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Course Outline

l. Introduction

Data Mining and KDD process
DM standards, tools and

visualization

Classification of Data Mining
techniques: Predictive and
descriptive DM

(Mladenic et al. Ch. 1 and 11,
Kononenko & Kukar Ch. 1)

Il. Predictive DM Techniques

Bayesian classifier (Kononenko Ch.
9.6)

Decision Tree learning (Mitchell Ch.
3, Kononenko Ch. 9.1)

Classification rule learning
(Berthold book Ch. 7, Kononenko
Ch. 9.2)

Classifier Evaluation (Bramer Ch. 6)

lll. Regression
(Kononenko Ch. 9.4)

IV. Descriptive DM

Predictive vs. descriptive induction
Subgroup discovery

Association rule learning
(Kononenko Ch. 9.3)

Hierarchical clustering (Kononenko
Ch. 12.3)

— V. Relational Data Mining

RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch. 3, Ch. 4)

Propositionalization approaches
Relational subgroup discovery



Introductory seminar lecture

X. JSlI & Knowledge Technologies

l. Introduction
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladenic et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery
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XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
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Jozef Stefan Institute - Profile

« Jozef Stefan Institute (founded in 1949) is the
leading national research organization in
natural sciences and technology
— information and communication technologies
— chemistry, biochemistry & nanotechnology
— physics, nuclear technology and safety

« Jozef Stefan International Postgraduate School
(founded in 2004) offers MSc and PhD programs

— ICT, nanotechnology, ecotechnology
— research oriented, basic + management courses
— in English

* ~ 500 researchers and students



Department of Knowledge Technologies

« Mission:

— Cutting-edge research and applications of knowledge
technologies, including data, text and web mining, machine
learning, decision support, human language technologies,
knowledge management, and other information technologies that
support the acquisition, management, modelling and use of
knowledge and data.

o Staff:

— 36 researchers and support staff + 15 students and external
collaborators

« National funding (1/3):
— Basic research project “Knowledge Technologies”
— 16 National R&D projects, client applications

« EU funding (2/3):
— In FP6:
» 6 IP projects, 9 STREP projects, 1 FET STREP project
* 1 Network of Excellence,
» 4 Specific Support Actions, Coordination Actions
» 4 bilateral projects
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Department of Knowledge Technologies
Summary Profile

 Machine learning & Data mining
— ML (decision tree and rule learning, subgroup discovery, ...)
— Text and Web mining
— Relational data mining - inductive logic programming
— Equation discovery

* Other research areas:
— Semantic Web and Ontologies
— Knowledge management
— Decision support
— Human language technologies

« Applications in medicine, ecological modeling,
business, virtual enterprises, ...



Department of Knowledge
Technologies

techiislégies
/' DATAMINING \
\ MACHINE
\_ LEARNING /
HUMAN
| LANGUAGE
" TECHNOLOGIES
TEXT
WEB
,; ~ MULTIMEDIA  /
SEMANTIC ) \,  MIERNG  /
WEB " ' ‘

DECISION
SUPPORT

Core application areas

Medicine and Healthcare
Bioinformatics

Environmental studies and ecological
modeling

Agriculture and GMO tracking
Semantic Web applications
Marketing and news analysis
Acquisition and management of large
multilingual language corpora
Digitalization of Slovene cultural
heritage



Basic Data Mining process

knowledge discovery

from data
Data Mining

data model, patterns, ...

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...
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Data Mining and Machine Learning

» Machine learning techniques ° Data mining applications

— classification rule learning — medicine, health care

— subgroup discovery — ecology, agriculture

— relational data mining and — knowledge management,
ILP virtual organizations

— equation discovery
— Inductive databases

« Data mining and decision
support integration

_hor=: ecghlv=no -> clazz=em
0.36 [_chol=¢=6.90 D_fibr=>4.20 hypo=no -> clazz=emb
0.38 D_age=»B6.00 fhiz=yes -» clasz=emb
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Relational data mining: domain
knowledge = relational database

domain
howledge

Data Background

knowledg

patterns
model
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Semantic data mining: domain
knowledge = ontologies

m ontologies

patterns
model




Basic DM and DS processes

knowledge discovery

from data
Data Mining

model, patterns, ...

data

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...

mutli-criteria modeling

t\?j\) \j -/

f/\\‘] = 2\ Decision Support
7N

%_} —

models

experts
Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives
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Decision support tools: DEXIi
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DM and DS integration

Data Decision

support

patterns
model
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expert
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Basic Text and Web Mining process

knowledge discovery

from text data and We
Text/Web Mining

model, patterns,
visualizations,

eb pages

Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization...

16



Text Mining and Semantic Web
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Intelligent Data
Analysis in Medicine
and Pharmacology

Edited by
Nada Lavraé
Elpida Keravnou
Blaz Zupan

Kluwer Academic Publishers
Boston/Dordrech/London
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Knowledge Technologies context of
Data Mining course

Knowledge technologies are advanced information technologies,
enabling

— acquisition

— storage

— modeling

— management

of large amounts of data and knowledge

Main emphasis of Department of Knowledge technologies research:

developing knowledge technologies techniques and applications,
aimed at dealing with information flood of heterogeneous data
sources in solving hard decision making problems

Main emphasis of this Data Mining course:

presentation of data mining techniques that enable automated
model construction through knowledge extraction from tabular data

21
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Knowledge Technologies:
Main research areas & IPS lectures

ICT

i

Knowledge Technologies
(Artificial Intelligence)

Data Mining \

(knowledge discovery from Knowledge
data, text, web, multimedia) Management
Lavraé, Mladenié, Cestnik, Lavrac, Mladeni¢
Kralj Novak, Fortuna
v Decision
Semantic Web | | Human Language Support
Mladenié Technologies Bohanec
Erjavec




Introductory seminar lecture

X. JSlI & Knowledge Technologies

:: > | Introduction

— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladenic et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery

23



Part l. Introduction

j>Data Mining and the KDD process
« DM standards, tools and visualization

 Classification of Data Mining techniques:

Predictive and descriptive DM

24



What is DM

« Extraction of useful information from data:
discovering relationships that have not
previously been known

* The viewpoint in this course: Data Mining is

the application of Machine Learning
techniques to solve real-life data analysis

problems

25



Database technology
and data warehouses

26

Related areas

databases
efficient storage,

accgss an.d text and Web machine
manipulation mining learning
of data

computing pattern
recognition
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Related areas

Statistics,

machine learning,
pattern recognition
and soft computing*

« classification
techniques and
techniques for
knowledge extraction
from data

databases

text and Web
mining

machine
learning

computing

pattern
recognition

*neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning



Text and Web mining

28

Related areas

Web page analysis
text categorization
acquisition, filtering
and structuring of
textual information

natural language
processing

databases

text and Web
mining

machine
learning

pattern
recognition
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Related areas

Visualization

* visualization of data
and discovered
knowledge

databases

text and Web
mining

machine
learning

pattern
recognition
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Point of view in this course

Knowledge
discovery using databases
machine A
I . text and Web machine
eamlng mining learning

methods /
soft ‘ visualization
computing pattern
recognition




Data Mining, ML and Statistics

All areas have a long tradition of developing inductive
technigues for data analysis.

— reasoning from properties of a data sample to properties of a
population

DM vs. ML - Viewpoint in this course:

— Data Mining is the application of Machine Learning techniques to
hard real-life data analysis problems

DM vs. Statistics:

— Statistics
« Hypothesis testing when certain theoretical expectations

about the data distribution, independence, random sampling,
sample size, etc. are satisfied

« Main approach: best fitting all the available data
— Data mining

« Automated construction of understandable patterns, and
structured models

« Main approach: structuring the data space, heuristic search
for decision trees, rules, ... covering (parts of) the data space

31



Data Mining and KDD

« KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

« Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

32
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KDD Process

KDD process of discovering useful knowledge from data

Pre- Trans- Data Interpretation/

2 processing % formation Mining —=—=—7 Evaluation WP
— — — A= P :_%}5*&\\ W23
| — I — i % ———a

[

Target I Preprocessed ITransfurmedI Patterns I Knowledge

Data Data Data
S ——— e Sn— it

« KDD process involves several phases:
* data preparation
 data mining (machine learning, statistics)
 evaluation and use of discovered patterns

» Data mining is the key step, but represents only
15%-25% of the entire KDD process
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MEDIANA - analysis of media research data

Pre- Trans- Data Interpretation/
.\ processing ormation Minin A
T % g ggﬂ Evaluation N7
: 7 —— Sl

Target Preprocessed ITransfurmed I Patterns I Knowledge

Data Data

»

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

« Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
Interest for specific topics in media, social status

e good quality, “clean” data

 table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)



MEDIANA — media research pilot study%

Pre- Trans-

— processing formation Evaluation A/
Target I Prepcessed ITransfurmedI Patterns I Knowledge

Data Data Data

»

« Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

* Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)



Simplified association rules

Finding profiles of readers of the Delo daily
hewspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223  reads_Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads_Delo 157 (0.78)
4. reads_Money (Denar) 197 > reads_Delo 150 (0.76)
5. reads_Vip 181 & reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also
Delo.

36



Simplified association rules

1. reads Sara 332 3 reads_Slovenske novice 211 (0.64)
2. reads_Ljubezenske zgodbe 283 >
reads_Slovenske novice 174 (0.61)
3. reads_Dolenjski list 520 >
reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
B. reads Delavska enotnost 177 >
reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska
new, Omama in Workers new read also Slovenian

NEWS.
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Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.

38



Decision tree

Finding reader profiles: decision tree for classifying people
Into readers and non-readers of a teenage magazine
Antena.

29 Age 29

Doesn’t read Visiting Disco Clubs

7S

Interest in music, astrology, Interest in astrology

travel and scandals
yes
n/ yes

Gender Reads

Doesy’t read Reads
mﬁy \emale

Doesn’t read

/\

Reads Doesn’t read



Part l. Introduction

Data Mining and the KDD process
:> DM standards, tools and visualization

 Classification of Data Mining techniques:

Predictive and descriptive DM

40
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CRISP-DM

Cross-Industry Standard Process for DM

A collaborative, 18-months partially EC
founded project started in July 1997

NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

DM from art to engineering
Views DM more broadly than Fayyad et al.

_(actually DM is treated as KDD process):

:_~_— Pre- Trans- Data Interpret"ttlom‘
=p=u Selectmn processmg formation Mining X
; - —L 1;1 PR Y-S — > aalZs

I Target I Preprocessed Transformed I Patterns I Knowledge
4 >

Data Data Data




CRISP Data Mining Process

Business Diata
Understanding Understanding

Diata
Preparation
[ Deployment ‘ T
‘ ¥

[ Modelling l

'\[ Evaluation
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DM tools

- KDNuggets Directory: Data Mining and Knowledge Discovery - Netscape

File Edit “iew Go Communicator Help

JT Bookmarks A% Location: |ttp: A kdnuggets.com/ j @'What's Related ﬂ
KDNuggets.com Path: EDMuccets Home : =
ﬁ”—"“,“ﬂf—ts Tools (Siftware) for Data Mining and Knowledge Discovery

ewsletter
Tools Email new subtrissions and changes to editori@lkdnuggets.com

EZ

Companies
Johs + Suites supporting multiple discovery tasks and data preparation
Courses + Classification -- for building a classification model
ZHO0-99% Approach: Multiple | Decision tree [ Fules | Heural network | Bayesian | Other
Solutions + Clustering - for finding clusters or segnents
Wehsites + Statistics, Estimation and Regression
References + Links and Associations - for finding links, dependency networkes, and associations
Meetings + deguential Pattems - tools f-::-.r findmg seguential patte.rns.
Datasets + ¥isualization - scientific and discovery-onented wsualization

+ Text and Weh Mining

+ Deviation and Fraud Detection

+ Reporting and Summarization
+ Data Transformation and Cleaning
« | _"’l + OLAP and Dimensional Analysis ll

IE |=‘|IP=| |D|:u::ument: Daone




Public DM tools

« WEKA - Waikato Environment for Knowledge
Analysis

« Orange, Orange4WS

« KNIME - Konstanz Information Miner
« R — Bioconductor, ...

[E3weka knowledge Explorer

o ] 3
fPreprucess r/(:lassify Cluster  Associate rSelem attributes r\flsualize‘
| Openfile... ‘ ‘ Open URL... | ‘ Open DB... Apply Filters ‘
Base relation Working relation
Relation: weather Relation: weather
Instances: 14 Attributes: 5 Instances: 14 Atiributes: 5
Attributes in base relation Filters
AddFilter -N unnarmed -G 0 Add
| All | | None | | Invert H
Mo, J MName

1wl outiook

2| |terperature
3 [l humidity
4[| windy

4 v play

-Attribute info for base relation
Mame: humidity

Type: Numeric

Missing: 0(0%) Distinct: 10 Unigue: 7 (50%)
Statistic | Value
Minirmum 65.0
Maximum 96.0
Mean

StdDew

91.64285714285714
10.285218242007051

Log

U7 3T 49 ermall wekas Uppor@e s walkalo ac.nz

07:31:49: Started on Torek, B marec 2001
07:32:00: Base relation i now weather (14 instances)
07:32:00: Working relation is now weather (14 instances)

Status
OK

cv f uild Subgroups

Deo=

Discretize Linear Projection

ahyp=pes aarh=yes -» class=emb

D fibr=24.20 ecghlv=no -> class=emb

[ _chol=¢<=E.90 D_fibr=>4.20 hypo=no -» class=emb

D_age=>E6.00 fhis=pes -» class=emb
[_age=2E6.00 D_chol=<=E.90 -» class=emb
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Visualization

« can be used on its own (usually for
description and summarization tasks)

* can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization
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Data visualization:
Scatter plot

T NPT TTNE

.
e

) I.:t‘,‘_ul
y &

et}

HOSPITALIZATION

46



47

DB Miner: Association rule
visualization

= dbminer - [Azsociation #1]

File Edit Query “iew “wWindow Option: Help . = 1]
=& F =] =] B a2 .

