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Jožef Stefan Institute and IPS 

• Jožef Stefan Institute (JSI, founded in 1949) 

– named after a distinguished physicist  

 Jožef Stefan (1835-1893)  

– leading national research organization in natural sciences 
and technology (~700 researchers and students) 

• JSI research areas 

– information and communication technologies 

– chemistry, biochemistry & nanotechnology 

– physics, nuclear technology and safety 

• Jožef Stefan International Postgraduate School (IPS, 
founded in 2004)  

– offers MSc and PhD programs (ICT, nanotechnology, 
ecotechnology) 

– research oriented, basic + management courses 

– in English 
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Jožef Stefan Institute 

Department of Knowledge Technologies 

• Head: Nada Lavrač, Staff: 30 researchers, 10 students  

• Machine learning & Data mining  
– ML (decision tree and rule learning, subgroup discovery, …) 

– Text and Web mining  

– Relational data mining - inductive logic programming  

– Equation discovery  

• Other research areas: 
– Knowledge management  

– Decision support 

– Human language technologies  

• Applications:  
– Medicine, Bioinformatics, Public Health  

– Ecology, Finance, … 
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Course Outline 

I. Introduction 

– Data Mining in a Nutshell 

– Predictive and descriptive DM 
techniques 

– Data Mining and KDD process 

– DM standards, tools and 
visualization 

 (Mladenić et al. Ch. 1 and 11) 

 

II. Predictive DM Techniques 

– Bayesian classifier     
(Kononenko Ch.  9.6) 

– Decision Tree learning  

     (Mitchell Ch. 3, Kononenko Ch. 9.1) 

– Classification rule learning 
(Kononenko Ch. 9.2) 

– Classifier Evaluation  

     (Bramer Ch. 6) 

III. Regression  

(Kononenko Ch. 9.4) 

 

IV. Descriptive DM 

– Predictive vs. descriptive induction 

– Subgroup discovery 

– Association rule learning 
(Kononenko Ch. 9.3) 

– Hierarchical clustering (Kononenko 
Ch. 12.3) 

 

– V. Relational Data Mining 

– RDM and Inductive Logic 
Programming (Dzeroski & Lavrac 
Ch. 3, Ch. 4) 

– Propositionalization approaches  

– Relational subgroup discovery 

5 

Part I. Introduction 

• Data Mining in a Nutshell 

• Predictive and descriptive DM techniques 

• Data Mining and the KDD process 

• DM standards, tools and visualization 
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Basic Data Mining Task 

data 

Data MiningData Mining  

knowledge discovery 

from data 

model, patterns, … 

Input: transaction data table, relational database, text documents, Web pages  

Goal: build a classification model, find interesting patterns in data, ... 
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Data Mining  and Machine Learning 

• Machine learning techniques 

– classification rule learning 

– subgroup discovery  

– relational data mining and 

ILP 

– equation discovery 

– inductive databases 

• Data mining and decision 

support integration 

• Data mining applications  

– medicine, health care 

– ecology, agriculture 

– knowledge management, 

virtual organizations 
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Relational data mining: domain 

knowledge = relational database 

Data  

mining 

Background  

knowledge 

patterns  

odel 

patterns  

model 

data 
domain  

knowledge 
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Semantic data mining: domain 

knowledge = ontologies 

Data  

mining 

Domain  

knowledge 

patterns  

odel 

patterns  

model 

data ontologies 
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Basic DM and DS Tasks 

data 

Data MiningData Mining  

knowledge discovery 

from data 

experts 

Decision SupportDecision Support  

mutli-criteria modeling 

models 

model, patterns, … 

Input: transaction data table, relational database, text documents, Web pages  

Goal: build a classification model, find interesting patterns in data, ... 

Input: expert knowledge about data and decision alternatives 

Goal: construct decision support model – to support the evaluation and        

choice of best decision alternatives 
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Decision support tools: DEXi 

DEXi supports : 
• if-then analysis 
• analysis of stability 
• Time analysis 
• how  explanation 
• why explanation 

Horm onal

c ircum stances

Personal

characteris tics O ther

M enstrual

cyc le
Fertility

O ral

contracept.

RIS K

Cancerog.

exposure

Fertility

duration

Reg. and

stab. o f m en.

Age

Firs t de livery

# deliveries

Q uete l's

index

Fam ily

h is tory

Dem ograph.

c ircum stance

Phys ica l

fac tors

Chem ical

factors
M enopause
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DM and DS integration 

Data  

mining 

Decision  

support 

patterns  

odel 

patterns  

model 

data 
expert 

 knowledge 
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Basic Text and Web Mining Task 

TextText//Web Web MiningMining  

knowledge discovery 

from text data and Web 

model, patterns, … 

Input: text documents, Web pages  

Goal: text categorization, user modeling, data visualization... 

documents 

Web pages 
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Text Mining (lectures by D. Mladenić) 

SEKTbar 

Document-Atlas 

Contexter 

OntoGen 

Semantic-Graphs 

Content-Land 
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Knowledge Technologies:  

Main research areas & IPS lectures 

ICT3 

Knowledge Technologies 

(AI, Intelligent Systems)  

Data Mining and  

Knowledge Discovery  

 Lavrač 

Computational  

Scientific  

Discovery  

Džeroski 

Human  

Language  

Technologies 

Erjavec 

Decision  

Support 

Bohanec 

Text 

Mining 

Mladenić 

Multiobjective  

Optimization 

Filipič 
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http//:videolectures.net 

videolectures.net portal 
 

~ 10,000 lectures 
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Selected Publications 
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Part I. Introduction 

• Data Mining in a Nutshell 

• Predictive and descriptive DM techniques 

• Data Mining and the KDD process 

• DM standards, tools and visualization 
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What is DM 

• Extraction of useful information from data: 

discovering relationships that have not 

previously been known 

• The viewpoint in this course: Data Mining is 

the application of Machine Learning 

techniques to solve real-life data analysis 

problems 
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Data Mining in a Nutshell 

data 

Data MiningData Mining  

knowledge discovery 

from data 

model, patterns, … 

Given: transaction data table, relational database, text  

       documents, Web pages  

Find: a classification model, a set of interesting patterns  

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Data Mining in a Nutshell 

data 

Data MiningData Mining  

knowledge discovery 

from data 

model, patterns, … 

Given: transaction data table, relational database, text  

       documents, Web pages  

Find: a classification model, a set of interesting patterns  

 new unclassified instance classified  instance 

black box classifier 

no explanation 

symbolic model  

symbolic patterns  

  explanation 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Simplified example: Learning a classification 

model from contact lens data 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

23 

Simplified example: Learning a classification 

model from contact lens data 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data MiningData Mining  
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Task reformulation: Binary Class Values 

Binary classes (positive vs. negative examples of Target class)  

  - for Concept learning – classification and class description   

  - for Subgroup discovery – exploring patterns  

    characterizing groups of instances of target class 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Learning from Numeric Class Data 

Numeric class values – regression analysis 

Person Age Spect. presc. Astigm. Tear prod. LensPrice

O1 17 myope no reduced 0

O2 23 myope no normal  8

O3 22 myope yes reduced 0

O4 27 myope yes normal 5

O5 19 hypermetrope no reduced 0

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal 5

O15 43 hypermetrope yes reduced 0

O16 39 hypermetrope yes normal 0

O17 54 myope no reduced 0

O18 62 myope no normal 0

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal 0
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Learning from Unlabeled Data 

   Unlabeled data - clustering: grouping of similar instances  

         - association rule learning 
                 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Data Mining: Related areas 

Database technology 

and data warehouses 

• efficient storage, 

access and 

manipulation 

of data 
DM 

statistics 

machine 

learning 

visualization 

text and Web 

mining 

soft 

computing pattern 

recognition 

databases 
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Statistics,  

machine learning, 

pattern recognition 

and soft computing*  

• classification 

techniques and 

techniques for 

knowledge extraction 

from data 

 

* neural networks, fuzzy logic, genetic 

  algorithms, probabilistic reasoning 

DM 

statistics 

machine 

learning 

visualization 

text and Web 

mining 

soft 

computing pattern 

recognition 

databases 

Related areas 
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DM 

statistics 

machine 

learning 

visualization 

text and Web 

mining 

soft 

computing pattern 

recognition 

databases 

Related areas 

Text and Web mining 
• Web page analysis 

• text categorization 

• acquisition, filtering 
and structuring of 
textual information 

• natural language 
processing 

text and Web 

mining 
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Related areas 

Visualization  

• visualization of data 

and discovered 

knowledge 

 

 
DM 

statistics 

machine 

learning 

visualization 

text and Web 

mining 

soft 

computing pattern 

recognition 

databases 
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Point of view in this course 

Knowledge 

discovery using 

machine 

learning 

methods 

 

 

DM 

statistics 

machine 

learning 

visualization 

text and Web 

mining 

soft 

computing pattern 

recognition 

databases 

32 

Data Mining, ML and Statistics 

• All three areas have a long tradition of developing 
inductive techniques for data analysis. 

– reasoning from properties of a data sample to 
properties of a population 

• DM vs. ML - Viewpoint in this course:  

– Data Mining is the application of Machine Learning 
techniques to  hard real-life data analysis problems 

33 

Data Mining, ML and Statistics 

• All three areas have a long tradition of developing 
inductive techniques for data analysis. 

– reasoning from properties of a data sample to 
properties of a population 

• DM vs. Statistics: 

– Statistics  

• Hypothesis testing when certain theoretical 
expectations about the data distribution, 
independence, random sampling, sample size, etc. 
are satisfied 

• Main approach: best fitting all the available data 

– Data mining 

• Automated construction of understandable 
patterns, and structured models 

• Main approach: structuring the data space, 
heuristic search for decision trees, rules, …  
covering (parts of) the data space 

34 

Part I. Introduction 

• Data Mining in a Nutshell 

• Predictive and descriptive DM techniques  

• Data Mining and the KDD process 

• DM standards, tools and visualization 
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Types of DM tasks  
• Predictive DM: 

– Classification (learning of rules, decision 

trees, ...) 

– Prediction and estimation (regression) 

– Predictive relational DM (ILP)  

• Descriptive DM: 

– description and summarization  

– dependency analysis (association rule 

learning) 

– discovery of properties and constraints 

– segmentation (clustering) 

– subgroup discovery 

 

 

+ 
+ 

+ 

- - 
- 

H 

x 
x 

x x 

+ 
x 
x x 

H 
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Predictive vs. descriptive DM 

Predictive DM 

 

                                                                                                     

 

 

Descriptive DM 
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Predictive vs. descriptive DM 

• Predictive DM: Inducing classifiers for solving 

classification and prediction tasks,  

– Classification rule learning, Decision tree learning, ... 

– Bayesian classifier, ANN, SVM, ... 

– Data analysis through hypothesis generation and testing 

• Descriptive DM: Discovering interesting regularities in 

the data, uncovering patterns, ... for solving KDD tasks 

– Symbolic clustering, Association rule learning, Subgroup 

discovery, ... 

– Exploratory data analysis 

38 

Predictive DM formulated as a  

machine learning task: 

• Given a set of labeled training examples (n-tuples of 
attribute values, labeled by class name)  

                         A1        A2        A3         Class 

example1     v1,1       v1,2           v1,3                C1 

example2     v2,1       v2,2           v2,3                C2 

. .  

• By performing generalization from examples 
(induction) find a hypothesis (classification rules, 
decision tree, …) which explains the training 
examples, e.g. rules of the form: 

 (Ai = vi,k) & (Aj = vj,l) & ...  Class = Cn   

39 

Predictive DM - Classification 

• data are objects, characterized with attributes - 

they belong to different classes (discrete labels) 

• given objects described with attribute values, 

induce a model to predict different classes 

• decision trees, if-then rules, discriminant 

analysis, ... 

40 

Data mining example 

Input: Contact lens data 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Contact lens data: Decision tree 

tear prod. 

astigmatism 

spect. pre. 

NONE 

NONE 

reduced 

no yes 

normal 

hypermetrope 

SOFT 

myope 

HARD 

Type of task: prediction and classification 

Hypothesis language: decision trees 

 (nodes: attributes, arcs: values of attributes,   

  leaves: classes) 

42 

Contact lens data:  

Classification rules 
 

 

 

Type of task: prediction and classification 

Hypothesis language: rules X  C,  if X then C  
 X conjunction of attribute values, C class  
 

tear production=reduced → lenses=NONE  

tear production=normal & astigmatism=yes &  

 spect. pre.=hypermetrope → lenses=NONE   

tear production=normal & astigmatism=no → 

lenses=SOFT   

tear production=normal & astigmatism=yes &  

 spect. pre.=myope → lenses=HARD  
DEFAULT lenses=NONE 
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Task reformulation: Concept learning problem  
(positive vs. negative examples of Target class) 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NO

O2 young myope no normal  YES

O3 young myope yes reduced NO

O4 young myope yes normal YES

O5 young hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal YES

O15 pre-presbyohypermetrope yes reduced NO

O16 pre-presbyohypermetrope yes normal NO

O17 presbyopic myope no reduced NO

O18 presbyopic myope no normal NO

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NO
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Contact lens data:  

Classification rules in concept learning 
 

 

  

Type of task: prediction and classification 
Hypothesis language: rules X  C,  if X then C  
 X conjunction of attribute values, C target class  

 

Target class: yes 

 

    tear production=normal & astigmatism=no →  

  lenses=YES   

 tear production=normal & astigmatism=yes &  

  spect. pre.=myope → lenses=YES 

 else NO 
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Illustrative example: 

Customer data 

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data: Decision trees 

Income 

Age 

no 

yes 

  102000   102000 

 58   58 

yes 

Gender 

Age 

no 

no 

 = female  = male 

 49   49 

yes 
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Predictive DM - Estimation 

• often referred to as regression 

• data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 

(numeric) 

• given objects described with attribute values, induce a 

model to predict the numeric class value 

• regression trees, linear and logistic regression, ANN, 

kNN, ... 
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Estimation/regression example: 

Customer data 

Customer Gender Age Income Spent

c1 male 30 214000 18800

c2 female 19 139000 15100

c3 male 55 50000 12400

c4 female 48 26000 8600

c5 male 63 191000 28100

O6-O13 ... ... ... ...

c14 female 61 95000 18100

c15 male 56 44000 12000

c16 male 36 102000 13800

c17 female 57 215000 29300

c18 male 33 67000 9700

c19 female 26 95000 11000

c20 female 55 214000 28800
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Customer data:  

regression tree 

Income 

Age 

16500 

12000 

  108000   108000 

 42.5  42.5 

26700 

In the nodes one usually has  

Predicted value +- st. deviation 
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Predicting algal biomass: regression 

tree 

Month 

Ptot 

2.341.65 Ptot 

Si 

Si 
2.08 0.71 2.971.09 

Ptot 4.322.07 

0.700.34 1.150.21 

1.281.08 

Jan.-June 

> 9.34  10.1 >10.1 

July - Dec. 

