

D	iscussion	
1.	How much is the information gain for the "attribute" Person? How would it perform on the test set?	
→ 2.	How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}	
3.	What would be the classification accuracy of our decision tree if we pruned it at the node <i>Astigmatic</i> ?	
4.	What are the stopping criteria for building a decision tree?	
5.	Why do we prune decision trees?	
6.	How would you compute the information gain for a numeric attribute?	
7.	Compare naïve Bayes and decision trees (similarities and differences) .	
8.	Can KNN be used for classification tasks?	
9.	Compare KNN and Naïve Bayes.	
10.	Compare cross validation and testing on a separate test set.	
11.	List 3 numeric prediction methods.	
12. KNOWLEDI TECHNOLOGIES	What is discretization.	6

	D	iscussion	
	1.	How much is the information gain for the "attribute" Person? How would it perform on the test set?	
	2.	How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}	
	3.	What would be the classification accuracy of our decision tree if we pruned it at the node <i>Astigmatic</i> ?	
\rightarrow	4.	What are the stopping criteria for building a decision tree?	
	5.	Why do we prune decision trees?	
	6.	How would you compute the information gain for a numeric attribute?	
	7.	Compare naïve Bayes and decision trees (similarities and differences) .	
	8.	Can KNN be used for classification tasks?	
	9.	Compare KNN and Naïve Bayes.	
	10.	Compare cross validation and testing on a separate test set.	
	11.	List 3 numeric prediction methods.	
TECHN	12. OWLEDO	What is discretization.	12

Stopping criteria for building a decision tree
ID3

"Pure" nodes (entropy =0)
Out of attributes

J48 (C4.5)

Minimum number of instances in a leaf constraint

KNOWLEDGE	15
\TECHNOLOGIES	

In	for	mati	on gain of a numeric attribute	
1	Age	Lenses		
	67	YES		
	52	YES		
	63	NO		
	26	YES		
	65	NO		
	23	YES		
	65	NO		
	25	YES		
	26	YES		
	57	NO		
	49	NO		
	23	YES		
	39	NO		
	55	NO		
	53	NO		
	38	NO		
	67	YES		
	54	NO		
	29	YES		
	46	NO		
	44	YES		
~	32	NO		
KN	39	NO		Ξ,
	15	VEO		

	Infor	mati	on ga	in of	a nu	imeric attribute
[Age	Lenses		Age	Lenses	
	67	YES		23	YES	
	52	YES		23	YES	
	63	NO	- ·	25	YES	
	26	YES	Sort	26	YES	
	65	NO	by	26	YES	
	23	YES	Ano	29	YES	
	65	NO	Age	32	NO	
	25	YES		38	NO	
	26	YES		39	NO	
	57	NO		39	NO	
	49	NO		44	YES	
	23	YES		45	YES	
	39	NO		46	NO	
	55	NO		49	NO	
	53	NO		52	YES	
	38	NO		53	NO	
	67	YES		54	NO	
	54	NO		55	NO	
	29	YES		57	NO	
	46	NO		63	NO	
	44	YES		65	NO	
	32	NO		65	NO	18
TECHN	39	NO		67	YES	10
	45	YES		67	YES	

In	for	mati	on ga	in of	a nu	imeric a	ttribu	ute
A	\ae	Lenses		Age	Lenses		Age	Lenses
	67	YES		23	YES		23	YES
	52	YES		23	YES		23	YES
	63	NO	_	25	YES	Define	25	YES
	26	YES	Sort	26	YES	Denne	26	YES
	65	NO	by	26	YES	possible	26	YES
	23	YES	Ago	29	YES	splitting	29	YES
	65	NO	Age	32	NO	nointe	32	NO
	25	YES		38	NO	points	38	NO
	26	YES		39	NO		39	NO
	67	NO		39	NO		39	NO
	49	NO		44	YES		44	YES
	23	YES		45	YES		45	YES
	39	NO		46	NO		46	NO
	55	NO		49	NO		49	NO
	53	NO		52	YES		52	YES
	38	NO		53	NO		53	NO
	67	YES		54	NO		54	NO
	54	NO		55	NO		55	NO
	29	YES		57	NO		57	NO
	46	NO		63	NO		63	NO
	44	YES		65	NO		65	NO
_	32	NO		65	NO		65	NO
KN	39	NO		67	YES		67	YES
	45	YES		67	YES		67	YES

Comparison of naïve Bayes and decision trees: Interpretability

- Decision trees are easy to understand and interpret (if they are of moderate size)
- Naïve bayes models are of the "black box type".
- Naïve bayes models have been visualized by nomograms.

