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Course Outline

l. Introduction

Data Mining in a Nutshell

Predictive and descriptive DM
techniques

Data Mining and KDD process
DM standards, tools and
visualization

(Mladeni¢ et al. Ch. 1 and 11,
Kononenko & Kukar Ch. 1)

Il. Predictive DM Techniques

Bayesian classifier (Kononenko Ch.
9.6)

Decision Tree learning (Mitchell Ch.
3, Kononenko Ch. 9.1)

Classification rule learning
(Berthold book Ch. 7, Kononenko
Ch. 9.2)

Classifier Evaluation (Bramer Ch. 6)

lll. Regression
(Kononenko Ch. 9.4)

IV. Descriptive DM

Predictive vs. descriptive induction
Subgroup discovery

Association rule learning
(Kononenko Ch. 9.3)

Hierarchical clustering (Kononenko
Ch. 12.3)

— V. Relational Data Mining

RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch. 3, Ch. 4)

Propositionalization approaches
Relational subgroup discovery



Introductory seminar lecture

:: > X. JSI & Department of Knowledge Technologies

l. Introduction: First generation data mining
— Data Mining in a nutshell
— Predictive and descriptive DM techniques
— Data Mining and KDD process
— DM standards, tools and visualization
(Mladenic¢ et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)

XX. Selected data mining techniques: Advanced
subgroup discovery techniques and applications

XXX. Recent advances: Cross-context link
discovery



Jozef Stefan Institute

e Jozef Stefan Institute (JSI, founded in 1949)
— named after a distinguished physicist . _ T4
Jozef Stefan (1835-1893) J

— leading national research organization in natural sciences
and technology (~700 researchers and students)

 JSI research areas
— information and communication technologies
— chemistry, biochemistry & nanotechnology
— physics, nuclear technology and safety

e Jozef Stefan International Postgraduate School (IPS,
founded in 2004)

— offers MSc and PhD programs (ICT, nanotechnology,
ecotechnology)

— research oriented, basic + management courses
— in English
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Department of Knowledge Technologies

e Head: Nada Lavrag, Staff: 40 researchers, 15 students

e Machine learning & Data mining
— ML (decision tree and rule learning, subgroup discovery, ...)
— Text and Web mining
— Relational data mining - inductive logic programming
— Equation discovery

 Other research areas:
— Semantic Web and Ontologies
— Knowledge management
— Decision support
— Human language technologies

 Applications:
— Medicine, Bioinformatics, Public Health
— Ecology, Finance, ...



Basic Data Mining Task

knowledge discovery

Idata

Input: tra

NSagC

tion

data

from data
Data Mining

model, patterns, ...

table, relational database, text documents, Web pages

Goal: build a classification model, find interesting patterns in data, ...



Data Mining and Machine Learning

e Machine learning techniques ¢ Data mining applications

— classification rule learning — medicine, health care

— subgroup discovery — ecology, agriculture

— relational data mining and — knowledge management,
ILP virtual organizations

— equation discovery
— Inductive databases

e Data mining and decision
support integration

D_fibr=>4.20 ecghlv=no -» class=emb
[_chol=¢=6.90 D_fibi=>4.20 hypo=no -> clazz=emb

[_age=>66.00 fhiz=pes -» clasz=emb
1.5 [_age=»66.00 D_chol=<=6.90 -> clazs=emb




Relational data mining: domain
knowledge = relational database

domain
nowledge
Data Background

mining knowledg

patterns
model



Semantic data mining: domain
knowledge = ontologies

ontologies

Data

mining

patterns
model
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Basic DM and DS Tasks

knowledge discovery
from data
Data Mining
ldat3 model, patterns, ..
Input: trapsagtion datajtable, relational database, text documents, Web pages

Goal: build a classification model, find interesting patterns in data, ...

mutli-criteria modeling

Decision Supp% .@

models

experts

Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives
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Decision support tools: DEXi
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DM and DS integration

Data Decision

mining support

patterns
model

12

expert
knowledge
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Basic Text and Web Mining Task

knowledge discovery

M from text data and We
Text/Web Mining

model, patterns, ...

Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization...



Text Mining Tools
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Datoteka U'r_janje _Pog Igudmr_ma Zaznamki Orodja Pomod

CSE - C x Q’ li http://searchpoint.ijs.si/Result.aspx > " |'£.' Google P| 3

H | jaguar - SearchPoint [+

9
° .SEARCHP:}INT Jaguar Search via topics ] [ Search via query to ontology ] [ Search via hits to ontology ]

(134) Jaguar SSP - Home

The Jaguar Species Sumvival Plan@ promotes conservation and education related to jaguars

(Panthera onca) in the wild and in zoos. It is a program of the American ... l.
http:/fwww_jaguarssp.org/index_htm SITE

(6) Jaguar (Panthera onca) - Wikipedia

Article about the Jaguar, the New YWorld mammal of the Felidae family and one of four "big
cats” in the Panthera genus.
http://en wikipedia_org/wiki/Jaguar

PART

|.|1 JAGUARS

(5) Jaguar (Panthera onca)
Provides information on the Jaguar, the lar
physical features, behavior, habitat, distrib
http:{flynx_uio.noflynx/catsgportal/cat-webs

ericas. Covers the Jaguar's

“SHIP

(75) jaguar: Definition from Answers.com
jaguar n. A large feline mammal (Panthera onca) of Central an
related to the leopard and having a tawny coat spotted with
http:/fwww_ answers comftopic/jaguar

H
(68) Jaguar - Panthera onca - Defenders of Wildlife
According to one Indian myth, the jaguar acquired its spotted coat by daubing ...
Defenders’ Imperiled Species: Jaguar pages for more information about what .. o
http:/fwww.defenders_ orgfwildlife_and_habitat/wildlife/jaguar.php e L ® SEARCHEOINT

(82) Autobahn Jaguar (Fort Worth, TX)
Autobahn Jaguar DFW Area. Several Jaguars currently on sale. Mew XK is here. Jaguar in
DFW.

http:/fwww_shopautobahnjaguar.com/

Focus moved to subtopic
. PANTHERA, JAGUARS”

(72) Canadian XK Jaguar Register/Canadian Classic MG Club H itS a bOUt su btopic are
Jaguar MG Car Club page dealing with racing and slalom and concours events ... The
Canadian XK Jaguar Register Canadian Classic MG Club is in existence to ... Moved to the top

http://jaguarmg.com/index_html

B
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Knowledge Technologies:
Main research areas & IPS lectures
ICT

l

Knowledge Technologies
(Artificial Intelligence)

Data Mining \

(knowledge discovery from Knowledge
data, text, web, multimedia) Management
Lavrac, Mladenié, Cestnik, Lavrac, Mladenié
Kralj Novak, Fortuna
M Decision
Semantic Web Human Language Support
Mladenié Technologies Bohanec
Erjavec




Introductory seminar lecture

X. JSI & Knowledge Technologies

l. Introduction: First generation data mining
— Data Mining in a Nutshell
— Predictive and descriptive DM technigques
— Data Mining and the KDD process
— DM standards, tools and visualization
(Mladenic¢ et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)
XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery

19



Part |. Introduction

j>Data Mining in a Nutshell
* Predictive and descriptive DM techniques
e Data Mining and the KDD process
e DM standards, tools and visualization

20



What is DM

e Extraction of useful information from data:
discovering relationships that have not
previously been known

* The viewpoint in this course: Data Mining is

the application of Machine Learning
technigues to solve real-life data analysis

problems

21
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Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns
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Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

new unclassified instance

AN

classified instance

black box classifier
no explanation

symbolic model
symbolic patterns 2\\

explanation i N

.




24

Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. Tear prod.  Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013 .
014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE



classification model from contact lens ~
data

Person Age Spect. presc.  Astigm. |Tear prod. Lenses
(o) young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018 presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

Data Mining

reduced{//

NONE

xxxaﬂ?mm

no/

SOFT

lnyopi///

spect. pre.

HARD

\\\rypenneuope

NONE
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Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
O1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013

014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
O17 54 myope no reduced NO
018 62 myope no normal NO
019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing

groups of instances of target class



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
O1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
O4 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013 .
014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
O17 54 myope no reduced 0
018 62 myope no normal 0

019-023 .
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Learning from Unlabeled Data

Person Age Spect. presc. Astigm. |Tear prod.\ Lenses /
O1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
O4 27 myope yes normal
05 19 hypermetrope no reduced

06-013
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning

28
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Data Mining: Related areas

Database technology
and data warehouses
o efficient storage,

databases

acce_ss an_d text and Web machine
manipulation mining learning
of data

computing

pattern
recognition
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Related areas

Statistics,

machine learning,
pattern recognition
and soft computing*

e classification
techniques and
techniques for
knowledge extraction
from data

databases

machine
learning

text and Web
mining

computing

pattern
recognition

*neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning



Text and Web mining

31

Related areas

Web page analysis
text categorization

acquisition, filtering
and structuring of
textual information

natural language
processing

databases

text and Web
mining

machine
learning

computing

pattern
recognition
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Related areas

Visualization

e visualization of data
and discovered
knowledge

databases

text and Web
mining

machine
learning

computing

pattern
recognition
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Point of view in this course

Knowledge
discovery using databases
machine “
|earnin text and Web e
h dg mining learning
methods |
computing ‘pattern visualization
recognition




Data Mining, ML and Statistics

All three areas have a long tradition of developing
inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. ML - Viewpoint in this course:

— Data Mining is the application of Machine Learning
techniques to hard real-life data analysis problems

34



Data Mining, ML and Statistics

All three areas have a long tradition of developing
inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. Statistics:
— Statistics

e Hypothesis testing when certain theoretical
expectations about the data distribution,

Independence, random sampling, sample size, etc.

are satisfied

* Main approach: best fitting all the available data
— Data mining

e Automated construction of understandable
patterns, and structured models

 Main approach: structuring the data space
heuristic search for decision trees, rules, .

covering (parts of) the data space

35



Part l. Introduction

Data Mining in a Nutshell
j> Predictive and descriptive DM techniques
e Data Mining and the KDD process
e DM standards, tools and visualization

36



Types of DM tasks

Predictive DM:
— Classification (learning of rules, decision H
trees, ) v

— Prediction and estimation (regression)
— Predictive relational DM (ILP)
Descriptive DM:

— description and summarization

— dependency analysis (association rule o
learning) GO e H

— discovery of properties and constraints

— segmentation (clustering)
— subgroup discovery
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Predictive vs. descriptive DM

Predictive DM m
A
Descriptive DM
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Predictive vs. descriptive DM

* Predictive DM: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive DM: Discovering interesting regularities in
the data, uncovering patterns, ... for solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis



Predictive DM formulated as a
machine learning task:

e @Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)

A1 A2 A3 Class
example1l vy, Vi Via C,
example2 v, Vs o Vs 3 C,

e By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

40



Predictive DM - Classification

e data are objects, characterized with attributes -
they belong to different classes (discrete labels)

e given objects described with attribute values,
induce a model to predict different classes

e decision trees, if-then rules, discriminant
analysis, ...

41



Data mining example
Input: Contact lens data

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young |hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
O16 ore-presbyc hypermetrope yes normal NONE
O17  |presbyopic myope no reduced NONE
O18 |presbyopic myope no normal NONE

019-023

024  presbyopic/ hypermetrope yes normal NONE
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Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

reduced / Nﬁ)rmal

NONE
no / yes
myope‘/ \hypermetrope

HARD NONE




Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE

44
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
05 young hypermetrope no reduced NO

06-013
O14  ore-presbyc hypermetrope no normal YES
O15 ore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
O17  presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

019-023
024  presbyopic hypermetrope yes normal NO
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Contact lens data:
Classification rules in concept learning

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no —
lenses=YES

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=YES

else NO
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lllustrative example:
Customer data

Customer Gender Age Income Spent  BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data: Decision trees

< 102000 / > 102000
<58 / > 58

no yes
=female/ . ! = male
no

349/ ! > 49

no yes




Predictive DM - Estimation

often referred to as regression

data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

given objects described with attribute values, induce a
model to predict the numeric class value

regression trees, linear and logistic regression, ANN,
KNN, ...