> 2.13 
 2.13 

  9.1 > 9.1 

 9.34 

 5.9 > 5.9 
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Descriptive DM: 

Subgroup discovery example - 

Customer data 

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data:  

Subgroup discovery 

Type of task: description (pattern discovery) 

Hypothesis language: rules X  Y,  if X then Y   

     X is conjunctions of items, Y is target class 

 
 Age  52 & Sex = male   BigSpender = no  

 

 Age  52 & Sex = male & Income  73250  

      BigSpender = no  
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Descriptive DM: 

Clustering and association rule learning 

example - Customer data 

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Descriptive DM: 

Association rule learning example - 

Customer data 

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data:  

Association rules 

Type of task: description (pattern discovery) 

Hypothesis language: rules X  Y,  if X then Y   

     X, Y conjunctions of items  

 
1. Age  52 & BigSpender = no  Sex = male  

2. Age  52 & BigSpender = no   

  Sex = male & Income  73250 

3. Sex = male & Age  52 & Income  73250   

  BigSpender = no  

56 

Predictive vs. descriptive DM: 

Summary from a rule learning 

perspective 

• Predictive DM: Induces rulesets acting as classifiers 
for solving classification and prediction tasks 

• Descriptive DM: Discovers individual rules 
describing interesting regularities in the data 

 

• Therefore: Different goals, different heuristics, 
different evaluation criteria 
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Relational Data Mining (Inductive Logic 

Programming) in a Nutshell 

Relational Relational Data MiningData Mining  

knowledge discovery 

from data 

model, patterns, … 

Given: a relational database, a set of tables. sets of logical 

facts, a graph, … 

Find: a classification model, a set of interesting patterns  

58 

Relational Data Mining (ILP) 

• Learning from multiple 

tables 

• Complex relational 

problems: 

– temporal data: time 

series in medicine, trafic 

control, ...  

– structured data: 

representation of 

molecules and their 

properties in protein 

engineering, 

biochemistry, ... 

59 

Relational Data Mining (ILP) 

60 

ID Zip Sex Soc St Income Age Club Resp 

... ... ... ... ... ... ... ... 

3478 34667 m si 60-70 32 me nr 

3479 43666 f ma 80-90 45 nm re 

... ... ... ... ... ... ... ... 

Basic table for analysis 
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ID Zip Sex Soc St Income Age Club Resp 

... ... ... ... ... ... ... ... 

3478 34667 m si 60-70 32 me nr 

3479 43666 f ma 80-90 45 nm re 

... ... ... ... ... ... ... ... 

 
Data table presented as logical facts (Prolog format) 

customer(Id,Zip,Sex,SoSt,In,Age,Club,Re) 

 

Prolog facts describing data in Table 2: 

customer(3478,34667,m,si,60-70,32,me,nr). 

customer(3479,43666,f,ma,80-90,45,nm,re). 

 

Expressing a property of a relation: 
customer(_,_,f,_,_,_,_,_). 
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Relational Data Mining (ILP) 

Logic programming: 

• Predicate symbol p 

• Argument of predicate p 

• Ground fact p(v1, ..., vn) 

• Definition of predicate p  

• Set of ground facts 

• Prolog clause or a set of Prolog 

clauses  

 

Example predicate definition: 

 

good_customer(C)  :- 

customer(C,_,female,_,_,_,_,_), 
order(C,_,_,_,creditcard). 

Data bases: 

• Name of relation p 

• Attribute of p 

• n-tuple  < v1, ..., vn > = row in 

a relational table 

• relation p = set of n-tuples  = 

relational table 
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Part I. Introduction 

• Data Mining in a Nutshell 

• Predictive and descriptive DM techniques 

• Data Mining and the KDD process 

• DM standards, tools and visualization 
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Data Mining and KDD 

• KDD is defined as “the process of identifying 
valid, novel, potentially useful and ultimately 
understandable models/patterns in data.” * 

• Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data.  

 

 
Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 

Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11 
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KDD Process 

KDD process of discovering useful knowledge from data 

• KDD process involves several phases: 

• data preparation 

• data mining (machine learning, statistics) 

• evaluation and use of discovered patterns 

• Data mining is the key step, but represents only 
 15%-25% of the entire KDD process 
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MEDIANA – analysis of media research data 

• Questionnaires about journal/magazine reading, watching 
of TV programs and listening of radio programs, since 
1992, about 1200 questions. Yearly publication: frequency 
of reading/listening/watching, distribution w.r.t. Sex, Age, 
Education, Buying power,.. 

• Data for 1998, about 8000 questionnaires, covering 
lifestyle, spare time activities, personal viewpoints, 
reading/listening/watching of media (yes/no/how much), 
interest for specific topics in media, social status 

• good quality, “clean” data 

• table of n-tuples (rows: individuals, columns: attributes, in 
classification tasks selected class) 
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MEDIANA – media research pilot study 

• Patterns uncovering regularities concerning: 

– Which other journals/magazines are read by readers of 
a particular journal/magazine ? 

– What are the properties of individuals that are 
consumers of a particular media offer ? 

– Which properties are distinctive for readers of different 
journals ?  

• Induced models: description (association rules, clusters) 
and classification (decision trees, classification rules) 

68 

Simplified association rules 

 
 

Finding profiles of readers of the Delo daily 

newspaper 

1. reads_Marketing_magazine  116   

  reads_Delo 95 (0.82) 

 2. reads_Financial_News (Finance) 223  reads_Delo 180 

(0.81) 

 3. reads_Views (Razgledi) 201  reads_Delo 157 (0.78) 

 4. reads_Money (Denar) 197  reads_Delo 150 (0.76) 

 5. reads_Vip  181  reads_Delo 134 (0.74) 

Interpretation: Most readers of Marketing magazine, 

Financial News, Views, Money and Vip read also 

Delo. 
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Simplified association rules  

 
 

  

 1. reads_Sara 332  reads_Slovenske novice 211 (0.64) 

 2. reads_Ljubezenske zgodbe 283   

  reads_Slovenske novice 174 (0.61) 

 3. reads_Dolenjski list 520   

  reads_Slovenske novice 310 (0.6) 

 4. reads_Omama 154  reads_Slovenske novice 90 (0.58) 

 5. reads_Delavska enotnost 177  

  reads_Slovenske novice 102 (0.58) 

Most of the readers of Sara, Love stories, Dolenjska 

new, Omama in Workers new read also Slovenian 

news. 
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Simplified association rules  

 
 

 

 

 

 1. reads_Sportske novosti 303    

  reads_Slovenski delnicar 164 (0.54) 

 2. reads_Sportske novosti 303    

  reads_Salomonov oglasnik 155 (0.51) 

 3. reads_Sportske novosti 303    

  reads_Lady 152 (0.5) 

 

 More than half of readers of Sports news reads 

also Slovenian shareholders magazine, 

Solomon advertisements and Lady. 
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Decision tree 

Finding reader profiles: decision tree for classifying people 
into readers and non-readers of a teenage magazine 
Antena. 

72 

Part I. Introduction 

• Data Mining in a Nutshell 

• Predictive and descriptive DM techniques 

• Data Mining and the KDD process 

• DM standards, tools and visualization 
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CRISP-DM 

• Cross-Industry Standard Process for DM 

• A collaborative, 18-months partially EC 

founded project started in July 1997 

• NCR, ISL (Clementine), Daimler-Benz, OHRA 

(Dutch health insurance companies), and SIG 

with more than 80 members 

• DM from art to engineering 

• Views DM more broadly than Fayyad et al. 

(actually DM is treated as KDD process): 
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CRISP Data Mining Process 

• DM Tasks 

75 

DM tools 

76 

Public DM tools 

• WEKA - Waikato Environment for Knowledge 

Analysis 

• KNIME - Konstanz Information Miner  

• R – Bioconductor, … 

• Orange, Orange4WS, ClowdFlows 

 

77 

Visualization 

• can be used on its own (usually for 

description and summarization tasks) 

• can be used in combination with other DM 

techniques, for example 

– visualization of decision trees 

– cluster visualization 

– visualization of association rules 

– subgroup visualization 

78 

Data visualization:  

Scatter plot 
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DB Miner: Association rule 

visualization  

80 

MineSet: Decision tree visualization  

81 

Orange: Visual programming and 

subgroup discovery visualization 

82 

Part I: Summary 

• KDD is the overall process of discovering useful 

knowledge in data 

– many steps including data preparation, cleaning, 

transformation, pre-processing 

• Data Mining is the data analysis phase in KDD 

– DM takes only 15%-25% of the effort of the overall KDD 

process 

– employing techniques from machine learning and statistics 

• Predictive and descriptive induction have different 

goals: classifier vs. pattern discovery 

• Many application areas, many powerful tools 

available 
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Part II. Predictive DM techniques 

• Naive Bayesian classifier 

• Decision tree learning 

• Classification rule learning 

• Classifier evaluation 
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Bayesian methods 

• Bayesian methods – simple but powerful 

classification methods 

– Based on Bayesian formula 

 

 

• Main methods: 

– Naive Bayesian classifier 

– Semi-naïve Bayesian classifier 

– Bayesian networks *  

* Out of scope of this course 
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Naïve Bayesian classifier 

• Probability of class, for given attribute values 

 

 

• For all Cj compute probability p(Cj), given values vi of all 

attributes describing the example which we want to classify 

(assumption: conditional independence of attributes, when 

estimating p(Cj) and p(Cj |vi)) 

 

 

• Output CMAX with maximal posterior probability of class:  
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Naïve Bayesian classifier 
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Semi-naïve Bayesian classifier 

• Naive Bayesian estimation of probabilities 

(reliable) 

 

 

 

• Semi-naïve Bayesian estimation of 

probabilities (less reliable) 
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Probability estimation 

• Relative frequency: 

 

 

• Prior probability: Laplace law 

 

                                                                                     

• m-estimate: 
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Probability estimation: intuition 

• Experiment with N trials, n successful 

• Estimate probability of success of next trial  

• Relative frequency: n/N 

– reliable estimate when number of trials is large 

– Unreliable when number of trials is small, e.g., 
1/1=1 

• Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes 

– Assumes uniform distribution of classes 

• m-estimate: (n+m.pa) /(N+m) 

– Prior probability of success pa, parameter m 
(weight of prior probability, i.e., number of ‘virtual’ 
examples ) 
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Explanation of Bayesian 

classifier 

• Based on information theory 

– Expected number of bits needed to encode a message = 

optimal code length -log p for a message, whose probability is 

p (*) 

• Explanation based of the sum of information gains of 

individual attribute values vi (Kononenko and Bratko 1991, 

Kononenko 1993) 

*  log p denotes binary logarithm 
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Example of explanation of semi-naïve 

Bayesian classifier 

Hip surgery prognosis 

Class = no (“no complications”, most probable class, 2 class problem) 

Attribute value For decision Against

(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden III -0.3

Fracture classification acc. To Pauwels = Pauwels III -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

   Time between injury and examination < 6 hours

   AND Hospitalization time between 4 and 5 weeks

Combination: 0.63

 Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information 

gains for/against Ci 
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Naïve Bayesian classifier 

• Naïve Bayesian classifier can be used  
– when we have sufficient number of training examples 

for reliable probability estimation 

• It achieves good classification accuracy 

– can be used as ‘gold standard’ for comparison with 

other classifiers 

• Resistant to noise (errors) 
– Reliable probability estimation 

– Uses all available information 

• Successful in many application domains 

– Web page and document classification  

– Medical diagnosis and prognosis, … 
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Improved classification accuracy due 

to using m-estimate 

Relative freq. m-estimate

Primary tumor 48.20% 52.50%

Breast cancer 77.40% 79.70%

hepatitis 58.40% 90.00%

lymphography 79.70% 87.70%

Primary Breast thyroid Rheumatology

tumor cancer

#instan 339 288 884 355

#class 22 2 4 6

#attrib 17 10 15 32

#values 2 2.7 9.1 9.1

majority 25% 80% 56% 66%

entropy 3.64 0.72 1.59 1.7
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Part II. Predictive DM techniques 

• Naïve Bayesian classifier 

• Decision tree learning 

• Classification rule learning 

• Classifier evaluation 

 

 

 

 

 

 

 

96 

Illustrative example: 

Contact lenses data 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Decision tree for 

contact lenses recommendation 

tear prod. 

astigmatism 

spect. pre. 

NONE 

NONE 

reduced 

no yes 

normal 

hypermetrope 

SOFT 

myope 

HARD 
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Decision tree for 

contact lenses recommendation 

tear prod. 

astigmatism 

spect. pre. 

