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Jozef Stefan Institute and IPS

« Jozef Stefan Institute (JSI, founded in 1949) P
— named after a distinguished physicist = T4 E
Jozef Stefan (1835-1893) .

— leading national research organization in natural sciences
and technology (~700 researchers and students)

« JSl research areas
— Information and communication technologies
— chemistry, biochemistry & nanotechnology
— physics, nuclear technology and safety

« Jozef Stefan International Postgraduate School (IPS,
founded in 2004)

— offers MSc and PhD programs (ICT, nanotechnology,
ecotechnology)

— research oriented, basic + management courses
— In English



Jozef Stefan Institute
Department of Knowledge Technologies

e Head: Nada Lavrag, Staff: about 30 researchers, 10 students

 Machine learning & Data mining
— ML (decision tree and rule learning, subgroup discovery, ...)
— Text and Web mining
— Relational data mining - inductive logic programming
— Equation discovery

* Other research areas:
— Knowledge management
— Decision support
— Human language technologies
— Computational creativity

« Applications:
— Medicine, Bioinformatics, Public Health
— Ecology, Finance, ...
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Basic Data Mining Task

knowledge discovery

from data
Data Mining

model, patterns, ...

data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...



Data Mining and Machine Learning

 Machine learning techniques ¢ Data mining applications

— classification rule learning — medicine, health care

— subgroup discovery — ecology, agriculture

— relational data mining and — knowledge management,
ILP virtual organizations

— equation discovery
— Inductive databases
« Data mining
— Involves exploratory
data analysis
— pattern mining

5=

D_fibr=>4.20 ecghlv=no -» class=emb
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Data Mining vs Decision Support

knowledge discovery

from data
Data Mining

model, patterns, ...

|data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...

mutli-criteria modeling

%
f VAV Decision Support
)\;\
S\

models

experts

Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives



Decision support tools: DEXI
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Basic Text and Web Mining Task

knowledge discovery
M

from text data and We
Text/Web Mining

model, patterns, ...

Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization...
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Text Mining (lectures by D. Mladeni¢)
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Knowledge Technologies:
Main research areas & IPS lectures
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Course Qutline

l. Introduction
— Data Mining in a Nutshell

— Predictive and descriptive DM
techniques

— Data Mining and KDD process

— DM standards, tools and
visualization

(Mladeni¢ et al. Ch. 1 and 11)

ll. Predictive DM Techniques

— Bayesian classifier
(Kononenko Ch. 9.6)

— Decision Tree learning
(Mitchell Ch. 3, Kononenko Ch. 9.1)

— Classification rule learning
(Kononenko Ch. 9.2)

— Classifier Evaluation
(Bramer Ch. 6)

lll. Regression
(Kononenko Ch. 9.4)

I\VV. Descriptive DM
— Predictive vs. descriptive induction
— Subgroup discovery

— Association rule learning
(Kononenko Ch. 9.3)

— Hierarchical clustering (Kononenko
Ch. 12.3)

— V. Relational Data Mining

— RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch. 3, Ch. 4)

— Propositionalization approaches
— Relational subgroup discovery

13



Part |. Introduction

Data Mining in a Nutshell

Predictive and descriptive DM techniques
Data Mining and the KDD process

DM standards, tools and visualization

14



What is DM

» Extraction of useful information from data:
discovering relationships that have not
previously been known

* The viewpoint in this course: Data Mining Is

the application of Machine Learning
techniques to solve real-life data analysis

problems

15
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Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns



Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge discovery
o1 17 myope no reduced NONE

02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE
06-013 43
014 35 hypermetrope no normal SOFT Data Mlnlng
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019023 .. model, patterns, ...
024 56 hypermetrope yes normal NONE
data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

symbolic model

new unclassified instance |\ classified instance symbolic patterns N\
' AL
black box classifier explanation i R

no explanation . I
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 .
O14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses

01 young myope no reduced NONE

02 young myope no normal SOFT

03 young myope yes reduced NONE

o4 young myope yes normal HARD

05 young  hypermetrope no reduced NONE Data M | N | ng
06-013

014  ore-presbyc hypermetrope no normal SOFT

015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE

017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE
019-023

024  preshyopic hypermetrope yes normal NONE

reduced/ N:)rmal

NONE
no /

SOFT

spect. pre.

myope/ \hypermetrope

HARD NONE
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Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
o1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
04 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013

014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal 0
019-023
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Learning from Unlabeled Data

Person Age Spect. presc. Astigm. Tear prod.\ Lenses /
o1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope no reduced

06-013 . ..
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning

22



Database technology
and data warehouses

23

Data Mining: Related areas

databases
efficient storage,

acce_ss an_d text and Web machine
manipulation mining learning
of data

computing

pattern
recognition
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Related areas

Statistics,

machine learning,
pattern recognition
and soft computing*

 classification
techniques and
techniques for
knowledge extraction
from data

databases

text and Web
mining

machine
learning

computing

pattern
recognition

* neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning



Text and Web mining

25

Related areas

Web page analysis
text categorization

acquisition, filtering
and structuring of
textual information

natural language
processing

databases

text and Web
mining

machine
learning

computing

pattern
recognition
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Related areas

Visualization

e visualization of data
and discovered
knowledge

databases

text and Web
mining

machine
learning

computing

pattern
recognition
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Point of view In this course

Knowledge
discovery using databases
machine A
I - text and Web machine
earnlng mining learning

thod
TR sof

: ‘ visualization
computing pattern
recognition




Data Mining, ML and Statistics

All three areas have a long tradition of developing
Inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. ML - Viewpoint in this course:

— Data Mining Is the application of Machine Learning
techniques to hard real-life data analysis problems

28



Data Mining, ML and Statistics

All three areas have a long tradition of developing
Inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. Statistics:
— Statistics

* Hypothesis testing when certain theoretical
expectations about the data distribution,

Independence, random sampling, sample size, etc.

are satisfied

« Main approach: best fitting all the available data
— Data mining

 Automated construction of understandable
patterns, and structured models

« Main approach: structuring the data space,
heuristic search for decision trees, rules, ...
covering (parts of) the data space

29



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: the class label for a new unlabeled instance



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: the class label for a new unlabeled instance

new unclassified instance classified instance



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

new unclassified instance classified instance

- use the model for the explanation of classifications of
new data instances
- use the discovered patterns for data exploration



Part |. Introduction

Data Mining in a Nutshell

Predictive and descriptive DM techniques
Data Mining and the KDD process

DM standards, tools and visualization

33



Types of DM tasks

Predictive DM:

— Classification (learning of rules, decision

trees, ...)
Prediction and estimation (regression)
Predictive relational DM (ILP)

Descriptive DM:

description and summarization

dependency analysis (association rule
learning)

discovery of properties and constraints
segmentation (clustering)
subgroup discovery

34
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Predictive vs. descriptive DM

Predictive DM m
N
Descriptive DM
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Predictive vs. descriptive DM

* Predictive DM: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

« Descriptive DM: Discovering interesting regularities in
the data, uncovering patterns, ... for solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis



Predictive DM formulated as a
machine learning task:

« Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)

Al A2 A3 Class
examplel v, Vi Vi 3 C,
example2 v,, Vs 5 Vs, 3 C,

« By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

A=V ) & (A=V;) & ... > Class = C,

37



Predictive DM - Classification

« data are objects, characterized with attributes -
they belong to different classes (discrete labels)

 given objects described with attribute values,
iInduce a model to predict different classes

e decision trees, If-then rules, discriminant
analysis, ...

38



Data mining example

Input: Contact lens data

39

Person Age Spect. presc.  Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
018 presbyopic myope no normal NONE

019-023
024  presbyopic/ hypermetrope yes normal NONE
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Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

reduced / NAormal

NONE
no / yes
SOFT
myope / \?ypermetmpe

HARD NONE




Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE

41
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. | Astigm. Tear prod. _Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
O5 young | hypermetrope no reduced NO

06-013
O14 ore-presbyc hypermetrope no normal YES
O15 ore-presbyc hypermetrope yes reduced NO
016 ore-presbyc hypermetrope yes normal NO
O17 |presbyopic myope no reduced NO
O18 |presbyopic myope no normal NO

019-023
024 |presbyopic hypermetrope yes normal NO
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Contact lens data:
Classification rules Iin concept learning

Type of task: prediction and classification
Hypothesis language: rules X = C, if X then C
X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no —
lenses=YES

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=YES

else NO
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lllustrative example:
Customer data

Customer Gender Age Income Spent _ BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
cl15 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data: Decision trees

< 102000 / E > 102000
<58 / > 58

no yes
:female/ - ! = male
no

349/ ! > 49

no yes




Predictive DM - Estimation

often referred to as regression

data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

given objects described with attribute values, induce a
model to predict the numeric class value

regression trees, linear and logistic regression, ANN,
KNN, ...

46



Estimation/regression example:

Customer data

Customer Gender Age Income Spent
cl male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cl4 female 61 95000 18100
cl5 male 56 44000 12000
cl6 male 36 102000 13800
cl7 female 57 215000 29300
cl8 male 33 67000 9700
cl9 female 26 95000 11000
c20 female 55 214000 28800

47



Customer data:
regression tree

< 108000 / - ! > 108000

12000
3423/ > 42.5

16500 26700

In the nodes one usually has
Predicted value +- st. deviation

48



Predicting algal biomass: regression
tree

Jan.-June

/ w - Dec.
C s D

<9.34

>

4.32+2.07 2.34+1.65

<59 >5.9 <91 N‘l

/

2.97+1.09 2.08 £0.71

i

1.28+1.08
< 2.13/
>2.13

1.15+0.21 0.70+0.34




Descriptive DM:.
Subgroup discovery example -
Customer data

Customer Gender Age Income Spent _ BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
cl15 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no
c20 female 55 214000 28800 yes

50



Customer data:
Subgroup discovery

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if XthenY
X Is conjunctions of items, Y Is target class

Age > 52 & Sex = male =» BigSpender = no

Age > 52 & Sex = male & Income < 73250
=» BigSpender = no

51
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Descriptive DM:
Clustering and association rule learning

example - Customer data
\ /

Customer Gender Age Income Spent RigSpendq’r
cl male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cla female 61 95000 18100
cl5 male 56 44000 12000
cl6 male 36 102000 13800
cl7 female 57 215000 29300
cl18 male 33 67000 9700
cl9 female 26 95000 11000

c20 female 55 214000 28800



Descriptive DM:
Association rule learning example -
Customer data

Customer Gender Age Income Spent  BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
cl5 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data:
Assoclation rules

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if XthenY
X, Y conjunctions of items

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =>»
BigSpender = no

54
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Predictive vs. descriptive DM:
Summary from a rule learning
perspective

* Predictive DM: Induces rulesets acting as classifiers
for solving classification and prediction tasks

« Descriptive DM: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria



Relational Data Mining (Inductive Logi(§6
Programming) in a Nutshell

customer
ID |Zip (S |SoIn  [A]|CI |Re
/ €x|S¢ |come [ge|yl [SP

knowledge discovery

/ 3478(34677/m [si [60-70(32]me from data

3479|43666(f |ma/80-90|45[nmlre

/ order 5 ..
fBeromer o[BS [Poae™ [rcae: Relational Data Mining
378 [2140267/12  \|regular |cash

3478 3446778|12 express [check

3478 4728386|17 regular |check
3479 [3233444|17 \%cpress credit

a9 [3arsssei2 ar [credit model, patterns, ...
\\_ store

Store ID|Size [Type |Location

12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational Data Mining (ILP)

Learning from multiple

tables
Complex relational Mutagenesis
problems: S

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Relational Data Mining (ILP)

customer
ID |Zip (S |So |In A |C] |Re
/4 ex (gt |come|gelyb [P

347834677 |m [si  |60-70|32|me |nr
3479| 43666 ma|80-90(45(nm|re

=

/ order

Customer [Order [Store [Delivery [Paymt
D ID ID \ Mode |Mode

3478 214026712 regular |cash

3478 3446778(12 express [(check
3478 4728386(17 regular |check
3479 323344417 xpress |credit
3479 347588612 gular |credit

\

\ store
Store ID|Size [Type [|Location

12 small (franchise|city
17 large |indep  [rural

Relational representation of customers, orders and stores.
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Data Mining and the KDD process

