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— ML (decision tree and rule learning, subgroup discovery, ...)
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— Relational data mining - inductive logic programming
— Equation discovery

Other research areas:

— Knowledge management

— Decision support

— Human language technologies
Applications:

— Medicine, Bioinformatics, Public Health
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Course Outline

I. Introduction Ill. Regression
— Data Mining in a Nutshell (Kononenko Ch. 9.4)
— Predictive and descriptive DM
techniques IV. Descriptive DM

— Data Mining and KDD process

— Predictive vs. descriptive induction
- DM standards, tools and

visualization ~ Subgroup discovery
L — Association rule learning
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Il. Predictive DM Techniques Ch. 12.3)
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(Mitchell Ch. 3, Kononenko Ch. 9.1) Programming (Dzeroski & Lavrac
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(Kono.n.enko Ch. 92) — Propositionalization approaches
- Classifier Evaluation — Relational subgroup discovery
(Bramer Ch. 6)
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* Data Mining in a Nutshell

¢ Predictive and descriptive DM techniques
* Data Mining and the KDD process

* DM standards, tools and visualization

Basic Data Mining Task

discovery

from data

Data Mining

model, patterns, ...

|data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...




Data Mining and Machine Learning

» Machine learning techniques * Data mining applications
— classification rule learning — medicine, health care
— subgroup discovery — ecology, agriculture
— relational data mining and — knowledge management,
ILP virtual organizations
— equation discovery
— inductive databases

¢ Data mining and decision |
support integration

Relational data mining: domain
knowledge = relational database

Data Background

knowledg

Semantic data mining: domain
knowledge = ontologies

m ontologies

patterns
model

Basic DM and DS Tasks

discovery

from data
Data Mining
|data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...

% mutli-criteria modeling
:! =Y

7.2
A\:f_‘_\ %’
NNY 0 )
@i\ > s /\ Decision Support
=N=S

experts
Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives

model, patterns, ...

o)

models

DEXi supports :
. if-then analysis

i

analysis of stability
Time analysis
how explanation
why explanation

DM and DS integration

Data Decision

support




Basic Text and Web Mining Task

knowledge discovery

from text data and Wel}
Hocuments
Text/Web Mining

Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization...

model, pattems, ...

Text Mining (lectures by D. Mladeni¢)

Dcument-AtIas Content-Land

SEKTbar

Semantic-Graphs =

Contexter

OntoGen
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I:> Data Mining in a Nutshell
* Predictive and descriptive DM techniques
¢ Data Mining and the KDD process
* DM standards, tools and visualization
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What is DM Data Mining in a Nutshell
. . . P A S e st el e discovery
» Extraction of useful information from data: G5 mee | m mwa Som fomdata
discovering relationships that have not o m o ma e e wo
previously been known %’ % memawe w o ey | DataMining
. . . L Ol6 3 nypameiope Jes | nma  NoNe
 The viewpoint in this course: Data Mining is o e s e o
. . . . 019:023 model, patterns, ...
the application of Machine Learning G e Lt e
. . . ata
techniques to solve real-life data analysis . . .
roble?ns Y Given: transaction data table, relational database, text
P documents, Web pages
Find: a classification model, a set of interesting patterns
21 - oy - oy - 22
Simplified example: Learning a classification
Data Mining in a Nutshell model from contact lens data
p“g";‘ Aff S?%OES “Zm T:m:‘: LNS%N; Inowedg discovery Person Age  Spect. presc. | Astigm. Tear prod. _Lenses
0B e e | rema ham 01 17 myope no reduced  NONE
(o v i v n - 02 23 myope no normal SOFT
15|43 mpemaross| yos | toamei NONE e 03 22 myope yes reduced  NONE
giz EZ - Z"“:a E§EE 04 27 myope yes normal HARD
oeon . Me:“:me B model, pattems, ... 05 19 hypermetrope no reduced  NONE
data 06-013
Given: transaction data table, relational database, text O14 35 | hypermetrope no normal SOFT
documents, Web pages 81: gg :VpermeIFOpe yes reduceld Egsi
Find: a classification model, a set of interesting patterns ypermetrope yes norma
9P 017 54 myope no reduced NONE
symbolic model 018 62 myope no normal NONE
new unclassified instance classified instance symbolic patterns )% 019-023
black box dlassifier explanation 1 024 56  |hypermetrope  yes normal NONE
no i iha
- =gu - =gu - 2 24
Simplified example: Learning a classification Task reformulation: Binary Class Values
model from contact lens data
Person Age | Spect. presc. _Astigm. Tear prod.| Lenses.
Feron g St prese i Teargod Lo T T T e TR
G2 oy e moroma SRt 02 2 myope no | nomal | YES
03 young myope. yes  reduced  NONE 03 22 myope yes reduced NO
04 | yong | myope | yes | nomal  HARD . o4 27 myope yes normal YES
g —youwq_hypemeimpe o rediced  NOKE Data Mining 05 19 hypermetrope  no reduced NO
R e i o 5 ypematome | ova [NES
17 potmepemjepe - no rodsced NONE 015 | 43 hypermetrope yes | reduced | NO
018 presbyopic_ myope no | nomal  NONE 016 39  hypermetrope  yes normal NO
019:023 o17 54 myope no reduced NO
02t presbyopic ypermotrope.yes | nommal | NONE o o yope no | fedueed NN
[ 019-023 . .
tear prod. ) 024 56 hypermetrope  yes normal NO
reduced _:‘*«\Jurmai
NONE “astigmatiom Binary classes (posi_tive vs. neggtivg examples of Targe_zt (_:Iass)
. no /| ~_yes - for Concept learning — classification and class description
P . s:;;t e - for Subgroup discovery — exploring patterns
" yope i ~ X hypermetrope characterizing groups of instances of target class
HARD NONE




Learning from Unlabeled Data

pect. presc. _Astigm. Tear prod.

o1 17 myope no reduced
02 23 myope no normal
03 2 myope yes | reduced
04 27 myope yes normal
05 19 hypermetrope  no reduced
06-013 o
014 35  hypermetrope  no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope  yes normal
o17 54 myope no reduced
o18 62 myope no normal
019-023 .
024 56 hypermetrope  yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning
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Learning from Numeric Class Data
Person Age Spect. presc. _Astigm. Tear prod. | LensPrice
o1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
04 27 myope yes normal 5
05 19 hypermetrope  no reduced 0
06-013 .
014 35  hypermetrope  no normal 5
015 43 hypermetrope yes | reduced 0
016 39 hypermetrope  yes normal 0
017 54 myope no reduced 0
o18 62 myope no normal 0
019-023 . .
024 56 hypermetrope  yes normal 0
Numeric class values — regression analysis
27

Data Mining: Related areas

Database technology
and data warehouses
« efficient storage,

accegs anld textand Web
manipulation mining
of data

visualization

pattern
recognition

Related areas

Statistics,

machine learning,
pattern recognition
and soft computing*

¢ classification
techniques and
techniques for
knowledge extraction

databases

textand Web
mining

machine
learning

visualization

pattern

Related areas

Text and Web mining
* Web page analysis
* text categorization
¢ acquisition, filtering
and structuring of
textual information

¢ natural language
processing

textand Web
mining

visualization

pattern
recognition

from data recognition
*neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning
30
Related areas
Visualization

¢ visualization of data
and discovered
knowledge

databases

textand Web
mining

pattern
recognition




Point of view in this course

Knowledge
discovery using
machine
learning
methods

learning

pattern
recognition)

Data Mining, ML and Statistics

¢ All three areas have a long tradition of developing
inductive techniques for data analysis.
— reasoning from properties of a data sample to
properties of a population
¢ DM vs. ML - Viewpoint in this course:

— Data Mining is the application of Machine Learning
techniques to hard real-life data analysis problems

Data Mining, ML and Statistics

¢ All three areas have a long tradition of developing
inductive techniques for data analysis.
— reasoning from properties of a data sample to
properties of a population
* DM vs. Statistics:
— Statistics
¢ Hypothesis testing when certain theoretical
expectations about the data distribution,
independence, random sampling, sample size, etc.
are satisfied
¢ Main approach: best fitting all the available data
— Data mining
* Automated construction of understandable
patterns, and structured models
¢ Main approach: structuring the data space,
heuristic search for decision trees, rules, ...
covering (parts of) the data space

Part . Introduction

¢ Data Mining in a Nutshell

:> Predictive and descriptive DM techniques
¢ Data Mining and the KDD process
¢ DM standards, tools and visualization

Types of DM tasks
)
N

© &F

* Predictive DM:
— Classification (learning of rules, decision
trees, ...)
— Prediction and estimation (regression)
— Predictive relational DM (ILP)
* Descriptive DM:
— description and summarization
— dependency analysis (association rule
learning)
— discovery of properties and constraints
— segmentation (clustering)
— subgroup discovery

Predictive vs. descriptive DM

Predictive DM

N
Descriptive DM




Predictive vs. descriptive DM

* Predictive DM: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive DM: Discovering interesting regularities in
the data, uncovering patterns, ... for solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis

Predictive DM formulated as a
machine learning task:

* Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)
A1 A2 A3 Class
examplel vy Vi Via C,
example2 vy, Voo Vog C,

* By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

(Ai=Vi) & (Aj=v;)) &... > Class = C,

Predictive DM - Classification

* data are objects, characterized with attributes -
they belong to different classes (discrete labels)

* given objects described with attribute values,
induce a model to predict different classes

» decision trees, if-then rules, discriminant
analysis, ...
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Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

reduced Nﬁ;rmal

Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
o4 young myope yes normal HARD
o5 young | hypermetrope no reduced NONE

06-013

014  ore-presbyc hypermetrope no normal SOFT

015  ore-presbyc hypermetrope yes reduced NONE

016  ore-presbyc hypermetrope yes normal NONE

017  presbyopic myope no reduced NONE

018  presbyopic myope no normal NONE
019-023 .

024  presbyopic hypermetrope yes normal NONE

Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NO
02 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
o5 young | hypermetrope no reduced NO

06-013
014  ore-presbyc hypermetrope no normal YES
015  ore-presbyc hypermetrope yes reduced NO
016  ore-presbyc hypermetrope yes normal NO
017  presbyopic myope no reduced NO
018  presbyopic myope no normal NO

019-023 ..
024  presbyopic hypermetrope yes normal NO

Contact lens data:
Classification rules in concept learning

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no —
lenses=YES

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=YES

else NO
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lllustrative example:

Customer data

Customer _Gender Age Income Spent _ BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

Customer data: Decision trees

<102000 / > 102000
<58 > 58
‘ no ‘ ‘ yes ‘

=female/ M =male

[ o]
<49 > 49
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Predictive DM - Estimation

» often referred to as regression

* data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

* given objects described with attribute values, induce a
model to predict the numeric class value

¢ regression trees, linear and logistic regression, ANN,
kNN, ...