Comparison of cross validation and testing on a separate test set

- Both are methods for evaluating predictive models.
- Testing on a separate test set is simpler since we split the data into two sets: one for training and one for testing. We evaluate the model on the test data.
- Cross validation is more complex: It repeats testing on a separate test *n* times, each time taking 1/n of different data examples as test data. The evaluation measures are averaged over all testing sets therefore the results are more reliable.

Test s	set		
	Age	Height	
	2	0.85	
	10	1.4	
	35	1.7	
	70	1.6	
TECHNOLOGIES			42

Bas	seline	predic	tor: pre	diction	
Ave	rage of	the targ	get variab	le is 1.63	
	Age	Height	Baseline		
	2	0.85			
	10	1.4			
	35	1.7			
	70	1.6			
	,				
KNOWLEDGE TECHNOLOGIES					44

	Linear Height =	Regre: 0.00	ssion: pro 56 * Age +	ediction 1.4181
			Linear	
	Age	Height	regression	
	2	0.85		
	10	1.4		
	35	1.7		
	70	1.6		
ECHN				- 46

ĺ	Age	Height	.101				
	1	0.90			1		1
	1	0.99		Age	Height	kNN	
	2	1.01		2	0.85		
	3	1.03		10	1.4		
	3	1.07		35	1.7		
	5	1.19		70	1.6		
	5	1.17			I		
TECHN							52

-	•				
Age	Height				
8	1.36				1
8	1.33	Ane	Height	KNN	
9	1.45		0.95		
9	1.39		0.65		
11	1.49	10	1.4		
12	1.66	35	1.7		
12	1.52	70	1.6		
13	1.59		I		1
14	1.58				

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77

Numeric prediction	Classification	
Data: attribute-value description		
Target variable: Continuous	Target variable: Categorical (nominal)	
Evaluation : cross validation, separate test set,		
Error:	Error:	
MSE, MAE, RMSE,	1-accuracy	
Algorithms:	Algorithms:	
Linear regression, regression trees,	Decision trees, Naïve Bayes,	
Baseline predictor:	Baseline predictor:	
Mean of the target variable	Majority class	

 KNN for classification? Yes. A case is classified by a majority vote of its neighbors, with the case being assigned to the class most common amongst its K nearest neighbors measured by a distance function. If K = 1, then the case is simply assigned to the class of its nearest neighbor. 	
chione rage eventorials	61

	Naïve Bayes	KNN	
Used for			
Handle categorical data			
Handle numeric data			
Model interpretability			
Lazy classification			
Evaluation			
Parameter tuning			

	Naïve Bayes	KNN
Used for	Classification	Classification and numeric prediction
Handle categorical data	Yes	Proper distance function needed
Handle numeric data	Discretization needed	Yes
Model interpretability	Limited	No
Lazy classification	Partial	Yes
Evaluation	Cross validation,	Cross validation,
Parameter tuning	No	No

Comparison of re	gression and	
Regression trees	Decision trees	
Data: attribute-value description		
Target variable: Continuous	Target variable: Categorical (nominal)	
Evaluation: cross validation, separate test set,		
Error: MSE, MAE, RMSE,	Error: 1-accuracy	
Algorithm: Top down induction, shortsighted method		
Heuristic: Standard deviation	Heuristic : Information gain	
Stopping criterion: Standard deviation< threshold	Stopping criterion: Pure leafs (entropy=0)	
WIEDGE	•	

Classification or a numeric prediction problem?

- Target variable with five possible values:
 - 1. non sufficient 2. sufficient
 - 3.good
 - 4. very good
 - 5. excellent
- Classification: the misclassification cost is the same if "non sufficient" is classified as "sufficient" or if it is classified as "very good"
- Numeric prediction: The error of predicting "2" when it should be "1" is 1, while the error of predicting "5" instead of "1" is 4.

69

- If we have a variable with ordered values,
- it should be considered numeric.