49



Estimation/regression example:
Customer data

Customer Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
c14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000

c20 female 55 214000 28800



Customer data:
regression tree

<<108000‘//' ! > 108000

12000
342?/ > 425

16500 26700

In the nodes one usually has
Predicted value +- st. deviation
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Predicting algal biomass: regression
tree

Jan.-June

/ w - Dec.
C_s D

> 9.34 <10.1 / \>10.1

<9.34

>

4.32+2.07 2.34+£1.65

/

<59 >5.9 < 91 ; w
1.28+1.08
2.97+1.09 2.08 £0.71

£2.13/ 513
> 2.

1.152+0.21 0.70+0.34




Descriptive DM:
Subgroup discovery example -
Customer data

Customer Gender Age Income Spent  BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes
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Customer data:
Subgroup discovery

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if Xthen Y
X Is conjunctions of items, Y is target class

Age > 52 & Sex = male = BigSpender = no

Age > 52 & Sex = male & Income < 73250
= BigSpender = no

o4



Customer data:
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if Xthen Y
X, Y conjunctions of items

1. Age > 52 & BigSpender = no =» Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no
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Predictive vs. descriptive DM:
Summary from a rule learning
perspective

* Predictive DM: Induces rulesets acting as classifiers
for solving classification and prediction tasks

e Descriptive DM: Discovers individual rules
describing interesting regularities in the data

 Therefore: Different goals, different heuristics,
different evaluation criteria



Relational Data Mining (Inductive Logic57
Programming) in a Nutshell

D [z [§ [So [l Ol Re

knowledge discovery
3478|346 77|m [si 60-70|32}me [nr from data

ub
mi
3479(43666/f |ma|80-90|45nmlre
/ order . o o
Breomer 1B [ [oae” s Relational Data Mining
3478 [2140267(12  \ |regular |cash
3478 3446778(12 express |check

3478 4728386|17 regular |check

3479 3233444|17 xpress [credit
3479 |3475886(12 % ar [credit mOde|, patterns,

tore
Store ID[Size [Type |Location
12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational Data Mining (ILP)

Learning from multiple

tables
Complex relational Mutagenesis
problems: S

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Relational Data Mining (ILP)

customer
ID |Zip (S |So (In A |Cl] |Re
/4 €X|S¢ |[come (ge|yb [P

3478(34677m [si |60-70|32|me |nr
3479(43666(f |ma|80-90|45[nm|re

Ly |

/ order

Customer [Order [Store [Delivery [Paymt
D ID D \ Mode Mode

3478 214026712 regular |cash

3478 3446778(12 express [check
3478 4728386|17 regular |check
3479 3233444(17 xpress |credit
3479 3475886(12 gular |credit
\ store

Store ID|Size |Type |Location

12 small franchise city
17 large indep  [rural

Relational representation of customers, orders and stores.



customer

ID

Zip |3 |So [In
ex|S¢ |come

B€(u

b [sP

3478|34677|m |si |60-70
3479|43666|f |ma|80-90

45|n:

32|me [nr

m|re

order

3479 3233444
3479 3475886

17 XPress
12 gular

Customer [Order [Store [Delivery [Paymt
i 5 [ [Mode © |Mode
3478 2140267(12 regular |cash

3478 344677812 express |check
3478 472838617 regular |check

credit
credit

\

store
Store ID[Size [Type |Location
12 small |franchige|city
17 large indep  [rural

Relational representation of customers, orders and stores.

1D

Zip

Sex

Soc St

Income

Age

Club

Resp

3478
3479

34667
43666

S|
ma

60-70
80-90

32
45

me
nm

nr
re

Basic table for analysis
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ID Zip Sex |Soc St |Income |Age Club |Resp
3478 | 34667 |m Si 60-70 |32 me nr
3479 43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(Id,Zip,Sex,SoSt,In,Age,ClubRe)

Prolog facts describing data in Table 2:
customer(3478,34667,m,si,60-70,32,me,nr).
customer(3479,43666,f, ma,80-90,45,nm,re).

—I—I—I—I—)'

Expressing a property of a relation:
customer(_,_f,
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Relational Data Mining (ILP)

Data bases:

Name of relation p

Attribute of p

n-tuple <vi, ..., Va > =row in
a relational table

relation p = set of n-tuples =
relational table

eeeeeeeeee

EEEREE | o9
] b

e

5

g

Logic programming:

Predicate symbol p
Argument of predicate p
Ground fact p(vs, ..., Vn)
Definition of predicate p
e Set of ground facts

* Prolog clause or a set of Prolog
clauses

Example predicate definition:

good_customer(C) :-

order(C,_,_, ,creditcard).
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Part |. Introduction

e Data Mining in a Nutshell
* Predictive and descriptive DM techniques

jl>Data Mining and the KDD process
e DM standards, tools and visualization
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Data Mining and KDD

e KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

e Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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KDD Process

KDD process of discovering useful knowledge from data

Data Interpretation/

Pre- Trans-
__?i. processi_nh% fcr‘matiorr: Mining Eva1uation N f
™~ 4 3 - — ™ — E e
‘j ) —— S j— —p YA~ B ety 3 /7

Target I Preprocessed ITransfurmedI Patterns I Knowledge

Data Data Data
e O e — i

e KDD process involves several phases:
e data preparation
e data mining (machine learning, statistics)
e evaluation and use of discovered patterns

e Data mining is the key step, but represents only
15%-25% of the entire KDD process
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MEDIANA - analysis of media research data

Trans Data Interpretation/
-\ processing cr‘mation Mlnlng Evaluation N7

Target Preprocessed Transformed Patterns Knowledge
Data Data

|

>

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

e Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
interest for specific topics in media, social status

e good quality, “clean” data

e table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)



MEDIANA — media research pilot study

Pre- Trans-

= processing formation Evaluation 3
[ [ S — E —_ — g NN/
Target I Prepcessed ITransfurmedI Patterns I Knowledge

Data Data Data

>

e Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

* |nduced models: description (association rules, clusters)
and classification (decision trees, classification rules)



Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223 2 reads_Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads_Delo 157 (0.78)
4. reads_Money (Denar) 197 & reads_Delo 150 (0.76)
5. reads_Vip 181 2 reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also
Delo.
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Simplified association rules

1. reads_Sara 332 3 reads_Slovenske novice 211 (0.64)
2. reads_Ljubezenske zgodbe 283 >

reads_Slovenske novice 174 (0.61)
3. reads_Dolenjski list 520 >

reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
5. reads_Delavska enotnost 177 >

reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska
new, Omama in Workers new read also Slovenian
news.
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Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.
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Decision tree

Finding reader profiles: decision tree for classifying people
into readers and non-readers of a teenage magazine
Antena.

29 Age 29

Doesn’t read Visiting Disco Clubs

7S

Interest in music, astrology, Interest in astrology

travel and scandals
yes
n/ yes

Gender Reads

Doesy’t read Reads
mﬁy \emale

Doesn’t read

/\

Reads Doesn’t read



Part |. Introduction

e Data Mining in a Nutshell
* Predictive and descriptive DM techniques
e Data Mining and the KDD process

j|> DM standards, tools and visualization
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CRISP-DM

Cross-Industry Standard Process for DM

A collaborative, 18-months partially EC
founded project started in July 1997

NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

DM from art to engineering

Views DM more broadly than Fayyad et al.
| (actually DM is treated as KDD process):

Trans- Data Interpretation/

=—n Selection _ processmg fcrmanon Mmmg

3 Target Preprocessed Transfnrrnecl Patterns Knowledge
—_— Data Data Data
- g




CRISP Data Mining Process
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DM tools

- KDNuggets Directory: Data Mining and Knowledge Discovery - Netscape

File Edit “iew Go Communicator Help

thﬂnnkmarks {& Location; | http: Adwiene kdnuggets. com,

j @'What'& Felated ﬂ

F
—

KDNuggets.com Path: EDMuecets Home -
KDNuggets Tools (Siftware) for Data Mining and Knowledge Discovery
ewsletter
Tools Email new subrmssions and changes to editori@kdnuggets.com
Companies
Johs + Suites supporting multiple discovery tasks and data preparation
Courses + Classification -- for building a classification model
SR O0-0g* Approach: Multiple | Decision tree | Bules | Meural network | Bayesian | Other
Solutions + Clustering - for finding clusters or segnents
Wehsites + Statistics, Estimation and Regression
References + Links and Associations - for finding inks, dependency networks, and associations
Meetings + Sequential Pattems - tools f-::-.r findmg seguential patte.rns.
Datasets + ¥isualization - scientific and discovery-onented wsualization
+ Text and Weh Mining
+ Deviation and Fraud Detection
+ Reporting and Summarization
+ Data Transformation and Cleaning
« | _"’l + OLAP and Dimensional Analysis
= [=P=| | Document: Done =E S R A
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Public DM tools

e WEKA - Waikato Environment for Knowledge
Analysis

 Orange, Oranged4WS
e KNIME - Konstanz Information Miner
e R — Bioconductor, ...

=3 Weka Knowledge Explorer

] 3]
fFremucess rCIassify Cluster | Associate rSelecl attributes r\flsuallze ‘
‘ Open file... | ‘ Open URL... | | Open DB... Apply Filters ‘
Base relation ¥Working relation
Relation: weather Relation: weather
Instances: 14 Attributes: 5 Instances: 14 Attributes: 5
-Attributes in base relation Fitters:
AddFilter -k d-C0 H Add
| a Il None Il Imvert fer-unname
Mo || Name n'.*"} fui\d Subgroups
1 [l outlook Dooa
2|vitemperature " . L
3 lhumidity Discretize Linear Prajectian
4 [l windy
5 [Vl play Attribute info for base relation
Name: humidity Type: Numeric
Missing: 0 (0%) Distinct: 10 Unigue: 7 (50%)
Statistic | value -+ clasg=emb
Minirmurm 65.0
Maximurm 96.0
Mean 61.84285714285714 ahyp=pes aanh=pes -» class=emb
StdDev 10.285218242007051 i
D_fibr=:4.20 ecghlv=no -» class=emb
Log
U737 45 emai. (@S walkalo. at.ng = D_chal=¢=6.50 D_Ffibr=>420 hypo=nn -» class=emh
07:31:48: Started on Tarek, 6 marec 2001 . Il D_age=>EE.EID fh|s=yes 2 class=emb
07:32:00: Base relation is now weather (14 instances) N
07:32:00: Working relation is now weather (14 instances) = ['_age=>EE.00 D_chol=<=E.90 -> class=emb
Status:
OK




Visualization

e can be used on its own (usually for
description and summarization tasks)

e can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization
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Data visualization:
Scatter plot

el F

7
HOSPITALIZATION




DB Miner: Association rule
visualization

Edit Quem Wiew S

1.0




MineSet: Decision tree visualization

File “iew Selections Display Go Help

BEH S MM L T

Puainter iz over:

-1 sgi

B £1[0[0 |0 <0 [ | e 3 |2

(T T |
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Orange: Visual programming and
subgroup discovery visualization

svs I::Iassh .
DD ¥ EIRH -
o1 @DD 0 horm &

Linear Projection

-+ clazz=emb

af=yesz -» clazz=emb

ahvp=yes aarh=yes -» clasz=emb

0_fibr=>4.20 ecghlv=no -» clazs=emb

0 _chol=¢=6.90 D_fibr=>4.20 hppo=no - clazz=emb
0 _age=r66.00 fhiz=yes -» clazz=emb
0_age=r66.00 D_chol=¢=6.90 - clazz=emb
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Part I: Summary

KDD is the overall process of discovering useful
knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas
Many powerful tools available



Introductory seminar lecture

X. JSI & Knowledge Technologies

l. Introduction: First generation data mining
— Data Mining in a nutshell
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladenic¢ et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery
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XX. Talk outline

mmm) Subgroup discovery in a nutshell

e Relational data mining and
propositionalization in a nutshell

e Semantic data mining: Using ontologies in
SD
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Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
O1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013

014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
O17 54 myope no reduced NO
018 62 myope no normal NO
019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing

groups of instances of target class



Subgroup Discovery

Person Age Spect. presc. Astigm. Tear prod. . Lenses

o1 17 myope no reduced NO .
02 23 myope no normal YES S u bg rO u p D | SCOVG I'y
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013 Class YES
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO 2
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Class NO

e A task in which individual interpretable patterns in the

form of rules are induced from data, labeled by a

predefined property of interest.

e SD algorithms learn several independent rules that
describe groups of target class examples

— subgroups must be large and significant
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Classification versus Subgroup Discovery

e Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

e Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
 large subgroups (high target class coverage)

» with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery

9

Class YES
2
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Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

— Given: a population of individuals and a property
of interest (target class, e.g. CHD)

— Find: most interesting’ descriptions of population
subgroups
e are as large as possible
(high target class coverage)
* have most unusual distribution of the target

property
(high TP/FP ratio, high significance)
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Subgroup discovery example:
CHD Risk Group Detection

Input: Patient records described by stage A (anamnestic),
stage B (an. & lab.), and stage C (an., lab. & ECG)
attributes

Task: Find and characterize population subgroups with high
CHD risk (large enough, distributionally unusual)

From best induced descriptions, five were selected by the
expert as most actionable for CHD risk screening (by GPs):

CHD-risk < male & pos. fam. history & age > 46
CHD-risk <« female & bodymassindex > 25 & age > 63
CHD-risk « ...

CHD-risk « ...

CHD-risk « ...
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Characteristics of SD Algorithms

e SD algorithms do not look for
a single complex rule to
describe all examples of
target class YES (all CHD-
risk patients), but several
rules that describe parts
(subgroups) of YES.

e Standard rule learning
approach: Using the
covering algorithm for rule
set construction

Class YES

2

Class NO




Covering algorithm

Positive examples

Negative examples
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Covering algorithm

Positive examples

Rulel: Cl=+ « Cond2 AND Cond3
1 Negative examples
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Covering algorithm

Positive examples

Rulel: Cl=+ « Cond2 AND Cond3
1 Negative examples
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Covering algorithm

Positive examples

Rulel: Cl=+ « Cond2 AND Cond3
] Negative examples

Rule2: Cl=+ « Cond8 AND Cond6

95
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Characteristics of SD Algorithms

e SD algorithms do not look for

a single complex rule to
describe all examples of
target class YES (all CHD-
risk patients), but several
rules that describe parts
(subgroups) of YES.

Advanced rule learning
approach: using example
weights in the weighted
covering algorithm for
repetitive subgroup
construction and in the rule

quality evaluation heuristics.

Class YES

2

Class NO




Weighted covering algorithm for
rule set construction

CHD patients other patients

1.0 1.0 1.0

1.0 30 1.0 1.0

1.0 1.0 ;4 1.0

1.0 1.0
1.0 1.0
1.0

1.0 1.0

1.0
1.0 .
1.0 1.0

1.0

* For learning a set of subgroup describing rules, SD
Implements an iterative weigthed covering algorithm.

« Quality of a rule is measured by trading off coverage
and precision.
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Weighted covering algorithm for
rule set construction

f2 and f3
I

CHD patients other patients

1.0 4,
1.0 49

1.0

1.0 1.0 ;4 1.0

1.0 1.0
1.0 1.0
1.0

1.0 1.0
1.0

1.0

Rule quality measure in SD: q(Cl « Cond) = TP/(FP+g)

Rule quality measure in CN2-SD: WRAcc(Cl «<—Cond) = p(Cond) x
[p(Cl | Cond) — p(Cl)] = coverage x (precision — default precision)

*Coverage = sum of the covered weights, *Precision = purity of the covered examples



Weighted covering algorithm for
rule set construction

CHD patients other patients

1.0 1.0 1.0

1.0 30 1.0 1.0

1.0 1.0 1.0 1.0

1.0
10 ., 1.0
) 1.0

1.0 1.0 1.0

1.0

In contrast with classification rule learning algorithms (e.g. CN2),
the covered positive examples are not deleted from the training
set in the next rule learning iteration; they are re-weighted, and a
next ‘best’ rule is learned.
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- Subgroup visualization

1
B1

B2
Al

The CHD task: Find,
characterize and visualize
population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)
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Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m? (typically 29)
AND
age over 63 years

Supporting characteristics (computed using X2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol
values.
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SD algorithms in the Orange DM
Platform

e SD Algorithms in
Orange

— SD (Gamberger & Lavrac,
JAIR 2002

— APRIORI-SD (Kavsek &
Lavrac, AAl 2006

— CN2-SD (Lavrag et al.,
JMLR 2004): Adapting CN2
classification rule learner to
Subgroup Discovery

* Weighted covering algorithm

* Weighted relative accuracy
(WRAcc) search heuristics,
with added example
weights

L | ol =eml
0.36 D_chol=<=6.90 D_fibr=>4.20 hypo=no 3 class=em

['_age=»86.00 D_chol=c=6.90 > class=emb




SD algorithms in Orange and >
Orange4WS

e Orange e Oranged4WS (Podpecan
— classification and subgroup 2010)

discovery algorithms — Web service oriented

— d.ata rTlini.ng workflows — supports workflows and
— visualization other Orange functionality
— developed at FRI, Ljubljana _ jncludes also

 WEKA algorithms

* relational data mining
e semantic data mining with
ontologies
— Web-based platform is
under construction

D_fibri=>4.20 ecghlv=no -» class=emb
[_chol=¢=6.90 D_fibr=>4.20 hypo=no -» clazz=emb

[_age=>66.00 fhiz=pes -> clasz=emb
0.5 [_age=»66.00 D_chol=<=6.90-> clazz=emb
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XX. Talk outline

 Subgroup discovery in a nutshell

mmm)Relational data mining and
propositionalization in a nutshell

e Semantic data mining: Using ontologies in
SD




Relational Data Mining (Inductive
Logic Programming) in a nutshell

ID [Zip [S[Soln [A i
2[5 [comelgefub |5 knowledge discovery

3478|34677|m |si [60-70[32|me nr from data

/ 3479(43666/f |ma|80-90|45nmlre

/ order . o o
fBeromer e [ [hoae” [icae: Relational Data Mining
3478 [2140267(12  \ |regular |cash
3478 3446778(12 express |check

3478 4728386|17 regular |check

3479 3233444|17 xpress [credit
3479 347588612 ar

store
Store ID[Size [Type |Location

12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns

credit model, patterns, ...
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Relational Data Mining (ILP)

Learning from multiple

tables
— patient records MUtEIgEﬂ&SiS
con_necteddwith other @
atient an

Semographic ‘
information

Complex relational E

problems:

— temporal data: time
series in medicine, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Sample ILP problem:
East-West trains

v L HpogH
2. Ao
YRS

s (e

|:|EI

107



108
™

~t-si-—--t “-+- ~apresentation

TRAIN_TABLE

<> OOO E:U.] 'AR  OBJECT  NUMBER — = IND
cl circle 1 I IE

c2  hexagon IE

1 :l
c3  triangle 1
: SE I

¢4 rectangle

CAR TRAIN SHAPE LENGTH ROOF WHEELS

cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2




i

AR OBJECT NUMBER

cl circle 1
c2  hexagon

1
c3  triangle 1
¢4 rectangle 3
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~t-si-—--t “-+- ~apresentation

TRAIN_TABLE

~ 77T OJUND
IE
IE

;|
= |

CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

Load




T

Transform a multi-relational
(multiple-table)
representation to a
propositional representation
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),

1BC (Flach and Lachiche 1999), ...

AR OBJECT  NUMBER
cl circle 1
c2  hexagon 1
c3  triangle 1
3

¢4 rectangle

. 4
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TRAIN_TABLE

T TTTTOUND
IE
IE

;|
= |

CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2




Propositionalization in a nutshell

Main propositionalization step:
first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),
loadShape(L,circle)

f3(T) :- ...

Propositional learning:
t(T) <« f1(T), f4(T)

Relational interpretation:

eastbound(T) <
hasShortCar(T),hasClosedCar(T).
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TRAIN_TABLE

LOAD CAR OBJECT NUMBERI ST TTTTTOUND

¢l circle 1 IE

2 c2 hexagon IE

1 :I
I3  ¢3 triangle 1
[4 ¢4 rectangle 3 SE I
L 4

CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

PROPOSITIONAL TRAIN_TABLE

train(T) f(T)  2(T) f3(T)  fA(T) f5(T)
t1 t t f t t
t2 t t t t
t3 f f t f f
t4 t f t f f




Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
ID |Zip |S [So In A |CI |Re
/ ex|S¢ [come|ge|yb [sP
3478(34677\m [si  |60-70|32|me [nr
3479(43666/f |ma|80-90|45/nm|re
/ order
Customer |[Order (Store |Delivery (Paymt
D 1D D Mode =~ |Mode
3478 214026712 \ regular |cash
3478 344677812 express |check
3478 4728386|17 regular |check
379 3233444|17 xpress  [credit
3479 3475886(12 gular |credit
\ store
Store ID|Size |[Type |Location
12 small |franchise |city
17 large indep  (rural

Relational representation of customers, orders and stores.
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Relational Data Mining through

Propositionalization

customer
ID |Zip |S [So In A |CI |Re
/ ex|S¢ [come|ge|yb [sP
3478(34677\m [si  |60-70|32|me [nr
3479(43666/f |ma|80-90|45/nm|re
/ order
Customer |[Order (Store |Delivery (Paymt
D 1D D Mode =~ |Mode
3478 214026712 \ regular |cash
3478 344677812 express |check
3478 4728386|17 regular |check
379 3233444|17 xpress  [credit
3479 3475886(12 gular |credit
\ store
Store ID|Size |[Type |Location
12 small |franchise |city
17 large indep  (rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

f1 | £2 | £3 | £4 | £5 | £6 fn
gl (oo |1 (11 fo 011011 (1
72 O T A I 1 v I A I A A
gg| o (11|10 {1000l
T v 5 1 O A I A A
gh| 1 (1|10 (oo |1y01f0n
gb| 0 (o011 (ojofop1rjoyo0y0fl
72 v I 1 A I I B
gs| 0o oo fljofop L)1y ofan
| v I A I I A
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fl | f2 | £3 |4 | £5 | f6 fn
gl 1 (oo (1110011011
g0l (o 11000110
2 U S 1 Y I/ O B
L T A 1 A I B
L L S 1 A I B
glfojo |1 10 ojoy1f{opo)o0)1l
2 A VA VA A
L 2 I 1 1 A I/ O B
e A O

>

model, patterns, ...
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RSD Lessons learned

Efficient propositionalization can be applied to
individual-centered, multi-instance learning problems:

— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)
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Relational Data Mining in Orange4WS

« Sservice for propositionalization through efficient

first-order feature construction (Zelezny and Lavrag,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
e subgroup discovery using CN2-SD
mutagenic(M) « feature121(M), feature235(M)

Mutagenesis

<
lecule 3
— \&

ropositionalization afle. attributes riori
Load backgr. knowledge — —

Serialize ExampleTable2 ~ CN2-5D

'3

BeamSearch-SD
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Talk outline

 Subgroup discovery in a nutshell

e Relational data mining and
propositionalization in a nutshell

=) Semantic data mining: Using ontologies in
SD
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Semantic Data Mining in Orange4WS

e EXxploiting semantics in data mining
— Using domain ontologies as background knowledge for
data mining
e Semantic data mining technology: a two-step
approach

— Using propositionalization through first-order feature
construction

— Using subgroup discovery for rule learning
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

12093 biological process .. .. comporere mokcab G
1812 cellular components / L L L
7459 molecular functions = e gl process cellar proces c

biopolymer metabolism catabolism macromolecule metabolism primary metabolism cellular metabolism intrinsic to m

biopolymer catabolism macromolecule catabolism protein metabolism  cellular catabolism

Joint work with
Igor Trajkovski
and Filip Zelezny
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations = el o o
between genes, can be viewed 7 | L
as generalisations of individual . S ror

genes
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First order feature construction

First order features with support > min_support

,A):-function(A,'G0O:0046872").

