Data Mining and Knowledge Discovery

Part of Jožef Stefan IPS Programme - ICT3 and UL Programme - Statistics

2012 / 2013

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

Course Outline

I. Introduction

- Data Mining in a Nutshell Predictive and descriptive DM techniques
- Data Mining and KDD process DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11)
- II. Predictive DM Techniques

- Bayesian classifier (Kononenko Ch. 9.6)
- Decision Tree learning (Mitchell Ch. 3. Kononenko Ch. 9.1)
- Classification rule learning (Kononenko Ch. 9.2)
- Classifier Evaluation
- (Bramer Ch. 6)

III. Regression (Kononenko Ch. 9.4)

IV. Descriptive DM

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning (Kononenko Ch. 9.3)
- Hierarchical clustering (Kononenko Ch. 12.3)
- V. Relational Data Mining RDM and Inductive Logic Programming (Dzeroski & Lavrac Ch. 3, Ch. 4)

 - Propositionalization approaches
 - Relational subgroup discovery

Introductory seminar lecture

X. JSI & Department of Knowledge Technologies I. Introduction: First generation data mining

- Data Mining in a nutshell
- Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11)
- XX. Selected data mining techniques: Advanced

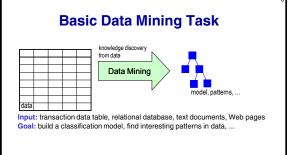
subgroup discovery techniques and applications

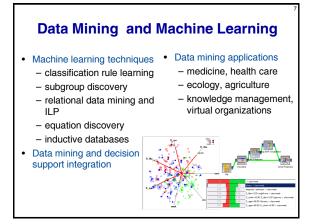
XXX. Recent advances: Cross-context link discovery

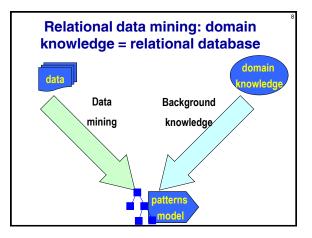
- in English

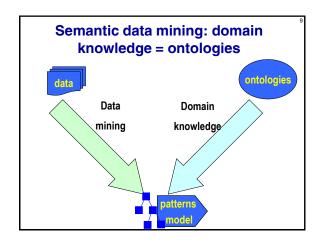
Jožef Stefan Institute Department of Knowledge Technologies

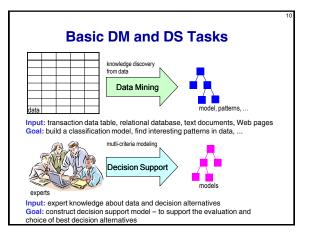
- Head: Nada Lavrač, Staff: 30 researchers, 10 students
- · Machine learning & Data mining
 - ML (decision tree and rule learning, subgroup discovery, ...)
 - Text and Web mining
 - Relational data mining inductive logic programming Equation discovery
- · Other research areas:
 - Knowledge management
 - Decision support
 - Human language technologies
- Applications:
 - Medicine, Bioinformatics, Public Health
- Ecology, Finance, ...

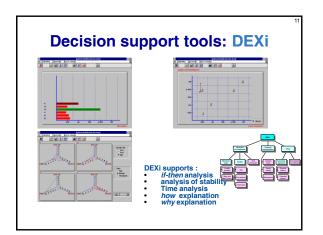


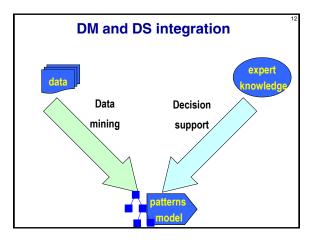


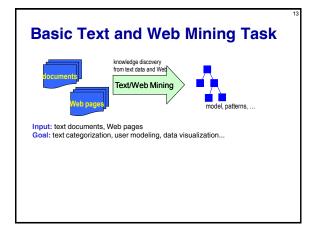


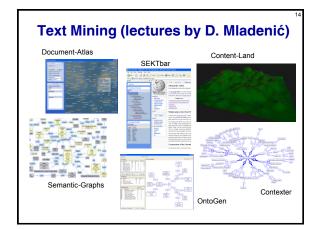


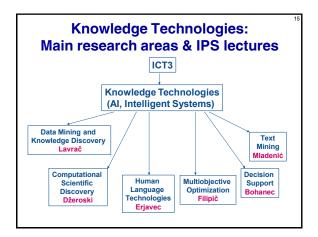


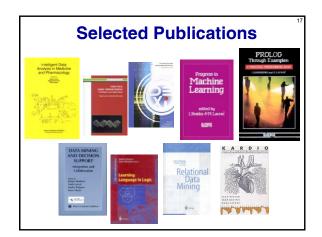


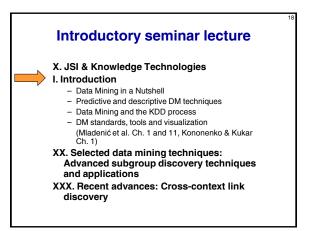












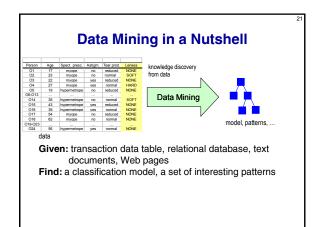
Part I. Introduction

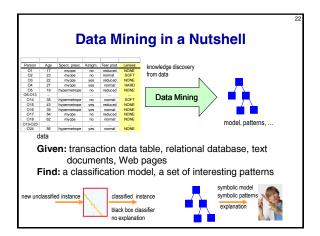
Data Mining in a Nutshell

- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization

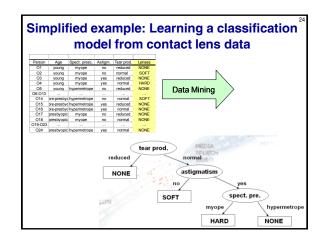
What is DM

- Extraction of useful information from data: discovering relationships that have not previously been known
- The viewpoint in this course: Data Mining is the application of Machine Learning techniques to solve real-life data analysis problems





