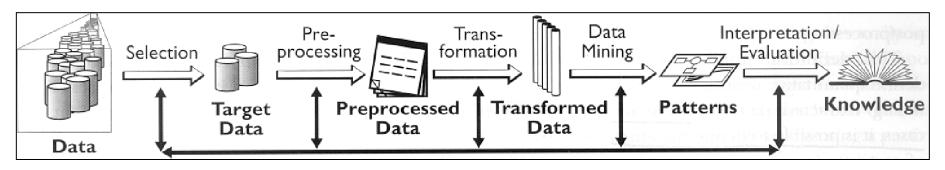
Data Mining and Knowledge Discovery: Practice Notes

Petra Kralj Novak

Petra.Kralj.Novak@ijs.si 2011/12/04

Keywords



Data

Attribute, example, attribute-value data, target variable, class, discretization

Data mining

 Heuristics vs. exhaustive search, decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, predictive vs. descriptive DM, numeric prediction, regression tree, model tree

Evaluation

 Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, error

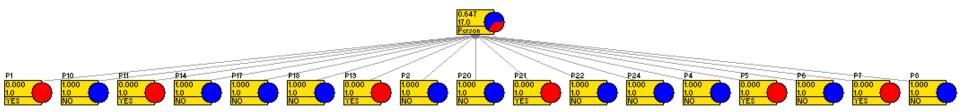
Practice plan

- 2012/11/20: Predictive data mining 1
 - Decision trees
 - Evaluating classifiers 1: separate test set, confusion matrix, classification accuracy
 - Hands on Weka 1: Just a taste of Weka
- 2012/12/4: Predictive data mining 2
 - Discussion about decision trees
 - Naïve Bayes classifier
 - Evaluating classifiers 2: Cross validation
 - Numeric prediction
 - Hands on Weka 2: Classification and numeric prediction
- 2012/12/4: Descriptive data mining
 - Discussion on classification
 - Association rules
 - Hands on Weka 3: Descriptive data mining
 - Discussion about seminars and exam
- 2013/1/15: Written exam, seminar proposal discussion
- 2013/2/12: Data mining seminar presentations

Discussion about decision trees

- → How much is the information gain for the "attribute" Person? How would it perform on the test set?
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Information gain of the "attribute" Person



On training set

- As many values as there are examples
- Each leaf has exactly one example
- E(1/1, 0/1) = 0 (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)

On testing set

 The values from the testing set do not appear in the tree

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- → How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

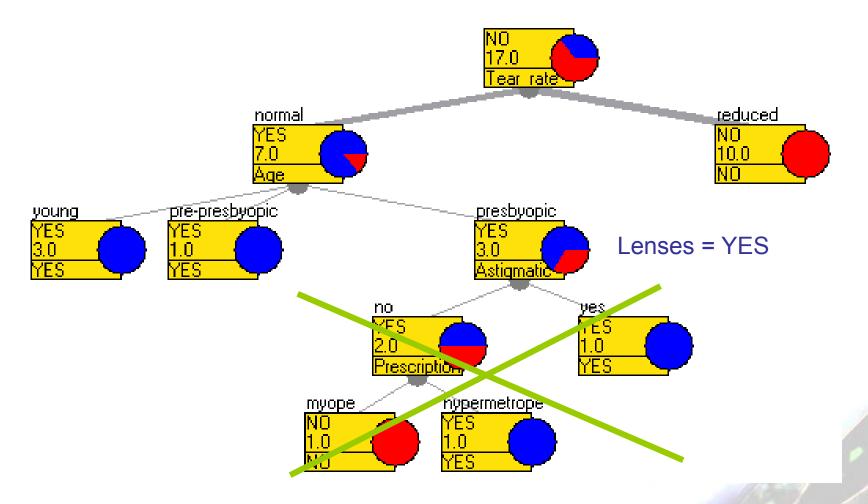
Entropy{hard=4, soft=5, none=13}=

- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22 13/22* \log_2 13/22$
- = 1.38

