Data Mining and Knowledge Discovery Practice notes: Decision trees

Data Mining and Knowledge Discovery Practice notes: Decision trees

Person	Age	Prescription	Astigmatic	Tear_Rate		
P1	young	myope	no	normal	YES	
P2	young	myope	no	reduced	NO	
P4	young	hypermetrope	no	reduced	NO	
P5	young	myope	yes	normal	YES	
P6	young	myope	yes	reduced	NO	
P7	young	hypermetrope	yes	normal	YES	
P8	young	hypermetrope	yes	reduced	NO	
P10	pre-presbyopic	myope	no	reduced	NO	
P11	pre-presbyopic	hypermetrope	no	normal	YES	
P14	pre-presbyopic	myope	yes	reduced	NO	
P17	presbyopic	myope	no	normal	NO	
P18	presbyopic	myope	no	reduced	NO	
P19	presbyopic	hypermetrope	no	normal	YES	
P20	presbyopic	hypermetrope	no	reduced	NO	
P21	presbyopic	myope	yes	normal	YES	
P22	presbyopic	myope	yes	reduced	NO	
P24	presbyopic	hypermetrope	yes	reduced	NO	

Data Mining and Knowledge Discovery Practice notes: Decision trees

Entropy

$$E(S) = -\sum_{c=1}^{N} p_{c} .log_{2} p_{c}$$

• Calculate the following entropies:

$$E(0,1) = 0$$

 $E(1/2, 1/2)$

$$E(1/2, 1/2) = 1$$

$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

$$E(0.1, 0.9) = 0.47$$

 $E(0.001, 0.999) = 0.01$

Entropy
$E(S) = -\sum_{c=1}^{N} p_{c}.\log_{2} p_{c}$
• Calculate the following entropies: E (0,1) = 0 E (1/2, 1/2) = 1 E (1/4, 3/4) = 0.81 E (1/7, 6/7) = 0.59 E (6/7, 1/7) = 0.59 E (0.1, 0.9) = 0.47 E (0.001, 0.999) = 0.01
0.1 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Entropy

$$E(S) = -\sum_{c=1}^{N} p_{c} . \log_{2} p_{c}$$

• Calculate the following entropies:

$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

E(0.1, 0.9) = 0.47

E(0.001, 0.999) = 0.01

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- Compute the entropy E(S) of the set S
 IF E(S) = 0 The current set is "clean" and therefore a leaf in our tree

- IF E(S) > 0

 Compute the information gain of each attribute Gain(S, A)

 The attribute A with the highest information gain becomes the root
- Divide the set S into subsets S_i according to the values of A Repeat steps 1-7 on each S_i

Test the model on the test set T

KNOWLEDGE

Data Mining and Knowledge Discovery Practice notes: Decision trees

Discussion How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13} What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic? What are the stopping criteria for building a decision tree? How would you compute the information gain for a numeric attribute?

KNOWLEDGE ECHNOLOGIES