Drirn: ||::Dst j Lewel |Levellil j B || | 2 E SUDZI— I_,JI . Confz

altflel|>r|+]|v[ala]e]| efs||w | [ %]

L‘ Adust Height/Size Height/Size : support Color: confidence (%5)

o

0% I — 00
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MineSet: Decision tree visualization

File “iew Selections Display Go Help

EH S MM Er EE T

Puainter iz over:

-1 sgi

=

B £1[N[0 0|0 (| Pt 3 |2

S M)




49

Orange: Visual programming and
subgroup discovery visualization

class
Dnsyx Elm:r' =

H@DD 0 narm - 4

Linear Projection

-» clazs=emb

af=yez -» clazz=emb

ahvp=pes aarh=yes - clazsz=emb

0_fibr=+4.20 ecghlv=no -» clazz=emb

0 _chol=¢=6.90 D_fibr=>4.20 hypo=no - clazz=emb
0 _age=r66.00 fhiz=yes -» clazz=emb
0_age=:66.00 D_chol=<=6.90 - clazz=emb




Part l. Introduction

Data Mining and the KDD process
« DM standards, tools and visualization

:>Classification of Data Mining techniques:

Predictive and descriptive DM
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Types of DM tasks

Predictive DM:

— Classification (learning of rules, decision
trees, ...)

— Prediction and estimation (regression)
— Predictive relational DM (ILP)
Descriptive DM:

— description and summarization

— dependency analysis (association rule
learning)

— discovery of properties and constraints
— segmentation (clustering)
— subgroup discovery

Text, Web and image analysis

ath: K DMuggets Home

Newsletter

Tools (Siftware) for Data Mining and Knowledge Discovery
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Predictive vs. descriptive induction

Predictive induction m
N
Descriptive induction

GG



Predictive vs. descriptive induction

 Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis
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Predictive DM formulated as a
machine learning task:

« Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)

A1 A2 A3 Class
example1l v, Vy 5 Vi3 C,
example2 v, Vs, Vs 3 C,

« By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:
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Data Mining in a Nutshell

Person Age Spect. presc.| Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns
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Data Mining in a Nutshell

Person Age Spect. presc.| Astigm. Tear prod. Lenses knOWIedge dlSCOVery
o1 young myope no reduced NONE
02 young myope no normal SOFT from data
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE
06-013 Ep
014  ore-presbyc hypermetrope no normal SOFT Data M | n | ng
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023
024  presbyopic hypermetrope yes normal NONE mOdeL pattemS, e
data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

symbolic model

new unclassified instance i classified instance symbolic patterns p\
LN . explanation 4
..~ | blackbox classifier P ﬂ .
' no explanation Lha b




Predictive DM - Classification

« data are objects, characterized with attributes -
they belong to different classes (discrete labels)

* given objects described with attribute values,
iInduce a model to predict different classes

* decision trees, if-then rules, discriminant
analysis, ...
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Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT

O15  ore-presbyc hypermetrope yes reduced NONE
O16  ore-presbyc hypermetrope yes normal NONE

O17  presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE
019-023

024  presbyopic hypermetrope yes normal NONE
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Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

reduced / N?rmal

NONE
no / yes
myope / \fiypermetrope

HARD NONE




Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
05 young hypermetrope no reduced NO

06-013
O14  ore-presbyc hypermetrope no normal YES
O15 Dore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
O17  presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

019-023
024  presbyopic hypermetrope yes normal NO
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lllustrative example:
Customer data

Customer Gender Age Income Spent | BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 25 50000 12400 no
c4 female 48 26000 8600 no
cS male 63 191000 28100 yes

06-013
cl14 female 61 95000 18100 yes
cl15 male 56 44000 12000 no
c16 male 36 102000 13800 no
cl17 female o7 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data: Decision trees

< 102000/ > 102000
<58 / > 58

no yes
=female/ .ﬂ ! = male
no

349/ ! > 49

no yes




64

Customer data:
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if Xthen Y
X, Y conjunctions of items (binary-valued attributes)

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no



Predictive DM - Estimation

often referred to as regression

data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

given objects described with attribute values, induce a
model to predict the numeric class value

regression trees, linear and logistic regression, ANN,
KNN, ...
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Customer data:
regression tree

<108000/ . ! > 108000

12000
3425/ > 425

16500 26700

In the nodes one usually has
Predicted value +- st. deviation
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Relational Data Mining (Inductive Logic
Programming) in a Nutshell

D [zip [5,[So [l Ol Re

knowledge discovery

ub
3478|346 77|m [si (60-70|32|me |ar from data
f 45(nm)|

/ 3479(43666|f |ma|80-90|45(nm|re

/ order . . .
e T T e foae Relational Data Mining
378 [2140267(12  \ [regular [cash
3478 3446778(12 express |check

3478 4728386|17 {regular |check

3479 3233444(17 xpress  [credit
3479 |3475886(12 ar [credit mOde|, pattems, e
\ store
Store ID|Size [Type |Location
12 sma]l :f;:-a.nchise c1ty
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational Data Mining (ILP)

Learning from multiple

tables
Complex relational Mutagenesis
problems: S

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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Relational Data Mining (ILP)

customer
ID |Zip |8 [So |In A |C] |Re
f eX |5t |[Come(geiyh 8P

34TR|3M67Tm |81 [60-70|32|me |nr
3479(43666 ma|80-90[45|nm]|re

=y

/ order

Customer [Order [Store [Delivery [Paymt
ID ID ID \ Mode |Mode

3478 2140267(12 regular |cash

478 3446778|12 express [(check
78 4728386|17 regular  (check
3479 3233444|17 xpress |credit
3479 347H886(12 gular |credit

\

\ store
Store ID}Size [Type [Location

12 small |franchise|city
17 large lindep  |rural

Relational representation of customers, orders and stores.



customer
ID [Zip |S [So [ [|A[CI [Re
/ ex(g¢ |come|gelyb [SP

34677
43666

m [si [§0-70/32(me |nr
f |ma|80-90/45(nm|re

3478
3479

/ order

Customer [Order [Store [Delivery [Paymt
ID 1D ID Mode  |Mode
3478 2140267(12 regular |cash
3478 344677812 express |check
3478 472838617 regular |check
3479 3233444|17 xpress  [credit
3479 347588612 gular  [credit

\

store

Store ID[Size |Type

Location

12
17

small (franchise|city
large \indep  |rural

Relational representation of customers, orders and stores.

ID

Zip

Sex

Soc St

Income

Age

Club

Resp

34/8
3479

34667 |m

43666 |f

Sl
ma

60-70
80-90

32
45

me
nm

nr
re

Basic table for analysis
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ID Zip Sex |Soc St |Income | Age Club | Resp
3478 | 34667 |m S 60-70 |32 me nr
3479 |43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(Id,Zip,Sex,S0St,In,Age,Club Re)

Prolog facts describing data in Table 2:
customer(3478,34667 ,m,si,60-70,32,me,nr).
customer(3479,43666,f ma,80-90,45,nm,re).

customer(_,_f._._._. ).

Expressing a property of a relation:
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Relational Data Mining (ILP)

Data bases: Logic programming:
« Name of relation p * Predicate symbol p
« Attribute of p « Argument of predicate p
 n-tuple <vi,...,va>=rowin < Ground fact p(vs, ..., vn)
a relational table « Definition of predicate p
 relation p = set of n-tuples = . Set of ground facts
relational table * Prolog clause or a set of Prolog
” (89 [Bhme e (B Clauses
A a— Example predicate definition:
B
5P good_customer(C) :-
e e e customer(C,_.female, , , , , ),

EEEE order(C, , , ,creditcard).




Part I: Summary

KDD is the overall process of discovering useful
knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas
Many powerful tools available
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Introductory seminar lecture

X. JSlI & Knowledge Technologies

l. Introduction
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladenic et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

> XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications
XXX. Recent advances: Cross-context link
discovery
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XX. Talk outline

m)Data mining in a nutshell revisited
» Subgroup discovery in a nutshell

» Relational data mining and
propositionalization in a nutshell

« Semantic data mining: Using ontologies in SD
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Data Mining in a nutshell

Person Age Spect. presc.| Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns



Example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

02 young myope no normal SOFT

03 young myope yes reduced NONE

04 young myope yes normal HARD

05 young | hypermetrope no reduced  NONE Data |\/||n|ng
06-013

014  Dore-presbyc hypermetrope no normal SOFT

015  Dore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE

017  |presbyopic myope no reduced NONE
018 |presbyopic myope no normal NONE
019-023

024  presbyopic| hypermetrope yes normal NONE



Example: Learning a classification

78

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced NONE Data |\/||n|ng
06-013
014  Dore-presbyc hypermetrope no normal SOFT
015  Dore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  |presbyopic myope no reduced NONE reduced aa
O18 presbyopic  myope no normal NONE | NONE |
019-023 ... i e
024  presbyopic| hypermetrope yes normal NONE

lenses=NONE <« tear production=reduced

lenses=NONE « tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope

lenses=SOFT « tear production=normal & astigmatism=no

lenses=HARD « tear production=normal & astigmatism=yes &
spect. pre.=myope

lenses=NONE «



Data/task reformulation

Person Age Spect. presc. Astigm. Tear prod.  Lenses
O1 young myope no reduced NO
02 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
05 young | hypermetrope no reduced NO

06-013
014  ore-presbyc hypermetrope no normal YES
O15  Dore-presbyc hypermetrope yes reduced NO
016  ore-presbyc hypermetrope yes normal NO
017  |presbyopic myope no reduced NO
018 |presbyopic myope no normal NO

019-023 .
024  presbyopic hypermetrope yes normal NO

Data/task reformulation:
Positive (vs. negative) examples of the Target class
 for Concept learning (predictive induction)
« for Subgroup discovery (descriptive pattern induction)
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Classification versus Subgroup Discovery

« Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

« Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
« large subgroups (high target class coverage)
« with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge



Classification versus Subgroup discovery
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XX. Talk outline

» Data mining in a nutshell revisited
) Subgroup discovery in a nutshell

» Relational data mining and
propositionalization in a nutshell

« Semantic data mining: Using ontologies in SD
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Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

— Given: a population of individuals and a property
of interest (target class, e.g. CHD)

— Find: most interesting’ descriptions of population
subgroups
 are as large as possible
(high target class coverage)
* have most unusual distribution of the target

property
(high TP/FP ratio, high significance)



Subgroup discovery example: *
CHD Risk Group Detection

Input: Patient records described by stage A (anamnestic),
stage B (an. & lab.), and stage C (an., lab. & ECQG)
attributes

Task: Find and characterize population subgroups with high
CHD risk (large enough, distributionally unusual)

From best induced descriptions, five were selected by the
expert as most actionable for CHD risk screening (by GPs):

CHD-risk < male & pos. fam. history & age > 46
CHD-risk < female & bodymassindex > 25 & age > 63
CHD-risk « ...

CHD-risk « ...

CHD-risk « ...
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Subgroup discovery algorithms

EXPLORA (Kloesgen, Wrobel 1996)

MIDOS (Wrobel, PKDD 1997)

SD algorithm (Gamberger & Lavrac, JAIR 2002)
APRIORI-SD (Kavsek & Lavrac, AAl 2006)

CN2-SD (Lavrac et al., JMLR 2004): Adapting

CN2 classification rule learner to Subgroup

Discovery:

— Weighted covering algorithm

— Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Numerous other recent approaches ...
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Characteristics of SD Algorithms

« SD algorithms do not look for
a single complex rule to
describe all examples of
target class A (all CHD-risk
patients), but several rules
that describe parts
(subgroups) of A.

Class A

2

Class B




Characteristics of SD Algorithms

« SD algorithms do not look for

a single complex rule to
describe all examples of
target class A (all CHD-risk
patients), but several rules
that describe parts
(subgroups) of A.

SD algorithms naturally use
example weights in their
procedure for repetitive
subgroup generation, via the
weighted covering algo., and
rule quality evaluation
heuristics.

87

Class A
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Class B
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Weighted covering algorithm for
rule set construction

CHD patients other patients

1.0 1.0
1.0

1.0 1.0
1-0 1-0 1.0 1.0
1.0 1.0

1.0
1.0
1.0

1-0 1.0 1.0

1.0

 For learning a set of subgroup describing rules, SD
Implements an iterative weigthed covering algorithm.

« Quality of a rule is measured by trading off coverage
and precision.
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Weighted covering algorithm for
rule set construction

CHD patients other patients

Rule quality measure in SD: q(Cl < Cond) = TP/(FP+g)

Rule quality measure in CN2-SD: WRAcc(Cl «Cond) = p(Cond) x
[p(Cl | Cond) — p(Cl)] = coverage x (precision — default precision)

*Coverage = sum of the covered weights, *Precision = purity of the covered examples



Weighted covering algorithm for
rule set construction

CHD patients other patients

In contrast with classification rule learning algorithms (e.g. CN2),
the covered positive examples are not deleted from the training
set in the next rule learning iteration; they are re-weighted, and a
next ‘best’ rule is learned.
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- Subgroup visualization

1
B1

B2
Al

The CHD task: Find,
characterize and visualize
population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)
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Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m? (typically 29)
AND
age over 63 years

Supporting characteristics (computed using X2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol
values.