Estimation/regression example:
Customer data

Customer _Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
c14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000

c20 female 55 214000 28800
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Customer data: Predicting algal biomass: regression
regression tree tree

@ Jan.»Ju
July - Dec.
<108000 / > 108000 — TS

[ 12000 ] <934 .m @
/\:934 107 7 5101

< 42;5/ >42.5
s

‘ 16500 ‘ ‘ 26700 ‘ <59 N.Q <91 >9.1
In the nodes one usually has [297:100]  [2.082071] @ _‘-2*3i1~08

Predicted value +- st. deviation S2'13‘/ >2.13
[1.152021 ] [0.70:0.34 |
- - 51 52
Descriptive DM: Customer data:
Subgroup discovery example - Subgroup discovery

Customer data
Type of task: description (pattern discovery)

Customer _Gender Age Income Spent __ BigSpender H . H
= e = et = Hypqthe5|§ Ianguage._ rules X -) Y, if XthenY
€2 | female 19 139000 | 15100 yes X is conjunctions of items, Y is target class
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes — . —
06.013 Age > 52 & Sex = male =» BigSpender = no
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no _
T3 male 6 202000 1 13800 o Age > 52 & Sex = male & Income < 73250
c17 female 57 215000 = 29300 yes > BigSpender =no
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes
. g 53 . . 54
Descriptive DM: Descriptive DM:
Clustering and association rule learning Association rule learning example -
example - Customer data Customer data
Customer _Gender Age Income Spent QigSpenddr Customer _Gender Age Income Spent__BigSpender
c1 male 30 214000 18800 c1 male 30 214000 18800 yes
c2 female 19 139000 15100 c2 female 19 139000 15100 yes
c3 male 55 50000 12400 c3 male 55 50000 12400 no
c4 female 48 26000 8600 c4 female 48 26000 8600 no
c5 male 63 191000 28100 c5 male 63 191000 28100 yes
06-013 06-013
c14 female 61 95000 18100 c14 female 61 95000 18100 yes
c15 male 56 44000 12000 c15 male 56 44000 12000 no
c16 male 36 102000 13800 c16 male 36 102000 13800 no
c17 female 57 215000 29300 c17 female 57 215000 29300 yes
c18 male 33 67000 9700 c18 male 33 67000 9700 no
c19 female 26 95000 11000 c19 female 26 95000 11000 no
c20 female 55 214000 28800 c20 female 55 214000 28800 yes




Customer data:
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X 2 Y, if Xthen Y
X, Y conjunctions of items

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =2
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no
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Predictive vs. descriptive DM:
Summary from a rule learning
perspective

¢ Predictive DM: Induces rulesets acting as classifiers
for solving classification and prediction tasks

* Descriptive DM: Discovers individual rules
describing interesting regularities in the data

¢ Therefore: Different goals, different heuristics,
different evaluation criteria

Relational Data Mining (Inductive Logic57
Programming) in a Nutshell

P e [eme RS discovery

st memln from data

Jsassaar
3470 gt € fopel

[Delvery Pt
Mode  Mode

Relational Data Mining

model, patterns, ...

Relwicnal represntation of

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns
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Relational Data Mining (ILP)

¢ Learning from multiple
tables

¢ Complex relational
problems:

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

Relational Data Mining (ILP)

customer
M [Z 8 |5 JATC ke
¥ |‘1’ i o ]
347834677 m (sl (60-T0(3
3479 43666 £

oeder
(pstomer [rder l%ueri Delery [Pagmt

P P
s [saderrs|12
it (17289 1T

leash

ichecle
wherle
credit
eredit

79 323344417
7T 347588612

stare
Store ID[Size [Type |Location)
jsmall Franchise city
large indep  rural

Relational representation of customers, orders and stores

Relaonul rprseseation of custmen,onders o s

ID Zip Sex |Soc St |Income |Age Club |Resp

3478 | 34667 |m si 60-70 |32 me nr
3479 |43666 |f ma 80-90 |45 nm re

Basic table for analysis




ID Zip Sex |Soc St |Income |Age Club |Resp

3478 34667 |m si 60-70 |32 me nr
3479 43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(ld,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2:
customer(3478,34667,m,si,60-70,32,me,nr).
customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation:
customer(_,_f_,_,_,__).

Relational Data Mining (ILP)

Data bases: Logic programming:
* Name of relation p * Predicate symbol p
* Attribute of p * Argument of predicate p
¢ n-tuple <vi,..,va>=rowin ¢ Ground fact p(vs, ..., Vn)
a relational table « Definition of predicate p
* relation p = set of n-tuples = « Set of ground facts
relational table * Prolog clause or a set of Prolog
clauses

Example predicate definition:

good_customer(C) :-

)y

order(C,_,_,_,creditcard).

Part I. Introduction

* Data Mining in a Nutshell

* Predictive and descriptive DM techniques
=) Data Mining and the KDD process

* DM standards, tools and visualization

Data Mining and KDD

* KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

* Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Usefiul Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process

KDD process of discovering useful knowledge from data

Interpretation/
| M\rung — Evaluation
2 :

Trans-

=rd| Selection 2 prcccss-ng formation
G,

i 3
Target Preprc(eism‘l Trar!sfurmed Patterns Knowledge
Data.

Data

Data

* KDD process involves several phases:
* data preparation
* data mining (machine learning, statistics)
* evaluation and use of discovered patterns

» Data mining is the key step, but represents only
15%-25% of the entire KDD process
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MEDIANA - analysis of media research data

Dam Interpretation/
| Mmmg _ Evaluation . .
ﬁ:ﬂ S et

Data

Target Preprccesspd Transformed Patterns Knowledge
Data

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

» Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
interest for specific topics in media, social status

¢ good quality, “clean” data
* table of n-tuples (rows: individuals, columns: attributes, in
A )




MEDIANA - media research pilot studym

| Pre- Trans- Interpretation/
Siid| Selection (SR processing formation iy Evaluation
& Tl EE T e

— 3
Target Preprocessed | Transformed Patterns Knowledge
Data Data Data

Data

¢ Patterns uncovering regularities concerning:
— Which other journals/magazines are read by readers of
a particular journal/magazine ?
— What are the properties of individuals that are
consumers of a particular media offer ?
— Which properties are distinctive for readers of different
journals ?
¢ Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)

Simplified association rules

[

. reads_Sara 332 > reads_Slovenske novice 211 (0.64)
2. reads_Ljubezenske zgodbe 283 >

reads_Slovenske novice 174 (0.61)
3. reads_Dolenjski list 520 >

reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
5. reads_Delavska enotnost 177 >

reads_Slovenske novice 102 (0.58)
Most of the readers of Sara, Love stories, Dolenjska

new, Omama in Workers new read also Slovenian
news.

Decision tree

Finding reader profiles: decision tree for classifying people
into readers and non-readers of a teenage magazine

Antena.
e
==2’§_.rAg <25
Doasn't read Visiting Disco Clubs
no T yes
g N
./, ™~
- -
Interest In music, astrology, 'mm“"" -{smlngy
travel and, scandals VAR
v no / \, yes
no /N yes N
. \ y, N
Gender Reads
Doesn'tread  Reads PR
male,” '\ female
Y \
Doesn't read

<207 e 2=20

Reads Doesn’t read

Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223 & reads_Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads_Delo 157 (0.78)

4. reads_Money (Denar) 197 3 reads_Delo 150 (0.76)

5. reads_Vip 181 3 reads_Delo 134 (0.74)
Interpretation: Most readers of Marketing magazine,

Financial News, Views, Money and Vip read also
Delo.

Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.

:> DM standards, tools and visualization

Part I. Introduction

¢ Data Mining in a Nutshell
* Predictive and descriptive DM techniques
¢ Data Mining and the KDD process




CRISP-DM

e Cross-Industry Standard Process for DM
* A collaborative, 18-months partially EC
founded project started in July 1997

¢ NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

* DM from art to engineering

* Views DM more broadly than Fayyad et al.
(actually DM is treated as KDD process):

Trans- Interpretation/
Selection 2 prcccss-ng lurmmm | Mmmg [vaL,‘l.Q, ¥
= [ A
1 Target Preprc(eism‘l Trar!sfurmed Patterns Knowledge
Data Data.
Data ._——..
% KDNuggets Directory: Data Mining and Knowledge Discovery - Nelszope

fie Edt Yew Go Communicsir fieb

Tl Bookmaks & Locaior [t v gt o

c =] @ whats Releed [
r

KDNuggets.com Path EDNugaets Home :

fKbugsets  Tools (Siftware) for Data Mining and Knowledge Discovery
Inols Email new submissions and changes to pditor@kdnuggets com

Companies

slohs - Suites supporting multiple discovery tasks and data preparation

+ Classification -- for building a classification model

Approsch: Multiple | Decision iree | Eulos | Heuzal netiork | Bayesien | Other
Solutions * Clustering - for finding clusters or segments

Courses
ZKDD-09*

Wobsites  Statistics, Estimation and Regression

References - Links and Associations - for fnding knks, o networks, and
Heetings

Datasets

- Sequential Patterns - tools for finding sequential patterns
* Visualization - scientific and discovery-onented msualization
+ Text and Web Mining

- Deviation and Frand Detection

+ Reporting and Suminarization

- Data Transformation and Cleaning

Orange, Orange4WS, ClowdFlows
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CRISP Data Mining Process
mks Business Data
Understanding Understanding
-
o=
76

Public DM tools
WEKA - Waikato Environment for Knowledge
Analysis

KNIME - Konstanz Information Miner
R — Bioconductor, ...

X Ll * OLAP and Dimensional Analysis ;J
o == |Decument: Dane e e @2 (@ w2 | 4
Visualization

e can be used on its own (usually for
description and summarization tasks)

can be used in combination with other DM
techniques, for example

— visualization of decision trees

— cluster visualization

— visualization of association rules

— subgroup visualization

Data visualization:
Scatter plot




DB Miner: Association rule
visualization
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MineSet: Decision tree visualization
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Orange: Visual programming and
subgroup discovery visualization
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Part I: Summary

* KDD is the overall process of discovering useful
knowledge in data
— many steps including data preparation, cleaning,
transformation, pre-processing
* Data Mining is the data analysis phase in KDD
— DM takes only 15%-25% of the effort of the overall KDD
process
— employing techniques from machine learning and statistics
* Predictive and descriptive induction have different
goals: classifier vs. pattern discovery
* Many application areas, many powerful tools
available

Part Il. Predictive DM techniques

=) « Naive Bayesian classifier
* Decision tree learning
* Classification rule learning
¢ Classifier evaluation

Bayesian methods

Bayesian methods — simple but powerful
classification methods
— Based on Bayesian formula

D|H
pe |0y = 2L
p(D)

Main methods:

— Naive Bayesian classifier

— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course




Naive Bayesian classifier

» Probability of class, for given attribute values
V..V c
p(e 1) = pley Lt 19

p(v,.v,)

* Forall C; compute probability p(C;), given values v; of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; Iv)))

c V.
e o= ple o] 2
. op(c))
* Output Cyax With maximal posterior probability of class:

C,. ¢ = arg max g p(c/ [vyv,)

Semi-naive Bayesian classifier

* Naive Bayesian estimation of probabilities

(reliable)
ple;lv) ple,lv)

p(c;) plc;)

* Semi-naive Bayesian estimation of
probabilities (less reliable)

ple; [v,vy)
p(c;)

Naive Bayesian classifier

ple,|vmy,) = ple;-viv,)  pOiv,le))-ple))
J n
p(v,..v,) p(v,.v,)

I1 rile)-ple)

; __p(e)) ple;[v)-p(v)
- p(v,..v,) p(vl...v”)l_,[ plc;)
I1 200 _ pee [v,) ple, |v)
=p(c,) IMI———=pC) ] ———
p(v,.v,) " plc)) . op(e))

Probability estimation

* Relative frequency:

n(cf),p(c, v,y = n(c,,v,)
n(v,)

plc;)= j=1.k, forkclasses

* Prior probability: Laplace law

n((:_/) + 1

pr(c ) =
: N + Kk
e m-estimate:
pe)) = n(c,;)+m:- pa(c,)

N +m

Probability estimation: intuition

* Experiment with N trials, n successful

* Estimate probability of success of next trial

* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.g.,

1/1=1

¢ Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes

— Assumes uniform distribution of classes

m-estimate: (n+m.pa)/(N+m)

— Prior probability of success pa, parameter m
(weight of prior probability, i.e., number of ‘virtual
examples )

Explanation of Bayesian
classifier

¢ Based on information theory
— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p (")
* Explanation based of the sum of information gains of
individual attribute values v; (Kononenko and Bratko 1991,
Kononenko 1993)

—log( p(c, [v..v,)) =

=—log( p(c,) =Y (~log p(c,)+log( p(c;|v,)

* log p denotes binary logarithm
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Example of explanation of semi-naive
Bayesian classifier

Hip surgery prognosis

Class = no (“no complications”, most probable class, 2 class problem)
|Al|ribule value For decision| Against

(bit) (bit)
|Age = 70-80 0.07
Sex = Female 0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0
Time between injury and operation > 10 days 0.42
Fracture ion acc. To Garden = Garden Il 0.3
Fracture acc. To Pauwels = Pauwels Il -0.14
AL 1 = Yes 0.07
| Antibioti =Yes -0.32
Hospital rehabilitation = Yes 0.05
General s = None 0
Ci i i 0.21
Time between injury and ) < 6 hours
AND itali; 1 time between 4 and 5 weeks

C: 0.63
Therapy = ic AND anti therapy = Yes

Visualization of information
gains for/against C,
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Naive Bayesian classifier

* Naive Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

* It achieves good classification accuracy
— can be used as ‘gold standard’ for comparison with
other classifiers
¢ Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

* Successful in many application domains
— Web page and document classification
— Medical diagnosis and prognosis, ...