DM standards, tools and visualization
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Data Mining and KDD

« KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

« Data Mining (DM) is the key step in the KDD
process, performed by using data mining
technigues for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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KDD Process

KDD process of discovering useful knowledge from data

61

Pre- Trans- Data Interpretation/
= processing formation Mining Evaluation
8 — — r—:} = m—

[

I

Data Data

»

I "
Preprocessed ITransfnrmed I Patterns I Knowledge

« KDD process involves several phases:
* data preparation
 data mining (machine learning, statistics)
e evaluation and use of discovered patterns

e Data mining Is the key step, but represents only
15%-25% of the entire KDD process
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MEDIANA - analysis of media research data

Pre Trans- Data lnterpretatlom‘
rocessm fcr‘mation Mmmg Eva]uauon
#_ E 2
Preprﬂcessed Transfurmed Patterns Knowledge
Data Data
P

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

« Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
Interest for specific topics in media, social status

e good quality, “clean” data

 table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)



3

MEDIANA — media research pilot study6

Pre- Trans-

= processing formation Evaluation I
Target I Preprocessed ITransfurmedI Patterns I Knowledge

Data Data Data

»

« Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

* Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)



Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads Delo 95 (0.82)

2. reads_Financial News (Finance) 223 2 reads Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads Delo 157 (0.78)
4. reads_Money (Denar) 197 & reads_Delo 150 (0.76)
5. reads Vip 181 & reads Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also
Delo.
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Simplified association rules

1. reads_Sara 332 3 reads_Slovenske novice 211 (0.64)
2. reads_Ljubezenske zgodbe 283 >

reads_Slovenske novice 174 (0.61)
3. reads_Dolenjski list 520 >

reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
5. reads_Delavska enotnost 177 >

reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska
new, Omama in Workers new read also Slovenian
news.
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Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.
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Decision tree

Finding reader profiles: decision tree for classifying people
Into readers and non-readers of a teenage magazine
Antena.

29 Age 29

Doesn’t read Visiting Disco Clubs

7S

Interest in music, astrology, Interest in astrology

travel and scandals
yes
n/ yes

Gender Reads

Doesy’t read Reads
mﬁy \emale

Doesn’t read

/\

Reads Doesn’t read
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CRISP-DM

Cross-Industry Standard Process for DM

A collaborative, 18-months partially EC
founded project started in July 1997

NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

DM from art to engineering
Views DM more broadly than Fayyad et al.

(actually DM is treated as KDD process):

=\ Pre- Trans- Data Interpretation/
= Selectmn processmg formation Mmmg Eva]ual;lon {a“r’?
BNz
& | I—P’h ;";‘ I_P). - e "~'w' e

I Target I Preprocessed Transfnrmed I Patterns I Knowledge
2

Data Data Data

-




CRISP Data Mining Process
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DM tools

- KDNuggets Directory: Data Mining and Knowledge Discovery - Netscape

File Edit “iew Go Communicator Help

thﬂnnkmarks {& Location; | http: Adwiene kdnuggets. com,

j @'What'& Felated ﬂ

F
—

KDNuggets.com Path: EDMuecets Home -
KDNuggets Tools (Siftware) for Data Mining and Knowledge Discovery
ewsletter
Tools Ernail new subrmzsions and changes to editor(@kdnuggets.com
Companies
Johs + Suites supporting multiple discovery tasks and data preparation
Courses + Classification -- for building a classification model
SR O0-0g* Approach: Multiple | Decision tree | Bules | Meural network | Bayesian | Other
Solutions + Clustering - for finding clusters or segnents
Wehsites + Statistics, Estimation and Regression
References + Links and Associations - for finding inks, dependency networks, and associations
Meetings + Sequential Patterns - tools for finding sequential patterns
Datasets + ¥isualization - scientific and discovery-onented wsualization
- + Text and Weh Mining
+ Deviation and Fraud Detection
+ Reporting and Summarization
+ Data Transformation and Cleaning
« | _"’l + OLAP and Dimensional Analysis
= [=P=| | Document: Done =E S R A
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Public DM tools

« WEKA - Walkato Environment for Knowledge
Analysis

« KNIME - Konstanz Information Miner

« R — Bioconductor, ...
« Orange, Orange4WsS, Clowd

=3 weka Knowledge Explorer

o ] 3]

Preprocess | Classify | Cluster | Associate rSelecl attributes r\flsuallze ‘
‘ Open file... | | OpenURL... | | Open DB... ‘ | Apply Filters ‘
Base relation Working refation:

Relation: weather Relation: weather

Instances: 14 Attributes: 5 Instances: 14 Attributes: 5
Attributes in base relation Fitters
AddFilter-h d-C0 H Add

‘ an Il None Il Ivert fer-anname

No. J Name

1 [ outlook
2 vl temperature

Flows

3 [vl|humidity
4 [l windy
5 vl play Attribute info for base relation
Name: humidity Type: Numeric
Missing: 0 (0%) Distinct: 10 Unigue: 7 (50%)
Statistic | Walue
Minimurm 65.0
Madmurm 86.0
hlean 81.64255714285714
StdDev 10.285218242007051
Log
UTI3Tag ermal Walkato. ac.nz

07:31:49: Started on Torek, 6 marec 2001
07:32:00: Base relation is now weather (14 instances)
07:32:00: Working relation is now weather (14 instances)

Status:
OK

n"g‘ f uild Subgroups

Doe=

Discretize Linear Prajection

-+ clasz=emb

ahyp=yes aarh=pes > class=emb

D_fibr=:4.20 ecghlv=no -+ class=emb

D_chal=¢<=6.90 ['_fibi=>4.20 hypa=no -» class=emb
D_age=:66.00 fhis=yes -> class=emb
D'_age=:EE.00 D_chal=<=6.90 -» class=emb




First Generation Data Mining

* First machine learning algorithms for

— Decision tree and classification rule learning in 1970s
and early 1980s, by Quinlan, Michalski et al., Breiman et
al., ...

» Characterized by
— Learning from simple tabular data
— Relatively small set of instances and attributes

 Lots of ML research followed in 1980s

— Numerous conferences ICML, ECML, ... and ML
sessions at Al conferences |JCAI, ECAI, AAAI, ...

— Extended set of learning tasks and algorithms
addressed



Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

o~ tion
1= Ny Plim o —
P %
e
leon sjz. YR o — -
Regression val - “Mﬁmn A 8-00000 .

SO0 as

T
*t Beag,,

Sel

Table , Select

A"f‘bg"“

Rani

Aty

S L e

& Qs

¥ acconsng 1o g SN0k by e
q £
o )
. Promemy Log - : :T:: \ \
= : v":‘v':::‘:’:m“m 2 ‘; \4..“n.(znu'uu eripchary :d
oy Locaron b .
————y o




Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

— Include numerous data mining algorithms

— enable data and model visualization

— like Orange, Taverna, WEKA, KNIME, RapidMiner,
also enable complex workflow construction



Building scientific workflows

consists of simple operations on workflow

elements
« drag m _—
« drop l@[ F/\"”D
« connect F <>~7

suitable for non-experts

good for representing complex procedures
allow users to publicly upload their workflows
so that they are available to a wider
audience, perfect for experiment replication



m

ClowdFlows platform

E‘"bLoc al services
"Ll Big data

» Large algorithm repository

— Relational data mining i

— All Orange algorithms

— WEKA algorithms as web services Ao
— Data and results visualization o

Finte gers

— Text analysis SO

BT MysoL

— Social network analysis SOy

L_l Moise Handling

B Objects

— Analysis of big data streams oo
- Large workflow repository 75 e

B Strings

— Enables access to our

"L_l Visual performance evaluation {(WiperChart

technology heritage

Import webservice



ClowdFlows user Interface

[ Werkflow editer

€& - C'  [4 dowdflows.org/workflows/

o & &

Ol 8| @& T

© Hello! Welcome to ClowdFlows. Start by clicking on widgets in the treeview on the left side!

Snowden sentiment analysis

Search ‘

F=Local services

F(IRio3graph

0 Decision Support W
B IFjles

E-Cp

B Ontegers '

BT MysQL

ST

B0 Noise Handling

B Objects

B 0range

B Performance Evaluation
(I ScildtAlgorithms
E=streaming

B (7 Streaming Visualizations

Add neutral zone
¥ Filter tweets by lansuage

% Remove words from tweets

D RSS Reader

1} simulate stream from Gamasystem csv
1) Simulate stream from text file

“{ Sliding Window

< 5plit positive and negative tweets

0 Tweet Sentiment Analysis

1 Twitter

B strings

B Testing

B visual performance evaluation (ViperCharts)
ECiweka

F-CI5ubprocess widgsts

FCIWSDL Imports

dget repository

Itwl\’_/

Itw

Itw ﬁ Itw =

Tweet Sentiment I
Analysis

glm

Twitter

Itw (‘,
Filter tweets by
language

Itw{

Sentiment graph

st l‘{ Ist

widget

ltwq

Display tweets
@

Ist l:& Ist ==

Sliding Window

LB
Xy
Split positive and \\‘};‘t [
negative tweets
Sliding Window
©

workflow canvas

Itwq

Positive tweets

Itw®

Negative word cloud

Import webservice

Welcome to ClowdFlows.

This is the console where success and error messages are logged.



TextFlows

 Motivation:

— Develop an online text mining platform for
composition, execution and sharing of text mining
workflows

« TextFlows platform — fork of ClowdFlows.org:

— Web-based user interface

— Visual programming

— Big roster of existing workflow (mostly data
mining) components

— Cloud-based service-oriented architecture



“Big Data” Use Case

« Real-time analysis of big data streams

« Example: semantic graph construction from news
streams. http://clowdflows.org/workflow/1729/.

2 e 3
url url ; txt str tri tri - tri st & & st tri
TLDR w _/\

RSS Reader Summarize news Triplet Extraction WordNet lemmatizer  Sliding Window Streaming triplet
article on triplets ~ graph

« Example: news monitoring by graph e
visualization (graph of CNN RSS feeds) -~ = . .

http://clowdflows.org/streams/data/31/1 e



“Big Data” Use Case

* Analysis of positive/negative sentiment of tweets In
real time: http://clowdflows.org/workflow/1041/.

ltw I%

Sentiment graph

Ist @% Ist ltw i‘% ltw L%
_ X Sliding Window Display tweets Positive tweets
ll ' | ltw ltw Y ltw ltw |ﬁ ltw
Twitter Filter tweets by Tweet Sentiment Ist ‘-'_;f% Ist
language Analysis ltw @
ltw ( ptw Sliding Window
; Positive Word Cloud
ntw

Split positive and

Ist | S@%e | Ist S
negative tweets \ ltw ‘L‘{}
Sliding Window Negative tweets

ltw @

Negative word cloud



Visualization

* can be used on its own (usually for
description and summarization tasks)

» can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization
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Data visualization:
Scatter plot

g

el F

A
HOSPITALIZATTON




DB Miner: Association rule
visualization

Edit Quem Wiew S

1.0




MineSet: Decision tree visualization

File “iew Selections Display Go Help
BEH S MM L T

Puainter iz over:

-1 sgi

B £1[0[0 |0 <0 [ | e 3 |2
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Orange: Visual programming and
subgroup discovery visualization

svs I::Iassh .
e

DD IRN [ |

rnarm

D_dya

Linear Projection

aanl

-» clazs=emb

af=yez -» clazz=emb

ahvp=pes aarh=yes -» clasz=emb

D_fibr=+4.20 ecghlv=no -» clazz=emb

0 _chol=¢=6.90 D_fibr=>4.20 hypo=no - clazz=emb
0 _age=r66.00 fhiz=yes -» clazsz=emb
0_age=r66.00 D_chol=<=6.90 - clazz=emb




Part |I: Summary

KDD is the overall process of discovering useful

knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas, many powerful tools
available
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Part Il. Predictive DM techniques

=)« Decision tree learning
 Classification rule learning
* Naive Bayesian classifier
 Classifier evaluation
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lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

019-023

024  presbyopic hypermetrope yes normal NONE



Decision tree for
contact lenses recommendation

tear prod.

reduced/// \\\\\\E?nnal
NONE
n%// yes
lnyop%/// \\\?ypennerpe

HARD NONE




Decision tree for
contact lenses recommendation

tear prod.

