Data Mining and Knowledge Discovery Petra Kralj Novak Petra Kralj@ijs.si 2009/11/10

Person	Age	Prescription	Astigmatic	Tear_Rate	
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO
		_			
	hese da them in				look

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

• Calculate the following entropies:

$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

$$E(0.1, 0.9) = 0.47$$

$$E(0.001, 0.999) = 0.01$$

KNOWLEDGE

Entropy
$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$
• Calculate the following entropies:
$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

$$E(0.1, 0.9) = 0.47$$

$$E(0.001, 0.999) = 0.01$$

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Entropy

$$E(S) = -\sum_{c=1}^{N} p_{c} \cdot \log_{2} p_{c}$$

• Calculate the following entropies:

$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

$$E(0.1, 0.9) = 0.47$$

E(0.001, 0.999) = 0.01

KNOWLEDGE CHNOLOGIES

Confusion matrix								
		Predicted positive	Predicted negative					
actual	Actual positive	TP	FN					
	Actual negative	FP	TN					
Confusion matrix is a matrix showing actual and predicted classifications Classification measures can be calculated from it, like classification accuracy = #(correctly classified examples) / #(all examples) = (TP+TN) / (TP+TN+FP+FN) TRANSPORTED								

