Data Mining and Knowledge Discovery

Knowledge Discovery and Knowledge Management in e-Science

Petra Kralj Novak Petra.Kralj.Novak@ijs.si

Practice, 2009/11/24

1

AFDIA

Practice plan

- 2009/11/10: Predictive data mining
 - Decision trees
 - Naïve Bayes classifier
 - Evaluating classifiers (separate test set, cross validation, confusion matrix, classification accuracy)
 - Predictive data mining in Weka
- 2009/11/24: Numeric prediction and descriptive data mining
 - Numeric prediction
 - Association rules
 - Regression models and evaluation in Weka
 - Descriptive data mining in Weka
 - Discussion about seminars and exam
- 2009/12/8: Written exam

ložef Stefan Institute

- 2010/1/26: Seminar proposal presentations
- 2009/3/1: deadline for data mining papers (written seminar)

2

• 2009/3/3: Data mining seminar presentations

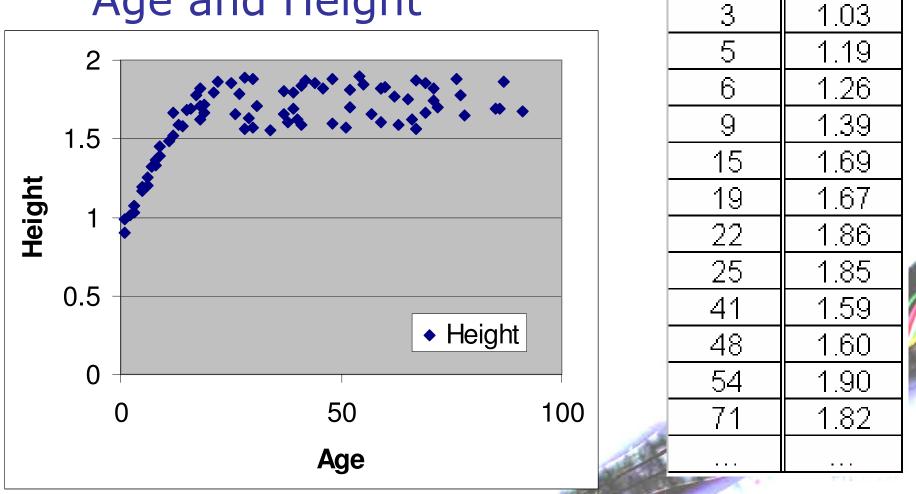
Numeric prediction Baseline, Linear Regression, Regression tree, Model Tree, KNN

3

cription		
Target variable:		
Categorical (nominal)		
ion, separate test set,		
Error:		
1-accuracy		
Algorithms:		
Decision trees, Naïve		
Bayes,		
Baseline predictor :		
Majority class		

