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Jozef Stefan Institute and IPS

e Jozef Stefan Institute (JSI, founded in 1949)
— named after a distinguished physicist . _ T4
Jozef Stefan (1835-1893) J

— leading national research organization in natural sciences
and technology (~700 researchers and students)

 JSI research areas
— information and communication technologies
— chemistry, biochemistry & nanotechnology
— physics, nuclear technology and safety

e Jozef Stefan International Postgraduate School (IPS,
founded in 2004)

— offers MSc and PhD programs (ICT, nanotechnology,
ecotechnology)

— research oriented, basic + management courses
— in English



Jozef Stefan Institute
Department of Knowledge Technologies

e Head: Nada Lavrag, Staff: 30 researchers, 10 students

e Machine learning & Data mining
— ML (decision tree and rule learning, subgroup discovery, ...)
— Text and Web mining
— Relational data mining - inductive logic programming
— Equation discovery

* Other research areas:
— Knowledge management
— Decision support
— Human language technologies

Applications:
— Medicine, Bioinformatics, Public Health
— Ecology, Finance, ...



Course Outline

l. Introduction

Data Mining in a Nutshell

Predictive and descriptive DM
techniques

Data Mining and KDD process

DM standards, tools and
visualization

(Mladenic et al. Ch. 1 and 11)

Il. Predictive DM Techniques

Bayesian classifier
(Kononenko Ch. 9.6)

Decision Tree learning
(Mitchell Ch. 3, Kononenko Ch. 9.1)

Classification rule learning
(Kononenko Ch. 9.2)

Classifier Evaluation
(Bramer Ch. 6)

lll. Regression
(Kononenko Ch. 9.4)

IV. Descriptive DM

Predictive vs. descriptive induction
Subgroup discovery

Association rule learning
(Kononenko Ch. 9.3)

Hierarchical clustering (Kononenko
Ch. 12.3)

— V. Relational Data Mining

RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch. 3, Ch. 4)

Propositionalization approaches
Relational subgroup discovery



Part l. Introduction

Data Mining in a Nutshell

Predictive and descriptive DM techniques
Data Mining and the KDD process

DM standards, tools and visualization



Basic Data Mining Task

knowledge discovery

from data
Data Mining

model, patterns, ...

data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...



Data Mining and Machine Learning

e Machine learning techniques ¢ Data mining applications

— classification rule learning — medicine, health care

— subgroup discovery — ecology, agriculture

— relational data mining and — knowledge management,
ILP virtual organizations

— equation discovery
— Inductive databases

e Data mining and decision
support integration

D_fibr=>4.20 ecghlv=no -» class=emb
[_chol=¢=6.90 D_fibi=>4.20 hypo=no -> clazz=emb

[_age=>66.00 fhiz=pes -» clasz=emb
1.5 [_age=»66.00 D_chol=<=6.90 -> clazs=emb




Relational data mining: domain
knowledge = relational database

domain
nowledge
Data Background

mining knowledg

patterns
model



Semantic data mining: domain
knowledge = ontologies

ontologies

Data

mining

patterns
model
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Basic DM and DS Tasks

knowledge discovery

from data
Data Mining

model, patterns, ...

|data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...

- @ @\ mutli-criteria modeling
g\%\ Z (‘;/{/\ Decision Support
S —
T/

models

experts

Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives
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Decision support tools: DEXi
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DM and DS integration

Data Decision

mining support

patterns
model

12

expert
knowledge
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Basic Text and Web Mining Task

knowledge discovery

M from text data and We
Text/Web Mining

model, patterns, ...

Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization...
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Text Mining (lectures by D. Mladenic)
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Knowledge Technologies:
Main research areas & IPS lectures

ICT3

l

Knowledge Technologies
(Al, Intelligent Systems)
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Data Mining and
Knowledge Discovery
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Computational
Scientific
Discovery
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Text
Mining
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Human
Language
Technologies
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Multiobjective
Optimization
Filipic¢

Decision
Support
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Part l. Introduction

) Data Mining in a Nutshell
* Predictive and descriptive DM techniques
e Data Mining and the KDD process
e DM standards, tools and visualization

18



What is DM

e Extraction of useful information from data:
discovering relationships that have not
previously been known

* The viewpoint in this course: Data Mining is

the application of Machine Learning
technigues to solve real-life data analysis

problems

19
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Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns



Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge diSCOVGW

O1 17 myope no reduced NONE

02 23 myope no normal SOFT from data
O3 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE
06-013 D t M .
014 35 hypermetrope no normal SOFT ala Inlng
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019023 . model, patterns, ..
024 56 hypermetrope yes normal NONE
data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

symbolic model

new unclassified instance |\ classified instance symbolic patterns A\
: A N
| black box classifier explanation i
V)

no explanation . b
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. Tear prod.  Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013 .
014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE



23

Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc.  Astigm. |Tear prod. Lenses

(o) young myope no reduced NONE

02 young myope no normal SOFT

O3 young myope yes reduced NONE

04 young myope yes normal HARD

05 young  hypermetrope no reduced NONE D ata M | n | ng
06-013

014  ore-presbyc hypermetrope no normal SOFT

015 ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE

017  presbyopic myope no reduced NONE
018 presbyopic myope no normal NONE
019-023

024  presbyopic hypermetrope yes normal NONE

reduced / N:)rmal

NONE
no /

SOFT

spect. pre.

myope/ \hypermetrope

HARD NONE
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Task reformulation: Binary Class Values

Person Age Spect. presc.| Astigm. Tear prod.| Lenses
O1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013

014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
O17 54 myope no reduced NO
018 62 myope no normal NO
019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
O1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
O4 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013
014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal 0

019-023
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Learning from Unlabeled Data

Person Age Spect. presc. Astigm. |Tear prod.\ Lenses /
O1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
O4 27 myope yes normal
05 19 hypermetrope no reduced

06-013
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning

26
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Data Mining: Related areas

Database technology
and data warehouses
o efficient storage,

databases

aCCG_SS an_d text and Web machine
manipulation mining learning
of data

computing

pattern
recognition



28

Related areas

Statistics,

machine learning,
pattern recognition
and soft computing”

e classification
techniques and
techniques for
knowledge extraction
from data

databases

machine
learning

text and Web
mining

computing

pattern
recognition

*neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning



Text and Web mining
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Related areas

Web page analysis
text categorization

acquisition, filtering
and structuring of
textual information

natural language
processing

databases

text and Web
mining

machine
learning

computing

pattern
recognition
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Related areas

Visualization

e visualization of data
and discovered
knowledge

databases

text and Web
mining

machine
learning

computing

pattern
recognition
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Point of view in this course

Knowledge
discovery using databases
machine “
|earnin text and Web e
h dg mining learning
methods |
computing ‘pattern visualization
recognition




Data Mining, ML and Statistics

All three areas have a long tradition of developing
inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. ML - Viewpoint in this course:

— Data Mining is the application of Machine Learning
techniques to hard real-life data analysis problems

32



Data Mining, ML and Statistics

All three areas have a long tradition of developing
inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. Statistics:
— Statistics

e Hypothesis testing when certain theoretical
expectations about the data distribution,

Independence, random sampling, sample size, etc.

are satisfied

* Main approach: best fitting all the available data
— Data mining

e Automated construction of understandable
patterns, and structured models

 Main approach: structuring the data space
heuristic search for decision trees, rules, .

covering (parts of) the data space

33



Part l. Introduction

 Data Mining in a Nutshell

j> Predictive and descriptive DM techniques
e Data Mining and the KDD process
e DM standards, tools and visualization

34



Types of DM tasks

Predictive DM:
— Classification (learning of rules, decision H
trees, ...) v

— Prediction and estimation (regression)
— Predictive relational DM (ILP)
Descriptive DM:

— description and summarization

— dependency analysis (association rule o
learning) GO e H

— discovery of properties and constraints

— segmentation (clustering)
— subgroup discovery
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Predictive vs. descriptive DM

Predictive DM m
A
Descriptive DM
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Predictive vs. descriptive DM

* Predictive DM: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive DM: Discovering interesting regularities in
the data, uncovering patterns, ... for solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis



Predictive DM formulated as a
machine learning task:

e @Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)

A1 A2 A3 Class
example1l vy, Vi Via C,
example2 v, Vs o Vs 3 C,

e By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

38



Predictive DM - Classification

e data are objects, characterized with attributes -
they belong to different classes (discrete labels)

e given objects described with attribute values,
induce a model to predict different classes

e decision trees, if-then rules, discriminant
analysis, ...

39



Data mining example
Input: Contact lens data

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young |hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
O16 ore-presbyc hypermetrope yes normal NONE
O17  |presbyopic myope no reduced NONE
O18 |presbyopic myope no normal NONE

019-023

024  presbyopic/ hypermetrope yes normal NONE
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Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

reduced / Nﬁ)rmal

NONE
no / yes
myop?/ \hypermetrope

HARD NONE




Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE

42
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
05 young hypermetrope no reduced NO

06-013
O14  ore-presbyc hypermetrope no normal YES
O15 ore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
O17  presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

019-023
024  presbyopic hypermetrope yes normal NO
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Contact lens data:
Classification rules in concept learning

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no —
lenses=YES

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=YES

else NO
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lllustrative example:
Customer data

Customer Gender Age Income Spent  BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data: Decision trees

< 102000 / > 102000
< 58 / > 58

no yes
=female/ . ! = male
no

349/ ! > 49

no yes




Predictive DM - Estimation

often referred to as regression

data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

given objects described with attribute values, induce a
model to predict the numeric class value

regression trees, linear and logistic regression, ANN,
KNN, ...

47



Estimation/regression example:
Customer data

Customer Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
c14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000

c20 female 55 214000 28800



Customer data:
regression tree

<<108000‘//' ! > 108000

12000
342?/ > 425

16500 26700

In the nodes one usually has
Predicted value +- st. deviation
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Predicting algal biomass: regression
tree

Jan.-June

/ w - Dec.
C_s D

> 9.34 < 10.1/ \>10.1

<9.34

>

4.32+2.07 2.34+1.65

/

<59 >5.9 < 91 ; w
1.28+1.08
2.97+1.09 2.08 £0.71

£2.13/ 513
> 2.

1.152+0.21 0.70+0.34




Descriptive DM:
Subgroup discovery example -
Customer data

Customer Gender Age Income Spent  BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

51



Customer data:
Subgroup discovery

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if Xthen Y
X Is conjunctions of items, Y is target class

Age > 52 & Sex = male = BigSpender = no

Age > 52 & Sex = male & Income < 73250
=» BigSpender = no

52
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Descriptive DM:
Clustering and association rule learning

example - Customer data
\ /

Customer| Gender Age Income Spent RigSpendq{'
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
c14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000

c20 female 55 214000 28800



Descriptive DM:
Association rule learning example -
Customer data

Customer Gender Age Income Spent  BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
cS male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data:
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X = Y, if Xthen Y
X, Y conjunctions of items

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no

95
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Predictive vs. descriptive DM:
Summary from a rule learning
perspective

* Predictive DM: Induces rulesets acting as classifiers
for solving classification and prediction tasks

e Descriptive DM: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria



Relational Data Mining (Inductive Logic57
Programming) in a Nutshell

D [Zp |3 [Se Ol Re

knowledge discovery
3478(34677|m |si from data

ub
60 ;Le nr
3479|43666|f [ma|80-90|45(nm|re
/ order . 0 C
freomer 5% T [roae [V Relational Data Mining
3478 |2140267(12  \|regular |cash
3478 3446778(12 express |check

3478 4728386|17 regular |check

3479 3233444|17 xpress  [credit
479 [3a73886[12 3‘ ar feredit model, patterns, ...

tore
Store ID|Size [Type |Location
12 small (franchige|city
17 large [indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational Data Mining (ILP)

Learning from multiple

tables
Complex relational Mutagenesis
problems: S

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Relational Data Mining (ILP)

customer
ID |Zip (S |So |In A |C] |Re
/4 €X |5t [come [ge|yb |SP

347834677 |m [si  |60-70|32|me |nr
3479| 43666 ma|80-90(45(nm|re

=

/ order

Customer [Order [Store [Delivery [Paymt
D ID ID \ Mode |Mode

3478 214026712 regular |cash

3478 3446778(12 express [(check
3478 4728386(17 regular |check
3479 323344417 xpress |credit
3479 347588612 gular |credit

\

\ store
Store ID|Size [Type [|Location

12 small (franchise|city
17 large |indep  [rural

Relational representation of customers, orders and stores.



customer

ID

Zip |3 |So [In
ex (St [come

E¢(u

b [sP

3478|34677|m |si |60-70
3479|43666 |f

ma|80-90

45|n:

32|me [nr

m|re

order

3479 3233444
3479 3475886

17 XPress
12 gular

Customer [Order [Store [Delivery [Paymt
D 1D D Mode ~ |Mode
3478 2140267(12 regular |cash
3478 344677812 express |check
3478 472838617 regular |check

credit
credit

\

\ store
Store ID[Size [Type |Location
12 small |franchise|city
17 large indep  [rural

Relational representation of customers, orders and stores.