reduced / Nﬁ)rmal

no es
[N=12,S+H=0] ./ )

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]



PlayGolf: Training examples

Day Qutlook = Temperature Humidity  Wind PlayGolf
D1 sSunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision tree representation
for PlayGolf

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lor‘mal STr‘ong/\Weak
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation
for PlayGolf

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lor‘mal STr‘ong/\Weak
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
'/ ( Outlook=Overcast )
'/ ( Outlook=Rain A Wind=Weak )
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PlayGolf:
Other representations

* Logical expression for PlayGolf=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

« Converting a tree to if-then rules
— |IF Outlook=Sunny A Humidity=Normal THEN PlayGolf=Yes
— |IF Outlook=Overcast THEN PlayGolf=Yes
— |IF Outlook=Rain A Wind=Weak THEN PlayGolf=Yes
— |IF Outlook=Sunny A Humidity=High THEN PlayGolf=No
— |IF Outlook=Rain A Wind=Strong THEN PlayGolf=No
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PlayGolf: Using a decision tree for

classification
Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lor‘mal STr‘ong/\Weak
No Yes No Yes

Is Saturday morning OK for playing golf?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayGolf = No, because Outlook=Sunny A Humidity=High
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Appropriate problems for
decision tree learning

 Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

* Characteristics:
— Instances described by attribute-value pairs
(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)

— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values



Learning of decision trees

* |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree

— If all examples from S belong to the same class Cj
* then label the root with Cj

— else

e select the ‘most informative’ attribute A with values
vl,v2, ... vn

« divide training set S into S1,... , Sn accordjng to
values v1,...,vn

* recursively build sub-trees

AR
T1,...,Tn for $1,...,Sn @ @
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Search heuristics In ID3

 Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

« Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used in
Information theory, called entropy, to characterize

the (im)purity of an arbitrary collection of examples.
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Entropy

* S -training set, C,,...,C, - classes

* Entropy E(S) — measure of the impurity of
training set S

N
E (S):_Z p..1og. p. P, - prior probability of class C,
=1

(relative frequency of C_ in S)

* Entropy In binary classification problems

E(S) = - p.log,p, - p.log,p.



Entropy

E(S) = - p.log,p. - p.log,p.
The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

0o /\

08 / N\

/ AN
@ o0 / \
Zos 1/ A\
£ 04 / \
0a 1] \
o1 1 \
o !

0 0,2 0,4 0.6 0,8 1 Pt
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, In binary classification problems, the expected
number of bits to encode + or — of a random
member of S Is:

p.(-log,p,)+ p.(-log,p.) =-p,log,p, - p_log,p.
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PlayGolf: Entropy

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) = - p.logyp., - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

S0 1.1 (IS.] 15|
E(S) = | 2! jog 2! || 12! g 2=
) (|5| °g|8|) (|S| ongJ

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940
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PlayGolf: Entropy

E(S) = - p, log,p, - p_log,p.
E(9+,5-) = -(9/14) log,(9/14) - (5/14) log,(5/14) = 0.940

Outlook?

Humidity?

Wind?

Sun {DI,DZ,D8,D9,D11}
{D3,D7,D12,D13}
{D4,D5,06,D10,D14}

; [3+,4-] E=0.985
Nermal—. [6+,1-] E=0.592
Wea [6+,2-] E=0.811
St+rong— . [3.'_’ 3_] E:].OO

[2+, 3-] E=0.970
[4+,0-] E=0
[3+,2-] E=0.970
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Information gain
search heuristic

« Information gain measure is aimed to minimize the

number of tests needed for the classification of a new
object
« Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain(S,A)=E(S)- >’ |SV'.E(SV)

veValues(A) | S |

« Most informative attribute: max Gain(S,A)
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Information gain
search heuristic

 Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+, 2—] [3+, 3-] [9+, 0—] [0+, 5—]
E=0.811 E=1.00 E=0.0 E=0.0

« Gain(S,Al) =0.94 - (8/14 x 0.811 + 6/14 x 1.00) = 0.048
« Gain(S5,A2)=0.94-0=0.94 A2 has max Gain
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PlayGolf: Information gain

Gain(S,A)=E(S)- » S,

veValues(A) | S |

-E@S)

« Values(Wind) = {Weak, Strong}

Wea [6+,2-] E=0.811

Wind? SHerg—  [3+,3-] E=1.00
- S=[9+,5-], E(S)=0.940

weak — [6+12'], E(S ) =0.811

— Sstrong = [3+13']1 E(Sstrong) =1.0

— Gain(S,Wind) = E(S) - (8/14)E(Syear) - (6/14)E(Ssyong) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048

- S

weak
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PlayGolf: Information gain

* Which attribute is the best?
— Galin(S,Outlook)=0.246 MAX !
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S,Temperature)=0.029
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PlayGolf: Information gain

Rain {D4,D5,06,D10,D14} [3+,2-] E>0???

Overcast

Outlook?
{D3,D7,012,D13} [4+,0-] E=0 OK - assign class Yes

{D1,D2,D8,D9,D11} [2+, 3-] E>O ?2?2? <>

 Which attribute should be tested here?

Sunny

— Gain(S., ., Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny?

— Gain(S Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

sunny?

— Gain(S.,..,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny?
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Probability estimates

* Relative frequency : p(Class | Cond) =
— problems with small samples
_ n(Class.Cond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) =2/12 =1
 Laplace estimate : _n(Class.Cond)+1 | _»
— assumes uniform prior B n(Cond) +k

distribution of k classes

6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 =3/4



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— If all examples belong to same class C;, label the
leaf with C,

— If all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning

111
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Pruning of decision trees

* Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
* erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples
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Handling noise — Tree pruning

« Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
 post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 15 <3 > 3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 18 recurrence 10

<4

no_recur 4
recurrence 1

no_rec 4 recl
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Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— 0N unseen instances

How accurate is a decision tree when classifying unseen
Instances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
 split the example set into training set (e.g. 70%) and test set (e.g. 30%)

* induce a decision tree from training set, compute its accuracy on test
set

Error = 1 - Accuracy
High error may indicate data overfitting



Overfitting and accuracy

 Typical relation between tree size and accuracy

0.9
0.85 —
0.8 /_/
0.75 /_/
0.7 / \ ;/_
0.65 /
0.6
0.55
0.5 : : : : :
0 20 40 60 80 100

120

— On training data
— On test data

* Question: how to prune optimally?

117



118

Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

forward pruning considered inferior (myopic)
post pruning makes use of sub trees
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How to select the “best’ tree

* Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

« Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)

— until further pruning is harmful DO:

» for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

« greedily select the node whose removal most improves tree
accuracy over the validation set

 MDL: minimize
size(tree)+size(misclassifications(tree))
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Selected decision/regression
tree learners

 Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (Seeb5, Quinlan)
— J48 (available in WEKA)

« Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5

* Implemented as part of the WEKA data mining
workbench

« Handling noisy data: post-pruning
« Handling incompletely specified training
Instances: ‘unknown’ values (?)

— In learning assign conditional probability of value v:
p(v|C) = p(vC) / p(C)

— In classification: follow all branches, weighted by
prior prob. of missing attribute values



122

Other features of C4.5

 Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until
two groups remain *
» ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
IS the majority class of the parent of the NULL leaf

*x : , . : . . .
the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping
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Part Il. Predictive DM techniques

* Decision tree learning
m)> « Classification rule learning

* Naive Bayesian classifier

 Classifier evaluation
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Rule Learning in a Nutshell

Person Age Spect. presc. Astigm. |Tear prod. Lenses knOWIedge dlscovery
o1 young myope no reduced NONE from data
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE
06-013 3 .
014 ore-presbyc hypermetrope no normal SOFT RUIe Iearnlng MOdel a Set Of rU|eS
015 ore-presbyc hypermetrope yes reduced NONE . ..
016 ore-presbyc hypermetrope  yes normal NONE Patterns |nd|V|dua| rules
017 |presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE
019-023

024  |presbyopic| hypermetrope yes normal NONE

data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual
rules
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Rule set representation

* Rule base is a disjunctive set of conjunctive rules

 Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayGolf=Yes

IF Outlook=0Overcast THEN PlayGolf=Yes

IF Outlook=Rain A Wind=Weak THEN PlayGolf=Yes

 Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

 Rule base: {R1, R2, R3, ..., DefaultRule}
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Data mining example
Input: Contact lens data

Person Age Spect. presc.  Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
018 presbyopic myope no normal NONE

019-023
024  presbyopic/ hypermetrope yes normal NONE



Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE

127
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Rule learning

« Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
« Learning an unordered set of rules
« Learning an ordered list of rules
« Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to

an unordered rule set

reduced Nﬁ)rmal
NONE

no / yes
[N=12,S+H=0]

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to

decision list
reduced N?rmal

no es
[N=12,S+H=0] / J

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use



Concept learning:

132

ask reformulation for rule

learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. | Astigm. Tear prod. _Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
O5 young | hypermetrope no reduced NO

06-013
O14 ore-presbyc hypermetrope no normal YES
O15 ore-presbyc hypermetrope yes reduced NO
016 ore-presbyc hypermetrope yes normal NO
O17 |presbyopic myope no reduced NO
O18 |presbyopic myope no normal NO

019-023
024 |presbyopic hypermetrope yes normal NO



133

Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C,, ..., Cv ]

for each class Ci do -
— EiI := Pi U Ni (Pi pos., Ni neg.) + 4
— RuleBase(Ci) := empty e T

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

- add R to RuleBase(Cl)
* delete from P1 all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples

AV
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples

Y
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples ] Negative examples

QY

Rule2: Cl=+ « Cond8 AND Condé6



PlayGolf: Training examples

Day QOutlook | Temperature Humidity  Wind PlayTennis
D1 sSunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 sSunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:

PlayGolf example

PlayGolf = yes [9+,5-] (14)
PlayGolf = yes <« Wind=weak [6+,2-] (8)
<« Wind=strong [3+,3-] (6)
< Humidity=normal [6+,1-] (7)
“— ...
PlayGolf = yes <« Humidity=normal
Outlook=sunny [2+,0-] (2)
“— ...

Estimating rule accuracy (rule precision) with the probability
that a covered example is positive

A(Class « Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+,1-] (7) = 6/7, [2+,0](2)=2/2=1
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Probability estimates

* Relative frequency : p(Class | Cond) =
— problems with small samples
_ n(Class.Cond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) =2/12 =1
 Laplace estimate : _n(Class.Cond)+1 | _»
— assumes uniform prior B n(Cond) +k

distribution of k classes

6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 =3/4
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| earn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl «- Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl <« Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy Is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)




142

Learn-one-rule:
Greedy vs. beam search

 learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking
— e.g., the best descendant of the initial rule
PlayGolf = yes «
— Is rule PlayGolf = yes « Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set Is again reduced to k best
candidates
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| earn-one-rule as search:
PlayGolf example

PlayGolf = yes IF

PlayGolf = yes

. PlayGolf = yes
IF Wind=weak

IF Humidity=high

PlayGolf = yes PlayGolf = yes
IF Wind=strong IF Humidity=normal

PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,

PlayGolf = yes PlayGolf = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny



| earn-one-rule as heuristic search:

PlayGolf example

PlayGolf = yes IF [9+,5-] (14)

PlayGolf = yes PlayGolf = yes
I6F \é\/m?weak IF Humidity=high
[6+,2—] (8) P|GYGO|f = yes PIC(YGOH: = yes [3+,4-] (7)
IF Wind=strong IF Humidity=normal
[3+,3-1(6) [o+1=1()
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,
PlayGolf = yes PlayGolf = yes Ou‘rlooykzr'ain
IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0—] (2)

4
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What is “high” rule accuracy
(rule precision) ?

Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
BUT: Rule accuracy/precision should be traded

off against the “default” accuracy/precision of the

rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

Relative accuracy (relative precision)
— RAcc(Cl «~Cond) = p(Cl | Cond) — p(Cl)
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Weighted relative accuracy

« If arule covers a single example, its accuracy/precision
IS either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

« Weighted relative accuracy
WRAcc(Cl«—Cond) = p(Cond) . [p(Cl | Cond) — p(CD)]

« WRACcc Is a fundamental rule evaluation measure:

— WRACcc can be used if you want to assess both accuracy and
significance

— WRACcc can be used if you want to compare rules with different
heads and bodies
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| earn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl «+ Cond from RuleBase.