XX. Talk outline

« Data mining in a nutshell revisited
» Subgroup discovery in a nutshell

jﬁelational data mining and
propositionalization in a nutshell

« Semantic data mining: Using ontologies in SD
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Relational Data Mining (Inductive
Logic Programming) in a nutshell

ID [Zip [S [So [l [A[CI [Re
/ ex|Sg [come [ge|yD |sP

knowledge discovery

/ 3478(34677|m [si  |60-70|32|me from data

3479(43666/f [ma(80-90|45/nmlre

/ order . . ..
e T T e foae Relational Data Mining
378 [2140267(12  \|regular [cash

3478 3446778(12 express |check

3478 4728386|17 {regular |check
3479 3233444|17

store
Store ID|Size [Type |Location

12 small |franchise |city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns

3479 |3475886(12 Xim‘f: credit mOde|, pattems,
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Sample ILP problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

Limm

GRS Y Liﬁ
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Relational data representation

TRAIN_TABLE

TRAIN EASTBOUND

[— LOAD 'R CRIET NUVEER

oo g

J | : |
il cl arde 1 t1 TRUE
2 & heggm 1 I t2 TRUE
I8 3 triagke 1 I
4 o4 rectagle 3 I t6 FAL SE

CAR TRAIN SHAPE LENGTH ROOF WHEHRS

ci t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2
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Relational data representation

TRAIN_TABLE

TRAIN EASTBOUND

[7— LOAD 'R CRIET NUVEER

oo g

J | : |
il cl arde 1 t1 TRUE
2 & heggm 1 I t2 TRUE
I8 3 triagke 1 I
4 o4 rectagle 3 I t6 FAL SE

CAR TRAIN SHAPE LENGTH ROOF WHEHRS

ci t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

Train

| . .
Car Load
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Propositionalization in a nutshell

: TRAIN_TABLE
D : LOAD O'R_GHIET NMEERg TRAIN EASTBOUND
I cl drde 1 t1 TRUE
B > BE t2 TRUE
- - - - |3 CS trl b 1
Propositionalization task i o w0 | — T
Transform a multi-relational CAR TRAIN SHAPE LENGTH ROOF WHERS
- ci t1 rectangle short none 2
(mUIt|p|e'tab|e) c2 t1 rectangle long none 3 I
. c3 t1 rectangle short peaked 2
representatlon tO d c4 t1 rectangle long none 2
propositional representation
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),
1BC (Flach and Lachiche 1999), ...
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Propositionalization in a nutshell

Main propositionalization step: . .. e o mN;:ﬁjlf
first-order feature construction & 2 wan 1 | BT
I8 3 triagke 1
2o rdmde 3 i t6 FAL SE

f1(T):-hasCar(T,C),clength(C,short). f """

f2(T):-hasCar(T,C), hasLoad(C,L), CAR TRAIN SHAPE LENGTH ROOF WHEES
. ci t1 rectangle short none 2
|OadSha pe(L,CII‘C|e) c2 t1 rectangle long none I

3
f3 (T) . c3 t1 rectangle short peaked 2
oo c4 t1 rectangle long none 2 I

Propositional learning:

t(T) « f1(T), f4(T) PROPOSITIONAL TRAIN_TABLE
train(T) f1(T)  f2(T) f3(T) f4(T) f5(T)
t1 t t f t t
Relational interpretation: Ii ; : I ; :
eastbound(T) < t4 t f t f f

hasShortCar(T),hasClosedCar(T). BN -]
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Relational Subgroup Discovery
by upgrading CN2-SD

RSD algorithm (Zelezny and Lavrac, MLJ 2006)

* Implementing an propositionalization
approach to relational learning, through
efficient first-order feature construction

— Syntax-driven feature construction, using Mutagenesis
Progol/Aleph style of modeb/modeh declaration /&
f121(M):- hasAtom(M,A), atomType(A,21) |
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

« Using CN2-SD for propositional subgroup &
discovery mutagenic(M) « feature121(M), feature235(M LN e
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RSD Lessons learned

Efficient propositionalization can be applied to
individual-centered, multi-instance learning problems:

— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
iIntroducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)



Talk outline

« Data mining in a nutshell revisited

» Subgroup discovery in a nutshell

» Relational data mining and
propositionalization in a nutshell

j> Semantic data mining: Using ontologies in SD

« Recent advances: cross-context bisociative link
discovery

102
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Semantic Data Mining:
Using ontologies in data mining

Exploiting two aspects of semantics in data mining

— Using domain ontologies as background knowledge for
data mining, using propositionalization as means of
information fusion for

 Discovering predictive rules
 Extracting pattern (frequent pattern mining, subgroup
discovery,...) - Presented in this talk
— Developing a Data Mining ontology and using it for
automated data mining workflow composition

» Out of scope of this talk (see e.g.papers of
ECML/PKDD-09 SoKD Workshop)



Gene Ontology (GO)

GO is a database of terms for genes:
— Function - What does the gene product do?
— Process - Why does it perform these activities?
— Component - Where does it act?

12093 biological process
1812 cellular components
7459 molecular functions

Known genes are annotated to GO terms
(www.ncbi.nlm.nih.gov)

Terms are connected as a directed acyclic graph (is_a,

)

Levels represent specificity
of the terms co 006520

amino acid
metabolism

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:0008652
amino acid G0:00042401
biosynthesis biogenic amine synthesis

104
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology &)

biological_process cellular_component molecular_function
A L l
physiolegical process cellular process cell catalytic activity
SN
metabolism cellular physiological process membrane hydrolase activity
/ \\
biocpolymer metabolism catabolism macromolecule metabolism primary metabolism cellular metabolism intrinsic to membrane peptidase activity

N TN\ N

cellular macromole cule
metabolism

[ N VT

cellular macromolecule

biopolymer catabolism macromolecule catabolism protein metabolism cellular catabolism endopeptidase activity metallopeptidase activity

protein catabolism cellular protein metabolism metalloendopeptidase activity

catabolism
Joint work with \ \ / !
cellular protein catabolism integral te membrane

Igor Trajkovski
and Filip Zelezny

proteolysis and peptidolysis
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Multi-Relational representation

GENE-GENE
INTERACTION

GENE
(main table,
class labels)

/ \

GENE-FUNCTION GENE-PROCESS GENE-COMPONENT

A 4 A 4 A 4
FUNCTION PROCESS COMPONENT
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Ontology encoded as relational
background knowledge (Prolog facts)

Prolog facts:

predicate (geneID, CONSTANT).

interaction(genelID, genelD).

component (2532, 'GO:0016020") .
component (2532, 'GO:0005886") .
component (2534, 'GO:0008372") .
function (2534, 'GO:0030554") .
function (2534, 'GO:0005524") .
process (2534, 'GO:0007243") .
interaction(2534,5155).
interaction(2534,4803).

Basic, plus generalized background
knowledge using GO

zinc ion binding ->

metal ion binding, ion binding, binding
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« Two-class diagnosis problem of distinguishing between acute
lymphoblastic leucemia (ALL, 27 samples) and acute myeloid
leukemia (AML, 11 samples), with 34 samples in the test set. Every
sample is described with gene expression values for 7129 genes.

« Multi-class cancer diagnosis problem with 14 different cancer types,
in total 144 samples in the training set and 54 samples in the test

set. Every sample is described with gene expression values for
16063 genes.

. http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi.



Standard approach to identifying sets of '*
differentially expressed genes and building a
classification model (e.g. AML vs ALL)

l o Identify marker genes

p ‘."‘;'_'_
(LAWY, | |
'A'.'f’,‘". 1
' . . x

!
il

L © Build model J
[z wwara]

]

Yy VYV

e Apply model X5x7
N

v
Class A 1092
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Identifying sets of differentially
expressed genes in preprocessing

To identify genes that display a large difference in

gene expression between groups (class A and class B)
and are homogeneous within groups, statistical tests
(e.g. t-test) and p-values (e.g. permutation test) are
computed.

Two sample t—statistic is used to test T, = "~ Tip
the equality of group means ma and mes. \/SiA + Zip

n, ng
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Ranking of differentially expressed

Gene Score The genes can be ordered in a ranked list L, according to
gene,, | score 1 their differential expression between the classes.
gene, (o) score 2
The challenge is to extract meaning from this list, to
gene, (s score 3 .
describe them.
gene, () score 4
............ The terms of the Gene Ontology were used as a vocabulary
gene, (100 score 100 for the description of the genes.
gene,(1o1) score 101

gene, gggs)  Score 9905




Gene expression data (Prolog facts): '
Positive and negative examples for data
mining
fact (class, genelD, weight).
fact (‘diffexp',64499, 5.434).
fact (‘diffexp',2534, 4.423).
fact (‘diffexp',5199, 4.234
(
(

) .
fact (‘diffexp',1052, 2.990).
fact (‘diffexp', 6036, 2.500).

fact (‘random', 7443, 1.

( 0).
fact ('random', 9221, 1.0).
fact('random',23395,1.0).
fact('random', 9657, 1.0).
fact('random',19679, 1.0).



Ontology encoded as relational background
knowledge + gene expression data (Prolog

Prolog facts: facts)

predicate (geneID, CONSTANT) . fact (class, genelD, weight).

interaction(genelID, genelD).

component (2532, 'GO:0016020") . fact
component (2532, 'GO:0005886") . fact
component (2534, 'GO:0008372") .
function (2534, 'GO:0030554") .
function (2534, 'GO:0005524") .
process (2534, 'GO:0007243") .
interaction(2534,5155).
interaction(2534,4803).

(‘diffexp',64499, 5.434).
(‘diffexp',2534, 4.423).
fact (‘diffexp',5199, 4.234).
fact (‘diffexp',1052, 2.990).
( 2. )

fact(‘diffexp',6036, 500

fact (‘random', 7443, 1.

( 0) .

fact ('random', 9221, 1.0).

Basic, plus generalized background fact ('random',23395,1.0).

knowledge using GO fact('random', 9657, 1.0).
fact('random',19679, 1.0).

zinc ion binding ->

metal ion binding, ion binding, binding
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Relational Subgroup Discovery with SEGS

 The SEGS (Searching for Enriched gene Sets)
approach: Discovery of gene subgroups which

— largely overlap with those associated by the classifier
with a given class

— can be compactly summarized in terms of their
features
 What are features?
— attributes of the original attributes (genes), and

— recent work (SEGS): first-order features generated
from GO, ENTREZ and KEGG
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SEGS: A RSD-like first-order feature
construction approach

First order features with support > min_support

,A):-function

(A,'GO:0046872").
A):-function(A

,'G0O:0004871").
A):-process(A,'GO:0007165").

A):-process(A,'G0O:0044267").
,A):-process(A,'GO:0050874").
,A):-function(A,'G0O:0004871"), process(A,'GO:0050874").

26 A) -component(A,'G0O:0016021").

29,A):- function(A,'G0O:0046872'"), component(A,'GO:0016020".
122,A):-interaction(A,B),function(B,'G0:0004872").

223,A):-interaction(A,B),function(B,'G0O:0004871"),
process(B,'GO:OOO961 3').

f(224,A):-interaction(A,B),function(B,'G0O:0016787"),

component(B,'G0O:0043231").

i
i(8,
f(11
f(14
i
i
i
i
i
i

/

existential




Propositionalization

f1|f2 | £3 | £f4 | £5 | £6 fn
gl|1|loflol1]1]1 1
g2l o |1 |1]o|1]1 0
g3lo|1|1]1]0]o0 1
ga| 1|1 |1]o]|1]1 0
g5| 1| 1|1]o0o]o0]1 0
gl|lo|o|1]1]o0]o0 1
g2| 1 |1]lo]lo|1]1 1
g3|lo|lo|lolo]|1]o0 0
ga| 1 |ofl1]1]1]o0 1
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Propositional learning: subgroup

discovery

1

£1 ||e2 | £3|| £4 | £5 | £6 fn
gl| 1 (lo|oll1]1]1 1
g2l o1 |1l o | 1] 0
g3l o x| 2l 1|00 1
ga| 1 (|1 | 21llo]|1]1 0
g5| 1 (|1 | 21ll o]0 |1 0
gt|olfo| 2l 2] 0] o0 1
g2| 1 (lr |ollo]|1]1 1
g3l oflo|lollo]|1]o0 0
ga| 1 [lo| 2l 1|10 1

f2 and f3
[4,0]
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0

10 10 10

1-0 1-0 1.0 1.0

1.0 1.0 1.0

1.0 1.0
1-0 1.0 1.0

1.0 1.0
1.0

1.0
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights
*Precision = purity of the covered genes



120

Subgroup Discovery

diff. exp. genes Not diff. exp. genes

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy



Summary: SEGS, usingthe RSD ~
approach

. of genes such as

interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding)
Feature subject to constraints (undecomposability, minimum support, ...)

« Then SEGS using these features that
are differentially expressed (e.g., belong to class DIFFEXP of
top 300 most differentially expressed genes) in contrast with
RANDOM genes (randomly selected genes with low
differential expression).

« Sample subgroup description:
diffexp(A) :- interaction(A,B) & function(B,'G0:0004871') &
process(B,'G0:0009613")



Summary: SEGS, usingthe RSD *
approach

 The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

 In past 2-3 years, the SEGS approach proved
effective in several biomedical applications (JBI
2008, ...)