) -function(A,'G0O:0004871").
A):-process(A,'GO:0007165").
A):-process(A,'GO:0044267").
,A):-process(A,'G0O:0050874").
,A):-function(A,'G0O:0004871"), process(A,'GO:0050874").
,A):-component(A,'GO:0016021").
29 A) function(A,'G0:0046872"), component(A,'G0O:0016020")
122,A):-interaction(A,B),function(B,'G0:0004872").
223,A):-interaction(A,B),function(B,'G0:0004871"),

process(B,'G0O:0009613").
f(224,A):-interaction(A,B),function(B,'G0O:0016787"),
component(B,'G0O:0043231").

existential
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Propositionalization

diffexp g1 (gene64499)

random g1 (gene7443)

diffexp g2 (gene2534) random g2 (gene9221)
diffexp g3 (gene5199) random g3 (gene2339)
diffexp g4 (gene1052) random g4 (gene9657)
diffexp g5 (gene60306) random g5 (gene19679)
£1 | £2 | £3 | £4 | £5 | f6 | .. £n
gl | 1 0 0 1 1 1 0 0 1 0 1 1
g2 | 0 1 1 0 1 1 0 0 0 1 1 0
g3 | o 1 1 1 0 0 1 1 0 0 0 1
g4 | 1 1 1 0 1 1 0 0 1 1 1 0
g5 | 1 1 1 0 0 1 0 1 1 0 1 0
gl | o 0 1 1 0 0 0 1 0 0 0 1
g2 | 1 1 0 0 1 1 0 1 0 1 1 1
g3 | o0 0 0 0 1 0 0 1 1 1 0 0
g4 | 1 0 1 1 1 0 1 0 0 1 0 1




Propositional learning: subgroup

discovery
1

f1l ||£2 f3| f4 | £5 | f£f6 fn
gl| 1 (oo} 1|11 1
g2| o |f1 | 2}/ 0o | 1|1 0
g3| o1 |21}l 1 0O 1
gd| 1 [J12 | 21l 0| 1|1 0
gs| 1 [J12 | 11l 0| 0|1 0
gl| oo | 1}l 1] 0| O 1
g2| 1 (|1 |off o] 1|1 1
g3| o fjo|ofjfo|1]oO 0
ga| 1 |Jo | 2}l 1 |1 |oO 1

f2 and 3
[4,0]

122
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1-0 1-0 1 o

10 30 10 4,9

1.0 1.0 1.0 1.0

1.0
10, 1.0
) 1.0

1.0 1.0 1.0

1.0
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Subgroup Discovery

f2 and f3

diff. exp. genes ] Not diff. exp. genes

1.0 1.0
1.0 1.0

1.0

1.0 1.0 1.0 1.0

1.0 1.0
1.0 1.0
1.0

1.0 1.0 1.0

1.0

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0 1.0

1.0

1.0
1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy
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Semantic Data Mining in two steps

e Step 1: of genes such

as
interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding)

and with features as
attributes

e Step 2: Using these features to
that are differentially expressed (e.g.,
belong to class DIFF.EXP. of top 300 most differentially
expressed genes) in contrast with RANDOM genes (randomly
selected genes with low differential expression).

e Sample subgroup description:
diffexp(A) :- interaction(A,B) AND

function(B,'G0:0004871') AND
process(B,'G0:0009613")



Summary: SEGS, usingthe RSD *
approach

e The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

* |n past 2-3 years, the SEGS approach proved
effective in several biomedical applications (JBI
2008, ...)

* The work on semantic data mining - using ontologies as
background knowledge for subgroup discovery with SEGS - was
done in collaboration with |.Trajkovski, F. Zelezny and J. Tolar
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Introductory seminar lecture

X. JSI & Knowledge Technologies

l. Introduction
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladenic¢ et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

:> XXX. Recent advances: Cross-context link
discovery
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The BISON project

e EU project: Bisociation networks for creative
information discovery (www.bisonet.eu), 2008-
2010

e Exploring the idea of bisociation (Arthur

Koestler, The act of creation, 1964):

— The mixture - in one human mind — of two different contexts or
different categories of objects, that are normally considered
separate categories by the processes of the mind.

— The thinking process that is the functional basis of analogical
or metaphoric thinking as compared to logical or associative
thinking.

 Main challenge: Support humans to find new
interesting associations accross domains



http://www.bisonet.eu/
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tion (A. Koestler 1964)

Isocia

B
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The BISON project

 BISON challenge: Support humans to find new,
interesting links accross domains, named
bisociations
— across different contexts
— across different types of data and knowledge sources

e Open problems:

— Fusion of heterogeneous data/knowledge sources
Into a joint representation format - a large information
network named BisoNet (consisting of nodes and
relatioships between nodes)

— Finding unexpected, previously unknown links
between BisoNet nodes belonging to different
contexts
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Heterogeneous data sources
(BISON, M. Berthold, 2008)

Sources




133

Bridging concepts
(BISON, M. Berthold, 2008)




Chains of associations across domains
(BISON, M. Berthold, 2008)

— Diceace
<_G ene ™ ”M_EJISEQS -

N\ /-
‘~}~ : - {j:éé) s

- . S
cxpernimental Data: __Text
Cco-expressed
Co-OCcurres

GIP-Network: M
_.encodes_.
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Semantic Data Mining for DNA
Microarray Data Analysis

e Semantic data mining integrates public gene
annotation data through relational features

e |ltis implemented in the SEGS algorithm
(Trajkovski, Zelezny, LavracC and Tolar, JBI
2008), available in Orange4WS$S

e |t can be combined with additional biomedical
resources (BioMine), providing additional means
for creative knowledge discovery from publicly
available data sources
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Biomine graph exploration
(Toivonnen et al., Uni. Helsinki)

 BioMine graph contains information from public
databases, including annotated sequences, proteins,
orthology groups, genes and gene expressions, gene
and protein interactions, PubMed articles, and different
ontologies.

— nodes (~1 mio) correspond to different concepts
(such as gene, protein, domain, phenotype, biological
process, tissue)

— semantically labeled edges (~7 mio) connect
related concepts

 BioMine query engine answers queries to potentially
discover new links between entities by sophisticated
graph exploration algorithms
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The SEGS + BioMine Methodology

Microarray Gene sets Exploratory

link discovery
genel: + +
genel: +
genel: + SEGS Biomine

> >

genelN: — —

e.g. slow-vs-fast

cell growth Work by

Lavrac et al. 2009, 2010
Podpecan et al. 2010



Semantic Data Mining in Orange4WS:
SEGS + BioMine workflow

implementation
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+ Classify Table fmm rules Compute distances Hierarchical clustering
+ Regression

+ Evaluate

+ Unsupervised
+ hssociate
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- Rule browser
)
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o b’ i

- [ Gene ranker . | - .
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SEGS output:

=10l x|

File Edit Wiew

History — Bookmarks  Tools  Help

@ c x fﬁ ID |http:,l’,l’kt.ijs.si,l’s0Ftware,l’SEGS,I’work_dir,l’pherIvFW.D.all.htﬁ - |'|bi0mine project P
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Dane
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BioMine query:
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Summary of SEGS + BioMine

Semantic Data Mining algorithm SEGS discovers
interesting gene group descriptions as conjunctions of
concepts from three ontologies: GO, KEGG and Entrez

Biomine finds cross-context links (paths) between
concepts discovered by SEGS, using other ontologies,
PubMed and other biomedical resources

Initial results in stem cell microarray data analysis (EMBC
2009) indicate that the SEGS+Biomine methodology may
lead to new insights — in vitro experiments are in progress
at NIB to verify and validate the preliminary insights

A general purpose Semantic Data Mining algorithm g-
SEGS is also available in Orange4WS



Introductory seminar lecture:

Summary

JSI| & Knowledge Technologies

Introduction to Data mining and KDD

— Data Mining and KDD process

— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive

and descriptive DM

Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

Recent advances: Cross-context link
discovery

141
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Part ll. Predictive DM techniques

=)« Naive Bayesian classifier
e Decision tree learning
e Classification rule learning
e Classifier evaluation
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Bayesian methods

e Bayesian methods — simple but powerful
classification methods
— Based on Bayesian formula
p(D|H)
H
(D) p(H)

p(H | D)=

* Main methods:
— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course
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Naive Bayesian classifier

* Probability of class, for given attribute values
p(v..v, | c;)

p(v,..v,)

 For all G, compute probability p(C;), given values v, of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when

estimating p(C;) and p(C; Iv)))
(c; [v)

P
pc; |v..v,) = p(c,)-
’ ’ H p(c))
e OQutput Cyax With maximal posterior probability of class:

p(c;v..v,) = p(c;)-

Cyx =argmax . p(c; |v...v,)
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Naive Bayesian classifier

pc; - v..v,) pW..v,|c;) plc;)

p(c; |v..v,)=

p(v,..v ) p(v,..v )
) HP(Vi ;) p(c,) ) plc,) Hp(cj V) p(,) i
p(v.v,) pv..v,) p(c;)
H PO - plc,|v) p(c; |v,)
=re) ol RS RREARZE |
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Semi-naive Bayesian classifier

 Naive Bayesian estimation of probabilities

reliable) p(e, 1v) ple,|v)

p(c;) p(c;)

e Semi-naive Bayesian estimation of
probabilities (less reliable)

p(c; [ vi,v)
p(c;)
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Probability estimation

* Relative frequency:
n(c;)
N

n(c;,v;)

n(v;)
* Prior probability: Laplace law

n(c;)+1

p(c;)= ,p(c; |v,)= j=1..k, for k classes

p(c_]) —

e m-estimate:

n(c,)+m- pa(c;)
N +m

p(Cj):
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Probability estimation: intuition

e Experiment with N trials, n successful
e Estimate probability of success of next trial
* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.g.,
1/1=1
e Laplace: (n+1)/(N+2), (n+1)/(N+Kk), k classes
— Assumes uniform distribution of classes
 m-estimate: (n+m.pa)/(N+m)

— Prior probability of success pa, parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )
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Explanation of Bayesian
classifier

e Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p ()
 Explanation based of the sum of information gains of

individual attribute values v; (Kononenko and Bratko 1991,
Kononenko 1993)

—log( p(c; [v..v,)) =

= —log(p(cj))—i(—logp(Cj)+10g(P(Cj V)

* log p denotes binary logarithm
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Example of explanation of semi-naive
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden Il -0.3

