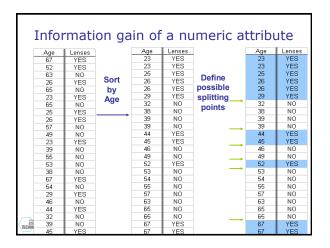
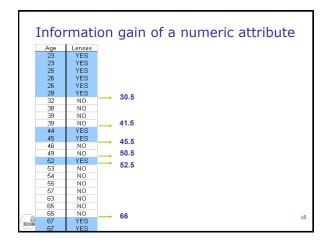
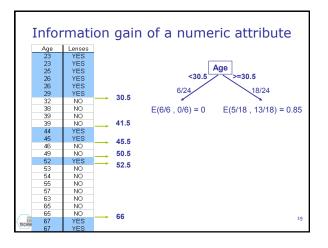


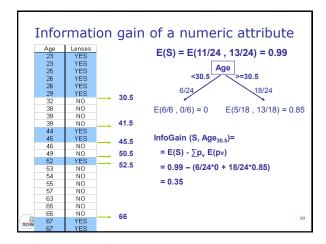
Stopping criteria for building a decision tree
ID3

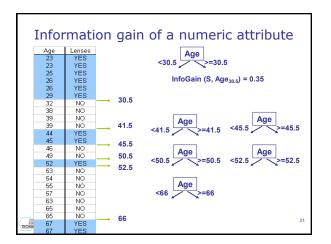
"Pure" nodes (entropy =0)
Out of attributes

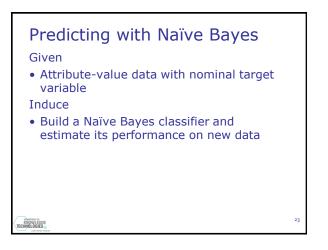

J48 (C4.5)

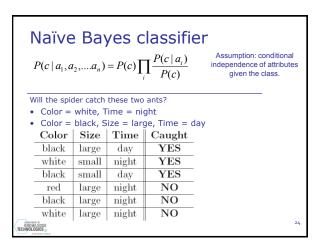

Minimum number of instances in a leaf constraint

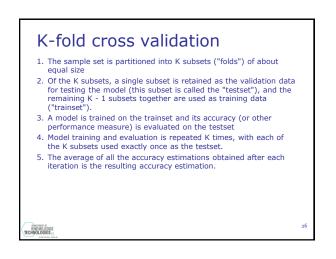


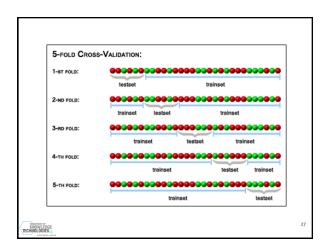

I	nfor	mati	on gain of a numeric attribute	
	Age	Lenses		
	67	YES		- 1
	52	YES		- 1
	63	NO		- 1
	26	YES		- 1
	65	NO		- 1
	23	YES		
	65	NO		- 1
	25	YES		- 1
	26	YES		- 1
	57	NO		- 1
	49	NO		- 1
	23	YES		- 1
	39	NO		- 1
	55	NO		- 1
	53	NO		- 1
	38	NO		- 1
	67	YES		- 1
	54	NO		- 1
	29	YES		
	46	NO		- 1
	44	YES		
	32	NO		5
KN TECHN	39	NO	-	
	45	YES		

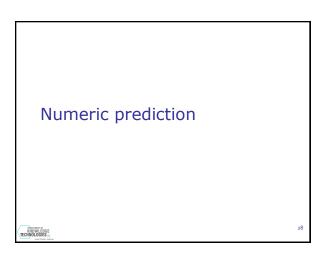

Ι	Infor	mati	on ga	in of	a nu	imeric attribute
	Age	Lenses		Age	Lenses	
	67	YES		23	YES	
	52	YES		23	YES	
	63	NO		25	YES	
	26	YES	Sort	26	YES	
	65	NO	by	26	YES	
	23	YES	Age	29	YES	
	65	NO	Age	32	NO	
	25	YES		38	NO	
	26	YES		39	NO	
	57	NO		39	NO	
	49	NO		44	YES	
	23	YES		45	YES	
	39	NO		46	NO	
	55	NO		49	NO	
	53	NO		52	YES	
	38	NO		53	NO	
	67	YES		54	NO	
	54	NO		55	NO	
	29	YES		57	NO	
	46	NO		63	NO	
	44	YES		65	NO	
	32	NO		65	NO	16
TECHN	39	NO		67	YES	10
	45	YES		67	YES	