« The work on semantic data mining - using ontologies as
background knowledge for subgroup discovery with SEGS - was
done in collaboration with I.Trajkovski, F. Zelezny and J. Tolar



XX. Talk outline

« Data mining in a nutshell revisited
» Subgroup discovery in a nutshell

» Relational data mining and
propositionalization in a nutshell

« Semantic data mining: Using ontologies in SD
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Introductory seminar lecture

X. JSlI & Knowledge Technologies

l. Introduction
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladenic et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

j|> XXX. Recent advances: Cross-context link
discovery
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The BISON project

« EU project: Bisociation networks for creative
information discovery (www.bisonet.eu), 2008-
2010

* Exploring the idea of bisociation (Arthur

Koestler, The act of creation, 1964):

— The mixture - in one human mind — of two different contexts or
different categories of objects, that are normally considered
separate categories by the processes of the mind.

— The thinking process that is the functional basis of analogical
or metaphoric thinking as compared to logical or associative
thinking.

* Main challenge: Support humans to find new
interesting associations accross domains
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Bisociation (A. Koestler 1964)




127

The BISON project

« BISON challenge: Support humans to find new,
interesting links accross domains, named
bisociations
— across different contexts
— across different types of data and knowledge sources

« Open problems:

— Fusion of heterogeneous data/knowledge sources
Into a joint representation format - a large information
network named BisoNet (consisting of nodes and
relatioships between nodes)

— Finding unexpected, previously unknown links
between BisoNet nodes belonging to different
contexts
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Heterogeneous data sources
(BISON, M. Berthold, 2008)

sSources
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Bridging concepts
(BISON, M. Berthold, 2008)




Chains of associations across domains
(BISON, M. Berthold, 2008)

— ¢ Disease ™
Disease
Geneﬁﬁﬁ
G Comse >
:_\_ L
\ - r'p"___ > b .
_ Gens S
—_— h'\-\_\_\_\_:ll -
“m -~
e ;;:jfgi;qﬁiflnh
_}:penmental Data -
Co-expressed 4 Text
- CO-OCCUres
II-.'_H-—_
GIP-Network: F'r::utem

.encodes...
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Bisociative link discovery
with SEGS and Biomine

« Application: Glioma cancer treatment
« Approach: SEGS+Biomine

— Analysis of microarray data

— SEGS: Find groups of genes

— Biomine: Find cross-context links in biomedical
databases

* Recent work in creative knowledge discovery (in BISON) is
performed in collaboration with

— JSI team: P. Kralj Novak, |. Mozeti¢, M. JursSi¢ and V.
Podpecan

— UH team: H. Toivonen from UH
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SEGS+Biomine approach

Microarray

genel: + +
gene?: +
genel: +

genelN: — —

Gene sets Exploratory

link discovery
SEGS %:) Biomine

b >

e.g. slow-vs-fast

cell growth
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SEGS: BisoNet node identification

Query:

¥ SEGS -- Descriptive Microarray Data Analysis - Mozilla Firefox

File Edit Yiew History Bookmarks Tools  Help

W' c x {ay ||j |'I;Sl,:t:i::Lfkf}.i-j.s'.sif&nfbware)‘ﬁﬁééﬁi‘-ﬂex«p-ihé.?g‘toth:mlc' 5&' o |'|Zb_.\.ém.i.he proﬁcf:_:’p

Most Visited D Petra's Home Page

) SEGS .3 | | Homine roi...| 4D Tulip Softwa...| (@ Tulp Softwa... | -
Main page |
Publications | Project Name: [  (optional}
Web tool |

Annotation data:

M Molecular Functions
W Biological Processes

¥ Cellular Components
I KEGG Orthology

I© Gene interactions

Downloads
® GO&KEGE
® Gane annotations
® Gene interactions
® Gane exprassion data

Constraints:
MNurnber of DE genes: |_3__El_'_8_:. [

Minimal set size: |_213=_ ~ (min=20)

Authors
® Igor Trajkovski
® Mada Lavrac

Cutput:

IMaximal p-value: |-U_'.DS I j
Combine p-values: Fisher 10 GSEa& [.1(@;
Report top |_1ﬂﬁ:f - most enriched gene sats.
¥ Summarize descriptions

- PAGE[10

Upload:

input file:l B | SEND |
OWLEDGE F =
OLOGIES

Jodof Stelan institule -
« | »

¥ Find: [gérr & next @ Previous s Highlight all ™ Match case

| Done i

Results:

IMozilla Firefox

File  Edit  Miew History Bookmarks Tools  Help

W' C 0w | btk sifsoftwarejSEG work_diiphprily

E[aﬂhtﬂ = |'|Zb_'i.ém'i.he proiécfi'fp

Most: Yisited D Petra's Home Page

| htt..tml & |

Project: []
Enriched genesets for class A

found by Combining p-values

X Find: & next W Previous & Highlight all ™ Makch case

| Done

| Biomine proi...| @ Tulp Softwa...| @@ Tulp Softwa... | -




Gene Analytics

Main page

Publications

Web tool

Downloads
e GO &KEGG
® Gene annotations
® Geneinteractions
@ Gene expression data

Authors
® Igor Trajkovski
® NadaLavrac
» Vid Podpecan

o3® JoZef Stefan
®.® Institute

Project Name:
llarsonz 141 | (optional)

Upload:

microarray data file (csv format):

|0\PROJEK TI\Projekti\2006-2008 Inremos\kt| Browse_ |

O only over-expressed genes (logFC >= 0)

® only under-expressed genes (logFC < 0) (absolute values are taken)
O all genes _

do not use genes with absolute logFC value lower than: 0.1 ]

SEGS input:

O Relief ranks

® logFC values

[J do not use genes with Relief rank lower than: | |

Annotation data:
Molecular Functions
Biological Processes
Cellular Components
KEGG Orthology
Gene interactions

HEEEE

Constraints:
Number of DE genes: 1000
Minimal set size: |20 | (min=20)

Output: _
Maximal p-value: 005 v/

Combine p-values: Fisher GSEA 10 PAGE
Report top (100 | most enriched gene sets.

Summarize descriptions

¥l Enable repeatability

random generator seed:

Note: by using the same number you can repeat your experiment!
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Biomine (University of Helsinki)

« The Biomine project develops methods for the
analysis of biological databases that contain
large amounts of rich data:

— annotated sequences,

— proteins,

— orthology groups,

— genes and gene expressions,
— gene and protein interactions,
— PubMed articles,

— ontologies.



Biological databases used in Biomine

136

Vertex type Source database Number of vertices | Mean degree
Article PubMed 330970 6.92
Biological process GOA 10744 6.76
Cellular component |GOA 1807 16.21
Conserved domain Entrez Domains 15727 99.82
Gene Entrez Gene 395611 6.09
Gene cluster UniGene 362155 2.36
Homology group HomoloGene 35478 14.68
Molecular function |GOA 7922 7.28
OMIM entry OMIM 15253 34.35
Protein Entrez Protein 741856 5.36
Structural property Entrez Structure 26425 3.33
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Biomine graph exploration
e Given:

— nodes (~1 mio) correspond to different
concepts (such as gene, protein, domain,
phenotype, biological process, tissue)

— semantically labeled edges (~7 mio) connect
related concepts

e Answer queries:

— Discover links between entities in queries by
sophisticated graph exploration algorithms
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Biomine: Bisociative link discovery
Query: Result:

of - BMV¥i illa Fi -0l x
iomine search - Mozilla Fi i _|ol x| e search results - BMYis - Mozilla Firefox } a| =|
File  Edit Miew History Bookmarks Tools  Help

File Edit Wew History Bookmarks Tools Help

- c A (ay ||j |http:,l’,l’biomine.cs.helsinki.Fi,l’search,l’,l’bmvis.cgi?FiIe=searche ii? = I

g C 2

IE] Most Yisited |__"] Petra's Home Page

4= |:,|’,|’...I.htm| | E Microarray_... ‘ = Gene seten... | “4 Biomine prof... | 3 Tulip SoFtwa...| 3 Tulip SoFtwa...| |j Biomi... &4 | + F * |:uarray_... | = Gene set en.. | & Bioming proj... | 42 Tuip SoFtwa...| 2 Tulip SoFtwa_._| Ij Biornine sea... | Ij Biomi

ATIAL WOWSE
Brcesin rams) \
for /

OCES_WOUSE
Prcegin (mmu) subsumes

(R ||j |htt|:u:,|’,|’bi0mine.cs.helsinki.Fi,l’search,ll '|bi0m\ne search )'T\'

IE] Most Visited C] Petra's Home Page

Nodes View

BIOMINE o

omologous 1

!
. : I‘_m“dmm‘_: Igﬁ/‘f_{“d oz 10 CRRCED_WOUSE
Help  About Biomine po— partlpies i Pt )
Gkne (M) / '/
Amalpha / \
S 1 T3 fomologous _to

| @0:co: 0015077 Go:co: 0015672 e ]

Dil\‘lclr*w{'lﬁ'}:.
T s homoogius_to ,
e DR | Proinima)
| haz_tinca /
partcipasss n || ATRIAD
' \\“,f_ ang
thadcal proseln, " N -
wonefcel) O Iy sacs has Ainéden eRreg_tor Yor
g,‘ ena ical) betongs,
. algntinceganls ¢.
B L e belonas
ot _tor »
ATIA_MuMA
bsdongs s Broesin

bstongs_to

mcdoliTHA_DROWE
Promin (AMe) belongs_w

COAWNT_WOUSEASE_for ATRaze_cata_suk ]
. Proeein (M) Famlly
coa 7 kY
/ canrezy
hcdon Gkne fame)

bstongs _to

| bsdongs_te has_ticden
Y D1ZWRE_WOUSE Ainctonally_gssoclan_to cotys_for
- befongs_to ! b = =
AT124_WOUSE Brcesin rms) = o
Brcesin rms) POOTIE_CAEEL
Pragan o) Eciongg_to )
e = AT1A4_WOUSE
Brasein (s BEORZE 5 conba e CUEERT T
| OZT4E1_CAEEL ! \
subsufues Pronsin feafi Pl
4| | |

X Find: Igarr ‘ ext " Previous e Highlight all T~ Matgch case X Find: | garr ‘ ext " Previous e Highlight all [~ Matgch case

| Done & | Applet biomine, bmvis, BMyis started S




Summary

SEGS discovers interesting gene group descriptions as
conjunctions of concepts (possibly from different
contexts/ontologies)

Biomine finds cross-context links (paths) between
concepts discovered by SEGS

The SEGS+Biomine approach has the potential for
creative knowledge and bisociative link discovery

Preliminary results in stem cell microarray data analysis
(EMBC 2009, ICCC Computational Creativity 2010)
indicate that the SEGS+Biomine methodology may lead
to new insights — in vitro experiments will be planned at
NIB to verify and validate the preliminary insights
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Cross-context link discovery in Text Mining,M

Web Mining and Social Network Analysis:

First attempts

Cross-context link
discovery

Cross-context links in text
documents, web pages,
cross-domain links in
social networks, ...

Text/Web Mining,
Social Network Analysis

Goal of the rest of these slides:

Establish a cCross-context link
with lectures on text mining and semantic web by Dunja Mladeni¢

0
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OntoSight & OntoGen Demo

* OntoSight

— Application that helps the user decide which data to
iInclude into the process and how to set the weights,

— developed by Miha Grcar

« OntoGen

— A system for data-driven semi-automatic ontology
construction

— Developed by Blaz Fortuna, Marko Grobelnik, Dunja
Mladenic
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OntoSight

 Visualization
— Networks
— Semantic spaces

* |nteraction with the
user

* Helps the user decide
which data to include
into the process and
how to set the weights




Contextualisation inText Mining: '«
Context creation through OntoGen

« OntoGen: A system for data-driven semi-
automated ontology construction from text
documents

— Semi-automatic: it is an interactive tool that aids the
user

— Data-driven: aid provided by the system is based on
some underlying data provided by the user

« SEKT technology
(http://sekt-project.orqg)

* Freely available at http://ontogen.ijs.si




:@ OntoGen -- Text Garden - ?{'

File  Abaout

Concepts Ontology details

Mew Move Delete Ontology visualization | Concept’s documents Concept Yisualization

E| ,j annotation, event, document
N e |j map, features, gazetteer f
------ |J anniotation, gate, corpus
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------ ] document, resource, data test,
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5wk Kepwords: | indexed, files, stz property, exception E“épﬁnn Sub Concept-0f bl
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OnkoGen news: onkoGen won Best Demao Sward at ESWAC EIII_IIIEu




Contextualisation inText Mining:
OntoGen context visualisation
with DocumentAtias

« Context visualisation in OntoGen using
DocumentAtlas

— Use as aid to the user in choosing document clusters
forming ontology (sub)concepts

— Use as means for domain understanding via
visualisation
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Contextualisation inText Mining:
Contextualised search

« (Google search is

sophisticated but not smarf====

- -@ 0 (G [l htfwww google.com/
P Getting Started &3 Latest Headines

D) Cifeeos-

Web Images

Maps News

Shopping Gmail more ¥

fahoo!

fle Edt View Hstory Bookmarks Took Help

marko.grobelnik@gmail.com | iGoogle | My Account | Sign out

Google

earch - Web Search - Mozilla

refox

Adver

@ - @ G [ hip:jsearch.yahoo.com/
# Getting Started &3 Latest Headines

Web | Images | Video | Local | Shopping | more

s omms-  YAHOO!

