Data Mining and Knowledge Discovery Practice notes: Decision trees

- Prof. Nada Lavrač:
- Data mining overview
- Advanced topics
- Dr. Petra Kralj Novak
- Data mining basis

Decision tree induction

Given

- Attribute-value data with nominal target variable

Induce

- A decision tree and estimate its performance on new data

Ehivicioils

Decision tree induction (ID3)

Given:
Attribute-value data with nominal target variable
Divide the data into training set (S) and test set (T)
Induce a decision tree on training set S :

1. Compute the entropy $\mathrm{E}(\mathrm{S})$ of the set S
2. $\mathrm{IF} \mathrm{E}(\mathrm{S})=0$
3. $\operatorname{IF} \mathrm{E}(\mathrm{S})>0$
4. Compute the information gain of each attribute Gain(S, A)
5. The attribute A with the highest information gain becomes the root
6. Divide the set S into subsets S_{i} according to the values of A

Repeat steps 1-7 on each S
Test the model on the test set T

Data Mining and Knowledge Discovery Practice notes: Decision trees

Training and test set						
)	momm	\%	and		
	coma	nommeem		${ }^{\text {camas }}$		
	${ }_{\text {coma }}^{\substack{\text { comb } \\ \text { comb }}}$	${ }_{\text {memmem }}$	mim			
	meme			comb	cos	
		comem		com	(iss	
				comm		
	p			m		
		mmem				

Test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbopec	hypermetrope	yes	normal	NO
P16	pre-prebbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Put these data away and do not look at them in the training phase!

Training set					
	${ }_{\text {A A0 }}^{\text {cous }}$	Presabibo		$\frac{\text { Tear fate }}{\text { nomat }}$	
${ }_{\text {P2 }}$		mee	no	${ }_{\text {reated }}^{\text {reated }}$	No
${ }_{\text {P6 }}{ }_{\text {P6 }}^{6}$	jous	mopee		come	$\underset{\substack{\text { ves } \\ \text { No }}}{\text { Nose }}$
${ }_{\substack{\text { Pr }}}^{\substack{\text { Pr } \\ p}}$	Young			comal	(es
${ }_{\substack{\text { P10 } \\ \text { P1, } \\ \text { P14 }}}$	comel	mmope	$\begin{gathered} \text { nom } \\ \substack{0.0} \\ \end{gathered}$		¢
${ }_{\substack{\text { P17 } \\ \text { P18 } \\ \text { P18 }}}^{\text {a }}$	coin	mome	$\begin{gathered} \text { ses } \\ \text { nos } \\ \text { no } \end{gathered}$	coil	No No No
$\xrightarrow[\substack { \text { P1, } \\ \begin{subarray}{c}{\text { P10 }{ \text { P1, } \\ \begin{subarray} { c } { \text { P10 } } } \\{\text { P21 }}\end{subarray}]{ }$		minemero		coimed	(ins
		miome	,	coin	
maxe					

Decision tree induction (ID3)

Given:
Attribute-value data with nominal target variable
Divide the data into training set (S) and test set (T)
Induce a decision tree on training set S :

1. Compute the entropy $E(S)$ of the set S
2. $\mathrm{IF} \mathrm{E}(\mathrm{S})=0$
3. The current set is "clean" and therefore a leaf in our tree
4. IF $\mathrm{E}(\mathrm{S})>0$
5. Compute the information gain of each attribute Gain(S, A)
6. The attribute A with the highest information gain becomes the root
7. Divide the set S into subsets S_{i} according to the values of A

Test the model on the test set T

Information gain

number of examples in the subset S_{v}
(probability of the branch)
set $\mathrm{S} \quad$ attribute A
$\operatorname{Gain}(S, A)=E(S)-\sum_{v \in \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \cdot E\left(S_{v}\right)$
number of examples in set S

Aivitiog

Entropy

$$
E(S)=-\sum_{c=1}^{N} p_{c} \cdot \log _{2} p_{c}
$$

- Calculate the following entropies:
$E(0,1)=$
$E(1 / 2,1 / 2)=$
$E(1 / 4,3 / 4)=$
$E(1 / 7,6 / 7)=$
$E(6 / 7,1 / 7)=$
$E(0.1,0.9)=$
$E(0.001,0.999)=$

Data Mining and Knowledge Discovery Practice notes: Decision trees

Entropy

$$
E(S)=-\sum_{c=1}^{N} p_{c} \cdot \log _{2} p_{c}
$$

- Calculate the following entropies:
$E(0,1)=0$
$E(1 / 2,1 / 2)=1$
$E(1 / 4,3 / 4)=0.81$
$E(1 / 7,6 / 7)=0.59$
$E(6 / 7,1 / 7)=0.59$
$E(0.1,0.9)=0.47$
$E(0.001,0.999)=0.01$
Reminution

Entropy

$$
E(S)=-\sum_{c=1}^{N} p_{c} \cdot \log _{2} p_{c}
$$

- Calculate the following entropies:
$E(0,1)=0$
$E(1 / 2,1 / 2)=1$
$E(1 / 4,3 / 4)=0.81$
$E(1 / 7,6 / 7)=0.59$
$E(6 / 7,1 / 7)=0.59$
$E(0.1,0.9)=0.47$
$E(0.001,0.999)=0.01$