Example

 data about 80 people: Age and Height



Height

5

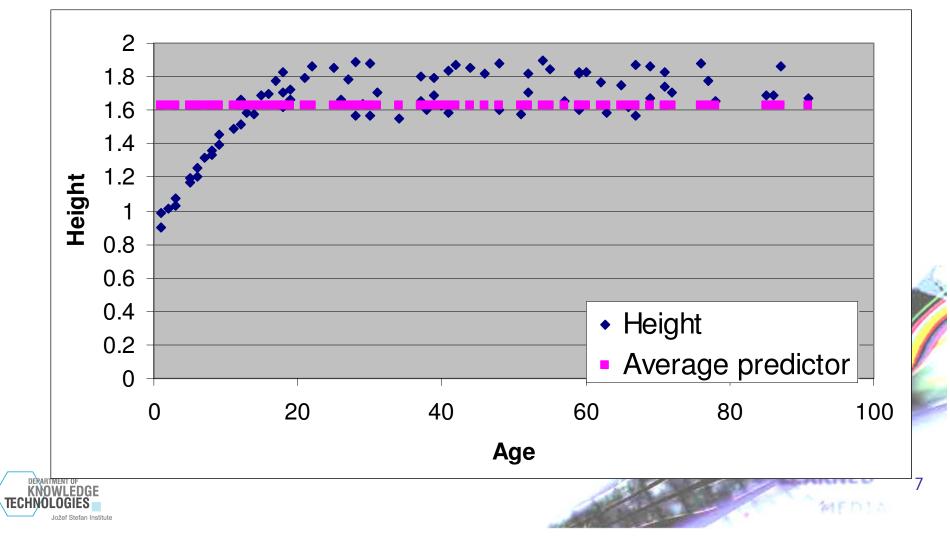
Age

Test set

Age	Height
2	0.85
10	1.4
35	1.7
70	1.6

Baseline numeric predictor

• Average of the target variable



Baseline predictor: prediction

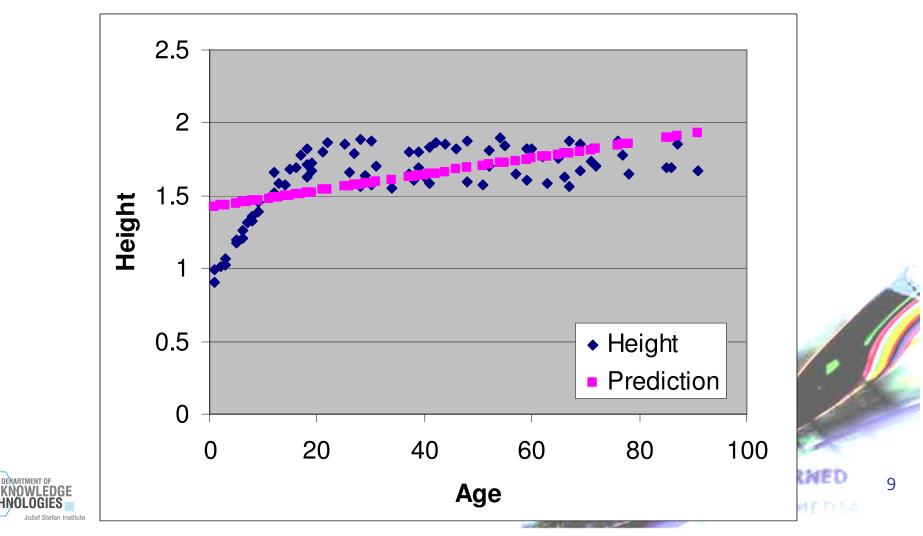
Average of the target variable is 1.63

8

Age	Height	Baseline
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Linear Regression Model

