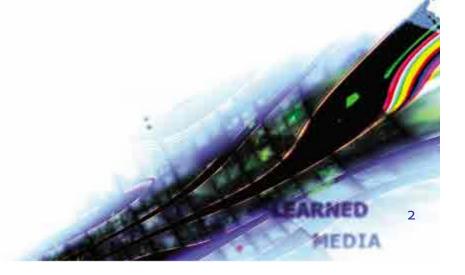
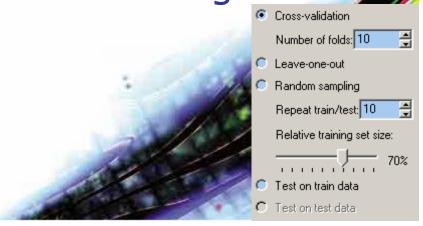
Data Mining and Knowledge Discovery

Knowledge Discovery and Knowledge Management in e-Science


Petra.Kralj.Novak@ijs.si

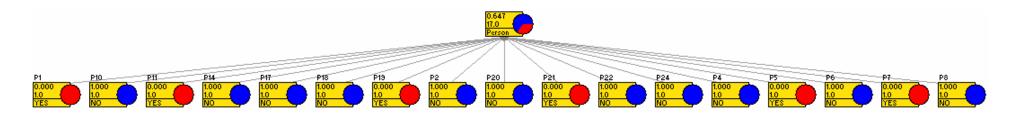
Practice, 2009/11/24

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



List of evaluation methods


- Separate train and test set
- K-fold cross validation
- Leave one out
 - used with very small datasets (few 10 examples)
 - For each example e:
 - use e as test example and the rest for training
 - Count the correctly classified examples
- Optimistic estimate: test on training set
- Random sampling

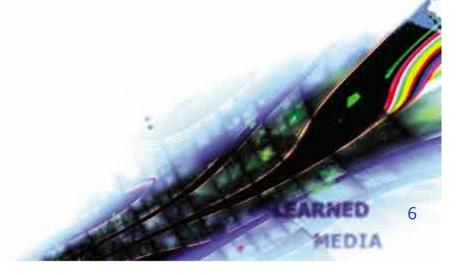


- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - How would you compute the information gain for a numeric attribute?
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Information gain of the "attribute" Person

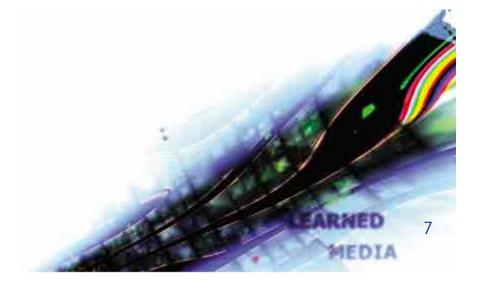
On training set

- As many values as there are examples
- Each leaf has exactly one example
- E(1/1, 0/1) = 0 (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)

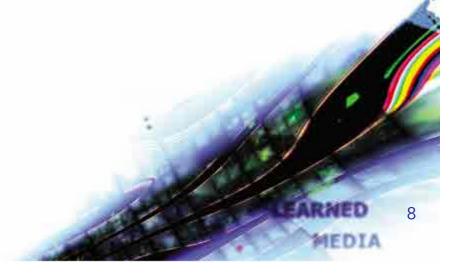

On testing set

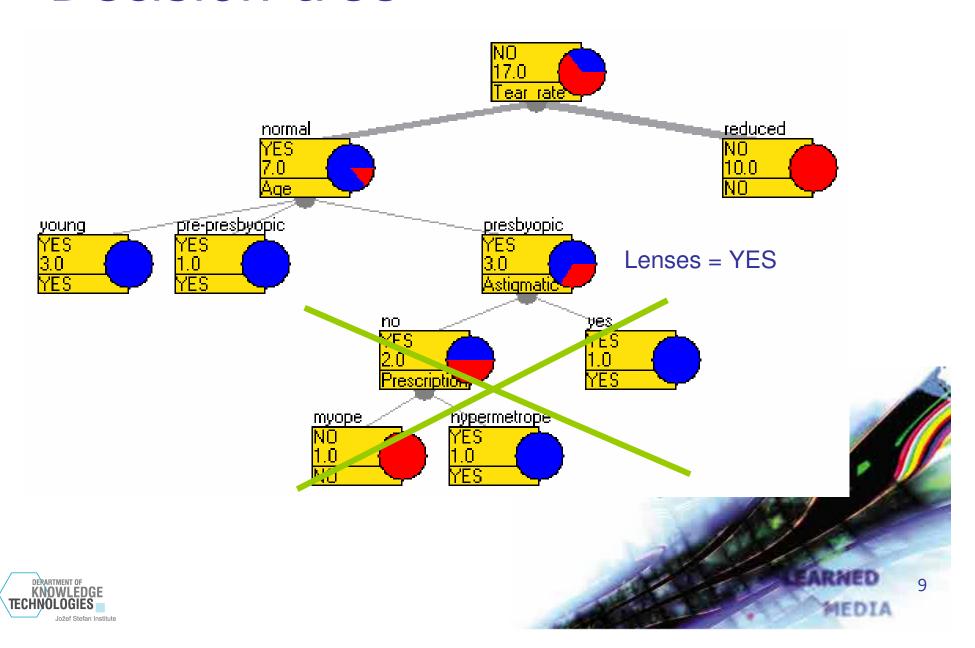
 The values from the testing set do not appear in the tree