Expected classification accuracy: A(R) = p(Cl|Cond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
Information gain (decrease in the information needed):
IG(R’,R) = log,p(Cl|Cond’) - log,p(Cl|Cond)
Weighted measures favoring more general rules: WAG, WIG
WAG(R',R) =
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(CIl|Cond))

Weighted relative accuracy trades off coverage and relative
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))



Ordered set of rules:

If-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
Instance: rules are sequentially tried and the first
rule that ‘fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
Interpreted as If-then-else rules

If no rule fires, then DefaultClass (majority class In
ECUI‘)
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Sequential covering algorithm
(similar as in Mitchell’s book)

RuleBase := empty
ECUI‘:: E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

— E., = E,,, - {€xamples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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L earn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
ECUI‘:: E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E.,, = E., - {all examples covered by R}

cur cur

(NOT ONLY POS. EX.))
until performance(R, E_,) < ThresholdR
RuleBase = sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E

CUI‘)
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| earn-one-rule:
Beam search in CN2

 Beam search in CN2 learn-one-rule algo.:

— construct BeamsSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

» performance (R, E_,) : - Entropy(E_,)

— performance(R, E. ) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad
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Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification
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Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.
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Part Il. Predictive DM techniques

* Decision tree learning

 Classification rule learning
) - Naive Bayesian classifier

 Classifier evaluation
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Bayesian methods

« Bayesian methods — simple but powerful
classification methods

— Based on Bayesian formula

oy POIH)
p(H D) =50 p(H)

e Main methods:
— Nalive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* QOut of scope of this course
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Nalve Bayesian classifier

* Probability of class, for given attribute values

V...V _|C.

D(C, [vyy) = p(e;) e 1)

p(vl"'vn)

» For all C; compute probability p(C;), given values v; of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; |v))

p(Cj |V1...Vn) ~ p(Cj),H p(pc(Jcl\)/u)

* Output C,,,y With maximal posterior probability of class:

Cuax =arg Max; p(Cj | V.. V,)
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Nailve Bayesian classifier

p(c; -vi--v,) _ PV, [ C5) - p(Cy)

PG Ve ¥) =) PV, ,)
:Hp(vile)-p(Ci): p(c,) HP(CHVi)'p(Vi):
p(v,..v,) p(v,..v,) p(c;)

) [ pv) —pe;1v) _ p(c |v)
=P p(vl---vn)H p(c;) () H
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Semi-naive Bayesian classifier

« Nalve Bayesian estimation of probabilities
reliable
reliable) p(c, 1v) P(c, 1)
p(c;) p(c;)

« Semi-naive Bayesian estimation of
probabilities (less reliable)

p(c; | Vi, V)
p(c;)
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Probability estimation

* Relative frequency:

_n(c) _n(c;,vi) - ccoe
p(Cj)_ N 1p(Cj|Vi)_ (V) j=1. .k, for k classe
* Prior probability: Laplace law
B Nn(c;) +1
P(C;) = N + Kk

e m-estimate:

n(c;)+m- pa(c;)
N +m

p(Cj):
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Probability estimation: intuition

« Experiment with N trials, n successful

« Estimate probability of success of next trial

* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.qg.,

1/1=1

« Laplace: (n+1)/(N+2), (n+1)/(N+Kk), k classes
— Assumes uniform distribution of classes

* m-estimate: (n+m.pa)/(N+m)

— Prior probability of success p., parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )
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Explanation of Bayesian
classifier

Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p (")
Explanation based of the sum of information gains of

iIndividual attribute values v; (Kononenko and Bratko 1991,
Kononenko 1993)

—log( p(c; |v;..v,)) =

= —log( p(cj))—i(—log p(c;)+log( p(c; |v;))

* log p denotes binary logarithm



Example of explanation of semi-naive

Bayesian classifier

Hip surgery prognosis

Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07
Sex = Female -0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0
Time between injury and operation > 10 days 0.42
Fracture classification acc. To Garden = Garden lll -0.3
Fracture classification acc. To Pauwels = Pauwels Il -0.14
Transfusion = Yes 0.07
Antibiotic profilaxies = Yes -0.32
Hospital rehabilitation = Yes 0.05
General complications = None 0
Combination: 0.21

Time between injury and examination < 6 hours

AND Hospitalization time between 4 and 5 weeks
Combination: 0.63

Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information
gains for/against C.

Information gain
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Naive Bayesian classifier

Nailve Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

It achieves good classification accuracy

— can be used as ‘gold standard’ for comparison with
other classifiers

Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

Successful in many application domains
— Web page and document classification

— Medical diagnosis and prognosis, ...
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Improved classification accuracy due ™

to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. [ m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
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Part Il. Predictive DM techniques

* Decision tree learning

 Classification rule learning

* Naive Bayesian classifier
)« Classifier evaluation
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Classifier evaluation

Accuracy and Error
n-fold cross-validation
Confusion matrix
ROC
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Evaluating hypotheses

« Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

Induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— Information contents (information score), significance



N-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U, T,= D

for i=1,..,ndo

— form a training set out of n-1 folds: Di = D\T,
— Induce classifier H; from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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Confusion matrix and
rule (in)accuracy

« Accuracy of a classifier is measured as TP+TN / N.

e Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

« Conclusion: classification accuracy Is not always an
appropriate rule quality measure



Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

 also called contingency table

Classifier 1
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Predicted positive | Predicted negative
Positive examples 40 10 50 .,
Negative examples 10 40 50 C laSS] f] er 2
50 50 100
Predicted positive | Predicted negative
Positive examples 30 20 50
Negative examples 0 50 50
30 70 100




ROC space

True positive rate =
#true pos. / #pos.

— TPr, = 40/50 = 80%
— TPr, = 30/50 = 60%

False positive rate

= #false pos. / #neg.
— FPr, = 10/50 = 20%
— FPr, = 0/50 = 0%

ROC space has

FPr on X axis

— TPronY axis

True positive rate

Classifier 1
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Predicted positive | Predicted negative
Positive examples 40 10 50
Negative examples 10 40 50
50 50 100

100%

80%

60% ;

40%

20%

0%

Classifier 2

Predicted positive

Predicted negative

Positive examples 30 20 50
Negative examples 0 50 50
30 70 100
0% 20% 40% 60% 80% 100%

False positive r

ate




The ROC space

true positive rate

100%
*

80%

60%

40%

20% # Confirmation rules

® WRAcc
CN2
0% 4 |
0% 20% 40% 60% 80%

false positive rate

100%
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The ROC convex hull

true positive rate

100%

80%

60%

40% /
20%

0%

0%

20%

40% 60%

false positive rate

80%

100%
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Summary of evaluation

 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

 ROC analysis is very natural for rule learning
and subgroup discovery
— can take costs into account
— here used for evaluation
— also possible to use as search heuristic
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Part Ill. Numeric prediction

j>  Baseline

* Linear Regression
* Regression tree

* Model Tree

* kNN




181

Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class
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Example
« data about 80 people: Age and Height

Age ([ Height
, 3 1.03
23%° o8N 0 5 1.19
n ;:’ IR .:0.5:30 2 5 126
‘} 9 1,39
I= 15 169
s ¢ 19 | 167
07 186
0.5 25 185
+ Height 41 159
0 T I 483 160
0 50 100 54 1.490
Age 7 187




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6
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Baseline numeric model

« Average of the target variable

184

Height

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

2o ’:’ ste,® o ”*s 0“:, .6 ¢
tm et 2% @8
4
s
{od
2
+ Height N
| | = Average predictor |
0 20 40 60 80

Age

100
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Baseline numeric predictor

« Average of the target variable is 1.63

2
1.8

* L X3
e ? .

Age

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Height

Height

2

Baseline

0.85

10

1.4

20

40

Age

* Height
= Average predictor

60

80

100

35

1.7

70

1.6




Linear Regression Model

Height = 0.0056 * Age + 1.4181
2.5
2 o0 ou gm M"
09” “”0 **
I R ORI
= 15 &
] é
T 1 _f
0.5 ¢ Height =
= Prediction
O | | | |
0 20 40 60 80 100
Age
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Regression tree

==1245 =12.8
O s
=6.5 =6.5 Height =
o sz 17090

- Height =
4%&&& 1 45944 ? Q02 0% N, %t e
B o 2ok e el BLL
Height = 1.5
1.4025 £ é

5 17

I

0-5 + Height
B Prediction
0 .
0 50 100
Age

187




Model tree
_— T~

Height = Height =
0.0333 * Age 0.0011 * Age
+1.1366 +1.6692
2 & 3% te®e® % ’0‘ % =
mE nE
| ERp RTINS N R
L
(@)
5 1%
T
0.5 + Height
= Prediction
O | | | |
0 20 40 60 80 100

Age




KNN — K nearest neighbors

* Looks at K closest examples (by age) and predicts the
average of their target variable

K=3

Height

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

+ Height

0 20 40 60
Age

= Prediction KNN, n=3

80

100

189
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Which predictor iIs the best?

Linear |Regression
Age | Height | Baseline | regression tree Model tree KNN

2 1085 1.63 | 143 | 1.39 1.20 | 1.01

10 | 1.4 | 1.63 | 1.47 | 1.46 147 | 1.51

35 | 1.7 1163 | 161 | 1.71 1.71 | 1.67

/0 116|163 | 181 | 1.71 1.75 | 1.81




Evaluating numeric prediction

Performance measure

Formula

mean-squared error

root mean-squared error

mean absolute error

relative squared error

root relative squared error

relative absolute error

correlation coefficient

(p1-ai)z +...+(pn—an)z

n
[(p-2) +...+(p,—a,)
)

oy —a|+...+|p, —a,l
n

(Pr=a) +...+ (P —8p) -
‘ where a =-r;2iai

(3 —F) +.. +(a -79')2'

Ph &) +...+(Pp—a,)
N @-3) +...+(a,-3)
oy —al+...+ip, —al
la, —al+...+la, —a|

PA Z(pl p)(a "a)
, where Sps =
e e -1
-2
AHE T Adj —
=2,(: 1p) 'andsﬁz(

n-1




Course Qutline

l. Introduction
— Data Mining in a Nutshell

— Predictive and descriptive DM
techniques

— Data Mining and KDD process

— DM standards, tools and
visualization

(Mladeni¢ et al. Ch. 1 and 11)

ll. Predictive DM Techniques

— Bayesian classifier
(Kononenko Ch. 9.6)

— Decision Tree learning
(Mitchell Ch. 3, Kononenko Ch. 9.1)

— Classification rule learning
(Kononenko Ch. 9.2)

— Classifier Evaluation
(Bramer Ch. 6)

lll. Regression
(Kononenko Ch. 9.4)

I\VV. Descriptive DM
— Predictive vs. descriptive induction
— Subgroup discovery

— Association rule learning
(Kononenko Ch. 9.3)

— Hierarchical clustering (Kononenko
Ch. 12.3)

— V. Relational Data Mining

— RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch. 3, Ch. 4)

— Propositionalization approaches
— Relational subgroup discovery
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Part IV. Descriptive DM technigues

j>- Predictive vs. descriptive induction
» Subgroup discovery
» Association rule learning
» Hierarchical clustering



194

Predictive vs. descriptive
Induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

« Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis
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Descriptive DM

Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used
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Descriptive DM

* Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
 describe associations, dependencies, ...
« discovery of properties and constraints

« Segmentation

— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Predictive vs. descriptive
Induction: A rule learning
perspective

* Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction
tasks

« Descriptive induction: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria



Supervised vs. unsupervised learning:

A rule learning perspective

e Supervised learning: Rules are induced from labeled
Instances (training examples with class assignment) -

usually used in predictive induction

198

Person Age Spect. presc. Astigm. |Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE
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Supervised vs. unsupervised learning:
A rule learning perspective

e Supervised learning: Rules are induced from labeled
Instances (training examples with class assignment) -
usually used in predictive induction

« Unsupervised learning: Rules are induced from unlabeled
Instances (training examples with no class assignment) -
usually used in descriptive induction

Person Age Spect. presc. Astigm. Tear prod. Lenses y
o1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope no reduced

06-013
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023
024 56 hypermetrope yes normal
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Supervised vs. unsupervised learning:
A rule learning perspective

e Supervised learning: Rules are induced from labeled
Instances (training examples with class assignment) -
usually used in predictive induction

« Unsupervised learning: Rules are induced from unlabeled
Instances (training examples with no class assignment) -
usually used in descriptive induction

« EXception: Subgroup discovery

Discovers individual rules describing interesting regularities
In the data from labeled examples
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Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Subgroup Discovery

Person Age Spect. presc. Astigm. Tear prod. . Lenses
01 17 myope no reduced NO 5
02 23 myope no normal YES SubgrOU p D|SCOVe I’y
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO
06-013 Class YES
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO 2
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO
019-023 o
024 56 hypermetrope yes normal NO

Class NO

« A task in which individual interpretable patterns in the

form of rules are induced from data, labeled by a

predefined property of interest.