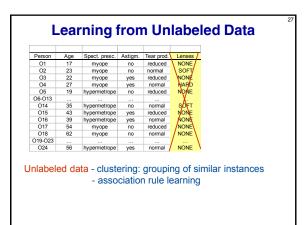
-		imple: Lea from con	-		
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
01	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
04	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
015	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE

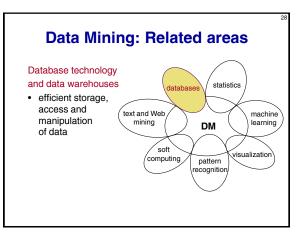


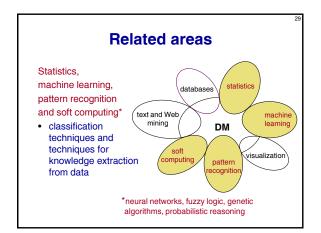
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses		
01	17	myope	no	reduced	NO		
02	23	myope	no	normal	YES		
O3	22	myope	yes	reduced	NO		
04	27	myope	yes	normal	YES		
O5	19	hypermetrope	no	reduced	NO		
06-013							
O14	35	hypermetrope	no	normal	YES		
O15	43	hypermetrope	yes	reduced	NO		
O16	39	hypermetrope	yes	normal	NO		
017	54	myope	no	reduced	NO		
018	62	myope	no	normal	NO		
019-023							
O24	56	hypermetrope	yes	normal	NO		
		(positive		0			

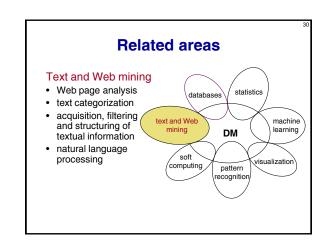
characterizing groups of instances of target class

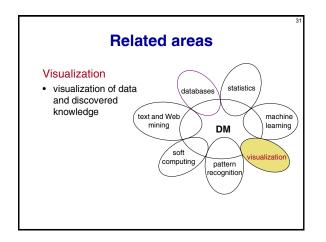
Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice	
01	17	myope	no	reduced	0	
02	23	myope	no	normal	8	
03	22	myope	yes	reduced	0	
04	27	myope	yes	normal	5	
O5	19	hypermetrope	no	reduced	0	
06-013						
014	35	hypermetrope	no	normal	5	
015	43	hypermetrope	yes	reduced	0	
016	39	hypermetrope	yes	normal	0	
017	54	myope	no	reduced	0	
018	62	myope	no	normal	0	
019-023						
O24	56	hypermetrope	yes	normal	0	
neric	class	values –	regre	ssion a	nalysis	

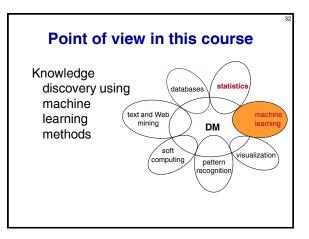












Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
 reasoning from properties of a data sample to properties of a population
- DM vs. ML Viewpoint in this course:

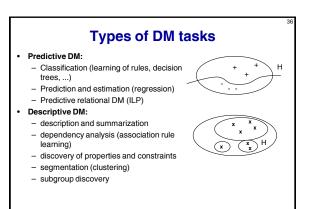
 Data Mining is the application of Machine Learning techniques to hard real-life data analysis problems

Data Mining, ML and Statistics All three areas have a long tradition of developing inductive techniques for data analysis. - reasoning from properties of a data sample to properties of a population

- DM vs. Statistics:
- Statistics

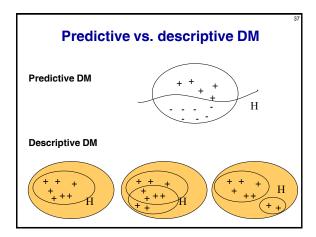
٠

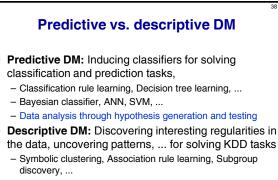
- Hypothesis testing when certain theoretical expectations about the data distribution, independence, random sampling, sample size, etc. are satisfied
- Main approach: best fitting all the available data
- Data mining
 - Automated construction of understandable patterns, and structured models
 - Main approach: structuring the data space, heuristic search for decision trees, rules, ... covering (parts of) the data space



Part I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization





- Exploratory data analysis

Given a set of labeled training examples (n-tuples of ٠ attribute values, labeled by class name)

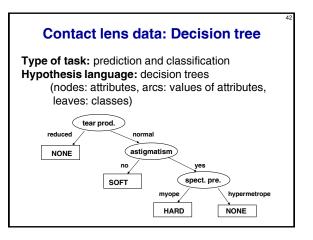
	A1	A2	A3	Class
example1	V _{1,1}	V _{1,2}	V _{1,3}	C ₁
example2	V _{2,1}	V _{2,2}	V _{2,3}	C ₂

• By performing generalization from examples (induction) find a hypothesis (classification rules, decision tree, ...) which explains the training examples, e.g. rules of the form:

 $(A_i = v_{i,k}) \& (A_i = v_{i,l}) \& \dots \Rightarrow Class = C_n$

- · data are objects, characterized with attributes they belong to different classes (discrete labels)
- given objects described with attribute values, induce a model to predict different classes
- · decision trees, if-then rules, discriminant analysis, ...

		a mining			
	Input	: Contac	ct lens	s data	
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
04	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
014	pre-presbyc	hypermetrope	no	normal	SOFT
O15	pre-presbyc	hypermetrope	yes	reduced	NONE
O16	pre-presbyc	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE



Contact lens data: Classification rules

Type of task: prediction and classification Hypothesis language: rules X → C, if X then C X conjunction of attribute values, C class

tear production=reduced → lenses=NONE tear production=normal & astigmatism=yes & spect. pre.=hypermetrope → lenses=NONE tear production=normal & astigmatism=no → lenses=SOFT tear production=normal & astigmatism=yes &

spect. pre.=myope → lenses=HARD DEFAULT lenses=NONE

Task reformulation: Concept learning problem (positive vs. negative examples of Target class)

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NO
O2	young	myope	no	normal	YES
O3	young	myope	yes	reduced	NO
04	young	myope	yes	normal	YES
O5	young	hypermetrope	no	reduced	NO
06-013					
014	pre-presbyc	hypermetrope	no	normal	YES
O15	pre-presby	hypermetrope	yes	reduced	NO
O16	pre-presby	hypermetrope	yes	normal	NO
017	presbyopic	myope	no	reduced	NO
O18	presbyopic	myope	no	normal	NO
019-023					
O24	presbyopic	hypermetrope	ves	normal	NO

Contact lens data: Classification rules in concept learning

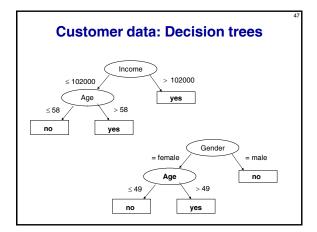
Type of task: prediction and classification Hypothesis language: rules X → C, if X then C X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no → lenses=YES tear production=normal & astigmatism=yes & spect. pre.=myope → lenses=YES else NO

Illustrative example: Customer data

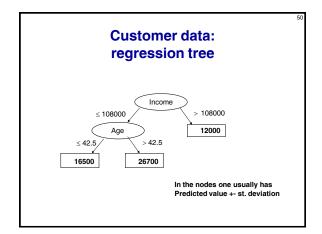
Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
06-013					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

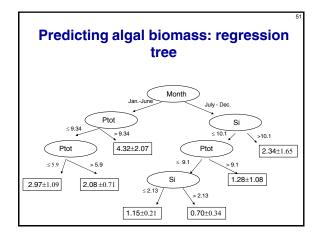


Predictive DM - Estimation

- · often referred to as regression
- data are objects, characterized with attributes (discrete or continuous), classes of objects are continuous (numeric)
- given objects described with attribute values, induce a model to predict the numeric class value
- regression trees, linear and logistic regression, ANN, kNN, ...

		uston	essio or da		
	U	usion	iei ua	la	
Customer	Gender	Age	Income	Spent	
c1	male	30	214000	18800	
c2	female	19	139000	15100	
c3	male	55	50000	12400	
c4	female	48	26000	8600	
c5	male	63	191000	28100	
06-013					
c14	female	61	95000	18100	
c15	male	56	44000	12000	
c16	male	36	102000	13800	
c17	female	57	215000	29300	
c18	male	33	67000	9700	
c19	female	26	95000	11000	
c20	female	55	214000	28800	





Subo		o disco uston			nple -
Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	ves
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
06-013					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Customer data: Subgroup discovery

Type of task: description (pattern discovery)
 Hypothesis language: rules X → Y, if X then Y
 X is conjunctions of items, Y is target class

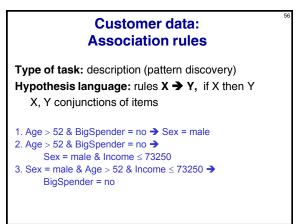
Age > 52 & Sex = male → BigSpender = no

Age > 52 & Sex = male & Income ≤ 73250 → BigSpender = no

Descriptive DM: Clustering and association rule learning example - Customer data

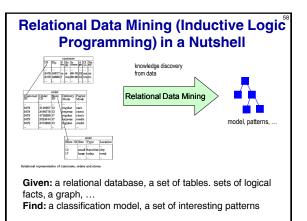
Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	ves
c2	female	19	139000	15100	yes /
c3	male	55	50000	12400	\no/
c4	female	48	26000	8600	\no/
c5	male	63	191000	28100	yes
06-013					. <u>Х</u> .
c14	female	61	95000	18100	yeş
c15	male	56	44000	12000	/no\
c16	male	36	102000	13800	/ no \
c17	female	57	215000	29300	/ yes \
c18	male	33	67000	9700	/ no \
c19	female	26	95000	11000	/ no \
c20	female	55	214000	28800	/ yes

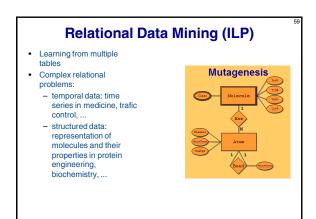
Customer Gender Age Income Spend C1 male 30 214000 18800 yes c2 female 19 139000 15100 yes c3 male 55 50000 12400 no c4 female 48 26000 8600 no c5 male 63 191000 28100 yes
c1 male 30 214000 18800 yes c2 female 19 139000 15100 yes c3 male 55 50000 12400 no c4 female 48 26000 8600 no
c2 female 19 139000 15100 yes c3 male 55 50000 12400 no c4 female 48 26000 8600 no
c3 male 55 50000 12400 no c4 female 48 26000 8600 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 ves
06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

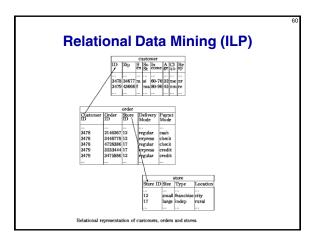


Predictive vs. descriptive DM: Summary from a rule learning perspective

- **Predictive DM:** Induces **rulesets** acting as classifiers for solving classification and prediction tasks
- **Descriptive DM:** Discovers **individual rules** describing interesting regularities in the data
- Therefore: Different goals, different heuristics, different evaluation criteria







00000000 000 3778 214 3773 344 3777 223	Cationer Cationer D 29 31 30 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10						
	Store ID Ske		1				
Relational repres	entation of customers, order	al franchise city e indep runal n and etcres.	Soc St	Income	Age	Club	Resp
	17 larg	e indep ruisi	Soc St	Income	Age 	Club	Resp
ID	ti interestion of customers, order	s and stores.					- ·
ID 	Tip	s and stores.					