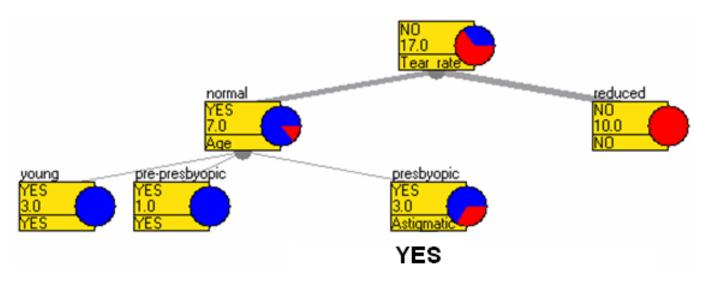
Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- → What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Decision tree pruning



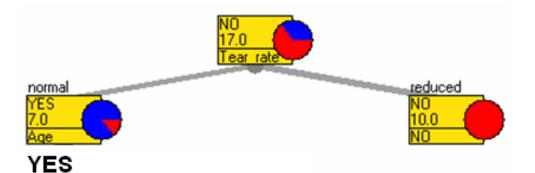
These two trees are equivalent



Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

$$Ca = (3+2)/(3+2+2+0) = 71\%$$



	Predicted positive	Predicted negative
Actual positive	TP=3	FN=0
Actual negative	FP=2	TN=2

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- → What are the stopping criteria for building a decision tree?
 - How would you compute the information gain for a numeric attribute?

Stopping criteria for building a decision tree

- ID3
 - "Pure" nodes (entropy =0)
 - Out of attributes
- J48 (C4.5)
 - Minimum number of instances in a leaf constraint

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- → How would you compute the information gain for a numeric attribute?

Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

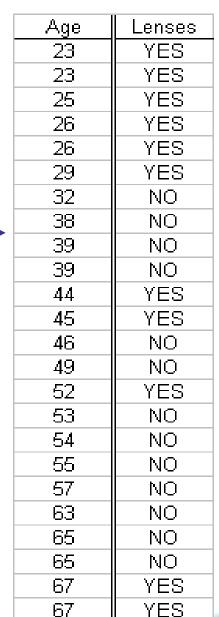
Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

Sort by Age

Age 23	Lenses YES
23	YES
23	YES
23 25	YES YES
l 26 l	YES
26 29	YES
29	YES
32 38	NO
38	NO
39	NO
39	NO
44	YES
45	YES
46	NO
49	NO
52	YES
53	NO
54	NO
55	NO
57	NO
63	NO
65	NO
65	NO
67	YES
67	YES

Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

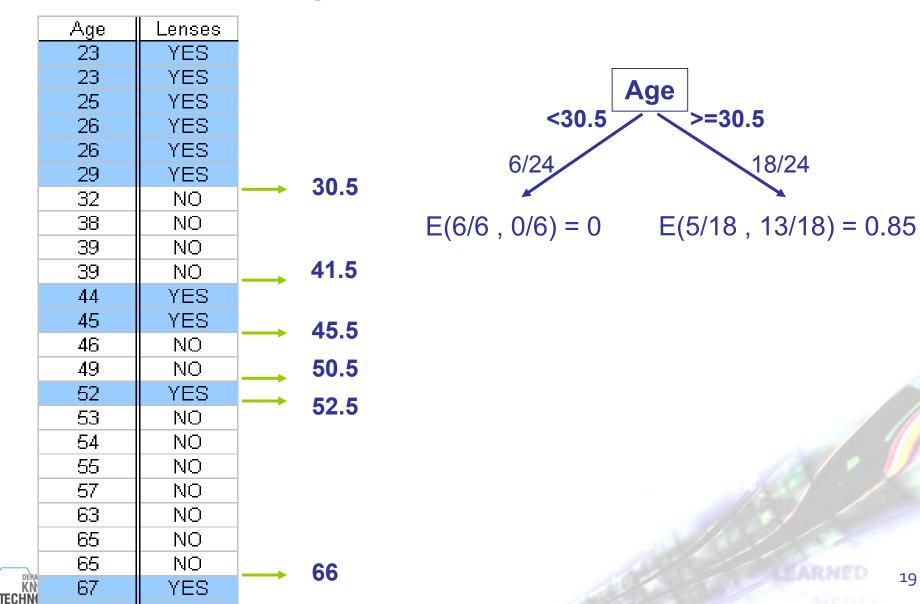
Sort by Age



Define possible splitting points

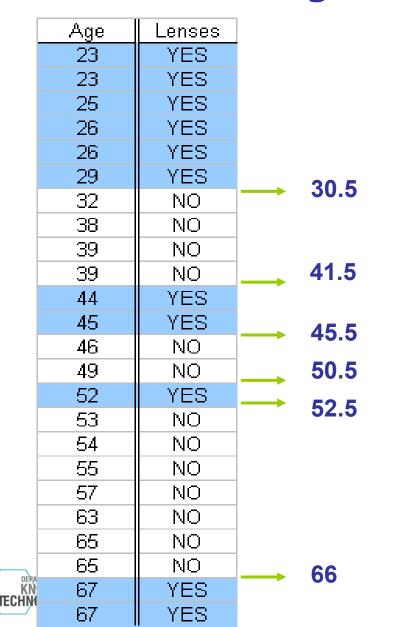
Age	Lenses
Age 23	YES
23	YES
25	YES
26	YES
26	YES
29	YES
32	NO
38	NO
39	NO
39	NO
44	YES
45	YES
46	NO
49	NO
52	YES
53	NO
54	NO
55	NO
57	NO
63	NO
65	NO
65	NO
67	YES
67	YES

	Age	Lenses		
	23	YES		
	23	YES		
	25	YES		
	26	YES		
	26	YES		
	29	YES		20 E
	32	NO		30.5
	38	NO		
	39	NO		
	39	NO		41.5
	44	YES		
	45	YES		45.5
	46	NO		
	49	NO	→	50.5
	52	YES		52.5
	53	NO		JZ. J
	54	NO		
	55	NO		
	57	NO		
	63	NO		
	65	NO		
RA	65	NO		66
RA N	67	YES		
	67	YES		