ID

Zip

Sex

Soc St

Income

Age

Club

Resp

3478
3479

34667
43666

Si
ma

60-70
80-90

32
45

me
nm

nr
re

Basic table for analysis




ID Zip Sex |Soc St |Income |Age Club |Resp
3478 | 34667 |m Si 60-70 |32 me nr
3479 43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(ld,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2:
customer(3478,34667,m,si,60-70,32,me,nr).
customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation:
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Relational Data Mining (ILP)

Data bases:

Name of relation p

Attribute of p

n-tuple <vi, ..., Va > =row in
a relational table

relation p = set of n-tuples =
relational table

S [So In 1 |Re
/ €x|St [com b [P
3478(34677|m [si (60-70) nr
3479|43666(f |ma,|80-90)45(nm
/ order
Customer er |Store [Delivery (Paymt
D D \ Mode ~ [Mode
3478 |2140267| 12 \ regular [cash
3478 6778(12  \[express check
3478 838617 regular eck
3479 3233444 17 xpress  [credit
3479 (3475886 12 ar  |credit
\ store
Store ID|Size |Type ion
12 small |franchi
17 large indep

Logic programming:

Predicate symbol p
Argument of predicate p
Ground fact p(vs, ..., Vn)
Definition of predicate p
e Set of ground facts

* Prolog clause or a set of Prolog
clauses

Example predicate definition:

good_customer(C) :-

order(C,_,_,_,creditcard).
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Part l. Introduction

 Data Mining in a Nutshell
* Predictive and descriptive DM techniques

jl>Data Mining and the KDD process
e DM standards, tools and visualization
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Data Mining and KDD

e KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

e Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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KDD Process

KDD process of discovering useful knowledge from data

Data Interpretation/

Pre- Trans-
__?i. processi_nh% fcr‘matiorr: Mining Eva1uation N f
™~ 4 3 - — ™ — E e
‘j ) —— S j— —p YA~ B ety 3 /7

Target I Preprocessed ITransfurmedI Patterns I Knowledge

Data Data Data
e O e — i

e KDD process involves several phases:
e data preparation
e data mining (machine learning, statistics)
e evaluation and use of discovered patterns

e Data mining is the key step, but represents only
15%-25% of the entire KDD process
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MEDIANA - analysis of media research data

Trans Data Interpretation/
-\ processing cr‘mation Mlnlng Evaluation N7

Target Preprocessed Transformed Patterns Knowledge
Data Data

|

>

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

e Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
interest for specific topics in media, social status

e good quality, “clean” data

e table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)



MEDIANA — media research pilot study

Pre- Trans-

= processing formation Evaluation 3
[ [ S — E —_ — g NN/
Target I Preprcessed ITransfurmedI Patterns I Knowledge

Data Data Data

>

e Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

* |nduced models: description (association rules, clusters)
and classification (decision trees, classification rules)



Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223 2 reads_Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads_Delo 157 (0.78)
4. reads_Money (Denar) 197 & reads_Delo 150 (0.76)
5. reads_Vip 181 2 reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also
Delo.
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Simplified association rules

1. reads_Sara 332 3 reads_Slovenske novice 211 (0.64)
2. reads_Ljubezenske zgodbe 283 >

reads_Slovenske novice 174 (0.61)
3. reads_Dolenjski list 520 >

reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
5. reads_Delavska enotnost 177 >

reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska
new, Omama in Workers new read also Slovenian
news.
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Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.
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Decision tree

Finding reader profiles: decision tree for classifying people
into readers and non-readers of a teenage magazine
Antena.

29 Age 29

Doesn’t read Visiting Disco Clubs

7S

Interest in music, astrology, Interest in astrology

travel and scandals
yes
n/ yes

Gender Reads

Doesy’t read Reads
mﬁy \emale

Doesn’t read

/\

Reads Doesn’t read



Part l. Introduction

 Data Mining in a Nutshell
* Predictive and descriptive DM techniques
e Data Mining and the KDD process

j|> DM standards, tools and visualization
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CRISP-DM

Cross-Industry Standard Process for DM

A collaborative, 18-months partially EC
founded project started in July 1997

NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

DM from art to engineering

Views DM more broadly than Fayyad et al.
(actually DM is treated as KDD process):

Data Interp retation/

=\ Pre- Trans-
= 'Selectlon —. pr‘ocessmg formatmn Mmmg Evaluauon {a\r?
| :

I Target I Preprﬂcessed ITransfnrmeclI Patterns I Knowledge
=

Data Data Data

T e F




CRISP Data Mining Process
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DM tools

- KDNuggets Directory: Data Mining and Knowledge Discovery - Netscape

File Edit “iew Go Communicator Help

thﬂnnkmarks {& Location; | http: Adwiene kdnuggets. com,

j @'What'& Felated ﬂ

F
—

KDNuggets.com Path: EDMuecets Home -
KDNuggets Tools (Siftware) for Data Mining and Knowledge Discovery
ewsletter
Tools Email new subrmssions and changes to editori@kdnuggets.com
Companies
Johs + Suites supporting multiple discovery tasks and data preparation
Courses + Classification -- for building a classification model
SR O0-0g* Approach: Multiple | Decision tree | Bules | Meural network | Bayesian | Other
Solutions + Clustering - for finding clusters or segnents
Wehsites + Statistics, Estimation and Regression
References + Links and Associations - for finding inks, dependency networks, and associations
Meetings + Sequential Pattems - tools f-::-.r findmg seguential patte.rns.
Datasets + ¥isualization - scientific and discovery-onented wsualization
+ Text and Weh Mining
+ Deviation and Fraud Detection
+ Reporting and Summarization
+ Data Transformation and Cleaning
« | _"’l + OLAP and Dimensional Analysis
= [=P=| | Document: Done =E S R A
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Public DM tools

e WEKA - Waikato Environment for Knowledge
Analysis

e KNIME - Konstanz Information Miner

e R — Bioconductor, ...
 QOrange, Orange4WS, ClowdFlows

=3 Weka Knowledge Explorer

] 3]
fFremucess rCIassify Cluster | Associate rSelecl attributes r\flsuallze ‘
‘ Open file... | ‘ Open URL... | | Open DB... Apply Filters ‘
Base relation ¥Working relation
Relation: weather Relation: weather
Instances: 14 Attributes: 5 Instances: 14 Attributes: 5
-Attributes in base relation Fitters:
AddFilter -k d-C0 H Add
| a Il None Il Imvert fer-unname
Mo, J Mame

1|l outlonk
2 vl temperature

3 vl humidity
4 [l windy
5 [Vl play Attribute info for base relation
Name: humidity Type: Numeric
Missing: 0 (0%) Distinct: 10 Unigue: 7 (50%)
Statistic [ Value
Minirmurm 65.0
Maximurm 96.0
Mean B1.64285714285714
StdDev 10.285218242007051
Log
UL R ERETETS (@i s Walkalo. ac.nz

07:31:48: Started on Tarek, 6 marec 2001
07:32:00: Base relation is now weather (14 instances)
07:32:00: Warking relation is now weather (14 instances)

Status:
OK

aanl

File

ﬂ-:;- f uild Subgroups

Daaa

Discretize Linear Prajectian

-+ tlasz=emb

ahyp=yes aanh=pes -» class=emb

D_fibr=:4.20 ecghlv=no -» class=emb

D_chal=¢=6.50 D_Ffibr=>420 hypo=nn -» class=emh

D_age=:EE.00 fhis=yes -» class=emb
['_age=>EE.00 D_chol=<=E.90 -> class=emb
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Visualization

e can be used on its own (usually for
description and summarization tasks)

e can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization
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Data visualization:
Scatter plot

el F

7
HOSPITALIZATION




DB Miner: Association rule
visualization

Edit Quem Wiew S

1.0




MineSet: Decision tree visualization

File “iew Selections Display Go Help

BEH S MM L T

Puainter iz over:

-1 sgi

B £1[0[0 |0 <0 [ | e 3 |2

(T T |
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Orange: Visual programming and
subgroup discovery visualization

svs I::Iassh .
DD ¥ EIRH -
o1 @DD 0 horm &

Linear Projection

-+ clazz=emb

af=yesz -» clazz=emb

ahvp=yes aarh=yes -» clasz=emb

0_fibr=>4.20 ecghlv=no -» clazs=emb

0 _chol=¢=6.90 D_fibr=>4.20 hppo=no - clazz=emb
0 _age=r66.00 fhiz=yes -» clazz=emb
0_age=r66.00 D_chol=¢=6.90 - clazz=emb
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Part I: Summary

KDD is the overall process of discovering useful

knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics
Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas, many powerful tools
available



Part Il. Predictive DM techniques

=)« Naive Bayesian classifier
e Decision tree learning
e Classification rule learning
e Classifier evaluation
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Bayesian methods

e Bayesian methods — simple but powerful
classification methods
— Based on Bayesian formula

D | H
p(a | Dy = 22D

p(D)

* Main methods:
— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course
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Naive Bayesian classifier

e Probability of class, for given attribute values
pv..v, |c;)

ple, |vwv,) = p(e,):

p(v,..v )

* For all G, compute probability p(C;), given values v, of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when

estimating p(C) and p(C; Iv)))

ple, Iv-v,) = ple) ]
I p(C].)

e OQOutput Cyax With maximal posterior probability of class:

pc,|v,)

C

wax = arg max .. p(c,|v,..v,)
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Naive Bayesian classifier

plc,-vi..v,) p..v, |c.) p(c;)
ple, |v.v,)= = =
p(v,..v ) p(v,..v )

[Treie)pe)
- - [

p(v,..v ) pv,.v )", p(c;)

I[1 200D pie, vy
= p(c)) T2 % pie ) T
pv..v,) . p(c;) ;. p(c;)

p(Cj |V,')°p(vi) _

pc;[v)




Semi-naive Bayesian classifier

 Naive Bayesian estimation of probabilities

(reliable)
ple;lv) ple;lv,)

p(c;) p(c,)

e Semi-naive Bayesian estimation of
probabilities (less reliable)

p(c, |v,v)

p(c;)
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Probability estimation

* Relative frequency:

n(c,;) n(c;,v,) .
,p(c;|v,) = j=1. .k, for k classes

n(v,)

p(c;)=

* Prior probability: Laplace law
n(c,)+1

N + Kk

p(CJ)—

e m-estimate:

n(c;)+m:- pa(c,)

N + m

p(c;) =

88



89

Probability estimation: intuition

 Experiment with N trials, n successful
e Estimate probability of success of next trial
* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.g.,
1/1=1
e Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes
— Assumes uniform distribution of classes
 m-estimate: (n+m.pa)/(N+m)

— Prior probability of success p., parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )



Explanation of Bayesian
classifier

e Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p ()
e Explanation based of the sum of information gains of

individual attribute values v, (Kononenko and Bratko 1991,
Kononenko 1993)

—log( p(c; |v,..v,)) =

= —log( p(c,)) — > (~log p(c,)+log( p(c,|v,)

i=1

* log p denotes binary logarithm
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Example of explanation of semi-naive
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden Il -0.3

Fracture classification acc. To Pauwels = Pauwels Il -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks
Combination: 0.63
Therapy = Artroplastic AND anticoagulant therapy = Yes




Visualization of information
gains for/against C,

Information gain

50
40
30
20
10

-10
-20
-30
-40

i

i m

1

L

L

Bwv
2
03
04
H\5
O0v6

W7

C1

C2
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Naive Bayesian classifier

Naive Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

It achieves good classification accuracy

— can be used as ‘gold standard’ for comparison with
other classifiers

Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

Successful in many application domains
— Web page and document classification
— Medical diagnosis and prognosis, ...
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Improved classification accuracy due ~

to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#Hattrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 96% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. | m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%




Part ll. Predictive DM techniques

* Naive Bayesian classifier
) e Decision tree learning

e Classification rule learning

e Classifier evaluation
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lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young |hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

019-023

024  presbyopic| hypermetrope yes normal NONE



Decision tree for
contact lenses recommendation

tear prod.

reduced/// \\\\\\annal
NONE
ni// yes
lnyopi/// \\\?ypenneuope

HARD NONE




Decision tree for
contact lenses recommendation

reduced / N?rmm

no
[N=12,S+H=0] / yes

[S=5,H+N=1] myope;/ \hypermetrope

HARD NONE
[H=3,5+N=2]  [N=2, S+H=1]




PlayGolf: Training examples

Day Outlook = Temperature Humidity @ Wind PlayGolf
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision tree representation
for PlayGolf

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\Normal S‘rror/\weak
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation
for PlayGolf

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\Normal STr'ong/\Weak
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
'/ ( Outlook=Overcast )
'/ ( Outlook=Rain A Wind=Weak )
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PlayGolf:
Other representations

Logical expression for PlayGolf=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

Converting a tree to if-then rules
— IF Outlook=Sunny A Humidity=Normal THEN PlayGolf=Yes
— IF Outlook=Overcast THEN PlayGolf=Yes
— IF Outlook=Rain A Wind=Weak THEN PlayGolf=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayGolf=No
— IF QOutlook=Rain A Wind=Strong THEN PlayGolf=No
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PlayGolf: Using a decision tree for
classification

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\Normal S‘rr‘ong/\Weak
No Yes No Yes

Is Saturday morning OK for playing golf?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayGolf = No, because Outlook=Sunny A Humidity=High
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Appropriate problems for
decision tree learning

» Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

e Characteristics:

— instances described by attribute-value pairs

(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Learning of decision trees

e |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree

— if all examples from S belong to the same class Cj
e then label the root with Cj

— else

e select the ‘most informative’ attribute A with values
vli, v2,...vn

e divide training set S into $1,... , Sn accordjng to
values v1,...,vn

Vn

* recursively build sub-trees v/ &

T1,...,Tn for §1,...,Sn @ @
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Search heuristics in ID3

e Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

* Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used in
information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.
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Entropy

e S - training set, C,,...,Cy - classes

 Entropy E(S) — measure of the impurity of
training set S

N
E(S)=— Z p.log, p. p. - prior probability of class C,
(relative frequency of C, in S)

* Entropy in binary classification problems

E(S) =-p,log,p. - p_log,p.
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Entropy

* E(S)="-p,log.p, - p.log,p.

* The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between O and 1

0’; /\

- / N\

ool /. \
20l / \
I, \
oo L] \
"

0 0.2 0.4 0.6 0.8 1 bp?
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

p. (-log,p. )+ p.(-log,p_.) =-p,log,p, - p_log,p_



PlayGolf: Entropy

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) =-p.log,p. - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

E(S)__[&.l MHS'I SJ

_ oz "
| S | | S | | S| 1S |

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940
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PlayGolf: Entropy

E(S) =- p. log,p, - p.log,p.
E(9+,5-) = -(9/14) l0g,(9/14) - (5/14) log,(5/14) = 0.940

Outlook?

Humidity?

Wind?

Sun {DI,DZ,D8,D9,D11}
{D3,D7,D12,D13}
{D4,D5,D6,010,D14}

» [3+,4-] E=0.985
Nermel— 16+ 1-1 E=0.592
Wea [6+,2-] E=0.811
Strerg— 13+ 3-] E=1.00

[2+, 3-] E=0.970
[4+,0-] E=0
[3+,2-] E=0.970
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Information gain
search heuristic

e Information gain measure is aimed to minimize the
number of tests needed for the classification of a new

object

 Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain (S,4) = E(S)- Y M-E(SV)

veValues (A) |S ‘

 Most informative attribute: max Gain(S,A)
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Information gain
search heuristic

e Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+ 2-] [3+ 3-] [9+, 0-] [0+, 5-]
E=0.811 E=1.00 E=0.0 E=0.0

e Gain(S,A1)=0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048
e Gain(S,A2)=0.94-0=0.94 A2 has max Gain
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PlayGolf: Information gain

Gain (S,A4)=E(S) - Z 5, |

veValues (A) | |

* Values(Wind) = {Weak, Strong}

Wea [6+,2-] E=0.811

Wind? StreRg— 13+ 3-]1 E=1.00
— S =[9+,5-], E(S)=0.940

— Sy = [6+,2-], E(Syenc) = 0.811
strong = [3+,3-], E( strong) =1.0
— Gain(S,Wind) = E(S) - (8/14)E(Syead) - (6/14)E(Syyong) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048
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PlayGolf: Information gain

 Which attribute is the best?
— Gain(S,0Outlook)=0.246 MAX !
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S, Temperature)=0.029
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PlayGolf: Information gain

Rain . {D4,D5,D6,D10,D14} [3+,2-] E>0???

Overcast

Outlook?
{D3,D7,012,D13} [4+,0-] E=0 OK - assign class Yes

{D1,D2,D8,09,D11} [2+, 3-] E>OQ ?2?? <>

e Which attribute should be tested here?

— Gain(S

Sunny

Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny’

— Gain(S Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

sunny’

— Gain(S.,..,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny’
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Probability estimates

* Relative frequency : »(Class | Cond ) =
— problems with small samples
_ n(Class .Cond )
n(Cond )
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
* Laplace estimate : _ n(Class .Cond )+1 , _,
— assumes uniform prior  n(Cond )+ k

distribution of k classes

[6+,1-] (7) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 =3/4



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— if all examples belong to same class C;, label the
leaf with G,

— if all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning

118
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Pruning of decision trees

e Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
e erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples
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Handling noise — Tree pruning

 Handling imperfect data
— handling imperfections of type 1-3
e pre-pruning (stopping criteria)
e post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 15 <3 > 3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 18 recurrence 10

<4

no_recur 4
recurrence 1

no_rec4 recl
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Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— 0N unseen instances

How accurate is a decision tree when classifying unseen
iInstances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
e split the example set into training set (e.g. 70%) and test set (e.g. 30%)
* induce a decision tree from training set, compute its accuracy on test
set
Error =1 - Accuracy

High error may indicate data overfitting



Overfitting and accuracy

* Typical relation between tree size and accuracy
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120

— On training data
— On test data

e Question: how to prune optimally?
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Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

e forward pruning considered inferior (myopic)
e post pruning makes use of sub trees
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How to select the “best” tree

 Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

 Measure performance over separate validation data
set (e.qg., reduced error pruning, Quinlan 1987)

— until further pruning is harmful DO:

e for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

e greedily select the node whose removal most improves tree
accuracy over the validation set

e MDL: minimize
size(tree)+size(misclassifications(tree))
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Selected decision/regression
tree learners

e Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

 Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5

* |[mplemented as part of the WEKA data mining
workbench

 Handling noisy data: post-pruning
 Handling incompletely specified training
Instances: ‘unknown’ values (?)

— in learning assign conditional probability of value v:
p(vIC) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values
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Other features of C4.5

e Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until
two groups remain *
e ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
Is the majority class of the parent of the NULL leaf

*x . , o . . . .
the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping
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Part Il. Predictive DM techniques

* Naive Bayesian classifier
e Decision tree learning

m)> » Classification rule learning
e Classifier evaluation
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Rule Learning in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIedge d|SCOV€W
o1 young myope no reduced NONE from data
02 young myope no normal SOFT
03 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced NONE
06-013 0 .
014  ore-presbyc hypermetrope no normal SOFT RUIe Iearnlng MOdel a Set Of rU|eS
015  ore-presbyc hypermetrope yes reduced NONE . L.
016  ore-presbyc hypermetrope yes normal NONE Patterns |nd|V|d ual rules
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023
024  presbyopic| hypermetrope yes normal NONE
data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;
or a set of interesting patterns in the form of individual
rules
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Rule set representation

 Rule base is a disjunctive set of conjunctive rules

e Standard form of rules:
|IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayGolf=Yes

IF Outlook=Overcast THEN PlayGolf=Yes

IF Outlook=Rain A Wind=Weak THEN PlayGolf=Yes

e Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

e Rule base: {R1, R2, R3, ..., DefaultRule}
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Data mining example
Input: Contact lens data

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young |hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
O16 ore-presbyc hypermetrope yes normal NONE
O17  |presbyopic myope no reduced NONE
O18 |presbyopic myope no normal NONE

019-023

024  presbyopic/ hypermetrope yes normal NONE



Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE

134
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Rule learning

 Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
e | earning an unordered set of rules
e | earning an ordered list of rules
* Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to
an unordered rule set

reduced N:)rmal
NONE

nO/ yes
[IN=12,S+H=0]
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE
[H=3,S+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to
decision list

reduced N:)rmal
NONE

nO/ yes
[N=12,S+H=0]
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE
[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
05 young hypermetrope no reduced NO

06-013
O14  ore-presbyc hypermetrope no normal YES
O15 ore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
O17  presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

019-023
024  presbyopic hypermetrope yes normal NO
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Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes Ci, ..., Cu

for each class Ci do + o+ || -
— Ei := Pi U Ni (Pi pos., Ni neg.) + 4
— RuleBase(Ci) := empty e 7

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

e add R to RuleBase(Ci)
* delete from Pi all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples
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Covering algorithm

N Rule1: Cl=+ « Cond2 AND Cond3
Positive examples ! Negative examples

Rule2: Cl=+ « Cond8 AND Cond6



PlayGolf: Training examples

Day QOutlook | Temperature Humidity | Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No

145



Heuristics for learn-one-rule:

PlayGolf example

PlayGolf = yes [9+,5-] (14)
PlayGolf = yes <« Wind=weak [6+,2-] (8)
< Wind=strong [3+,3-] (6)
< Humidity=normal [6+,1-] (7)
“— ...
PlayGolf = yes <« Humidity=normal
Outlook=sunny [2+,0-] (2)
“— ...

Estimating rule accuracy (rule precision) with the probability
that a covered example is positive

A(Class < Cond) = p(Classl| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+.1-1(7) =617, [2+,0-] (2) =2/2 = 1

146
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Probability estimates

* Relative frequency : »(Class | Cond ) =
— problems with small samples
_ n(Class .Cond )
n(Cond )
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
* Laplace estimate : _ n(Class .Cond )+1 , _,
— assumes uniform prior  n(Cond )+ k

distribution of k classes

[6+,1-] (7) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 =3/4
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Learn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl < Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.qg., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule:
Greedy vs. beam search

e learn-one-rule by greedy general-to-specific
search, at each step selecting the best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
PlayGolf = yes «
— is rule PlayGolf = yes «— Humidity=normal

e beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Learn-one-rule as search:
PlayGolf example

PlayGolf = yes IF

PlayGolf = yes

. PlayGolf = yes
IF Wind=weak

IF Humidity=high

PlayGolf = yes PlayGolf = yes
IF Wind=strong IF Humidity=normal

PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,

PlayGolf = yes PlayGolf = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny



Learn-one-rule as heuristic search:

PlayGolf example

PlayGolf =yes IF [9+,5-] (14)

PlayGolf = yes PlayGolf = yes
I6F \é\/mi';vveak IF Humidity=high
[6+,2—] (8) P|GYGO|f = yes PIGYGOH: = yes [3+,4-] (7)
IF Wind=strong IF Humidity=normal
[3+,3-] (6) [6+,1-1(7)
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,
PlayGolf = yes PlayGolf = yes Ou’rloo{crain
IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0—] (2)

1
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What is “high” rule accuracy
(rule precision) ?

* Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
 BUT: Rule accuracy/precision should be traded
off against the “default” accuracy/precision of the

rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

 Relative accuracy (relative precision)
— RAcc(Cl «~Cond) = p(CI | Cond) — p(Cl)
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Weighted relative accuracy

If a rule covers a single example, its accuracy/precision
IS either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

Weighted relative accuracy
WRAcc(Cl<—Cond) = p(Cond) . [p(Cl | Cond) — p(Cl)]

WRACcc is a fundamental rule evaluation measure:

— WRAcc can be used if you want to assess both accuracy and
significance

— WRACcc can be used if you want to compare rules with different
heads and bodies
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Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl « Cond from RuleBase.

Expected classification accuracy: A(R) = p(ClICond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(ClICond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(ClICond’) - p(ClICond)

Information gain (decrease in the information needed):
IG(R’,R) = log,p(ClICond’) - log,p(ClICond)

Weighted measures favoring more general rules: WAG, WIG
WAG(R’,R) =

p(Cond’)/p(Cond) . (p(ClICond’) - p(ClICond))
Weighted relative accuracy trades off coverage and relative

accuracy WRAcc(R) = p(Cond).(p(ClICond) - p(Cl))



Ordered set of rules:
iIf-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
instance: rules are sequentially tried and the first
rule that fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
ECUI’)
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Sequential covering algorithm
(similar as in Mitchell’s book)

RuleBase := empty
E.=E

repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E,, = E. - {examples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase



Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
Ecur:= E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., = E,, - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E_)
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Learn-one-rule:
Beam search in CN2

e Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

* performance (R, E_,) : - Entropy(E,,)

— performance(R, E_ ) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad
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Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification
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Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.
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Part Il. Predictive DM techniques

* Naive Bayesian classifier

e Decision tree learning

e Classification rule learning
=) Classifier evaluation
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Classifier evaluation

e Accuracy and Error

e n-fold cross-validation
e Confusion matrix

e ROC
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Evaluating hypotheses

 Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

e Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

iInduce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance



n-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized

for i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T,
— induce classifier H, from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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ePartition

*Train
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ePartition +——

*Train
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Confusion matrix and
rule (in)accuracy

e Accuracy of a classifier is measured as TP+TN / N.

e Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

e Conclusion: classification accuracy is not always an
appropriate rule quality measure



Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

e also called contingency table

Classifier 1

170

Predicted positive | Predicted negative
Positive examples 40 10 50 .,
Negative examples 10 40 50 C laSS] f] er 2
50 50 100
Predicted positive | Predicted negative
Positive examples 30 20 50
Negative examples 0 50 50
30 70 100
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ROC space

e True positive rate = Classifier 1
#true pos. / #pos. _ |t | pesotrs |
— TPr, = 40/50 = 80% a0 o Iw | Classifier2
— TPr, = 30/50 = 60% oo | w  m | E
» False positive rate S 7 Two

= #false pos. / #neqg.
— FPr,; =10/50 = 20%
— FPr, =0/50 = 0% B0%
* ROC space has
— FPron X axis
— TPronY axis

100%

60% s

True positive rate

40%

20%

0%

0% 20% 40% 60% 80% 100%

False positive rate



The ROC space

true positive rate

100%
L 2

80%

6%

4%

20% ¢ Confirmation rules

® WR Acc
CN2
0% 4 |
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false positive rate

1000
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The ROC convex hull

true positive rate

100%
I
/ 7

60% -

40% /

20%

0%
0% 20% 40% 60% 80% 100%

false positive rate
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Summary of evaluation

e 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

e ROC analysis is very natural for rule learning
and subgroup discovery
— can take costs into account

— here used for evaluation
— also possible to use as search heuristic
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Part lll. Numeric prediction

j> e Baseline

e |Linear Regression
* Regression tree
e Model Tree

e kNN
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class
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Example
e data about 80 people: Age and Height

Age | Height
) 3 103
23%° W8N Sy 0 3 1.19
e ;:’ IR - 0..’0:‘ i 6 1.26
| ‘} g 139
< 15 1 69
(@)
5 ¢ 19 | 167
37 186
0.5 25 185
* Height 41 159
0 T l ¥ 160
0 50 100 54 1.90
Age 71 182




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6
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Baseline numeric model

* Average of the target variable
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Height

2

1.8
1.6

—

1.4

1.2

Es

0.8
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Age

Baseline numeric predictor

* Average of the target variable is 1.63
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Linear Regression Model

Height = 0.0056 * Age + 1.4181
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2 oe oo o ™"
&% ¥ o Sugni® S
g AT e et v * e
= 15 1= L& s e
s | ¢
I 1 _f
0.5 ¢ Height =
= Prediction
O | | | |
0 20 40 60 80 100
Age

181



Regression tree

==12.5 =12.4
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Model tree
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KNN — K nearest neighbors

 Looks at K closest examples (by age) and predicts the
average of their target variable

e K=3

Height
é..
-

0.40 + Height
0.20 = Prediction KNN, n=3

0 20 40 60 80 100
Age




Which predictor is the best?

Linear Regression
Age Height | Baseline |regression tree Model tree KNN
2 0.85] 1.63 1.43 1.39 1.20 1.01
10 1.4 ] 1.63 1.47 1.46 1.47 1.51
35 1.7 | 1.63 1.61 1.71 1.71 1.67
70 1.6 | 1.63 1.81 1.71 1.75 1.81




Evaluating numeric prediction

Performance measure

Formula

mean-squared error

root mean-squared error

mean absolute errar

relative squared error

root relative squared error

relative absolute error

correlation coefficient

(p—a) +..+(p—a,)
n
[(pi=a)" +...+(p, ~a,)
¥ n
l _31I+--—+lpn"anf
n

(0 =a) +...+ (P —8,) .
I(P1 -&) +... +(Pn ~a,)’

X (8B +..400,~BY

oy —al+...+|p, —a,l

la, —al+...+la, —a|

Sea (pi—p)a —a
S;_S; ‘ where Sp,q = 2 e }

Z(pf -p) ndsﬂ_z{;

n-1 n-1

186



Course Outline

l. Introduction

Data Mining in a Nutshell

Predictive and descriptive DM
techniques

Data Mining and KDD process

DM standards, tools and
visualization

(Mladenic et al. Ch. 1 and 11)

Il. Predictive DM Techniques

Bayesian classifier
(Kononenko Ch. 9.6)

Decision Tree learning
(Mitchell Ch. 3, Kononenko Ch. 9.1)

Classification rule learning
(Kononenko Ch. 9.2)

Classifier Evaluation
(Bramer Ch. 6)

lll. Regression
(Kononenko Ch. 9.4)

IV. Descriptive DM

Predictive vs. descriptive induction
Subgroup discovery

Association rule learning
(Kononenko Ch. 9.3)

Hierarchical clustering (Kononenko
Ch. 12.3)

— V. Relational Data Mining

RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch. 3, Ch. 4)

Propositionalization approaches
Relational subgroup discovery
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Part IV. Descriptive DM techniques

j>- Predictive vs. descriptive induction
e Subgroup discovery
e Association rule learning
* Hierarchical clustering
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Predictive vs. descriptive
induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis



Descriptive DM

Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used
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Descriptive DM

* Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
» describe associations, dependencies, ...
» discovery of properties and constraints

e Segmentation

— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Predictive vs. descriptive
induction: A rule learning
perspective

Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction

tasks

Descriptive induction: Discovers individual rules
describing interesting regularities in the data

Therefore: Different goals, different heuristics,
different evaluation criteria



Supervised vs. unsupervised learning:

A rule learning perspective

e Supervised learning: Rules are induced from labeled
instances (training examples with class assignment) -

usually used in predictive induction

193

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

O14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
o17 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE
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Supervised vs. unsupervised learning:
A rule learning perspective

e Supervised learning: Rules are induced from labeled
instances (training examples with class assignment) -
usually used in predictive induction

 Unsupervised learning: Rules are induced from unlabeled
instances (training examples with no class assignment) -
usually used in descriptive induction

Person

Age

Spect. presc. Astigm. Tear prod. yLenses y

O1
02
03
04
05
06-013
014
015
016
017
018
019-023
024

17
23
22
27
19
35
43
39

54
62

56

myope
myope
myope
myope

hypermetrope

hypermetrope

hypermetrope

hypermetrope
myope
myope

hypermetrope

no
no
yes
yes
no
no
yes
yes
no
no

yes

reduced
normal
reduced
normal
reduced

normal
reduced
normal
reduced
normal

normal
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Supervised vs. unsupervised learning:
A rule learning perspective

e Supervised learning: Rules are induced from labeled
instances (training examples with class assignment) -
usually used in predictive induction

 Unsupervised learning: Rules are induced from unlabeled
instances (training examples with no class assignment) -
usually used in descriptive induction

 Exception: Subgroup discovery

Discovers individual rules describing interesting regularities
in the data from labeled examples
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Task reformulation: Binary Class Values

Person Age Spect. presc.| Astigm. Tear prod.| Lenses
O1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013

014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
O17 54 myope no reduced NO
018 62 myope no normal NO
019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Subgroup Discovery

Person Age Spect. presc. Astigm. Tear prod. . Lenses

o1 17 myope no reduced NO .
02 23 myope no normal YES S u bg rO u p D | SCOVG I'y
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013 Class YES
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO 2
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Class NO

e A task in which individual interpretable patterns in the

form of rules are induced from data, labeled by a

predefined property of interest.

o SD algorithms learn several independent rules that
describe groups of target class examples

— subgroups must be large and significant
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction

j>- Subgroup discovery
e Association rule learning

* Hierarchical clustering




Subgroup Discovery

Task definition (Kloesgen, Wrobel 1997)

Given: a population of individuals and a target
class label (the property of individuals we are
interested in)

Find: population subgroups that are statistically
most interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)



Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Classification versus Subgroup Discovery

e Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

e Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
 large subgroups (high target class coverage)
 with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery

Class YES Class NO
@ i 2 £
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Subgroup discovery task

Task definition for a use case of finding and
characterizing population subgroups with high
risk for coronary heart disease (CHD)

— Given: a population of individuals and a property of
interest (target class, e.g. CHD)

— Find: most interesting’ descriptions of population
subgroups

e are as large as possible (high target class coverage)

* have most unusual distribution of the target
property (high TP/FP ratio, high significance)
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Subgroup Discovery: Medical Use Case

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstacic)
A1 for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD <« bodyMasslIndex > 25 & age >63

A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)

A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight
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Subgroup visualization

subjects’

Subgroups of
patients with
CHD risk

[Gamberger, Lavrac
& Wettschereck,
IDAMAP2002]
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Subgroups vs. classifiers

e (Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model

e Subgroups:

— Rules describing subgroups aim at significantly higher
proportion of positives

— Each rule is an independent chunk of knowledge

e Link
— SD can be viewed as
cost-sensitive positives

classification true
— Instead of FNcost we HeElliEE

aim at increased TPprofit
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

e Only first few rules induced by the covering
algorithm have sufficient support (coverage)

e Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

e ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(ClasslCond) = (n_+1) / (n_,;.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
p(Cond) (p(ClasslCond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering

e Standard covering approach:
covered examples are deleted from current training set

 Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
In all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
 Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

1l0 1-0 1 0

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0 10 1.0
) 1.0
1.0 1.0 1.0
1.0 1.0
1.0

1.0
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Subgroup Discovery

N Rule1: Cl=+ « Cond6 AND Cond2
Positive examples ! Negative examples

1.0 40
1.0 4,

1.0

1.0 1.0 ;4 1.0

1.0
1.0 L, 1.0
' 1.0

1.0 1.0 1.0

1.0
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 30 10 4

1.0 1.0 1.0 1.0

1.0
10, 1.0
) 1.0

1.0 1.0

1.0
1.0 .
1.0 1.0

1.0

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples

1-0 1-0 1.0 1.0

1.0 1.0

1.0
1.0

1.0 1.0 1.0

1.0

1.0




CN2-SD: Weighted WRAcc Search |

Heuristic

 Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl < Cond) = p(Cond) (p(ClICond) - p(Cl))

increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* |n WRAcc computation, probabilities are estimated
with relative frequencies, adapt:
WRAcc(Cl < Cond) = p(Cond) (p(CllICond) - p(Cl)) =

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’)

— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Subgroup visualization

1
B1

B2
Al

The CHD task: Find,
characterize and visualize
population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)
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Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m? (typically 29)
AND
age over 63 years

Supporting characteristics (computed using X2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol
values.
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SD algorithms in the Orange DM
Platform

e SD Algorithms in Orange

— SD (Gamberger & Lavrac, JAIR 2002
— APRIORI-SD (Kavsek & Lavrac, AAl 2006

— CN2-SD (Lavrac et al., JMLR 2004): Adapting CN2
classification rule learner to Subgroup Discovery

 Weighted covering algorithm

 Weighted relative accuracy (WRAcc) search
heuristics, with added example weights



SD algorithms in Orange and 219
Orange4WS

e Orange e Oranged4WS (Podpecan
— classification and subgroup 2010)

discovery algorithms — Web service oriented

— d.ata rTlini.ng workflows — supports workflows and
— visualization other Orange functionality
— developed at FRI, Ljubljana _ jncludes also

 WEKA algorithms

* relational data mining
e semantic data mining with
ontologies
— Web-based platform is
under construction

D_fibri=>4.20 ecghlv=no -» class=emb
[_chol=¢=6.90 D_fibr=>4.20 hypo=no -» clazz=emb

[_age=>66.00 fhiz=pes -> clasz=emb
0.5 [_age=»66.00 D_chol=<=6.90-> clazz=emb




Current platform and workflow
developments

e CrowdFlows

browser-based DM
platform (Kranjc et
al. 2012)

e Semantic Subgroup

Discovery workflows

(VavpeticC et al.,
2012)

? -
A
.

InSilico database search  Select dass attribute

{iCH]

Filter unknown

2

Query data using
subgroups
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=4/ [ Workflow editor
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction
e Subgroup discovery

j>- Association rule learning
* Hierarchical clustering
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Association Rule Learning

Rules: X =>Y, if XthenY

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions M2 e, i50
itemsets (records) o1 0
t2 O 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
e Support: Sup(X,)Y) = #XY/#D = p(XY)
e Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(YIX)
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Association Rule Learning:
Examples

 Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips

* |nsurance
— mortgage & loans & savings = insurance (2%,
62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance



Association rule learning

X=Y ...IFXTHENY, where Xand Y are itemsets
intuitive meaning: transactions that contain X tend to contain Y

Items - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour

Example transactions — itemsets formed of patient records

i1 i2 ... ... 150
t1 1 0 0
2 O 1 0

Association rules
spondylitic = arthritic & stiff_gt_1_hour [5%, 70%]
arthrotic & spondylotic = stiff_less_1_hour [20%, 90%]
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification
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Searching for the associations

 Find all large itemsets

 Use the large itemsets to generate
association rules

e |f XY is a large itemset, compute
r =support(XY) / support(X)

e |f r> MinConf, then X = Y holds
(support > MinSup, as XY is large)
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Large itemsets

e |arge itemsets are itemsets that appear in at
least MinSup transaction

e All subsets of a large itemset are large
itemsets (e.qg., if A,B appears in at least
MinSup transactions, so do A and B)

* This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)
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Association vs. Classification

rules

e EXxploration of
dependencies

e Different combinations
of dependent and
iIndependent attributes

e Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search (subset
of rules found)
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction
e Subgroup discovery
e Association rule learning

j>- Hierarchical clustering




Hierarchical clustering

® AlgOrlth M (agglomerative

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ciin Cj;
fuse Ciin Cj in a new cluster
C-=CiU Cj;
determine dissimilarities between
Cr and other clusters;

until one cluster left;

 Dendogram:

=)

e
Paine

\

01 0F O3 04

iy

05 06 0OF

8

b = e

|I|—|F1‘

09 10 0171 12 013 C

14

cluster level
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Hierarchical clustering

e Fusing the nearest pair of clusters

231

"4

 Minimizing intra-cluster
similarity

e Maximizing inter-cluster
similarity

S

e Computing the dissimilaritiesﬁ
from the “new” cluster



Hierarchical clustering: example

M
x

[ o y
4 I
1 | -

| |
_.._"? I I w
1"'_]’1"_{‘? : v
LT B — g

a) sample problem

(xy) z (wyv)
{}(,y’) D 9.66 {x:ly:z]

z 0 5

X ¥V Z W V

D®1 5 566

0 141424 5

0 441 5
0o 1
0

b) dissimilarity matrix

(x.y.z) (wyv)

0

(w,v) 0
(w,v) 0
d) dissimilarity matrix after fusing' e) dissimilarity matrix after
elements w and v fusing' cluster (x,y) and

element z

xy) z w v

(xy)| 0 141 5 566
z 0 441 5
w 0 @.
\'4 0

c) dissimilarity matrix after fusing'
elements X and y

<
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f) dendrogram
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=
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Results of clustering

L1

Ptah - [Clustering of Samples]
=| File Analyses Graph Options Window Help

A dendogram of
resistance vectors

L1
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Part V:
Relational Data Mining

> What is RDM

* Propositionalization techniques
e Semantic Data Mining
* |nductive Logic programming

* Learning as search in Inductive Logic
Programming

234



Relational Data Mining (Inductive
Logic Programming) in a nutshell

ID [Zip [ [So[ln_ |A[CI [Re
Vi ex|St [come|ge[ub [sp

knowledge discovery
347834677 |m |si |60-70|32|menr from data

60-70
3479|43666|f |ma|80-90|45|nm|re
/ order . 0 C
freomer 5% T [roae [V Relational Data Mining
3478 |2140267(12  \|regular |cash
3478 3446778(12 express |check

3478 4728386|17 regular |check

3479 3233444|17 xpress  [credit
3479 3475886(12 ar

gtore

Store ID|Size [Type |Location
12 small (franchige|city
17 large [indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns

credit model, patterns, ...
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Relational Data Mining (ILP)

Learning from multiple

tables
— patient records MUtEIgEﬂ&SiS
con_necteddwith other @
atient an

gemographic ‘
information

Complex relational E

problems:

— temporal data: time
series in medicine, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Sample ILP problem:
East-West trains

1. TRAINS COING EAST 2. TRAING COING WEST
- muls DD:D'] Lo [ a HoooH
—1/ 1 A Q::[j ) A 0 DD:E]

:IL% 5.555&2“]



AR OBJECT  NUMBER

~t-si-—--t “-+- ~apresentation
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TRAIN_TABLE

JUND
cl circle 1 IE
c2  hexagon 1 IE
¢3  triangle 1
¢4  rectangle 3 SE

L 4
CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2




AR OBJECT  NUMBER

~t-si-—--t “-+- ~apresentation
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TRAIN_TABLE

JUND
cl circle 1 IE
c2  hexagon 1 IE
¢3  triangle 1
¢4  rectangle 3 SE

L 4
CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

Train

car

Load




Part V:
Relational Data Mining

* What is RDM

j|> Propositionalization techniques
e Semantic Data Mining
* |nductive Logic programming

* Learning as search in Inductive Logic
Programming
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Transform a multi-relational
(multiple-table)
representation to a
propositional representation
(single table)

Proposed in ILP systems

LINUS (Lavrac et al. 1991, 1994),
1BC (Flach and Lachiche 1999), ...

AR OBJECT  NUMBER

¢l circle

c2  hexagon

1

¢3  triangle
¢4  rectangle

1
1
3

. 4
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TRAIN_TABLE

JUND

IE

IE

SE I

CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2
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Propositionalization in a nutshell

Main propositionalization step:
first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),
loadShape(L,circle)

f3(T) :- ...

Propositional learning:
t(T) <« f1(T), f4(T)

Relational interpretation:

eastbound(T) <
hasShortCar(T),hasClosedCar(T).

TRAIN_TABLE

LOAD CAR OBJECT NUMBERI JUND

11 cl circle 1 IE
12 c2  hexagon 1

IE
13 ¢3  triangle 1

14 ¢4 rectangle 3 SE I

. 4

cl t1 rectangle short none 2

c2 t1 rectangle long none

CAR TRAIN SHAPE LENGTH ROOF WHEELS I

c3 t1 rectangle short peaked

c4 t1 rectangle long none

3
2
2

PROPOSITIONAL TRAIN_TABLE

train(T) f(T)  2(T) f3(T)  fA(T) f5(T)
t1 t t f t t
t2 t t t t
t3 f f t f f
t4 t f t f f




Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
ID |Zip |S [So |In A |CI |Re
/ €X (St |come (gelyb |Sp
3478(34677\m [si  60-70|32|me [nr
3479|43666|f |ma|80-90|45|nm|re
/ order
Customer |Order [Store |Delivery (Paymt
D 1D D Mode = |Mode
3478 214026712 regular |cash
3478 3446778(12 express |check
3478 4728386|17 regular [check
3479 3233444|17 xpress  [credit
3479 3475886(12 gular  |credit
\ store
Store ID|[Size |[Type |Location
12 small |franchige city
17 large indep  [rural

Relational representation of customers, orders and stores.
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fl | f2 | £3 |4 | £5 | f6 fn
gl 1 (oo (1110011011
g0l (o 11000110
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Relational Data Mining through
Propositionalization

customer

D R BB | |
Step1 £ 2|63 | £1 | f5 | f6 fn
3478(34677|m [si |60-70|32|me |nr -
3479/43666(f |ma|80-90|45/nm|re L T O v 1 e 1 A
glofr|r]ofr]erfofofol1]1]o
~ . L. . . glolr| ool a1 fo]ofn]t
orqaer
%ustomer IOﬁder ]S]t)ore Delivery [Paymt PropOSItlonallzatlon £ N 1 A A 1 O I A 1
| |Mode  |Mode ol lrlelelolalalolela]o]1]0
;’;178 ;140267 12 .r.(;g-u.lar ca.sh 2 T T O T I T
3478 3446778(12 express |check -
3478 4728386|17 regular |check L7 R 1 1 U I A
3479 3233444/ 17 dit :
370 |3evossoll2  |mlar  foredit A M N M R N O B A e
A : /O I T T O T I T A N T
I 1. constructing -
" .
St T[S Thove JComte relational features
TR i
12 |omallunciciiey 2. constructing a

propositional table

Relational representation of customers, orders and stores.