								62
ID	Zip	Sex	Soc St	Income	Age	Club	Resp]
3478	34667	m	si	60-70	32	me	nr	
3479	43666	f	ma	80-90	45	nm	re	

Data table presented as logical facts (Prolog format) customer(Id,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2: customer(3478,34667,m,si,60-70,32,me,nr). customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation: customer(_,_,f,_,_

Relational Data Mining (ILP) Data bases: Logic programming: · Predicate symbol p Name of relation p Attribute of p · Argument of predicate p n-tuple < v₁, ..., v_n > = row in Ground fact p(v₁, ..., v_n) a relational table Definition of predicate p relation p = set of n-tuples =

relational table

JAMEN'ISI begiar cash Seletitisis (12008)17 begiar class 2008017 begiar class 2008017 begiar crass 2008017 begiar crass

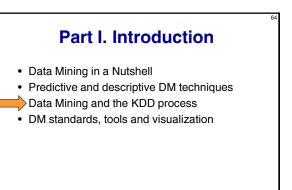
Diller Type Location and baseline stip long rody rand

Set of ground facts

· Prolog clause or a set of Prolog clauses

Example predicate definition:

good_customer(C) :customer(C,_,female,_,_,_,_), order(C,_,_,creditcard).



Data Mining and KDD

- · KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data."
- Data Mining (DM) is the key step in the KDD process, performed by using data mining techniques for extracting models or interesting patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process KDD process of discovering useful knowledge from data Data Mining Interpretation/ f 25 p Knowledg Preproce Data Patterns Target Data Transformed Data Data • KDD process involves several phases: data preparation

- data mining (machine learning, statistics)
- evaluation and use of discovered patterns
- Data mining is the key step, but represents only 15%-25% of the entire KDD process

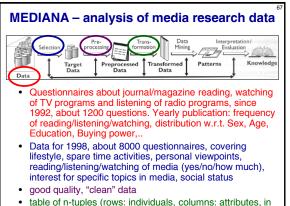


 table of n-tuples (rows: individuals, columns: attributes, classification tasks selected class)



- · Patterns uncovering regularities concerning:
 - Which other journals/magazines are read by readers of a particular journal/magazine ?
 - What are the properties of individuals that are consumers of a particular media offer ?
 - Which properties are distinctive for readers of different journals ?
- Induced models: description (association rules, clusters) and classification (decision trees, classification rules)

Simplified association rules

Finding profiles of readers of the Delo daily newspaper

- 1. reads_Marketing_magazine 116 → reads_Delo 95 (0.82)
- 2. reads_Financial_News (Finance) 223 → reads_Delo 180 (0.81)
- 3. reads_Views (Razgledi) 201 → reads_Delo 157 (0.78)
- 4. reads_Money (Denar) 197 → reads_Delo 150 (0.76)
- 5. reads_Vip 181 → reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, Financial News, Views, Money and Vip read also Delo.

Simplified association rules

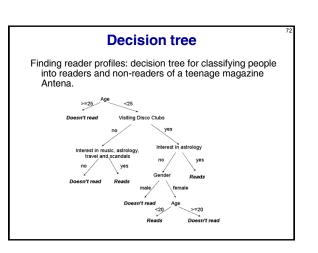
reads_Sara 332 → reads_Slovenske novice 211 (0.64)
 reads_Ljubezenske zgodbe 283 →
 reads_Slovenske novice 174 (0.61)
 reads_Dolenjski list 520 →
 reads_Slovenske novice 310 (0.6)
 reads_Omama 154 → reads_Slovenske novice 90 (0.58)
 reads_Delavska enotnost 177 →
 reads_Slovenske novice 102 (0.58)
 Most of the readers of Sara, Love stories, Dolenjska
 new, Omama in Workers new read also Slovenian

news

Simplified association rules

 reads_Sportske novosti 303 → reads_Slovenski delnicar 164 (0.54)
 reads_Sportske novosti 303 → reads_Salomonov oglasnik 155 (0.51)
 reads_Sportske novosti 303 → reads_Lady 152 (0.5)

More than half of readers of Sports news reads also Slovenian shareholders magazine, Solomon advertisements and Lady.

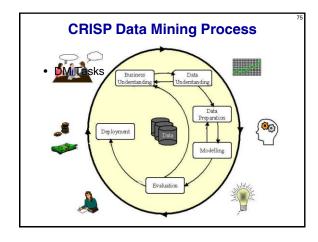


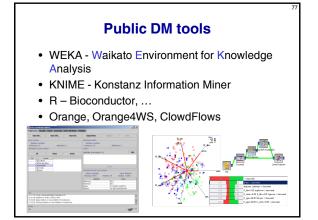
Part I. Introduction

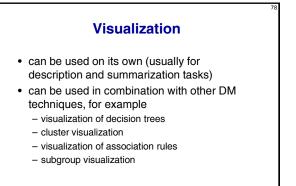
- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- · Data Mining and the KDD process
- DM standards, tools and visualization