NONE 

NONE 

reduced 

no yes 

normal 

hypermetrope 

SOFT 

myope 

HARD 

[N=12,S+H=0] 

[N=2, S+H=1] 

[S=5,H+N=1] 

[H=3,S+N=2] 
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PlayGolf: Training examples 

Day Outlook Temperature Humidity Wind PlayGolf

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision tree representation  

for PlayGolf 
Outlook 

Humidity Wind Yes 

Overcast Sunny Rain 

High Normal Strong Weak 

No Yes No Yes 

- each internal node is a test of an attribute 

- each branch corresponds to an attribute value 

- each path is a conjunction of attribute values 

- each leaf node assigns a classification 
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Decision tree representation  

for PlayGolf 
Outlook 

Humidity Wind Yes 

Overcast Sunny Rain 

High Normal Strong Weak 

No Yes No Yes 

Decision trees represent a disjunction of conjunctions of constraints  

on the attribute values of instances 

         ( Outlook=Sunny    Humidity=Normal )    

      V           ( Outlook=Overcast ) 

      V     ( Outlook=Rain    Wind=Weak ) 
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PlayGolf: 

Other representations 

• Logical expression for PlayGolf=Yes: 

– (Outlook=Sunny    Humidity=Normal)   (Outlook=Overcast)    

(Outlook=Rain    Wind=Weak) 

• Converting a tree to if-then rules 

– IF Outlook=Sunny  Humidity=Normal THEN PlayGolf=Yes 

– IF Outlook=Overcast THEN PlayGolf=Yes 

– IF Outlook=Rain  Wind=Weak THEN PlayGolf=Yes 

– IF Outlook=Sunny  Humidity=High THEN PlayGolf=No 

– IF Outlook=Rain  Wind=Strong THEN PlayGolf=No 
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PlayGolf: Using a decision tree for 

classification 

Is Saturday morning OK for playing golf? 

Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong 

PlayGolf = No,  because Outlook=Sunny  Humidity=High 

Outlook 

Humidity Wind Yes 

Overcast Sunny Rain 

High Normal Strong Weak 

No Yes No Yes 
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Appropriate problems for  

decision tree learning 

• Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …) 

• Characteristics: 
– instances described by attribute-value pairs        

  (discrete or real-valued attributes) 

– target function has discrete output values              
 (boolean or multi-valued, if real-valued then regression trees) 

– disjunctive hypothesis may be required 

– training data may be noisy                                     
(classification errors and/or errors in attribute values) 

– training data may contain missing attribute values 
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Learning of decision trees 

• ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 

WEKA, ... 

– create the root node of the tree 

– if all examples from S belong to the same class Cj 

• then label the root with Cj 

– else 

• select the ‘most informative’ attribute A with values 

v1, v2, … vn 

• divide training set S into S1,… , Sn according to 

values v1,…,vn 

• recursively build sub-trees 

T1,…,Tn for S1,…,Sn 

A 

... 

... T1 Tn 

vn v1 
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Search heuristics in ID3 

• Central choice in ID3: Which attribute to test at 
each node in the tree ? The attribute that is most 
useful for classifying examples.  

• Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification. 

• First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples. 
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Entropy 

• S - training set, C1,...,CN - classes 

• Entropy E(S) – measure of the impurity of 
training set S 


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log.)(     pc - prior probability of class Cc 

(relative frequency of Cc in S) 

 E(S) = - p+ log2p+ - p- log2p-  

• Entropy in binary classification problems  
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Entropy 

• E(S) = - p+ log2p+ - p- log2p-  

• The entropy function relative to a Boolean 

classification, as the proportion p+ of positive 

examples varies between 0  and 1 
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Entropy – why ? 

• Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 

object in S (under the optimal, shortest-length 

code) 

• Why ? 

• Information theory: optimal length code assigns      

- log2p bits to a message having probability p 

• So, in binary classification problems, the expected 

number of bits to encode + or – of a random 

member of S is: 

 p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-  
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PlayGolf: Entropy 

• Training set S: 14 examples (9 pos., 5 neg.) 

• Notation: S = [9+, 5-]  

• E(S) = - p+ log2p+ - p- log2p- 

• Computing entropy, if probability is estimated by 
relative frequency 

 

 

• E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        

= 0.940  
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PlayGolf: Entropy 

• E(S) = - p+ log2p+ - p- log2p- 

• E(9+,5-) = -(9/14) log2(9/14) - (5/14) log2(5/14) = 0.940  

Outlook? 

{D1,D2,D8,D9,D11}       [2+, 3-]   E=0.970   

{D3,D7,D12,D13}          [4+, 0-]   E=0 

{D4,D5,D6,D10,D14}     [3+, 2-]   E=0.970   

Sunny 

Overcast 

Rain 

Humidity? 

 [3+, 4-]    E=0.985  

 [6+, 1-]    E=0.592 

High 

Normal 

Wind? 

 [6+, 2-]    E=0.811   

 [3+, 3-]    E=1.00 

Weak 

Strong 
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Information gain  

search heuristic 

• Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object 

• Gain(S,A) – expected reduction in entropy of S due to 

sorting on A  

 

• Most informative attribute: max Gain(S,A) 
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Information gain  

search heuristic 

• Which attribute is more informative, A1 or A2 ? 

 

 

 

 

• Gain(S,A1) = 0.94 – (8/14 x 0.811 + 6/14 x 1.00) = 0.048 

• Gain(S,A2) = 0.94 – 0 = 0.94                 A2 has max Gain 

A1 

[9,5],  E  0.94  

[3, 3] [6, 2] 

E0.811 E1.00 

A2 

[0, 5] [9, 0] 

E0.0 E0.0 

[9,5],  E  0.94  
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PlayGolf: Information gain 

• Values(Wind) = {Weak, Strong} 

 

 

– S = [9+,5-],  E(S) = 0.940 

– Sweak   = [6+,2-], E(Sweak ) = 0.811 

– Sstrong = [3+,3-], E(Sstrong ) = 1.0 

– Gain(S,Wind) = E(S) - (8/14)E(Sweak) - (6/14)E(Sstrong) = 0.940 - 

(8/14)x0.811 - (6/14)x1.0=0.048 
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Wind? 

 [6+, 2-]    E=0.811   
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Strong 
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PlayGolf: Information gain 

• Which attribute is the best? 

– Gain(S,Outlook)=0.246        MAX  ! 

– Gain(S,Humidity)=0.151 

– Gain(S,Wind)=0.048 

– Gain(S,Temperature)=0.029 
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PlayGolf: Information gain 

• Which attribute should be tested here? 

– Gain(Ssunny, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970    MAX  ! 

– Gain(Ssunny,Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570 

– Gain(Ssunny,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019 

Outlook? 

{D1,D2,D8,D9,D11}     [2+, 3-]   E > 0  ??? 

{D3,D7,D12,D13}        [4+, 0-]   E = 0  OK - assign class Yes 
Sunny 

Overcast 

{D4,D5,D6,D10,D14}   [3+, 2-]   E > 0 ???    Rain 
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Probability estimates 

• Relative frequency : 
– problems with small samples 

 

 

 

 

 

• Laplace estimate :  
– assumes uniform prior 

distribution of k classes  
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 [6+,1-] (7) = 6/7 

 [2+,0-] (2) = 2/2 = 1  

 [6+,1-] (7) = 6+1 / 7+2 = 7/9  

 [2+,0-] (2) = 2+1 / 2+2 = 3/4 
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Heuristic search in ID3 

• Search bias: Search the space of decision trees 
from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees) 

• Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly 

• Stopping criteria: A node becomes a leaf 

– if all examples belong to same class Cj, label the 
leaf with Cj 

– if all attributes were used, label the leaf with the 
most common value Ck of examples in the node 

• Extension to ID3: handling noise - tree pruning  
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Pruning of decision trees 

• Avoid overfitting the data by tree pruning 

• Pruned trees are 
– less accurate on training data 

– more accurate when classifying unseen data 
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Handling noise – Tree pruning 

Sources of imperfection 

1.  Random errors (noise) in training examples 

• erroneous attribute values 

• erroneous classification 

2. Too sparse training examples (incompleteness) 

3.  Inappropriate/insufficient set of attributes (inexactness) 

4. Missing attribute values in training examples 
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Handling noise – Tree pruning  

• Handling imperfect data  

– handling imperfections of type 1-3 

• pre-pruning (stopping criteria) 

• post-pruning / rule truncation 

– handling missing values 

• Pruning avoids perfectly fitting noisy data: relaxing 

the completeness (fitting all +) and consistency (fitting 

all -) criteria in ID3 
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Prediction of breast cancer recurrence: 

Tree pruning 
Degree_of_malig 

Tumor_size 

Age no_recur 125 
recurrence 39 

no_recur 4 
recurrence 1 no_recur 4 

Involved_nodes 

no_recur 30 
recurrence 18 

no_recur 27 
recurrence 10 

< 3   3 

< 15   15 < 3   3 

< 40  40 

no_rec 4      rec1 
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Accuracy and error 

• Accuracy: percentage of correct classifications 

– on the training set 

– on unseen instances 

• How accurate is a decision tree when classifying unseen 

instances 

– An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs: 

• split the example set into training set (e.g. 70%) and test set (e.g. 30%)  

• induce a decision tree from training set, compute its  accuracy on test 

set 

• Error = 1 - Accuracy 

• High error may indicate data overfitting 
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Overfitting and accuracy 

• Typical relation between tree size and accuracy 

 

 

 

 

 

 

 

 

 

• Question: how to prune optimally? 
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Avoiding overfitting 

• How can we avoid overfitting? 
– Pre-pruning (forward pruning): stop growing the tree e.g., 

when data split not statistically significant or too few 
examples are in a split 

– Post-pruning: grow full tree, then post-prune 

 

 

 
 

 

 

 

 

• forward pruning considered inferior (myopic) 

• post pruning makes use of sub trees  

Pre-pruning 

Post-pruning 
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How to select the “best” tree 

• Measure performance over training data (e.g., 
pessimistic post-pruning, Quinlan 1993) 

• Measure performance over separate validation data 
set (e.g., reduced error pruning, Quinlan 1987)  
– until further pruning is harmful DO: 

• for each node evaluate the impact of replacing a subtree by a 
leaf, assigning the majority class of examples in the leaf, if the 
pruned tree performs no worse than the original over the 
validation set 

• greedily select the node whose removal most improves tree 
accuracy over the validation set 

• MDL: minimize 
size(tree)+size(misclassifications(tree))  
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Selected decision/regression  

tree learners 

• Decision tree learners 

– ID3 (Quinlan 1979) 

– CART (Breiman et al. 1984) 

– Assistant (Cestnik et al. 1987) 

– C4.5 (Quinlan 1993), C5 (See5, Quinlan) 

– J48 (available in WEKA) 

• Regression tree learners, model tree learners 

– M5, M5P (implemented in WEKA) 
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Features of C4.5 

• Implemented as part of the WEKA data mining 

workbench 

• Handling noisy data: post-pruning 
 

• Handling incompletely specified training 

instances: ‘unknown’ values (?) 
 

– in learning assign conditional probability of value v: 

p(v|C) = p(vC) / p(C) 
 

– in classification: follow all branches, weighted by 

prior prob. of missing attribute values 
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Other features of C4.5 

• Binarization of attribute values 
– for continuous values select a boundary value 

maximally increasing the informativity of the 
attribute: sort the values and try every possible 
split (done automaticaly) 

– for discrete values try grouping the values until 
two groups remain * 

• ‘Majority’ classification in NULL leaf (with no 
corresponding training example) 
– if an example ‘falls’ into a NULL leaf during 

classification, the class assigned to this example 
is the majority class of the parent of the NULL leaf 

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping 
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Part II. Predictive DM techniques 

• Naïve Bayesian classifier 

• Decision tree learning 

• Classification rule learning 

• Classifier evaluation 
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Rule Learning in a Nutshell 

data 

Rule learningRule learning  

knowledge discovery 

from data 

Model: a set of rules 

Patterns: individual rules 

Given: transaction data table, relational database (a set of 

objects, described by attribute values) 

Find: a classification model in the form of a set of rules; 

          or a set of interesting patterns in the form of individual  

      rules  

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Rule set representation 
• Rule base is a disjunctive set of conjunctive rules 

• Standard form of rules: 

 IF Condition THEN Class 

  Class IF Conditions 

  Class  Conditions 

 

 IF Outlook=Sunny  Humidity=Normal THEN   

  PlayGolf=Yes 

IF Outlook=Overcast THEN PlayGolf=Yes 

IF Outlook=Rain  Wind=Weak THEN PlayGolf=Yes 
 

• Form of CN2 rules:     

 IF Conditions THEN MajClass [ClassDistr] 

• Rule base:   {R1, R2, R3, …, DefaultRule} 
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Data mining example 

Input: Contact lens data 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Contact lens data:  

Classification rules 
 

 

 

Type of task: prediction and classification 

Hypothesis language: rules X  C,  if X then C  
 X conjunction of attribute values, C class  
 

tear production=reduced → lenses=NONE  

tear production=normal & astigmatism=yes &  

 spect. pre.=hypermetrope → lenses=NONE   

tear production=normal & astigmatism=no → 

lenses=SOFT   

tear production=normal & astigmatism=yes &  

 spect. pre.=myope → lenses=HARD  
DEFAULT lenses=NONE 
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Rule learning 

• Two rule learning approaches: 

– Learn decision tree, convert to rules 

– Learn set/list of rules 

• Learning an unordered set of rules 

• Learning an ordered list of rules 

• Heuristics, overfitting, pruning  
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Contact lenses: convert decision tree to  

                         an unordered rule set tear prod. 

astigmatism 

spect. pre. 

NONE 

NONE 

reduced 

no yes 

normal 

hypermetrope 

SOFT 

myope 

HARD 

[N=12,S+H=0] 

[N=2, S+H=1] 

[S=5,H+N=1] 

[H=3,S+N=2] 
 

tear production=reduced => lenses=NONE [S=0,H=0,N=12]  

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope => 

lenses=NONE  [S=0,H=1,N=2] 

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1] 

tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD 

[S=0,H=3,N=2] 

DEFAULT lenses=NONE                      Order independent rule set (may overlap) 
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Contact lenses: convert decision tree to 

decision list tear prod. 

astigmatism 

spect. pre. 