Done

) Live Search - Mozilla Firefox

Fle Edt View Hstory Bookmarks Took Help

<@ - @ G R hip e ive.com/ ~[p] |

# Getting Started &3 Latest Headines

Live Search | MSN | Windows Live

Web | More v

£ Live Search

Clonly English  CIOnly from Slovenia

4

©2008 Microsot | Privacy | Legal Webimasters | Help | Feedback
Done

Options | Advanced Search




Exampie

Google search is
sophisticated but
not smart

E.g., query
“jJaguar” has
many
meanings...

..but the first
page of search
engines doesn't
provide us with
many answers _~

...there are 84M
more results

Searcning 1or s
‘Jaguar”

©} jaguar, - Google Search - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

# Getting Started B Latest Headlines
Web Images Maps MNews Shopping Grmaill more =

marko.grobelnik@gmail.com | ¥Web History | Wy Account | Sign out

<ZI - @ ’.""|. http f v, google com/search?hl=endq=jac| | b | [Gl+|c |*\]

Ea

GOLJSIQ jacuar | [Search ] Adunced Seach
/\

Web Images Results 1- 10 of abodt 84,200,000f0r jaguar [definition]. (0.05 seconds)

Jaguar
Official worldwide web site of Jaguar Cars. Directs
markets and model-specific websites.
whirwe jaguar.com/d - Similar pages - Mote 1l

s to pages tailored to country-specific

Jaguar UK - Jaguar,
Jaguar XF. TEST
Privacy Policy

Ults frormn weanw. j30Uar. com s

Jaarar US - Home
aguar USA official website. ... Build Your Jaguar. Reguest Brochure. Get Email Updates.

Locate a Dealer. Search Your Profile Site Map Contact Us Privacy ...
whwrwe jaguarusa.com/ - 20k - Cached - Similar pages - MNote this

Jaguar - Wikipedia, the free encyclopedia

The jaguar (Fanthera onca, pronounced M3saegjuad in British English, or Mdsagwar! in
Armerican English) is a Mew Warld mammal of the Felidae family and one ...
en.wikipedia. orgfwikifdaguar - 153k - Cached - Similar pages - Note this

Jaguar Cars
English - Frangais.
wwrwe jaguar.cal - 4k - Cached - Similar pages - Mote this

Done




ontext sensitive search with

http:/searchpoint.ijs.si

Developed by
Bostjan
Pajntar and

{Z jaguar - SearchPoint - Windows Internet Explorer

- |§, http: /fsearchpoint.ijs.si/Result.aspx

V|"? K | |P

File Edit WView Favorites Tools Help
Google [Cl~

* "1'#7 ['_r.éjaguar—SearmPoint

]

. v:Go “5 @ ﬁ v 9% Bookmarksw TageRenk S] 189 blocked ":}Check * % Autolink ~

=] AutoF BSend tor |
ﬁ - B @Q - |2k Page - {3} Tools

@ Settings+

149

Marko
Grobelnik

Query
Conceptual map ~—7

H Search via topics ] [

Search via query to ontology

] [ Search via hits to ontology ]

:‘ ) |jaguar

} Jaguar
General information and facts from Big Cats Online.
Http:/fwww.abf30 dial_pipex.com/jaguar_htm

(59) Jaguar, Jaguar Profile, Facts, Information, Photos, Pictures ..
Get jaguar profile, facts, information, photos, pictures, sounds. habitats. reports, news, and
more from MNational Geographic.

fittp:/fanimals_nationalgeographic_com/animals/mamnalolaceesr

mpiererIal - VvIkipedia, the free encyclopedia

The jaguar (Panthera onca) is a New World mammal of the Felida
cats” in the Panthera genus, along with i
http:/fen wikiped] ==

our "big

Search
Point

Dynamic
contextual
ranking based
on the search
point

(11) Jaguar

waguar Facts. Jaguar Photos and Jaguars in the news at the world’s largest big cat rescue and
sanctuary.

http:/fwww_bigcatrescue.orgfjaguar.htm

(1) Jaguar

Official worldwide web site of Jaguar Cars. Directs users to pages tailored to country-specific
markets.

http:/fwww_jaguar.com/

(32) Jaguar

Contains extensive information about the Jaguar. Information includes habitat, body size, and
life span.

http:/fwww.abf30 dial_pipex.com/bcofjaguar. htm

(2) Jaguar UK - Jaguar Cars

Jaguar & Ownership. Highlights. Gallery. Models & Pricing. Design Your XK. TEST DRIVE.
Brochure. Dealer. eNewsletter ...

http:/fwww _jaguar.co.uk/

(17) Jaguar Enthusiasts' Club

World's largest audited membership. UK-based, JEC's site has extensive resources available
for the enthusiast, including information about their Sections, ...

http:/fwww _jec.org.uk/

(20) San Diego Zoo's Animal Bytes: Jaguar
Get fun and interesting jaguar facts in an easy-to-read style from the San Diego Zoo's Animal

Mamymalia
Parts and
i Accessories
Vehicles .nce
onupplné MFL
Sports
Makes and Top
Models Recreation =~ @/
Games
Enthusiasts Society
Console
Aircraft Platforms
Avigtion

v

Done

& Internet * 100% <




Introductory seminar lecture:

Summary

JSI & Knowledge Technologies

Introduction to Data mining and KDD

— Data Mining and KDD process

— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive

and descriptive DM

Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

Recent advances: Cross-context link
discovery

150
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Part ll. Predictive DM techniques

=)« Naive Bayesian classifier
» Decision tree learning
» Classification rule learning
 Classifier evaluation
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Bayesian methods

« Bayesian methods — simple but powerful
classification methods
— Based on Bayesian formula

p(DIH)

H|D)=
p( ) (D)

p(H)

* Main methods:
— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course
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Naive Bayesian classifier

* Probability of class, for given attribute values
pv,..v, lc;)

p(v,..v)

» For all G; compute probability p(G;), given values v, of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(G; |v))

p(c.1v;)
pc.lv,.v )= p(c,)- /
P / H plc;)
 Qutput Cy,ax With maximal posterior probability of class:

p(c;lv..v,)=p(c;)

Cyux =argmax.; p(c;lv,..v,)



Naive Bayesian classifier

p(c;-v..v,) _ pv,..v, lc.)-p(c;) _
p(v,..v,) p(v,..v)
Hp(vi lcj)'p(ci)

p(v,..v,) pv..v,) =

plc;lv..v,)=

p(c;)

_ p(cj) Hp(cjlvi).p(vi):

H p(v;) p(c;lv;) p(c;lv;)
"o L] p(c)) =re)]] p(c))
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Semi-naive Bayesian classifier

* Naive Bayesian estimation of probabilities

(reliable) p(c,1v) ple;1v,)

p(c;)  p(c;)

« Semi-naive Bayesian estimation of
probabilities (less reliable)

p(c;lv;,v,)
p(c;)
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Probability estimation

» Relative frequency:
n(c;)
N

n(c;,v;)
,P(Cj lv,) = j=1. .k, for k classes
n(v;)

p(c;)=

 Prior probability: Laplace law
n(c,;)+1
N + &k

p(Cj)Z

e m-estimate:

n(c;)+m- pa(c;)
N +m

p(c;)=
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Probability estimation: intuition

« Experiment with N trials, n successful
- Estimate probability of success of next trial
* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.g.,
1/1=1
- Laplace: (n+1)/(N+2), (n+1)/(N+Kk), k classes
— Assumes uniform distribution of classes
 m-estimate: (n+m.pa)/(N+m)

— Prior probability of success pa, parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )
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Explanation of Bayesian
classifier

Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p (%)
Explanation based of the sum of information gains of

individual attribute values v, (Kononenko and Bratko 1991,
Kononenko 1993)

—log(p(c;lv..v,)) =

=—log(p(c,)) —Zn:(—log p(c;)+log(p(c;1v,))

i=1

* log p denotes binary logarithm
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Example of explanation of semi-naive
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden lli -0.3

Fracture classification acc. To Pauwels = Pauwels lli -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks
Combination: 0.63
Therapy = Artroplastic AND anticoagulant therapy = Yes
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Naive Bayesian classifier

Naive Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

It achieves good classification accuracy

— can be used as ‘gold standard’ for comparison with
other classifiers

Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

Successful in many application domains
— Web page and document classification
— Medical diagnosis and prognosis, ...
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Improved classification accuracy due ™

to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. | m-estimate
Primary tumor 48.20% 952.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
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Part ll. Predictive DM techniques

* Naive Bayesian classifier
=) « Decision tree learning

» Classification rule learning

 Classifier evaluation
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lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
O16 ore-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

019-023

024  presbyopic hypermetrope yes normal NONE
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Decision tree for
contact lenses recommendation

tear prod.

reduced/// \\\\\\Efnnal
NONE
nz// yes
myope / \hypermetrope

HARD NONE
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Decision tree for
contact lenses recommendation

reduced / N?rmal

no es
[N=12,S+H=0] / y

[S=5,H+N=1] ~ MYOP® / \hypermetrope

HARD NONE
[H=3,S+N=2] [N=2, S+H=1]




PlayTennis: Training examples

Day Outlook = Temperature = Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision tree representation
for PlayTennis

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lormal STr‘ong/\Weak
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation
for PlayTennis

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lormal smng/\weak
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
'} ( Outlook=Overcast )
vV ( Outlook=Rain A Wind=Weak )
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PlayTennis:
Other representations

* Logical expression for PlayTennis=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

« Converting a tree to if-then rules
— IF Outlook=Sunny A Humidity=Normal THEN PlayTennis=Yes
— IF Outlook=Overcast THEN PlayTennis=Yes
— IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayTennis=No
— IF Outlook=Rain A Wind=Strong THEN PlayTennis=No
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PlayTennis: Using a decision tree for
classification

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lormal smng/\weak
No Yes No Yes

Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis = No, because Outlook=Sunny A Humidity=High



172

Appropriate problems for

decision tree learning

 Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

« Characteristics:
— instances described by attribute-value pairs
(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)

— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Learning of decision trees

« |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree

— If all examples from S belong to the same class Cj
* then label the root with Cj

— else

* select the ‘most informative’ attribute A with values
vl, v2, ... vn

« divide training set S into S1,..., Sh according to
values v1,...,vn
* recursively build sub-trees ‘”/ W

T1,...,Tn for S1,...,Sn @ @
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Search heuristics in ID3

e Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

* Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used Iin
iInformation theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.
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Entropy

« S - training set, C,,...,Cy - classes

« Entropy E(S) — measure of the impurity of
training set S

N
E (S ): — Z D. .log , D, p. - prior probability of class C,
" (relative frequency of C, in S)

« Entropy in binary classification problems

E(S) = - p, log,p, - p_log,p.
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Entropy

* E(S) =-p,logzp, - p.logzp.
* The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

0o /\
08 / N\
07 / N\
@ 06 / \
Zos| [/ \
£,/ \
a sl \
ool / \
o1 |/ \
ol \ \ \
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S Is:

p. (-log,p, )+ p.(-log,p.) =-p,log,p, - p_log,p.



PlayTennis: Entropy

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) = - p. logzp, - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

5.1 1S (151, 151

E(S):_(m lngIj (ISI lngIj

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940
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PlayTennis: Entropy

* E(S)=-p,log,p,-p.log,p.
« E(9+,5-) =-(9/14)log,(9/14) - (5/14) log,(5/14) = 0.940

Sun {D1,02,D8,D9,D11} [2+,3-] E=0.970
Outlook? (D3D7.D12,013)  [4+ 0-] E=0
{D4,D5,D6,010,D14} [3+,2-] E=0.970

y [3+,4-] E=0.985
Humidity? Nermal—. [6+,1-] E=0.592
Wea [6+,2-] E=0.811

Wind? SHerg—  [3+,3-] E=1.00
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Information gain
search heuristic

* Information gain measure is aimed to minimize the

number of tests needed for the classification of a new

object

« Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain(S,A)=E(S)— ). M-E(Sv)

veValues(A) |S|

* Most informative attribute: max Gain(S,A)
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Information gain
search heuristic

 Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+, 2—] [3+, 3-] [9+, 0—] [0+, 5-]
E=0.811 E=1.00 F=0.0 F=0.0

« Gain(S,A1) =0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048
 Gain(S,A2) =0.94 -0=0.94 A2 has max Gain
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PlayTennis: Information gain

Gain(S,A)=E(S)— Y 3,0

veValues(A) |S|

« Values(Wind) = {Weak, Strong}
Wea [6+,2-] E=0.811

Wind? Strorg—  [3+,3-] E=1.00
~ S=[9+,5], E(S)=0.940
— Suear = [6+,2-], E(Syex) = 0.811
— Sqrong = [3+,3], E(Sqrong) = 1.0
— Gain(S,Wind) = E(S) - (8/14)E(S
(8/14)x0.811 - (6/14)x1.0=0.048

weak )

strong )

- (6/14)E(S

weak)

strong)

= 0.940 -
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PlayTennis: Information gain

« Which attribute is the best?
— Gain(S,0Outlook)=0.246 MAX |
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S, Temperature)=0.029
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PlayTennis: Information gain

Rain . {D4,D5,D6,D10,D14} [3+, 2-] E>0???

Outlook?
Overcast
S {D3,D7,012,D13}  [4+,0-] E=0 OK - assign class Yes
unny
(D1,D2,08,D9. D11} [2+ 3-] E>0 ???,>

 Which attribute should be tested here?