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

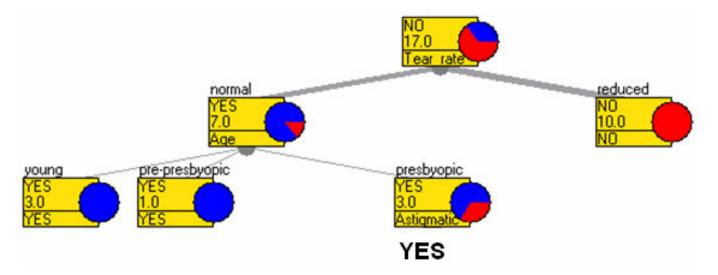


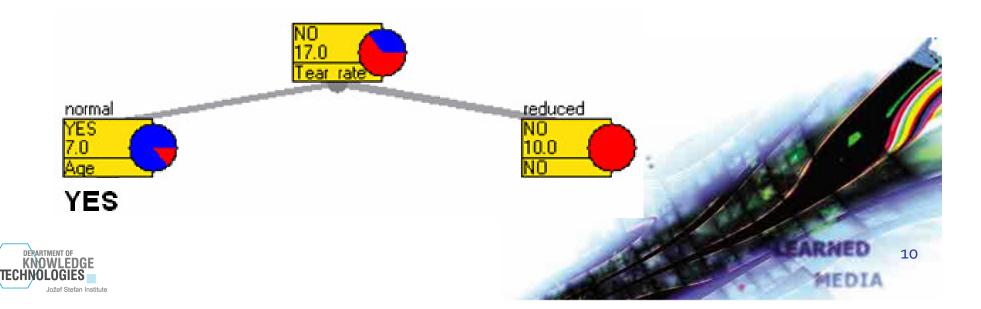
Entropy{hard=4, soft=5, none=13}=


- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22$ $13/22*\log_2 13/22$
- = 1.38



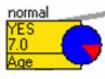
- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



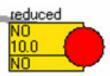


Decision tree

These two trees are equivalent

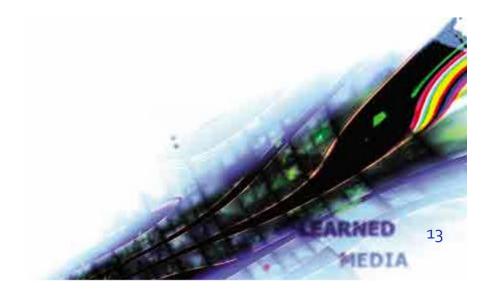


Classification accuracy of the pruned tree

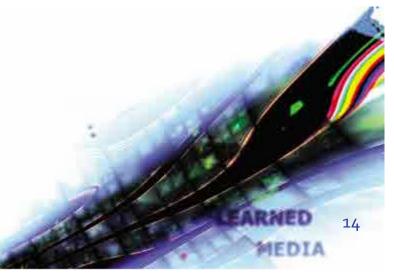

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Ca = (3+2)/(3+2+2+0) = 0.71%

	Predicted positive	Predicted negative
Actual positive	TP=3	FN=0
Actual negative	FP=2	TN=2



- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

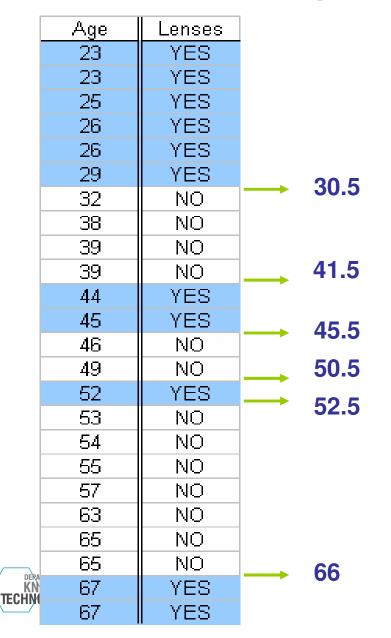

0	1
Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

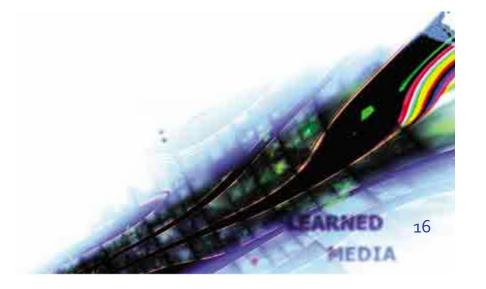
Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

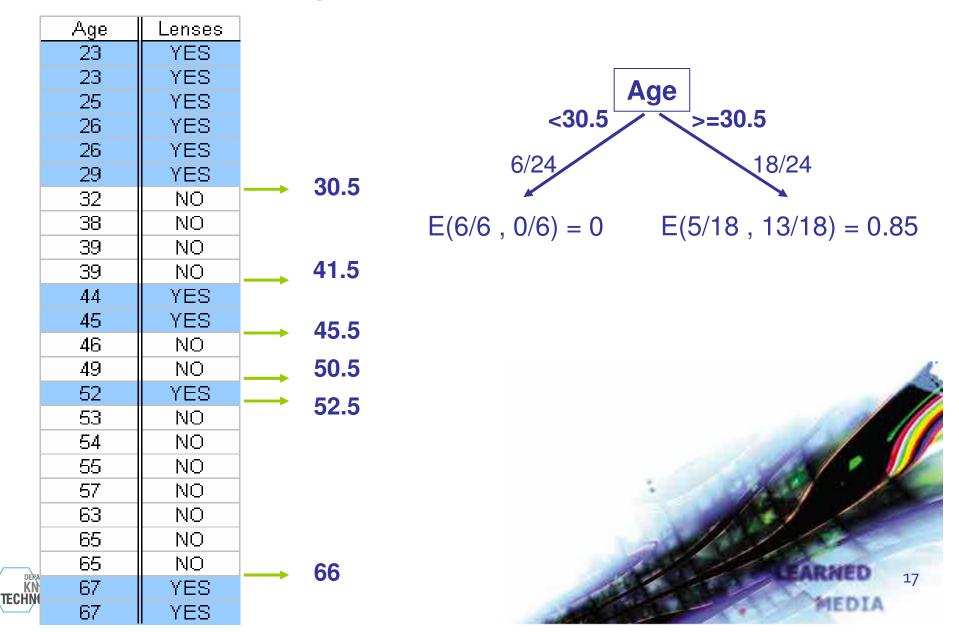
Sort by Age

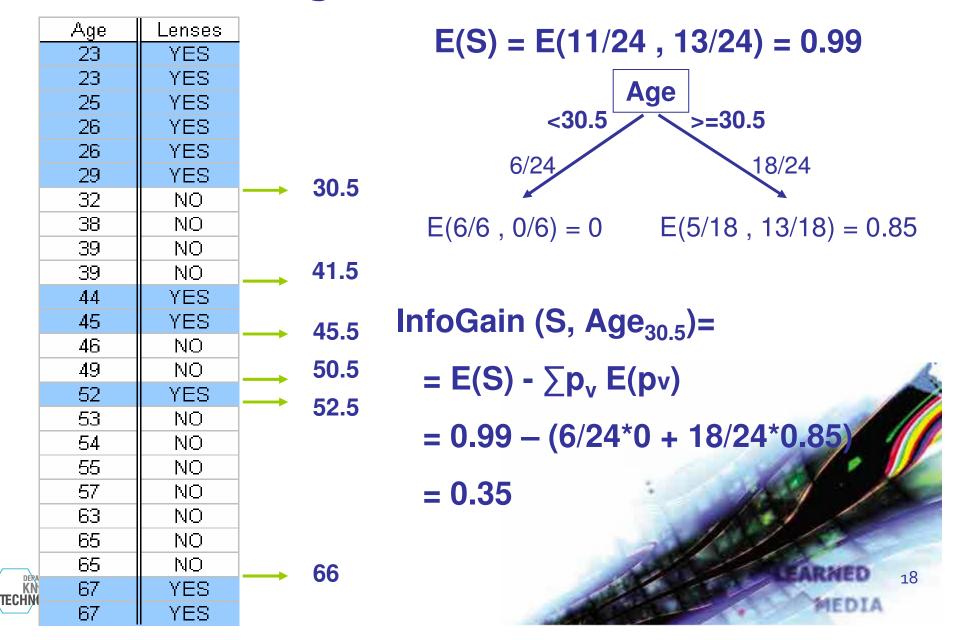
Age	Lenses
Age 23	YES
23	YES
23 25	YES YES
26	YES
26	YES
29 32	YES
32	NO
38	NO
39	NO
39	NO
44	YES
45	YES
46	NO
49	NO
52	YES
53	NO
54	NO
55	NO
57	NO
63	NO
65	NO
65	NO
67	YES
67	YES