NONE 

NONE 

reduced 

no yes 

normal 

hypermetrope 

SOFT 

myope 

HARD 

[N=12,S+H=0] 

[N=2, S+H=1] 

[S=5,H+N=1] 

[H=3,S+N=2]  

 

IF tear production=reduced THEN lenses=NONE 

 ELSE /*tear production=normal*/ 

    IF astigmatism=no THEN lenses=SOFT 

    ELSE /*astigmatism=yes*/ 

      IF spect. pre.=myope THEN lenses=HARD  

       ELSE /* spect.pre.=hypermetrope*/ 

         lenses=NONE                                         Ordered (order dependent) rule list  
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Converting decision tree to rules, and 

rule post-pruning (Quinlan 1993) 

• Very frequently used method, e.g., in C4.5 

and J48 

• Procedure: 

– grow a full tree (allowing overfitting) 

– convert the tree to an equivalent set of rules 

– prune each rule independently of others 

– sort final rules into a desired sequence for use 
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Concept learning: Task reformulation for rule 

learning: (pos. vs. neg. examples of Target class) 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NO

O2 young myope no normal  YES

O3 young myope yes reduced NO

O4 young myope yes normal YES

O5 young hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal YES

O15 pre-presbyohypermetrope yes reduced NO

O16 pre-presbyohypermetrope yes normal NO

O17 presbyopic myope no reduced NO

O18 presbyopic myope no normal NO

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NO
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Original covering algorithm 

(AQ, Michalski 1969,86) 

Given examples of N classes C1, …, CN 

for each class Ci do 

– Ei := Pi U Ni (Pi pos., Ni neg.) 

– RuleBase(Ci) := empty 

– repeat {learn-set-of-rules} 

• learn-one-rule R covering some positive 
examples and no negatives  

• add R to RuleBase(Ci) 

• delete from Pi all pos. ex. covered by R 

– until Pi = empty  

+ + 

+ 

+ + 

+ 
- 

- 
- 

- 
- 

+ 
- 
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Covering algorithm 
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Covering algorithm 
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PlayGolf: Training examples 

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Heuristics for learn-one-rule: 

PlayGolf example  
PlayGolf = yes [9+,5-] (14) 

PlayGolf = yes   Wind=weak  [6+,2-] (8) 
    Wind=strong [3+,3-] (6)  
    Humidity=normal [6+,1-] (7) 
    … 

PlayGolf = yes   Humidity=normal 
    Outlook=sunny [2+,0-] (2) 
    … 

Estimating rule accuracy (rule precision) with the probability 
that a covered example is positive 

 A(Class  Cond) = p(Class| Cond) 

 

Estimating the probability with the relative frequency of covered 
pos. ex. / all covered ex.   

        [6+,1-] (7) = 6/7,                    [2+,0-] (2) = 2/2 = 1  
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Probability estimates 

• Relative frequency : 
– problems with small samples 

 

 

 

 

 

• Laplace estimate :  
– assumes uniform prior 

distribution of k classes  
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 [6+,1-] (7) = 6/7 

 [2+,0-] (2) = 2/2 = 1  

 [6+,1-] (7) = 6+1 / 7+2 = 7/9  

 [2+,0-] (2) = 2+1 / 2+2 = 3/4 

148 

Learn-one-rule: 

search heuristics 

• Assume a two-class problem 

• Two classes (+,-),  learn rules for + class (Cl).  

• Search for specializations R’ of a rule R = Cl  Cond  

from the RuleBase. 

• Specializarion R’ of rule R = Cl  Cond 

   has the form    R’ = Cl  Cond & Cond’ 

• Heuristic search for rules: find the ‘best’ Cond’ to be 

added to the current rule R, such that rule accuracy is 

improved, e.g., such that Acc(R’) > Acc(R) 

– where the expected classification accuracy can be 

estimated as A(R) = p(Cl|Cond) 
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Learn-one-rule: 

Greedy vs. beam search 

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’ 
descendant, no backtracking 
– e.g., the best descendant of the initial rule  

   PlayGolf = yes   

– is rule PlayGolf = yes  Humidity=normal 

• beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates 
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Learn-one-rule as search:  

PlayGolf example  

PlayGolf = yes    IF  

PlayGolf = yes  
IF Wind=weak   

PlayGolf = yes 
IF Wind=strong 

PlayGolf = yes  
IF Humidity=normal 

PlayGolf = yes 
IF Humidity=high 

PlayGolf = yes  
IF Humidity=normal, 

   Wind=weak   

PlayGolf = yes  
IF Humidity=normal, 

   Wind=strong 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=sunny 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=rain 

... 
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Learn-one-rule as heuristic search: 

PlayGolf example  

PlayGolf = yes    IF 

PlayGolf = yes  
IF Wind=weak   

PlayGolf = yes 
IF Wind=strong 

PlayGolf = yes  
IF Humidity=normal 

PlayGolf = yes 
IF Humidity=high 

PlayGolf = yes  
IF Humidity=normal, 

   Wind=weak   

PlayGolf = yes  
IF Humidity=normal, 

   Wind=strong 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=sunny 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=rain 

[9,5] (14) 

[6,2] (8) 

[3,3] (6) [6,1] (7) 

[3,4] (7) 

... 

[2,0] (2) 
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What is “high” rule accuracy 

(rule precision) ?  

• Rule evaluation measures:  
– aimed at maximizing classification accuracy  

– minimizing Error = 1 - Accuracy 

– avoiding overfitting 

• BUT: Rule accuracy/precision should be traded 
off against the “default” accuracy/precision of the 
rule Cl true  

– 68% accuracy is OK if there are 20% examples of that class in 
the training set, but bad if there are 80% 

• Relative accuracy (relative precision) 

– RAcc(Cl Cond) = p(Cl | Cond) – p(Cl) 

153 

Weighted relative accuracy 

• If a rule covers a single example, its accuracy/precision 
is either 0% or 100% 
– maximising relative accuracy tends to produce many overly 

specific rules 

 

• Weighted relative accuracy 

 WRAcc(ClCond) = p(Cond) . [p(Cl | Cond) – p(Cl)] 

 

• WRAcc is a fundamental rule evaluation measure:  
– WRAcc can be used if you want to assess both accuracy and 

significance 

– WRAcc can be used if you want to compare rules with different 
heads and bodies 
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Learn-one-rule: 

search heuristics 
• Assume two classes (+,-),  learn rules for + class (Cl). Search 

for specializations of one rule R = Cl  Cond  from RuleBase. 

• Expected classification accuracy:   A(R) = p(Cl|Cond) 

• Informativity (info needed to specify that example covered by 
Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond) 

• Accuracy gain (increase in expected accuracy): 

        AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond) 

• Information gain (decrease in the information needed): 

        IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond) 

• Weighted measures favoring more general rules: WAG, WIG 

       WAG(R’,R) =  

  p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond)) 

• Weighted relative accuracy trades off coverage and relative 

accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl)) 
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Ordered set of rules: 

if-then-else rules 
• rule  Class IF Conditions is learned by first 

determining Conditions and then Class 

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase  

• But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification 

• Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules 

• If no rule fires, then DefaultClass (majority class in 

Ecur) 
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Sequential covering algorithm 

 (similar as in Mitchell’s book) 
 

• RuleBase := empty  

• Ecur:= E  

• repeat   

– learn-one-rule R 

– RuleBase := RuleBase U R 

– Ecur := Ecur - {examples covered and correctly 
classified by R}   (DELETE ONLY POS. EX.!) 

– until performance(R, Ecur) < ThresholdR  

• RuleBase := sort RuleBase by performance(R,E) 

• return RuleBase 
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Learn ordered set of rules 
(CN2, Clark and Niblett 1989) 

 

• RuleBase := empty  

• Ecur:= E  

• repeat   

– learn-one-rule R 

– RuleBase := RuleBase U R 

– Ecur := Ecur - {all examples covered by R}    
     (NOT ONLY POS. EX.!) 

• until performance(R, Ecur) < ThresholdR  

• RuleBase := sort RuleBase by performance(R,E) 

• RuleBase := RuleBase U DefaultRule(Ecur) 
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Learn-one-rule: 

Beam search in CN2 

• Beam search in CN2 learn-one-rule algo.: 

– construct BeamSize of best rule bodies 
(conjunctive conditions) that are statistically 
significant 

– BestBody - min. entropy of examples covered 
by Body  

– construct best rule R := Head  BestBody by 
adding majority class of examples covered by 
BestBody in rule Head 

• performance (R, Ecur) : - Entropy(Ecur)  
– performance(R, Ecur) < ThresholdR (neg. num.) 

– Why? Ent. > t is bad, Perf. = -Ent < -t is bad 
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Variations 

• Sequential vs. simultaneous covering of data (as 
in TDIDT): choosing between attribute-values vs. 
choosing attributes 

• Learning rules vs. learning decision trees and  
converting them to rules 

• Pre-pruning vs. post-pruning of rules 

• What statistical evaluation functions to use 

• Probabilistic classification 
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Probabilistic classification 
• In the ordered case of standard CN2 rules are interpreted in an IF-

THEN-ELSE fashion, and the first fired rule assigns the class. 

• In the unordered case all rules are tried and all rules which fire are 
collected. If a clash occurs, a probabilistic method is used to resolve the 
clash. 

• A simplified example: 
1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]  

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope => 
     lenses=NONE  [S=0,H=1,N=2] 

3. tear production=normal & astigmatism=no => lenses=SOFT   
      [S=5,H=0,N=1] 

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>  
     lenses=HARD [S=0,H=3,N=2] 

5. DEFAULT lenses=NONE 

 

 Suppose we want to classify a person with normal tear production and 
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and 
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total 
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into 
class H with probability 0.5 and N with probability 0.5. In this case, the 
clash can not be resolved, as both probabilities are equal. 

161 

Part II. Predictive DM techniques 

• Naïve Bayesian classifier 

• Decision tree learning 

• Classification rule learning 

• Classifier evaluation 
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Classifier evaluation 

• Accuracy and Error 

• n-fold cross-validation 

• Confusion matrix 

• ROC 
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Evaluating hypotheses 

• Use of induced hypotheses 

– discovery of new patterns, new knowledge 

– classification of new objects 

• Evaluating the quality of induced hypotheses 

– Accuracy, Error = 1 - Accuracy 

– classification accuracy on testing examples = 
percentage of correctly classified instances 

• split the example set into training set (e.g. 70%) to 
induce a concept, and test set (e.g. 30%) to test its 
accuracy 

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ... 

– comprehensibility (compactness) 

– information contents (information score), significance  
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n-fold cross validation 

• A method for accuracy estimation of classifiers 

• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D 

• for  i = 1, ..., n do 

– form a training set out of n-1 folds: Di = D\Ti 

–  induce classifier Hi from examples in Di 

–  use fold Ti  for testing the accuracy of Hi  

• Estimate the accuracy of the classifier by 

averaging accuracies over 10 folds Ti  
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•Partition D 

T1 T2 T3 
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•Partition 

•Train 

D\T1=D1 D\T2=D2 D\T3=D3 

D 

T1 T2 T3 
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•Partition 

•Train 

D\T1=D1 D\T2=D2 D\T3=D3 

D 

T1 T2 T3 
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•Partition 

•Train 

•Test 

D\T1=D1 D\T2=D2 D\T3=D3 

D 

T1 T2 T3 

T1 T2 T3 
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Confusion matrix and  

rule (in)accuracy 

• Accuracy of a classifier is measured as TP+TN / N. 

• Suppose two rules are both 80% accurate on an 
evaluation dataset, are they always equally good?  
– e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out 

of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives 

– on a test set which has more negatives than positives, Rule 2 is 
preferable;  

– on a test set which has more positives than negatives, Rule 1 is 
preferable; unless… 

– …the proportion of positives becomes so high that the ‘always 
positive’ predictor becomes superior! 

• Conclusion: classification accuracy is not always an 
appropriate rule quality measure 
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Confusion matrix 

• also called contingency table 

Classifier 1 
 Predicted positive Predicted negative  

Positive examples 40 10 50 
Negative examples 10 40 50 
 50 50 100   

Classifier 2 
 Predicted positive Predicted negative  

Positive examples 30 20 50 
Negative examples 0 50 50 
 30 70 100  
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ROC space 
• True positive rate = 

#true pos. / #pos. 

– TPr1 = 40/50 = 80%  

– TPr2 = 30/50 = 60% 

• False positive rate 

= #false pos. / #neg. 

– FPr1 = 10/50 = 20% 

– FPr2 = 0/50 = 0% 

• ROC space has  

– FPr on X axis  

– TPr on Y axis 
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The ROC space 
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The ROC convex hull 
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Summary of evaluation 

• 10-fold cross-validation is a standard classifier 

evaluation method used in machine learning 

• ROC analysis is very natural for rule learning 

and subgroup discovery 

– can take costs into account 

– here used for evaluation 

– also possible to use as search heuristic 
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Part III. Numeric prediction 

• Baseline 

• Linear Regression 

• Regression tree 

• Model Tree 

• kNN 
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Regression Classification 

Data: attribute-value description 

Target variable: 

Continuous 

Target variable: 

Categorical (nominal) 

Evaluation: cross validation, separate test set, … 

Error: 

MSE, MAE, RMSE, … 

Error: 

1-accuracy 

Algorithms: 

Linear regression, regression 

trees,… 

Algorithms: 

Decision trees, Naïve Bayes, … 

Baseline predictor: 

Mean of the target variable 

Baseline predictor: 

Majority class 
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Example 

• data about 80 people: Age and Height 
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Test set 
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Baseline numeric model 
• Average of the target variable 
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Baseline numeric predictor 
• Average of the target variable is 1.63 
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Linear Regression Model 

Height =    0.0056 * Age + 1.4181 
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Regression tree 
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Model tree 
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kNN – K nearest neighbors 

• Looks at K closest examples (by age) and predicts the 

average of their target variable 

• K=3 
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Which predictor is the best? 