« SD algorithms learn several independent rules that
describe groups of target class examples
— subgroups must be large and significant

202



203

Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction

j>- Subgroup discovery
» Association rule learning

» Hierarchical clustering




Subgroup Discovery

Task definition (Kloesgen, Wrobel 1997)

Given: a population of individuals and a target
class label (the property of individuals we are
Interested In)

Find: population subgroups that are statistically
most interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)



Subgroup interestingness

Interestingness criterias:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Classification versus Subgroup Discovery

« Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

« Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
 large subgroups (high target class coverage)
 with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery
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Subgroup discovery task

Task definition for a use case of finding and
characterizing population subgroups with high
risk for coronary heart disease (CHD)

— Glven: a population of individuals and a property of
Interest (target class, e.g. CHD)

— Find: "most interesting’ descriptions of population
subgroups

e are as large as possible (high target class coverage)

* have most unusual distribution of the target
property (high TP/FP ratio, high significance)
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Subgroup Discovery: Medical Use Case

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstacic)
Al for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD <« bodyMassindex > 25 & age >63

Al, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)

Al: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight
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Subgroup visualization

Subgroups of
patients with
CHD risk

[Gamberger, Lavrac
& Wettschereck,
IDAMAP2002]
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Subgroups vs. classifiers

« Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
« Subgroups:
— Rules describing subgroups aim at significantly higher
proportion of positives

— Each rule is an independent chunk of knowledge

* Link
— SD can be viewed as
cost-sensitive positives negatives

classification true TEEE
— Instead of FNcost we Positives I

aim at increased TPprofit
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

* Only first few rules induced by the covering
algorithm have sufficient support (coverage)

« Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

e ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(Class|Cond) = (n_+1) / (n,_.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
P(Cond) (p(Class|Cond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering

« Standard covering approach:
covered examples are deleted from current training set

« Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
In all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
« Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

1l0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0
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Subgroup Discovery

Rulel: Cl=+ « Cond6 AND Cond2

Positive examples Negative examples

1.0

1.0
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 30 1.0 1.0

1.0 1.0 1.0 1.0

1.0
1.0 1.0
1.0

1.0

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples

1l0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0



CN2-SD: Weighted WRAcc Search

Heuristic

« Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl «<— Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

Increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRAcc(Cl «— Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N’ )
— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Subgroup visualization

1
B1

B2
Al

The CHD task: Find,
characterize and visualize
population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)
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Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m? (typically 29)
AND
age over 63 years

Supporting characteristics (computed using K2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol

values.
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SD algorithms in the Orange DM
Platform

« SD Algorithms in Orange

— SD (Gamberger & Lavrac, JAIR 2002
— APRIORI-SD (Kavsek & Lavrac, AAI 2006

— CN2-SD (Lavrac et al., JMLR 2004): Adapting CN2
classification rule learner to Subgroup Discovery

« Weighted covering algorithm

« Weighted relative accuracy (WRAcc) search
heuristics, with added example weights



SD algorithms in Orange and =
Oranged4WsS

 Orange  Oranged4WS (Podpecan
— classification and subgroup 2010)

discovery algorithms — Web service oriented

— data mining workflows — supports workflows and

— visualization other Orange functionality
— developed at FRI, Ljubljana _ jncludes also
« WEKA algorithms
= * relational data mining
« semantic data mining with
ontologies

— Web-based platform is
under construction

D_fibr=>4.20 ecghlv=no -» class=emb
[_chol=¢=6.90 D_fibr=>4.20 hypo=no -> clazz=emb

[_age=>66.00 fhiz=pes -» clazz=emb
0.5 [_age=»66.00 D_chol=<=6.90 -> clazs=emb




Current platform and workflow 725
developments
 CrowdFlows S

C' | [Y clowdflows.org/workflows/ A

browser-based DM

= 1Local services

1

LI Files

‘Olintegers
Load corpus

n
Merge Sentences cor inf | &g lamn = H
Sentence Viewer Load corpus e String to file
. Term Candidates Viewer ToTale

‘(T Noise Handling
‘(I Objects

O orange

* Semantic Subgroup

U Testing

Weka

D | S COve I‘y WO rkﬂ OWS j“ Widget repository Workflow canvas
(Vavpetic et al.,
2012) &

2y

InSilico database search  Select dass attribute Filter unknown Fold Change t-test

CM2-5D Stbgroup BAR o
Vizualization !l\

Rank plotter
L 2B M

Query data using Table from subgroup  Gene ranker Resolve HMR. gene names SEGS HMR. Rule browser
subgroups constructor
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction
» Subgroup discovery

j>- Association rule learning
» Hierarchical clustering
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Association Rule Learning

Rules: X =>Y, iIf XthenY

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions 102 e, i50
itemsets (records) 1 1 1 0
t2 O 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

e Support: Sup(X,Y) = #XY/#D = p(XY)
» Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y[X)
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Association Rule Learning:
Examples

« Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips

* |nsurance
— mortgage & loans & savings = insurance (2%,
62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance



Association rule learning

X=Y ...IFXTHENY, where X and Y are itemsets
Intuitive meaning: transactions that contain X tend to contain Y

Iltems - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff less 1 hour

Example transactions — itemsets formed of patient records

i1 i2 ... ... 150
t1 1 0 0
t2 0 1 0

Association rules
spondylitic = arthritic & stiff gt 1 hour [5%, 70%)]
arthrotic & spondylotic = stiff less 1 hour [20%, 90%]
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and

— user defined minimum confidence, I.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification
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Searching for the associations

* Find all large itemsets

« Use the large itemsets to generate
association rules

 |f XY Is a large itemset, compute
r =support(XY) / support(X)

« If r > MinConf, then X = Y holds
(support > MinSup, as XY Is large)



232

Large itemsets

« Large itemsets are itemsets that appear in at
least MinSup transaction

* All subsets of a large itemset are large
itemsets (e.qg., If A,B appears In at least
MinSup transactions, so do A and B)

* This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)
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Assoclation vs. Classification

rules

« Exploration of
dependencies

« Different combinations
of dependent and
Independent attributes

« Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search (subset
of rules found)
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction
» Subgroup discovery
» Association rule learning

j>- Hierarchical clustering
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Hierarchical clustering

. Algorlthm (agglomerative ° Dendogram

hierarchical clustering):

| | .
oy M
] ] e
Each instance is a cluster; \
repeat = S e " - ==

find nearest pair Ciin C;;
fuse Ciin Cj in a new cluster |::>
C=C U Cj;

determine dissimilarities between
C: and other clusters:;

until one cluster left; I——‘ ‘
M |J'| M| v

of OF O3 04 O5 OF OF O8 O 0D O11 012 013 014

cluster level




Hierarchical clustering

* Fusing the nearest pair of clusters
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m\ * Minimizing intra-cluster

d(C.,C,) .
similarity
d(C;.C ¢, | » Maximizing inter-cluster
similarity
d(C;,Cy)

« Computing the dissimilaritiesﬁ

from the “new” cluster
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Hierarchical clustering: example

" X YV Z W V (xy) z w v
x| 0(1)1 5 58 (xy)| 0 141 5 566
RS & o | v 0 141424 5 - 0 441 5
-+ I
1 - y 0 4471 5 w 0 @
"_:. : : w o 1 ' 0
T ¥ 0
l] 1l L L] L L] }
a) sample problem b) dissimilarity matrix c) dissimilarity matrix after 'fusing'
elements X and y
xy) z (wyv) (x.y.2) (w.v) S +6 546
{xsy) D @ 5.66 {X,y,Z] U C!_:].t ............................. :- i
0 5 e
z (wl“) D -+ 2
I | E———— L~ 1.4
(w,v) 0 = —F-= —+1
1] ___E_—:‘[‘r____0

d) dissimilarity matrix after fusing' e) dissimilarity matrix after f) dendrogram
elements w and v fusing' cluster (x,y) and
element z
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Results of clustering

Ptah - [Clustering of Samples] s A dendogram Of
=| File Analyses Graph Options Window Help = resistance vectors
v P8 I S T T (==
Antibiotics: {BETAL),AM,CB,CC,CFP,CIP,CIX,CPM,CT,GM,MET,NET,P [Bohanec et al., “PTAH:
Bacterium: 110 STAPHYLOCOCCUS AUREUS ’ .
1 . oz A system for supporting
i B m R | nosocomial infection
L E...E — therapy”, IDAMAP
3 _.E.__ .. E.._ER
A . & book, 1997]
1 ... .. E._.._.. B l
1 B —'_I -
: T _
1 .. ... ... B_. .. —
1 E_ERE_RE. _E
1 E E. . RE. _E
1 E_ERE BRE B :I—‘i |
3 E_E _RE ]
2 ... EE. B [ |
1 ... .. E_ERE B
2 _...E.E.RE._.E N s
1 .. k... .. RE
3 _..E.RE_E_R. B
- g rEEE ®
2 ..E.E.E.R. .
. rermoEm
Trne m —

From: 1-1-94 To: 3-3-95 Samples: ¥9 Antibiotics: 13 Bacteria; 1




Part V:
Relational Data Mining

> What iIs RDM

* Propositionalization techniques
« Semantic Data Mining
 Inductive Logic programming

« Learning as search in Inductive Logic
Programming

239
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Relational Data Mining (Inductive
Logic Programming) in a nutshell

customer

ID [Zip 5. [Solm |A[CI[Re .
/ x|t jcome Befub |5 knowledge discovery
/ 3478(34677|m |si [60-70|32|me nr from data
3479|43666|f |ma|80-90|45|\nm|re
/ order . L.
e [ T [ ficae: Relational Data Mining
3478 214026712 | |regular |cash
3478 3446778|12 express [check
3478 4728386|17 regular |check
3479 323344417 xpress |credit
M9 [3a7ss612 kim credit model, patterns, ...

store

Store ID|Size [Type Location

12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational Data Mining (ILP)

Learning from multiple

tables
— patient records Mutagenesis
con_necteddwith other @
atient an

gemogr aphic =
Information ‘

Complex relational 2

problems:

— temporal data: time
series in medicine, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Sample ILP problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST




Relational data representation

\

HEHgagHEh

LOAD CAR OBJECT NUMBER
11 cl circle 1
12 c2  hexagon 1
13 c3  triangle 1
4 ¢4 rectangle 8

243

TRAIN_TABLE

TRAIN EASTBOUND

tl TRUE
t2 TRUE
t6 FAL SE

CAR TRAIN SHAPE LENGTH ROOF WHEHRS
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2




Relational data representation

LOAD CAR OBJECT  NUMBER

11 cl circle

1

12 c2  hexagon 1
13 c3  triangle 1
4 ¢4 rectangle 8

244

TRAIN_TABLE

TRAIN EASTBOUND

tl TRUE
t2 TRUE
t6 FAL SE

CAR TRAIN SHAPE LENGTH ROOF WHEHRS
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2

Train

car

Load




Part V:
Relational Data Mining

 What is RDM

j|> Propositionalization techniques
« Semantic Data Mining
 Inductive Logic programming

« Learning as search in Inductive Logic
Programming

245
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Propositionalization in a nutshell

e H. 2o H
)] | | < t I
®

Propositionalization task

Transform a multi-relational
(multiple-table)
representation to a
propositional representation
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),

1BC (Flach and Lachiche 1999), ...

TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAI N EAS TBOUND
11 cl circle 1 t1 TRUE
2 c2  hexagon 1 t2 TRUE
I3 ¢3 triangle 1
14 ¢4 rectangle 8 I t6 FAL SE
CAR TRAIN SHAPE LENGTH @ ROOF WHEES
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2
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Propositionalization in a nutshell

Main propositionalization step: . ..« e TRAIN_TABLE
first-order feature construction | ... . I = — I

f1(T):-hasCar(T,C),clength(C,short). TI

fZ(T):-hasCa F(T,C), hasLoad(C, L), CAR TRAIN SHAPE LENGTH ROOF WHEES
. cl tl rectangle short none 2
|OaC|Sha DE(L,CII‘C|e) c2 tl rectangle long none 3 I
. c3 tl rectangle short peaked 2
f3 (T) CNETTY c4 tl rectangle long none 2

Propositional learning:

t(T) « f1(T), f4(T) PIRQIPOSIITI@NAIL TRAIN_TABLE
train(T) f1(T)  f2(T) £3(T)  f4(T) £5(T)
t1l t t f t t
Relational interpretation: :2 ]f : : ]f ]f
t f t f f

eastbound(T) < t4
hasShortCar(T),hasClosedCar(T).




Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
ID |Zip (S [So|In [A[CI |Re
/ €X |5t |come|ge|yh 5P
3478|3677 m. 60-70|32|me [nr
3479|43666/f [ma|80-90[45(nm|re
/ order
%stomer %der %ore Delivery [Paymt
\ Mode |Mode
3478 2140267(12 \regula.t cash
3478 3446778|12 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  [credit
3479 347588612 gular  |credit
store

Location

12
17

Store ID|[Size [Type

PR
small |franchige

large [indep

city
rural

Relational representation of customers, orders and stores.
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fl | f2 | £3 | f4 | £5 | £6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1
0 T 5 1 O I I A 1
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
L2 I 1 I I IR U A
v 1 I




Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
ID |Zip (S [So|In [A[CI |Re
/ €X |5t |come|ge|yh 5P
3478|3677 m. 60-70|32|me [nr
3479|43666/f [ma|80-90[45(nm|re
/ order
%stomer %der %ore Delivery [Paymt
Mode Mode
3478 2140267(12 \regula.t cash
3478 3446778|12 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  [credit
3479 347588612 gular  |credit
store

Location

12
17

Store ID|[Size [Type

small |franchige

large [indep

city
rural

Relational representation of customers, orders and stores.

1. constructing
relational features

2. constructing a
propositional table
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fl | f2 | £3 | f4 | £5 | £6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1
0 T 5 1 O I I A 1
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
L2 I 1 I I IR U A
v 1 I




Relational Data Mining through

customer

D
/

Zip

S [So |In
€X (St |come (ge|yb 5P

A [C [Re

3478
3479

34677 |m si

60-70|32|me |nr
43666|f |ma|80-90|45[nm|re

Propositionalization

/ order

%stomer %der %ore Delivery [Paymt
Mode Mode

3478 2140267(12 \ regular  |cash

3478 3446778|12 express |check

3478 472838617 regular  |check

3479 3233444|17 xpress  [credit

3479 347588612 gular  |credit

store

Location

12
17

Store ID|[Size [Type

small |franchige

large [indep

city
rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization q;

Step 2
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fl | f2 | £3 | f4 | £5 | f6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1

T s A A A
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
L2 I 1 I I IR U A
v 1 I

Data Mining

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1

>

model, patterns, ...
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Relational Data Mining through
Propositionalization

customer
1D |Zip So In_ |A|Cl [Re
/ €X |5t |come|ge|yh 5P
3478|3677 m. 60-70|32|me [nr
3479|43666/f [ma|80-90[45(nm|re
/ order
%stomer %der %ore Delivery [Paymt
\ Mode |Mode
3478 2140267(12 \regula.t cash
3478 3446778|12 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  [credit
3479 347588612 gular  |credit
store

Location

Store ID|[Size [Type

12
17

o ohi
small |franchise

large [indep

city
rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1

f1 | f2 | f3 | f4 | 5 | 6 fn
gl 10 (o1 )11 y0 {01011
g2l 01 (1011 y0 {00110
T R U VI 1
gt L1 |10 {1t oo 1j1)1]0
gh |11 (1o oyl y0o (11010
L I IV I
L /2 S A I A
g |00 (oo yo o {1y )pLyoyo
gl Lyo |11t jop o010l
target(A) :-
‘Doctor’ (A), ’Italy’(A).
target (A) :-
Public’ (A), ’Gold’ (A).

target (A) :-

Poland’ (A),

target(A) :-—

‘Germany’ (A),

target(A) :-—

'Service’ (A),

’Deposit’(A), *Gold’(A).

’Insurance’ (A).

’Germany’ (A) .

patterns (set of rules)
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RSD Lessons learned

Efficient propositionalization can be applied to
iIndividual-centered, multi-instance learning problems:

— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

featurel21(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)
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Relational Data Mining in Orange4WsS

« Service for propositionalization through efficient

first-order feature construction (Zelezny and Lavrad,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
« subgroup discovery using CN2-SD
mutaagenic(M) « feature121(M), feature235(M)

Mutagenesis

<
lecule 3
— \&

P g | - / View table
Load data ‘,;, ‘i j{\"' ‘ M } \A,z’ g ~ “—\, \
2l /" Propositionalization Raftk attributes  Serialize ExampleTable  APriori-SD View rules
Load backgr. knowledge N e Ga—— ——
= ‘f{ = ii’l?'h_j O !’ !”‘
Serialize ExampleTable2 ~ CN2-SD
253

BeamSearch-SD



Part V:
Relational Data Mining

 What is RDM

* Propositionalization techniques
j> Semantic Data Mining
nductive Logic programming

« Learning as search in Inductive Logic
Programming

254



255

What is Semantic Data Mining

* Ontology-driven (semantic) data mining is an
emerging research topic

« Semantic Data Mining (SDM) - a new term
denoting:
— the new challenge of mining semantically annotated

resources, with ontologies used as background
knowledge to data mining

— approaches with which semantic data are mined
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What is Semantic Data Mining
SDI\/IN__:,tgs‘_Ig_d_efinition

[ ontologies }

target (A) :-
’Doctor’ (A), ’Italy’(4).

annotations, dSema_nt_m mt?del,
mappings ata mining | patterns
target (A) :-
Given: ’Service’ (A), ’Germany’(A).

= — = transaction data table, relational database,
[ data } text documents, Web pages, ...

= one or more domain ontologies
Find: a classification model, a set of patterns
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Semantic Data Mining in Oranged4dWS

» EXploiting semantics in data mining

— Using domain ontologies as background knowledge for
data mining

« Semantic data mining technology: a two-step
approach

— Using propositionalization through first-order feature
construction

— Using subgroup discovery for rule learning
* Implemented in the SEGS algorithm
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

12093 biological process .. . ... componeen | ke p—
1812 cellular components / L L L
7459 molecular functions T EE—— ‘ s

biopolymer metabolism catabolism macromolecule metabolism primary metabolism cellular metabolism intrinsic to membrane peptidase activity

biopolymer catabolism macromolecule catabolism protein metabolism cellular catabolism

Joint work with
lgor TrajkovskKi
and Filip Zelezny
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations . . g e
between genes, can be viewed 7 | |
as generalisations of individual oot prcess. ol proces -
genes
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First order feature construction

First order features with support > min_support

f(7,A):-function(A,'G0O:0046872").
f(8,A):-function(A,'G0O:0004871").
f(11,A):-process(A,'G0O:0007165").
f(14,A):-process(A,'G0O:0044267").
f(15,A):-process(A,'G0O:0050874").
f(20,A):-function(A,'G0:0004871"), process(A,'G0O:0050874").
f(26,A):-component(A,'G0:0016021".
f(29,A):- function(A,'G0:0046872"), component(A,'G0:0016020")
f(122,A):-interaction(A,B),function(B,'G0O:0004872").
_—" f(223,A):-interaction(A,B),function(B,'G0:0004871"),
process(B,'G0O:0009613").
f(224,A):-interaction(A,B),function(B,'G0O:0016787'),
component(B,'G0O:0043231").

existential
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Propositionalization
diffexp g1 (gene64499)
diffexp g2 (gene2534)
diffexp g3 (gene5199)
diffexp g4 (genel052)
diffexp g5 (gene6036)

random gl (gene7443)
random g2 (gene9221)
random g3 (gene2339)
random g4 (gene9657)
random g5 (genel9679)

£1 | £2 | £3 | £f4 | £5 | f6 | .. fn
gl | 1 0 0 1 1 1 0 0 1 0 1 1
g2 | o 1 1 0 1 1 0 0 0 1 1 0
g3 | o 1 1 1 0 0 1 1 0 0 0 1
gd | 1 1 1 0 1 1 0 0 1 1 1 0
g5 | 1 1 1 0 0 1 0 1 1 0 1 0
gl | © 0 1 1 0 0 0 1 0 0 0 1
g2 | 1 1 0 0 1 1 0 1 0 1 1 1
g3 | o 0 0 0 1 0 0 1 1 1 0 0
gd | 1 0 1 1 1 0 1 0 0 1 0 1




Propositional learning: subgroup

discover
y

fl |I£2 f3| f4 | £5 | £6 | .. fn
gl| 1 ({jo|off 12|11 1
g2| oz | 1} o | 1|1 0
g3l oz |1}l 1]o0]oO 1
gd| 1 |1 |21}l o|1]1 0
gs| 1 (1|1}l o 0|1 0
gl|ofjo| 1}l 1]o0] O 1
g2| 1 (Jz | ofjfo| 1|1 1
g3| 0 0 0 0 1 0 0
gda| 1 {Jo | 1}l 2|1 ]O 1

262

Over-
expressed

IF
f2 and f3
[4,0]

diffexp(A) :- interaction(A,B) & function(B,'G0O:0004871")
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1l0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0 ;0
1.0

1.0
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0
1.0

1.0

1.0 .
1.0 1.0

1.0

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0

1.0 39 1.0 1.0

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0 1.0

1.0
1.0 .
1.0 1.0

1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy
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Semantic Data Mining in two steps

« Step 1: of genes such

as
interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding)

and with features as
attributes

« Step 2: Using these features to
that are differentially expressed (e.g.,
belong to class DIFF.EXP. of top 300 most differentially
expressed genes) in contrast with RANDOM genes (randomly
selected genes with low differential expression).

« Sample subgroup description:
diffexp(A) :- interaction(A,B) AND

function(B,'G0:0004871') AND
process(B,'G0:0009613")
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Summary: SEGS, using the RSD
approach

 The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

 The SEGS approach proved effective in several
biomedical applications (JBI 2008, ...)

* The work on semantic data mining - using ontologies as
background knowledge for subgroup discqvery with SEGS - was
done in collaboration with I.Trajkovski, F. Zelezny and J. Tolar

* Recent work: Semantic subgroup discovery
Implemented in Oranged4WS



Semantic subgroup discovery with

SEGS

268

« SEGS workflow is implemented in the Oranged4dWS

data mining environment

GO

KEGG

ENTREZ

e N F

Microarray
Data | genes

Ranking of
- —

Construction
of gene sets

" Fisher

[

"™ GSEA

,| Enriched
gene sets

PAGE

« SEGS is also implemented also as a Web

applications

(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)



From SEGS to SDM-SEGS:
Generalizing SEGS

« SDM-SEGS: a general semantic data mining

ONT.1  ONI.2 ONT. 3

BINARY CLASS

GO || KEGG || ENTREZ

e ol

LABELED
Microarray Ranking-of Construction
Data genes of gene sets

Fisher

[

RULES

. >

>

A

GSEA

Enriched
gene sets

PAGE

RULES

« Discovers subgroups both for ranked and
labeled data

« EXploits input ontologies in OWL format

 |s also implemented in Orange4WS

269



Semantic Data Mining

270

« Semantic subgroup discovery (Vavpetic et al., 2012)

Knowledge Discovery

/J Data Mining]

Relational Subgroup Discovery

\

Semantic Web

Ontologies




Part V:
Relational Data Mining

 What is RDM
* Propositionalization techniques
« Semantic Data Mining

—

nductive Logic programming
_earning as search in Inductive Logic

Programming

271
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Sample ILP problem:
Logic programming

E*"={sort([2,1,31,11,2,31)}
E"={sort([2,1],[1]),s0rt(I[3,1,2],12,1,31)}

B : definitions of permutation/2 and sorted/1

* Predictive ILP
sort (X,Y) <« permutation(X,Y), sorted(Y).