Height = 0.0056 * Age + 1.4181



Linear Regression: prediction

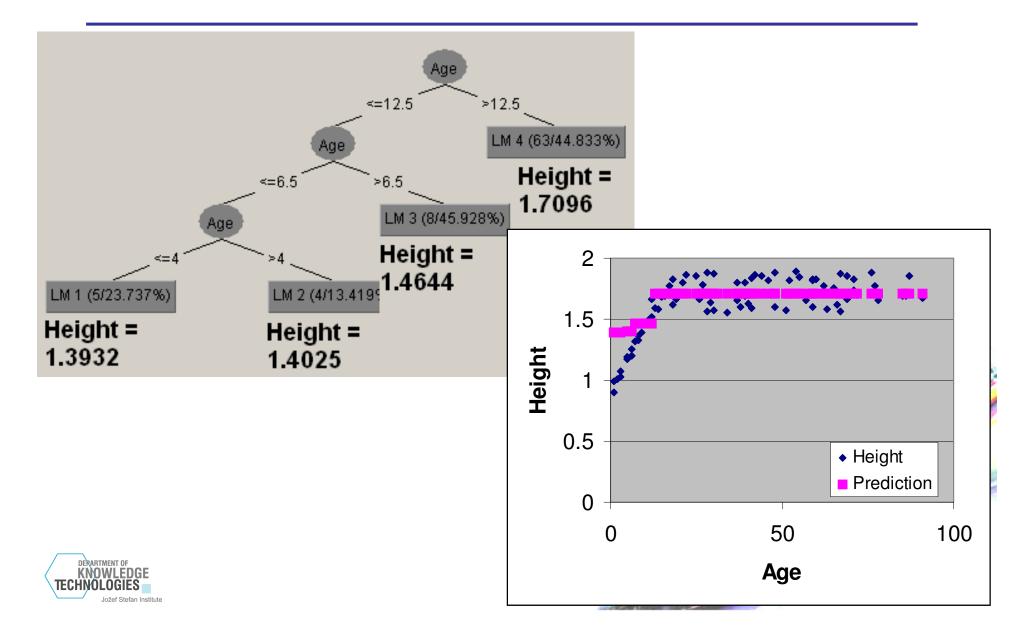
Height = 0.0056 * Age + 1.4181

10

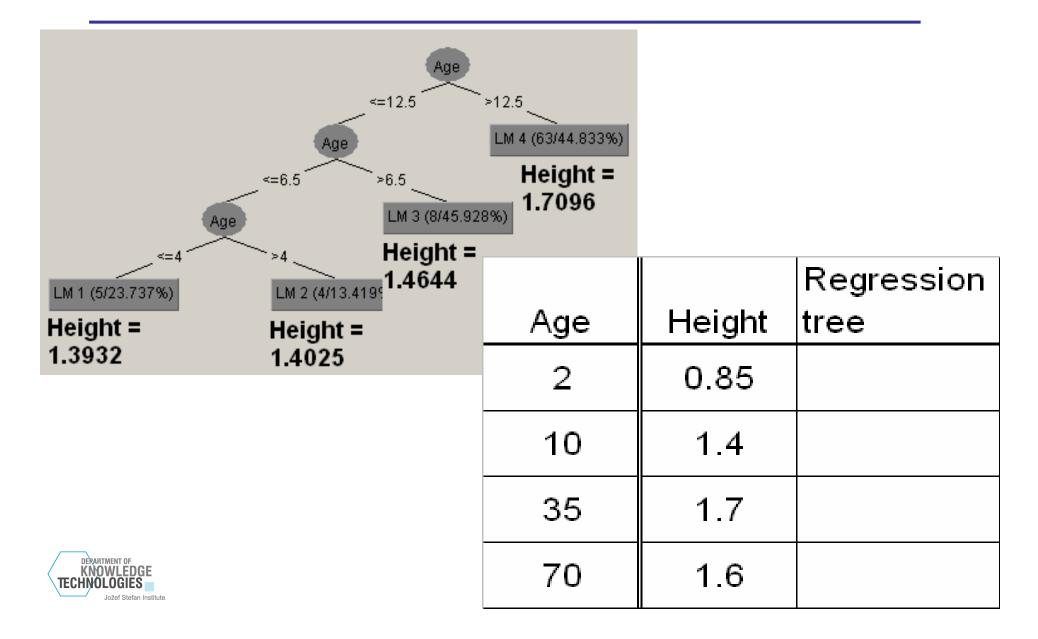
MEDIA

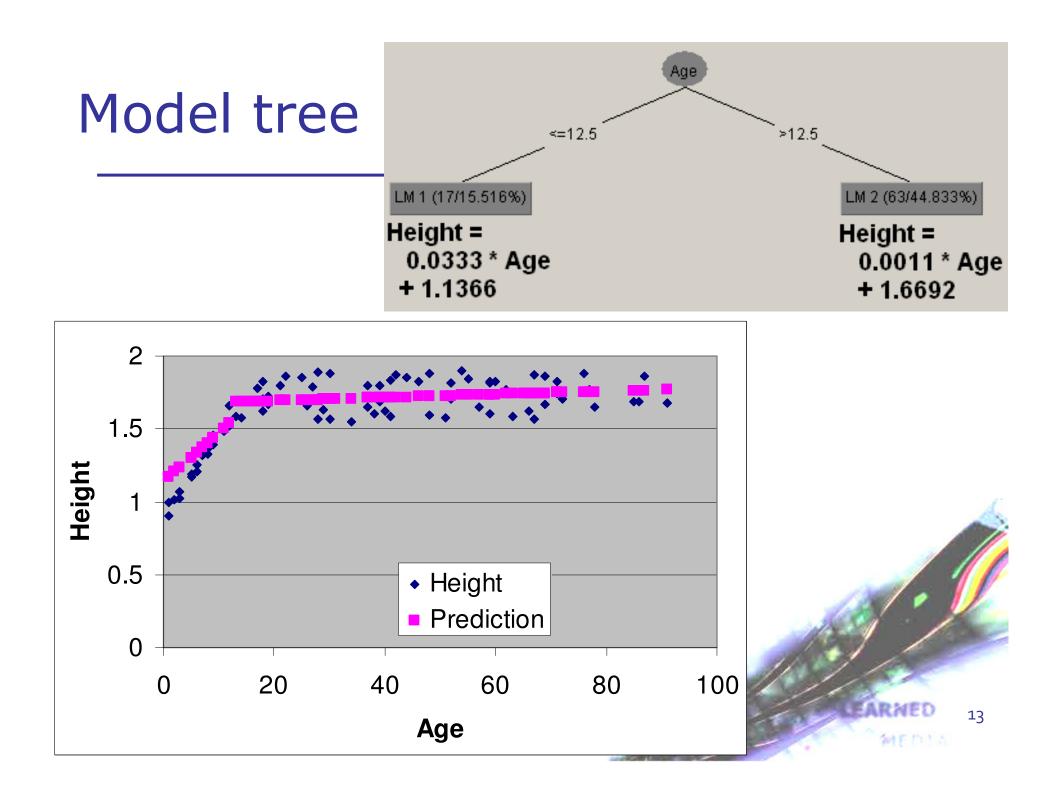
		Linear
Age	Height	regression
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Regression tree