— Gain(S.,, ., Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny?

— Gain(S Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

sunny?

— Gain(S.,.,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny?
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Probability estimates

. RelatL\Ile freq#enclylf ; | p(Class| Cond) =
problems with small samples ' (ClassCond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
* Laplace estimate : _ n(Class.Cond)+1 ; _»
— assumes uniform prior  n(Cond)+k

distribution of k classes

[6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— if all examples belong to same class C;, label the
leaf with G,

—If all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning

186
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Pruning of decision trees

 Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
* erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples
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Handling noise — Tree pruning

« Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
 post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3



190

Prediction of breast cancer
recurrence: Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
Age no_recur 125 no_recur 30 ho_recur 27
recurrence 39 recurrence 18 recurrence 10
no_recur 4

recurrence 1 ho_recur 4

no_rec 4 recl



Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— on unseen instances

How accurate is a decision tree when classifying unseen
iInstances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
 split the example set into training set (e.g. 70%) and test set (e.g. 30%)
 induce a decision tree from training set, compute its accuracy on test
set
Error =1 - Accuracy

High error may indicate data overfitting
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Overfitting and accuracy

« Typical relation between tree size and accuracy

0.9
0.85 —
0.8 //
s L~
0.7 // R
0.65 / Lﬁ
0.6
0.55
0.5 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100

120

—On training data
——On test data

« Question: how to prune optimally?

192



193

Avoiding overfitting

« How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

forward pruning considered inferior (myopic)
post pruning makes use of sub trees
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How to select the “best” tree

« Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

« Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)

— until further pruning is harmful DO:

« for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

« greedily select the node whose removal most improves tree
accuracy over the validation set

« MDL: minimize
size(tree)+size(misclassifications(tree))
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Selected decision/regression
tree learners

 Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (Seeb5, Quinlan)
— J48 (available in WEKA)

« Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5

* Implemented as part of the WEKA data mining
workbench

« Handling noisy data: post-pruning
« Handling incompletely specified training
Instances: ‘unknown’ values (?)

— In learning assign conditional probability of value v:
p(v|C) = p(vC) / p(C)

— In classification: follow all branches, weighted by
prior prob. of missing attribute values
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Other features of C4.5

 Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until two
groups remain *
* ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— iIf an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
IS the majority class of the parent of the NULL leaf

* the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping



Part ll. Predictive DM techniques

* Naive Bayesian classifier
» Decision tree learning

ﬂ‘C
« C

assification rule learning
assifier evaluation
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Rule Learning in a Nutshell

Person Age Spect. presc.| Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE

018  presbyopic myope no normal NONE
019-023
024  presbyopic hypermetrope yes normal NONE

data

knowledge discovery
from data

Rule learning

Model: a set of rules

Patterns: individual rules

Given: transaction data table, relational database (a set of

objects, described by attribute values)

Find: a classification model in the form of a set of rules;
or a set of interesting patterns in the form of individual

rules
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Rule set representation

* Rule base is a disjunctive set of conjunctive rules

« Standard form of rules:
|F Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

 Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

 Rule base: {R1, R2, R3, ..., DefaultRule}
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Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT

O15  ore-presbyc hypermetrope yes reduced NONE
O16  ore-presbyc hypermetrope yes normal NONE

O17  presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE
019-023

024  presbyopic hypermetrope yes normal NONE



Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &

spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE
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Rule learning

« Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
 Learning an unordered set of rules
» Learning an ordered list of rules
 Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to

an unordered rule set

reduced / Nﬁ)rmal

o / »
[N=12,S+H=0]
[S=5,H+N=1]  MYOP® / \hypermetrope

HARD NONE
[H=3,S+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to
decision list

reduced / N?rmal

NONE astigmatism

no/ yes
[N=12,S+H=0]

[S=5,H+N=1]  MYOP® / \hypermetrope

HARD NONE
[H=3,5+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

« Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NO
02 young myope no normal YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
05 young hypermetrope no reduced NO

06-013
O14  ore-presbyc hypermetrope no normal YES
O15 Dore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
O17  presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

019-023
024  presbyopic hypermetrope yes normal NO
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Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes Ci, ..., Cx

for each class Ci do o+ ||
— Ei := Pi U Ni (Pi pos., Ni neg.) + t,
— RuleBase(Ci) := empty - |4 +

— repeat {learn-set-of-rules}

* learn-one-rule R covering some positive
examples and no negatives

» add R to RuleBase(Ci)
* delete from Pi all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples




211

Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples
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Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples

Rule2: Cl=+ « Cond8 AND Condé6
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Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples

Rule2: Cl=+ « Cond8 AND Condé6



PlayTennis: Training examples

Day Outlook = Temperature = Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No

214
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Heuristics for learn-one-rule:
PlayTennis example

PlayTennis = yes [9+,5-] (14)

PlayTennis = yes « Wind=weak [6+,2-] (8)
< Wind=strong [3+,3-] (6)
< Humidity=normal [6+,1-] (7)

— ...
PlayTennis = yes < Humidity=normal
Outlook=sunny [2+,0-] (2)
— ...

Estimating rule accuracy (rule precision) with the probability that
a covered example is positive

A(Class < Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

6+,1-] (7) = 6/7, [2+,0] (2) = 2/2 = 1
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Probability estimates

. RelatL\Ile freq#enclylf ; | p(Class| Cond) =
problems with small samples ' n(ClassCond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
* Laplace estimate : _ n(Class.Cond)+1 ; _»
— assumes uniform prior  n(Cond)+k

distribution of k classes

[6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4
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Learn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl « Cond
from the RuleBase.

Specializarion R’ of rule R = Cl «~ Cond
has the form R’ = Cl « Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule:
Greedy vs. beam search

 |learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking
— e.g., the best descendant of the initial rule
PlayTennis = yes «
— Is rule PlayTennis = yes <« Humidity=normal

* peam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Learn-one-rule as search:
PlayTennis example

Play tennis = yes IF

Play tennis = yes

. Play tennis = yes
IF Wind=weak

| IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny



Learn-one-rule as heuristic search:

PlayTennis example

Play tennis = yes IF [9+,5—] (14)

Play tennis = yes
IF Wind=weak
[6+,2—] (8)

Play tennis = yes
IF Humidity=high

Play tennis = yes Play ’rgnnis = yes [3+,4-] (7)
IF Wind=strong ~ L1F Humidity=normal

[3+,3-1 (6) [6+,1-1(7)

Play tennis = yes
IF Humidity=normal,

Wind=weak Play tennis = yes
_ _ IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, = IF Humidity=normal,

Wind=strong Outlook=sunny
[2+,0-] (2)

0
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What is “high” rule accuracy
(rule precision) ?

Rule evaluation measures:

— aimed at maximizing classification accuracy

— minimizing Error = 1 - Accuracy

— avoiding overfitting
BUT: Rule accuracy/precision should be traded
off against the “default” accuracy/precision of the

rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

Relative accuracy
— RAcc(Cl «Cond) = p(CIl | Cond) — p(Cl)
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Weighted relative accuracy

If a rule covers a single example, its accuracy/precision
IS either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

Weighted relative accuracy
WRAcc(Cl<—Cond) = p(Cond) . [p(Cl | Cond) — p(Cl)]

WRACcc is a fundamental rule evaluation measure:

— WRACcc can be used if you want to assess both accuracy and
significance

— WRAcc can be used if you want to compare rules with different
heads and bodies
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Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl < Cond from RuleBase.

Expected classification accuracy: A(R) = p(CIl|Cond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)

Information gain (decrease in the information needed):
IG(R’,R) = log,p(Cl|Cond’) - log,p(CIl|Cond)

Weighted measures favoring more general rules: WAG, WIG
WAG(R’,R) =

p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))
Weighted relative accuracy trades off coverage and relative

accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))



Ordered set of rules:
If-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
iInstance: rules are sequentially tried and the first

rule that fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
E

CUI’)
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Sequential covering algorithm
(similar as in Mitchell’s book)

RuleBase := empty
E. =E

repeat

— learn-one-rule R

— RuleBase := RuleBase U R

— E.; = Eg, - {eXamples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
Ecur:= E

repeat

— learn-one-rule R

— RuleBase := RuleBase U R

— E.. == E., - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E_ ) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E_)
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Learn-one-rule:
Beam search in CN2

« Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

» performance (R, E_) : - Entropy(E_,)
— performance(R, E.,) < ThresholdR (neg. num.)
— Why? Ent. > t is bad, Perf. = -Ent < -t is bad
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Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification
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Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.



Part ll. Predictive DM techniques

* Naive Bayesian classifier
» Decision tree learning

. C
> e C

assification rule learning
assifier evaluation
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Classifier evaluation

Accuracy and Error
n-fold cross-validation

Confusion matrix
ROC
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Evaluating hypotheses

« Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

- Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

« split the example set into training set (e.g. 70%) to
iInduce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance



n-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U, T,=D

for i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T,
— induce classifier H, from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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ePartition i i i -
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ePartition

Train
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Confusion matrix and
rule (in)accuracy

« Accuracy of a classifier is measured as TP+TN / N.

* Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

« Conclusion: classification accuracy is not always an
appropriate rule quality measure



Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

 also called contingency table

Classifier 1

Predicted positive

Predicted negative
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Positive examples 40 10 50
Negative examples 10 40 50
50 50 100

Classifier 2

Predicted positive

Predicted negative

Positive examples 30 20 50
Negative examples 0 50 50
30 70 100




ROC space

True positive rate =
#true pos. / #pos.

— TPr, = 40/50 = 80%
— TPr, =30/50 = 60%
False positive rate
= #false pos. / #negq.
— FPr, =10/50 = 20%
— FPr,=0/50 = 0%
ROC space has
— FPron X axis
— TPronY axis

True positive rate

Classifier 1
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100%

80%

60% ;

40%

20%

0%

Predicted positive | Predicted negative
Positive examples 40 10 50
Negative examples 10 40 50 ClaSS'if'ier 2
50 50 100
Predicted positive | Predicted negative

Positive examples 30 20 50

Negative examples 0 50 50

30 70 100

0%

20%

40%
False positive r

60%
ate

80%

100%



The ROC space

true positive rate

100%

80%

60%

40%

20%

0% 20% 40% 60%

false positive rate

& Confirmation rules
® WRAcc
CN2

80%

100%
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The ROC convex hull

true positive rate

100%
//

80% / =

60% / >

40% /

20%

0%
0% 20% 40% 60% 80% 100%
false positive rate
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Summary of evaluation

 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

 ROC analysis is very natural for rule learning
and subgroup discovery
— can take costs into account
— here used for evaluation
— also possible to use as search heuristic
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Part lll. Numeric prediction

jl> Baseline

* Linear Regression
* Regression tree
 Model Tree
« kNN
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class




« data about 80 people: Age and Height

Example
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Height

2,

1.5

¢ Height

50
Age

100

Age ([ Height
2 1.03
a 1.149
g 1.26
g 1.249
1% 1.649
149 1.67
22 1.86
25 1.85
41 1.549
A .60
! 1.90
7 1.82




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6
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Baseline numeric predictor

« Average of the target variable

248

20

40

Age

+ Height

= Average predictor _

60

80

100
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Baseline predictor: prediction

Average of the target variable is 1.63

Age Height |Baseline

2 0.85
10 1.4
35 1.7

70 1.6
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Linear Regression Model

Height = 0.0056 * Age + 1.4181

2.5
= ST ae?0e® % Suptls ¥ ="
.o}-,*”*.-z.-':”,.¢$ .« ® o
= 15 .ﬁﬁ-
3 é
I 1 ?
0.5 + Height —
= Prediction
O I | | |
0 20 40 60 80 100
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Linear Regression: prediction

Height = 0.0056 * Age + 1.4181

Linear
Age Height |regression
2 0.85
10 1.4
35 1.7

70 1.6
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Regression tree

==124 =12.48
Ui ins 3350)
Height =
1.7096
2 PR LA Ag Do %, .
it § =
1.5 - e ¢ T
% $
e 17
T
0.5 + Height
m Prediction
0 ‘
0 50 100
Age
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Regression tree: prediction

==12.5

Regression

Height |tree
0.85

10 1.4

35 1.7

70 1.6




Model tree

==12.5

//“’

Height =

0.0333 * Age
+ 1.1366

Height

+ Height
= Prediction

40

60
Age

80

100

=12.5

—

Height =
0.0011 * Age
+ 1.6692
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Model tree: prediction

Age Height |Model tree
2 0.85
10 1.4
35 1.7
70 1.6 A

==12.5 =12.5

_— T~

Height = Height =
0.0333 * Age 0.0011 * Age

+ 1.1366 + 1.6692



KNN — K nearest neighbors

« Looks at K closest examples (by age) and predicts the

average of their target variable

K=3
2.00 3 N
1.80 - HH,; sofiss m ir » .
m gl .
1.60 - w 002* !0 '.r. 0’1 '0
1.40
= 1.20
N
= 1.00 r
L2
T 0.80 |
0.60 )
0.40 + Height
0.20 = Prediction KNN, n=3
0.00 ‘ ‘ ‘ ‘
0 20 40 60 80 100

Age
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KNN prediction

Age ‘ Height \

0.90

0.99
1.01

1.03

1.07

1.19

OO —=|—

1.17

Age Height KININ
2 0.85
10 1.4
35 1.7
70 1.6
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KNN prediction

Age

Height

.36

1.33

1.45

“lco|w©|oo|oo

1.39

1.49

1.66

1.52

1.59

Age Height KININ
2 0.85
10 1.4
35 1.7
70 1.6

Al —

1.58
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KNN prediction

Age Height KINMN
2 0.85
10 1.4
35 1.7
70 1.6

‘ Age || Height \
30 1.57
30 1.88
31 1.71
34 1.55
37 1.65
37 1.80
38 1.60
39 1.69
39 1.80
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KNN prediction

Age

Height

KNN

0.85

10

1.4

35

1.7

70

1.6

| Age H Height \
6/ 1.56
67/ 1.87
69 1.67
69 1.86
71 1.74
71 1.82
/2 1.70
/6 1.88
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Which predictor is the best?