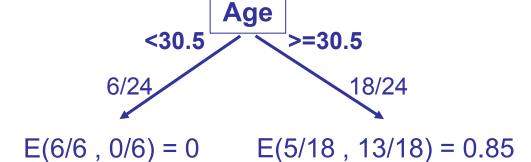


67

YES



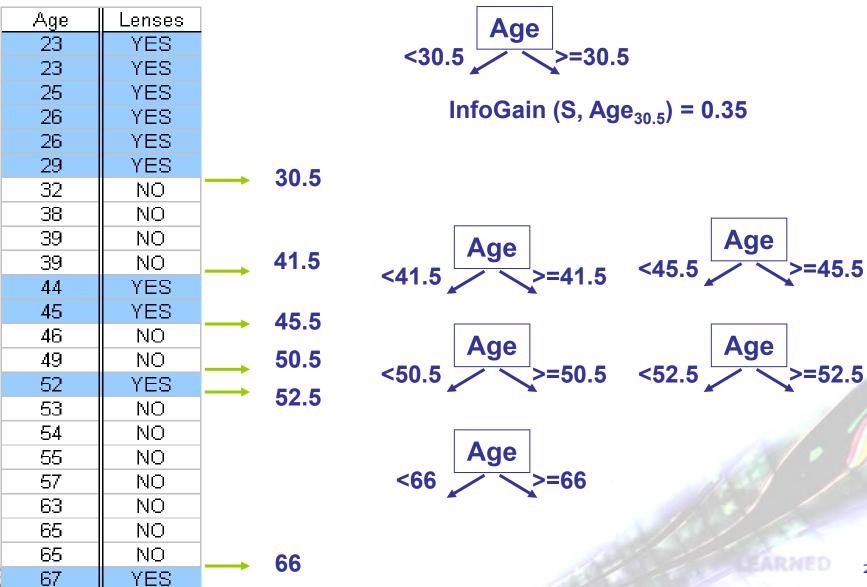
$$E(S) = E(11/24, 13/24) = 0.99$$



$$= E(S) - \sum p_v E(pv)$$

$$= 0.99 - (6/24*0 + 18/24*0.85)$$

$$= 0.35$$



ECHN

67

YES

Practice plan

- 2012/11/20: Predictive data mining 1
 - Decision trees
 - Evaluating classifiers 1: separate test set, confusion matrix, classification accuracy
 - Hands on Weka 1: Just a taste of Weka
- 2012/12/4: Predictive data mining 2
 - Discussion about decision trees
 - Naïve Bayes classifier
 - Evaluating classifiers 2: Cross validation
 - Numeric prediction
 - Hands on Weka 2: Classification and numeric prediction
- 2012/12/4: Descriptive data mining
 - Discussion on classification
 - Association rules
 - Hands on Weka 3: Descriptive data mining
 - Discussion about seminars and exam
- 2013/1/15: Written exam, seminar proposal discussion
- 2013/2/12: Data mining seminar presentations

Predicting with Naïve Bayes

Given

Attribute-value data with nominal target variable

Induce

 Build a Naïve Bayes classifier and estimate its performance on new data

Naïve Bayes classifier

$$P(c \mid a_1, a_2, a_n) = P(c) \prod_i \frac{P(c \mid a_i)}{P(c)}$$

Assumption: conditional independence of attributes given the class.

Will the spider catch these two ants?

- Color = white, Time = night
- Color = black, Size = large, Time = day

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

Naïve Bayes classifier -example

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$v_1 = "Color = white"$$

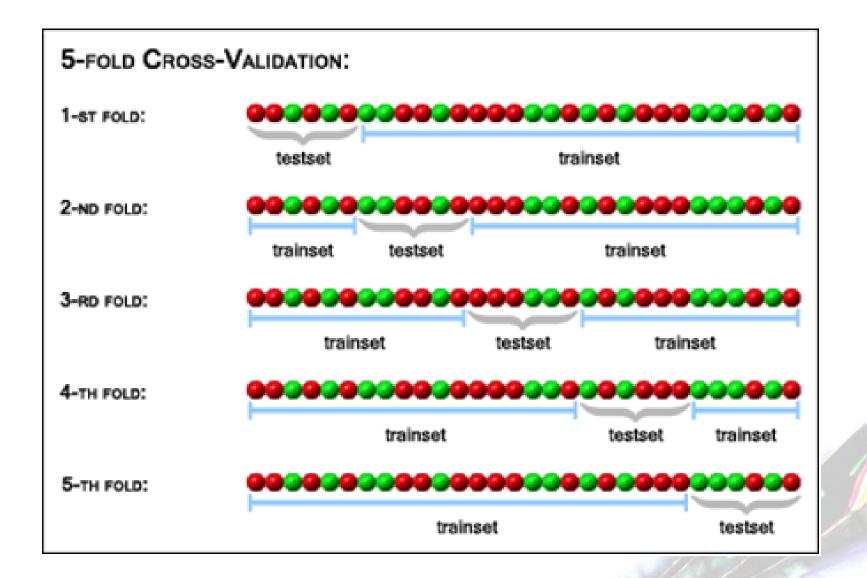
 $v_2 = "Time = night"$
 $c_1 = YES$
 $c_2 = NO$

$$p(c_1|v_1,v_2) = \\ p(Caught = YES|Color = white, Time = night) = \\ p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YE$$

