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Training and test set

Person Age Prescription | Astigmatic | Tear_Rate| Lenses
P Yyoung myope no normal | YES Put 30% of
P2 young myope no reduced | NO
P3 young hypermetrope no normal | YES eXampleS
P4 young hypermetrope no reduced | NO :

P5 young myope ves normal | YES ina

P6 young myope ves reduced | NO separate
P7 young hypermetrope | yes normal | YES

P8 young hypermetrope yes reduced | NO test set
Po | pre-presbyopic|  myope no normal | YES

P10 | pre-presbyopic|  myope no reduced | NO
P11 | pre-presbyopic | hypermetrope no normal | YES
P12 | pre-presbyopic | hypermetrope no reduced | NO
P13 | pre-presbyopic|  myope ves normal | YES
P14 | pre-presbyopic|  myope yes reduced | NO
P15 | pre-presbyopic | hypermetrope [  yes normal | NO
P16 | pre-presbyopic | hypermetrope |  yes reduced | NO
P17 | presbyopic myope no normal | NO
P18 | presbyopic myope no reduced | NO
P19 | presbyopic | hypermetrope no normal | YES
P20 | presbyopic | hypermetrope no reduced | NO
P21 | presbyopic myope yes normal | YES
P22 | presbyopic myope ves reduced | NO
P23 | presbyopic | hypermetrope |  yes normal | NO
P24 | presbyopic | hypermetrope |  yes reduced | NO

Test set

Person | Age | Prescription | Astigmatic | Tear_Rate| Lenses
P3 young hypermetrope no normal YES
P9 pre-presbyopic myope no normal YES
P12 pre-presbyopic | hypermetrope no reduced NO
P13 pre-presbyopic myope yes normal YES
P15 pre-presbyopic | hypermetrope yes normal NO
P16 pre-presbyopic | hypermetrope yes reduced NO
P23 presbyopic hypermetrope yes normal NO

Put these data away and do not look at them in the

training phase!

Training set

Person Age Prescription [ Astigmatic | Tear_Rate| Lenses
P1 young myope no normal YES
P2 young myope no reduced NO
P4 young hypermetrope no reduced NO
P5 young myope yes normal YES
P6 young myope yes reduced NO
P7 young hypermetrope yes normal YES
P8 young hypermetrope yes reduced NO
P10 | pre-presbyopic myope no reduced NO
P11 | pre-presbyopic [ hypermetrope no normal YES
P14 | pre-presbyopic myope yes reduced NO
P17 presbyopic myope no normal NO
P18 presbyopic myope no reduced NO
P19 presbyopic | hypermetrope no normal YES
P20 presbyopic hypermetrope no reduced NO
P21 presbyopic myope yes normal YES
P22 presbyopic myope yes reduced NO
P24 presbyopic [ hypermetrope yes reduced NO
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Decision tree induction (ID3)

Given:
Attribute-value data with nominal target variable
Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:
1. Compute the entropy E(S) of the set S
2. IFE(S)=0
The current set is “clean” and therefore a leaf in our tree
IF E(S) > 0
Compute the information gain of each attribute Gain(S, A)
The attribute A with the highest information gain becomes the root
Divide the set S into subsets S; according to the values of A
Repeat steps 1-7 on each Si

PN AW

Test the model on the test set T

Kuﬁué\\:}lﬁl‘d[ Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106

Information gain

number of examples in the subset S,

(probability of the branch)
setS attribute A

N/ s, |
Gain (S,4)=E(S)— > ——-E(S))

veValues (A) | |

number of examples in set S

Entropy
E(S)=-) p, log,p,

¢ Calculate the following entropies:
E (0,1) =
E(1/2,1/2)
E (1/4, 3/4)
E(1/7,6/7)
E(6/7,1/7)
E (0.1,0.9) =
E (0.001, 0.999) =
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Entropy

N
E(S)==> p, log,p,
c=1
e Calculate the following entropies:
E(,1)=0
E(1/2,1/2) =1
E (1/4, 3/4) = 0.81
E(1/7,6/7) = 0.59
E(6/7,1/7) = 0.59
E (0.1, 0.9) = 0.47
E (0.001, 0.999) = 0.01

Entropy

N
E(S)=-) p,log,p,
c=1
e Calculate the following entropies:
E(0,1)=0
E(1/2,1/2) =1

E (1/4, 3/4) = 0.81

E(1/7,6/7) = 0.59 ) —
E(6/7,1/7) = 0.59 i .
E (0.1, 0.9) = 0.47 0i %

E (0.001,0.999) = 0.01 |

Entropy
N
E(S)=-) p,log,p,
c=1
¢ Calculate the following entropies:
E(0,1)=0
E(1/2,1/2) =1
E (1/4, 3/4) = 0.81 :
E(1/7,6/7) = 0.59 [ — "
E(6/7,1/7) = 0.59 BoI— N
E(0.1,0.9) = 0.47 o :
E (0.001, 0.999) = 0.01 o

Entropy and information gain

probability of | probability of

Decision tree induction (ID3)

Given:
Attribute-value data with nominal target variable
Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:
1. Compute the entropy E(S) of the set S
2. IFE(S)=0
The current set is “clean” and therefore a leaf in our tree
IF E(S) > 0
Compute the information gain of each attribute Gain(S, A)
The attribute A with the highest information gain becomes the root
Divide the set S into subsets S; according to the values of A
Repeat steps 1-7 on each Si

PNV AW

Test the model on the test set T
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Confusion matrix

predicted
Predicted Predicted
positive negative
Actual positive TP FN
E
& | Actual negative FP TN

e Confusion matrix is a matrix showing actual and
predicted classifications

e Classification measures can be calculated from it,
like classification accuracy
= #(correctly classified examples) / #(all examples)
= (TP+TN) / (TP+TN+FP+FN)
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Evaluating decision tree accuracy

Person | Age Prescription | Astigm atic |Tear7Ra|e| Lenses
P3 young hypermetrope no normal YES
P9 pre-presbyopic myope no normal YES
P12 pre-presbyopic hypermetrope no reduced NO
P13 pre-presbyopic myope yes normal YES
P15 pre-presbyopic hypermetrope yes normal NO
P16 pre-presbyopic hypermetrope yes reduced NO
P23 presbyopic hypermetrope yes normal NO

\ e Ca = (3+2)/ (3+2+2+0) = 71%

I —g= /

Predicted | Predicted
positive negative

\

(o Actual TP=3 FN=0

myope ypemetispe positive

e acwal | Frez | ez
TECHNOLOGIES negative

Discussion

e How much is the information gain for the “attribute”
Person? How would it perform on the test set?

¢ How do we compute entropy for a target variable that has
three values? Lenses = {hard=4, soft=5, none=13}

e What would be the classification accuracy of our decision
tree if we pruned it at the node Astigmatic?

e What are the stopping criteria for building a decision tree?

e How would you compute the information gain for a numeric
attribute?

ENOWIEDGE
TECHNOLOGIES