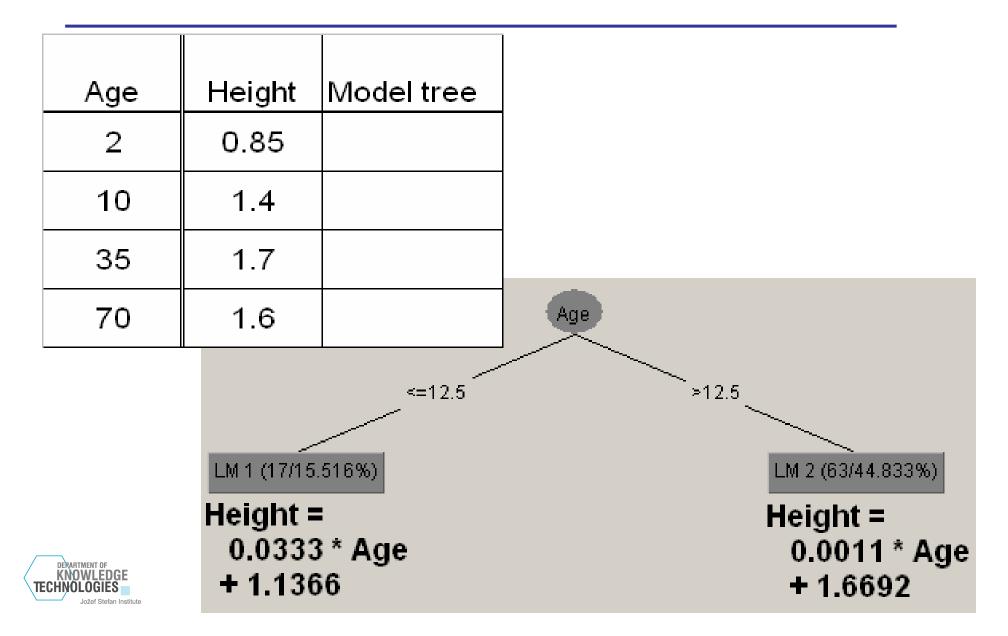


Regression tree: prediction



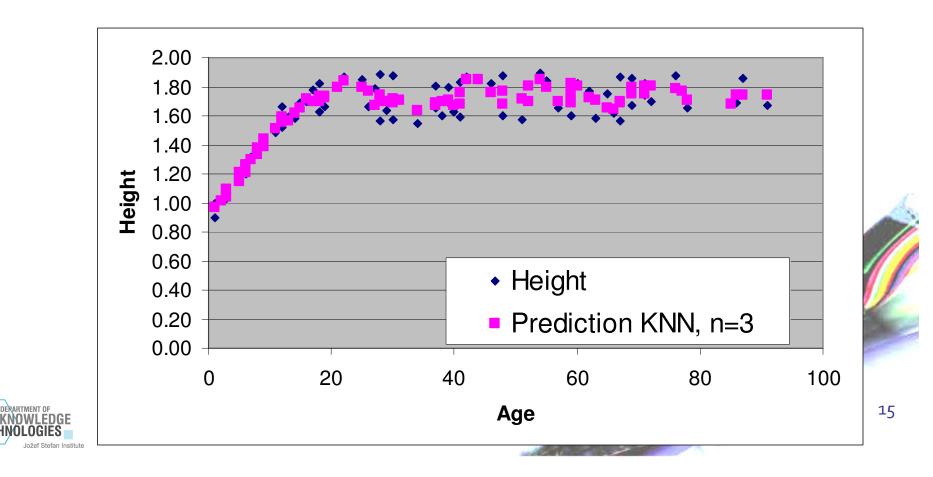


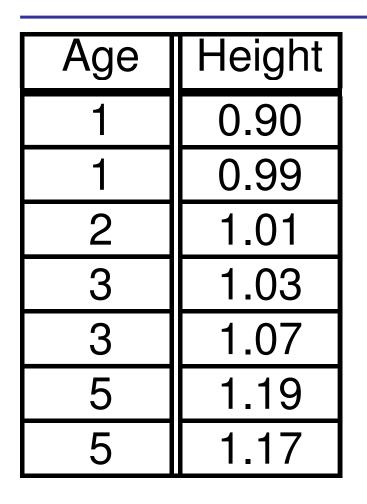
Model tree: prediction



KNN – K nearest neighbors

- Looks at K closest examples (by non-target attributes) and predicts the average of their target variable
- In this example, K=3





Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
8	1.36
8	1.33
9	1.45
9	1.39
11	1.49
12	1.66
12	1.52
13	1.59
14	1.58

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

EARNED

MEDIA

17

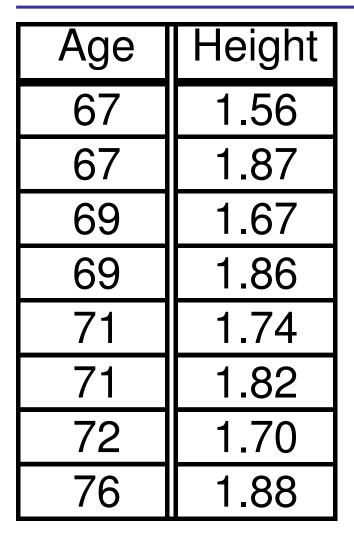
Age	Height
30	1.57
30	1.88
31	1.71
34	1.55
37	1.65
37	1.80
38	1.60
39	1.69
39	1.80

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

EARNED

MEDIA

18

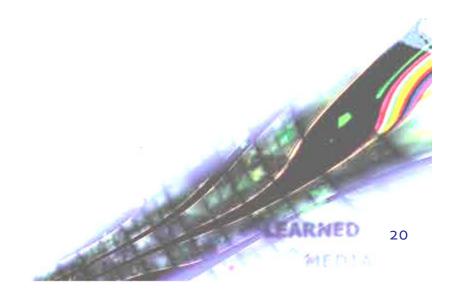


KNO	
	Jožef Stefan Institute

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Which predictor is the best?

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77



Evaluating numeric prediction

Performance measure	Formula
mean-squared error	$\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{n}$
root mean-squared error	$\sqrt{\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{n}}$
