal	YES	Valiable
	P12	pre-presbyopic	hypermetrope	no	reduced	NO	
	P13	pre-presbyopic	myope	yes	normal	YES	
	P14	pre-presbyopic	myope	yes	reduced	NO	
	P15	pre-presbyopic	hypermetrope	yes	normal	NO	
	P16	pre-presbyopic	hypermetrope	yes	reduced	NO	
	P17	presbyopic	myope	no	normal	NO	12/01/
	P18	presbyopic	myope	no	reduced	NO	
	P19	presbyopic	hypermetrope	no	normal	YES	
	P20	presbyopic	hypermetrope	no	reduced	NO	
	P21	presbyopic	myope	yes	normal	YES	
	P22	presbyopic	myope	yes	reduced	NO	FARMED
	P23	presbyopic	hypermetrope	yes	normal	NO	5
Jožef Stefan Institute	P24	presbyopic	hypermetrope	yes	reduced	NO	

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- 1. Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the information gain of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each Si

Test the model on the test set T

Training and test set

	Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses	
	P1	young	myope	no	normal	YES	
	P2	young	myope	no	reduced	NO	
	P3	young	hypermetrope	no	normal	YES	
	P4	young	hypermetrope	no	reduced	NO	
	P5	young	myope	yes	normal	YES	
	P6	young	myope	yes	reduced	NO	
	P7	young	hypermetrope	yes	normal	YES	
	P8	young	hypermetrope	yes	reduced	NO	J
	P9	pre-presbyopic	myope	no	normal	YES	
	P10	pre-presbyopic	myope	no	reduced	NO	
	P11	pre-presbyopic	hypermetrope	no	normal	YES	1
	P12	pre-presbyopic	hypermetrope	no	reduced	NO	+
	P13	pre-presbyopic	myope	yes	normal	YES	ł
	P14	pre-presbyopic	myope	yes	reduced	NO	
	P15	pre-presbyopic	hypermetrope	yes	normal	NO	*
	P16	pre-presbyopic	hypermetrope	yes	reduced	NO	ł
	P17	presbyopic	myope	no	normal	NO	
	P18	presbyopic	myope	no	reduced	NO	
	P19	presbyopic	hypermetrope	no	normal	YES	
	P20	presbyopic	hypermetrope	no	reduced	NO	
	P21	presbyopic	myope	yes	normal	YES	
	P22	presbyopic	myope	yes	reduced	NO	
	P23	presbyopic	hypermetrope	yes	normal	NO	*
- -	P24	presbyopic	hypermetrope	yes	reduced	NO	
DERARTMENT OF	05	- · · ·		-			

KNOWLEDGE TECHNOLOGIES

Jožef Stefan Institute

Put 30% of examples in a separate test set

7

Test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Put these data away and do not look at them in the training phase!

Training set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P1	young	myope	no	normal	YES
P2	young	myope	no	reduced	NO
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P17	presbyopic	myope	no	normal	NO
P18	presbyopic	myope	no	reduced	NO
P19	presbyopic	hypermetrope	no	normal	YES
P20	presbyopic	hypermetrope	no	reduced	NO
P21	presbyopic	myope	yes	normal	YES
P22	presbyopic	myope	yes	reduced	NO
P24	presbyopic	hypermetrope	yes	reduced	NO

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- 1. Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the information gain of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each Si

Test the model on the test set T

Information gain

number of examples in the subset S_v

11

(probability of the branch) set S attribute A $Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$ number of examples in set S

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

 Calculate the following entropies: E(0,1) =E(1/2, 1/2) =E(1/4, 3/4) =E(1/7, 6/7) =E(6/7, 1/7) =E(0.1, 0.9) =E(0.001, 0.999) =

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

• Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1E(1/4, 3/4) = 0.81E(1/7, 6/7) = 0.59E(6/7, 1/7) = 0.59E(0.1, 0.9) = 0.47E(0.001, 0.999) = 0.01

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

 Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1E(1/4, 3/4) = 0.81E(1/7, 6/7) = 0.590.9 0.8 0.7 E(6/7, 1/7) = 0.590.6 0.5 E(0.1, 0.9) = 0.470.4 0.3 E(0.001, 0.999) = 0.010.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

 Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1E(1/4, 3/4) = 0.81E(1/7, 6/7) = 0.590.9 0.8 0.7 E(6/7, 1/7) = 0.590.6 0.5 E(0.1, 0.9) = 0.470.4 0.3 E(0.001, 0.999) = 0.010.2 0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Entropy and information gain

probability of	probability of		
class 1	class 2	entropy E(p ₁ , p ₂) =	1.00
p ₁	p ₂ = 1-p ₁	-p ₁ *log ₂ (p ₁) - p ₂ *log ₂ (p ₂)	0.90
0	1	0.00	0.80
0.05	0.95	0.29	
0.10	0.90	0.47	a 0.60 b 0.50 b 0.40 c b 0.40 c c c c c c c c c c
0.15	0.85	0.61	
0.20	0.80	0.72	0.30
0.25	0.75	0.81	0.20
0.30	0.70	0.88	0.10
0.35	0.65	0.93	0.00
0.40	0.60	0.97	0 0.2 0.4 0.6 0.8 1
0.45	0.55	0.99	distribution of probabilities
0.50	0.50	1.00	
0.55	0.45	0.99	
0.60	0.40	0.97	number of examples in the subset
0.65	0.35	0.93	probability of the "branch"
0.70	0.30	0.88 a ⁻	ttribut A
0.75	0.25	0.81	
0.80	0.20	0.72 <i>Gai</i>	$n(S, A) = E(S) - \sum_{v \in S_v} \left(\frac{TS_v}{S_v}\right) E(S_v)$
0.85	0.15	0.61	$v \in Values$ (A S)
0.90	0.10	0.47	
0.95	0.05	0.29	`set S
1	0	0.00	number of examples in set S
			LEARNED 16

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

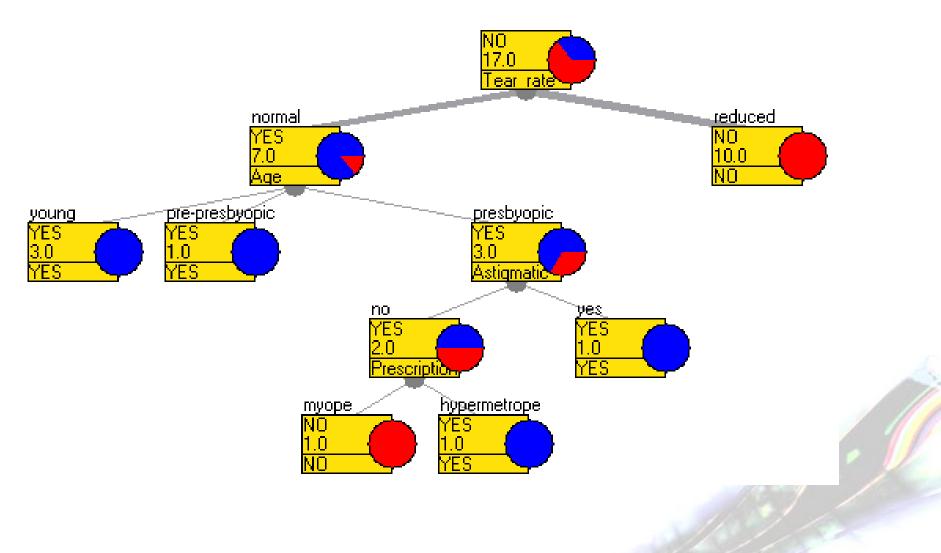
- 1. Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the information gain of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root

17

- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each Si

Test the model on the test set T

Decision tree



Confusion matrix

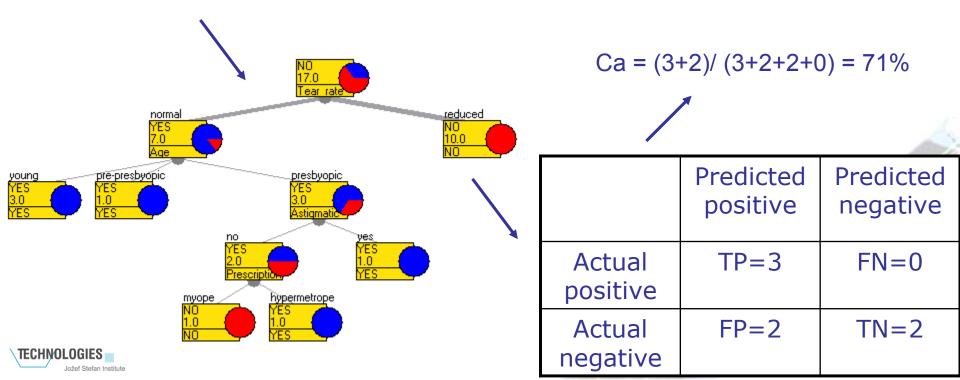
predicted

		Predicted positive	Predicted negative
ual	Actual positive	TP	FN
actual	Actual negative	FP	TN

- Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
 - = #(correctly classified examples) / #(all examples)
 - = (TP+TN) / (TP+TN+FP+FN)