Relational Data Mining through

Propositionalization

customer
ID |Zip |S [So |In A |CI |Re
/ €X (St |come (gelyb |Sp
3478(34677\m [si  60-70|32|me [nr
3479|43666|f |ma|80-90|45|nm|re
/ order
Customer |Order [Store |Delivery (Paymt
D 1D D Mode = |Mode
3478 214026712 regular |cash
3478 3446778(12 express |check
3478 4728386|17 regular [check
3479 3233444|17 xpress  [credit
3479 3475886(12 gular  |credit
\ store
Store ID|[Size |[Type |Location
12 small |franchige city
17 large indep  [rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

f1 | £2 | £3 | £4 | £5 | £6 fn
gl (oo |1 (11 fo 011011 (1
72 O T A I 1 v I A I A A
gg| o (11|10 {1000l
T v 5 1 O A I A A
gh| 1 (1|10 (oo |1y01f0n
gb| 0 (o011 (ojofop1rjoyo0y0fl
72 v I 1 A I I B
gs| 0o oo fljofop L)1y ofan
| v I A I I A
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fl | f2 | £3 |4 | £5 | f6 fn
gl 1 (oo (1110011011
g0l (o 11000110
2 U S 1 Y I/ O B
L T A 1 A I B
L L S 1 A I B
glfojo |1 10 ojoy1f{opo)o0)1l
2 A VA VA A
L 2 I 1 1 A I/ O B
e A O

>

model, patterns, ...
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Relational Data Mining through
Propositionalization

customer
ID |Zip |S [So |In A |CI |Re
/ €X (St |come (gelyb |Sp
3478(34677\m [si  60-70|32|me [nr
3479|43666|f |ma|80-90|45|nm|re
/ order
Customer |Order [Store |Delivery (Paymt
D 1D D Mode = |Mode
3478 214026712 regular |cash
3478 3446778(12 express |check
3478 4728386|17 regular [check
3479 3233444|17 xpress  [credit
3479 3475886(12 gular  |credit
\ store
Store ID|[Size |[Type |Location
12 small |franchige city
17 large indep  [rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

f1 | £2 | £3 | £4 | £5 | £6 fn
gl (oo |1 (11 fo 011011 (1
72 O T A I 1 v I A I A A
gg| o (11|10 {1000l
T v 5 1 O A I A A
gh| 1 (1|10 (oo |1y01f0n
gb| 0 (o011 (ojofop1rjoyo0y0fl
72 v I 1 A I I B
gs| 0o oo fljofop L)1y ofan
| v I A I I A

f1 | £2 | £3 | £4 | 5 | £6 fn
L T O v 1 e 1 A
L SV v 1 A
L5 25 1 e v I O 1 IRV B
£ N 1 A A 1 O I A 1
g | 1L Lyo o jofryryof1yo0
L1 S S v v A O 1 IR A
L7 R 1 1 U I A
L T 1t O I
gl 1oLy 1oL foyoplfogl
target(A) :-
‘Doctor’ (A), ’Italy’(A).
target(A) :-—
’Public’ (A), ’Gold’(A).

target(A) :-—
’Poland’ (A),

target(A) :-
’Germany’ (A),

target (A) :-
'Service’ (A),

’Deposit’(A), *Gold’(A).

'Insurance’ (A).

*Germany’ (A) .

patterns (set of rules)
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RSD Lessons learned

Efficient propositionalization can be applied to
individual-centered, multi-instance learning problems:

— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)
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Relational Data Mining in Orange4WS

« Sservice for propositionalization through efficient

first-order feature construction (Zelezny and Lavrag,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

e subgroup discovery using CN2-SD

mutaaenic(M) « feature121(M), feature235(M)

T ank.attributes Xa
Load backgr. knowledge —
[=+

E‘ 248



Part V:
Relational Data Mining

e Whatis RDM

* Propositionalization techniques
j> Semantic Data Mining

* |nductive Logic programming

* Learning as search in Inductive Logic
Programming

249
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What is Semantic Data Mining

e Ontology-driven (semantic) data mining is an
emerging research topic

e Semantic Data Mining (SDM) - a new term
denoting:
— the new challenge of mining semantically annotated

resources, with ontologies used as background
knowledge to data mining

— approaches with which semantic data are mined
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What is Semantic Data Mining
SDM task definition

[ ontologies J

target(4) :-
’Doctor’ (A), ’Italy’(A).

annotations, dStema.nt.lc mﬁdel,
mappings ata mining patterns
target(A) :-
Given: ’Service’(4), ’Germany’ (4).

A T = transaction data table, relational database,
L data } text documents, Web pages, ...
S = one or more domain ontologies
Find: a classification model, a set of patterns
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Semantic Data Mining in Orange4WS

e EXxploiting semantics in data mining

— Using domain ontologies as background knowledge for
data mining

e Semantic data mining technology: a two-step
approach

— Using propositionalization through first-order feature
construction

— Using subgroup discovery for rule learning
 Implemented in the SEGS algorithm
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

12093 biological process .. .. comporere mokcab G
1812 cellular components / L L L
7459 molecular functions = e gl process cellar proces c

biopolymer metabolism catabolism macromolecule metabolism primary metabolism cellular metabolism intrinsic to m

biopolymer catabolism macromolecule catabolism protein metabolism  cellular catabolism

Joint work with
Igor Trajkovski
and Filip Zelezny
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations el o o
between genes, can be viewed 7 | L
as generalisations of individual . S ror

genes




255

First order feature construction

First order features with support > min_support

,A):-function(A,'G0O:0046872").
A):-function(A,'G0O:0004871").
,A):-process(A,'GO:0007165").
,A):-process(A,'G0O:0044267").
5,A):-process(A,'GO:0050874").
0,A):-function(A,'G0O:0004871"), process(A,'GO:0050874").
,A):-component(A,'GO:0016021").
29 A) function(A,'G0O:0046872"), component(A,'GO:0016020")
122,A):-interaction(A,B),function(B,'G0O:0004872").

223,A):-interaction(A,B),function(B,'G0O:0004871"),
process(B,'GO:000961 3").

f(224,A):-interaction(A,B),function(B,'G0O:0016787"),

component(B,'G0O:0043231").

i
(8,
f(11
f(14
i
i
i
i
i
i

/

existential
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Propositionalization

diffexp g1 (gene64499)

random g1 (gene7443)

diffexp g2 (gene2534) random g2 (gene9221)
diffexp g3 (gene5199) random g3 (gene2339)
diffexp g4 (gene1052) random g4 (gene9657)
diffexp g5 (gene6036) random g5 (gene19679)
£1 | £2 | £3 | £4 | £5 | f6 | .. £n
gl | 1 0 0 1 1 1 0 0 1 0 1 1
g2 | 0 1 1 0 1 1 0 0 0 1 1 0
g3 | o 1 1 1 0 0 1 1 0 0 0 1
g4 | 1 1 1 0 1 1 0 0 1 1 1 0
g5 | 1 1 1 0 0 1 0 1 1 0 1 0
gl | o 0 1 1 0 0 0 1 0 0 0 1
g2 | 1 1 0 0 1 1 0 1 0 1 1 1
g3 | o0 0 0 0 1 0 0 1 1 1 0 0
g4 | 1 0 1 1 1 0 1 0 0 1 0 1




Propositional learning: subgroup

discovery
1

f1l ||£2 f3| f4 | £5 | f6 | .. . | £n
gl| 1 (oo} 1|11 1
g2| o |f1 | 2}/ 0| 1|1 0
g3| o1 |21}l 1 0O 1
gd| 1 [J12 | 21/ 0| 1|1 0
gs5| 1 [J12 | 11l 0| 0|1 0
gl| oo | 1}l 10| O 1
g2| 1 (|1 |off o] 1|1 1
g3|offo|lo}jfo|]1]|oO 0
ga| 1 |Jo | 21}l 1 |1 |oO 1
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Over-
expressed

IF
f2 and f3
[4,0]

diffexp(A) :- interaction(A,B) & function(B,'G0:0004871")
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0 1.0

1.0
1.0 10 1.0
) 1.0
1.0 1.0 1.0
1.0 1.0
1.0

1.0
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Subgroup Discovery

CI=YES « f2 and f3

1 Not diff. exp. genes

diff. exp. genes

1.0 30
1.0 10 49

1.0 1.0 1.0 1.0

1.0
10, 1.0
) 1.0

1.0 1.0
1.0 \
1.0 1.0

1.0

1.0

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0 1.0

1.0

1.0
1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy
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Semantic Data Mining in two steps

e Step 1: of genes such

asS
interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding)

and with features as
attributes

e Step 2: Using these features to
that are differentially expressed (e.g.,
belong to class DIFF.EXP. of top 300 most differentially
expressed genes) in contrast with RANDOM genes (randomly
selected genes with low differential expression).

e Sample subgroup description:
diffexp(A) :- interaction(A,B) AND

function(B,'G0:0004871') AND
process(B,'G0:0009613")
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Summary: SEGS, using the RSD
approach

e The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

e The SEGS approach proved effective in several
biomedical applications (JBI 2008, ...)

* The work on semantic data mining - using ontologies as
background knowledge for subgroup discovery with SEGS - was
done in collaboration with |.Trajkovski, F. Zelezny and J. Tolar

 Recent work: Semantic subgroup discovery
implemented in Orange4W$S



Semantic subgroup discovery with

data mining environment

SEGS

e SEGS workflow is implemented in the Orange4WS$S

GO

KEGG

ENTREZ

e N F

Microarray | | Ranking of
Data | genes

Construction
of gene sets

Fisher

[

"™ GSEA

: Enriched
gene sets

PAGE

e SEGS is also implemented also as a Web

applications

(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)
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From SEGS to SDM-SEGS: -
Generalizing SEGS

e SDM-SEGS: a general semantic data mining

ONT.1  ONI. 2 ONT. 3

GO || KEGG || ENTREZ

RINARY CLASS * Fisher
[ARELED

Micrearray | | Rankingof | | Construction | | | Enriched
Data genes of gene sets GSEA gene sets
L -t RULES

RULES L PAGE

* Discovers subgroups both for ranked and
labeled data

e EXxploits input ontologies in OWL format
e |s also implemented in Orange4WS
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Semantic Data Mining

e Semantic subgroup discovery (Vavpetic€ et al., 2012)

Data Mining
ﬁ Knowledge Discovery

Relational Subgroup Discovery

Semantic Web

Ontologies




Part V:
Relational Data Mining

e Whatis RDM
* Propositionalization techniques
e Semantic Data Mining

j> Inductive Logic programming

* Learning as search in Inductive Logic
Programming

266
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Sample ILP problem:
Logic programming

E"={sort([2,1,31,11,2,3]1)}
E = {sort([2,1],[1]),so0rt([3,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1
* Predictive ILP

sort (X,Y) <« permutation(X,Y), sorted(Y).