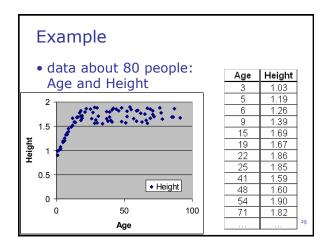




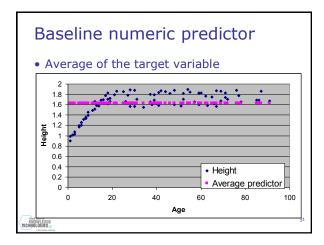


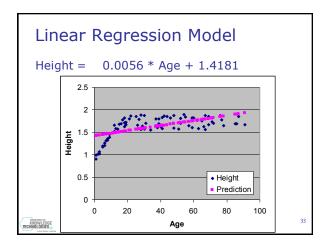


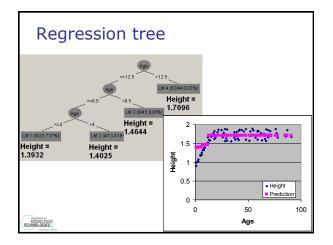


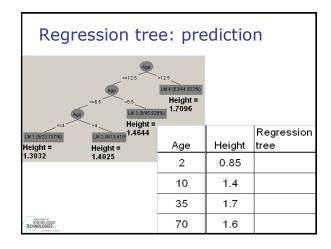


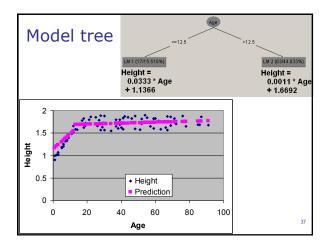
ſ	Vaïve	e Ba	yes o	classif	ier -example
	Color	Size	Time	Caught	
_	black	large	day	YES	$v_1 = "Color = white"$
	white	small	night	YES	$v_2 = "Time = night"$
	black	small	day	YES	$c_1 = YES$
	red	large	night	NO	$c_2 = NO$
_	black	large	night	NO	$O_2 = 100$
_	white	large	night	NO	
p(C	Caught = YI	$ES) * \frac{p(Ca)}{2}$	ught = YES p(Caught)		$p(c_1 v_1, v_2) =$ $VES Color = white, Time = night) =$ $p(Caught = YES]Time = night) =$ $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{4}$ $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{4}$

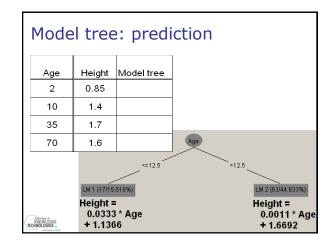





Test s	set		
	Age	Height	
	2	0.85	
	10	1.4	
	35	1.7	
	70	1.6	
RINOWLEDGE KNOWLEDGE TECHNOLOGIES		ч	30

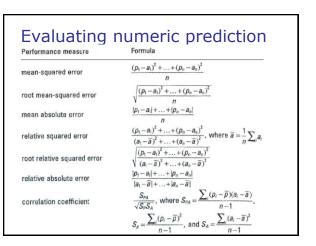



Bas	seline	predic	tor: pre	diction	
Ave	rage of	the targ	get variab	le is 1.63	
	Age	Height	Baseline		
	2	0.85			
	10	1.4			
	35	1.7			
	70	1.6			
			-		
RMATTINON BE KNOWLEDGE TECHNOLOGIES					32



		-	ssion: pre 56 * Age +	
	Age	Height	Linear regression	
	2	0.85		
	10	1.4		
	35	1.7		
	70	1.6		
ECHN			•	34

Age	Height]				
1	0.90			1		1
1	0.99		Age	Height	kNN	
2	1.01		2	0.85		1
3	1.03		10	1.4		
3	1.07		35	1.7		
5	1.19		70	1.6		-
5	1.17]				1


KNN	predi	ctior	า			
Age	Height					
8	1.36			1		
8	1.33		Age	Height	kNN	
9	1.45		2	0.85	KININ	-
9	1.39					-
11	1.49		10	1.4		
12	1.66		35	1.7		
12	1.52		70	1.6		1
13	1.59					J
14	1.58					

	KNN	predic	tio	n			
	Age	Height					
	30	1.57					
	30	1.88		Age	Height	kNN	
	31	1.71		2	0.85	KININ	
	34	1.55					
	37	1.65		10	1.4		
	37	1.80		35	1.7		
	38	1.60		70	1.6		
	39	1.69					
	39	1.80					
Kð							42

KNN I	oredict	ior	٦			
Age	Height	1				
67	1.56			1		1
67	1.87		Age	Height	kNN	
69	1.67		2	0.85		
69	1.86		10	1.4		
71	1.74		35	1.7		
71	1.82		70	1.6		
72	1.70					J
76	1.88					
ATTNETT OF OWLEDGE OLOGIES						43

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77

Numeric prediction	Classification
Data: attribute-value desc	cription
Target variable:	Target variable:
Continuous	Categorical (nominal)
Evaluation: cross validati	ion, separate test set,
Error:	Error:
MSE, MAE, RMSE,	1-accuracy
Algorithms:	Algorithms:
Linear regression,	Decision trees, Naïve
regression trees,	Bayes,
Baseline predictor:	Baseline predictor:
Mean of the target variable	Majority class

Discussion		
1.	Compare naïve Bayes and decision trees (similarities and differences) .	
2.	Can KNN be used for classification tasks?	
3.	Compare KNN and Naïve Bayes.	
4.	Compare decision trees and regression trees.	
5.	Consider a dataset with a target variable with five possible values: 1. non sufficient 2. sufficient 3. good 4. very good 5. secolent 1. Is this a classification or a numeric prediction problem? 2. What if such a variable is an attribute, is it nominal or numeric?	
6.	Compare cross validation and testing on a different test set.	
7.	Why do we prune decision trees?	
8.	List 3 numeric prediction methods.	
Remote fore TECHNOLOGES		48