Part Il. Predictive DM techniques

* Naive Bayesian classifier
=) « Decision tree learning

* Classification rule learning

¢ Classifier evaluation

Improved classification accuracy due *
to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. [ m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%

lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
04 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE

018  presbyopic myope no normal NONE
019-023

024  presbyopic hypermetrope yes normal NONE




Decision tree for
contact lenses recommendation

tear prod.

reduced Nt‘)rmal

no yes

myope hypermetrope
HARD NONE

Decision tree for
contact lenses recommendation

reduced N:)rmal
m astigmatism
[N=12,5+H=0]
=

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,5+N=2] [N=2, S+H=1]

PlayGolf: Training examples

Day Outlook  Temperature Humidity  Wind PlayGolf

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Ovwercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision tree representation
for PlayGolf

Outlook
Sunn/ ‘ Overcast Rain
Humidity Yes Wind
High /\Nor‘mal SrronAWzak
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification

101

Decision tree representation
for PlayGolf

Outlook
Sunm/ ‘ Overcast Rain
Humidity Yes Wind
High /\Normal Stmn/\weuk
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
v ( Outlook=Overcast )
v ( Outlook=Rain A Wind=Weak )

102

PlayGolf:
Other representations

* Logical expression for PlayGolf=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

* Converting a tree to if-then rules
— IF Outlook=Sunny A Humidity=Normal THEN PlayGolf=Yes

IF Outlook=Overcast THEN PlayGolf=Yes

IF Outlook=Rain A Wind=Weak THEN PlayGolf=Yes
IF Outlook=Sunny A Humidity=High THEN PlayGolf=No
IF Outlook=Rain A Wind=Strong THEN PlayGolf=No
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PlayGolf: Using a decision tree for

classification
Outlook
5“""/ ‘ DverN"
Humidity Yes Wind
High /\Normal Strcn/\Wenk

No Yes No Yes
Is Saturday morning OK for playing golf?

Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayGolf = No, because Outlook=Sunny A Humidity=High

Learning of decision trees

¢ ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree

— if all examples from S belong to the same class Cj
« then label the root with Cj

— else

 select the ‘most informative’ attribute A with values
vi,v2,...vn

e divide training set S into $1,..., Sn accordd'/?u)g to
values vi,...,vn

« recursively build sub-trees v/

T1,...,Tnfor 81,...,Sn @ @
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Entropy

¢ S - training set, C,,...,Cy, - classes

¢ Entropy E(S) — measure of the impurity of
training set S

N

E(S)= ,Z p.log, p, P, - prior probability of class C,
o1 (relative frequency of C in S)

Entropy in binary classification problems

E(S) = - p. log,p, - p_log,p.

104

Appropriate problems for
decision tree learning

* Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

¢ Characteristics:

— instances described by attribute-value pairs
(discrete or real-valued attributes)
— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Search heuristics in ID3

¢ Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

* Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

» First define a measure commonly used in
information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.

108

Entropy

* E(S) =-p,log.p, - p.log,p.

* The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between 0 and 1
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Entropy — why ?

* Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
objectin S (under the optimal, shortest-length
code)

e Why?

* Information theory: optimal length code assigns
- log,p bits to a message having probability p

* So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

p: (-log,p, )+ p.(-log,p.) = - p, log,p, - p.log,p.
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PlayGolf: Entropy

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) = - p. logzp, - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

sy o (15 g 1S} (150 151

B [m o m) [\sw lgm]
E([9+,5-]) = - (9/14) 10g,(9/14) - (5/14) log,(5/14)
=0.940

m
PlayGolf: Entropy
* E(S)=-p.log,p,- p.log,p.

o E(9+,5-) = -(9/14) 10g,(9/14)- (5/14) log,(5/14) = 0.940

sun {D1,02,08,D9 D11} [2+,3-] E=0.970
Outlook? ﬁ (D3,67,b12,D13} [4+,0-] E=0
: {D4,D5,06,010,014)  [3+,2-] E=0.970
i [3+,4-] E=0.985
Humidify?% [6+1-] E=0592
” [6+,2-] E=0811
Wind? 4? [3+,3-] E=100
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Information gain
search heuristic

Information gain measure is aimed to minimize the
number of tests needed for the classification of a new
object

Gain(S,A) — expected reduction in entropy of S due to
sortingon A

Gain (S,A4)=E(S)- Z M4E(S“)

veranes () | S|

Most informative attribute: max Gain(S,A)

13

Information gain
search heuristic

¢ Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94
[6+,2-] [3+,3-] [9+,0-] [0+, 5-]
E=0.811 E=1.00 E=0.0 E=0.0

 Gain(S,A1) = 0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048

e Gain(S,A2)=0.94 - 0=0.94 A2 has max Gain

14

PlayGolf: Information gain

Gain (S,4)=E(S)— Y M'E(S‘,)

vevius (1) | S|
¢ Values(Wind) = {Weak, Strong}
We [6+,2-] E=0811
Wind? 41 [3+,3] E=100
- S=[9+,5-], E(S)=0.940
~ Syeax = [6+,2-], E(Syea) = 0.811
~ Sqyong = [3+,3-], E(Sgiong) = 1.0

— Gain(S,Wind) = E(S) - (8/14)E(Syea) - (6/14)E(Sqyong) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048
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PlayGolf: Information gain

* Which attribute is the best?
— Gain(S,Outlook)=0.246 MAX !
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S,Temperature)=0.029

PlayGolf: Information gain

Rain . {D4,D5,06,D10,D14} [3+,2-] E>07???

Outlook?
Overcast
< {D3,b7,b12,D13}
Sunny
(OL,D2,D8,DIDIT}  [2+,3-] E>0 ???.>

* Which attribute should be tested here?
— Gain(Sgynny, Humidity) = 0.97-(3/5)0-(2/5)0= 0.970 MAX !
— Gain(Sgynny, Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

— GaiN(Squpmy,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019
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[4+,0-] E=0 OK - assign class Yes

17

Probability estimates

* Relative frequency :

p(Class | Cond ) =
— problems with small samples

_ n(Class .Cond )
N n(Cond )
[6+,1-] (7) = 6/7
[2+,0-] (@) =2/2 =1

¢ Laplace estimate :

— assumes uniform prior
distribution of k classes

B n(Class .Cond )+1 k=2
n(Cond )+ k

[6+,1-] (7) = 6+1 / 7+2 = 7/9
[2+,0-] (2) = 2+1/ 2+2 = 3/4

Heuristic search in ID3

* Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

¢ Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

¢ Stopping criteria: A node becomes a leaf

— if all examples belong to same class C;, label the
leaf with G,
—if all attributes were used, label the leaf with the
most common value C, of examples in the node
¢ Extension to ID3: handling noise - tree pruning

118
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Pruning of decision trees

* Avoid overfitting the data by tree pruning

¢ Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data

Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
* erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples

120
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Handling noise — Tree pruning

¢ Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
 post-pruning / rule truncation
— handling missing values

¢ Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3

123

Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— on unseen instances
How accurate is a decision tree when classifying unseen
instances
— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
* split the example set into training set (e.g. 70%) and test set (e.g. 30%)
* induce a decision tree from training set, compute its accuracy on test
set
Error =1 - Accuracy

High error may indicate data overfitting
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_malig

<3 >3
Tumor_size Involved_nodes
<15 >15 <3 >3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 10

recurrence 18

recurrence 39

<4 >40

no_recur 4

recurrence 1 no_recur 4

V¢ Y
no_rec4 recl
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Overfitting and accuracy

* Typical relation between tree size and accuracy

09

08
o
0.65 ﬂ

06

055

05

* Question: how to prune optimally?

125

Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

« forward pruning considered inferior (myopic)
* post pruning makes use of sub trees
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How to select the “best” tree

* Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

¢ Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)
— until further pruning is harmful DO:

« for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

« greedily select the node whose removal most improves tree
accuracy over the validation set

¢ MDL: minimize
size(tree)+size(misclassifications(tree))




Selected decision/regression
tree learners

¢ Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

* Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)

127
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Features of C4.5

* Implemented as part of the WEKA data mining
workbench

* Handling noisy data: post-pruning
* Handling incompletely specified training
instances: ‘unknown’ values (?)

— in learning assign conditional probability of value v:
p(vIC) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values

Other features of C4.5

* Binarization of attribute values
— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)
— for discrete values try grouping the values until
two groups remain *
* ‘Majority’ classification in NULL leaf (with no
corresponding training example)
— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
is the majority class of the parent of the NULL leaf

* P X . .
the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping
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Rule Learning in a Nutshell

discovery
from data

Rule learning Model: a set of rules

Patterns: individual rules

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;
or a set of interesting patterns in the form of individual
rules

131
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Part Il. Predictive DM techniques

* Naive Bayesian classifier
* Decision tree learning

m==) * Classification rule learning
* Classifier evaluation

132

Rule set representation

* Rule base is a disjunctive set of conjunctive rules
» Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayGolf=Yes

IF Outlook=Overcast THEN PlayGolf=Yes

IF Outlook=Rain A Wind=Weak THEN PlayGolf=Yes

e Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

¢ Rule base: {R1, R2, R3, ..., DefaultRule}
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Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT

015 ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE

017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023 .

024  presbyopic hypermetrope yes normal NONE
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Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if X then C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE

Rule learning

¢ Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
* Learning an unordered set of rules
* Learning an ordered list of rules
* Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to
tear prod. an unordered rule set

reduced Nﬁ)rmal
astigmatism

no
[N=12,S+H=0]

yes

SOFT spect. pre.

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,5+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)

137

Contact lenses: convert decision tree to
decision list

reduced N?rmal
[vone |
[N=12,5+H=0] " hnd

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list

Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48
* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NO
o2 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
o5 young  hypermetrope no reduced NO

06-013
014  ore-presbyc hypermetrope no normal YES
015  ore-presbyc hypermetrope yes reduced NO
016  ore-presbyc hypermetrope yes normal NO
017  presbyopic myope no reduced NO
018  presbyopic myope no normal NO

019-023 ..
024  presbyopic hypermetrope yes normal NO

Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C, ..., Cx
for each class Ci do + o+ B
— Ei:=Pi U Ni (Pi pos., Ni neg.) + t

— RuleBase(Ci) := empty
— repeat {learn-set-of-rules}

* learn-one-rule R covering some positive
examples and no negatives

* add R to RuleBase(Ci)
* delete from Pi all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Positive examples Negative examples

142

Covering algorithm

. Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

143

Covering algorithm

. Rulel: CI=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

144

Covering algorithm

. Rule1: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

Rule2: CI=+ « Cond8 AND Cond6
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PlayGolf: Training examples

Day Outlook | Temperature Humidity  Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:
PlayGolf example

PlayGolf = yes [9+,5-] (14)

PlayGolf = yes « Wind=weak [6+,2-] (8)
< Wind=strong [3+,3-] (6)
<« Humidity=normal [6+,1-] (7)
“..

PlayGolf = yes « Humidity=normal
Outlook=sunny [2+,0-] (2)
..
Estimating rule accuracy (rule precision) with the probability
that a covered example is positive
A(Class « Cond) = p(Classl Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+,1-] (7) = 6/7, [2+,0](2)=2/2=1
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Probability estimates

* Relative frequency :

p(Class | Cond ) =
— problems with small samples

_ n(Class .Cond )
N n(Cond )
[6+,1-] (7) = 6/7
[2+,0-] (@) =2/2 =1

* Laplace estimate : _ n(Class Cond )+1 4 _,

— assumes uniform prior n(Cond )+ k
distribution of k classes

[6+,1-] (7) = 6+1 / 7+2 = 7/9
[2+,0-] (2) = 2+1/ 2+2 = 3/4
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Learn-one-rule:
search heuristics

* Assume a two-class problem

e Two classes (+,-), learn rules for + class (Cl).