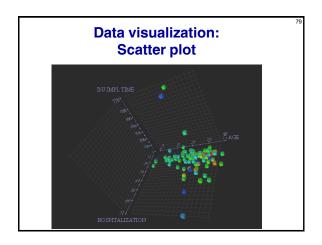
CRISP-DM

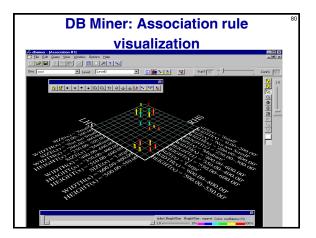
- Cross-Industry Standard Process for DM
- A collaborative, 18-months partially EC founded project started in July 1997
- NCR, ISL (Clementine), Daimler-Benz, OHRA (Dutch health insurance companies), and SIG with more than 80 members
- DM from art to engineering
- Views DM more broadly than Fayyad et al. (actually DM is treated as KDD process):

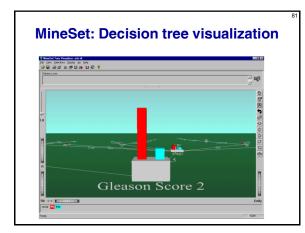


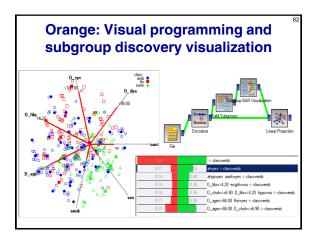












Part I: Summary KDD is the overall process of discovering useful knowledge in data many steps including data preparation, cleaning, transformation, pre-processing Data Mining is the data analysis phase in KDD

- DM takes only 15%-25% of the effort of the overall KDD process
- employing techniques from machine learning and statistics
- Predictive and descriptive induction have different goals: classifier vs. pattern discovery
- Many application areas, many powerful tools available

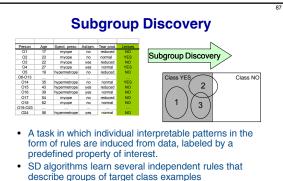
Introductory seminar lecture X. JSI & Knowledge Technologies Introduction: First generation data mining Data Mining in a nutshell Data Mining and KDD process DM standards, tools and visualization Classification of Data Mining techniques: Predictive and descriptive DM (Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1) X. Selected data mining techniques: Advanced subgroup discovery techniques and applications XX. Recent advances: Cross-context link discovery

XX. Talk outline

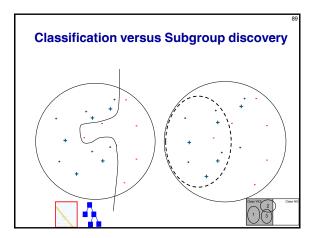
Subgroup discovery in a nutshell

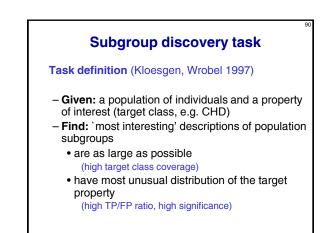
- Relational data mining and propositionalization in a nutshell
- Semantic data mining: Using ontologies in SD

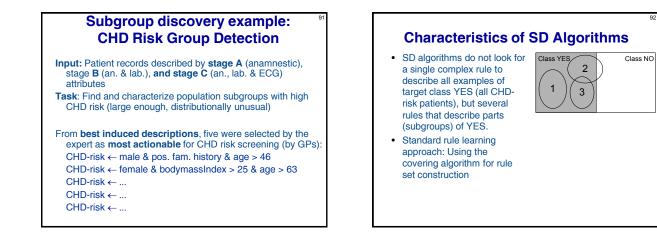
Task reformulation: Binary Class Values 01 02 03 04 05 06-013 myope myope no no reduced normal reduced 17 23 22 27 YES NO YES NO myope yes myope normal 19 hypermetrop no reduced 014 015 016 017 018 normal reduced normal reduced YES NO NO NO NO 35 43 39 54 62 hypermetro yes yes no hypermetrop myope myope no normal 019-023 56 yes normal 024 hypermetrope Binary classes (positive vs. negative examples of Target class) - for Concept learning - classification and class description - for Subgroup discovery - exploring patterns characterizing groups of instances of target class

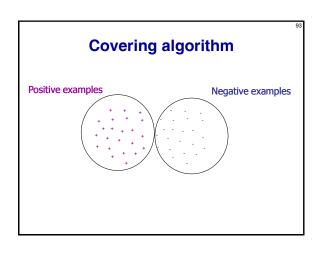


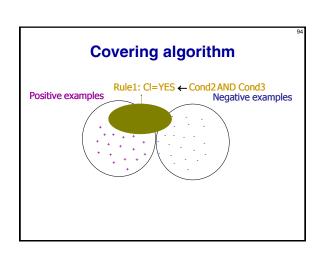
- subgroups must be large and significant