$$\frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$$

K-fold cross validation

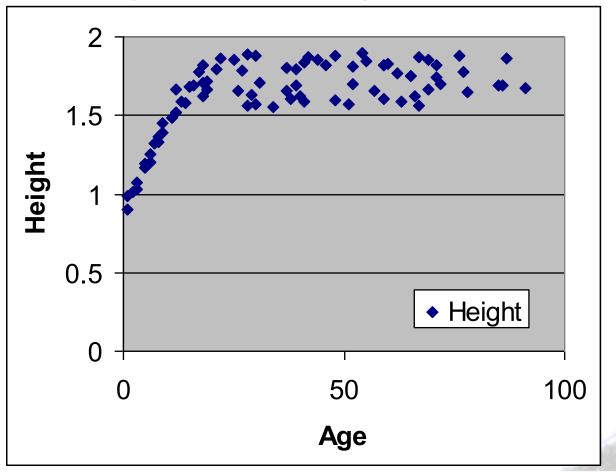
- 1. The sample set is partitioned into K subsets ("folds") of about equal size
- Of the K subsets, a single subset is retained as the validation data for testing the model (this subset is called the "testset"), and the remaining K - 1 subsets together are used as training data ("trainset").
- 3. A model is trained on the trainset and its accuracy (or other performance measure) is evaluated on the testset
- 4. Model training and evaluation is repeated K times, with each of the K subsets used exactly once as the testset.
- 5. The average of all the accuracy estimations obtained after each iteration is the resulting accuracy estimation.



Numeric prediction

Example

data about 80 people:
 Age and Height



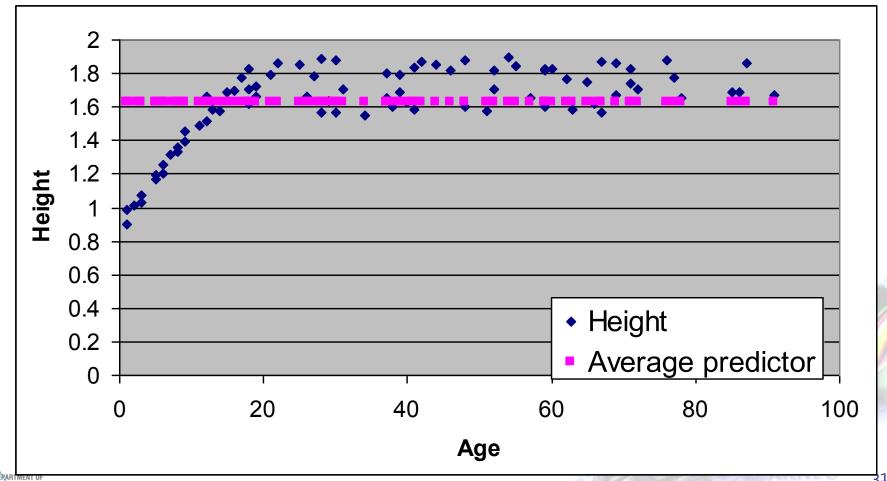
Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
25	1.85
41	1.59
48	1.60
54	1.90
71	1.82