 Descriptive ILP

sorted(Y) <« sort(X,Y).
permutation(X,Y) < sort (X,Y)
sorted (X) <«<— sort (X, X)
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Sample ILP problem:
Knowledge discovery

E " = {daughter (mary, ann) ,daughter (eve, tom) }
E "= {daughter (tom, ann) , daughter (eve, ann) }

B = {mother (ann,mary), mother (ann, tom),
father (tom,eve), father(tom,1an), female (ann)

14
female(mary) female (eve), male(pat),male (tom),
parent (X,Y) <« mother(X,Y), parent(X,Y) <«
father (X, Y) }

ann
mary tom

2

eve 1an
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Sample relational problem:
Knowledge discovery

E "= {daughter (mary, ann) , daughter (eve, tom) }
E "= {daughter (tom, ann) , daughter (eve, ann) }

B = {mother (ann,mary) ,mother (ann, tom), father (tom, eve),
father (tom, 1an), female (ann), female (mary), female (eve),
male (pat) ,male (tom) ,parent (X, Y)<mother (X,Y),

parent (X,Y)<«father (X,Y) }

Predictive ILP - Induce a definite clause

daughter (X,Y) < female(X), parent(Y,X).
or a set of definite clauses

daughter (X,Y) < female(X), mother(Y,X).

daughter (X,Y) <« female(X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses

< daughter (X,Y), mother (X,Y).
female (X) <~ daughter (X,Y) .

mother (X,Y),; father(X,Y) <« parent(X,Y).



pasic Relational Data Mining and ILFP 2o
learning tasks

Predictive RDM m
A

Descriptive RDM



Predictive ILP

Given:

— A set of observations
* positive examples E *
* negative examples E-

— background knowledge B
— hypothesis language L
— covers relation

Find:
A hypothesis H < L, such that (given B) H
covers all positive and no negative examples

In logic, find H such that
— Vee E":B A HI=e (His complete)
— Vee E":B A HI# e (His consistent)

In ILP, E are ground facts, Band H are
(sets of) definite clauses

271




272

Predictive ILP

e Given:
— A set of observations

e positive examples E*
* negative examples E-

— background knowledge B
— hypothesis language L,
— covers relation

— quality criterion

 Find:
A hypothesis H < L, such that (given B) His

optimal w.r.t. some quality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H € L, such
that (given B) H covers all positive and no
negative examples)



Descriptive ILP

Given:
— A set of observations
(positive examples E )
— background knowledge B
— hypothesis language L,
— covers relation

Find:
Maximally specific hypothesis H € L., such
that (given B) H covers all positive examples

In logic, find H such that Vc € H, cis true in
some preferred model of B UE (e.g., least
Herbrand model M (B UE))

In ILP, E are ground facts, B are (sets of)
general clauses
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Sample problem:
East-West trains

1. TRAINS COING EAST 2. TRAING COING WEST
- muls DD:D'] Lo [ a HoooH
—1/ 1 A Q::[j ) A 0 DD:E]

:IL% 5.555&2“]



RDM knowledge representation
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBIJECT NUMBER ’ ’
i cl circle 1
12 c2 hexagon 1
13 c3 triangle 1
14 c4 rectangle 3

_TABLE

CAR RAIN SHAPE LENGTH ROOF WHEELS ‘

cl t1 rectangle short none 2

c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

O O OO O Dmi
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ER diagram for East-West trains

Load
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ILP representation:

Da
Example: O O OO0 DD:%
eastbound(t1).
Background theory:
car(t1,c1). c .. . CL CoL
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,11). load(c2,12). load(c3,13). load(c4,14).
circle(l1). hexagon(l2). triangle(I3). rectangle(l4).
one_load(I1). one_load(l2). one_load(I3). three_loads(l4).

Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).
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ILP renresentation:
Datalo

O O ool

Example:
eastbound(t1):-
car(t1 ,C1 ),rectangle\u 1),D110IL U 1),IIUIIE(L 1 ),LWU_WIIEEID(\U | ),
load(c1,I1),circle(I1),one_load(l1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,l12),hexagon(l2),one_load(12),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,13),triangle(I3),one_load(I3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(l4),three_load(l4).

Background theory: empty

Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).
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ILP represe

O O ool AP

e Example:

eastbound([c(rectangle,

c(rectangle,long,none,3 I(hexagon 1))
c(rectangle,short,peaked,2,l(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

e Background theory: member/2, arg/3

 Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).



Propositionalization in ILP (LINUS)

 Example: learning family relationships

Training examples Background knowledge

daughter(sue,ewe). (+) [parent(eve,sue). female(ann).
daughter(ann,pat). (+) [parent(ann,tom). female(sue).
daughter(tom,ann).  (-)  |parent(pat,ann). female(eve).
daughter(eve,ann). (-) |parent(tom,sue).

 Transformation to propositional form:

Class | Variables Propositional features
XY | fX) | f(Y) | pX.X) | p(X,Y) | p(Y.X) | p(Y,)Y) | X=Y
@ sue | eve | true | true | false | false true false false
@ ann | pat | true | false | false | false true false false
© |tom | ann | false | true | false | false true false false
o eve | ann | true | true | false | false | false false false

Result of propositional rule learning:
Class = @ if (female(X) = true) A (parent(Y,X) = true

Transformation to program clause form:

daughter(X,Y) « female(X),parent(Y,X)
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First-order feature construction

o All the expressiveness of ILP is in the features

e Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)
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Declarative bias for first-order feature
construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,
molecules) or their parts (e.g., cars, atoms)

Feature construction in LINUS, using the following language
bias:
— one free global variable (denoting an individual, e.g. train)

— one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

— one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

— all variables should be used
— parameter: max. number of predicates forming a feature
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Sample first-order features

* The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

* The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

e Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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LINUS revisited

e Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

e Revisited LINUS:

— Systematic first-order feature construction in a given
language bias

e Too many features?
— use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:

eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-

not (hasCar(T,C1),cshape(C1,ellipse)),

not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),

not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Relational Data Mining in Orange4WS

and ClowdFlows

« Sservice for propositionalization through efficient

first-order feature construction (Zelezny and Lavrag,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

e subgroup discovery using CN2-SD

mutaaenic(M) « feature121(M), feature235(M)

.abc
Load backgr. knowledge

E " ]
w
= o

E} 286



Part V:
Relational Data Mining

e Whatis RDM

* Propositionalization techniques
e Semantic Data Mining

* |nductive Logic programming

j|> Learning as search in Inductive Logic
Programming

287
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Learning as search

Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph

— nodes: concept descriptions (hypotheses/rules)

— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child

Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}

Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}

Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayGolf example

PlayGolf = yes IF

PlayGolf = yes

. PlayGolf = yes
IF Wind=weak

IF Humidity=high

PlayGolf = yes PlayGolf = yes
IF Wind=strong IF Humidity=normal

PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,

PlayGolf = yes PlayGolf = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:
PlayGolf example

PlayGolf = yes IF [9+,5-] (14)

PlayGolf = yes PlayGolf = yes
I6F \é\/mi';vveak IF Humidity=high
[6+,2—] (8) P|GYGO|f = yes PIGYGOH: = yes [3+,4-] (7)
IF Wind=strong IF Humidity=normal
[3+,3-] (6) [6+,1-1(7)
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=normal,
PlayGolf = yes PlayGolf = yes Ou’rloo{crain
IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0—] (2)



Learning as search

(Mitchell’s version space model)

too general

\

Hypothesis language L
defines the state space

How to structure the
hypothesis space L,?

How to move from one
hypothesis to another?

complete and consis

The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

@
V’
O O
too specific

291

more
general

more
specific



292

Learning as search

Search/move by applying
generalization and

specialization .
generalize

Prune generalizations:

— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

Prune specializations:

— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

@
‘ '
e 9 specialize
v
too specific
C
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Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy
e depth-first
e breath-first
* heuristic search (best first, hill-climbing, beam search)

— search heuristics
* measure of attribute ‘informativity’
* measure of ‘expected classification accuracy’ (relative
frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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Learn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl <« Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.qg., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

e learn-one-rule by greedy general-to-specific
search, at each step selecting the best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
PlayGolf = yes «
— is rule PlayGolf = yes «— Humidity=normal

e beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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ILP as search of program clauses

* An ILP learner can be described by
— the structure of the space of clauses

e based on the generality relation

e Let C and D be two clauses.
C is more general than D (C |= D) iff

covers(D) < covers(C)
o Example: p(X,Y) < r(Y,X) is more general than
P(X.Y) < r(Y,X), q(X)

— its search strategy

* uninformed search (depth-first, breadth-first, iterative
deepening)

 heuristic search (best-first, hill-climbing, beam search)
— its heuristics

e for directing search

* for stopping search (quality criterion)
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ILP as search of program clauses

 Semantic generality
Hypothesis H, is semantically more general than H, w.r.t.

background theory Bifand only if Bu H, |= H,
e Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause ¢, 8-subsumes ¢, (¢, > ,C»)
if and only if 360: ¢,0 < ¢,
— Hypothesis H; > 6 H,
if and only if V¢, € H, exists ¢, € H, such that ¢, > 6 ¢,
e Example

c1 = daughter(X,Y) « parent(Y,X)
c2 = daughter(mary,ann) < female(mary),
parent(ann,mary),
parent(ann,tom).
c1 &-subsumes ¢, under €= {X/mary,Y/ann}



The role of subsumption in ILP

Generality ordering for hypotheses

Pruning of the search space:

— generalization

 if C covers a neg. example then its generalizations need
not be considered

— specialization

e if C doesn’t cover a pos. example then its specializations
need not be considered

Top-down search of refinement graphs

Bottom-up search of the hypo. space by
— building least general generalizations, and
— inverting resolutions
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Structuring the

hypothesis space

too general

flies(X) «

®
flies(X) « bird(X) .‘

flies(X) « bird(X),
normal(X) RO O 3
O O

\

)
V’
O O
too specific

more
general

more
specific

299
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Two strategies for learning

e General-to-specific

— if ®@-subsumption is used then refinement

operators

e Specific-to-general search

— if ®-subsumption is used then Igg-operator or

generalization operator
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ILP as search of program clauses

 Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
* inverting resolution (CIGOL)
e inverting entailment (PROGOL)



More general
(induction)

A

v

More
specific

302
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Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann). ® | parent(ann,mary). female(ann.).
daughter(eve,tom). S) parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) <« X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) « Part of the refinement
female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.



Greedy search of the best clause

Training examples Background knowledge
daughter(mary,ann). ® | parent(ann,mary). female(ann.).
daughter(eve,tom). S) parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) « 2/4

daughter(X,Y) « X=Y daughter(X,Y) «
0/0 parent(Y,X)
2/3

daughter(X,Y) « female(X)

A

daughter(X,Y) « daughter(X,Y) «
female (X) 1,2 female(X) 2,2
female(Y) parent(Y,X)

daughter(X,Y) «
parent(X,Z)
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FOIL

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, infout modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C
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Part V: Summary

e RDM extends DM by allowing multiple tables
describing structured data

e Complexity of representation and therefore of
learning is determined by one-to-many links

e Many RDM problems are individual-centred
and therefore allow strong declarative bias



Advanced Topics

j>Text mining: An introduction
 Document clustering and outlier detection
* Wordification approach to relational data mining



Background: Data mining

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge diSCOVGW
o1 17 myope no reduced NONE
02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE
06-013 .
014 35 hypermetrope no normal SOFT Data Mlnlng
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
Oo17 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .. model, patterns, clusters,
024 56 hypermetrope yes normal NONE
data

Given: transaction data table, a set of text documents, ...
Find: a classification model, a set of interesting patterns



Data mining: Task reformulation

Person Young Myope Astigm. Reuced teal Lenses
O1 1 1 0 1 NO
02 1 1 0 0 YES
O3 1 1 1 1 NO
O4 1 1 1 0 YES
05 1 0 0 1 NO

06-013 .
014 0 0 0 0 YES
015 0 0 1 1 NO
016 0 0 1 0 NO
O17 0 1 0 1 NO
018 0 1 0 0 NO

019-023
024 0 0 1 0 NO

Binary features and class values



Text mining:
Words/terms as binary features

Document Word1 Word2 .. WordN Class
d1 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13 .
d14 0 0 0 0 YES
d15 0 0 1 1 NO
d16 0 0 1 0 NO
d17 0 1 0 1 NO
d18 0 1 0 0 NO

d19-d23 .
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Text Mining from unlabeled data

Document  Word1 Word2 WordN [\ Class [/
d1 1 1 0 1
d2 1 1 0 0
d3 1 1 1 1
d4 1 1 1 0
d5 1 0 0 1

d6-d13
d14 0 0 0 0
d15 0 0 1 1
d16 0 0 1 0
d17 0 1 0 1
d18 0 1 0 0

d19-d23 .
d24 0 0 1 0

Unlabeled data - clustering: grouping of similar instances
- association rule learning



Text mining

Document Word1 Word2 WordN Class
Step 1 d1 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
i d4 1 1 1 0 YES
BoW vector construction o5 1 0 0 1 NO
d6-d13
d14 0 0 0 0 YES
d15 0 0 1 1 NO
d16 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction e . i i e
2. Table of BoW vectors d24 0 0 L 0 o
construction
Document Word1 Word?2 WordN Class
d1 1 1 0 1 NO
d2 1 1 0 0 YES Step 2
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data M|n|ng
d14 0 0 0 0 YES
d15 0 0 1 1 NO
d16 0 0 1 0 NO
d17 0 1 0 1 NO
d18 0 1 0 0 NO
d19-d23

d24 0 0 1 0 NG model, patterns, clusters,



Text Mining

e Feature construction
— StopWords elimination
— Stemming or lemmatization
— Term construction by frequent N-Grams construction
— Terms obtained from thesaurus (e.g., WordNet)

e BoW vector construction

* Mining of BoW vector table
— Feature selection, Document similarity computation
— Text mining: Categorization, Clustering, Summarization,



Stemming and Lemmatization

e Different forms of the same word usually

problematic for text data analysis

— because they have different spelling and similar meaning (e.g.
learns, learned, learning,...)