Evaluating decision tree accuracy

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	туоре	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	туоре	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO



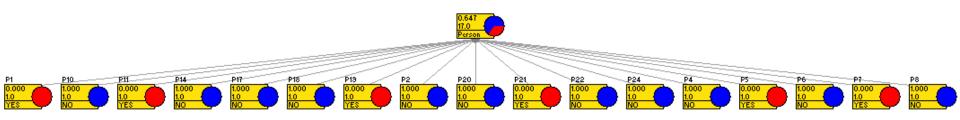
Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- → How much is the information gain for the "attribute" Person? How would it perform on the test set?
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Information gain of the "attribute" Person



On training set

- As many values as there are examples
- Each leaf has exactly one example
- E(1/1, 0/1) = 0 (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)

On testing set

• The values from the testing set do not appear in the tree

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- → How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

24

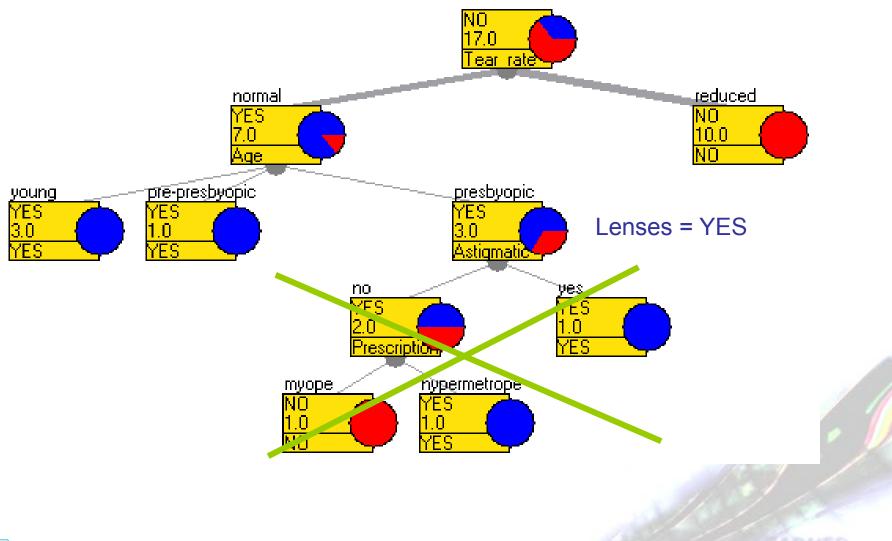
Entropy{hard=4, soft=5, none=13}=

- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22 13/22 * \log_2 13/22$
- = 1.38

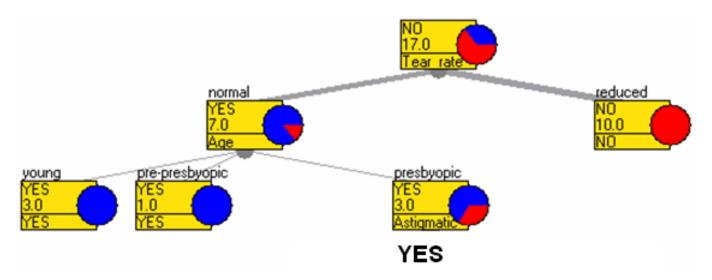
Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Decision tree pruning



These two trees are equivalent



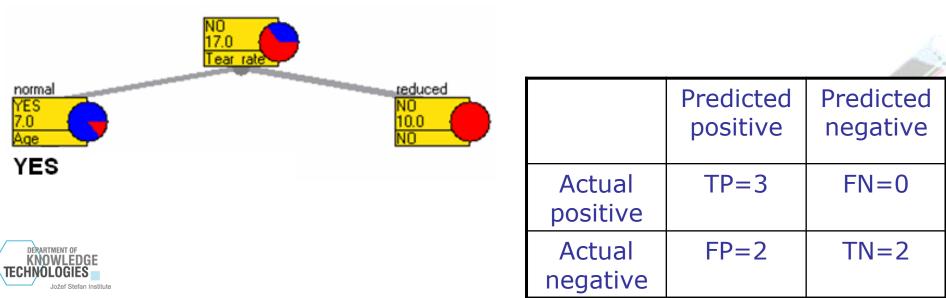


28

Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Ca = (3+2)/ (3+2+2+0) = 71%



Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- \rightarrow What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Stopping criteria for building a decision tree

- ID3
 - "Pure" nodes (entropy =0)
 - Out of attributes
- J48 (C4.5)
 - Minimum number of instances in a leaf constraint

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- → How would you compute the information gain for a numeric attribute?

Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
Gera (N 39	NO
45	YES

ECI

	Age	Lenses		Age	Lenses
	67	YES		23	YES
	52	YES		23	YES
	63	NO		25	YES
	26	YES	Sort	26	YES
	65	NO	by	26	YES
	23	YES	Age	29	YES
	65	NO	Age	32	NO
	25	YES		38	NO
	26	YES		39	NO
	57	NO		39	NO
	49	NO		44	YES
	23	YES		45	YES
	39	NO		46	NO
	55	NO		49	NO
	53	NO		52	YES
	38	NO		53	NO
	67	YES		54	NO
	54	NO		55	NO
	29	YES		57	NO
	46	NO		63	NO
	44	YES		65	NO
	32	NO		65	NO
dera KN CHM	39	NO		67	YES
	45	YES		67	YES

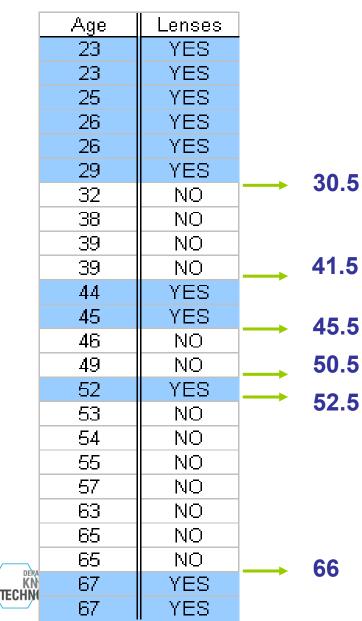
TEC

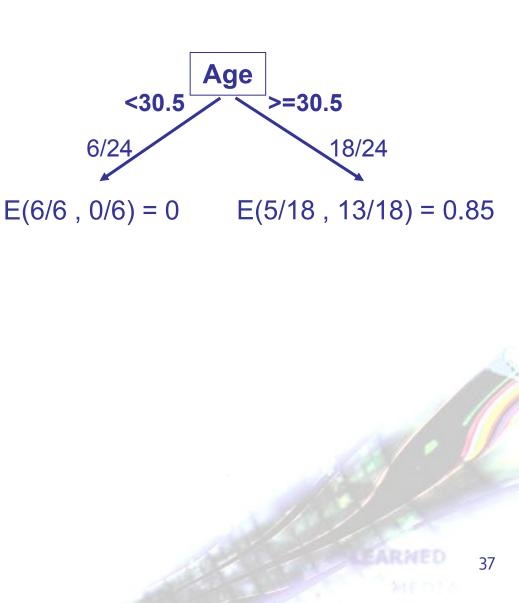
					•			
[Age	Lenses		Age	Lenses		Age	Lenses
	67	YES		23	YES		23	YES
-	52	YES		23	YES		23	YES
	63	NO		25	YES	Define	25	YES
-	26	YES	Sort	26	YES		26	YES
	65	NO	by	26	YES	possible	26	YES
-	23	YES	Age	29	YES	splitting	29	YES
	65	NO	Age	32	NO	points	32	NO
-	25	YES		38	NO	points	38	NO
-	26	YES		39	NO		39	NO
	57	NO		39	NO		39	NO
	49	NO		44	YES		44	YES
	23	YES		45	YES		45	YES
	39	NO		46	NO		46	NO
	55	NO		49	NO		49	NO
	53	NO		52	YES		52	YES 🍃
	38	NO		53	NO		53	NO 👂
	67	YES		54	NO		54	NO 🖊
	54	NO		55	NO		55	NO
	29	YES		57	NO		57	NO
	46	NO		63	NO		63	NO
	44	YES		65	NO		65	NO
	32	NO		65	NO	As in	65	NO
	39	NO		67	YES		67	YES
	45	YES		67	YES		67	YES

36

	Age	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	20 E
	32	NO	30.5
	38	NO	
	39	NO	
	39	NO	 41.5
	44	YES	
	45	YES	 45.5
	46	NO	43.3
	49	NO	 50.5
	52	YES	52.5
	53	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
_	65	NO	66
dera KN HN	67	YES	00
	67	YES	

TECI

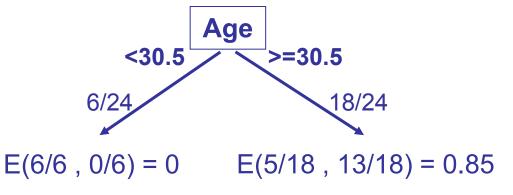




	Age	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	30.5
	32	NO	30.5
	38	NO	
	39	NO	
	39	NO	41.5
	44	YES	
	45	YES	45.5
	46	NO	40.0
	49	NO	50.5
	52	YES	 52.5
	53	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
DERA	65	NO	 66
	67	YES	••
	67	YES	