Test set

Age	Height
2	0.85
10	1.4
35	1.7
70	1.6

Baseline numeric predictor

Average of the target variable



-ر

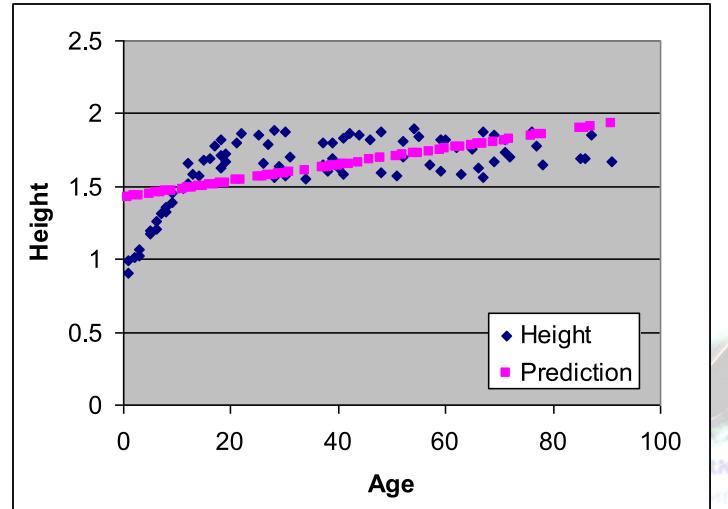
Baseline predictor: prediction

Average of the target variable is 1.63

Age	Height	Baseline
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Linear Regression Model