¢ Search for specializations R’ of a rule R = Cl «- Cond
from the RuleBase.

¢ Specializarion R’ of rule R = Cl «- Cond

has the form R’ = Cl <~ Cond & Cond’

* Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule:
Greedy vs. beam search

* learn-one-rule by greedy general-to-specific
search, at each step selecting the “best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
PlayGolf = yes «
— is rule PlayGolf = yes «<— Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Learn-one-rule as search:
PlayGolf example

PlayGolf = yes IF

PlayGolf = yes
IF Humidity=high

PlayGolf = yes
IF Wind=weak

PlayGolf = yes PlayGolf = yes
IF Wind=strong IF Humidity=normal

PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
I idity=| |
PlayGolf = yes PlayGolf = yes F HUOTJIN;Z(!I:?;;.TG '

IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:

PlayGolf example
PlayGolf = yes IF [9+,5-1(14)
PlayGolf = yes PlayGolf = yes
IF \g/md;weuk IF Humidity=high
62230 playGolf = yes PlayGolf = yes B+a-1(7)
IF Wind=strong ~ IF Humidity=normal
[3+3-1(6) [6+,1-1(7)
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
IF Humidity=| |
PlayGolf = yes PlayGolf =yes 1T FgUCOTEne!

IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
[2+.0-](2)
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What is “high” rule accuracy
(rule precision) ?

* Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
e BUT: Rule accuracy/precision should be traded
off against the “default” accuracy/precision of the
rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

* Relative accuracy (relative precision)
— RAcc(Cl «~Cond) = p(Cl | Cond) — p(Cl)
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Weighted relative accuracy

* |fa rule covers a single example, its accuracy/precision
is either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

* Weighted relative accuracy
WRAcc(ClCond) = p(Cond) . [p(CI | Cond) — p(CI)]

¢ WRAcc is a fundamental rule evaluation measure:
— WRAcc can be used if you want to assess both accuracy and
significance
— WRACcc can be used if you want to compare rules with different
heads and bodies
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Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl «- Cond from RuleBase.
Expected classification accuracy: A(R) = p(CliICond)
Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(ClICond)
Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(ClICond’) - p(ClICond)
Information gain (decrease in the information needed):
IG(R’,R) = log,p(ClICond’) - log,p(ClICond)
Weighted measures favoring more general rules: WAG, WIG
WAG(R',R) =
p(Cond’)/p(Cond) . (p(ClICond’) - p(CliICond))
Weighted relative accuracy trades off coverage and relative
accuracy WRAcc(R) = p(Cond).(p(ClICond) - p(Cl))
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Ordered set of rules:
if-then-else rules

¢ rule Class IF Conditions is learned by first
determining Conditions and then Class

¢ Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

¢ But: ordered execution when classifying a new
instance: rules are sequentially tried and the first
rule that “fires’ (covers the example) is used for
classification

¢ Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

¢ If no rule fires, then DefaultClass (majority class in
E

cur)

Sequential covering algorithm
(similar as in Mitchell’s book)

¢ RuleBase := empty
* E
* repeat

cur= E
—learn-one-rule R
— RuleBase := RuleBase U R

— Ecur = Equr - {examples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E,) < ThresholdR

¢ RuleBase := sort RuleBase by performance(R,E)
¢ return RuleBase
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

* RuleBase := empty
° Ecur:= E
* repeat

—learn-one-rule R

— RuleBase := RuleBase U R

— Ecur i= Egr - {all examples covered by R}
(NOT ONLY POS. EX.!)

 until performance(R, E.,) < ThresholdR
* RuleBase := sort RuleBase by performance(R,E)
* RuleBase := RuleBase U DefaultRule(E,,)
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Learn-one-rule:
Beam search in CN2

e Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by
adding majority class of examples covered by
BestBody in rule Head

* performance (R, E.,) : - Entropy(E,,,)
— performance(R, E,,,) < ThresholdR (neg. num.)
— Why? Ent. > t is bad, Perf. = -Ent < -t is bad
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Variations

¢ Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

¢ Learning rules vs. learning decision trees and
converting them to rules

* Pre-pruning vs. post-pruning of rules
¢ What statistical evaluation functions to use
¢ Probabilistic classification
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Probabilistic classification

¢ Inthe ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

* Inthe unordered case all rules are tried and all rules which fire are
c:)ller::ted. If a clash occurs, a probabilistic method is used to resolve the
clash.

* Asimplified example:

. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>

lenses=NONE [S=0,H=1,N=2]

. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

. tear production=normal & astigmatism=yes & spect. pre.=myope =>

lenses=HARD [S=0,H=3,N=2]

o A W =

. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.

Part Il. Predictive DM techniques

* Naive Bayesian classifier

* Decision tree learning

* Classification rule learning
=) « Classifier evaluation
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Classifier evaluation

e Accuracy and Error

¢ n-fold cross-validation
¢ Confusion matrix

¢ ROC




Evaluating hypotheses

¢ Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to
induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance
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n-fold cross validation

* A method for accuracy estimation of classifiers

* Partition set D into n disjoint, almost equally-sized
folds T,where U;T;=D

e fori=1,..,ndo
—form a training set out of n-1 folds: Di = D\T;
— induce classifier H;from examples in Di
— use fold T; for testing the accuracy of H;

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T;

*Partition

*Partition

*Partition

<Partition
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Confusion matrix and
rule (in)accuracy

Accuracy of a classifier is measured as TP+TN/ N.
Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

Conclusion: classification accuracy is not always an
appropriate rule quality measure

170

Confusion matrix

* also called contingency table

Classifier 1

Predicted positive | Predicted negative
Positive examples 40 10 50
Negaive sxamples 10 40 50 Classifier 2
50 50 100
Predicted positive | Predicted negative

Positive examples 30 20 50

Negative examples 0 50 50

30 70 100

17

ROC space

True positive rate =
#true pos. / #pos.
— TPr, = 40/50 = 80%
— TPr,=30/50 = 60%
False positive rate
= #false pos. / #neg.
— FPry;=10/50 = 20%
— FPr,=0/50=0%

Classifier 1

| |
I [0
} « } %[ Classifier2

ROC space has s
— FPron X axis H _
— TPronY axis H

0% 20% 0% 0% 0% 100%
Falso posiive rate.

173

The ROC convex hull
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g /
.g 60%
2 ,/
3
e aom
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-
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P s P o oon o0
false positive rate
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The ROC space

true positive rate

‘& Confimationrules |

= WRAcc
onz

o 06 % % £ o

false positive rate

174

Summary of evaluation

¢ 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

¢ ROC analysis is very natural for rule learning
and subgroup discovery
— can take costs into account
— here used for evaluation
— also possible to use as search heuristic




Part lll. Numeric prediction

=)« Baseline

* Linear Regression
* Regression tree

175
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Regression Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:

MSE, MAE, RMSE, ... 1-accuracy

Algorithms: Algorithms:

Linear regression, regression Decision trees, Naive Bayes, ...
trees,...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class

¢ Model Tree
* kNN
177
Example
» data about 80 people: Age and Height
Age | Height
B 3 1.03
5 119
6 126
15 5 | 139
s, 15 169
3 4 19 167
22 1.86
0.5 25 1.85
4| 159
0 ‘ 48 160
0 50 100 54 1.90
Age 71 182
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Test set
Age Height
2 0.85
10 1.4
35 1.7
70 1.6

Baseline numeric model

* Average of the target variable
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18

+ Height

o = Average predictor:

0 20 40 60 80
Age

100
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Baseline numeric predictor

* Average of the target variable is 1.63

18

02 + Height
-c ‘ ‘ = Average predictor|
age | veignt [Bacetne 20 40 60 80 100
2 | oes
Age
10 1.4 9

35 1.7

70 16
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Linear Regression Model

Height= 0.0056 * Age + 1.4181

25

N

A A ="

.c’ .* *.-l-‘-""‘, « ® o
15 ;-?Jr-

05 « Height —
= Prediction

0 T T T T
0 20 40 60 80 100

Age

Height

N

Model tree /‘\
/

-

Height

Height = Height =
0.0333 * Age 0.0011 * Age|
+1.1366 +1.6692
2
1.5
4
1 |
0.5
0 T T T T
0 20 40 60 80 100
Age
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Which predictor is the best?

Linear Regression
Age Height | Baseline |regression tree Model tree kNN

2 0.85] 1.63 1.43 1.39 1.20 1.01

10 1.4 | 1.63 1.47 1.46 1.47 1.51

35 1.7 ] 1.63 1.61 1.71 1.71 1.67

70 1.6 | 1.63 1.81 1.71 1.75 1.81
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Regression tree
=126 >125\
L)
=65 635 Height =
S wagisaany) 1709
= - Height= 2
ez s 404 AT
Height = Height = =
1.3932 1.4025 z é
05 * Height
™ Prediction
0 T
0 50 100
Age
184
kNN - K nearest neighbors
* Looks at K closest examples (by age) and predicts the
average of their target variable
e K=3
2.00
) 3
= 120 !
2 1.00
T 080 £
0.60 N —|
0.40 + Height =
020 = Prediction KNN, n=3 —
0.00 T T T T
0 20 40 60 80 100
Age
- - - - 186
Evaluating numeric prediction
Performance measure Formula

G-t -a)
n

mean-squared error

:,u. ~a) +.. (P8,
ﬂ
-+ &l

root mean-squared error

=
mean absolute error o —al

o-a)'+ ,»tpq—a,)

(2 a)<.-(a—a e la
wl}?ia.li; +(p, —8,)
Y (@-3) +. ~(ah—a\?
b-alt.. +1p, 4
lay—al+...+la, - &|
_Su
/565"

Vop

relative squared error

root relative squared error

relative absolute error

Z(p. pYa -3)
Z(a‘ ay

n-1

correlation coefficient , where Spz =

S pi-p)
Sp_—z":Tﬁ, and S,=
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Course Outline

I. Introduction 1ll. Regression
— Data Mining in a Nutshell (Kononenko Ch. 9.4)
— Predictive and descriptive DM

lechniCI_UeS IV. Descriptive DM
— Data Mining and KDD process — Predictive vs. descriptive induction
— DM standards, tools and — Subgroup discovery

visualization

(Mladenic et al. Ch. 1 and 11) - f‘,fj;’gfe",?k"o'g'ﬁ_ 'Sf’g')" "9
. . — Hierarchical clustering (Kononenko
Il. Predictive DM Techniques Ch. 12.3)
— Bayesian classifier
g<°'_‘°”e”_:f° C:“ 9.6) — V. Relational Data Mining
— Decision Tree leaming — RDM and Inductive Logic
(Mitchell Ch. 3, Kononenko Ch. 9.1) Programming (Dzeroski & Lavrac
— Classification rule learning Ch.3,Ch. 4)
(Kongqenko Ch. 9-2) Propositionalization approaches
- Classifier Evaluation — Relational subgroup discovery
(Bramer Ch. 6)
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Part IV. Descriptive DM techniques

:> * Predictive vs. descriptive induction
* Subgroup discovery

¢ Association rule learning

* Hierarchical clustering

189

Predictive vs. descriptive
induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing
* Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks
— Symbolic clustering, Association rule learning, Subgroup
discovery, ...
— Exploratory data analysis
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Descriptive DM

¢ Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

* Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used
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Descriptive DM

¢ Description
— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)
— Dependency analysis:
* describe associations, dependencies, ...
« discovery of properties and constraints

¢ Segmentation
— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)
— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Predictive vs. descriptive
induction: A rule learning
perspective

* Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction
tasks

* Descriptive induction: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria




Supervised vs. unsupervised learning:
A rule learning perspective

¢ Supervised learning: Rules are induced from labeled
instances (training examples with class assignment) -
usually used in predictive induction

193

Person | Age  Spect presc.Astigm._ Tear prod. _Lenses

of 17 myope no | reduced  NONE
oz 23 myope no  noma  SOFT
03 2 myope yes | reduced  NONE
04 27 myope yes | nomal  HARD
05 19 hypemetrope| no | reduced  NONE

06013
ot14 35 hypemetrope. no | nomal  SOFT
015 43 hypemetrope| yes  reduced  NONE
016 39 hypemetrope yes | nomal  NONE
o17 54 myope no | reduced  NONE

62 myope no | nomal  NONE

56 hypemetrope| yes | nomal  NONE
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Supervised vs. unsupervised learning:
A rule learning perspective

¢ Supervised learning: Rules are induced from labeled
instances (training examples with class assignment) -
usually used in predictive induction

¢ Unsupervised learning: Rules are induced from unlabeled
instances (training examples with no class assignment) -
usually used in descriptive induction

Person | Age | Spect. presc.Astigm. | Tear prod

o1 17 myope no | reduced
02 23 myope no  nomal
03 2 myope yes | reduced
o4 27 myope yes | normal
05 19 hypermetrope. no | reduced

06-013 . .