mean absolute error	$\frac{ p_1-a_1 +\ldots+ p_n-a_n }{n}$
relative squared error	$\frac{\left(p_{1}-a_{1}\right)^{2}+\ldots+\left(p_{n}-a_{n}\right)^{2}}{\left(a_{1}-\overline{a}\right)^{2}+\ldots+\left(a_{n}-\overline{a}\right)^{2}}, \text{ where } \overline{a}=\frac{1}{n}\sum_{i}a_{i}$
root relative squared error	$\sqrt{\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{(a_1 - \overline{a})^2 + \ldots + (a_n - \overline{a})^2}}$
relative absolute error	$\frac{ p_1-a_1 +\ldots+ p_n-a_n }{ a_1-\overline{a} +\ldots+ a_n-\overline{a} }$
correlation coefficient	$\frac{S_{PA}}{\sqrt{S_P S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n - 1},$
	$S_p = \frac{\sum_i (p_i - \overline{p})^2}{n-1}$, and $S_A = \frac{\sum_i (a_i - \overline{a})^2}{n-1}$

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good

ožef Stefan Institute

- 4. very good
- 5. excellent
- Is this a classification or a numeric prediction problem?
- What if such a variable is an attribute, is it nominal or numeric?

22

- Can KNN be used for classification tasks?
- Similarities between KNN and Naïve Bayes.
- Similarities and differences between

decision trees and regression trees.

Classification or a numeric prediction problem?

• Target variable with five possible values:

non sufficient
sufficient
good
very good

- 5.excellent
- Classification: the misclassification cost is the same if "non sufficient" is classified as "sufficient" or if it is classified as "very good"

23

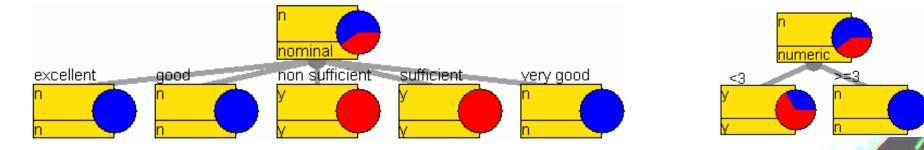
FDIA

- Numeric prediction: The error of predicting "2" when it should be "1" is 1, while the error of predicting "5" instead of "1" is 4.
- If we have a variable with ordered values, it should be considered numeric.

Nominal or numeric attribute?

- A variable with five possible values:
 - 1.non sufficient 2.sufficient
 - 3.good
 - 4.very good
 - 5.excellent

24



• If we have a variable with **ordered** values, it should be considered numeric.

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good

ložef Stefan Institute

- 4. very good
- 5. excellent
- Is this a classification or a numeric prediction problem?
- What if such a variable is an attribute, is it nominal or numeric?

25

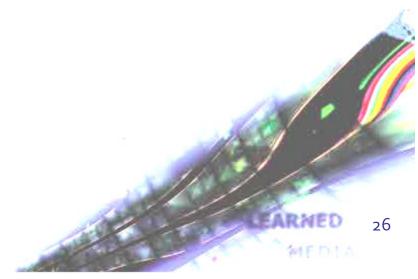
- Can KNN be used for classification tasks?
 - Similarities between KNN and Naïve Bayes.
 - Similarities and differences between

decision trees and regression trees.

Can KNN be used for classification tasks?

• YES.

- In numeric prediction tasks, the average of the neighborhood is computed
- In classification tasks, the distribution of the classes in the neighborhood is computed



Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good

ložef Stefan Institute

- 4. very good
- 5. excellent
- Is this a classification or a numeric prediction problem?
- What if such a variable is an attribute, is it nominal or numeric?

27

FDIA

- Can KNN be used for classification tasks?
- Similarities between KNN and Naïve Bayes.
 - Similarities and differences between

decision trees and regression trees.

Similarities between KNN and Naïve Bayes.

- Both are "black box" models, which do not give the insight into the data.
- Both are "lazy classifiers": they do not build a model in the training phase and use it for predicting, but they need the data when predicting the value for a new example (partially true for Naïve Bayes)

28

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good

ložef Stefan Institute

- 4. very good
- 5. excellent
- Is this a classification or a numeric prediction problem?
- What if such a variable is an attribute, is it nominal or numeric?

29

- Can KNN be used for classification tasks?
- Similarities between KNN and Naïve Bayes.
- Similarities and differences between

decision trees and regression trees.

Regression trees Decision trees			
Data: attribute-value description	I		
Target variable:	Target variable:		
Continuous	Categorical (nominal)		
Evaluation: cross validation, sepa	arate test set,		
Error:	Error:		
MSE, MAE, RMSE,	1-accuracy		
Algorithm:	I		
Top down induction, shortsighted	method		
Heuristic:	Heuristic :		
Standard deviation	Information gain		
Stopping criterion:	Stopping criterion:		
Standard deviation< threshold	Pure leafs (entropy=0)		
	LEARNER		

Association Rules

Association rules

- Rules $X \rightarrow Y$, X, Y conjunction of items
- Task: Find **all** association rules that satisfy minimum support and minimum confidence constraints
- Support:

Sup(X \rightarrow Y) = #XY/#D \cong p(XY)

- Confidence:

 $Conf(X \rightarrow Y) = \#XY/\#X \cong p(XY)/p(X) = p(Y|X)$

Association rules - algorithm

- 1. generate frequent itemsets with a minimum support constraint
- 2. generate rules from frequent itemsets with a minimum confidence constraint
- * Data are in a transaction database