TE(

E(S) = E(11/24, 13/24) = 0.99



38

InfoGain (S, Age_{30.5})=

 $= E(S) - \sum p_v E(p_v)$

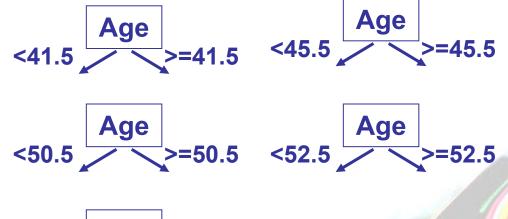
= 0.99 - (6/24*0 + 18/24*0.85)

= 0.35

	Age 23	Lenses		
	23	YES		
	23	YES		
	25	YES		
	26	YES		
	26	YES		
	29	YES		30.5
	32	NO		30.5
	38	NO		
	39	NO		
	39	NO		41.5
	44	YES		
	45	YES		45.5
	46	NO		40.0
	49	NO		50.5
	52	YES	\rightarrow	52.5
	53	NO		52.5
	54	NO		
	55	NO		
	57	NO		
	63	NO		
	65	NO		
	65	NO		66
dera KN CHM	67	YES		
	67	YES		

<30.5 Age >=30.5

InfoGain (S, $Age_{30.5}$) = 0.35



39

Decision trees

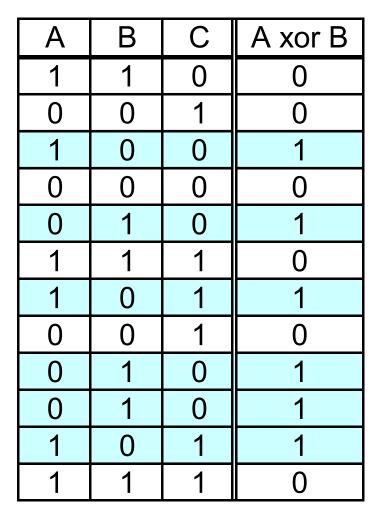
Many possible decision trees

$$\sum_{i=0}^{k} 2^{i} (k-i) = -k + 2^{k+1} - 2$$

– k is the number of binary attributes

- Heuristic search with information gain
- Information gain is short-sighted

Trees are shortsighted (1)

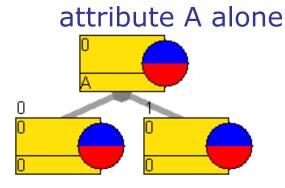


DEPARTMENT OF KNOWLEDGE TECHNOLOGIES Jožef Stefan Institute

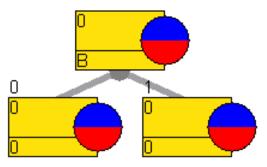
- Three attributes: A, B and C
- Target variable is a logical combination attributes A and B class = A xor B
- Attribute C is random w.r.t. the target variable

41

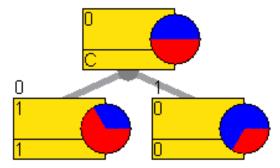
Trees are shortsighted (2)



attribute B alone



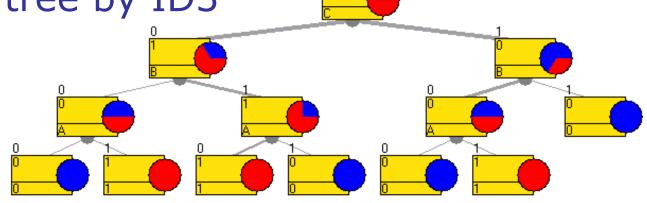
attribute C alone



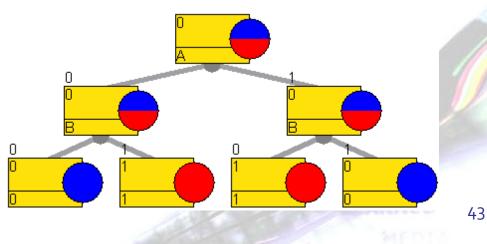
Attribute C has the highest information gain!

Trees are shortsighted (3)

• Decision tree by ID3



• The real model behind the data



Overcoming shortsightedness of decision trees

- Random forests
 - (Breinmann & Cutler, 2001)
 - A random forest is a set of decision trees
 - Each tree is induced from a bootstrap sample of examples
 - For each node of the tree, select among a subset of attributes

44

- All the trees vote for the classification
- See also ensamble learning
- ReliefF for attribute estimation (Kononenko el al., 1997)