014 35 hypermetrope no normal
o15 43 hypermetrope yes | reduced
o16 39 hypemmetrope yes | normal
o17 54 myope no | reduced

o18 62 myope no | normal

024 56 hypemetrope| yes | normal

Supervised vs. unsupervised learning:
A rule learning perspective

* Supervised learning: Rules are induced from labeled
instances (training examples with class assignment) -
usually used in predictive induction

* Unsupervised learning: Rules are induced from unlabeled
instances (training examples with no class assignment) -
usually used in descriptive induction

¢ Exception: Subgroup discovery

195

Discovers individual rules describing interesting regularities

in the data from labeled examples
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Task reformulation: Binary Class Values

Person Age _ Spect. presc. Astigm. Tear prod. __Lenses

[ 17 myope no  reduced | NO
02 23 myope no | normal YES
03 22 myope yes | reduced | NO
04 27 myope yes | nomal | YES
05 19 hypemmetrope no | reduced | NO
06013 -
o4 35  hypermetrope| no | nomal | YES
015 43 hypermetrope yes  reduced | NO
016 39 hypermetrope yes | normal NO
o17 54 myope no  reduced | NO
o18 62 myope no  nomal NO
019-023 e
024 56 hypermetrope| yes | normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class

Subgroup Discovery

Poson e Spect proseAstgm _Tear pod [IBREE

01 17 myope | no | reduced || NO -

02 2 | mope | mo  noma | YES Subgroup Discovery
0z mope | yes | redwed | NO

04z mope | yes | noma | ¥ES

05 | 19 ypemetope o | roduced | NO
06013 o Class YES, Class NO
014 35 hypermetrope no normal YES

015 43 hypermetrope  yes reduced NO 2

016 39 hypemetrope  yes | normal NO

017 54 myope no. reduced NO

06 62 | myope | no | roma | MO
om0z

24 56 |hypermetrope  yes normal NO

¢ Atask in which individual interpretable patterns in the
form of rules are induced from data, labeled by a
predefined property of interest.

¢ SD algorithms learn several independent rules that
describe groups of target class examples
— subgroups must be large and significant
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Part IV. Descriptive DM techniques

¢ Predictive vs. descriptive induction
:>- Subgroup discovery

* Association rule learning

* Hierarchical clustering




Subgroup Discovery

Task definition (Kloesgen, Wrobel 1997)

Given: a population of individuals and a target
class label (the property of individuals we are
interested in)

Find: population subgroups that are statistically
most “interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)

Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Classification versus Subgroup Discovery

* Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent
e Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules
— aimed at finding interesting patterns in target class
examples
« large subgroups (high target class coverage)

« with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery

G S, Giass O]

L g
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Subgroup discovery task

Task definition for a use case of finding and
characterizing population subgroups with high
risk for coronary heart disease (CHD)

— Given: a population of individuals and a property of
interest (target class, e.g. CHD)

— Find: "most interesting’ descriptions of population
subgroups
e are as large as possible (high target class coverage)

* have most unusual distribution of the target
property (high TP/FP ratio, high significance)

Subgroup Discovery: Medical Use Case

* Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrag,
Krstagi¢)

* A1 for males: principal risk factors

CHD « pos. fam. history & age > 46
* A2 for females: principal risk factors
CHD « bodyMassIndex > 25 & age >63

* A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)

* A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight




Subgroup visualization

Subgroups of
patients with
CHD risk

]
subjects

[Gamberger, Lavrag
& Wettschereck,
IDAMAP2002]

¢ ‘Ordered’ rules are induced and interpreted
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

* Only first few rules induced by the covering
algorithm have sufficient support (coverage)

e Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

sequentially as a if-then-else decision list
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CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =
=p(ClasslCond) = (n_+1) / (n y.+k)
— CN2-SD: Weighted Relative Accuracy
WRAcc(Class « Cond) =
p(Cond) (p(ClassICond) - p(Class))
Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)
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Subgroups vs. classifiers

¢ Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
e Subgroups:
— Rules describing subgroups aim at significantly higher
proportion of positives
— Each rule is an independent chunk of knowledge
¢ Link
— SD can be viewed as

cost-sensitive positives
classification -
— Instead of FNcost we positives

aim at increased TPprofit
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

* Weighted covering algorithm

* Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

¢ Probabilistic classification

» Evaluation with different interestingness
measures
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CN2-SD: Weighted Covering

» Standard covering approach:
covered examples are deleted from current training set

* Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
¢ Additive weights: w(e, i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times




21

Subgroup Discovery

Positive examples Negative examples

212

Subgroup Discovery

. Rule1: Cl=+ < Cond6 AND Cond2
Positive examples 1 Negative examples

0 10
10 10
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Subgroup Discovery

Positive examples Negative examples

Rule2: Cl=+ « Cond3 AND Cond4

CN2-SD: Weighted WRAcc Search
Heuristic

* Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRACcc(Cl «— Cond) = p(Cond) (p(ClICond) - p(Cl))

increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRACcc(Cl «— Cond) = p(Cond) (p(CliCond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N")
— N’: sum of weights of examples
— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Subgroup Discovery

Positive examples Negative examples
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Subgroup visualization

all
q a2
ubjects Al A2

c
B1
B2
Al
81 B2 c1

=S The CHD task: Find,
l characterize and visualize

population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)




Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m? (typically 29)
AND
age over 63 years

Supporting characteristics (computed using X2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol

values.
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SD algorithms in the Orange DM
Platform

* SD Algorithms in Orange

— SD (Gamberger & Lavrag, JAIR 2002
— APRIORI-SD (Kavsek & Lavrag, AAlI 2006
— CN2-SD (Lavrac¢ et al., JMLR 2004): Adapting CN2
classification rule learner to Subgroup Discovery
* Weighted covering algorithm
* Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

SD algorithms in Orange and e
Orange4WS

¢ Orange * Oranged4WS (Podpecan
— classification and subgroup 2010)
discovery algorithms - Web service oriented
- d.ata n.unlhg workflows — supports workflows and
— visualization other Orange functionality
— developed at FRI, Ljubljana  _ jncludes also
* WEKA algorithms
« relational data mining
* semantic data mining with
ontologies
— Web-based platform is
under construction

Part IV. Descriptive DM techniques

¢ Predictive vs. descriptive induction
* Subgroup discovery

:>- Association rule learning
¢ Hierarchical clustering

Current platform and workflow =
developments

¢ CrowdFlows 2 e =
browser-based DM
platform (Kranjc et

al. 2012) -
¢ Semantic Subgroup
Discovery WOrkfIOWS o Widget repository Workflow canvas
(Vavpeti¢ et al.,
201 2) 2 s A G
4
e
2 2 & L 2R =1

Association Rule Learning
Rules: X =>Y, if Xthen'Y

XandY are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions LR S i50
itemsets (records) o1 0
t2 0 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
* Support: Sup(X,Y) = #XY/#D = p(XY)
¢ Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
=p(XY)/p(X) = p(YIX)
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Association Rule Learning:
Examples

* Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips
¢ Insurance
— mortgage & loans & savings = insurance (2%,
62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance

Association rule learning

e X=Y ...IFXTHENY, where Xand Y are itemsets
* intuitive meaning: transactions that contain X tend to contain Y

* ltems - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour
* Example transactions — itemsets formed of patient records

it i2 . i50
1 [ [
2 0 1 [

* Associationrules
spondylitic = arthritic & stiff_gt_1_hour  [5%, 70%]
arthrotic & spondylotic = stiff_less_1_hour [20%, 90%)]

224
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Association Rule Learning

Given: a set of transactions D
Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf
Itis a form of exploratory data analysis, rather than hypothesis
verification

Searching for the associations

¢ Find all large itemsets

* Use the large itemsets to generate
association rules

 If XY is a large itemset, compute
r =support(XY) / support(X)

e If r > MinConf, then X = Y holds
(support > MinSup, as XY is large)
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Large itemsets

* Large itemsets are itemsets that appear in at
least MinSup transaction

* All subsets of a large itemset are large
itemsets (e.g., if A,B appears in at least
MinSup transactions, so do A and B)

* This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)

Association vs. Classification

rules rules
* Exploration of * Focused prediction
dependencies * Predict one attribute
¢ Different combinations (class) from the others

of dependent and * Heuristic search (subset
independent attributes of rules found)

e Complete search (all
rules found)

228
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Part IV. Descriptive DM techniques

¢ Predictive vs. descriptive induction
* Subgroup discovery

¢ Association rule learning

:>- Hierarchical clustering

231
Hierarchical clustering
¢ Fusing the nearest pair of clusters
¢ Minimizing intra-cluster
similarity
¢ Maximizing inter-cluster
similarity
» Computing the dissimilaritiesj]
from the “new” cluster
233

Results of clustering

= —— T — - | A dondograrn of
T e LM z resistance vectors

Antitiotics: {EETALLAM,CE,CC,CPP.CIP,COLCPM,CT,GMMET HET P
Bacterum: 110 STAPHYLOCOCCUS AUREUS

[Bohanec et al., “PTAH:
A system for supporting
nosocomial infection
therapy”, IDAMAP
book, 1997]

From. 1-1-98 T0. 3-3-85 Samples: 79 ANBDIOBCE: 13 Bactena 1
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Hierarchical clustering
* Algorlthm (agglomerative . Dendogram
hierarchical clustering):
Each instance is a cluster;
repeat
find nearest pair Ciin Cj; ]
fuse Ciin C; in a new cluster &
Cr=CiUC; 1
determine dissimilarities between B
Crand other clusters; T
until one cluster left;
232
Hierarchical clustering: example
X ¥y Z WV ) 2 w v
x[ 0 @ 1 5 s y)| 0 141 5 sas
N y 0 41az 5 z 04w 5
i z 0un s w o @)
= - " o 4 v 0
TP v 0
Ty —
&) sampls protism b) dissimilarty matrix
)z (wy) (xy.2) (wv) e, s
e[ 0 QD s f
z 0 5 3
2
(wy) 0 T
1o
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Part V:
Relational Data Mining

=) What is RDM

* Propositionalization techniques
* Semantic Data Mining

¢ Inductive Logic programming

¢ Learning as search in Inductive Logic
Programming




Relational Data Mining (Inductive
Logic Programming) in a nutshell

A

discovery

3470 gt €

]
fsasfasorr i o meulm from data

Relational Data Mining

model, patterns, ...