Entropy

$$
E(S)=-\sum_{c=1}^{N} p_{c} \cdot \log _{2} p_{c}
$$

- Calculate the following entropies:
$E(0,1)=0$
$E(1 / 2,1 / 2)=1$
$E(1 / 4,3 / 4)=0.81$
$E(1 / 7,6 / 7)=0.59$
$E(6 / 7,1 / 7)=0.59$
$E(0.1,0.9)=0.47$
$E(0.001,0.999)=0.01$
Hemioubibe

Entropy and information gain

probability of class 1	probability of class 2	entropy $\mathrm{E}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=$
p_{1}	$\mathrm{p}_{2}=1$ - p_{1}	-p, ${ }^{*} \log _{2}\left(p_{1}\right)-p_{2}{ }^{*} \log _{2}\left(p_{2}\right)$
0	1	0.00
0.05	0.95	0.29
0.10	0.90	0.47
0.15	0.85	0.61
0.20	0.80	0.72
0.25	0.75	0.81
0.30	0.70	0.88
0.35	0.65	0.93
0.40	0.60	0.97
0.45	0.55	0.99
0.50	0.50	1.00
0.55	0.45	0.99
0.60	0.40	0.97
0.65	0.35	0.93
0.70	0.30	0.88 at
0.75	0.25	0.81
0.80	0.20	0.72 Gain
0.85	0.15	0.61
0.90	0.10	0.47
0.95	0.05	0.29
1	0	0.00
Mipe		

 attribut A

Decision tree induction (ID3)

Given:
Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S :

1. Compute the entropy $\mathrm{E}(\mathrm{S})$ of the set S

IF $E(S)=0$ IF $\mathrm{E}(\mathrm{S})>0$

Compute the information gain of each attribute Gain(S, A) The attribute A with the highest information gain becomes the root Divide the set S into subsets S_{i} according to the values of A 8. Repeat steps 1-7 on each Si

Test the model on the test set T

[^0]

Data Mining and Knowledge Discovery Practice notes: Decision trees

Confusion matrix

	Predicted positive	Predicted negative
Actual positive	TP	FN
Actual negative	FP	TN

- Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
= \#(correctly classified examples) / \#(all examples) $=(T P+T N) /(T P+T N+F P+F N)$

Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=$ \{hard=4, soft=5, none=13\}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Evaluating decision tree accuracy

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO
			Predicted positive		Predicted negative
			Actual positive	TP=3	$\mathrm{FN}=0$
			Actual negative	$\mathrm{FP}=2$	TN=2

Discussion about decision trees

\rightarrow - How much is the information gain for the "attribute" Person? How would it perform on the test set?

- How do we compute entropy for a target variable that has three values? Lenses $=\{$ hard=4, soft=5, none=13\}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
\rightarrow - How do we compute entropy for a target variable that has three values? Lenses $=\{$ hard $=4$, soft $=5$, none $=13\}$
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Data Mining and Knowledge Discovery Practice notes: Decision trees

Entropy $\{$ hard=4, soft=5, none $=13\}=$
$=E(4 / 22,5 / 22,13 / 22)$
$=-\sum p_{1} * \log _{2} p_{i}$
$=-4 / 22 * \log _{2} 4 / 22-5 / 22 * \log _{2} 5 / 22-13 / 22 * \log _{2} 13 / 22$
$=1.38$

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=\{$ hard $=4$, soft $=5$, none $=13$
\rightarrow - What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

These two trees are equivalent

Classification accuracy of the pruned tree

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=\{$ hard $=4$, soft $=5$, none $=13\}$
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
\rightarrow - What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Data Mining and Knowledge Discovery Practice notes: Decision trees

Stopping criteria for building a decision tree

- ID3
- "Pure" nodes (entropy =0)
- Out of attributes
- J48 (C4.5)
- Minimum number of instances in a leaf constraint

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=\{$ hard=4, soft=5, none=13
What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
\rightarrow - How would you compute the information gain for a numeric attribute?

Information gain of a numeric attribute

Data Mining and Knowledge Discovery Practice notes: Decision trees

Decision trees

- Many possible decision trees

$$
\sum_{i=0}^{k} 2^{i}(k-i)=-k+2^{k+1}-2
$$

- k is the number of binary attributes
- Heuristic search with information gain
- Information gain is short-sighted

Trees are shortsighted (1)				
A	B	C	A xor B	- Three attributes:
1	1	0	0	A, B and C
0	0	1	0	- Target variable is a logical
1	0	0	1	combination attributes A and B
0	0	0	0	class $=$ A xor B
0	1	0	1	- Attribute C is random w.r.t. the
1	1	1	0	target variable
1	0	1	1	
0	0	1	0	
0	1	0	1	
0	1	0	1	
1	0	1	1	
1	1	1	0	

Overcoming shortsightedness of decision trees

- Random forests
(Breinmann \& Cutler, 2001)
- A random forest is a set of decision trees
- Each tree is induced from a bootstrap sample of examples
- For each node of the tree, select among a subset of attributes
- All the trees vote for the classification
- See also ensamble learning
- ReliefF for attribute estimation
(Kononenko el al., 1997)

[^0]:

