Data Mining and Knowledge Discovery: Practice Notes

Petra Kralj Novak

Petra.Kralj.Novak@ijs.si 2016/01/06

1

Keywords

- Data
 - Attribute, example, attribute-value data, target variable, class, discretization
- Algorithms
 - Heuristics vs. exhaustive search, decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, predictive vs. descriptive DM, numeric prediction, regression tree, model tree
- Evaluation
 - Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, error, precision, recall

Discussion about decision trees

- → How much is the information gain for the "attribute" Person? How would it perform on the test set?
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Information gain of the "attribute" Person

On training set

- As many values as there are examples
- Each leaf has exactly one example
- E(1/1, 0/1) = 0 (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)

On testing set

• The values from the testing set do not appear in the tree

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- → How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Entropy{hard=4, soft=5, none=13}=

- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22 13/22 * \log_2 13/22$
- = 1.38

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Decision tree pruning

These two trees are equivalent

9

Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Ca = (3+2)/ (3+2+2+0) = 71%

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- \rightarrow What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

11

Stopping criteria for building a decision tree

- ID3
 - "Pure" nodes (entropy =0)
 - Out of attributes
- J48 (C4.5)
 - Minimum number of instances in a leaf constraint

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- → How would you compute the information gain for a numeric attribute?

14

Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO NO
N 39	NO NO
7] 45	∥ YES

ECI

	Age	Lenses		Age	Lenses
	67	YES		23	YES
	52	YES		23	YES
	63	NO		25	YES
	26	YES	Sort	26	YES
	65	NO	by	26	YES
	23	YES	Ane	29	YES
	65	NO	Age	32	NO
	25	YES		38	NO
	26	YES		39	NO
	57	NO		39	NO
	49	NO		44	YES
	23	YES		45	YES
	39	NO		46	NO
	55	NO		49	NO
	53	NO		52	YES
	38	NO		53	NO
	67	YES		54	NO
	54	NO		55	NO
	29	YES		57	NO
	46	NO		63	NO
	44	YES		65	NO
000	32	NO		65	NO
	39	NO		67	YES
	45	YES		67	I YES

TEC

Aae	Lenses		Age	Lenses		Age	Lenses
67	YES		23	YES		23	YES
52	YES		23	YES		23	YES
63	NO		25	YES	Dofino	25	YES
26	YES	Sort	26	YES	Denne	26	YES
65	NO	by	26	YES	possible	26	YES
23	YES	Age	29	YES	splitting	29	YES
65	NO	Age	32	NO	noints	32	NO
25	YES		38	NO	points	38	NO
26	YES		39	NO		39	NO
57	NO		39	NO		39	NO
49	NO		44	YES		44	YES
23	YES		45	YES		45	YES
39	NO		46	NO		46	NO
55	NO		49	NO		49	NO
53	NO		52	YES		52	YES
38	NO		53	NO		53	NO
67	YES		54	NO		54	NO
54	NO		55	NO		55	NO
29	YES		57	NO		57	NO
46	NO		63	NO		63	NO
44	YES		65	NO		65	NO
32	NO		65	NO	As in the	65	NO
39	NO		67	YES		67	YES
45	YES		67	YES		67	YES

17

Age	Lenses	
23	YES	
23	YES	
25	YES	
26	YES	
26	YES	
29	YES	20 E
32	NO	30.5
38	NO	
39	NO	
39	NO	 41.5
44	YES	
45	YES	 <i>45</i> 5
46	NO	TU.U
49	NO	 50.5
52	YES	 57 F
53	NO	52.5
54	NO	
55	NO	
57	NO	
63	NO	
65	NO	
 65	NO	 66
67	YES	~~
 67	YES	

TEC

Age	Lenses		
23	YES		
23	YES		
25	YES		
26	YES		
26	YES		
29	YES		20 5
32	NO	\rightarrow	30.5
38	NO		
39	NO		
39	NO		41.5
44	YES		
45	YES		<i>1</i> 5 5
46	NO		45.5
49	NO		50.5
52	YES		E0 E
53	NO		52.5
54	NO		
55	NO		
57	NO		
63	NO		
65	NO		
 65	NO		66
67	YES		00
67	YES		

E(S) = E(11/24, 13/24) = 0.99

Age >=30.5 <30.5 6/24 18/24 E(6/6, 0/6) = 0 E(5/18, 13/18) = 0.85

InfoGain (S, Age_{30.5})=

 $= E(S) - \sum p_v E(p_v)$

= 0.99 - (6/24*0 + 18/24*0.85)

= 0.35

	Age	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	20 E
	32	NO	30.3
	38	NO	
	39	NO	
	39	NO	 41.5
	44	YES	
	45	YES	 15 5
	46	NO	43.3
	49	NO	 50.5
	52	YES	50 F
	53	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
DEDA	65	NO	66
	67	YES	•••
	67	YES	

<30.5 Age >=30.5

InfoGain (S, Age_{30.5}) = 0.35

20

Decision trees

Many possible decision trees

$$\sum_{i=0}^{k} 2^{i} (k-i) = -k + 2^{k+1} - 2$$

– k is the number of binary attributes

- Heuristic search with information gain
- Information gain is short-sighted

Trees are shortsighted (1)

- Three attributes:
 A, B and C
- Target variable is a logical combination attributes A and B class = A xor B
- Attribute C is random w.r.t. the target variable

Trees are shortsighted (2)

attribute B alone

attribute C alone

Attribute C has the highest information gain!

Trees are shortsighted (3)

• Decision tree by ID3

• The real model behind the data

Overcoming shortsightedness of decision trees

- Random forests
 - (Breinmann & Cutler, 2001)
 - A random forest is a set of decision trees
 - Each tree is induced from a bootstrap sample of examples
 - For each node of the tree, select among a subset of attributes
 - All the trees vote for the classification
 - See also ensamble learning
- ReliefF for attribute estimation (Kononenko el al., 1997)

Predicting with Naïve Bayes

Given

- Attribute-value data with nominal target variable Induce
- Build a Naïve Bayes classifier and estimate its performance on new data

Naïve Bayes classifier

$$P(c \mid a_1, a_2, \dots, a_n) = P(c) \prod_i \frac{P(c \mid a_i)}{P(c)}$$

Assumption: conditional independence of attributes given the class.

Will the spider catch these two ants?

• Color = white, Time = night

KNOWI FDGF

fan Institute

Color = black, Size = large, Time = dayTime Size Color Caught YES black day large YES white small night YES black small day night NO red large NO black large night NO white night large

Naïve Bayes classifier -example

Color	Size	\mathbf{Time}	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$v_1 = "Color = white"$$

 $v_2 = "Time = night"$
 $c_1 = YES$
 $c_2 = NO$

$$p(c_1|v_1, v_2) = p(Caught = YES|Color = white, Time = night) = p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$$

K-fold cross validation

- 1. The sample set is partitioned into K subsets ("folds") of about equal size
- A single subset is retained as the validation data for testing the model (this subset is called the "testset"), and the remaining K - 1 subsets together are used as training data ("trainset").
- 3. A model is trained on the trainset and its performance (accuracy or other performance measure) is evaluated on the testset
- 4. Model training and evaluation is repeated K times, with each of the K subsets used exactly once as the testset.
- 5. The average of all the accuracy estimations obtained after each iteration is the resulting accuracy estimation.

Discussion

- 1. Compare naïve Bayes and decision trees (similarities and differences).
- 2. Compare cross validation and testing on a different test set.

31

- 3. Why do we prune decision trees?
- 4. What is discretization.