Given: a relational database, a set of tables. sets of logical

facts, a graph, ...
Find: a classification model, a set of interesting patterns

Sample ILP problem:
East-West trains

epresentation

TRAIN_TABLE

JuND
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Relational Data Mining (ILP)

¢ Learning from multiple
tables
— patient records
connected with other
patient and
demographic
information
¢ Complex relational
problems:
— temporal data: time
series in medicine, ...
— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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epresentation

TRAIN_TABLE
JUND
E
E

CAR TRAIN  SHAPE

LENGTH _ROOF  WHEELS

el

t

rectangle

short

none

2

c2
3

u
u

rectangle
rectangle

long
short

none

peaked

3
2
2

ca

u

rectangle

long

none

CAR TRAIN _ SHAPE

LENGTH

ROOF _ WHEELS

e o rectangle
€2t rectangle

short

long

none 2

€3 6 rectangle
4 t1 | rectangle

short

long

peaked
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Part V:
Relational Data Mining

¢ What is RDM

:> Propositionalization techniques
¢ Semantic Data Mining

* Inductive Logic programming

¢ Learning as search in Inductive Logic
Programming




TRAIN_TABLE

JuND
E

CAR TRAIN _SHAPE _ LENGTH _ROOF _ WHEELS
€t rectangle short | none 2

Transform a multi-relational

(multiple-table) Bl « Erm . BT
representation to a ER T . W
propositional representation - E
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),
1BC (Flach and Lachiche 1999), ...
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Propositionalization in a nutshell
Main propositionalization step: — TRAIN TABLE
first-order feature construction : £
f1(T):-hasCar(T,C),clength(C,short). E—

f2(T):-hasCar(T,C), hasLoad(C,L), i v T v T v 5
loadShape(L,circle) — :Z:::t 7::: —T3

£3(T) o- ... @t rectangle short peaked

c4  t1  rectangle long none

Propositional learning:

() « f1(T), f4(T) PROPOSITIONAL TRAIN_TABLE

wain | M) 2T M [ am s
0 [ t [t f t t
Relational interpretation: ZEN ¢ ¢ t t
B8 [ f [ f t f f
eastbound(T) < w | ot | f t f f
hasShortCar(T),hasClosedCar(T). N

Relational Data Mining through
Propositionalization

Step 1

Propositionalization

Relational Data Mining through
Propositionalization

Step 1

1. constructing
relational features

2. constructinga
propositional table
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Relational Data Mining through
Propositionalization

Step 1

Propositionalization

Step 2

Data Mining

model, patterns, ...
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Relational Data Mining through
Propositionalization

Step 1

Propositionalization 1Y N ENENER

Step 2

Data Mining

patterns (set of rules)




RSD Lessons learned

Efficient propositionalization can be applied to
individual-centered, multi-instance learning problems:
— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)
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Relational Data Mining in Orange4WS

« service for propositionalization through efficient
first-order feature construction (Zelezny and Lavrag,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
¢ subgroup discovery using CN2-SD
mutagenic(M) « featurg: 21(M). feature235(M)

View table

e
Load datn ) = - a—Q
Propostonizaton  FiMaliiutes  Serisize Eramplehble  APnonSD  View nies
Lo bk e
e L
Soralze ErampleTiokz 01230
(7" 248

Baamcsaich op
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Part V:
Relational Data Mining

* Whatis RDM

* Propositionalization techniques
:> Semantic Data Mining

* Inductive Logic programming

* Learning as search in Inductive Logic
Programming
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What is Semantic Data Mining

* Ontology-driven (semantic) data mining is an
emerging research topic

e Semantic Data Mining (SDM) - a new term
denoting:
— the new challenge of mining semantically annotated

resources, with ontologies used as background
knowledge to data mining

— approaches with which semantic data are mined

What is Semantic Data Mining
SDM task definition

ontologies

annotations,
mappings

Semantic
data mining

Given:
= transaction data table, relational database,

text documents, Web pages, ...

= one or more domain ontologies
Find: a classification model, a set of patterns
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Semantic Data Mining in Orange4WS

* Exploiting semantics in data mining
— Using domain ontologies as background knowledge for
data mining
* Semantic data mining technology: a two-step
approach

— Using propositionalization through first-order feature
construction

— Using subgroup discovery for rule learning
¢ Implemented in the SEGS algorithm
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

12093 biological process -
1812 cellular components
7459 molecular functions

Joint work with . ' ;
Igor Trajkovski L e
and Filip Zelezny mwlem—
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations ol oo Bewen
between genes, can be viewed
as generalisations of individual
genes
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First order feature construction

First order features with support > min_support

(7,A):-function(A,'GO:0046872").
f(8,A):-function(A,'GO:0004871").
f(11,A):-process(A,'GO:0007165').
f(14,A):-process(A,'GO:0044267").
f(15,A):-process(A,'GO:0050874").
f(20,A):-function(A,'G0O:0004871"), process(A,'GO:0050874').
(26,A):-component(A,'GO:0016021").
f(29,A):- function(A,'G0:0046872'), component(A,'GO:0016020'
f(122,A):-interaction(A,B),function(B,'GO:0004872).
f(223,A):-interaction(A,B),function(B,'G0:0004871"),
S process(B,'G0:0009613").
f(224,A):-interaction(A,B),function(B,'G0O:0016787"),
component(B,'G0O:0043231").

existential

Propositional learning: subgroup
discovery
f1||£2 | £3]| £4 | £5 | £6 . | fn
gi|tffofoffr]2]1folo]1]o]1 Over-
expressed
g2| 0 1 1 0 1 1 0 0 0 1 1 0
IF
g3| o0 1 1 1 0 0 1 1 0 0 0 1
gd| 1 1 1 0 1 1 0 0 1 1 1 0 fzand f3
g5| 1 1 1 0 0 1 0 1 1 0 1 0 [4/0]

gl| 0 0|1 11010 0 1 0 0|01

g2| 1 1 0 0 1 1 0 1 0 1 1 1

g3| 0 o offo 110 0 1 1 1 0|0

gd| 1 0 1 1 1 0 1 0 0 1 0 1

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871")
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Propositionalization
diffexp g1 (gene64499) random g1 (gene7443)
diffexp g2 (gene2534) random g2 (gene9221)
diffexp g3 (gene5199) random g3 (gene2339)
diffexp g4 (gene1052) random g4 (gene9657)
diffexp g5 (gene6036) random g5 (gene19679)
£1 | £2 | £3 | £4 | £5 | £6 | .. .. | £n
gl 1 0 0 1 1 1 0 0 1 0 1 1
g2 0 1 1 0 1 1 0 0 0 1 1 0
g3 | o0 | 1|1 1] o0 ol 11|00 o | 1
g4 1 1 1 0 1 1 0 0 1 1 1 0
g5 | 1 1 1] 0] o 1| o0 1] 1 0 1 0
gl | o | 0|1 1|0 0| o |1 o | o o | 1
g2 1 1 0 0 1 1 0 1 0 1 1 1
g3 0 0 0 0 1 0 0 1 1 1 0 0
g4 1 0 1 1 1 0 1 0 0 1 0 1
258

Subgroup Discovery

diff. exp. genes Not diff. exp. genes

10 10
10 4o 10

1010 40 10
0
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Subgroup Discovery

CI=YES «f2 and f3

diff. exp. genes 1 Not diff. exp. genes

0 10
10 10

In RSD (using propositional learner CN2-SD):
Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights
*Precision = purity of the covered genes
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1010 44 10
0

1.0 10
10
10 1.0

1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy

Semantic Data Mining in two steps

e Step1: of genes such
as
interaction(g, G) & function(G, protein_binding)
(g interacts with another gene whose functions include protein binding)
and with features as
attributes

¢ Step 2: Using these features to
that are differentially expressed (e.g.,
belong to class DIFF.EXP. of top 300 most differentially
expressed genes) in contrast with RANDOM genes (randomly
selected genes with low differential expression).
e Sample subgroup description:
diffexp(A) :- interaction(A,B) AND

function(B,'GO:0004871') AND
process(B,'G0:0009613')

262

Summary: SEGS, using the RSD
approach

e The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

* The SEGS approach proved effective in several
biomedical applications (JBI 2008, ...)

¢ The work on semantic data mining - using ontologies as
background knowledge for subgroup discovery with SEGS - was
done in collaboration with |.Trajkovski, F. Zelezny and J. Tolar

* Recent work: Semantic subgroup discovery
implemented in Orange4WS
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Semantic subgroup discovery with
SEGS

* SEGS workflow is implemented in the Orange4WS
data mining environment

GG ENTREZ

Microarray Ranking of Construction
Data genes of gene sets
T

Enriched
gene sets

e SEGS is also implemented also as a Web
applications
(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)

From SEGS to SDM-SEGS: =
Generalizing SEGS

¢ SDM-SEGS: a general semantic data mining

Microarray Ranking-of Construction Enriched
Data genes. of gene sets gerie sets

* Discovers subgroups both for ranked and
labeled data

¢ Exploits input ontologies in OWL format
¢ |s also implemented in Orange4WS




Semantic Data Mining

¢ Semantic subgroup discovery (Vavpetic¢ et al., 2012)

Data Mining

Relational Subgroup Discovel

Semantic Web

267

Sample ILP problem:
Logic programming

E*={sort([2,1,3],11,2,3])}
E = {sort([2,1],[1]),so0rt([3,1,2],12,1,3])}

B definitions of permutation/2 and sorted/1
* Predictive ILP

sort (X,Y) <« permutation(X,Y), sorted(Y).
¢ Descriptive ILP
sorted(Y) < sort(X,Y).

permutation (X,Y) < sort(X,Y)
sorted(X) < sort(X,X)
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Sample relational problem:
Knowledge discovery

*= {daughter (mary, ann) ,daughter (eve, tom) }

{daughter (tom, ann),daughter (eve,ann) }

B= {mother (ann,mary) ,mother (ann, tom) , father (tom, eve),
father (tom, ian), female (ann), female (mary) , female (eve),
male (pat),male (tom),parent (X,Y)<«mother (X,Y),

parent (X,Y) «father (X,Y)}

E*=
E =

* Predictive ILP - Induce a definite clause
daughter (X,Y) <« female(X), parent(Y,X).
or a set of definite clauses
daughter (X,Y) « female(X), mother(Y,X).
daughter (X,Y) « female(X), father(Y,X).

* Descriptive ILP - Induce a set of (general) clauses
< daughter (X,Y), mother(X,Y).
female (X) < daughter (X,Y) .
mother (X,Y); father (X,Y) <« parent(X,Y).
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Part V:
Relational Data Mining

* What is RDM

* Propositionalization techniques
e Semantic Data Mining

:> Inductive Logic programming

* Learning as search in Inductive Logic
Programming
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Sample ILP problem:
Knowledge discovery

E *= {daughter (mary, ann) , daughter (eve, tom) }
E "= {daughter (tom, ann) ,daughter (eve, ann) }

B= {mother (ann,mary), mother (ann, tom),
father (tom,eve), father(tom,ian), female (ann),
female (mary), female(eve), male(pat),male(tom),
parent (X,Y) <« mother(X,Y), parent (X,Y) <«
father (X,Y) }

ann

. /tm\
eve ian
270
learning tasks
Predictive RDM
H

Descriptive RDM




Predictive ILP

s Given:
~ A set of obeervationa
* poshive sxamples E*
* negative sxampies £°

* Find:
A hypothesis H e L, h that {given 8) H
owmalpodm:uﬁdall;gn . exaﬁplaa

In logic, find H such that
- ¥ee E*:B A Hl=e (Hls complete)
- VYeec E:B A Hi*e {His consistent)

* InILP, Eare ground facts, B and H are

(sets of) definite clauses
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Predictive ILP

e Given:

— A set of observations

* positive examples E *

* negative examples E -
— background knowledge B
— hypothesis language L,
— covers relation
— quality criterion

¢ Find:
A hypothesis H e L, such that (given B) His
optimal w.r.t. some quality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H L,.,, such
that (given B) H covers all positive and no
negative examples)
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Descriptive ILP

* Given:
— A set of observations
(positive examples E *)
— background knowledge B
— hypothesis language L
— covers relation

¢ Find:
Maximally specific hypothesis H L,_,, such
that (given B) H covers all positive examples

In logic, find H such that Vc € H, cis true in
some preferred model of BUE (e.g., least
Herbrand model M (B UE))

In ILP, E are ground facts, B are (sets of)
general clauses

Sample problem:
East-West trains

RDM knowledge representation

(database)
LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT  NUMBER
n_ o circle 1
12 c2 _hexagon 1
13 c3 _triangle 1
14 c4 rectangle 3
;TAB)«E
CAR “TRAIN  SHAPE  LENGTH ROOF  WHEELS
el t1  rectangle  short _ none 2
c2 1 rectangle long none 3
c3  t1  rectangle  short  peaked 2
c4  t1_ rectangle long none 2
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ER diagram for East-West trains

Train
1
Has
<D
M

Car Load




ILP representation:

D
Example:
eastbound(t1).
Background theory:
car(t1,c1). cl
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).

two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).

load(c1,1). load(c2,12). load(c3,13). load(c4,14).
circle(I1). hexagon(l2).  triangle(I3). rectangle(l4).
one_load(I1). one_load(12). one_load(13). three_loads(l4).