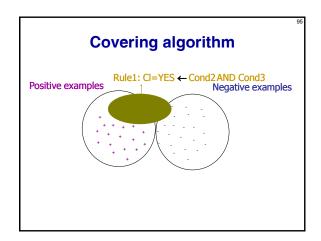


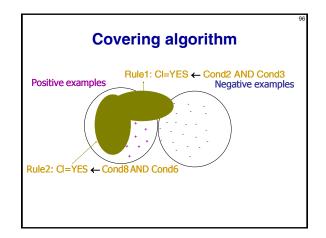


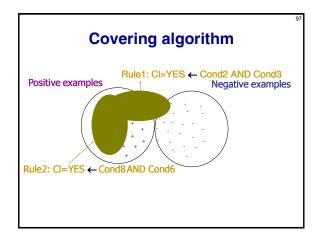


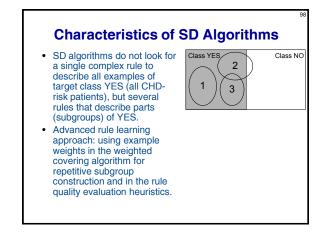


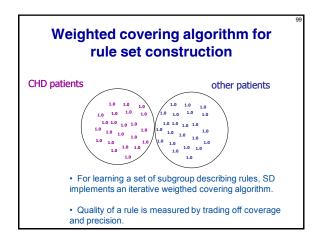


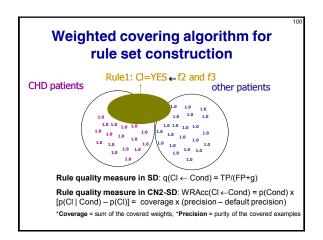


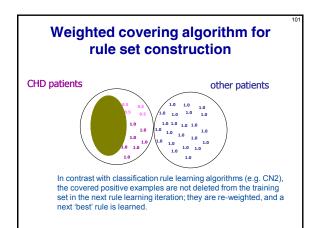


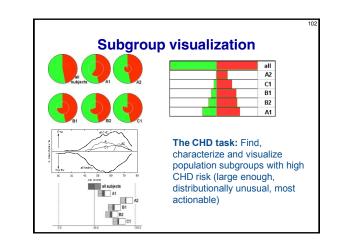












Induced subgroups and their statistical characterization

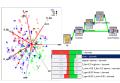
Subgroup A2 for femle patients:

High-CHD-risk **IF** body mass index over 25 kg/m² (typically 29) **AND** age over 63 years

Supporting characteristics (computed using №2 statistical significance test) are: positive family history and hypertension. Women in this risk group typically have slightly increased LDL cholesterol values and normal but decreased HDL cholesterol values.

SD algorithms in the Orange DM Platform

- SD Algorithms in Orange
 - SD (Gamberger & Lavrač, JAIR 2002
 APRIORI-SD (Kavšek &
 - APRIORI-SD (Kavsek & Lavrač, AAI 2006
 - CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 classification rule learner to Subgroup Discovery
 - Weighted covering algorithm
 Weighted relative accuracy (WRAcc) search heuristics, with added example weights



SD algorithms in Orange and Orange4WS

2010)

- Orange
 - classification and subgroup
 - discovery algorithms – data mining workflows

 - visualization
 - developed at FRI, Ljubljana

supports workflows and other Orange functionality

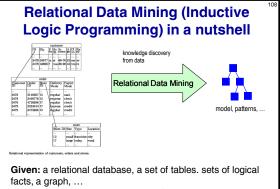
• Orange4WS (Podpečan

- Web service oriented

- includes also
 - WEKA algorithms
 - relational data mining
 - semantic data mining with ontologies
 - Web-based platform is
- under construction

<text><list-item>

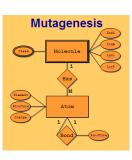
XX. Talk outline Subgroup discovery in a nutshell Relational data mining and propositionalization in a nutshell Semantic data mining: Using ontologies in SD



Find: a classification model, a set of interesting patterns

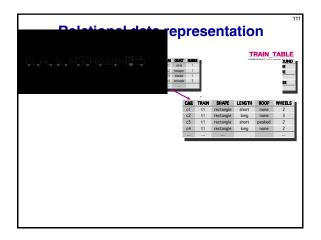
Relational Data Mining (ILP)

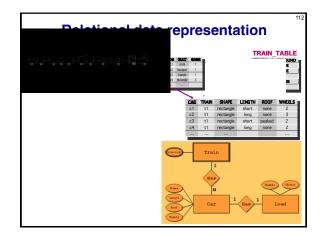
- Learning from multiple tables
 - patient records connected with other patient and demographic information
- Complex relational problems:
 - temporal data: time series in medicine, ...
 - structured data: representation of molecules and their properties in protein engineering, biochemistry, ...

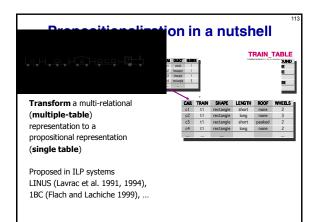


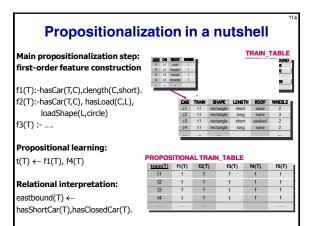
Sample ILP problem: East-West trains

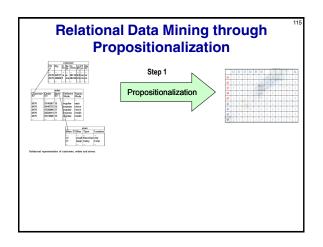
- 2-HOUNS GOING WEST

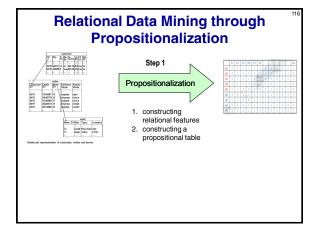


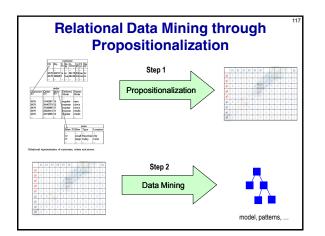


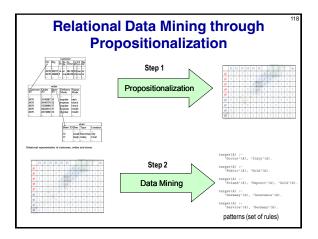


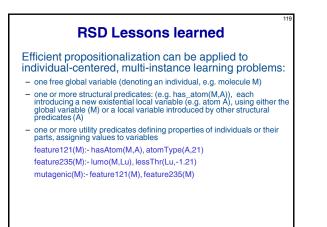


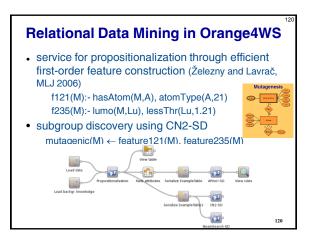










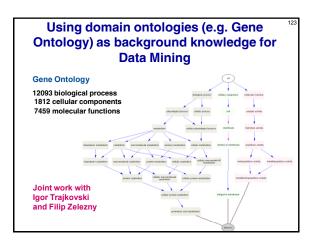


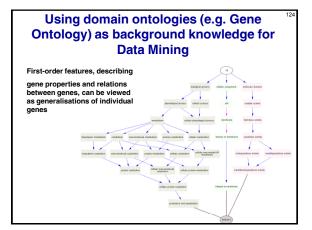
Talk outline

- Subgroup discovery in a nutshell
- Relational data mining and propositionalization in a nutshell
 Semantic data mining: Using ontologies in SD