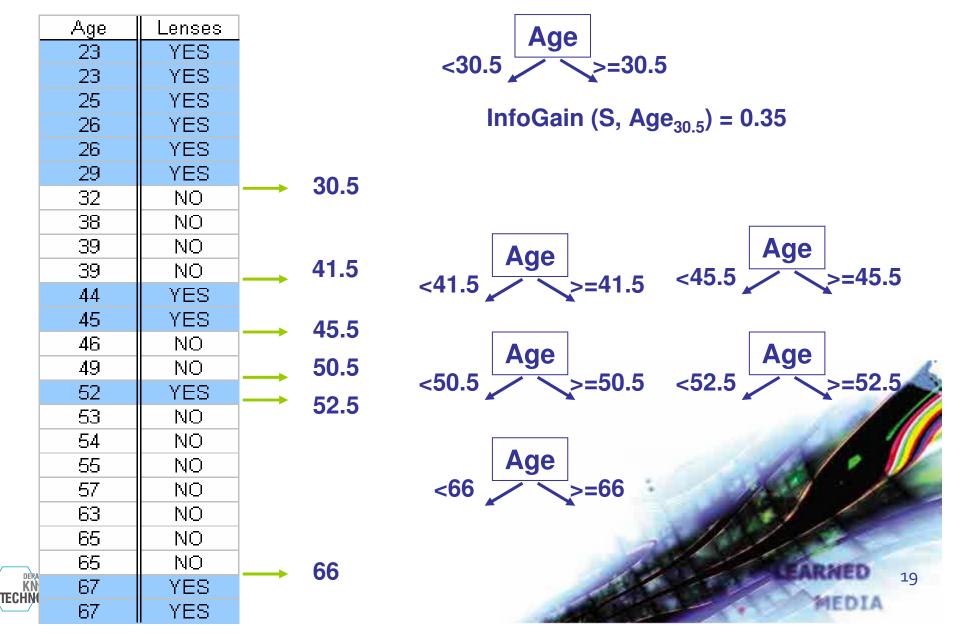
Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55 53	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

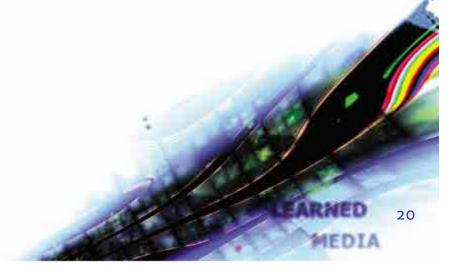

Sort by Age


Age	Lenses
23	YES
23 25	YES
25	YES
26	YES
26	YES
29	YES
32 38	NO
38	NO
39	NO
39	NO
44	YES
45	YES
46	NO
49	NO
52	YES
53	NO
54	NO
55	NO
57	NO
63	NO
65	NO
65	NO
67	YES
67	YES


Define possible splitting points


	Age	Lenses	
	Age 23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	
•	32	NO	
	38	NO	
	39	NO	
•	39	NO	
	44	YES	
	45	YES	
	46	NO	
-	49	NO	-
	52	YES	
•	53	NO	2
	54	NO	7
	55	NO	
u	57	NO	
	63	NO	ì
2	65	NO	
Z	65	NO	
e .	67	YES	
1	67	YES	





- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
 - numeric attributes
 - interpretability of the model