Fracture classification acc. To Pauwels = Pauwels Il -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks
Combination: 0.63
Therapy = Artroplastic AND anticoagulant therapy = Yes




Visualization of information
gains for/against C,

Information gain
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Naive Bayesian classifier

Naive Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

It achieves good classification accuracy

— can be used as ‘gold standard’ for comparison with
other classifiers

Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

Successful in many application domains
— Web page and document classification

— Medical diagnosis and prognosis, ...
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Improved classification accuracy due ™

to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#Hattrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 96% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. | m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
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Part ll. Predictive DM techniques

* Naive Bayesian classifier
) e Decision tree learning

e Classification rule learning

e Classifier evaluation
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lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young |hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

019-023

024  presbyopic| hypermetrope yes normal NONE
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Decision tree for
contact lenses recommendation

tear prod.

reduced/// \\\\\\annal
NONE
ni// yes
lnyopi/// \\\?ypennerpe

HARD NONE
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Decision tree for
contact lenses recommendation

reduced / N?rmm

no es
[N=12,S+H=0] / y

[S=5,H+N=1] myopci/ \hypermetrope

HARD NONE
[H=3,S+N=2] [IN=2, S+H=1]




PlayTennis: Training examples

Day QOutlook | Temperature Humidity | Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision tree representation
for PlayTennis

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lor‘mal S‘rror/\weak
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation
for PlayTennis

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lor‘mal S‘rr'ong/\Weak
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
'/ ( Outlook=Overcast )
'/ ( Outlook=Rain A Wind=Weak )
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PlayTennis:
Other representations

Logical expression for PlayTennis=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

Converting a tree to if-then rules
— IF QOutlook=Sunny A Humidity=Normal THEN PlayTennis=Yes
— IF Outlook=Overcast THEN PlayTennis=Yes
— IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayTennis=No
— IF Outlook=Rain A Wind=Strong THEN PlayTennis=No
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PlayTennis: Using a decision tree for
classification

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lor‘mal STr‘ong/\Weak
No Yes No Yes

Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis = No, because Outlook=Sunny A Humidity=High
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Appropriate problems for
decision tree learning

e Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

e Characteristics:

— instances described by attribute-value pairs

(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)

— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Learning of decision trees

e |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree

— if all examples from S belong to the same class Cj
e then label the root with Cj

— else

e select the ‘most informative’ attribute A with values
vli, v2,...vn

e divide training set S into $1,... , Sn accordjng to
values v1,...,vn

Vn

* recursively build sub-trees v/ &

T1,...,Tn for $1,...,Sn @ @
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Search heuristics in ID3

e Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

e Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used in
information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.
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Entropy

e S -training set, C,,...,Cy - classes

 Entropy E(S) — measure of the impurity of
training set S

N
E(S):—ch ,log2 D. p. - prior probability of class C,

1 (relative frequency of C, in S)

* Entropy in binary classification problems

E(S) = - p,log,p, - p_log,p.
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Entropy

* E(S)=-p,log.p,-p.log,p.

* The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between O and 1

0’; /\

- / N\

ool /. \
20l / \
I, \
oo L] \
"

0 0.2 0.4 0.6 0.8 1 bp?
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

p. (-log,p.)+ p.(-log,p_.) =-p,log,p, - p_log,p_



PlayTennis: Entropy

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]
E(S) =- P, |092p+ - P. |092p-

Computing entropy, if probability is estimated by
relative frequency

S| . |S |j (|S| 'S |
E(S)z—(*-log — |—| ——log——
N S| ) US| S

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
=0.940
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PlayTennis: Entropy

E(S) =- p. 10g,p, - p.log,p.
E(9+,5-) = -(9/14) l0g,(9/14) - (5/14) log,(5/14) = 0.940

Outlook?

Humidity?

Wind?

Sun {DI,DZ,D8,D9,D11}
{D3,D7,D12,D13}
{D4,D5,06,D10,D14}

; [3+,4-] E=0.985
Nermal—. [6+,1-] E=0.592
Wea [6+,2-] E=0.811
St+rong— . [3.'.' 3_] E:IOO

[2+, 3-] E=0.970
[4+, 0-] E=0
[3+,2-] E=0.970
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Information gain
search heuristic

e Information gain measure is aimed to minimize the
number of tests needed for the classification of a new

object

 Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain(S,A)=E(S)- ), M-E(SV)

veValues(A) |S|

 Most informative attribute: max Gain(S,A)
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Information gain
search heuristic

e Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+, 2—] [3+, 3—] [9+, 0—] [0+, 5—]
E=0.811 E=1.00 E=0.0 E=0.0

e Gain(S,A1)=0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048
e Gain(S,A2)=0.94-0=0.94 A2 has max Gain
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PlayTennis: Information gain

Gain(S,A)=E(S)— > |S"|-E(Sv)

veValues(A) |S|

* Values(Wind) = {Weak, Strong}

Wea [6+,2-] E=0.811

Wind? Streg— 13+ 3-]1 E=1.00
— S =[9+,5-], E(S)=0.940

— Sweak = [6+,2-], E(Sweak) =0.811

— Sstrong = [3+,3-], E(Sstrong) =1.0

— Gain(S,Wind) = E(S) - (8/14)E(Syea) - (6/14)E(Syyong) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048
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PlayTennis: Information gain

 Which attribute is the best?
— Gain(S,0Outlook)=0.246 MAX !
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S, Temperature)=0.029
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PlayTennis: Information gain

Rain_.  {D4,D5,D6,D10,D14} [3+,2-] E>0???

Overcas

Outlook? .
{D3,D7,012,D13} [4+,0-] E=0 OK - assign class Yes

{D1,D2,08,D9,D11} [2+,63-] E>O ??? <>

e Which attribute should be tested here?

— Gain(S

Sunny

Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny’

— Gain(S Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

sunny’

— Gain(S.,...,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny’
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Probability estimates

* Relative frequency : p(Class | Cond) =
— problems with small samples
_ n(Class.Cond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
 Laplace estimate : _ n(Class.Cond)+1 1 _»
— assumes uniform prior  n(Cond)+k

distribution of k classes

[6+,1-] (7) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— if all examples belong to same class C;, label the
leaf with G,

— if all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning

177



178

Pruning of decision trees

e Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
* erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples
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Handling noise — Tree pruning

 Handling imperfect data
— handling imperfections of type 1-3
e pre-pruning (stopping criteria)
e post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3
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Prediction of breast cancer
recurrence: Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 15 <3 > 3
Age no_recur 125 no_recur 30 no_recur 27
recurrence 39 recurrence 18 recurrence 10
<4 >40 SN VAN
no_recur 4

recurrence 1~ no_recur 4

no_rec 4 recl
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Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— On unseen instances

How accurate is a decision tree when classifying unseen
iInstances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
e split the example set into training set (e.g. 70%) and test set (e.g. 30%)
* induce a decision tree from training set, compute its accuracy on test
set
Error =1 - Accuracy

High error may indicate data overfitting



Overfitting and accuracy

* Typical relation between tree size and accuracy

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

—
/—/_/_,
/_/
[ T
/ N

120

— On training data
— On test data

e Question: how to prune optimally?
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Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

» forward pruning considered inferior (myopic)
e post pruning makes use of sub trees
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How to select the “best” tree

 Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

 Measure performance over separate validation data
set (e.qg., reduced error pruning, Quinlan 1987)

— until further pruning is harmful DO:

e for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

e greedily select the node whose removal most improves tree
accuracy over the validation set

e MDL: minimize
size(tree)+size(misclassifications(tree))
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Selected decision/regression
tree learners

e Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

 Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5

* |Implemented as part of the WEKA data mining
workbench

 Handling noisy data: post-pruning
 Handling incompletely specified training
Instances: ‘unknown’ values (?)

— in learning assign conditional probability of value v:
p(vIC) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values
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Other features of C4.5

e Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until
two groups remain *
e ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
Is the majority class of the parent of the NULL leaf

*x . \ o . . . .
the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping
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Part ll. Predictive DM techniques

* Naive Bayesian classifier
e Decision tree learning

m)> » Classification rule learning
e Classifier evaluation
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Rule Learning in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIedge d|SCOV€W
o1 young myope no reduced NONE from data
02 young myope no normal SOFT
03 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced NONE
06-013 0 .
014  ore-presbyc hypermetrope no normal SOFT RUIe Iearnlng MOdel a Set Of rU|eS
015  ore-presbyc hypermetrope yes reduced NONE . L.
016  ore-presbyc hypermetrope yes normal NONE Patterns |nd|V|d ual rules
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023

024  presbyopic| hypermetrope yes normal NONE

data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;
or a set of interesting patterns in the form of individual
rules



191

Rule set representation

 Rule base is a disjunctive set of conjunctive rules

e Standard form of rules:
|IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

e Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

e Rule base: {R1, R2, R3, ..., DefaultRule}
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Data mining example
Input: Contact lens data

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young |hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
O16 ore-presbyc hypermetrope yes normal NONE
O17  |presbyopic myope no reduced NONE
O18 |presbyopic myope no normal NONE

019-023

024  presbyopic/ hypermetrope yes normal NONE



Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE
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Rule learning

 Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
e | earning an unordered set of rules
* | earning an ordered list of rules
e Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to
an unordered rule set

reduced Nﬁ:rmal
NONE

nO/ yes
[IN=12,S+H=0]
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE
[H=3,S+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to
decision list

reduced Nﬁ:rmal
NONE

nO/ yes
[N=12,S+H=0]
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE
[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. | Astigm. Tear prod. Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
05 young hypermetrope no reduced NO

06-013
O14  ore-presbyc hypermetrope no normal YES
O15 ore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
O17  presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

019-023
024  presbyopic hypermetrope yes normal NO
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Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C,, ..., Cx

for each class Ci do + o+ || -
— Ei := Pi U Ni (Pi pos., Ni neg.) + o4
— RuleBase(Ci) := empty -y 7

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

e add R to RuleBase(Ci)
 delete from Pi all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples




202

Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples
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Covering algorithm

. Rule1: Cl=+ « Cond2 AND Cond3
Positive examples ! Negative examples

Rule2: Cl=+ « Cond8 AND Cond6



PlayTennis: Training examples

Day QOutlook | Temperature Humidity | Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:
PlayTennis example

PlayTennis = yes [9+,5-] (14)

PlayTennis = yes <~ Wind=weak [6+,2-] (8)
< Wind=strong [3+,3-] (6)
< Humidity=normal [6+,1-] (7)

“— ...
PlayTennis = yes < Humidity=normal
Outlook=sunny [2+,0-] (2)
“— ...

Estimating rule accuracy (rule precision) with the probability
that a covered example is positive

A(Class < Cond) = p(Classl| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+.1-1(7) =617, [2+,0-] (2) = 2/2 = 1
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Probability estimates

* Relative frequency : p(Class | Cond) =
— problems with small samples
_ n(Class.Cond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
 Laplace estimate : _ n(Class.Cond)+1 1 _»
— assumes uniform prior  n(Cond)+k

distribution of k classes

[6+,1-] (7) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4
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Learn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl « Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.qg., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule:
Greedy vs. beam search

e |learn-one-rule by greedy general-to-specific
search, at each step selecting the best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
PlayTennis = yes «
— iIs rule PlayTennis = yes <« Humidity=normal

e beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Learn-one-rule as search:
PlayTennis example

Play tennis = yes IF

Play tennis = yes

. Play tennis = yes
IF Wind=weak

| IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny



Learn-one-rule as heuristic search:

PlayTennis example

Play tennis = yes IF [9+,5-] (14)

Play tennis = yes
IF Wind=weak
[6+92_] (8)

Play tennis = yes
IF Humidity=high

Play tennis = yes Play tennis = yes [3+,4-1(7)
IF Windzs‘rrong IF Humudu’ryznormal

[3+,3-1 (6) [6+,1-1(7)

Play tennis = yes
IF Humidity=normal,

Wind=weak Play tennis = yes
, , IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, = IF Humidity=normal,

Wind=strong Outlook=sunny
[2+9O_] (2)

0
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What is “high” rule accuracy
(rule precision) ?

* Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
e BUT: Rule accuracy/precision should be traded

off against the “default” accuracy/precision of the

rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

 Relative accuracy
— RAcc(Cl «~Cond) = p(Cl | Cond) — p(Cl)
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Weighted relative accuracy

If a rule covers a single example, its accuracy/precision
IS either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

Weighted relative accuracy
WRAcc(Cl«<—Cond) = p(Cond) . [p(Cl | Cond) — p(Cl)]

WRACcc is a fundamental rule evaluation measure:

— WRACcc can be used if you want to assess both accuracy and
significance

— WRACcc can be used if you want to compare rules with different
heads and bodies
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Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl « Cond from RuleBase.

Expected classification accuracy: A(R)=p(ClICond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(ClICond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(CliICond’) - p(ClICond)

Information gain (decrease in the information needed):
IG(R’,R) = log,p(ClICond’) - log,p(CIlICond)

Weighted measures favoring more general rules: WAG, WIG
WAG(R’,R) =

p(Cond’)/p(Cond) . (p(ClICond’) - p(ClICond))
Weighted relative accuracy trades off coverage and relative

accuracy WRAcc(R) = p(Cond).(p(ClICond) - p(Cl))
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Ordered set of rules:
iIf-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
instance: rules are sequentially tried and the first
rule that fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
ECUI’)



Sequential covering algorithm
(similar as in Mitchell’s book)

RuleBase := empty
E.=E

repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E,, = E. - {examples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E_ ) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
Ecur:= E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., = E,, - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E_)



217

Learn-one-rule:
Beam search in CN2

e Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

* performance (R, E_,) : - Entropy(E,)

— performance(R, E_ ) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad
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Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification
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Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.
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Part ll. Predictive DM techniques

* Naive Bayesian classifier

e Decision tree learning

e Classification rule learning
=) Classifier evaluation
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Classifier evaluation

e Accuracy and Error

e n-fold cross-validation
e Confusion matrix

e ROC
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Evaluating hypotheses

 Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

 Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

iInduce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance



n-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized

for i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T,
— Iinduce classifier H; from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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ePartition

*Train
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ePartition +——

*Train
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Confusion matrix and
rule (in)accuracy

e Accuracy of a classifier is measured as TP+TN / N.

e Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

e Conclusion: classification accuracy is not always an
appropriate rule quality measure



Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

e also called contingency table

Classifier 1

229

Predicted positive | Predicted negative
Positive examples 40 10 50 .,
Negative examples 10 40 50 C laSS] f] er 2
50 50 100
Predicted positive | Predicted negative
Positive examples 30 20 50
Negative examples 0 50 50
30 70 100
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ROC space

e True positive rate = Classifier 1
#true pOS_ /#pOS_ — | Predicticjopositive Predicte;igegative —
- TPr1 — 40/50 — 800/0 Negative examples ;g gg 150% Classifler 2
_ TPr2 — 30 /50 — 600/0 S Predlcte:;ioposmve Predmte;i gegatlve -
[ Negative examples 0 50
e False positive rate T R T

= #false pos. / #neq.
— FPr, = 10/50 = 20%
— FPr, = 0/50 = 0% B0%
* ROC space has
— FPron X axis
— TPronY axis

100%

60% s

True positive rate

40%

20%

0%

0% 20% 40% 60% 80% 100%

False positive rate



The ROC space

true positive rate

100%
L 2

80%

6%

4%

20% ¢ Confirmation rules

® WR Acc
CN2
0% 4 |
0% 20% 4% 60% 8%

false positive rate

1000
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The ROC convex hull

true positive rate

100%

7

80%

60%

L
——

20% /

0%
0%

20% 40% 60%

false positive rate

80%

100%
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Summary of evaluation

e 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

e ROC analysis is very natural for rule learning
and subgroup discovery
— can take costs into account
— here used for evaluation
— also possible to use as search heuristic
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Part lll. Numeric prediction

j> e Baseline

e Linear Regression
 Regression tree
* Model Tree

e kNN
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class
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Example
e data about 80 people: Age and Height

Age | Height
) 3 103
23%° W8N Sy 0 3 1.19
e ;:’ IR - 0..’0:‘ i 6 1.26
| ‘} g 139
< 15 1 69
(@)
5 ¢ 19 | 167
37 186
0.5 25 185
* Height 41 159
0 T l ¥ 160
0 50 100 54 1.90
Age 71 182




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6
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Baseline numeric predictor

* Average of the target variable

238

20

40

Age

* Height
= Average predictor|

60

80

100
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Baseline predictor: prediction

Average of the target variable is 1.63

Age Height |Baseline

2 0.85
10 1.4
35 1.7

70 1.6




Linear Regression Model

Height =  0.0056 * Acge + 1.4181
2.5
2 S090 P ® % o Sanm WE
VR 776" o
s BT AR
v 15 =
s | ¢
I 1 _f
0.5 e Height [—
= Prediction
O | | | |
0 20 40 60 80 100
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Linear Regression: prediction

Height = 0.0056 * Age + 1.4181

Linear
Age Height |regression
2 0.85
10 1.4
35 1.7

70 1.6




242

Regression tree

«=12.5 12,5
4 gz
2=6.5 »6.5 Height =
k3 wasen 1709
=4 =4 Height = 2
. B 1.4644 23020 L 0% N, et e
wesme| @ HE-gESad o
Height = Height = 1.5 1
1.3932 1.4025 %-, é
gz 1€
T
0.5 _
+ Height
®m Prediction
0 |
0 50 100
Age
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Regression tree: prediction

==12.45 3=-“IE.EHM
LW 4 (83144.033%)
=F § =F 5 _ HEIght -
1.7096
i w3 ks
Height =
o a4 - |Regression
Height = Height = Age Height |tree
1.3932 :
1.4025 5 S~

10 1.4

35 1.7

70 1.6




Model tree
_— T~

Height = Height =
0.0333 * Age 0.0011 * Age
+ 1.1366 +1.6692
2 & R4 .:0 ’..0.’ *® & 00‘ L 4 -0 -
(|
15 ‘-0""'5:?0.-'.. o a0t ¢ "
L
D 4 4l
Q >
T
0.5 + Height
= Prediction
0 | | | |
0 20 40 60 80 100

Age
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Model tree: prediction

Age Height |Model tree
2 0.85
10 1.4
35 1.7
70 1.6

1 ®

==12.5 =12.5

_— T~

Height = Height =
0.0333 * Age 0.0011 * Age

+ 1.1366 + 1.6692



246

KNN — K nearest neighbors

* Looks at K closest examples (by age) and predicts the
average of their target variable

e K=3

Height
é..
-

0.40 + Height
0.20 = Prediction KNN, n=3

0 20 40 60 80 100
Age




KNN prediction

Age ‘ Height

0.90

0.99

1.01

1.03

1.07

1.19

QA W]|WIN]|=|—

1.17

Age Height KININ
2 0.85
10 1.4
35 1.7
70 1.6
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KNN prediction

Age Height KININ
2 0.85
10 1.4
35 1.7
70 1.6

Age || Height
3 1.36
3 1.33
9 1.45
9 1.39
11 1.49
12 1.66
12 1.52
13 1.59
14 1.58
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KNN prediction

‘ Age ‘Height
30 1.57
30 1.88
31 1.71
34 1.55
37 1.65
37 1.80
38 1.60
39 1.69
39 1.80

Age Height KNN
2 0.85
10 1.4
35 1.7
70 1.6
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KNN prediction

Height

KNN

0.85

1.4

1.7

1.6

‘ Age H Height
6/ 1.56
6/ 1.87
69 1.67
69 1.860
71 1.74
71 1.82
2 1.70
/6 1.88
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Which predictor is the best?

Linear |Regression
Age Height | Baseline | regression tree Model tree KNN

2 1085 163 | 143 | 1.39 1.20 | 1.01

10 41163 | 1.47 | 1.46 1.47 | 1.51

35 | 1.7 | 1.63 | 1.61 1.71 1.71 | 1.67

70 | 1.6 | 1.63 | 1.81 1.71 1.75 | 1.81




Evaluating numeric prediction

Performance measure

Formula

mean-squared error

root mean-squared error

mean absolute errar

relative squared error

root relative squared error

relative absolute error

correlation coefficient

(p—a) +..+(p—a,)
n
[(pi=a)" +...+(p, ~a,)
¥ n
l _31I+--—+lpn"anf
n

(0 =a) +...+ (P —8,) .
I(P1 -&) +... +(Pn ~a,)’

X (8B +..400,~BY

oy —al+...+|p, —a,l

la, —al+...+la, —a|

Sea (pi—p)a —a
S;_S; ‘ where Sp,q = 2 e }

Z(pf -p) ndsﬂ_z{;

n-1 n-1
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Part IV. Descriptive DM techniques

j>- Predictive vs. descriptive induction
e Subgroup discovery
e Association rule learning
* Hierarchical clustering
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Predictive vs. descriptive
induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis



Descriptive DM

Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used

255
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Descriptive DM

* Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
» describe associations, dependencies, ...
» discovery of properties and constraints

e Segmentation

— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Predictive vs. descriptive
induction: A rule learning
perspective

Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction

tasks

Descriptive induction: Discovers individual rules
describing interesting regularities in the data

Therefore: Different goals, different heuristics,
different evaluation criteria



58

Supervised vs. unsupervised
learning: A rule learning
perspective

e Supervised learning: Rules are induced from
labeled instances (training examples with class
assignment) - usually used in predictive induction

 Unsupervised learning: Rules are induced from
unlabeled instances (training examples with no

class assignment) - usually used in descriptive
induction

e Exception: Subgroup discovery

Discovers individual rules describing interesting
regularities in the data from labeled examples
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction

j>- Subgroup discovery
e Association rule learning

* Hierarchical clustering
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Subgroup Discovery

Given: a population of individuals and a target
class label (the property of individuals we are
interested in)

Find: population subgroups that are statistically
most interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)
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Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Subgroup Discovery:
Medical Case Study

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstacic)
A1 for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD <« bodyMasslIndex > 25 & age >63

A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECQG)

A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight
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Subgroup visualization

subjects’

Subgroups of
patients with
CHD risk

[Gamberger, Lavrac
& Wettschereck,
IDAMAP2002]
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Subgroups vs. classifiers

e (Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
e Subgroups:
— Rules describing subgroups aim at significantly higher proportion of
positives

— Each rule is an independent chunk of knowledge
e Link
— SD can be viewed as
cost-sensitive
classification
— Instead of FNcost we
aim at increased TPprofit

positives

true
positives
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

e Only first few rules induced by the covering
algorithm have sufficient support (coverage)

e Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

e ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(ClasslCond) = (n_+1) / (n_,;.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
p(Cond) (p(ClasslCond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering

e Standard covering approach:
covered examples are deleted from current training set

 Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
e Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