Semantic Data Mining in Orange4WS

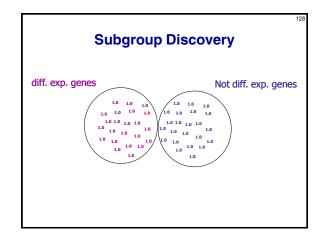
- Exploiting semantics in data mining
 - Using domain ontologies as background knowledge for data mining
- Semantic data mining technology: a two-step approach
 - Using propositionalization through first-order feature construction
 - Using subgroup discovery for rule learning
- Implemented in the SEGS algorithm

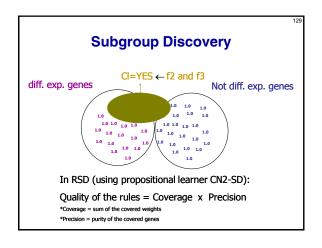


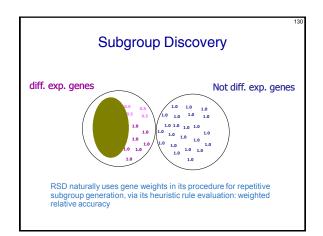


Propositionalization diffexp g1 (gene64499) random g1 (gene7443) diffexp g2 (gene2534) random g2 (gene9221) diffexp g3 (gene5199) random g3 (gene2339) diffexp g4 (gene1052) random g4 (gene9657) diffexp g5 (gene6036) random g5 (gene19679)												
	f1	f2	f3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	0	1	0
	0	0	1	1	0	0	0	1	0	0	0	1
g1	1	1	0	0	1	1	0	1	0	1	1	1
g1 g2			-	0	1	0	0	1	1	1	0	0
-	0	0	0	0	-			-	-	-	U U	

	00	51	<u> </u>			sc			_		su	υç	group
	f1	£2	£3	f4	f5	f6						fn	
g1	1	0	0	1	1	1	0	0	1	0	1	1	Over- expressed
g2	0	1	1	0	1	1	0	0	0	1	1	0	•
g3	0	1	1	1	0	0	1	1	0	0	0	1	IF
g4	1	1	1	0	1	1	0	0	1	1	1	0	f2 and f3
g5	1	1	1	0	0	1	0	1	1	0	1	0	[4,0]
g1	0	0	1	1	0	0	0	1	0	0	0	1	
g2	1	1	0	0	1	1	0	1	0	1	1	1	
g3	0	0	0	0	1	0	0	1	1	1	0	0	
g4	1	0	1	1	1	0	1	0	0	1	0	1	



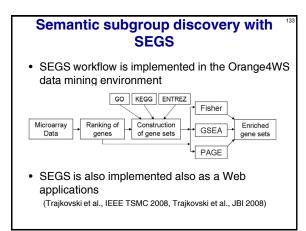


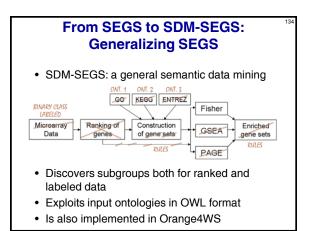


Semantic Data Mining in two steps Step 1: Construct relational logic features of genes such as interaction(g, G) & function(G, protein_binding) (g interacts with another gene whose functions include protein binding) and propositional table construction with features as attributes Step 2: Using these features to discover and describe subgroups of genes that are differentially expressed (e.g., belong to class DIFF.EXP. of top 300 most differentially expressed genes) in contrast with RANDOM genes (randomly selected genes with low differential expression). Sample subgroup description: diffexp(A) :- interaction(A,B) AND function(B, 'GO:0004871') AND process(B, 'GO:0009613')

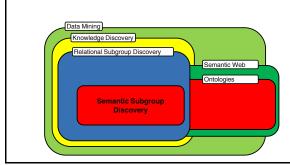
Summary: SEGS, using the RSD approach

- The SEGS approach enables to discover new medical knowledge from the combination of gene expression data with public gene annotation databases
- The SEGS approach proved effective in several biomedical applications (JBI 2008, ...)
 - The work on semantic data mining using ontologies as background knowledge for subgroup discovery with SEGS - was done in collaboration with I.Trajkovski, F. Železny and J. Tolar
- Recent work: Semantic subgroup discovery implemented in Orange4WS



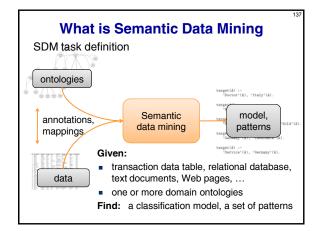


• Semantic Data Mining What is • Semantic subgroup discovery (Vavpetič et al., 2012)



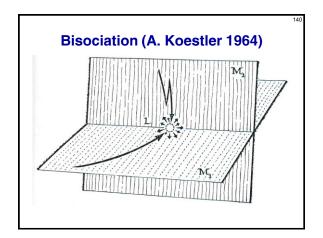
What is Semantic Data Mining

- Ontology-driven (semantic) data mining is an emerging research topic – the topic of this tutorial
- Semantic Data Mining (SDM) a new term denoting:
 - the new challenge of mining semantically annotated resources, with ontologies used as background knowledge to data mining
 - approaches with which semantic data are mined