Hypothesis (predictive ILP):
eastbound(T) :- car(T,C),short(C),not none(C).

e Example:

¢ Background theory: empty
¢ Hypothesis:
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eastbound(t1):-
car(t1,c1),rectangl B n n
load(c1,I1),circle(I1),one_load(I1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,12),hexagon(l2),one_load(2),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,13),triangle(I3),one_load(I3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,14),rectangle(l4),three_load(14).

eastbound(T):-car(T,C),short(C),not none(C).

ILP repres

e Example:

eastbound([c(rectanglel
c(rectangle,long,none,3,I(hexagon, 1)),

c(rectangle,short,peaked,2,|(triangle, 1)),
c(rectangle,long,none,2,(rectangle,3))]).

¢ Background theory: member/2, arg/3

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).

Propositionalization in ILP (LINUS) ~

Example: learning family relationships

Training examples

Background knowledge

daughter(sue,eve). (+) _[parent(eve,sue). female(ann).
daughter(ann,pat). (+) _|parent(ann,tom). female(sue).
daughter(tom,ann).  (-) _[parent(pat,ann). female(ewe).
daughter(eve,ann). () [parent(tom,sue).

Transformation to propositional form:

Class | Variables Propositional features
XY X)) | pXX) | pOXGY) [ p(Y.X) | p(Y.Y) | X=Y

sue | eve | true | true | false | false | true false false
pat | true | false | false | false | true false false

o|e|e
©
]
El

tom | ann | false | true | false | false | true false false
© |eve|ann| true | true | false | false | false | false false

Result of propositional rule learning:
Class = @ if (female(X) = true) A (parent(Y,X) = true
Transformation to program clause form:
daughter(X,Y) « female(X),parent(Y,X)
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First-order feature construction

* All the expressiveness of ILP is in the features
* Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)
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Declarative bias for first-order feature
construction

¢ InILP, features involve interactions of local variables
* Features should define properties of individuals (e.g. trains,

molecules) or their parts (e.g., cars, atoms)

» Feature construction in LINUS, using the following language

bias:

— one free global variable (denoting an individual, e.g. train)

— one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

— one or more utility predicates defining properties of individuals or their

parts: no new variables, just using variables
all variables should be used
parameter: max. number of predicates forming a feature
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Sample first-order features

* The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

¢ The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

e Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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LINUS revisited

e Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates
¢ Revisited LINUS:
— Systematic first-order feature construction in a given
language bias
¢ Too many features?
— use a relevancy filter (Gamberger and Lavrac)

285

LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarlLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).
Meaning:
eastbound(T):-
hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-
not (hasCar(T,C1),cshape(C1,ellipse)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Relational Data Mining in Orange4WS

and ClowdFlows
« service for propositionalization through efficient

first-order feature construction (Zelezny and Lavrag,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
* subgroup discovery using CN2-SD
mutaaenic(M) « featureL_z: 21(M), feature235(M)

Mutagenesis__

/2

view table

. o A

Proposianalizsbon Rt amributes  Ser

w—a

sevioriso view rules

(27 286

Part V:
Relational Data Mining

* What is RDM

* Propositionalization techniques
* Semantic Data Mining

* Inductive Logic programming

:> Learning as search in Inductive Logic
Programming
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Learning as search

* Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph
— nodes: concept descriptions (hypotheses/rules)
— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child
¢ Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}
* Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}
* Partial order of hypotheses defines a lattice
(called a refinement graph)




Learn-one-rule as search - Structuring the
hypothesis space: PlayGolf example

PlayGolf = yes IF
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PlayGolf = yes PlayGolf = yes
IF Wind=weak IF Humidity=high
PlayGolf = yes PlayGolf = yes
IF Wind=strong  IF Humidity=normal
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes
PlayGolf = yes PlayGolf = yes I Hgﬂﬁ;r{(::(;::\ al,
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:
PlayGolf example

PlayGolf = yes IF

[9+,5-](14)

PlayGolf = yes PlayGolf = yes
IF V7V|nd:weak IF Humidity=high
[6+.2-1(3) PlayGolf = yes PlayGolf = yes [3+:4-1(7)
IF Wind=strong ~ IF Humidity=normal
[3+31(6) [6+,1-1(7)
PlayGolf = yes
IF Humidity=normal,
Wind=weak PlayGolf = yes

IF Humidity=normal,

PlayGolf = yes PlayGolf = yes Outlook=rai
IF Humidity=normal,  IF Humidity=normal, uTlookzrain
Wind=strong Outlook=sunny

[2+.0-]1(2)

Learning as search
(Mitchell’s version space model)

* Hypothesis language Ly 0o general
defines the state space

* How to structure the
hypothesis space Ly?

* How to move from one
hypothesis to another?

complete and consis

* The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

0 O
@)
o

(©)
7
©) O
!! too specific
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more
general

more
specific
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Learning as search

* Search/move by applying
generalization and

specialization )
generalize

¢ Prune generalizations:
— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

¢ Prune specializations:
— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

(©)
o g .
) specialize
too specific
O

Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy

* depth-first

* breath-first

* heuristic search (best first, hill-climbing, beam search)
— search heuristics

* measure of attribute ‘informativity’

* measure of ‘expected classification accuracy’ (relative

frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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Learn-one-rule:
search heuristics

* Assume a two-class problem

* Two classes (+,-), learn rules for + class (Cl).

* Search for specializations R’ of a rule R = Cl < Cond
from the RuleBase.

* Specializarion R’ of rule R = Cl «- Cond

has the form R’ = Cl «- Cond & Cond’

» Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)




Learn-one-rule — Search strategy:
Greedy vs. beam search

¢ learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking
— e.g., the best descendant of the initial rule

PlayGolf = yes «

— is rule PlayGolf = yes «— Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates

¢ An ILP learner can be described by
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ILP as search of program clauses

the structure of the space of clauses
* based on the generality relation

e LetCand D be two clauses.
C is more general than D (C |= D) iff

covers(D) c covers(C)
* Example: p(X,Y) « r(Y,X) is more general than
P(X,Y) « r(Y,X), q(X)

its search strategy

 uninformed search (depth-first, breadth-first, iterative

deepening)

* heuristic search (best-first, hill-climbing, beam search)
its heuristics

* for directing search

« for stopping search (quality criterion)
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ILP as search of program clauses

* Semantic generality
Hypothesis H, is semantically more general than H, w.r.t.
background theory Bif and only if BuU H, = H,
» Syntactic generality or 0-subsumption
(most popular in ILP)
— Clause ¢, 8-subsumes ¢, (¢; = 4 C,)
if and only if 36: ¢,60 c ¢,
— Hypothesis H, > 0H,
if and only if V¢, € H, exists ¢, € H, such that ¢, > 6 ¢,
e Example
c1 = daughter(X,Y) « parent(Y,X)
c2 = daughter(mary,ann) « female(mary),
parentﬁann,mar X
parent(ann,tom).
c1 @-subsumes ¢, under 6= {X/mary,Y/ann}
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The role of subsumption in ILP

Generality ordering for hypotheses

Pruning of the search space:

— generalization
« if C covers a neg. example then its generalizations need
not be considered

— specialization
« if C doesn’t cover a pos. example then its specializations
need not be considered

Top-down search of refinement graphs
Bottom-up search of the hypo. space by
— building least general generalizations, and
— inverting resolutions

Structuring the
hypothesis space

R too general ¢
flies(X) « &
more
flies(X) « bird(X) .“0 o general
o 9

flies(X) « bird(X),
normal(X)

O

o

0o
more
‘ l
o

Q
> & specific
v
too specific
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Two strategies for learning

General-to-specific

— if ®-subsumption is used then refinement
operators

Specific-to-general search

— if ®-subsumption is used then Igg-operator or
generalization operator
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ILP as search of program clauses

* Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
¢ inverting resolution (CIGOL)
¢ inverting entailment (PROGOL)
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More general
(induction) D

More
specific .
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Generality ordering of clauses

Training examples Background knowledge

daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). @ parent(;
daughter(tom,ann). © | parent(tom,eve). female(eve).
( © | parent(tom,ian).

ann,tom). female(mary).

daughter(eve,ann).

daughter(X,Y) «

daughter(X,Y) ¢ X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) « Part of the refinement
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Greedy search of the best clause

Training examples Background knowledge

parent(ann,mary). female(ann.).
ann,tom). female(mary).

daughter(mary,ann). @ (

daughter(eve,tom). @® parent(;

daughter(tom,ann). © | parent(tom,eve). female(eve).
[ © | parent(tom,ian).

daughter(eve,ann).

daughter(X,Y) « 2/4

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z)
2/3

daughter(X,Y) « female(X)
2/3

daughter(X,Y) « daughter(X,Y) «
female (X) /3 female(X) 22

female(Y) parent(Y,X)

female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.
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¢ Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

¢ Algorithm: covering

» Search heuristics: weighted info gain

» Search strategy: hill climbing

Stopping criterion: encoding length restriction
Search space reduction: types, in/out modes
determinate literals

¢ Ground background knowledge, extensional
coverage

Implemented in C
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Part V: Summary

* RDM extends DM by allowing multiple tables
describing structured data

* Complexity of representation and therefore of
learning is determined by one-to-many links

* Many RDM problems are individual-centred
and therefore allow strong declarative bias




Advanced Topics

>Text mining: An introduction

* Document clustering and outlier detection
» Wordification approach to relational data mining

Background: Data mining

Porson | Age  Spoct prose AsiignTear prod _Temess discovery
or 1 Teducod  NONE

o2 2 myope no | noma  SOFT from data

05 |2 | myope | yes | redwes NONE

o |z yes | nomal  HARD

05 |19 ypermetiope no | reduced  NONE
06501 -

Ol 3 ypometope mo | romal  SOFT Data Mining

Ols 4 nypomstope yes | recuced  NONE

Of6 |39 ypermetrope yes | nomal  NONE

o7 | st | myope | no | redwed NONE

16 myope | no | nomal  NONE
019-023 model, patters, clusters,
02 |5 hypemerope yes | nomal  NONE

data

Given: transaction data table, a set of text documents, ...
Find: a classification model, a set of interesting patterns

Data mining: Task reformulation

Person Young Myope Astigm. euced tea  Lenses
o1 1 1 0 1 NO
02 1 1 0 0 YES
03 1 1 1 1 NO
04 1 1 1 0 YES
05 1 0 0 1 NO

06-013
014 0 0 0 0 YES
015 0 0 1 1 NO
016 0 0 1 0 NO
017 0 1 0 1 NO
018 0 1 0 0 NO

019-023 . .
024 0 0 1 0 NO

Binary features and class values

Text mining:

Words/terms as binary features

Document _ Word1 Word2 WordN Class
d1 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
d15 0 0 1 1 NO
d16 0 0 1 0 NO
d17 0 1 0 1 NO
d18 0 1 0 0 NO

d19-d23 .
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features

Text Mining from unlabeled data

Document  Word1 Word2 WordN [\ Class
d1 1 1 0 1
d2 1 1 0 0
d3 1 1 1 1
d4 1 1 1 0
d5 1 0 0 1

d6-d13
d14 0 0 0 0
d15 0 0 1 1
d16 0 0 1 0
d17 0 1 0 1
d18 0 1 0 0

d19-d23 . .
d24 0 0 1 0

Unlabeled data - clustering: grouping of similar instances

- association rule learning

Text mining

Gocument_Wordl __Word2 Vo (G
Step1 CIR— 1 CRE——
@ 1 1 0 o | ves
@ 1 1 1 1 NO
. a 1 1 1 o | ves
BoW vector construction & 1 0 3 1 No
doats .
a0 o o o | ves
as o 0 1 1 NO
a0 ) 1 o o
1. BoW features atr 0 1 [ 1 No
construction e ! L . O
2. Table of BoW vectors a4 ° o 1 ° o)
construction
Document_Wordi _ Word2 o |G
@i T T o T NO
@ 1 1 0 o | Yes
@ 1 1 1| e Step2
a 1 1 1 o | ves
& 1 0 3 1 NO o
613 Data Mining
d14 0 0 0 0 YES
a5 o 0 1 1 NO
a0 0 1 o o
a7 o 1 0 1 NO
R 1 ) 0 NO
e G i ; B model, patterns, clusters,




Text Mining Stemming and Lemmatization

« Feature construction » Different forms of the same word usually
— StopWords elimination problematic for text data analysis
— Stemming or lemmatization — because they have different spelling and similar meaning (e.g.