« Descriptive ILP

sorted(Y) <« sort(X,Y).
permutation(X,Y) < sort(X,Y)
sorted (X) <«<— sort (X, X)
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Sample ILP problem:
Knowledge discovery

E "= {daughter (mary, ann) ,daughter (eve, tom) }
E "= {daughter (tom, ann) , daughter (eve, ann) }

B = {mother (ann,mary), mother (ann, tom),
father (tom,eve), father(tom,1an), female (ann)

1 4
female(mary) female (eve), male(pat),male (tom),
parent (X,Y) < mother (X,Y), parent (X,Y) <«
father (X, Y) }

ann
mary tom

/N

eve 1an
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Sample relational problem:
Knowledge discovery

E " = {daughter (mary, ann) ,daughter (eve, tom) }
E "= {daughter (tom, ann),daughter (eve, ann) }

B = {mother (ann,mary),mother (ann, tom) , father (tom, eve),
father (tom, 1an), female (ann), female (mary), female (eve),
male (pat),male (tom) ,parent (X,Y)<¢<mother (X,Y),

parent (X,Y)<«father (X,Y) }

Predictive ILP - Induce a definite clause

daughter (X,Y) <« female (X), parent(Y,X).
or a set of definite clauses

daughter (X,Y) <« female (X), mother (Y, X).

daughter (X,Y) <« female (X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses

< daughter (X,Y), mother (X,Y).
female (X) <~ daughter (X,Y) .

mother (X,Y),; father(X,Y) <« parent(X,Y).



basiC Relational Data MiIning and ILP 2
learning tasks

Predictive RDM m
A

Descriptive RDM



Predictive ILP

Given:

— A set of observations
* positive examples E *
* negative examples E -

— background knowledge B
— hypothesis language Ly
— covers relation

Find:
A hypothesis H < L, such that (given B) H
covers all positive and no negative examples

In logic, find H such that
— VYee E":B A HIl=e (His complete)
— Vee E":B A HI# e (His consistent)

In ILP, E are ground facts, Band H are
(sets of) definite clauses

276
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Predictive ILP

« Given:
— A set of observations

* positive examples E *
* negative examples E -

— background knowledge B
— hypothesis language L,
— covers relation

— quality criterion

* Find:
A hypothesis H e L4, such that (given B) H is

optimal w.r.t. some quallty criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H € L, such
that (given B) H covers all positive and no
negative examples)



Descriptive ILP

Given:

— A set of observations
(positive examples E )

— background knowledge B

— hypothesis language L,

— covers relation

Find:
Maximally specific hypothesis H < L, such
that (given B) H covers all positive examples

In logic, find H such that Vc € H, cis true in
some preferred model of B UE (e.g., least
Herbrand model M (B UE))

In ILP, E are ground facts, B are (sets of)
general clauses

278
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Sample problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

|k
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RDM knowledge representation
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
11 cl circle 1 tl TRUE
12 c2 hexagon 1 t2 TRUE
13 c3 triangle 1
14 c4  rectangle 3 t6 FAL SE

T
CAR "TRAIN SHAPE LENGTH ROOF WHEHRS
cl tl rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
(o} tl rectangle long none 2
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ER diagram for East-West trains
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ILP representation:
Datalog ground facts

Example:
eastbound(tl).

Background theory:

car(tl,cl). car(tl,c2). car(tl,c3). car(tl,c4).
rectangle(cl). rectangle(c2). rectangle(c3). rectangle(c4).
short(cl). long(c2). short(c3). long(c4).
none(cl). none(c2). peaked(c3). none(c4).
two_wheels(cl). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(cl,I1). load(c2,12). load(c3,13). load(c4,14).
circle(1). hexagon(l2). triangle(13). rectangle(l4).
one_load(l1). one load(l2). one_load(l3). three_loads(l4).

Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).
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ILP representation:
Datalog ground clauses

oY

-5

Example:
eastbound(tl):-
car(tl,cl),rectangle(cl),short(cl),none(cl),two_wheels(cl),
load(c1,l1),circle(I1),one load(l1),
car(tl,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,l12),hexagon(l2),one load(l2),
car(tl,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,13),triangle(13),one_load(I3),
car(tl,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,14),rectangle(l4),three_load(l4).

Background theory: empty

Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).
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ILP representation: Prolog terms

0

-0

« Example:

eastbound([c(rectangle,short,none,2,l(circle,1)),
c(rectangle,long,none,3,l(hexagon,1)),
c(rectangle,short,peaked,2,I(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

« Background theory: member/2, arg/3

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).



Propositionalization in ILP (LINUS)

« Example: learning family relationships

Training examples Background knowledge
daughter(sue,ewe). (+) [parent(eve,sue). female(ann).
daughter(ann,pat). (+) [parent(ann,tom). female(sue).
daughter(tom,ann). (- parent(pat,ann). female(ewe).
daughter(eve,ann). () [parent(tom,sue).

« Transformation to propositional form:

Class | Variables Propositional features
X Y fX) | f(Y) | pO,X) [ pCX,Y) | p(Y,X) | p(Y,Y) X=Y
@ sue | eve | true | true | false | false true false false
S ann | pat | true | false | false | false | true false false
© |[tom | ann | false | true | false | false true false false
S eve | ann | true | true | false | false | false false false

« Result of propositional rule learning:
Class = @ if (female(X) = true) A (parent(Y,X) = true

« Transformation to program clause form:
daughter(X,Y) « female(X),parent(Y,X)
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First-order feature construction

 All the expressiveness of ILP is in the features

« Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— Idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)
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Declarative bias for first-order feature
construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,
molecules) or their parts (e.g., cars, atoms)

Feature construction in LINUS, using the following language
bias:
— one free global variable (denoting an individual, e.g. train)

— one or more structural predicates: (e.g., has_car(T,C)) ,each
Introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

— one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

— all variables should be used
— parameter: max. number of predicates forming a feature



288

Sample first-order features

The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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LINUS revisited

« Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

* Revisited LINUS:

— Systematic first-order feature construction in a given
language bias

 Too many features?
— use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:

eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-

not (hasCar(T,C1),cshape(C1,ellipse)),

not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),

not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Relational Data Mining in Orange4WsS

and ClowdFlows

« Service for propositionalization through efficient

first-order feature construction (Zelezny and Lavrad,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
« subgroup discovery using CN2-SD
mutaaenic(M) « feature121(M), feature235(M)

Mutagenesis

<
lecule 3
— \&

V g ) - ‘ View table
Load data . ‘. | / ' ‘ - * =
. < A '
D [ Propositionalizat Rank.attribut Serialize ExampleTable AP SD View rul
Load backgr. knowledge . G ——
W~
Serialize ExampleTable2 ~ CN2-SD
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Part V:
Relational Data Mining

What is RDM
Propositionalization techniques
Semantic Data Mining

nductive Logic programming

_earning as search in Inductive Logic
Programming

292



Learning as search

Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph

— nodes: concept descriptions (hypotheses/rules)

— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child

Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}

Generalization operators. e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}

Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayGolf example

PlayGolf = yes IF

PlayGolf = yes

. PlayGolf = yes
IF Wind=weak

IF Humidity=high

PlayGolf = yes PlayGolf = yes
IF Wind=strong IF Humidity=normal

PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,

PlayGolf = yes PlayGolf = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny
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| earn-one-rule as heuristic search:
PlayGolf example

PlayGolf = yes IF [9+,5-] (14)

PlayGolf = yes PlayGolf = yes
I6F \é\/m?weak IF Humidity=high
[6+,2—] (8) P|GYGO|f = yes PIC(YGOH: = yes [3+,4-] (7)
IF Wind=strong IF Humidity=normal
[3+,3-1(6) [o+1=1()
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,
PlayGolf = yes PlayGolf = yes Ou‘rlooykzr'ain
IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0—] (2)



Learning as search

(Mitchell’s version space model)

too general

\

Hypothesis language L
defines the state space

How to structure the
hypothesis space L,,?

How to move from one
hypothesis to another?

complete and consis

The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

@
V’
O O
too specific

296

more
general

more
specific
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Learning as search

Search/move by applying
generalization and

specialization .
generalize

Prune generalizations:

— 1f H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

Prune specializations:

— iIf H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

@
. '
o 9 specialize
v
too specific
®
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Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy
 depth-first
* breath-first
* heuristic search (best first, hill-climbing, beam search)

— search heuristics

* measure of attribute ‘informativity’

* measure of ‘expected classification accuracy’ (relative
frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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| earn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl «- Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl <« Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy Is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

 learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking
— e.g., the best descendant of the initial rule
PlayGolf = yes «
— Is rule PlayGolf = yes « Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set Is again reduced to k best
candidates
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ILP as search of program clauses

 An ILP learner can be described by
— the structure of the space of clauses

* based on the generality relation

« Let C and D be two clauses.
C is more general than D (C |=D) iff

covers(D) < covers(C)
« Example: p(X,Y) < r(Y,X) is more general than
P(X,Y) < r(Y,X), a(X)

— Its search strategy

 uninformed search (depth-first, breadth-first, iterative
deepening)

* heuristic search (best-first, hill-climbing, beam search)
— Its heuristics

» for directing search

* for stopping search (quality criterion)
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ILP as search of program clauses

« Semantic generality

Hypothesis H, is semantically more general than H, w.r.t.
background theory B if and only if B U H, |= H,

« Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause ¢, #-subsumes c, (c; > ,C,)
If and only if 36: c,0 < ¢,
— Hypothesis H, > 6 H,
If and only if Vc, € H, exists ¢, € H, such that c, > 6c,
« Example

cl = daughter(X,Y) « parent(Y,X)
c2 = daughter(mary,ann) <« female(mary),
parent(ann,mary),
parent(ann,tom).
cl f-subsumes c, under €= {X/mary,Y/ann}



The role of subsumption in ILP

Generality ordering for hypotheses

Pruning of the search space:

— generalization

« if C covers a neg. example then its generalizations need
not be considered

— specialization

« if C doesn’t cover a pos. example then its specializations
need not be considered

Top-down search of refinement graphs
Bottom-up search of the hypo. space by

— building least general generalizations, and
— Inverting resolutions
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Structuring the
hypothesis space

too general

flies(X) «

@
flies(X) « bird(X) .‘

flies(X) « bird(X),
normal(X) RO O 3
O ©

\

@
V’
O O
too specific

more
general

more
specific
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Two strategies for learning

« General-to-specific

— If ®-subsumption is used then refinement

operators

» Specific-to-general search

— If ®-subsumption is used then lgg-operator or

generalization operator
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ILP as search of program clauses

* Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
* inverting resolution (CIGOL)
* inverting entailment (PROGOL)



More general
(induction)

A

v

More
specific

307



308

Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). ® | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). 6 | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) <« X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) « Part of the refinement
female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.