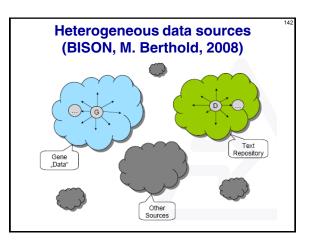


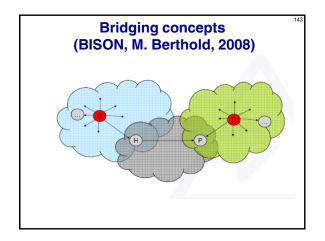
The **BISON** project

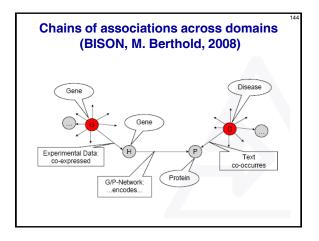
- EU project: Bisociation networks for creative information discovery (<u>www.bisonet.eu</u>), 2008-2010
- Exploring the idea of bisociation (Arthur Koestler, The act of creation, 1964):
 - The mixture in one human mind of two different contexts or different categories of objects, that are normally considered separate categories by the processes of the mind.
 - The thinking process that is the functional basis of analogical or metaphoric thinking as compared to logical or associative thinking.
- Main challenge: Support humans to find new interesting associations accross domains



 Finding unexpected, previously unknown links between BisoNet nodes belonging to different contexts





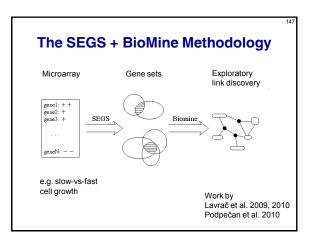


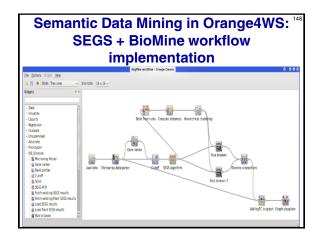
Semantic Data Mining for DNA Microarray Data Analysis

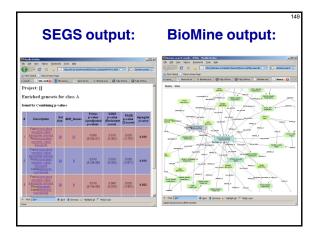
- Semantic data mining integrates public gene annotation data through relational features
- It is implemented in the SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 2008), available in Orange4WS
- It can be combined with additional biomedical resources (BioMine), providing additional means for creative knowledge discovery from publicly available data sources

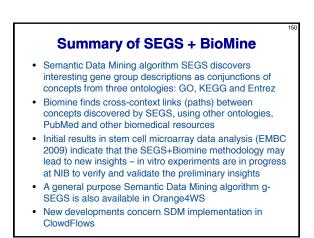
Biomine graph exploration (Toivonnen et al., Uni. Helsinki)

- BioMine graph contains information from public databases, including annotated sequences, proteins, orthology groups, genes and gene expressions, gene and protein interactions, PubMed articles, and different ontologies.
 - nodes (~1 mio) correspond to different concepts (such as gene, protein, domain, phenotype, biological process, tissue)
 - semantically labeled edges (~7 mio) connect related concepts
- BioMine query engine answers queries to potentially discover new links between entities by sophisticated graph exploration algorithms







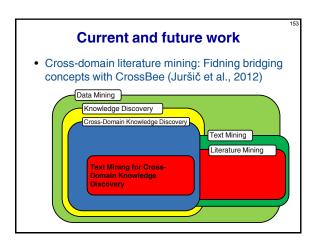


Future work

- Current Semantic data mining scenario: Mining empirical data with ontologies as background knowledge
 - abundant empirical data, but
 - scarce background knowledge
- Future Semantic data mining scenario:
 - envisioning a growing amount of semantic data
 - abundance of ontologies and semantically anotated data collections
 - e.g. Linked Data
 - over 6 billion RDF triples
 over 148 million links

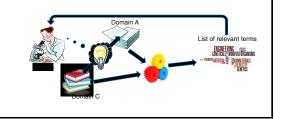
Future work

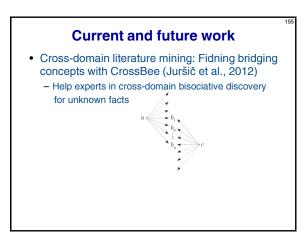
- We may envision a paradigm shift from data mining to knowledge mining
- The envisioned future Semantic data mining scenario in mining the Semantic Web:
 - mining knowledge encoded in domain ontologies,
 - constrained by annotated (empirical) data collections.

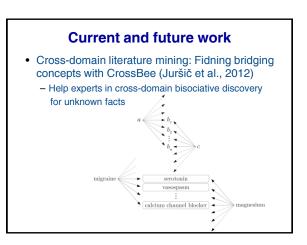


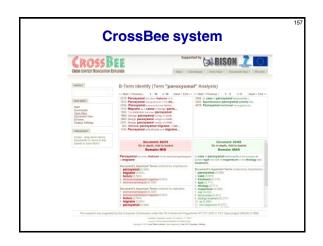
Current and future work

- Cross-domain literature mining: Fidning bridging concepts with CrossBee (Juršič et al., 2012)
 - Help experts in cross-domain bisociative discovery for unknown facts









Introductory seminar lecture: Summary

- JSI & Knowledge Technologies
- Introduction to Data mining and KDD
 - Data Mining in a Nutshell
 - Predictive and descriptive DM techniques
 - Data Mining and KDD process
 - DM standards, tools and visualization
- Selected data mining techniques: Advanced subgroup discovery techniques and applications
- Recent advances: Cross-context link discovery