. X learns, learned, learning,...)
— Term construction by frequent N-Grams construction

. — usually treated as completely unrelated words
— Terms obtained from thesaurus (e.g., WordNet)

» Stemming is a process of transforming a word into

* BoW vector construction its ste.m )
— cutting off a suffix (eg., smejala -> smej)
« Mining of BoW vector table . Len:jn)atlzgtlon is alprog?ss of transforming a
— Feature selection, Document similarity computation word into its normalized form

— Text mining: Categorization, Clustering, Summarization, — replacing the word, most often replacing a suffix (eg.,
smejala -> smejati)

Bag-of-Words document

Word weightin
representation 9 9

¢ In bag-of-words representation each word is represented
as a separate variable having numeric weight.

0 | learning * The most popular weighting schema is normalized word
3| journal frequency TFIDF:
2 intelligence N
g . _
Journal of Artificial lmen% 0| text tfldf(W) = lf lOg( 7)
0 agent df (W)
Tas 1| internet .

i Ts distributed L] 0 \l::ebrw];ewher — Ti(w) — term frequency (number of word ocgurrences in a

e Eethoams | document)
0 perls

of the journdTTs also published by Morgan - Df(vg)—document equency (number of dociiments containing the
wor
Kaufman..., .

— N —number of &l documents
— Tfidf(w) — relative importance of the word in the document

volume

— -

The word is more important if it appears The word is more important if it
several times in a target document appears in less documents

Cosine similarity between

document vectors Advanced Topics

 Each document D is represented as a vector of * Text mining: An introduction
TF-IDF weights ™) Document clustering and outlier detection
¢ Similarity between two vectors is estimated by the * Wordification approach to relational data mining

similarity between their vector representations
(cosine of the angle between the two vectors):

Similarity (D, 1),) = ——————=




Document clustering

* Clustering is a process of finding natural groups in
data in a unsupervised way (no class labels pre-
assigned to documents)

¢ Document similarity is used

* Most popular clustering methods:

— K-Means clustering
— Agglomerative hierarchical clustering
— EM (Gaussian Mixture)

Document clustering with OntoGen
ontogen.ijs.si

Topic Identification

Topic A

Domain

Topic C

Slide adapted from D. Mladeni¢, JSI

Using OntoGen for clustering
PubMed articles on autism

Work by
Petri¢ et al. 2009

www.ontogen.si
Fortuna, Mladenic,
Grobelnik 2006

K-Means clustering in OntoGen

OntoGen uses k-Means clustering for semi-automated
topic ontology construction
* Given:
— set of documents (eg., word-vectors with TFIDF),
— distance measure (eg., cosine similarity)
— K - number of groups
* For each group initialize its centroid with a random
document
* While not converging

— each document is assigned to the nearest group
(represented by its centroid)

— for each group calculate new centroid (group mass point,
average document in the group)

Detecting outlier documents

* By classification noise detection on a domain
pair dataset, assuming two separate document
corporaAand C

@ Classified
A

# Classified
=

O(A

Outlier detection for cross-domain
knowledge discovery

2-dimensional
projection of
documents (about
autism (red) and
calcineurin (blue).
Outlier documents
are bolded for the
user to easily spot
them.

Our research
has shown that
most domain
bridging terms
appear in outlier
3 documents.
: i | (Lavrag, Sluban,
> o Grdar, Jursi¢ 2010)



http://www.ontogen.si/

Using OntoGen for outlier
document identification

Text corpus Outlier Identification

Concept A'

Concept C'

Slide adapted from D. Mladeni¢, JSI

NoiseRank on news articles

Articles on Kenyan elections: local vs. Western media

Rank | class | ID | Detected by:

2
2 1o 101 _ sayes _ ®F100___ RF500. svM____svmEasy_
1. Lo 173 __Bayes  RF100___ RF500. svM___svmEasy_
5. WE 348 __Bayes_  RF100___ RF500 svM___ avmBasy_
5 WE 326 _ Bayes__ RF100___ RF500 svM___ svMEasy_
7 WE 357 __Bayes_  RF100___ RFS00, svM___satFilt_
B WE 410 __Bayes_ RF100___ RFS00 svmM___svmEasy_
. o 21 __RF100___ RFS00 sVM___ svMEasy_

10. o 4 __Bayes_ RF500 BVM___sVMEasy_

11. o 68 __=F100___ =®F500 svM___svmEasy_

12. Lo 162 _ mayes  =RP500 svM___svMEasy_

13, WE 358 __Bayes_ RF100___ RF500 sve__

14, WE 464 __RF100___ RFS500, svM___ svMEasy_

1s. 1o 1s3 _ sayes svmM____svmEa:

16. Lo 201 _ RF100___ RPS00__ Satpili

7. WE 238 __RF100___ RFS00, svi___

18. WE 364 _ Bayes_ RFS00, avM___

1. WE 370 _ Bayes__ RF100, svm__

20. WE 370 RF100___RFS00__ SVMEasy_

Advanced Topics

* Text mining: An introduction
* Document clustering and outlier
:>Wordification approach to relational data mining

NoiseRank: Ensemble-based noise
and outlier detection

Misclassified document
detection by an
ensemble of diverse
classifiers (e.g., Naive
Bayes, Random Forest,
SVM, ... classifiers)
Ranking of misclassified
documents by “voting”
of classifiers

— %

Hoie Rarkrg et

NoiseRank on news articles

Article 352: Out of topic
The article was later indeed
removed from the corpus
used for further linguistic
analysis, since it is not
about Kenya(ns) or the
socio-political climate but
about British tourists or
expatriates’ misfortune.

¢ Article 173: Guest
journalist
Wrongly classified because it
could be regarded as a
“Western article” among the
local Kenyan press. The
author does not have the
cultural sensitivity or does not
follow the editorial guidelines
requiring to be careful when
mentioning words like tribe in
negative contexts. One could
even say that he has a kind
of “Western” writing style.

Motivation

* Develop a RDM technique inspired by text

mining

e Using a large number of simple, easy to
understand features (words)

* Improved scalability, handling large datasets

* Used as a preprocessing step to propositional

learners
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Wordification Methodology

« Transform a relational database to a document
corpus

» For each individual (row) in the main table, concatenate
words generated for the main table with words generated
for the other tables, linked through external keys

i | —> [ Fealure vector -
L [ ‘ —> | Feature vector )

= :‘ —> | Feature vector | o -
|:| B :

Wordification Methodology

¢ One individual of the main data table in the

relational database ~ one text document

* Features (attribute values) ~ the words of this

document

¢ |Individual words (called word-items or witems)

are constructed as combinations of:

(table name]_|attribute name_[valuel

* n-grams are constructed to model feature

Wordification Methodology

« Transform a relational database to a document
corpus

» Construct BoW vectors with TF-IDF weights on
words

(optional: Perform feature selection)

« Apply text mining or propositional learning on BoW
table

dependencies:
[witem|-[witems]- ... [witem,,]
Wordification
CAR
TRAIN car[D  shape roof wheels  train
trainlD  eastbound cll rectangle none 2 t1
tl east cl2 rectangle  peaked 3 t1
5 west c51 rectangle none 2 t5
5 2 5

c52 hexagon  flat

t1: [car_roof_none, car_shape_rectangle, car_wheels_2,
car_roof_none__car_shape_rectangle,
car_roof_none__car_wheels_2,
car_shape_rectangle__car_wheels_2,

car_roof_peaked, car_shape_rectangle,

car_wheels_3, car_roof_peaked__car_shape_rectangle,
car_roof_peaked__car_wheels_3,
car_shape_rectangle__car_wheels_3], east

Wordification

t1: [car_roof_none, car_shape_rectangle, car_wheels_2,
car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,
car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle,
car_wheels_3, car_roof_peaked__car_shape_rectangle,
car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

t5: [car_roof_none, car_shape_rectangle, car_wheels_2,
car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,
car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon,
car_wheels_2, car_roof_flat__car_shape_hexagon,
car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], west

TF-IDF calculation for BowW vector construction:

carshape | carroof | carowheels3 | car_roof peaked_ car_shape_rectangle oo | class
_rectangle | _peaked car_shape_rectangle _car_wheels 3
0000 0693 | 0693 0,603 0697 et
5 | 0000 0000 | 0000 0.000 0.000 | west

TF-IDF weights

* No explicit use of existential variables in
features, TF-IDF instead

* The weight of a word indicates how relevant is
the feature for the given individual

* The TF-IDF weights can then be used either for
filtering words with low importance or for using
them directly by a propositional learner (e.g. J48)




Experiments

¢ Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

* Results (using J48 for propositional learning)

Experiments

¢ Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

* Results (using J48 for propositional learning)
— first applying Friedman test to rank the algorithms,

— then post-hoc test Nemenyi test to compare multiple
algorithms to each other

Experiments

* Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

Measure = CA MEASURE = RUN-TIME

CD = 1.77 CD =177
—_— —

4 3 i 4 3 2 1
[E— L | |

Wordification (1.9) "\ L Wordification (1.0)
AlephFeaturize (2.5) AlephFeaturize (2.9)

RSD (2.7) RSD (3.0)
RelF (2.9) RelF (3.1)

=)

Ewvimauvimaanmia

Domain Algorithm __ J48-Accuracy[ %] J38-AUC _ Run-Gme[s]
Wardicaion 3500 ST o
without position RelF 6500 065 104
RSD 6500 068 053
AlephFeaturize 75.00 082 0.40
Trains Wardification 9500 091 012
RelF 6500 062 1.06
RSD 5000 053 047
AlephFeaurize 8500 074 038
Mutagenesis$2  Wordification 9762 093 039
RelF 8095 059 21
RSD o7.62 093 263
AlephFeaturize 97.62 093 20
Mutagenesis1SS  Wordification 9574 090 165
RelF 7553 079 776
RSD 915 091 10.10
AlephFeaturize 8723 088 1927
IMDB Wordification 34 019 123
RelF 7952 073 3249
RSD 7349 047 433
AlephFeaturize 7349 047 496
Carcinogenesis  Wardification 6109 062 179
RelF 5471 0s3 16.44
RSD 5805 0356 9.29
AlephFeaturize 5532 049 10470
Financial Waordification 8675 048 465
RelF 97.00 091 26003
RSD 8675 048 53368
AlephFeaturize 8675 048 52586

Use Case: IMDB

IMDB subset: Top 250 and bottom 100 movies
Movies, actors, movie genres, directors, director genres
Wordification methodology applied

Association rules learned on BoW vector table

Use Case: IMDB

goodMovie + director_genre drama, movie genre thriller,
director name AlfredHitchcock. (Support: 5.98% Confidence: 100.00

movie_genre_drama ¢ goodMovie, actor_name RobertDeliro.

(Support: 3,69% Confidence: 100.00%)

director name AlfredHitchcock ¢ actor_name AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director name StevenSpielberg + goodMovie, movie_genre_adventure,
ce: 10.00%) actor name TedGrossman.

(Support: 1.70% Con




Wordification implemented in
ClowdFlows

¢ Propositionalization through wordification, available
at http://clowdflows.org/workflow/1455/

o W=
e

Build Classifier

Wordification

June 28, 2013 DAIS Konstanz
Summary

— Wordification methodology
— Implemented in ClowdFlows
— Allows for solving non-standard RDM tasks, including RDM

clustering, word cloud visualization, association rule
learning, topic ontology construction, outlier detection, ...

c;j‘:;«.% °%, “~  cars_Pesition_2
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Evaluation implemented in ClowdFlows

¢ Wordification and propositionalization algorithms
comparison, available at
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