Linear |Regression
Age Height | Baseline | regression tree Model tree KNN
2 10.85] 1.63 | 1.43 1.39 1.20 | 1.01
10 | 1.4 | 1.63 | 1.4/ 1.46 1.47 | 1.51
35 | 1.7 | 1.63 | 1.61 1.71 1.71 1.67
/0 | 1.6 | 1.63 | 1.81 1.71 1.75 | 1.81
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Evaluating numeric prediction

Performance measure

Formula

mean-squared error

root mean-squared error

mean absolute error

relative squared error

root relative squared error

relative absolute error

correlation coefficient

(m—a) +..+(p,—a)

n
[(p—a) +...+(p,~a,)
¥ n
oy —a|+...+|p, —a,
n
Pr=a) 4ot r—a) L]
(B~} +.. +(a,,—a)2' b Hzfa‘

,(P1 a) +.. +(Pn a,)°
X 3-8y +... 400, ~FY
oy —=al+...+|p, —a,l
la, —al+...+la, —a|

St (pi—p)a —a
S;,_S;‘ where SPA—E e )
__:Zi(pf-p) ds,q-sz

n-1 n-1
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Part IV. Descriptive DM techniques

j>- Predictive vs. descriptive induction
« Subgroup discovery
 Association rule learning
 Hierarchical clustering
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Predictive vs. descriptive
induction

 Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis
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Descriptive DM

Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used
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Descriptive DM

* Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
 describe associations, dependencies, ...
« discovery of properties and constraints

« Segmentation
— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Predictive vs. descriptive
induction: A rule learning
perspective

* Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction
tasks

* Descriptive induction: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria
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Supervised vs. unsupervised
learning: A rule learning
perspective

« Supervised learning: Rules are induced from
labeled instances (training examples with class
assignment) - usually used in predictive induction

* Unsupervised learning: Rules are induced from
unlabeled instances (training examples with no
class assignment) - usually used in descriptive
induction

« Exception: Subgroup discovery

Discovers individual rules describing interesting
regularities in the data from labeled examples
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction

j>- Subgroup discovery
 Association rule learning

 Hierarchical clustering
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Subgroup Discovery

Given: a population of individuals and a target
class label (the property of individuals we are
iInterested in)

Find: population subgroups that are statistically
most interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)
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Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Subgroup Discovery:
Medical Case Study

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstacic)
A1 for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD « bodyMassIndex > 25 & age >63

A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECQG)

A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight
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Subgroup visualization

subjects’

Subgroups of
patients with
CHD risk

[Gamberger, Lavrac
& Wettschereck,
IDAMAP2002]



274

Subgroups vs. classifiers

« C(Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
« Subgroups:
— Rules describing subgroups aim at significantly higher proportion of
positives
— Each rule is an independent chunk of knowledge
 Link
— SD can be viewed as
cost-sensitive
classification
— Instead of FNcostwe
aim at increased TPprofit

positives

true
positives
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

« Only first few rules induced by the covering
algorithm have sufficient support (coverage)

« Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

» ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(Class|Cond) = (n_+1) / (n_ ,.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
pP(Cond) (p(Class|Cond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelinood ratio statistics)
Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering

« Standard covering approach:
covered examples are deleted from current training set

« Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
- Additive weights: w(e,i) = 1/(i+1)
w (e, i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

10 10 4,

1.0 1.0 1.0 1.0

1-0 1-0 1.0 1.0

1.0 1.0 Lo 1.0
) 1.0

1-0 1.0 1.0
1.0
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Subgroup Discovery

Rule1: Cl=+ « Cond6 AND Cond?2

Positive examples Negative examples
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Subgroup Discovery

Positive examples Negative examples

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples




CN2-SD: Weighted WRAcc Search
Heuristic

+ Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl « Cond) = p(Cond) (p(CIl|Cond) - p(Cl))

iIncreased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRAcc(Cl < Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N")
— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction
« Subgroup discovery

j>- Association rule learning
 Hierarchical clustering
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Association Rule Learning

Rules: X =>Y, if XthenY

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions M2 e i50
itemsets (records) o1 0
t2 0 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
» Support: Sup(X,Y) = #XY/#D = p(XY)
» Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= P(XY)/p(X) = p(Y|X)
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Association Rule Learning:
Examples

« Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items
— Confidence 65%: 65% of customers that buy beer and coke
also buy peanuts and chips
* Insurance
— mortgage & loans & savings = insurance (2%, 62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have mortgage,
loan and savings also have insurance



Association rule learning

X=Y ... IFXTHENY, where Xand Y are itemsets
Intuitive meaning: transactions that contain X tend to contain Y

Items - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff less_1_hour

Example transactions — itemsets formed of patient records

i1 i2 ... ... 150
t1 1 0 0
t2 0 1 0

Association rules
spondylitic = arthritic & stiff_gt_1_hour [5%, 70%]
arthrotic & spondylotic = stiff less_1_hour [20%, 90%)]
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification
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Searching for the associations

Find all large itemsets

Use the large itemsets to generate
association rules

If XY Is a large itemset, compute
r =support(XY) / support(X)

If r > MinConf, then X = Y holds
(support > MinSup, as XY is large)
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Large itemsets

« Large itemsets are itemsets that appear in at
least MinSup transaction

 All subsets of a large itemset are large
itemsets (e.qg., if A,B appears in at least
MinSup transactions, so do A and B)

« This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)
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Association vs. Classification

rules

« Exploration of
dependencies

 Different combinations
of dependent and
independent attributes

« Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search (subset
of rules found)
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction
« Subgroup discovery
 Association rule learning

j>- Hierarchical clustering
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Hierarchical clustering

° AlgOrlthm (agglomerative ° DendOgram

hierarchical clustering):

I | o
Y M
. . e
Each instance is a cluster; \
repeat S 1 TSN S (S ——— L -

find nearest pair Ciin Cj;
fuse Ciin C; in a new cluster |::>
C=CU Cj;

determine dissimilarities between
C: and other clusters;

until one cluster left; AIT_I_‘ ‘ ‘
m M| v

of OF O3 04 O5 OF OF O8 O 0D 011 012 013 014

cluster level




Hierarchical clustering

* Fusing the nearest pair of clusters
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« Minimizing intra-cluster
similarity

¢ | * Maximizing inter-cluster

similarity

d(C] ’ Ck )

&Q NQ
Y
0
o
p
9
S

« Computing the dissimilaritiesﬁ
from the “new” cluster
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Hierarchical clustering: example

X Yy Z W V xy) z w v

A
x| 0(1)1 5 58 (xy)| 0 141 5 566
b v | y 0 141424 5 5 0 441 5
+ |
I F z 0 441 5 w 0 @
1= Lo w 0o 1
NIET v 0
N ¥ 0
l] 1I L L] L] L] }
a) sample problem b) dissimilarity matrix c) dissimilarity matrix after 'fusing’
elements X and y
(y) z (wyv) (x.y.z) (wyv) e L8 0
ey | o 5.6 xy2| o et | | I
0 5 T3
z (wil“) D _.2
—_——— ] = 1.4
(w.v) 0 = e —+1
O R R O

d) dissimilarity matrix after fusing' f) dendrogram

elements w and v

e) dissimilarity matrix after
fusing' cluster (x,y) and
element z
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Results of clustering

Ptah - [Clustering of Samples] - A dendogram Of
=| File Analyses Graph Options Window Help = resistance VeCtorS
v DR IE- S S BB 7 =
Antibiotics: (BETAL),AM,CB,CC,CFP,CIP,CIX,CPM,CT,GMMETNET,P [Bohanec et al., “PTAH:
Bacterium: 110 STAPHYLOCOCCUS AUREUS ’ .
1 . orw A system for supporting

1R, E...RB nosocomial infection

v R ——— therapy”, IDAMAP
3 _.E B B

........ book, 1997]

1 ... B._.... B

fo B
. B =
9 _—

1 . ... —

1 __E.ERE_RE__E

1 __E..E..RR.__E

3 __ R E___RE._R

2 ... EE. .E [ ]
1 ... .. E.RE__E

s 2 e Ee g F—

1 .. B... . EE

3 __E.ERE. R

- gerEEs ® _

2 _.E.E.R.E....

. rrmoEm

1 __E.E..E___E

1R EE.__R

From: 1-1-94 To: 3-3-95 Samples: ¥9 Antibiotics: 13 Bacteria: 1
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Part V:
Relational Data Mining

) Learning as search

 What is RDM?
* Propositionalization techniques
* Inductive Logic Programming




298

Learning as search

Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph

— nodes: concept descriptions (hypotheses/rules)

— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child

Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}

Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}

Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayTennis example

Play tennis = yes IF

Play tennis = yes

. Play tennis = yes
IF Wind=weak

| IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong ~ L1F Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:
PlayTennis example

Play tennis = yes IF [9+,5—] (14)

Play tennis = yes
IF Wind=weak
[6+,2—] (8)

Play tennis = yes
IF Humidity=high

Play tennis = yes Play ’rgnnis = yes [3+,4-] (7)
IF Wind=strong ~ L1F Humidity=normal

[3+,3-1 (6) [6+,1-1(7)

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes

IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0-] (2)



301

Learning as search
(Mitchell’s version space model)

too general

more
| I
O

« Hypothesis language L,
defines the state space

* How to structure the
hypothesis space L,?

more
general

e How to move from one
hypothesis to another?

complete and consis

« The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

C)
S specific
v
too specific
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Learning as search

Search/move by applying
generalization and

specialization .
generalize

Prune generalizations:

— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

Prune specializations:

— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

C
A v
specialize
v
too specific
C
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Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy
 depth-first
 breath-first
* heuristic search (best first, hill-climbing, beam search)

— search heuristics

« measure of attribute ‘informativity’

« measure of ‘expected classification accuracy’ (relative
frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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Learn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl « Cond
from the RuleBase.

Specializarion R’ of rule R = Cl «~ Cond
has the form R’ = Cl « Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

 |learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking
— e.g., the best descendant of the initial rule
PlayTennis = yes «
— Is rule PlayTennis = yes <« Humidity=normal

* peam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Part V:
Relational Data Mining

« Learning as search

) What is RDM?

* Propositionalization techniques
* Inductive Logic Programming
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Predictive relational DM

 Data stored in relational databases

 Single relation - propositional DM

— example is a tuple of values of a fixed number of
attributes (one attribute is a class)

— example set is a table (simple field values)

« Multiple relations - relational DM (ILP)

— example is a tuple or a set of tuples
(logical fact or set of logical facts)

— example set is a set of tables (simple or complex
structured objects as field values)



Data for propositional DM

Sample single relation data table

ID |Name |First [Street|Caty [Zap  |Sex  |Social [l [Age |Club |Hes
MNaune: Slalms|oome Slalus|ponse
ID |Zip (S |So(In [A|C] [Re
ex |9t (come|gelub |Sp
34TE|Smilh |John |38, Sarn 34677 [male |gingle [iG0 5 ¥ mom oo
|J=_:|.|ﬂ_1. 'Fill!'l'-ﬂT'l T[}I: hﬂr T'l_}_'. ann ann ann .. ann ann [uun ann
Dr o 3478|34677|m |si |60-70|32[me [nr
3479|Duve  |Tae |43, |loven- [3666 [fawalefwar- |if0- k5 |oon- |res- 3479/43666]f [ma|80-9045nmfre
Sea [tion ted |90k menm- [ponse
Ct ber Customer table for analysis.
Rasic cuplomor Lable
ID |Zip |S [So[m [A[C] [Re|DeliverjPaymt |Store [Store  [Store
ex|qt [comelgelub [P [Mode |Mode [Size |Type |Locatn
3478|34677|m [si |60-70|32|/me|nr |regular|cash |small [franchiselcity
3479|43666|f |ma|80-90|45nm|re |express|credit |large [|indep [|rural

Customer table including order and store information.
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Multi-relational data made
propositional

ID |Zi S |So (In. |A |C] |Re[Delivery |Paymt [Store |Store  [St
e Sample P 1l30 [Bmegefoh (B (e [oanet [Btore [itere [Pt
relation 3478(34677|m [si |60-70|32|melur |regular |cash |small |franchiselcity
3478(34677|m [si |60-70[32|me|nr |express |check [small [franchise|city
table 3478(34677|m [si [60-70[32|me|nr [regular |check [large [indep |rural
3479(43666|f |ma|80-90(45|nm|re |express [credit [large [indep (|rural
3479|43666|f |ma(80-90(45|nmre [regular |credit [small |franchise|city
Customer table with multiple orders.
¢ ID |Zi In A ! .
Maklng data ip gx % I el % %.E No. of Qrders|No. of Stores
9 y 3478|3467 m |si |60-70(32|melnr |3 2
2 2

3479)43666|f |ma(80-90/45 nmjre

Customer table using summary attributes.