— usually treated as completely unrelated words
e Stemming is a process of transforming a word into
its stem
— cutting off a suffix (eg., smejala -> smej)
 |emmatization is a process of transforming a
word into its normalized form

— replacing the word, most often replacing a suffix (eg.,
smejala -> smejati)



Bag-of-Words document

representation
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Word weighting

* |n bag-of-words representation each word is represented
as a separate variable having numeric weight.

* The most popular weighting schema is normalized word
frequency TFIDF:

tfidf (w) = 1f . log( )

— Tf(w) — term frequency (number of word occurrences in a

document)

— Df(w))—document equency (number of docyments containing the
word

— N — number of all documents

— Tfidf(w) — relative importance of the word in the document

The word is more important if it appears The word is more important if it
several times in a target document appears in less documents



Cosine similarity between
document vectors

e Each document D is represented as a vector of
TF-IDF weights
e Similarity between two vectors is estimated by the

similarity between their vector representations
(cosine of the angle between the two vectors):




Advanced Topics

e Text mining: An introduction
j>Document clustering and outlier detection
* Wordification approach to relational data mining



Document clustering

e Clustering is a process of finding natural groups in
data in a unsupervised way (no class labels pre-
assigned to documents)

e Document similarity is used

* Most popular clustering methods:
— K-Means clustering
— Agglomerative hierarchical clustering
— EM (Gaussian Mixture)



Document clustering with OntoGen
ontogen.ijs.si

Topic ldentification

Slide adapted from D. Mladeni¢, JSI



Using OntoGen for clustering
PubMed articles on autism

Work by
Petri¢ et al. 2009
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Grobelnik 2006


http://www.ontogen.si/

K-Means clustering in OntoGen

OntoGen uses k-Means clustering for semi-automated
topic ontology construction

e Given:
— set of documents (eg., word-vectors with TFIDF),
— distance measure (eg., cosine similarity)
— K - number of groups

* For each group initialize its centroid with a random
document

* While not converging

— each document is assigned to the nearest group
(represented by its centroid)

— for each group calculate new centroid (group mass point,
average document in the group)



Detecting outlier documents

e By classification noise detection on a domain
pair dataset, assuming two separate document

corpora A and C

Classified
as A

Classified
as C



Outlier detection for cross-domain
knowledge discovery

S

T,
i wE 'y .

REAN F T SR

SR,
AT e L

2-dimensional
projection of
documents (about
autism (red) and
calcineurin (blue).
Outlier documents
are bolded for the
user to easily spot
them.

Our research
has shown that
most domain
bridging terms
appear in outlier

documents.
(Lavrac, Sluban,
Grcar, Jursic 2010)



Using OntoGen for outlier
document identification

Text corpus Outlier Identification

Concept A

Concept C’

Slide adapted from D. Mladeni¢, JSI



NoiseRank: Ensemble-based noise
and outlier detection

e Misclassified document

B )
detection by an S
ensemble of diverse st s o denn)
classifiers (e.g., Naive

Bayes, Random Forest,
SVM, ... classifiers)

* Ranking of misclassified | s _—
documen‘ts by “Voting” Noise Rarking Results
of classifiers

Send Selected




NoiseRank on news articles

Articles on Kenyan elections: local vs. Western media

rank | Class
1. WE
2 Lo
3. L
4. Lo
5. HE
. HE
7. HE
. WE
9. Lo
10 Lo
11. Lo
12. Lo
13. WE
14. WE
15 Lo
15. L
17. HE
18. HE
19. HE
20 HE

Eayes RF100 RF500 SVM
__EBayes RF100 RF500 SVM
__EBayes RF100 RF500 SVM
__Eayes RF100 RF500 SVM
__EBayes RF100 RF500 SVM
__EBayes RF100 RF500 SVM
__EBayes RF100 RF500 SVM
__EBayes RF100 RF500 SVM
__RF100 RF500 SVM SVMEasy
__EBayes RF500 SVM SVMEasy
__RF100 RF500 SVM SVMEasy
__EBayes RF500 SVM SVMEasy
___Bayes RF100 RF500 SVM
__RF100 RF500 SVM SVMEasy
__EBayes SVM SVMEasy

__RF100 RFS00  SatrFPilt

__RF100 RF500 SVM

__EBayes RF500 SVM

__EBayes RF100 SVM

__RF100 RF500__ SVMEasy_

SVMEasy_
SVMEasy_
SVMEasy
SVMEasy_
SVMEasy
SatFilt
SVMEasy



NoiseRank on news articles

e Article 352: Out of topic
The article was later indeed
removed from the corpus
used for further linguistic
analysis, since it is not
about Kenya(ns) or the
socio-political climate but
about British tourists or
expatriates’ misfortune.

e Article 173: Guest

journalist

Wrongly classified because it
could be regarded as a
“Western article” among the
local Kenyan press. The
author does not have the
cultural sensitivity or does not
follow the editorial guidelines
requiring to be careful when
mentioning words like tribe in
negative contexts. One could
even say that he has a kind
of “Western” writing style.



Advanced Topics

e Text mining: An introduction
 Document clustering and outlier
j>Wordification approach to relational data mining



Motivation

Develop a RDM technique inspired by text
mining

Using a large number of simple, easy to
understand features (words)

Improved scalability, handling large datasets

Used as a preprocessing step to propositional
learners
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Wordification Methodology

 Transform a relational database to a document
COrpus

* For each individual (row) in the main table, concatenate
words generated for the main table with words generated
for the other tables, linked through external keys

Feature vector

T —

——

E

Feature vector |

Feature vector |

Feature vector

d;: .

L1l




Wordification Methodology

One individual of the main data table in the
relational database ~ one text document

Features (attribute values) ~ the words of this
document

Individual words (called word-items or witems)
are constructed as combinations of:

‘table name|_|attribute name|_{value]

n-grams are constructed to model feature
dependencies:

‘witem|_|witems]|_ ... _|witem,,]



Wordification Methodology

 Transform a relational database to a document
COrpus

» Construct BoW vectors with TF-IDF weights on
words

(optional: Perform feature selection)

* Apply text mining or propositional learning on BoW
table



Wordification

CAR
TRAIN car[D  shape roof wheels train
trainlD  eastbound cll rectangle none 2 tl
t1 east cl2 rectangle peaked 3 tl
tS west ¢Sl rectangle none 2 t5
c32 hexagon  flat 2 tS

t1: [car_roof none, car_shape rectangle, car wheels 2,
car_roof none car _shape rectangle,
car_roof none car wheels 2,

car_shape rectangle car wheels 2,

car_roof peaked, car_shape rectangle,

car_wheels 3, car _roof peaked car shape rectangle,
car_roof peaked car wheels 3,

car_shape rectangle car wheels 3], east



Wordification

t1: [car_roof none, car_shape_ rectangle, car_wheels 2,

car_roof none__car_shape_rectangle, car_roof none__car wheels 2,
car_shape_rectangle car _wheels 2, car_roof peaked, car_shape_ rectangle,
car_wheels_3, car_roof peaked car_shape rectangle,
car_roof peaked car wheels 3, car_shape rectangle car wheels 3], east

t5: [car_roof none, car_shape rectangle, car_wheels 2,

car_roof none__car_shape_rectangle, car_roof none__car wheels 2,
car_shape_rectangle car _wheels 2, car_roof flat, car_shape hexagon,
car_wheels 2, car_roof flat car _shape hexagon,
car_roof flat car wheels 2, car_shape hexagon car wheels 2], west

TF-IDF calculation for BoW vector construction:

car_shape car_roof car_wheels_3 car_roof_peaked_ car_shape_rectangle class
_rectangle peaked car_shape _rectangle _car_wheels_3
tl | 0.000 0.693 0.693 0.693 0.693 east

5 | 0.000 0.000 0.000 0.000 0.000

wesl



TF-IDF weights

* No explicit use of existential variables in
features, TF-IDF instead

* The weight of a word indicates how relevant is
the feature for the given individual

* The TF-IDF weights can then be used either for
filtering words with low importance or for using
them directly by a propositional learner (e.g. J48)




Experiments

e Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

* Results (using J48 for propositional learning)



Experiments

e Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

* Results (using J48 for propositional learning)

— first applying Friedman test to rank the algorithms,

— then post-hoc test Nemenyi test to compare multiple
algorithms to each other



Experiments

e Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

| e ¥ / " 1 a4 r L 11 " \

| ]
MeEeasure = CA MEASURE = RUN-TIME

CD =1.77 CD=1.77
f——— f———
4 3 2 1 4 3 2 1
I I I | I I I
Wordification (1.9) TT1 I— Wordification (1.0)
AlephFeaturize (2.5) AlephFeaturize (2.9)
RSD (2.7) RSD (3.0)

RelF (2.9) RelF (3.1)




EwvimAavimaamdta~

Domain Algorithm JB-Accuracy[%]  J4B-AUC  Run-time[s]
Trainz Wordification 35.00 0.51 11
without position RelF 65,00 (.65 104
RSD 65,00 (.68 0.53

AlephFeaturize 75.00 0.82 0.40

Trains Wordification D50 0.51 12
RelF 65,00 (.62 1.06

RSD 50,00 0.53 0.47

AlephFeaturize 85.00 0.74 0.38
Mutagenesis42  Wordification 97.62 0,93 34
RelF 80,935 0.59 2.11

RSD o762 0.93 2.63

AlephFeaturize 97.62 0.93 2.07
Mutagenesis188  Wordification 9574 0.90 LG5
RelF 7553 0.79 1.76

RSD 04.15 0.91 [0.10

AlephFeaturize 8723 (.88 19.27

IMDB Wordification 84.34 079 1.23
RelF 79.52 0.73 3249

RSD 7349 0.47 4.33

AlephFeaturize 7349 0.47 4.96
Carcinogenesis ~ Wordification 6109 062 1.7%9
RelF 54.71 (.53 644

RSD 58.05 (.56 9.29

AlephFeaturize 5532 (.49 [04.70

Financial Wordification B6.73 0.48 4.65
RelF 97.00 0.91 260.93

RSD 86.73 (.48 333.68

AlephFeaturize 86.73 (.48 325.86




Use Case: IMDB

IMDB subset: Top 250 and bottom 100 movies
Movies, actors, movie genres, directors, director genres
Wordification methodology applied

Association rules learned on BoW vector table



Use Case: IMDB

goodMovie <— director_genre_drama, movie_genre_thriller,
director_name_AlfredHitchcock. (Support: 5.38% Confidence: 100.00%)

movie_genre_drama <— goodMovie, actor_name RobertDeNiro.

(Support: 3.59% Confidence: 100.00%)

director_name_AlfredHitchcock <+ actor_name_AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director name_StevenSpielberg <— goodMovie, movie_genre_adventure,
(Support: 1.79% Confidence: 100.00%) actor_name_TedGrossman.



Wordification implemented in
ClowdFlows

e Propositionalization through wordification, available
at http://clowdflows.org/workflow/1455/
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Evaluation implemented in ClowdFlows

* Wordification and propositionalization algorithms
comparison, available at
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Summary

— Wordification methodology
— Implemented in ClowdFlows

— Allows for solving non-standard RDM tasks, including RDM
clustering, word cloud visualization, association rule
learning, topic ontology construction, outlier detection, ...
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