Age Height Baseline

Linear 

regression

Regression 

tree M odel tree kNN

2 0.85 1.63 1.43 1.39 1.20 1.01

10 1.4 1.63 1.47 1.46 1.47 1.51

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.81
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Evaluating numeric prediction 
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Course Outline 

I. Introduction 

– Data Mining in a Nutshell 

– Predictive and descriptive DM 
techniques 

– Data Mining and KDD process 

– DM standards, tools and 
visualization 

 (Mladenić et al. Ch. 1 and 11) 

 

II. Predictive DM Techniques 

– Bayesian classifier     
(Kononenko Ch.  9.6) 

– Decision Tree learning  

     (Mitchell Ch. 3, Kononenko Ch. 9.1) 

– Classification rule learning 
(Kononenko Ch. 9.2) 

– Classifier Evaluation  

     (Bramer Ch. 6) 

III. Regression  

(Kononenko Ch. 9.4) 

 

IV. Descriptive DM 

– Predictive vs. descriptive induction 

– Subgroup discovery 

– Association rule learning 
(Kononenko Ch. 9.3) 

– Hierarchical clustering (Kononenko 
Ch. 12.3) 

 

– V. Relational Data Mining 

– RDM and Inductive Logic 
Programming (Dzeroski & Lavrac 
Ch. 3, Ch. 4) 

– Propositionalization approaches  

– Relational subgroup discovery 
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Part IV. Descriptive DM techniques 

• Predictive vs. descriptive induction 

• Subgroup discovery 

• Association rule learning 

• Hierarchical clustering 
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Predictive vs. descriptive 

induction 

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks,  
– Classification rule learning, Decision tree learning, ... 

– Bayesian classifier, ANN, SVM, ... 

– Data analysis through hypothesis generation and testing 

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks 
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ... 

– Exploratory data analysis 

190 

Descriptive DM 

• Often used for preliminary explanatory data 

analysis 

• User gets feel for the data and its structure 

• Aims at deriving descriptions of characteristics 

of the data 

• Visualization and descriptive statistical 

techniques can be used 
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Descriptive DM 
• Description 

– Data description and summarization: describe elementary and 

aggregated data characteristics (statistics, …) 

– Dependency analysis: 

• describe associations, dependencies, …  

• discovery of properties and constraints 

• Segmentation 

– Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...) 

– Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 

distribution) 
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Predictive vs. descriptive 

induction: A rule learning 

perspective 

• Predictive induction: Induces rulesets acting as 
classifiers for solving classification and prediction 
tasks 

• Descriptive induction: Discovers individual rules 
describing interesting regularities in the data 

 

• Therefore: Different goals, different heuristics, 
different evaluation criteria 
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Supervised vs. unsupervised learning: 

A rule learning perspective 

• Supervised learning: Rules are induced from labeled  
instances (training examples with class assignment) - 
usually used in predictive induction 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Supervised vs. unsupervised learning: 

A rule learning perspective 

• Supervised learning: Rules are induced from labeled  
instances (training examples with class assignment) - 
usually used in predictive induction 

• Unsupervised learning: Rules are induced from unlabeled  
instances (training examples with no class assignment) - 
usually used in descriptive induction 

 
Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Supervised vs. unsupervised learning: 

A rule learning perspective 

• Supervised learning: Rules are induced from labeled  
instances (training examples with class assignment) - 
usually used in predictive induction 

• Unsupervised learning: Rules are induced from unlabeled  
instances (training examples with no class assignment) - 
usually used in descriptive induction 

• Exception: Subgroup discovery  

 Discovers individual rules describing interesting regularities 
in the data from labeled examples 
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Task reformulation: Binary Class Values 

Binary classes (positive vs. negative examples of Target class)  

  - for Concept learning – classification and class description   

  - for Subgroup discovery – exploring patterns 

characterizing groups of instances of target class 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Subgroup Discovery 

 

 

 

 

 

 

 

• A task in which individual interpretable patterns in the 
form of rules are induced from data, labeled by a 
predefined property of interest. 

• SD algorithms learn several independent rules that 
describe groups of target class examples  
– subgroups must be large and significant  

1

2

3

Class YES Class NO

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO

Subgroup DiscoverySubgroup Discovery  
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Part IV. Descriptive DM techniques 

• Predictive vs. descriptive induction 

• Subgroup discovery 

• Association rule learning 

• Hierarchical clustering 

 

 

 

 

 

 

 

 



34 

Subgroup Discovery 

Task definition (Kloesgen, Wrobel 1997) 

 

Given: a population of individuals and a target 

class label (the property of individuals we are 

interested in) 

Find: population subgroups that are statistically 

most `interesting’, e.g., are as large as 

possible and have most unusual statistical 

(distributional) characteristics w.r.t. the target 

class (property of interest) 

Subgroup interestingness 

Interestingness criteria: 

– As large as possible 

– Class distribution as different as possible from 
the distribution in the entire data set 

– Significant 

– Surprising to the user 

– Non-redundant 

– Simple 

– Useful - actionable 

201 

  Classification versus Subgroup Discovery  

• Classification (predictive induction) - 

constructing sets of classification rules 

– aimed at learning a model for classification or prediction 

– rules are dependent 

• Subgroup discovery (descriptive induction) – 

constructing individual subgroup describing 

rules  

– aimed at finding interesting patterns in target class 

examples 

• large subgroups (high target class coverage) 

• with significantly different distribution of target class examples (high 

TP/FP ratio, high significance, high WRAcc 

– each rule (pattern) is an independent chunk of knowledge 
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+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Classification versus Subgroup discovery   

+ 

+ 

+ 

+ 

+ + 

+ 

+ 

+ 

+ 

1

2

3

Class YES Class NO
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Subgroup discovery task 

Task definition for a use case of finding and 
characterizing population subgroups with high 
risk for coronary heart disease (CHD) 

 

– Given: a population of individuals and a property of 
interest (target class, e.g. CHD) 

– Find: `most interesting’ descriptions of population 
subgroups 

• are as large as possible (high target class coverage) 

• have most unusual distribution of the target 
property (high TP/FP ratio, high significance) 
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Subgroup Discovery: Medical Use Case 

• Find and characterize population subgroups with high 
risk for coronary heart disease (CHD) (Gamberger, Lavrač, 
Krstačić)  

• A1 for males: principal risk factors 

  CHD  pos. fam. history & age > 46 

• A2 for females: principal risk factors 

  CHD  bodyMassIndex > 25 & age >63 

• A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG) 

• A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight 
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Subgroup visualization 

Subgroups of 

patients with 

CHD risk 
 

[Gamberger, Lavrač 

& Wettschereck, 
IDAMAP2002] 
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Subgroups vs. classifiers 

• Classifiers: 

– Classification rules aim at pure subgroups 

– A set of rules forms a domain model 

• Subgroups: 

– Rules describing subgroups aim at significantly higher 
proportion of positives 

– Each rule is an independent chunk of knowledge 

• Link  

– SD can be viewed as 

 cost-sensitive  

 classification 

– Instead of FNcost we  

 aim at increased TPprofit 

negatives positives 

true 

positives 

false 

pos. 
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Classification Rule Learning for 

Subgroup Discovery: Deficiencies 

• Only first few rules induced by the covering 

algorithm have sufficient support (coverage) 

• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 

not covered by previously induced rules), which 

hinders their ability to detect population 

subgroups  

• ‘Ordered’ rules are induced and interpreted 

sequentially as a if-then-else decision list  

208 

CN2-SD: Adapting CN2 Rule 

Learning to Subgroup Discovery 

• Weighted covering algorithm 

• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights 

• Probabilistic classification 

• Evaluation with different interestingness 

measures 
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CN2-SD: CN2 Adaptations 

• General-to-specific search  (beam search) for best rules  

• Rule quality measure:  

– CN2: Laplace: Acc(Class  Cond) =  

        = p(Class|Cond) = (nc+1)/(nrule+k) 

– CN2-SD: Weighted Relative Accuracy  

 WRAcc(Class  Cond) =  

   p(Cond) (p(Class|Cond) - p(Class))  

• Weighted covering approach (example weights) 

• Significance testing (likelihood ratio statistics) 

• Output: Unordered rule sets (probabilistic classification) 
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CN2-SD: Weighted Covering  

• Standard covering approach:  

 covered examples are deleted from current training set 

 

• Weighted covering approach: 

– weights assigned to examples  

– covered pos. examples are re-weighted:  

 in all covering loop iterations, store  

 count i how many times (with how many  

 rules induced so far) a pos. example has  

 been covered: w(e,i), w(e,0)=1 

• Additive weights:  w(e,i) = 1/(i+1) 

 w(e,i) – pos. example e being covered i times 
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Subgroup Discovery 
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Subgroup Discovery 
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Subgroup Discovery  
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Subgroup Discovery  
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CN2-SD: Weighted WRAcc Search 

Heuristic 
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights  
 WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) 

increased coverage, decreased # of rules, approx. equal 
accuracy (PKDD-2000) 

• In WRAcc computation, probabilities are estimated 
with relative frequencies, adapt: 

 WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =  

   n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ ) 
– N’ : sum of weights of examples 

– n’(Cond) : sum of weights of all covered examples 

– n’(Cl.Cond) : sum of weights of all correctly covered examples 
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Subgroup visualization 

The CHD task: Find, 

characterize and visualize 

population subgroups with high 

CHD risk (large enough, 

distributionally unusual, most 

actionable) 
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Induced subgroups and their statistical 

characterization 

Subgroup A2 for femle patients: 

High-CHD-risk IF                                                                                                   

 body mass index over 25 kg/m2 (typically 29)  

 AND                                                             

 age over 63 years 

Supporting characteristics (computed using 2 

statistical significance test) are: positive family 

history and hypertension.  Women in this risk group 

typically have slightly increased LDL cholesterol 

values and normal but decreased HDL cholesterol 

values. 

218 

SD algorithms in the Orange DM 

Platform 

• SD Algorithms in Orange 

 
– SD (Gamberger & Lavrač, JAIR 2002 

– APRIORI-SD (Kavšek & Lavrač, AAI 2006 

– CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 
classification rule learner to Subgroup Discovery 

•  Weighted covering algorithm 

•  Weighted relative accuracy (WRAcc) search 
heuristics, with added example weights  

219 SD algorithms in Orange and 

Orange4WS 

• Orange  

– classification and subgroup 

discovery algorithms  

– data mining workflows 

– visualization 

– developed at FRI, Ljubljana 

• Orange4WS (Podpečan 

2010) 

– Web service oriented 

– supports workflows and 

other Orange functionality 

– includes also 

• WEKA algorithms 

• relational data mining 

• semantic data mining with 

ontologies 

– Web-based platform is 

under construction 

Current platform and workflow 

developments 

• CrowdFlows 

browser-based DM 

platform (Kranjc et 

al. 2012) 

• Semantic Subgroup 

Discovery workflows 

(Vavpetič et al., 

2012) 
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Part IV. Descriptive DM techniques 

• Predictive vs. descriptive induction 

• Subgroup discovery 

• Association rule learning 

• Hierarchical clustering 
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Association Rule Learning 

 
 

 Rules: X =>Y,  if X then Y 

 X and Y are itemsets (records, conjunction of items), 

where items/features are binary-valued attributes) 

 Given: Transactions           i1     i2  ………………… i50 

    itemsets (records)   t1     1      1                             0  

      t2     0      1                             0  

                                                      …    … ………………...  … 

  Find: A set of association rules in the form X =>Y 

  Example: Market basket analysis 

beer & coke => peanuts & chips (0.05, 0.65) 

• Support:  Sup(X,Y) = #XY/#D = p(XY) 

• Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) = 
        = p(XY)/p(X) = p(Y|X) 
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Association Rule Learning: 

Examples 

• Market basket analysis 

– beer & coke  peanuts & chips  (5%, 65%)                    

   (IF beer AND coke THEN peanuts AND chips) 

– Support 5%: 5% of all customers buy all four items 

– Confidence 65%: 65% of customers that buy beer 

and coke also buy peanuts and chips 

• Insurance 

– mortgage & loans & savings  insurance (2%, 

62%) 

– Support 2%: 2% of all customers have all four  

– Confidence 62%: 62% of all customers that have 

mortgage, loan and savings also have insurance 
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Association rule learning 

• X  Y  . . . IF X THEN Y, where X and Y are itemsets 

• intuitive meaning: transactions that contain X tend to contain Y 

• Items - binary attributes (features) m,f,headache, muscle pain, 

arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour 

• Example transactions – itemsets formed of patient records 

         i1        i2  ……    … i50  

t1      1          0                   0            

t2      0          1                   0  

…      …         …                  ...   

• Association rules 

spondylitic  arthritic & stiff_gt_1_hour       [5%, 70%] 

arthrotic & spondylotic  stiff_less_1_hour    [20%, 90%] 
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Association Rule Learning 

Given: a set of transactions D 

Find: all association rules that hold on the set of transactions 

that have  

– user defined minimum support, i.e., support > MinSup, and  

– user defined minimum confidence, i.e., confidence > MinConf 

It is a form of exploratory data analysis, rather than hypothesis 

verification 
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Searching for the associations 

• Find all large itemsets 

• Use the large itemsets to generate 

association rules 

• If XY is a large itemset, compute  

       r =support(XY) / support(X) 

• If r > MinConf, then X  Y holds  

      (support > MinSup, as XY is large) 
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Large itemsets 

• Large itemsets are itemsets that appear in at 

least MinSup transaction 

• All subsets of a large itemset are large 

itemsets (e.g., if A,B appears in at least 

MinSup transactions, so do A and B) 

• This observation is the basis for very efficient 

algorithms for association rules discovery 

(linear in the number of transactions) 
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Association  vs.  Classification 

rules             rules                  

• Exploration of 

dependencies 

• Different combinations 

of dependent and 

independent attributes 

• Complete search (all 

rules found) 

• Focused prediction 

• Predict one attribute 

(class) from the others 

• Heuristic search (subset 

of rules found) 
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Part IV. Descriptive DM techniques 

• Predictive vs. descriptive induction 

• Subgroup discovery 

• Association rule learning 

• Hierarchical clustering 
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Hierarchical clustering 

• Algorithm (agglomerative 

hierarchical clustering): 

 

 
Each instance is a cluster; 
 

repeat 
         find  nearest  pair Ci in Cj; 

         fuse Ci in Cj  in a new cluster  
               Cr = Ci U Cj; 

         determine dissimilarities between  

               Cr and other clusters; 

 

until one cluster left; 

• Dendogram: 
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Hierarchical clustering 

• Fusing the nearest pair of clusters 

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

• Minimizing intra-cluster 

similarity 

• Maximizing inter-cluster 

similarity 

 

• Computing the dissimilarities   

from the “new” cluster 
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Hierarchical clustering: example 

233 

Results of clustering 

A dendogram of 

resistance vectors 
 

[Bohanec et al., “PTAH: 

A system for supporting 

nosocomial infection 
therapy”, IDAMAP 

book, 1997] 
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Part V:  

Relational Data Mining 

• What is RDM 

• Propositionalization techniques 

• Semantic Data Mining 

• Inductive Logic programming 

• Learning as search in Inductive Logic 

Programming 
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Relational Data Mining (Inductive 

Logic Programming) in a nutshell 

Relational Relational Data MiningData Mining  

knowledge discovery 

from data 

model, patterns, … 

Given: a relational database, a set of tables. sets of logical 

facts, a graph, … 

Find: a classification model, a set of interesting patterns  
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Relational Data Mining (ILP) 
• Learning from multiple 

tables 

– patient records 
connected with other 
patient and 
demographic 
information 

• Complex relational 
problems: 

– temporal data: time 
series in medicine, ...  