Relational Data Mining (ILP)

Learning from multiple
tables

Complex relational
problems:

— temporal data: time
series in medicine,
trafic control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

customer
ID |Zip (S |So|In. |A|C] |Re
S €X |5t |come |gelyb |SP
347834677 |m [si  |60-70|32|me |nr
3479(43666(f |ma|80-90|45|nm|re
/ order
Customer [Qrder [Store [Delivery |Paymt
ID ID ID \ Mode |Mode
3478 2140267(12 regular  |cash
3478 344677812 express |check
3478 4728386|17 regular |check
3479 3233444|17 xpress |credit
3479 347588612 gular  |credit
\ store
Store ID|Size [Type |Location
12 small |franchise |city
17 large lindep  |rural

Relational representation of customers, orders and stores.
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Basic Relational Data Mining tasks

Predictive RDM m
o

Descriptive RDM
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Predictive ILP

« Given:
— A set of observations
 positive examples E *
* negative examples E -
— background knowledge B
— hypothesis language L,
— covers relation

* Find:
A hypothesis He L, such that (given B) H
covers all positive and no negative examples

* Inlogic, find H such that
— VYVee E*:B A H|= e (His complete)
— Vee E":B A H|=/=¢e (His consistent)

* InILP, E are ground facts, Band H are
(sets of) definite clauses



313

Predictive ILP

« Given:
— A set of observations
 positive examples E *
* negative examples E -

— background knowledge B
— hypothesis language L,
— covers relation

— quality criterion

* Find:
A hypothesis He L, such that (given B) His

optimal w.r.t. some quahty criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis He L, such
that (given B) H covers all positive and no
negative examples)



Descriptive ILP

Given:

— A set of observations
(positive examples E )

— background knowledge B

— hypothesis language L,

— covers relation

Find:
Maximally specific hypothesis He L, such
that (given B) H covers all positive examples

In logic, find H such that Yce H, cis true in
some preferred model of BUE (e.g., least
Herbrand model M (B UE))

In ILP, E are ground facts, B are (sets of)
general clauses

314
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Sample problem
Knowledge discovery

= {daughter (mary, ann) , daughter (eve, tom) }

E "=
E = {daughter (tom, ann), daughter (eve, ann) }

B = {mother (ann, mary), mother (ann, tom),
father (tom,eve), father(tom, 1an), female (ann)

female(mary) female (eve), male(pat),male(tom),
parent (X,Y) < mother (X,Y), parent(X,Y) <«
father (X,Y) }
ann
mary tom

/N

eve ian



Sample problem
Knowledge discovery

E*ﬁ={daughter(mary,ann),daughter(eve,tom)}
E'=={daughter(tom,ann),daughter(eve,ann)}
B=={mother(ann,mary),mother(ann,tom),father(tom,eve)
father (tom, 1an), female (ann), female (mary), female (eve)
male (pat),male(tom), parent (X, Y)<«mother (X,Y),

parent (X, Y)<«father (X,Y) }

’
4

Predictive ILP - Induce a definite clause

daughter (X,Y) <« female (X), parent(Y,X).
or a set of definite clauses

daughter (X,Y) <« female(X), mother (Y, X).

daughter (X,Y) <« female(X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses

< daughter (X,Y), mother (X,Y).
female (X) < daughter (X,Y).

mother (X,Y); father (X,Y) <« parent(X,Y).
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Sample problem
Logic programming

E”={sort([2,1,31,11,2,31)}
E = {sort([2,1],[1]),so0rt([3,1,2],12,1,31)}

B : definitions of permutation/2 and sorted/1
* Predictive ILP

sort (X,Y) & permutation(X,Y), sorted(Y).
* Descriptive ILP

sorted(Y) ¢ sort(X,Y).

permutation(X,Y) €& sort(X,Y)
sorted (X) € sort (X, X)
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Sample problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

Limm

GRS Y Liﬂ



RDM knowledge representation™
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
11 ct circle 1 t1 TRUE
12 c2 hexagon 1 t2 TRUE
13 c3 triangle 1
14 c4 rectangle 3 t6 FALSE

T
CAR "TRAIN SHAPE LENGTH ROOF WHEBRS
ct t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2

0o

o~
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ER diagram for East-West trains
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ILP representation:
Datalog ground facts

Example: ‘ O | qu
eastbound(t1). *

Background theory:

car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,11). load(c2,12). load(c3,13). load(c4,14).
circle(I1). hexagon(l2).  triangle(I3). rectangle(14).
one_load(l1). one_load(l2). one_load(I3). three_loads(l4).

Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).
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ILP representation:
Datalog ground clauses

B

Example:
eastbound(t1):-
car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
load(c1,I1),circle(I1),one_load(I1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,12),hexagon(l2),one_load(I2),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),tiwo_wheels(c3),
load(c3,13),triangle(l3),one_load(l3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(14),three_load(14).

Background theory: empty

Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).
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ILP representation: Prolog terms

« Example:

eastbound([c(rectangle,short,none,2,l(circle,1)),
c(rectangle,long,none,3,I(hexagon,1)),
c(rectangle,short,peaked,2,l(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

« Background theory: member/2, arg/3

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).



324

First-order representations

. representations:
— datacase is
— features are those given in the dataset

« First-order representations:

— datacase is flexible-size, structured object
e sequence, set, graph
* hierarchical: e.g. set of sequences

— features need to be selected from potentially infinite set
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Complexity of RDM problems

« Simplest case: single table with primary key
— example corresponds to tuple of constants
— attribute-value or propositional learning
* Next: single table without primary key
— example corresponds to set of tuples of constants
— problem
« Complexity resides in many-to-one foreign keys
— lists, sets, multisets
— non-determinate variables
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Part V:
Relational Data Mining

« Learning as search
 What is RDM?

j> Propositionalization techniques
* Inductive Logic Programming
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Rule learning:
The standard view

« Hypothesis construction: find a set of nrules

— usually simplified by n separate rule constructions
« exception: HYPER

* Rule construction: find a pair (Head, Body)

— e.g. select head (class) and construct body by
searching the VersionSpace
« exceptions: CN2, APRIORI

« Body construction: find a set of m literals

— usually simplified by adding one literal at a time
« problem (ILP): literals introducing new variables



Rule learning revisited

Hypothesis construction: find a set of nrules
Rule construction: find a pair (Head, Body)

Body construction: find a set of m features

— Features can be either defined by background knowledge or
constructed through constructive induction

— In propositional learning features may increase expressiveness
through negation

— Every ILP system does constructive induction

Feature construction: find a set of k literals

— finding interesting features is discovery task rather than classification
task e.g. interesting subgroups, frequent itemsets

— excellent results achieved also by feature construction through
predictive propositional learning and ILP (Srinivasan)
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First-order feature construction

 All the expressiveness of ILP is in the features

» Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)



Standard LINUS

Example: learning family relationships

Training examples

Background knowledge

daughter(sue,ewe). (+) [parent(eve,sue). female(ann).
daughter(ann,pat). (+) |parent(ann,tom). female(sue).
daughter(tom,ann).  (-) |parent(pat,ann). female(ewe).
daughter(eve,ann). (-) [parent(tom,sue).

Transformation to propositional form:

Class | Variables Propositional features
X Y fX) | f(Y) | pOX,X) | p(X,Y) | p(Y,X) | p(Y,Y) X=Y
@ sue | eve | true | true | false | false | true false false
@ ann | pat | true | false | false | false | true false false
© |tom | ann | false | true | false | false | true false false
o eve | ann | true | true | false | false | false | false false

Result of propositional rule learning:

Class = @ if (female(X) = true) A (parent(Y,X) = true
Transformation to program clause form:

daughter(X,Y) « female(X),parent(Y,X)
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Representation issues (1)

* In the database and Datalog ground fact
representations individual examples are not
easily separable

« Term and Datalog ground clause
representations enable the separation of
iIndividuals

« Term representation collects all information
about an individual in one structured term
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Representation issues (2)

* Term representation provides strong
language bias

* Term representation can be flattened to be
described by ground facts, using

— structural predicates (e.g. car(t1,c1),
load(c1,l1)) to introduce substructures

— utility predicates, to define properties of
invididuals (e.g. long(t1)) or their parts
(e.g., long(c1), circle(l1)).

* This observation can be used as a language
bias to construct new features
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Declarative bias for first-order

feature construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,
molecules) or their parts (e.g., cars, atoms)

Epature construction in LINUS, using the following language
las:

one free global variable (denoting an individual, e.g. train)

one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

all variables should be used
parameter: max. number of predicates forming a feature
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Sample first-order features

The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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Propositionalization in a nutshelli

D

Tloog]

Propositionalization task

Transform a multi-relational
(multiple-table)
representation to a
propositional representation
(single table)

Proposed in ILP systems

LINUS (1991), 1BC (1999), ...

TRAIN_TABLE
LOAD CAR CRIET NWER. TRAIN EAS TBOUND
I cl arde 1 t1 TRUE
B > BE t2 TRUE
I8 3 triagke 1 I
4 ot rectige 3 B t6 FAL SE
CAR TRAIN SHAPE LENGTH ROOF WHEHRS
ci t1 rectangle short none 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked 2
c4 t1 rectangle long none 2 I
PROPOSITIONAL TRAIN_TABLE
train(T) f1(T)  f2(T) f3(T) f4(T) f5(T)
t1 t t f t t
t2 t t t t t
t3 f f t f f
t4 t f t f f




6

Propositionalization in a nutshell

Main propositionalization step: . .. e o mN;:ﬁjlf
first-order feature construction & 2 wan 1 | BT
I8 3 triagke 1
2o rdmde 3 i t6 FAL SE

f1(T):-hasCar(T,C),clength(C,short). f """

f2(T):-hasCar(T,C), hasLoad(C,L), CAR TRAIN SHAPE LENGTH ROOF WHEES
. ci t1 rectangle short none 2
|OadSha pe(L,CII‘C|e) c2 t1 rectangle long none I

3
f3 (T) . c3 t1 rectangle short peaked 2
oo c4 t1 rectangle long none 2 I

Propositional learning:

t(T) « f1(T), f4(T) PROPOSITIONAL TRAIN_TABLE
train(T) f1(T)  f2(T) f3(T) f4(T) f5(T)
t1 t t f t t
Relational interpretation: Ii ; : I ; :
eastbound(T) < t4 t f t f f

hasShortCar(T),hasClosedCar(T). BN -]
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LINUS revisited

« Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

* Revisited LINUS:

— Systematic first-order feature construction in a given
language bias

 Too many features?
— use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHaslLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:

eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-
not (hasCar(T,C1),cshape(C1,ellipse)),
(T,C2),clength(C2,short),croof(C2,flat)),
(T,C

,G3),croof(C3,peak),cwheels(C3,2)).

not (hasCar
not (hasCar
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Part V:
Relational Data Mining

« Learning as search
 What is RDM?
* Propositionalization techniques

j> Inductive Logic Programming
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ILP as search of program clauses

* An ILP learner can be described by
— the structure of the space of clauses

* based on the generality relation

 Let C and D be two clauses.
C is more general than D (C |= D) iff

covers(D) c covers(C)
« Example: p(X,Y) « r(Y,X) is more general than
P(X,Y) < r(Y,X), a(X)

— Its search strategy

 uninformed search (depth-first, breadth-first, iterative
deepening)

* heuristic search (best-first, hill-climbing, beam search)
— its heuristics

« for directing search

« for stopping search (quality criterion)
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ILP as search of program clauses

« Semantic generality
Hypothesis H, is semantically more general than H, w.r.t.

background theory Bifandonly if Bu H, |= H,
« Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause ¢, 8-subsumes ¢, (¢, = ,C,)
if and only if 36: ¢,6 < c,
— Hypothesis H, > 6 H,
if and only if V¢, € H, exists ¢, € H, such that ¢, > 8¢,
« Example
c1 = daughter(X,Y) < parent(Y,X)
c2 = daughter(mary,ann) < female(mary),
parent(ann,mary),

parent(ann,tom).
c1 @-subsumes ¢, under 8= {X/mary,Y/ann}
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The role of subsumption in ILP

Generality ordering for hypotheses

Pruning of the search space:

— generalization

« if C covers a neg. example then its generalizations need
not be considered

— specialization

« if C doesn’t cover a pos. example then its specializations
need not be considered

Top-down search of refinement graphs
Bottom-up search of the hypo. space by

— building least general generalizations, and
— Inverting resolutions



Structuring the
hypothesis space

)
flies(X) «

too general 4
O
more
flies(X) « bird(X) .“"% general

flies(X) « bird(X),
normal(X) Lo o R
O O

more
| I
O

@
5 & specific
v
too specific
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Two strategies for learning

» General-to-specific

— If ®-subsumption is used then refinement
operators

« Specific-to-general search

— If ®-subsumption is used then Igg-operator or
generalization operator
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ILP as search of program clauses

» Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
e inverting resolution (CIGOL)
* inverting entailment (PROGOL)



More general
(induction)

A

v

More
specific
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Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). ® | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). 6 | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) « Part of the refinement
female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.
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Greedy search of the best clause

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). ® | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). 6 | parent(tom,ian).

daughter(X,Y) <« 2/4

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z)
2/3

daughter(X,Y) <« female(X)

A

daughter(X,Y) « daughter(X,Y) «
female (X) 1,2 female(X) 2,2
female(Y) parent(Y,X)



FOIL

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, in/out modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C
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Part V: Summary

 RDM extends DM by allowing multiple tables
describing structured data

« Complexity of representation and therefore of
learning is determined by one-to-many links

 Many RDM problems are individual-centred
and therefore allow strong declarative bias