Association rules – transaction database

Items: A=apple, B=banana, C=coca-cola, D=doughnut

- Client 1 bought: A, B, C, D
- Client 2 bought: B, C
- Client 3 bought: B, D
- Client 4 bought: A, C
- Client 5 bought: A, B, D
- Client 6 bought: A, B, C

34

Frequent itemsets

• Generate frequent itemsets with support at least 2/6

Α	В	С	D	
1	1	1	1	
	1	1		
	1		1	
1		1		
1	1		1	2
1	1	1		

35

MEDIA

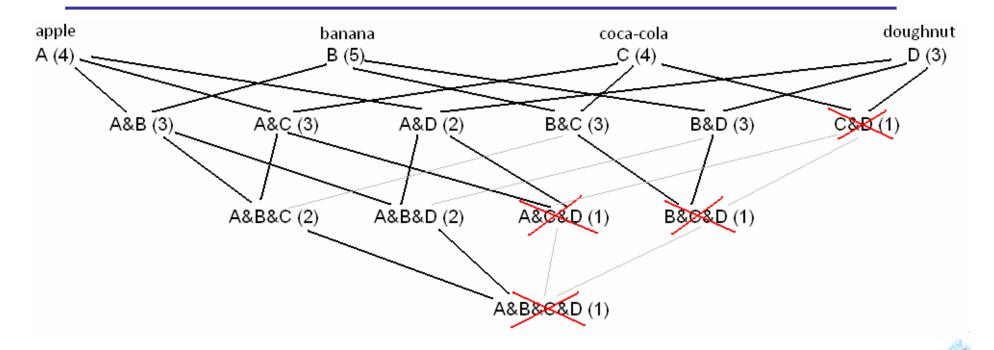
Frequent itemsets algorithm

Items in an itemset should be sorted alphabetically.

- Generate all 1-itemsets with the given minimum support.
- Use 1-itemsets to generate 2-itemsets with the given minimum support.
- From 2-itemsets generate 3-itemsets with the given minimum support as unions of 2-itemsets with the same item at the beginning.

 From n-itemsets generate (n+1)-itemsets as unions of n-itemsets with the same (n-1) items at the beginning.

Frequent itemsets lattice



37

MEDIA

Frequent itemsets:

- A&B, A&C, A&D, B&C, B&D
- A&B&C, A&B&D

Rules from itemsets

- A&B is a frequent itemset with support 3/6
- Two possible rules
 - $-A \rightarrow B$ confidence = #(A&B)/#A = 3/4

 $-B \rightarrow A \text{ confidence} = \#(A\&B)/\#B = 3/5$

38

• All the counts are in the itemset lattice!

Quality of association rules

Support(X) = #X / #D P(X) Support(X \rightarrow Y) = Support (XY) = #XY / #D P(XY) Confidence(X \rightarrow Y) = #XY / #X P(Y|X)

Lift(X→Y) = Support(X→Y) / (Support (X)*Support(Y))

Leverage(X→Y) = Support(X→Y) – Support(X)*Support(Y)

Conviction($X \rightarrow Y$) = 1-Support(Y)/(1-Confidence($X \rightarrow Y$)

Quality of association rules

Support(X) = #X / #D P(X) Support(X \rightarrow Y) = Support (XY) = #XY / #D P(XY) Confidence(X \rightarrow Y) = #XY / #X P(Y|X)

Lift($X \rightarrow Y$) = Support($X \rightarrow Y$) / (Support (X)*Support(Y))

How many more times the items in X and Y occur together then it would be expected if the itemsets were statistically independent.

40

Leverage(X→Y) = Support(X→Y) – Support(X)*Support(Y)

Similar to lift, difference instead of ratio.

Conviction($X \rightarrow Y$) = 1-Support(Y)/(1-Confidence($X \rightarrow Y$)

Degree of implication of a rule. Sensitive to rule direction.

Discussion

- Transformation of an attribute-value dataset to a transaction dataset.
- What would be the association rules for a dataset with two items A and B, each of them with support 80% and appearing in the same transactions as rarely as possible?

А

в

41

- minSupport = 50%, min conf = 70%
- minSupport = 20%, min conf = 70%
- What if we had 4 items: A, ¬A, B, ¬ B
- Compare decision trees and association rules regarding handling an attribute like "PersonID". What about attributes that have many values (eg. Month of year)