– structured data: 
representation of 
molecules and their 
properties in protein 
engineering, 
biochemistry, ... 
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Sample ILP problem:  

East-West trains 
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Relational data representation 

TRAI N EAS TB OU ND

t1 TRU E

t2 TRU E

… …

t6 FAL SE

… …

TRAIN_TABLE TRAIN_TABLE 

CA R TRAI N SHA PE LEN GT H RO OF W H EE LS

c1 t1 rectang le short none 2

c2 t1 rectang le long none 3

c3 t1 rectang le short peaked 2

c4 t1 rectang le long none 2

… … … …

LO AD CA R O B JEC T NU M B ER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 triangl e 1

l4 c4 rectang le 3

… … …
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Relational data representation 

TRAI N EAS TB OU ND

t1 TRU E

t2 TRU E

… …

t6 FAL SE

… …

TRAIN_TABLE TRAIN_TABLE 

CA R TRAI N SHA PE LEN GT H RO OF W H EE LS

c1 t1 rectang le short none 2

c2 t1 rectang le long none 3

c3 t1 rectang le short peaked 2

c4 t1 rectang le long none 2

… … … …

LO AD CA R O B JEC T NU M B ER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 triangl e 1

l4 c4 rectang le 3

… … …
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Part V:  

Relational Data Mining 

• What is RDM 

• Propositionalization techniques 

• Semantic Data Mining 

• Inductive Logic programming 

• Learning as search in Inductive Logic 

Programming 
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Propositionalization in a nutshell 

TRAI N EAS TB OU ND

t1 TRU E

t2 TRU E

… …

t6 FAL SE

… …

TRAIN_TABLE TRAIN_TABLE 

CA R TRAI N SHA PE LEN GT H RO OF W H EE LS

c1 t1 rectang le short none 2

c2 t1 rectang le long none 3

c3 t1 rectang le short peaked 2

c4 t1 rectang le long none 2

… … … …

LO AD CA R O B JEC T NU M B ER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 triangl e 1

l4 c4 rectang le 3

… … …

Propositionalization task 

 

Transform a multi-relational  

(multiple-table) 

representation to a  

propositional representation 

(single table) 

 

Proposed in ILP systems  

LINUS (Lavrac et al. 1991, 1994),  

1BC (Flach and Lachiche 1999), … 
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Propositionalization in a nutshell 

TRAI N EAS TB OU ND

t1 TRU E

t2 TRU E

… …

t6 FAL SE

… …

TRAIN_TABLE TRAIN_TABLE 

CA R TRAI N SHA PE LEN GT H RO OF W H EE LS

c1 t1 rectang le short none 2

c2 t1 rectang le long none 3

c3 t1 rectang le short peaked 2

c4 t1 rectang le long none 2

… … … …

LO AD CA R O B JEC T NU M B ER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 triangl e 1

l4 c4 rectang le 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONAL TRAIN_TABLE PROPOSITIONAL TRAIN_TABLE 

Main propositionalization step: 

first-order feature construction 

 

f1(T):-hasCar(T,C),clength(C,short). 

f2(T):-hasCar(T,C), hasLoad(C,L), 

          loadShape(L,circle) 

f3(T) :- …. 

 

Propositional learning: 

t(T)  f1(T), f4(T) 

 

Relational interpretation: 

eastbound(T)   

hasShortCar(T),hasClosedCar(T). 
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Relational Data Mining through 

Propositionalization 

PropositionalizationPropositionalization  

 
Step 1 
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Relational Data Mining through 

Propositionalization 

PropositionalizationPropositionalization  

 
Step 1 

1. constructing 

relational features 

2. constructing a 

propositional table 

245 

Relational Data Mining through 

Propositionalization 

PropositionalizationPropositionalization  

model, patterns, … 

Data MiningData Mining  

 
Step 1 

Step 2 
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Relational Data Mining through 

Propositionalization 

PropositionalizationPropositionalization  

patterns (set of rules) 

Data MiningData Mining  

 
Step 1 

Step 2 



42 

247 

RSD Lessons learned 

 Efficient propositionalization can be applied to 
individual-centered, multi-instance learning problems: 

– one free global variable (denoting an individual, e.g. molecule M) 

– one or more structural predicates: (e.g. has_atom(M,A)),  each 
introducing a new existential local variable (e.g. atom A), using either the 
global variable (M) or a local variable introduced by other structural 
predicates (A) 

– one or more utility predicates defining properties of individuals or their 
parts, assigning values to variables 

 feature121(M):- hasAtom(M,A), atomType(A,21) 

 feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21) 

 mutagenic(M):- feature121(M), feature235(M) 

248 
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Relational Data Mining in Orange4WS 

 service for propositionalization through efficient 

first-order feature construction (Železny and Lavrač, 

MLJ 2006) 

f121(M):- hasAtom(M,A), atomType(A,21)            

f235(M):- lumo(M,Lu), lessThr(Lu,1.21) 

• subgroup discovery using CN2-SD 

  mutagenic(M)  feature121(M), feature235(M) 
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Part V:  

Relational Data Mining 

• What is RDM 

• Propositionalization techniques 

• Semantic Data Mining 

• Inductive Logic programming 

• Learning as search in Inductive Logic 

Programming 

 

 

 

 

 

 

 

 

What is Semantic Data Mining 

• Ontology-driven (semantic) data mining is an 

emerging research topic  

• Semantic Data Mining (SDM) - a new term 

denoting: 

– the new challenge of mining semantically annotated 

resources, with ontologies used as background 

knowledge to data mining 

– approaches with which semantic data are mined 
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What is Semantic Data Mining 

Semantic  

data mining 
annotations, 

mappings 

 ontologies 

data 

model, 

patterns 

SDM task definition 

Given:  

transaction data table, relational database, 

text documents, Web pages, … 

one or more domain ontologies  

Find:   a classification model, a set of patterns  

251 252 

Semantic Data Mining in Orange4WS 

• Exploiting semantics in data mining 

– Using domain ontologies as background knowledge for 

data mining 

• Semantic data mining technology: a two-step 

approach 

– Using propositionalization through first-order feature 

construction 

– Using subgroup discovery for rule learning 

• Implemented in the SEGS algorithm 
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining 

Gene Ontology  

12093 biological process 

 1812 cellular components 

 7459 molecular functions 

 

Joint work with 

Igor Trajkovski 

and Filip Zelezny 
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining 

First-order features, describing  

gene properties and relations 

between genes, can be viewed 

as generalisations of individual 

genes 
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First order feature construction 

f(7,A):-function(A,'GO:0046872'). 

f(8,A):-function(A,'GO:0004871'). 

f(11,A):-process(A,'GO:0007165'). 

f(14,A):-process(A,'GO:0044267'). 

f(15,A):-process(A,'GO:0050874'). 

f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). 

f(26,A):-component(A,'GO:0016021'). 

f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020'). 

f(122,A):-interaction(A,B),function(B,'GO:0004872'). 

f(223,A):-interaction(A,B),function(B,'GO:0004871'), 
process(B,'GO:0009613'). 

f(224,A):-interaction(A,B),function(B,'GO:0016787'), 
component(B,'GO:0043231'). 

First order features with support > min_support 

existential 
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Propositionalization 

f1 f2 f3 f4 f5 f6 … … fn 

g1 1 0 0 1 1 1 0 0 1 0 1 1 

g2 0 1 1 0 1 1 0 0 0 1 1 0 

g3 0 1 1 1 0 0 1 1 0 0 0 1 

g4 1 1 1 0 1 1 0 0 1 1 1 0 

g5 1 1 1 0 0 1 0 1 1 0 1 0 

g1 0 0 1 1 0 0 0 1 0 0 0 1 

g2 1 1 0 0 1 1 0 1 0 1 1 1 

g3 0 0 0 0 1 0 0 1 1 1 0 0 

g4 1 0 1 1 1 0 1 0 0 1 0 1 

diffexp g1 (gene64499)  

diffexp g2 (gene2534)    

diffexp g3 (gene5199)    

diffexp g4 (gene1052)     

diffexp g5 (gene6036)    

…. 

random g1 (gene7443) 

random g2 (gene9221) 

random g3 (gene2339) 

random g4 (gene9657) 

random g5 (gene19679) 

…. 
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Propositional learning: subgroup 

discovery 

f1 f2 f3 f4 f5 f6 … … fn 

g1 1 0 0 1 1 1 0 0 1 0 1 1 

g2 0 1 1 0 1 1 0 0 0 1 1 0 

g3 0 1 1 1 0 0 1 1 0 0 0 1 

g4 1 1 1 0 1 1 0 0 1 1 1 0 

g5 1 1 1 0 0 1 0 1 1 0 1 0 

g1 0 0 1 1 0 0 0 1 0 0 0 1 

g2 1 1 0 0 1 1 0 1 0 1 1 1 

g3 0 0 0 0 1 0 0 1 1 1 0 0 

g4 1 0 1 1 1 0 1 0 0 1 0 1 

OverOver--

expressedexpressed  

IF IF   

f2 and f3f2 and f3  

[4,0][4,0]  

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871')  
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Subgroup Discovery 
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1.0 1.0 1.0 
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1.0 

1.0 
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1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 
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1.0 

1.0 

1.0 1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

diff. exp. genesdiff. exp. genes  Not diff. exp. genesNot diff. exp. genes  

1.0 
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Subgroup Discovery 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 1.0 1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 1.0 1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

diff. exp. genesdiff. exp. genes  Not diff. exp. genesNot diff. exp. genes  
Cl=Cl=YESYES   f2 and f3f2 and f3  

In RSD (using propositional learner CN2In RSD (using propositional learner CN2--SD):SD):  

Quality of the rules = Coverage  x  PrecisionQuality of the rules = Coverage  x  Precision  
*Coverage = sum of the covered weights*Coverage = sum of the covered weights  

*Precision = purity of the covered genes*Precision = purity of the covered genes  
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Subgroup Discovery  

0.5 
0.5 

1.0 

0.5 
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0.5 1.0 0.5 
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1.0 
1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 1.0 1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

diff. exp. genesdiff. exp. genes  Not diff. exp. genesNot diff. exp. genes  

RSD naturally uses gene weights in its procedure for repetitive 
subgroup generation, via its heuristic rule evaluation: weighted 
relative accuracy 
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Semantic Data Mining in two steps 

• Step 1: Construct relational logic features of genes such 
as  

 
     (g interacts with another gene whose functions include protein binding) 

 and propositional table construction with features as 
attributes 

• Step 2: Using these features to discover and describe 
subgroups of genes  that are differentially expressed (e.g., 
belong to class DIFF.EXP. of top 300 most differentially 
expressed genes) in contrast with RANDOM genes (randomly 
selected genes with low differential expression).  

• Sample subgroup description: 
  diffexp(A) :- interaction(A,B) AND  

    function(B,'GO:0004871') AND   
   process(B,'GO:0009613') 

 

interaction(g, G) & function(G, protein_binding) 
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Summary: SEGS, using the RSD 

approach 

• The SEGS approach enables to discover new 

medical knowledge from the combination of gene 

expression data with public gene annotation 

databases 

• The SEGS approach proved effective in several 

biomedical applications (JBI 2008, …) 
• The work on semantic data mining - using ontologies as 

background knowledge for subgroup discovery with SEGS - was 

done in collaboration with I.Trajkovski, F. Železny and J. Tolar 

• Recent work: Semantic subgroup discovery 

implemented in Orange4WS 

Semantic subgroup discovery with 

SEGS 

• SEGS workflow is implemented in the Orange4WS 

data mining environment 

 

 

 

 

 

• SEGS is also implemented also as a Web 

applications 
(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008) 
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From SEGS to SDM-SEGS: 

Generalizing SEGS 

• SDM-SEGS: a general semantic data mining 

system generalizing SEGS 

 

 

 

 

 

• Discovers subgroups both for ranked and 

labeled data 

• Exploits input ontologies in OWL format 

• Is also implemented in Orange4WS 

264 
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Semantic Data Mining 

• Semantic subgroup discovery (Vavpetič et al., 2012) 

Data Mining 

Knowledge Discovery 

Semantic Web 

Ontologies 

Relational Subgroup Discovery  

Semantic Subgroup 

Discovery 

265 266 

Part V:  

Relational Data Mining 

• What is RDM 

• Propositionalization techniques 

• Semantic Data Mining 

• Inductive Logic programming 

• Learning as search in Inductive Logic 

Programming 
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Sample ILP problem: 

Logic programming 

E + = {sort([2,1,3],[1,2,3])} 

E - = {sort([2,1],[1]),sort([3,1,2],[2,1,3])} 
 

B : definitions of permutation/2 and sorted/1 

 

• Predictive ILP 

 
sort(X,Y)  permutation(X,Y), sorted(Y). 