Height = 0.0056 * Age + 1.4181

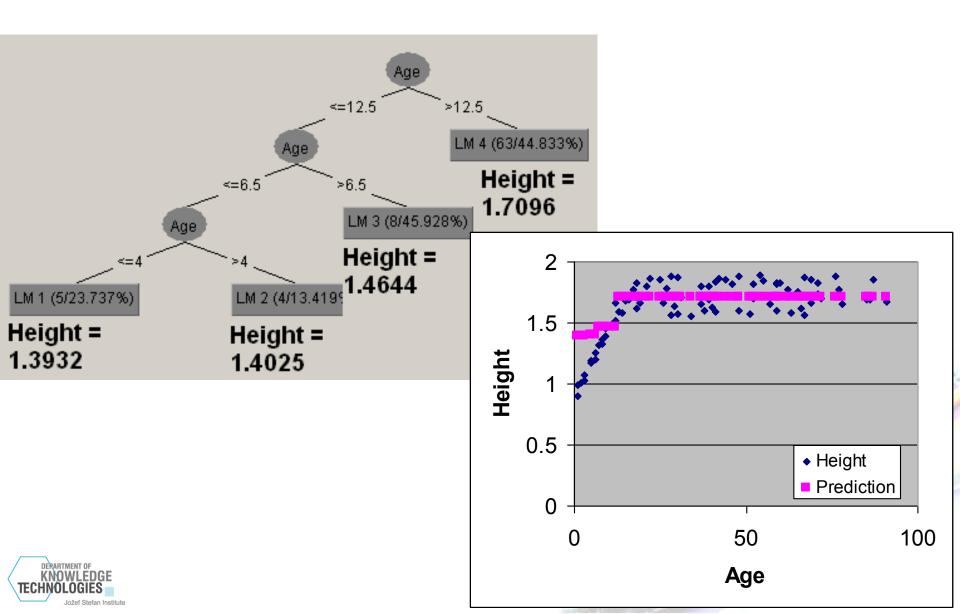


Linear Regression: prediction

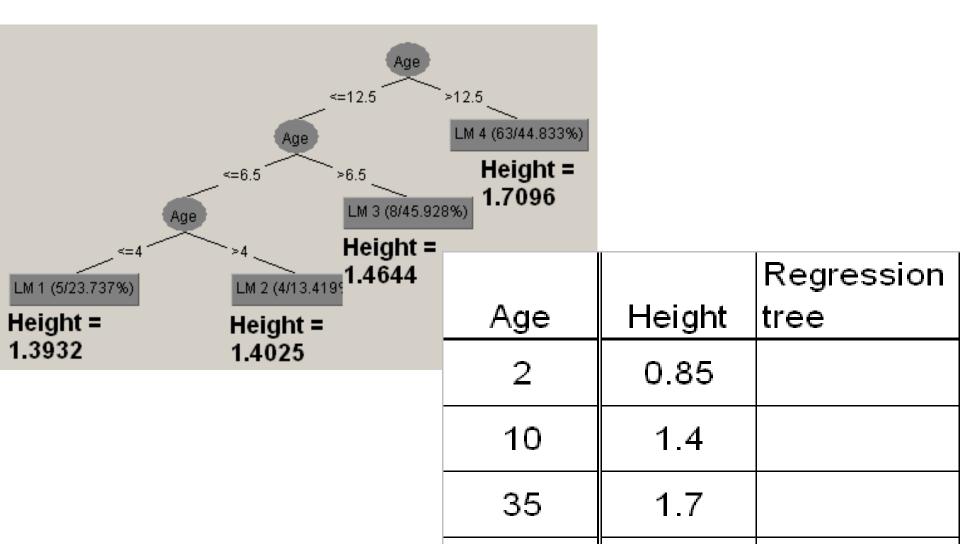
Height = 0.0056 * Age + 1.4181

		Linear
Age	Height	regression
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Regression tree



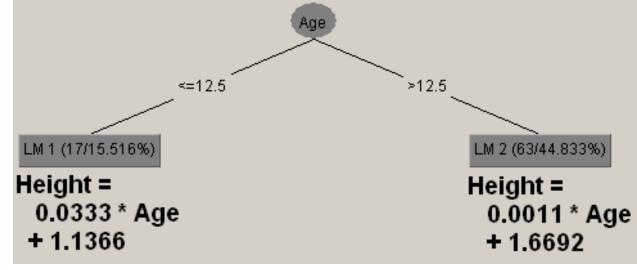
Regression tree: prediction

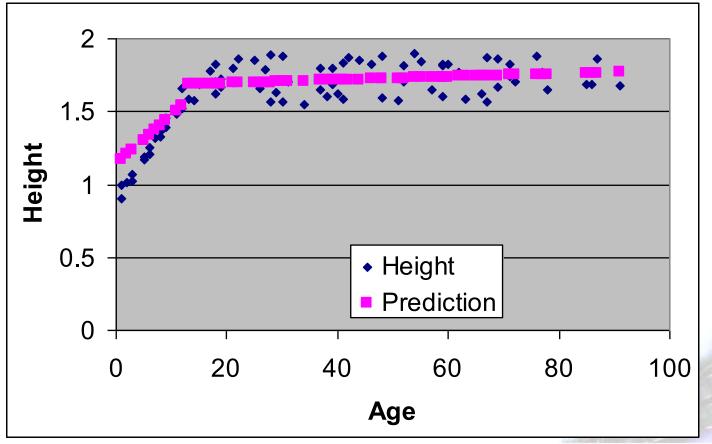


70

1.6

Model tree





Model tree: prediction

Age	Height	Model tree
2	0.85	
10	1.4	
35	1.7	
70	1.6	

0.0333 * Age

+1.1366

<=12.5 >12.5 LM 1 (17/15.516%)

Height = Height =

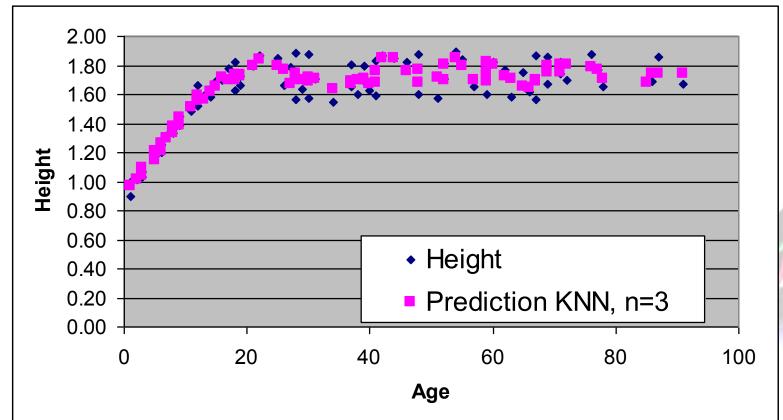
Age

Height = 0.0011 * Age

+ 1.6692

KNN – K nearest neighbors

- Looks at K closest examples (by non-target attributes) and predicts the average of their target variable
- In this example, K=3