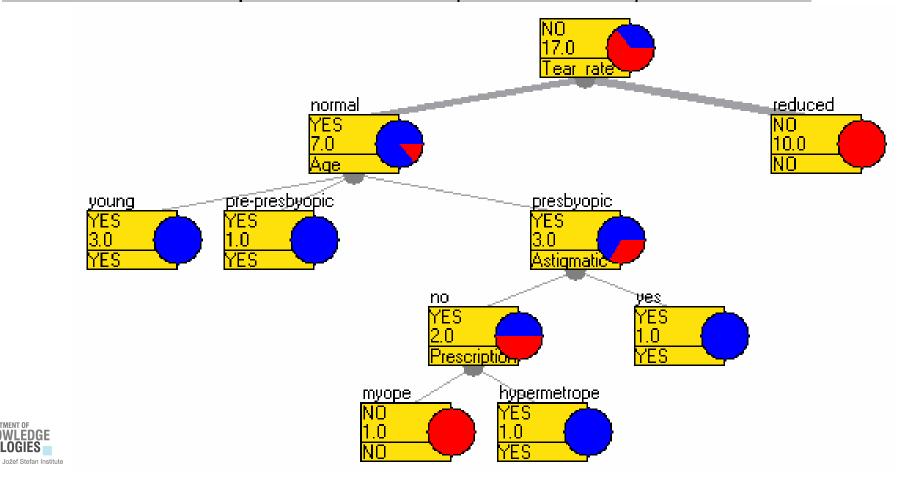
Handling missing values: Naïve Bayes

Will the spider catch these two ants?

- Color = white, Time = night
 ← missing value Size
- Color = black, Size = large, Time = day

$$p(c_1|v_1,v_2) = \\ p(Caught = YES|Color = white, Time = night) = \\ p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{1}{p(Caug$$

 $\frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$


Naïve Bayes uses all the available information!

Handling missing values: Decision trees - 1

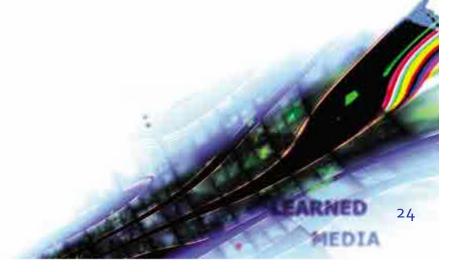
DEPARTMENT OF KNOWLEDGE **TECHNOLOGIES**

Age	Prescription	Astigmatic	Tear_Rate
?	hypermetrope	no	normal
pre-presbyopic	myope	?	normal

Handling missing values: Decision trees - 2

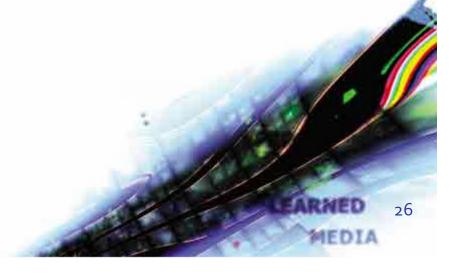
Algorithm **ID3**: does not handle missing values Algorithm **C4.5** (J48) deals with two problems:

- Missing values in train data:
 - Missing values are not used in gain and entropy calculations
- Missing values in test data:
 - A missing continuous value is replaced with the median of the training set
 - A missing categorical values is replaced with the most frequent value



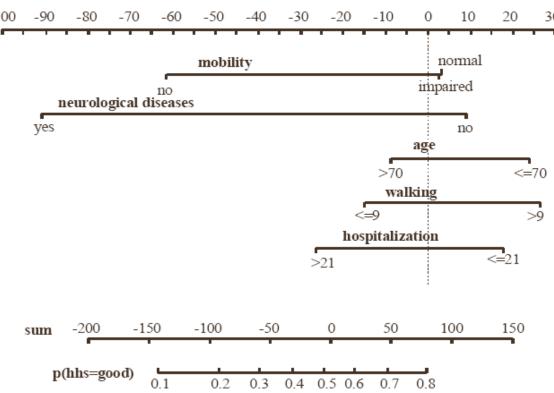
- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values

- numeric attributes
- interpretability of the model


Continuous attributes: decision trees & naïve bayes

- Decision trees ID3 algorithm: does not handle continuous attributes → data need to be discretized
- Decision trees **C4.5** (J48 in Weka) algorithm: deals with continuous attributes as shown earlier
- Naïve Bayes: does not handle continuous attributes →
 data need to be discretized
 (some implementations do handle)

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



Interpretability of decision tree and naïve bayes models

 Decision trees are easy to understand and interpret (if they are of a reasonably small size)

Naïve bayes models are of the "black box type".
 Naïve bayes models have been visualized by

nomograms.