 

• Descriptive ILP 

 

      sorted(Y)  sort(X,Y). 

   permutation(X,Y)  sort(X,Y) 

   sorted(X)  sort(X,X) 
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Sample ILP problem: 

Knowledge discovery 

 E  + = {daughter(mary,ann),daughter(eve,tom)} 
E  - = {daughter(tom,ann),daughter(eve,ann)} 

 

 B = {mother(ann,mary), mother(ann,tom), 
father(tom,eve), father(tom,ian), female(ann), 
female(mary), female(eve), male(pat),male(tom), 
parent(X,Y)  mother(X,Y), parent(X,Y)  
father(X,Y)} 

ann  

mary    tom 

eve ian 
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Sample relational problem: 

Knowledge discovery 

• E  + = {daughter(mary,ann),daughter(eve,tom)} 
E  - = {daughter(tom,ann),daughter(eve,ann)} 

• B = {mother(ann,mary),mother(ann,tom),father(tom,eve), 
father(tom,ian),female(ann),female(mary),female(eve), 
male(pat),male(tom),parent(X,Y)mother(X,Y), 
parent(X,Y)father(X,Y)} 

 

• Predictive ILP - Induce a definite clause 

  daughter(X,Y)  female(X), parent(Y,X). 

                                or a set of definite clauses 

  daughter(X,Y)  female(X), mother(Y,X). 

  daughter(X,Y)  female(X), father(Y,X). 

 

• Descriptive ILP - Induce a set of (general) clauses 

       daughter(X,Y), mother(X,Y). 

   female(X) daughter(X,Y). 

   mother(X,Y); father(X,Y)  parent(X,Y). 

270 Basic Relational Data Mining and ILP 

learning tasks 

Predictive RDM 

 

                                                                                                     

 

 

 

Descriptive RDM 

 

 

                                                                                  

                                                        

+ 

- 

+ 
+ 

+ 

+ 

- - 

- - 
- 

- 

+ + + 

+ + 
+ 

H 

H 
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Predictive ILP 

•

+ + + 
+ + + 

- - - 
- - 

- 

H 
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Predictive ILP 

• Given: 
– A set of observations 

• positive examples E + 

• negative examples E - 

– background knowledge B 

– hypothesis language LH 

– covers relation 

– quality criterion 

 

• Find: 
A hypothesis H  LH, such that (given B) H is 
optimal w.r.t. some quality criterion, e.g., max. 
predictive accuracy A(H)   

 

    (instead of finding a hypothesis H  LH, such 
that (given B) H covers all positive and no 
negative examples) 

+ + 

+ + 

- - - - 
- 

- 

H 

+ 

+ + 
+ 

- 
- 
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Descriptive ILP 

• Given: 
– A set of observations 

(positive examples E +) 

– background knowledge B 

– hypothesis language LH 

– covers relation 
 

• Find: 
Maximally specific hypothesis H  LH, such 
that (given B) H covers all positive examples 
 

• In logic, find H such that c  H, c is true in 
some preferred model of B E  (e.g., least 
Herbrand model M (B E )) 

 

• In ILP, E are ground facts, B are (sets of) 
general clauses 

+ + + 
+ + + 

H 
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Sample problem:  

East-West trains 
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RDM knowledge representation 

(database) 

TRAI N EAS TB OU ND

t1 TRU E

t2 TRU E

… …

t6 FAL SE

… …

TRAIN_TABLE TRAIN_TABLE 

CA R TRAI N SHA PE LEN GT H RO OF W H EE LS

c1 t1 rectang le short none 2

c2 t1 rectang le long none 3

c3 t1 rectang le short peaked 2

c4 t1 rectang le long none 2

… … … …

LO AD CA R O B JEC T NU M B ER

l1 c1 circ le 1

l2 c2 hexagon 1

l3 c3 triangl e 1

l4 c4 rectang le 3

… … …

LOAD_TABLE LOAD_TABLE 

CAR_TABLE CAR_TABLE 

276 

ER diagram for East-West trains 

Train Direction Direction 

Has Has 

Car 

 Shape 

 Length 

Roof 

 Wheels 

1 1 

M M 

Has Has Load 
1 1 1 1 

 Number  Object 
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ILP representation:  

Datalog ground facts 

• Example:  
eastbound(t1). 

 

• Background theory: 
car(t1,c1).      car(t1,c2).        car(t1,c3).     car(t1,c4). 
rectangle(c1).    rectangle(c2).    rectangle(c3).   rectangle(c4). 
short(c1).       long(c2).        short(c3).     long(c4). 
none(c1).         none(c2). peaked(c3).     none(c4). 
two_wheels(c1).  three_wheels(c2).  two_wheels(c3). two_wheels(c4). 
load(c1,l1).      load(c2,l2).       load(c3,l3).     load(c4,l4). 
circle(l1).        hexagon(l2).      triangle(l3).    rectangle(l4). 
one_load(l1).     one_load(l2).     one_load(l3).    three_loads(l4). 

 

• Hypothesis (predictive ILP): 

   eastbound(T) :- car(T,C),short(C),not none(C). 
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ILP representation:  

Datalog ground clauses 

• Example:  
eastbound(t1):- 
 car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1), 
  load(c1,l1),circle(l1),one_load(l1), 
 car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2), 
  load(c2,l2),hexagon(l2),one_load(l2), 
 car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3), 
  load(c3,l3),triangle(l3),one_load(l3), 
 car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4), 
  load(c4,l4),rectangle(l4),three_load(l4). 

• Background theory: empty  

• Hypothesis:  
eastbound(T):-car(T,C),short(C),not none(C). 
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ILP representation: Prolog terms 

• Example:  
 eastbound([c(rectangle,short,none,2,l(circle,1)), 
           c(rectangle,long,none,3,l(hexagon,1)), 
           c(rectangle,short,peaked,2,l(triangle,1)), 
           c(rectangle,long,none,2,l(rectangle,3))]). 

• Background theory: member/2, arg/3 

• Hypothesis:  
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none). 
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Propositionalization in ILP (LINUS) 
• Example: learning family relationships 

 

 

 

 

 

• Transformation to propositional form: 

 

 

 

 

 

 

 

• Result of propositional rule learning: 
 Class =   if (female(X) = true)  (parent(Y,X) = true 

• Transformation to program clause form: 
 daughter(X,Y)  female(X),parent(Y,X) 

Training examples

daughter(sue,eve).       (+) parent(eve,sue). female(ann).

daughter(ann,pat).       (+) parent(ann,tom). female(sue).

daughter(tom,ann).      (-) parent(pat,ann). female(eve).

daughter(eve,ann).       (-) parent(tom,sue).

Background knowledge

Class Variables Propositional features 

X Y f(X) f(Y) p(X,X) p(X,Y) p(Y,X) p(Y,Y) X=Y 

 sue eve true true false false true false false 

 ann pat true false false false true false false 

 tom ann false true false false true false false 

 eve ann true true false false false false false 
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First-order feature construction 

• All the expressiveness of ILP is in the features 

• Given a way to construct (or choose) first-order 

features, body construction in ILP becomes 

propositional 

– idea: learn non-determinate clauses with LINUS by 

saturating background knowledge (performing 

systematic feature construction in a given language bias) 
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Declarative bias for first-order feature 

construction 

• In ILP, features involve interactions of local variables 

• Features should define properties of individuals (e.g. trains, 
molecules) or their parts (e.g., cars, atoms)  

• Feature construction in LINUS, using the following language 
bias: 
– one free global variable (denoting an individual, e.g. train) 

– one or more structural predicates: (e.g., has_car(T,C)) ,each 
introducing a new existential local variable (e.g. car, atom), using either 
the global variable (train, molecule) or a local variable introduced by 
other structural predicates (car, load) 

– one or more utility predicates defining properties of individuals or their 
parts: no new variables, just using variables 

– all variables should be used 

– parameter: max. number of predicates forming a feature 
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Sample first-order features 

• The following rule has two features ‘has a short car’ and ‘has a 
closed car’:  

eastbound(T):-hasCar(T,C1),clength(C1,short), 
hasCar(T,C2),not croof(C2,none). 

• The following rule has one feature ‘has a short closed car’:  

eastbound(T):-hasCar(T,C),clength(C,short), 
not croof(C,none). 

• Equivalent representation:  

eastbound(T):-hasShortCar(T),hasClosedCar(T). 

hasShortCar(T):-hasCar(T,C),clength(C,short). 

hasClosedCar(T):-hasCar(T,C),not croof(C,none). 
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LINUS revisited 

• Standard LINUS:  

– transforming an ILP problem to a propositional problem 

– apply background knowledge predicates 

• Revisited LINUS:  

– Systematic first-order feature construction in a given 

language bias 

• Too many features? 

– use a relevancy filter (Gamberger and Lavrac) 
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LINUS revisited: 

Example: East-West trains 

Rules induced by CN2, using 190 first-order features with up to two 
utility predicates: 

eastbound(T):-          westbound(T):- 

  hasCarHasLoadSingleTriangle(T),  not hasCarEllipse(T), 

  not hasCarLongJagged(T),    not hasCarShortFlat(T), 

  not hasCarLongHasLoadCircle(T).   not hasCarPeakedTwo(T). 

Meaning: 

eastbound(T):-  

  hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1), 

  not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)), 

  not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)). 

westbound(T):- 

  not (hasCar(T,C1),cshape(C1,ellipse)), 

  not (hasCar(T,C2),clength(C2,short),croof(C2,flat)), 

  not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)). 
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Relational Data Mining in Orange4WS 

and ClowdFlows 
 service for propositionalization through efficient 

first-order feature construction (Železny and Lavrač, 

MLJ 2006) 

f121(M):- hasAtom(M,A), atomType(A,21)            

f235(M):- lumo(M,Lu), lessThr(Lu,1.21) 

• subgroup discovery using CN2-SD 

  mutagenic(M)  feature121(M), feature235(M) 

 

 

287 

Part V:  

Relational Data Mining 

• What is RDM 

• Propositionalization techniques 

• Semantic Data Mining 

• Inductive Logic programming 

• Learning as search in Inductive Logic 

Programming 
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Learning as search  

• Structuring the state space: Representing a partial 
order of hypotheses (e.g. rules) as a graph 

– nodes: concept descriptions (hypotheses/rules) 

– arcs defined by specialization/generalization 
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific 
generalization of child  

• Specialization operators: e.g., adding conditions: 
s(A=a2 & B=b1) = {A=a2 & B=b1 &  D=d1, A=a2 & B=b1 & D=d2} 

• Generalization operators:  e.g., dropping 

conditions: g(A=a2 & B=b1) = {A=a2, B=b1}  

• Partial order of hypotheses defines a lattice 
(called a refinement graph)  
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Learn-one-rule as search - Structuring the 

hypothesis space: PlayGolf example  

PlayGolf = yes    IF  

PlayGolf = yes  
IF Wind=weak   

PlayGolf = yes 
IF Wind=strong 

PlayGolf = yes  
IF Humidity=normal 

PlayGolf = yes 
IF Humidity=high 

PlayGolf = yes  
IF Humidity=normal, 

   Wind=weak   

PlayGolf = yes  
IF Humidity=normal, 

   Wind=strong 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=sunny 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=rain 

... 
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Learn-one-rule as heuristic search: 

PlayGolf example  

PlayGolf = yes    IF 

PlayGolf = yes  
IF Wind=weak   

PlayGolf = yes 
IF Wind=strong 

PlayGolf = yes  
IF Humidity=normal 

PlayGolf = yes 
IF Humidity=high 

PlayGolf = yes  
IF Humidity=normal, 

   Wind=weak   

PlayGolf = yes  
IF Humidity=normal, 

   Wind=strong 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=sunny 

PlayGolf = yes  
IF Humidity=normal, 

   Outlook=rain 

[9,5] (14) 

[6,2] (8) 

[3,3] (6) [6,1] (7) 

[3,4] (7) 

... 

[2,0] (2) 
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Learning as search  

(Mitchell’s version space model) 

• Hypothesis language  LH 

defines the state space  

• How to structure the 

hypothesis space LH? 

• How to move from one 

hypothesis to another? 

 

 

• The version space: region 

between S (maximally 

specific) and G (maximally 

general) complete and 

consistent concept 

descriptions 

too general 

too specific 

more 
general 

more 
specific 

complete and consistent  
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Learning as search 

• Search/move by applying 

generalization and 

specialization 

• Prune generalizations:  

– if H covers example e then 

all generalizations of H will 

also cover e (prune using 

neg. ex.) 

• Prune specializations: 

– if H does not cover 

example e, no 

specialization will cover e 

(prune using if H pos. ex.) 

too general 

too specific 

generalize 

 
specialize 

e- 

e+ 
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Learning as search:  

Learner’s ingredients 

– structure of the search space (specialization and 

generalization operators) 

– search strategy 

• depth-first 

• breath-first 

• heuristic search (best first, hill-climbing, beam search) 

– search heuristics  

• measure of attribute ‘informativity’ 

• measure of ‘expected classification accuracy’ (relative 

frequency, Laplace estimate, m-estimate), ... 

– stopping criteria (consistency, completeness, statistical 

significance, …) 
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Learn-one-rule: 

search heuristics 

• Assume a two-class problem 

• Two classes (+,-),  learn rules for + class (Cl).  

• Search for specializations R’ of a rule R = Cl  Cond  

from the RuleBase. 

• Specializarion R’ of rule R = Cl  Cond 

   has the form    R’ = Cl  Cond & Cond’ 

• Heuristic search for rules: find the ‘best’ Cond’ to be 

added to the current rule R, such that rule accuracy is 

improved, e.g., such that Acc(R’) > Acc(R) 

– where the expected classification accuracy can be 

estimated as A(R) = p(Cl|Cond) 
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Learn-one-rule – Search strategy: 

Greedy vs. beam search 

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’ 
descendant, no backtracking 
– e.g., the best descendant of the initial rule  

   PlayGolf = yes   

– is rule PlayGolf = yes  Humidity=normal 

• beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates 
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ILP as search of program clauses 

• An ILP learner can be described by 
– the structure of the space of clauses 

• based on the generality relation  
• Let C and D be  two clauses.  