1-0 1-0 1 o

10 30 10 4,9

1.0 1.0 1.0 1.0

1.0
10, 1.0
) 1.0

1.0 1.0 1.0

1.0
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Subgroup Discovery

Rule1: Cl=+ « Cond6 AND Cond?2

Positive examples ] Negative examples

1.0 30
1.0 10 49

1.0 1.0 1.0 1.0

1.0
10 ., 1.0
) 1.0

1.0 1.0 1.0

1.0
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 30 10 4

1.0 1.0 1.0 1.0

1.0
10, 1.0
) 1.0
1.0 1.0 1.0
1.0 1,
1.0 1.0

1.0

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples

1-0 1-0 1.0 1.0
1.0 1.0 1.0

1.
0 1.0
1.0 1.0

1.0
1.0 1.0
1.0

1.0



CN2-SD: Weighted WRAcc Search

Heuristic

 Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl < Cond) = p(Cond) (p(ClICond) - p(Cl))

increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* |n WRAcc computation, probabilities are estimated
with relative frequencies, adapt:
WRAcc(Cl < Cond) = p(Cond) (p(CllICond) - p(Cl)) =

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’)

— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction
e Subgroup discovery

j>- Association rule learning
* Hierarchical clustering
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Association Rule Learning

Rules: X =>Y, if XthenY

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions 102 e, i50
itemsets (records) o1 1 0
t2 0 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
e Support: Sup(X,Y) = #XY/#D = p(XY)
e Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(YIX)
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Association Rule Learning:
Examples

 Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items
— Confidence 65%: 65% of customers that buy beer and coke
also buy peanuts and chips
* |nsurance
— mortgage & loans & savings = insurance (2%, 62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have mortgage,
loan and savings also have insurance



Association rule learning

X=Y ...IFXTHENY, where Xand Y are itemsets
intuitive meaning: transactions that contain X tend to contain Y

Items - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour

Example transactions — itemsets formed of patient records

i1 i2 ... ... 150
t1 1 0 0
2 O 1 0

Association rules
spondylitic = arthritic & stiff_gt_1_hour [5%, 70%]
arthrotic & spondylotic = stiff _less_1_hour [20%, 90%]
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification
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Searching for the associations

 Find all large itemsets

 Use the large itemsets to generate
association rules

e |f XY is a large itemset, compute
r =support(XY) / support(X)

e |f r> MinConf, then X = Y holds
(support > MinSup, as XY is large)
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Large itemsets

e |Large itemsets are itemsets that appear in at
least MinSup transaction

e All subsets of a large itemset are large
itemsets (e.qg., if A,B appears in at least
MinSup transactions, so do A and B)

* This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)
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Association vs. Classification

rules

e EXxploration of
dependencies

o Different combinations
of dependent and
iIndependent attributes

e Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search (subset
of rules found)
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction
e Subgroup discovery
e Association rule learning

j>- Hierarchical clustering




Hierarchical clustering

® Algorl’[h M (agglomerative

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair C;jin Cj;
fuse Ciin C; in a new cluster
C-=CiU Cj;
determine dissimilarities between
Cr and other clusters;

until one cluster left;

 Dendogram:

=)

e
Paine

A\

01 0F O3 04

)
1

05 06 0OF

8

b = e

|I|—|F1‘

09 10 0171 12 013 C

14

cluster level
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Hierarchical clustering

* Fusing the nearest pair of clusters

284

m\ * Minimizing intra-cluster

d(C;,Cy) L
similarity
d(C;.q ¢, | * Maximizing inter-cluster
similarity
d(C;,Cy)

e Computing the dissimilaritiesﬁ

from the “new” cluster
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Hierarchical clustering: example

X Y Z W V xy) z w v

A
x| 0(1)1 5 ss (xy)| 0 141 5 566
RS & o | v 0 141424 5 - 0 441 5
-+ |
1 - Z 0 441 5 W 0 @.
4 x . w 0 1
il v L
S S S v 0
0% 4
a) sample problem b) dissimilarity matrix c) dissimilarity matrix after fusing'
elements X and y
y) z (wv) (x.y.2) (w.v) S 16 g6
{}(,y’) D 5.66 {x,y,Z} D C!_:].t ............................ :i
0 5 -3
z (wl“) D L 2
SN I EE—— L~ 1.4
(w.v) 0 1 1 17
I I -_f_.—{-_-.o

e) dissimilarity matrix after f) dendrogram
fusing' cluster (x,y) and

element z

d) dissimilarity matrix after fusing'
elements w and v
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Results of clustering

L1

Ptah - [Clustering of Samples]
=| File Analyses Graph Options Window Help

A dendogram of
resistance vectors

L1

=0 I B N == S0 B | sl I T (=S

Antibiotics: (BETAL),AM,CB,CC,CFP,CIP,CI¥,CPM,CT,GM,MET,NET,P [Bohanec et al.. “PTAH:
Bacterium: 110 STAPHYLOCOCCUS AUREUS ? )

A system for supporting

E.._ R B o s
1 . B...... B...E | nosocomial infection
AREEREERE B3 - therapy”, IDAMAP
T R ... E.. _EB

1 - S B | book, 1997]

B. ... B

I .. ... ... .. B —'_I -

T _

... ——

1 R.EREE_RE.__R

1 E. E. _RE._R

1 E_ERE RE B :I—hi - ]

3 RE.E_ . _RE.__R

2 ... EE. .E [ ]

RE.RE._ B

2 E.E EE._E I

1 .. B._ .. RE

2 _.E.E.E.E_._E

- grEoEs ®

1 . E.R.E_RE__._

1 . BRE.. B ___R

12 E.E_._R —

From: 1-1-94 To: 3-3-95 Samples: ¥9 Antibiotics: 13 Bacteria; 1
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Part V:
Relational Data Mining

) Learning as search

e What is RDM?
* Propositionalization techniques
* |nductive Logic Programming
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Learning as search

Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph

— nodes: concept descriptions (hypotheses/rules)

— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child

Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}

Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}

Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayTennis example

Play tennis = yes IF

Play tennis = yes

. Play tennis = yes
IF Wind=weak

| IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:
PlayTennis example

Play tennis = yes IF [9+,5-] (14)

Play tennis = yes
IF Wind=weak
[6+92_] (8)

Play tennis = yes
IF Humidity=high

Play tennis = yes Play tennis = yes [3+,4-1(7)
IF Windzs‘rrong IF Humudu’ryznormal

[3+,3-1 (6) [6+,1-1(7)

Play tennis = yes
IF Humidity=normal,

Wind=weak Play tennis = yes
, , IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, = IF Humidity=normal,

Wind=strong Outlook=sunny
[2+9O_] (2)
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Learning as search
(Mitchell’s version space model)

too general

more
| I
O

 Hypothesis language Ly
defines the state space

more

e How to structure the general

hypothesis space L,?

e How to move from one
hypothesis to another?

complete and consis

* The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

@
S specific
v
too specific
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Learning as search

Search/move by applying
generalization and

specialization .
generalize

Prune generalizations:

— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

Prune specializations:

— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

@
' '
e 9 specialize
v
too specific
C
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Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy
e depth-first
* breath-first
* heuristic search (best first, hill-climbing, beam search)

— search heuristics
* measure of attribute ‘informativity’
* measure of ‘expected classification accuracy’ (relative
frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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Learn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl « Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.qg., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

e |learn-one-rule by greedy general-to-specific
search, at each step selecting the best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
PlayTennis = yes «
— iIs rule PlayTennis = yes <« Humidity=normal

e beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Part V:
Relational Data Mining

* | earning as search

> What is RDM?

* Propositionalization techniques
* |nductive Logic Programming




297

Predictive relational DM

e Data stored in relational databases

e Single relation - propositional DM

— example is a tuple of values of a fixed number of
attributes (one attribute is a class)

— example set is a table (simple field values)

* Multiple relations - relational DM (ILP)

— example is a tuple or a set of tuples
(logical fact or set of logical facts)

— example set is a set of tables (simple or complex
structured objects as field values)



Data for propositional DM

Sample single relation data table

ID |Name |First [Street|Caty [Zap  |Sex  |Social [l [Age |Club |Hes
MNane: Slalms|oome Slalus|ponse
ID |Zip SolIn [A|C] |Re
ex |9t (come|gelub |sp
3ATESrmlh [John |38, Saun [B46TT |male |single [IG0 32 mern e
Lake  fploton Tl hor  fres B S R o I
Dr o 3478|34677|m [si |60-70|32|me |nr
3479 Due |Tane (43, [loven- 43666 |female|lmar- |ig- K5 |oon- |res- 3479|43666f mal80-9045nmfre
Sea [tion red |90k mem- [ponse
Ct ber Customer table for analysis.
Rasic cuslomaer babile
ID |Zip |S [So[m [A[C] [Re|DeliverjPaymt |Store [Store  [Store
ex|Gt [comelgelub [P [Mode |Mode [Size |Type |Locatn
3478|34677|m [si |60-70|32|me|nr |regular|cash |small (franchise|city
3479|43666|f |ma|80-90|45nm|re |express|credit |large [|indep [rural

Customer table including order and store information.
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Multi-relational data made
propositional

ID |Zi S |So (In. |A |C] |Re[Delivery |Paymt [Store |Store  [St
e Sample P [3[S0 [oBme[go[ah o [oanerY [pent Sbere [fore  [Pher,
re I atlon 3478(34677m |si |60-70|32|me|nr |regular |cash [small [(franchise|city
3478|34677|m [si |60-70[32|me|nr |express |check [small [franchise|city
table 3478(34677|m [si [60-70|32|melnr [regular [check [large [indep |rural
3479|43666|f |ma(80-90(4b|nm|re |express [|credit |large [indep |rural
3479|43666(f |ma|80-90(45|nm|re |regular |credit [small [|franchise|city
Customer table with multiple orders.
® . ID [Zip (S [So|In. [A[Cl [Re|No. of Orders|No. of Stores
Making data >[5 150 [ [A O R
using summary [~ - -l - - - -
347834677 m (si [60-T0[32|me|nr |3 2
2 2

3479)43666|f |ma(80-90/45 nmire

Customer table using summary attributes.



Relational Data Mining (ILP)

Learning from multiple
tables

Complex relational
problems:

— temporal data: time
series in medicine,
trafic control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

customer
ID [Zip |S [So [In_ [A[CI [Re
/ X (St |come|gelyb |SP
3478|34677m [si |60-70(32|me [nr
3479|43666|f |ma|80-90(45|nm|re
/ order
Customer [Order (Store [Delivery [Paymt
ID ID D \ Mode |Mode
3478 2140267|12 regular |cash
3478 344677812 express |check
3478 4728386|17 regular |check
3479 3233444|17 xpress |credit
3479 347588612 gular |credit
\ store
Store ID|Size (Type |Location
12 small (franchise city
17 large |indep  [rural

Relational repregentation of customers, orders and stores.
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Basic Relational Data Mining tasks

Predictive RDM m
A

Descriptive RDM
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Predictive ILP

e Given:
— A set of observations
e positive examples E*
* negative examples E-

— background knowledge B
— hypothesis language L,
— covers relation

* Find:
A hypothesis H e L, such that (given B) H
covers all positive and no negative examples

* Inlogic, find H such that
— Vee E*":B A HI= e (His complete)
— Vee E":B A HI=/=¢e (His consistent)

 InILP, E are ground facts, Band H are
(sets of) definite clauses
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Predictive ILP

e Given:
— A set of observations

e positive examples E*
* negative examples E-

— background knowledge B
— hypothesis language L,
— covers relation

— quality criterion

 Find:
A hypothesis H ¢ L, such that (given B) H s

optimal w.r.t. some quality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H e L, such
that (given B) H covers all positive and no
negative examples)



Descriptive ILP

Given:
— A set of observations
(positive examples E )
— background knowledge B
— hypothesis language L,
— covers relation

Find:
Maximally specific hypothesis H € L., such
that (given B) H covers all positive examples

In logic, find H such that V¢ € H, cis true in
some preferred model of B UE (e.g., least
Herbrand model M (B UE))

In ILP, E are ground facts, B are (sets of)
general clauses
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Sample problem
Knowledge discovery

E " = {daughter (mary, ann) ,daughter (eve, tom) }
E "= {daughter (tom, ann) , daughter (eve, ann) }

B = {mother (ann,mary), mother (ann, tom),
father (tom,eve), father(tom,1an), female (ann)

female(mary) female (eve), male(pat),male (tom),
parent (X,Y) <« mother(X,Y), parent(X,Y) <«
father (X,Y) }
ann
mary tom

/N

eve 1an
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Sample problem
Knowledge discovery

E " = {daughter (mary, ann) , daughter (eve, tom) }
E "= {daughter (tom, ann) , daughter (eve, ann) }

B = {mother (ann,mary) ,mother (ann, tom), father (tom, eve),
father (tom, 1an), female (ann), female (mary), female (eve),
male (pat) ,male (tom) ,parent (X,Y)<¢<mother (X,Y),

parent (X,Y)<«father (X,Y) }

Predictive ILP - Induce a definite clause

daughter (X,Y) <« female(X), parent(Y,X).
or a set of definite clauses

daughter (X,Y) <« female(X), mother (Y, X).

daughter (X,Y) <« female(X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses

< daughter (X,Y), mother (X,Y).
female (X) <~ daughter (X,Y) .

mother (X,Y),; father(X,Y) <« parent(X,Y).
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Sample problem
Logic programming

E"={sort([2,1,31,11,2,3]1)}
E = {sort([2,1],[1]),sort([3,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1
* Predictive ILP

sort (X,Y) <« permutation(X,Y), sorted(Y).