Age	Height
1	0.90
1	0.99
2	1.01
3	1.03
3	1.07
5	1.19
5	1.17

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
8	1.36
8	1.33
9	1.45
9	1.39
11	1.49
12	1.66
12	1.52
13	1.59
14	1.58

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
30	1.57
30	1.88
31	1.71
34	1.55
37	1.65
37	1.80
38	1.60
39	1.69
39	1.80

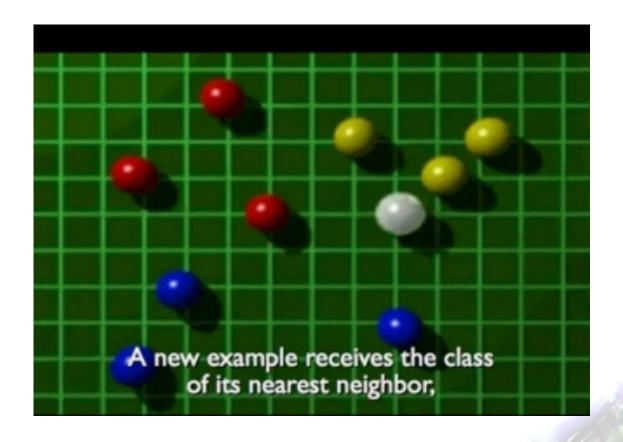
Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
67	1.56
67	1.87
69	1.67
69	1.86
71	1.74
71	1.82
72	1.70
76	1.88

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

KNN video

• http://videolectures.net/aaai07 bosch knnc



Which predictor is the best?

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77

Evaluating numeric prediction

Performance measure

Formula

mean-squared error

root mean-squared error

mean absolute error

relative squared error

root relative squared error

relative absolute error

correlation coefficient

$$\frac{(p_1 - a_1)^2 + \dots + (p_n - a_n)^2}{n}$$

$$\sqrt{\frac{(p_1 - a_1)^2 + \dots + (p_n - a_n)^2}{n}}$$

$$\frac{|p_1 - a_1| + \dots + |p_n - a_n|}{n}$$

$$\frac{(p_1 - a_1)^2 + \dots + (p_n - a_n)^2}{(a_1 - \overline{a})^2 + \dots + (a_n - \overline{a})^2}, \text{ where } \overline{a} = \frac{1}{n} \sum_i a_i$$

$$\sqrt{\frac{(p_1 - a_1)^2 + \dots + (p_n - a_n)^2}{(a_1 - \overline{a})^2 + \dots + (a_n - \overline{a})^2}}$$

$$\frac{|p_1 - a_1| + \dots + |p_n - a_n|}{|a_1 - \overline{a}| + \dots + |a_n - \overline{a}|}$$

$$\frac{S_{PA}}{\sqrt{S_P S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n - 1},$$

$$S_p = \frac{\sum_i (p_i - \overline{p})^2}{n - 1}, \text{ and } S_A = \frac{\sum_i (a_i - \overline{a})^2}{n - 1}$$

Numeric prediction Classification **Data**: attribute-value description **Target variable: Target variable:** Continuous Categorical (nominal) Evaluation: cross validation, separate test set, ... **Error**: Error: MSE, MAE, RMSE, ... 1-accuracy

Algorithms:	Algorithms:
-------------	-------------

Decision trees, Naïve Linear regression, regression trees,... Bayes, ...

Baseline predictor: Baseline predictor:

Mean of the target Majority class variable

Discussion

- Compare naïve Bayes and decision trees (similarities and differences).
- 2. Can KNN be used for classification tasks?
- 3. Compare KNN and Naïve Bayes.
- 4. Compare decision trees and regression trees.
- 5. Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - 1. Is this a classification or a numeric prediction problem?
 - 2. What if such a variable is an attribute, is it nominal or numeric?
- 6. Compare cross validation and testing on a different test set.
- 7. Why do we prune decision trees?
- 8. List 3 numeric prediction methods.