C is more general than D (C | D) iff  

  covers(D)  covers(C)  

• Example: p(X,Y)  r(Y,X) is more general than  

        p(X,Y)  r(Y,X), q(X)  

– its search strategy 

• uninformed search (depth-first, breadth-first, iterative 
deepening) 

• heuristic search (best-first, hill-climbing, beam search) 

– its heuristics 

• for directing search 

• for stopping search (quality criterion) 
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• Semantic generality 
Hypothesis H1 is semantically more general than H2 w.r.t. 
background theory B if and only if  B  H1 |= H2 

• Syntactic generality or -subsumption  

 (most popular in ILP) 

– Clause c1  -subsumes c2 (c1   c2)  

 if and only if  : c1   c2 

– Hypothesis H1   H2  

 if and only if c2  H2 exists c1  H1 such that c1   c2 

• Example 
  c1 = daughter(X,Y)  parent(Y,X) 

 c2 = daughter(mary,ann)  female(mary), 
                                            parent(ann,mary), 
                                            parent(ann,tom). 
c1  -subsumes c2 under  = {X/mary,Y/ann} 

ILP as search of program clauses  
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The role of subsumption in ILP 

• Generality ordering for hypotheses 

• Pruning of the search space: 

– generalization 

• if C covers a neg. example then its generalizations need 

not be considered 

– specialization 

• if C doesn’t cover a pos. example then its specializations 

need not be considered 

• Top-down search of refinement graphs 

• Bottom-up search of the hypo. space by 

– building least general generalizations, and 

– inverting resolutions 
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Structuring the  

hypothesis space 

too general 

too specific 

more 
general 

more 
specific 

flies(X)   

flies(X)  bird(X),  

    normal(X) 

flies(X)  bird(X) 
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Two strategies for learning 

• General-to-specific 

– if -subsumption is used then refinement 

operators 

• Specific-to-general search 

– if -subsumption is used then lgg-operator or 

generalization operator 
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• Two strategies for learning 

– Top-down search of refinement graphs 

– Bottom-up search 

• building least general generalizations 

• inverting resolution (CIGOL) 

• inverting entailment (PROGOL) 

ILP as search of program clauses 
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More general 

(induction) 

More 

specific 
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Generality ordering of clauses 

Training examples Background knowledge 

daughter(mary,ann).         parent(ann,mary). female(ann.). 

daughter(eve,tom).           parent(ann,tom). female(mary). 

daughter(tom,ann).           parent(tom,eve). female(eve). 

daughter(eve,ann).           parent(tom,ian). 

daughter(X,Y)  

daughter(X,Y)  X=Y daughter(X,Y)   

parent(Y,X) 

daughter(X,Y)  

 parent(X,Z) 

daughter(X,Y)  female(X) 

daughter(X,Y)  

female (X) 

female(Y) 

daughter(X,Y)  

female(X) 

parent(Y,X) 

... 
... 

... ... 

Part of the refinement  

graph for the family  

relations problem. 
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Greedy search of the best clause 

daughter(X,Y)  

daughter(X,Y)  X=Y daughter(X,Y)   

parent(Y,X) 

daughter(X,Y)  

 parent(X,Z) 

daughter(X,Y)  female(X) 

daughter(X,Y)  

female (X) 

female(Y) 

daughter(X,Y)  

female(X) 

parent(Y,X) 

... 
... 

... ... 

2/4 

0/0 
2/3 

2/3 

1/2 2/2 

Training examples Background knowledge 

daughter(mary,ann).         parent(ann,mary). female(ann.). 

daughter(eve,tom).           parent(ann,tom). female(mary). 

daughter(tom,ann).           parent(tom,eve). female(eve). 

daughter(eve,ann).           parent(tom,ian). 
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FOIL 

• Language:   function-free normal programs 
recursion, negation, new variables in the body, no 
functors, no constants (original) 

• Algorithm:   covering 

• Search heuristics:   weighted info gain 

• Search strategy:   hill climbing 

• Stopping criterion:   encoding length restriction 

• Search space reduction:   types, in/out modes 
determinate literals 

• Ground background knowledge, extensional 
coverage 

• Implemented in C 
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Part V: Summary 

• RDM extends DM by allowing multiple tables 

describing structured data 

• Complexity of representation and therefore of 

learning is determined by one-to-many links 

• Many RDM problems are individual-centred 

and therefore allow strong declarative bias 
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Advanced Topics  

• Text mining: An introduction 

• Document clustering and outlier detection 

• Wordification approach to relational data mining 

 
 

 

 

 

 

 

 

 

Background: Data mining  

data 

knowledge discovery 

from data 

model, patterns, clusters, 

… 

Given: transaction data table, a set of text documents, …   

Find: a classification model, a set of interesting patterns  

Data MiningData Mining  

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

Data mining: Task reformulation  

Person Young Myope Astigm. Reuced tear Lenses

O1 1 1 0 1 NO

O2 1 1 0 0 YES

O3 1 1 1 1 NO

O4 1 1 1 0 YES

O5 1 0 0 1 NO

O6-O13 ... ... ... ... ...

O14 0 0 0 0 YES

O15 0 0 1 1 NO

O16 0 0 1 0 NO

O17 0 1 0 1 NO

O18 0 1 0 0 NO

O19-O23 ... ... ... ... ...

O24 0 0 1 0 NO

Binary features and class values 

Text mining:  

Words/terms as binary features 

Instances = documents 

Words and terms = Binary features 

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Text Mining from unlabeled data 

 Unlabeled data - clustering: grouping of similar instances  

       - association rule learning 

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Text mining 

BoWBoW  vector constructionvector construction  

model, patterns, clusters,  

… 

Data MiningData Mining  

Step 1 

Step 2 

1. BoW features 

construction 

2. Table of BoW vectors 

construction 

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO
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Text Mining 

• Feature construction 
– StopWords elimination 

– Stemming or lemmatization 

– Term construction by frequent N-Grams construction 

– Terms obtained from thesaurus (e.g., WordNet) 

 

• BoW vector construction 

 

• Mining of BoW vector table 
– Feature selection, Document similarity computation 

– Text mining: Categorization, Clustering, Summarization, 
… 

 

Stemming and Lemmatization 

• Different forms of the same word usually 

problematic for text data analysis 
– because they have different spelling and similar meaning (e.g. 

learns, learned, learning,…) 

– usually treated as completely unrelated words   

• Stemming is a process of transforming a word into 

its stem   

– cutting off a suffix (eg., smejala -> smej) 

• Lemmatization is a process of transforming a 

word into its normalized form 

– replacing the word, most often replacing a suffix (eg., 

smejala -> smejati) 

Bag-of-Words document 

representation 
Word weighting 

• In bag-of-words representation each word is represented 
as a separate variable having numeric weight. 

• The most popular weighting schema is normalized word 
frequency TFIDF: 

 

 

 
– Tf(w) – term frequency (number of word occurrences in a 

document) 

– Df(w) – document frequency (number of documents containing the 
word) 

– N – number of all documents 

– Tfidf(w) – relative importance of the word in the document 

)
)(

log(.)(
wdf

N
tfwtfidf 

The word is more important if it appears  
several times in a target document 

The word is more important if it 
appears in less documents 

Cosine similarity between 

document vectors 

• Each document D is represented as a vector of       

TF-IDF weights  

• Similarity between two vectors is estimated by the 

similarity between their vector representations 

(cosine of the angle between the two vectors): 

Advanced Topics  

• Text mining: An introduction 

• Document clustering and outlier detection 

• Wordification approach to relational data mining 
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Document clustering 

• Clustering is a process of finding natural groups in 
data in a unsupervised way (no class labels pre-
assigned to documents) 

• Document similarity is used  

• Most popular clustering methods: 
– K-Means clustering 

– Agglomerative hierarchical clustering 

– EM (Gaussian Mixture) 

– … 

Document clustering with OntoGen 

ontogen.ijs.si 

Domain 

PubMed Articles Topic Identification 

Topic A Topic B 

Topic C 

Slide adapted from D. Mladenić, JSI 

Using OntoGen for clustering 

PubMed articles on autism 

www.ontogen.si 

Fortuna, Mladenić,  

Grobelnik 2006 

Work by  

Petrič et al. 2009 

K-Means clustering in OntoGen 

OntoGen uses k-Means clustering for semi-automated 
topic ontology construction 

• Given: 
– set of documents (eg., word-vectors with TFIDF),  

– distance measure (eg., cosine similarity) 

– K - number of groups 

• For each group initialize its centroid with a random 
document 

• While not converging  
– each document is assigned to the nearest group 

(represented by its centroid) 

– for each group calculate new centroid (group mass point, 
average document in the group) 

Detecting outlier documents 

• By classification noise detection on a domain 

pair dataset, assuming two separate document 

corpora A and C 

Outlier detection for cross-domain 

knowledge discovery 

2-dimensional 

projection of 

documents (about 

autism (red) and 

calcineurin (blue). 

Outlier documents 

are bolded for the 

user to easily spot 

them.  

 

Our research  

has shown that 

most  domain 

bridging terms 

appear in outlier 

documents. 
(Lavrač, Sluban, 

Grčar, Juršič 2010)  

http://www.ontogen.si/
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Using OntoGen for outlier 

document identification 

A U C 

Text corpus Outlier Identification 

Concept A’ 

Concept C’ 

Slide adapted from D. Mladenić, JSI 

NoiseRank: Ensemble-based noise 

and outlier detection 

• Misclassified document 

detection by an 

ensemble of diverse 

classifiers (e.g., Naive 

Bayes, Random Forest, 

SVM, … classifiers) 

• Ranking of misclassified 

documents by “voting” 

of classifiers 

NoiseRank on news articles 

Articles on Kenyan elections: local vs. Western media   

NoiseRank on news articles 

• Article 352: Out of topic 

The article was later indeed 

removed from the corpus 

used for further linguistic 

analysis, since it is not 

about Kenya(ns) or the 

socio-political climate but 

about British tourists or 

expatriates’ misfortune. 
 

• Article 173: Guest 

journalist 

Wrongly classified because it 

could be regarded as a 

“Western article” among the 

local Kenyan press. The 

author does not have the 

cultural sensitivity or does not 

follow the editorial guidelines 

requiring to be careful when 

mentioning words like tribe in 

negative contexts. One could 

even say that he has a kind 

of “Western” writing style. 

Advanced Topics  

• Text mining: An introduction 

• Document clustering and outlier  

• Wordification approach to relational data mining 
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Motivation 

• Develop a RDM technique inspired by text 

mining  

• Using a large number of simple, easy to 

understand features (words) 

• Improved scalability, handling large datasets 

• Used as a preprocessing step to propositional 

learners 
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Wordification Methodology 

• Transform a relational database to a document 

corpus 

• For each individual (row) in the main table, concatenate 

words generated for the main table with words generated 

for the other tables, linked through external keys 

 

 

 

 

Wordification Methodology 

• One individual of the main data table in the 

relational database ~ one text document 

• Features (attribute values)  ~ the words of this 

document 

• Individual words (called word-items or witems) 

are constructed as combinations of: 

 

 

•  n-grams are constructed to model feature 

dependencies: 

 

 

Wordification Methodology 

• Transform a relational database to a document 

corpus 

• Construct BoW vectors with TF-IDF weights on 

words 

     (optional: Perform feature selection) 

• Apply text mining or propositional learning on BoW 

table 

Wordification 

t1: [car_roof_none, car_shape_rectangle, car_wheels_2, 

car_roof_none__car_shape_rectangle, 

car_roof_none__car_wheels_2, 

car_shape_rectangle__car_wheels_2,  

car_roof_peaked, car_shape_rectangle,  

car_wheels_3, car_roof_peaked__car_shape_rectangle, 

car_roof_peaked__car_wheels_3, 

car_shape_rectangle__car_wheels_3], east 

Wordification 
t1: [car_roof_none, car_shape_rectangle, car_wheels_2, 

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, 

car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, 

car_wheels_3, car_roof_peaked__car_shape_rectangle, 

car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east 

 

t5: [car_roof_none, car_shape_rectangle, car_wheels_2, 

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2, 

car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon, 

car_wheels_2, car_roof_flat__car_shape_hexagon, 

car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], west 

TF-IDF calculation for BoW vector construction: 

TF-IDF weights 

• No explicit use of existential variables in 

features, TF-IDF instead 

• The weight of a word indicates how relevant is 

the feature for the given individual 

• The TF-IDF weights can then be used either for 

filtering words with low importance or for using 

them directly by a propositional learner (e.g. J48) 
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Experiments 

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial.  

• Results (using J48 for propositional learning) 

 

Experiments 

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial.  

• Results (using J48 for propositional learning) 

– first applying Friedman test to rank the algorithms,  

– then post-hoc test Nemenyi test to compare multiple 

algorithms to each other 

 

Experiments 

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial.  

• Results (using J48 for propositional learning) 

Experiments 

Use Case: IMDB  

• IMDB subset: Top 250 and bottom 100 movies 

• Movies, actors, movie genres, directors, director genres 

• Wordification methodology applied 

• Association rules learned on BoW vector table 

Use Case: IMDB  
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Wordification implemented in 

ClowdFlows 

June 28, 2013 DAISY, Konstanz 343 

 

• Propositionalization through wordification, available 

at http://clowdflows.org/workflow/1455/ 

 

 

 

 

Evaluation implemented in ClowdFlows 

June 28, 2013 DAISY, Konstanz 344 

 

• Wordification and propositionalization algorithms 

comparison, available at 

http://clowdflows.org/workflow/1456/ 
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Summary 

– Wordification methodology  

– Implemented in ClowdFlows 

– Allows for solving non-standard RDM tasks, including RDM 

clustering, word cloud visualization, association rule 

learning, topic ontology construction, outlier detection, … 

 

 

 