 Descriptive ILP

sorted(Y) <« sort(X,Y).
permutation(X,Y) < sort (X,Y)
sorted (X) <— sort (X, X)



Sample problem:
East-West trains

2 TRAINGS GOING WEST

i

|:|EI
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RDM knowledge representation™
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER o TrTTmmrem e
|1 cl circle 1
12 c2  hexagon 1
13 c3 triangle 1
|4 c4 rectangle 3

SHAPE LENGTH ROOF WHEELS

cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

O - O0OoO Duiﬁ
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ER diagram for East-West trains




311

ILP representation:

Dat
Example: O - 00O DD:U;|
eastbound(t1).
Background theory:
car(t1,c1). c .. . C C
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,11). load(c2,12). load(c3,13). load(c4,14).
circle(l1). hexagon(l2). triangle(I3). rectangle(l4).
one_load(I1). one_load(l2). one_load(I3). three_loads(l4).

Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).
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ILP representation:

Datalo¢
O - Ooo ﬁ:ﬁ
Example:
eastbound(t1):-

car(t1 ,C1 ),reotangle\u 1),D11UILU1),1IUTIE(L 1 ),LWU_WIIEEID\U I ),
load(c1,I1),circle(I1),one_load(I1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,l12),hexagon(l2),one_load(12),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,13),triangle(I13),one_load(I3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(l4),three_load(l4).

Background theory: empty

Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).
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ILP represer

O O O0O0O D”:ﬁ

e Example:

eastbound([c(rectangle _ -
c(rectangle,long,none,3,l(hexagon,1)),
c(rectangle,short,peaked,2,l(triangle, 1)),
c(rectangle,long,none,2,l(rectangle,3))]).

e Background theory: member/2, arg/3

 Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).
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First-order representations

o representations:
— datacase is
— features are those given in the dataset

* First-order representations:

— datacase is flexible-size, structured object
* seqguence, set, graph
 hierarchical: e.g. set of sequences

— features need to be selected from potentially infinite set
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Complexity of RDM problems

e Simplest case: single table with primary key
— example corresponds to tuple of constants
— attribute-value or propositional learning
* Next: single table without primary key
— example corresponds to set of tuples of constants
— problem
e Complexity resides in many-to-one foreign keys

— lists, sets, multisets
— non-determinate variables
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Part V:
Relational Data Mining

* | earning as search
e What is RDM?

jl> Propositionalization techniques
* |nductive Logic Programming
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Rule learning:
The standard view

 Hypothesis construction: find a set of nrules

— usually simplified by n separate rule constructions
» exception: HYPER

 Rule construction: find a pair (Head, Body)

— e.g. select head (class) and construct body by
searching the VersionSpace
e exceptions: CN2, APRIORI

e Body construction: find a set of m literals

— usually simplified by adding one literal at a time
e problem (ILP): literals introducing new variables
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Rule learning revisited

Hypothesis construction: find a set of n rules
Rule construction: find a pair (Head, Body)

Body construction: find a set of m features

— Features can be either defined by background knowledge or
constructed through constructive induction

— In propositional learning features may increase expressiveness
through negation

— Every ILP system does constructive induction

Feature construction: find a set of k literals

— finding interesting features is discovery task rather than classification
task e.g. interesting subgroups, frequent itemsets

— excellent results achieved also by feature construction through
predictive propositional learning and ILP (Srinivasan)
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First-order feature construction

» All the expressiveness of ILP is in the features

e Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)



Standard LINUS

Example: learning family relationships

Training examples

Background knowledge

daughter(sue,ewe). (+) [parent(eve,sue). female(ann).
daughter(ann,pat). (+) [parent(ann,tom). female(sue).
daughter(tom,ann).  (-)  |parent(pat,ann). female(eve).
daughter(eve,ann). (-) |parent(tom,sue).

Transformation to propositional form:

Class | Variables Propositional features
X | Y | fX) | 1Y) | pX.X) | p(X,Y) | p(Y.X) | p(Y,)Y) | X=Y
@ sue | eve | true | true | false | false true false false
@ ann | pat | true | false | false | false | true false false
© |tom | ann | false | true | false | false true false false
o eve | ann | true | true | false | false | false | false false

Result of propositional rule learning:

Class = @ if (female(X) = true) A (parent(Y,X) = true

Transformation to program clause form:
daughter(X,Y) « female(X),parent(Y,X)

320
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Representation issues (1)

* |n the database and Datalog ground fact
representations individual examples are not
easily separable

e Term and Datalog ground clause
representations enable the separation of
individuals

 Term representation collects all information
about an individual in one structured term
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Representation issues (2)

 Term representation provides strong
language bias

* Term representation can be flattened to be
described by ground facts, using

— structural predicates (e.g. car(t1,c1),
load(c1,l1)) to introduce substructures

— utility predicates, to define properties of
invididuals (e.g. long(t1)) or their parts
(e.g., long(c1), circle(l1)).

* This observation can be used as a language
bias to construct new features
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Declarative bias for first-order

feature construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,
molecules) or their parts (e.g., cars, atoms)

Feature construction in LINUS, using the following language
bias:

one free global variable (denoting an individual, e.g. train)

one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

all variables should be used
parameter: max. number of predicates forming a feature
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Sample first-order features

* The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

* The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

e Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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Nuamaniticw~lii=~*on in a nutshell

T

Transform a multi-relational
(multiple-table)
representation to a
propositional representation
(single table)

Proposed in ILP systems
LINUS (1991), 1BC (1999), ...

TRAIN_TABLE

T TTTTOUND
IE

¢l circle 1

c2  hexagon IE

;|
= |

AR~ OBJECT NUMBERI

1
c3  triangle 1
¢4 rectangle 3

. 4

CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

PROPOSITIONAL TRAIN_TABLE

train(T) f(T)  2(T) f3(T)  fA(T) f5(T)
t1 t t f t t
t2 t t t t t
t3 f f t f f
t4 t f t f f




6

Propositionalization in a nutshell

Main propositionalization step: TRAIN_TABLE

¢l circle 1 IE

first-order feature construction : . e i

f1(T):-hasCar(T,C),clength(C,short). T! d

LOAD CAR OBJECT NUMBERI ST TTTTTOUND

fZ(T) . -hasCar(T,C) , hasLoad(C ,L) , CAR TRAIN SHAPE LENGTH ROOF WHEELS
. cl t1 rectangle  short none 2
|OadSha pe(L,C|rC|E) c2 t1 rectangle long none 3 I
. c3 t1 rectangle short peaked 2
f3 (T) SNCRTE c4 t1 rectangle long none 2

Propositional learning:

KT < FLCTY, F4(T) PROPOSITIONAL TRAIN_TABLE
train(T) fI(T)  f2(T) f3(T) 4T 5(T)
t1 t t f t t
Relational interpretation: - : : : : :
t f t f f

eastbound(T) <« t4
hasShortCar(T),hasClosedCar(T).
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LINUS revisited

e Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

e Revisited LINUS:

— Systematic first-order feature construction in a given
language bias

e Too many features?
— use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:

eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-

not (hasCar(T,C1),cshape(C1,ellipse)),

not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),

not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Part V:
Relational Data Mining

* | earning as search

e What is RDM?

* Propositionalization techniques
j|> Inductive Logic Programming
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ILP as search of program clauses

* An ILP learner can be described by
— the structure of the space of clauses

* pbased on the generality relation

e Let C and D be two clauses.
C is more general than D (C |= D) iff

covers(D) < covers(C)
e Example: p(X,Y) < r(Y,X) is more general than
P(X,Y) < r(Y,X), q(X)
— Its search strategy

e uninformed search (depth-first, breadth-first, iterative
deepening)

* heuristic search (best-first, hill-climbing, beam search)
— its heuristics

e for directing search

* for stopping search (quality criterion)
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ILP as search of program clauses

 Semantic generality
Hypothesis H, is semantically more general than H, w.r.t.

background theory Bifand only if Bu H, |= H,
e Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause ¢, 8-subsumes ¢, (¢, > ,C»)
if and only if 360: ¢,0 < ¢,
— Hypothesis H; > 6 H,
if and only if V¢, € H, exists ¢, € H, such that ¢, > 6 ¢,
e Example

c1 = daughter(X,Y) « parent(Y,X)
c2 = daughter(mary,ann) < female(mary),
parent(ann,mary),
parent(ann,tom).
c1 @-subsumes ¢, under 0= {X/mary,Y/ann}
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The role of subsumption in ILP

e (Generality ordering for hypotheses

* Pruning of the search space:

— generalization

 if C covers a neg. example then its generalizations need
not be considered

— specialization

e if C doesn’t cover a pos. example then its specializations
need not be considered

e Top-down search of refinement graphs
e Bottom-up search of the hypo. space by

— building least general generalizations, and
— inverting resolutions



Structuring the
hypothesis space

O
flies(X) «

too general 4
O
more
flies(X) « bird(X) .“o o general

flies(X) « bird(X),
normal(X) RO o K
O O
more

\

@
5 & specific
v
too specific

333
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Two strategies for learning

e General-to-specific

— if ®@-subsumption is used then refinement

operators

* Specific-to-general search

— if ®-subsumption is used then Igg-operator or

generalization operator
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ILP as search of program clauses

 Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
* inverting resolution (CIGOL)
e inverting entailment (PROGOL)



More general
(induction)

A

v

More
specific
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Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann). ® | parent(ann,mary). female(ann.).
daughter(eve,tom). S) parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) <« X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) « Part of the refinement
female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.
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Greedy search of the best clause

Training examples Background knowledge
daughter(mary,ann). ® | parent(ann,mary). female(ann.).
daughter(eve,tom). S) parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) « 2/4

/T R
daughter(X,Y) <« X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z)
2/3

daughter(X,Y) « female(X)

A

daughter(X,Y) « daughter(X,Y) «
female (X) 1,2 female(X) 2,2
female(Y) parent(Y,X)



FOIL

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, infout modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C
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Part V: Summary

e RDM extends DM by allowing multiple tables
describing structured data

e Complexity of representation and therefore of
learning is determined by one-to-many links

e Many RDM problems are individual-centred
and therefore allow strong declarative bias