Greedy search of the best clause

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). ® | parent(ann,tom). female(mary).
daughter(tom,ann). 6 | parent(tom,eve). female(eve).
daughter(eve,ann). 6 | parent(tom,ian).
daughter(X,Y) « 2/4
e .
daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z)
2/3

daughter(X,Y) « female(X)

A

daughter(X,Y) « daughter(X,Y) «
female (X) 12 female(X) 2,2
female(Y) parent(Y,X)
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FOIL

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, in/out modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C
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Part V: Summary

« RDM extends DM by allowing multiple tables
describing structured data

« Complexity of representation and therefore of
learning is determined by one-to-many links

 Many RDM problems are individual-centred
and therefore allow strong declarative bias



Advanced Topics

:'>Text mining: An introduction
« Document clustering and outlier detection
« Wordification approach to relational data mining



Background: Data mining

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data I\/Iining> ﬁ.

model, patterns, clusters,

Given: transaction data table, a set of text documents, ...
Find: a classification model, a set of interesting patterns



Data mining: Task reformulation

Person Young Myope Astigm. euced tea_ Lenses
o1 1 1 0 1 NO
02 1 1 0 0 YES
03 1 1 1 1 NO
04 1 1 1 0 YES
05 1 0 0 1 NO

06-013
014 0 0 0 0 YES
015 0 0 1 1 NO
016 0 0 1 0 NO
017 0 1 0 1 NO
018 0 1 0 0 NO

019-023 .
024 0 0 1 0 NO

Binary features and class values



Text mining:
Words/terms as binary features

Document Word1l Word?2 WordN Class
dl 1 1 0 1 NO
d2 1 1 0 0) YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
di5 0 0 1 1 NO
d16 0) 0 1 0 NO
d17 0) 1 0 1 NO
d18 0 1 0 0 NO

d19-d23
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Text Mining from unlabeled data

Document  Word1l Word2 ... WordN
dl 1 1 0 1
d2 1 1 0 0
d3 1 1 1 1
d4 1 1 1 0
d5 1 0 0 1

d6-d13
di14 0 0 0 0
di5 0 0 1 1
d16 0 0 1 0
di17 0 1 0 1
di8 0 1 0 0

d19-d23 ...
d24 0 0 1 0

Unlabeled data - clustering: grouping of similar instances
- association rule learning



Text mining

Document Wordl Word?2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction pom
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23
o4 5 5 ; 5 o model, patterns, clusters,



Text Mining

* Feature construction
— StopWords elimination
— Stemming or lemmatization
— Term construction by frequent N-Grams construction
— Terms obtained from thesaurus (e.g., WordNet)

e BoW vector construction

* Mining of BoW vector table
— Feature selection, Document similarity computation
— Text mining: Categorization, Clustering, Summarization,



Stemming and Lemmatization

 Different forms of the same word usually

problematic for text data analysis

— because they have different spelling and similar meaning (e.qg.
learns, learned, learning,...)

— usually treated as completely unrelated words
« Stemming Is a process of transforming a word Into
Its stem
— cutting off a suffix (eg., smejala -> smej)
 Lemmatization is a process of transforming a
word into 1ts normalized form

— replacing the word, most often replacing a suffix (eg.,
smejala -> smejati)



Bag-of-Words document

representation
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Word weighting

 In bag-of-words representation each word is represented
as a separate variable having numeric weight.

* The most popular weighting schema is normalized word
frequency TFIDF:
N

tfidf (w) = tf. log( ” (W))

— Tf(w) — term frequency (number of word occurrences in a
document)

— Df(w) — document frequency (number of doctyments containing the
word)

— N — number of
— Tfidf(w) — rel

| documents
Ive importance of the word in the document

The word is more important if it appears The word is more important if it
several times in a target document appears in less documents



Cosine similarity between
document vectors

« Each document D is represented as a vector of
TF-IDF weights

« Similarity between two vectors is estimated by the
similarity between their vector representations
(cosine of the angle between the two vectors):

2 Xy,
I

Similarity (D,,D,) =

R



Advanced Topics

« Text mining: An introduction
jl>Document clustering and outlier detection
« Wordification approach to relational data mining



Document clustering

Clustering Is a process of finding natural groups in
data in a unsupervised way (no class labels pre-
assigned to documents)

Document similarity is used

Most popular clustering methods:
— K-Means clustering

— Agglomerative hierarchical clustering
— EM (Gaussian Mixture)



Document clustering with OntoGen
ontogen.ijs.sl

Topic ldentification

Slide adapted from D. Mladenié, JSI



Using OntoGen for clustering
PubMed articles on autism

Work by
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http://www.ontogen.si/

K-Means clustering in OntoGen

OntoGen uses k-Means clustering for semi-automated
topic ontology construction

* Given:
— set of documents (eg., word-vectors with TFIDF),
— distance measure (eg., cosine similarity)
— K - number of groups
* For each group initialize its centroid with a random
document
* While not converging

— each document is assigned to the nearest group
(represented by its centroid)

— for each group calculate new centroid (group mass point,
average document in the group)



Detecting outlier documents

« By classification noise detection on a domain
pair dataset, assuming two separate document

corpora A and C

Classitied
as A

Classified
as C



Outlier detection for cross-domain
knowledge discovery
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Outlier documents
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Our research
has shown that
most domain
bridging terms
appear in outlier

documents.
(Lavrac, Sluban,
Grcar, Jursi¢ 2010)



Using OntoGen for outlier
document identification

Qutlier Identification

Text corpus

Concept A

Concept C’

Slide adapted from D. Mladenié, JSI



NoiseRank: Ensemble-based noise
and outlier detection

* Misclassified document —— )
detection by an
ensemble of diverse B
classifiers (e.g., Naive
Bayes, Random Forest,
SVM, ... classifiers)

* Ranking of misclassified | —
dOCU ments by “Votlng” Noise Ranking Results
of classifiers

HARF

Send Selected




NoiseRank on news articles

Articles on Kenyan elections: local vs. Western media

Eayes RF100 RFS00 SVM
Eayes RF100 RFS00 SVM

__EBayes RF100 RFS00 SVM

__EBayes RF100 RF500 8VM

__Bayes RF100 RF500 8VM

__Bayes RF100 RF500 8VM

__EBayes RF100 RFS00 SVM

__EBayes RF100 RFS00 SVM

__RFi100 RFS00 SVM SVMEasy

__EBayes RF500 SVM SVMEasy

__RF100 RFS00 SVM SVMEasy

__EBayes RFS00 SVM SVMEasy

__EBayes RF100 RFS00 SVM

__RF100 RFS00 SVM SVMEasy

__EBayes SVM SVMEasy _

__RF100 RFS00  Satrilt

__RF100 RF500 SVM

__Bayes RF500 5VM

__Bayes RF100 5VM

__RF100 RF500__ SVMEasy_

SVMEasy
SVMEasy
SVMEasy _
SVMEasy
SVMEasy
SatFilt
SVMEasy



NoiseRank on news articles

« Article 352: Out of topic
The article was later indeed
removed from the corpus
used for further linguistic
analysis, since it is not
about Kenya(ns) or the
socio-political climate but
about British tourists or
expatriates’ misfortune.

 Article 173: Guest

journalist

Wrongly classified because it
could be regarded as a
“Western article” among the
local Kenyan press. The
author does not have the
cultural sensitivity or does not
follow the editorial guidelines
requiring to be careful when
mentioning words like tribe in
negative contexts. One could
even say that he has a kind
of “Western” writing style.



Advanced Topics

« Text mining: An introduction
« Document clustering and outlier
:'>Wordification approach to relational data mining



Motivation

Develop a RDM technique inspired by text
mining

Using a large number of simple, easy to
understand features (words)

Improved scalability, handling large datasets

Used as a preprocessing step to propositional
learners
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Wordification Methodology

 Transform a relational database to a document
Corpus

* For each individual (row) in the main table, concatenate
words generated for the main table with words generated
for the other tables, linked through external keys

—_—

Feature vector

T —

—t

E

Feature vector |

Feature vector |

Feature vector

d;: .

RN




Wordification Methodology

One individual of the main data table in the
relational database ~ one text document

Features (attribute values) ~ the words of this
document

Individual words (called word-items or witems)
are constructed as combinations of:

‘table namel|_|attribute name|_{value]

n-grams are constructed to model feature
dependencies:

witemq |_|witems|_ ... _|lwitem,,]



Wordification Methodology

 Transform a relational database to a document
cCorpus

* Construct BoW vectors with TF-IDF weights on
words

(optional: Perform feature selection)

* Apply text mining or propositional learning on BoW
table



Wordification

CAR
TRAIN carlD  shape roof wheels train
trainlD  eastbound cll rectangle none 2 tl
t1 east cl2 rectangle peaked 3 tl
tS west ¢Sl rectangle none 2 t5
c32 hexagon  flat 2 tS

t1: [car_roof none, car_shape rectangle, car wheels 2,
car_roof none_ car_shape rectangle,

car_roof none_car wheels 2,

car_shape rectangle car wheels 2,

car_roof peaked, car_shape_rectangle,

car_wheels_3, car_roof peaked car shape rectangle,
car_roof peaked car wheels 3,

car_shape rectangle car wheels 3], east



Wordification

t1: [car_roof _none, car_shape rectangle, car_wheels 2,

car_roof none__ car_shape rectangle, car_roof none_ car _wheels 2,
car_shape rectangle car wheels 2, car_roof peaked, car_shape rectangle,
car_wheels_3, car_roof peaked car shape rectangle,
car_roof peaked car wheels 3, car_shape rectangle car wheels 3], east

t5: [car_roof _none, car_shape rectangle, car_wheels 2,

car_roof none__car_shape rectangle, car_roof none_ car _wheels 2,
car_shape rectangle car wheels 2, car_roof flat, car shape hexagon,
car_wheels_2, car_roof flat car _shape_ hexagon,
car_roof flat car wheels 2, car_shape hexagon _car wheels 2], west

TF-IDF calculation for BoW vector construction:

car_shape car_roof car_wheels_3 car_roof_peaked_ car_shape_rectangle class
_rectangle peaked car_shape _rectangle _car_wheels_3
tl | 0.000 0.693 0.693 0.693 0.693 east

5 | 0.000 0.000 0.000 0.000 0.000

weslt



TF-IDF weights

* No explicit use of existential variables In
features, TF-IDF instead

* The weight of a word indicates how relevant is
the feature for the given individual

 The TF-IDF weights can then be used either for
filtering words with low importance or for using
them directly by a propositional learner (e.g. J48)




Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

e Results (using J48 for propositional learning)



Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

« Results (using J48 for propositional learning)

— first applying Friedman test to rank the algorithms,

— then post-hoc test Nemenyi test to compare multiple
algorithms to each other



Experiments

Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

—= V 4 = - AN ~ LI | | = AN

MeEeasure = CA MEASURE = RUN-TIME

CD=1.77 CD=1.77
——— ——
4 3 2 1 4 3 2 1
I I | I I I
Wordification (1.9) I— Wordification (1.0)
AlephFeaturize (2.5) AlephFeaturize (2.9)
RSD (2.7) RSD (3.0)
RelF (2.9) RelF (3.1)




-
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Domain Algorithm HME-Accuracy[%]  J4B-AUC  Run-time[s]
Trainz Wordification 35.00 0.51 11
without position RelF 65,00 (.65 104
RSD 65,00 (.68 0.53

AlephFeaturize T5.00 .82 0.40

Trains Wordification 05, M 0.51 12
RelF 65,00 (.62 1.06

RSD 50,00 0.53 0.47

AlephFeaturize 85.00 0.74 0.38
Mutagenesis42  Wordification 97.62 0,93 34
RelF 80,935 0.59 2.11

RSD o762 0.93 2.63

AlephFeaturize o762 0.93 2.07
Mutagenesis|88  Wordification 9574 0.90 LG5
RelF 7553 0.79 1.76

RSD 04.15 0.91 [0.10

AlephFeaturize 8723 (.88 19.27

IMDB Wordification 8434 0.79 1.23
RelF 79.52 0.73 3249

RSD 7349 0.47 4.33

AlephFeaturize 7349 0.47 4.96
Carcinogenesis ~ Wordification 6109 062 1.7%9
RelF 54.71 (.53 644

RSD 58.05 (.56 9.29

AlephFeaturize 55.32 0.49 [04.70

Financial Wordification B6.75 0.48 4.65
RelF 97.00 0.91 260.93

RSD 86.73 (.48 333.68

AlephFeaturize 86.73 (.48 325.86




Use Case: IMDB

IMDB subset: Top 250 and bottom 100 movies
Movies, actors, movie genres, directors, director genres

Wordification methodology applied
Association rules learned on BoW vector table



Use Case: IMDB

goodMovie <— director_genre_drama, movie_genre_thriller,
director_ name_AlfredHitchcock. (support: 5.38% Confidence: 100.00%)

movie_genre_drama <— goodMovie, actor_name RobertDeNiro.

(Support: 3.59% Confidence: 100.00%)

director_name_AlfredHitchcock <« actor_name_AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director name_StevenSpielberg <- goodMovie, movie_genre_adventure,
(Support: 1.79% Confidence: 100.00%) actor_name_TedGrossman.



Wordification implemented Iin
ClowdFlows

* Propositionalization through wordification, available
at http://clowdflows.org/workflow/1455/
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Evaluation implemented in ClowdFlows

« Wordification and propositionalization algorithms
comparison, available at
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Summary

— Wordification methodology
— Implemented in ClowdFlows

— Allows for solving non-standard RDM tasks, including RDM
clustering, word cloud visualization, association rule
learning, topic ontology construction, outlier detection, ...
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