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Jozef Stefan Institute - Profile

+ Jozef Stefan Institute (founded in 1949) is the
leading national research organization in
natural sciences and technology
— information and communication technologies
— chemistry, biochemistry & nanotechnology
— physics, nuclear technology and safety

« Jozef Stefan International Postgraduate School
(founded in 2004) offers MSc and PhD programs
— ICT, nanotechnology, ecotechnology
— research oriented, basic + management courses
— in English

+ ~ 500 researchers and students

Department of Knowledge Technologies

+ Mission:

— Cutting-edge research and applications of knowledge
technologies, including data, text and web mining, machine
learning, decision support, human language technologies,
knowledge management, and other information technologies that
support the acquisition, management, modelling and use of
knowledge and data.

+ Staff:
— 36 researchers and support staff + 15 students and external
collaborators
« National funding (1/3):
— Basic research project “Knowledge Technologies”
— 16 National R&D projects, client applications
+ EU funding (2/3):

— In FP6:

« 6 IP projects, 9 STREP projects, 1 FET STREP project
« 1 Network of Excellence,

« 4 Specific Support Actions, Coordination Actions

« 4 bilateral projects




Department of Knowledge Technologies
Summary Profile

* Machine learning & Data mining
— ML (decision tree and rule learning, subgroup discovery, .
— Text and Web mining
— Relational data mining - inductive logic programming
— Equation discovery
» Other research areas:
— Semantic Web and Ontologies
— Knowledge management
— Decision support
— Human language technologies
» Applications in medicine, ecological modeling,
business, virtual enterprises, ...
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Semantic Web applications
Marketing and news analysis
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- Digitalization of Slovene cultural
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Basic Data Mining process

=

dafa model, patterns, ...

discovery

from data

Data Mining

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...

Data Mining and Machine Learning

Machine learning techniques * Data mining applications
— classification rule learning — medicine, health care
— subgroup discovery — ecology, agriculture

— relational data mining and — knowledge management,
ILP virtual organizations

— equation discovery

— inductive databases T
Data mining and decision | 7% 4
support integration )

Relational data mining: domain
knowledge = relational database

domain
knowledge
Data Background

knowledg

Semantic data mining: domain
knowledge = ontologies

ontologies

Data Domain

knowledg




Basic DM and DS processes

discovery

from data

Data Mining

dafa model, patterns, ...

Input: transaction data table, relational database, text documents, Web pages
Goal: build a classification model, find interesting patterns in data, ...

mutli-criteria modeling

Decision Support

models

experts
Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives

Decision support tools: DEXi

wiiee

L L et

e

DEXi supports : =
. if-then analysis |75l
. analysis of stability
. Time analysis

ﬁz

i

how explanation
why explanation

DM and DS integration

Data Decision

support

Basic Text and Web Mining process

knowledge discovery
from text data and Wel)

Text/Web Mining

eb pages model, patterns,
visualizations,

Input: text documents, Web pages

Goal: text categorization, user modeling, data visualization...

Text Mining and Semantic Web

Document-Atlas

Content-Land

Semantic-Graphs =
Contexter

OntoGen
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Knowledge Technologies context of
Data Mining course

Knowledge technologies are advanced information technologies,
enabling

— acquisition

— storage

— modeling

— management

of large amounts of data and knowledge

Main emphasis of Department of Knowledge technologies research:

developin knowled%e technologies techniques and applications,
aimed at dealing with information flood of heterogeneous data
sources in solving hard decision making problems

Main emphasis of this Data Mining course:

presentation of data mining techniques that enable automated
model construction through knowledge extraction from tabular data

22

Knowledge Technologies:
Main research areas & IPS lectures

Knowledge Technologies
(Artificial Intelligence)

L N \
Data Mining

(knowledge discovery from

data, text, web, multimedia)

Lavra¢, Mladeni¢, Cestnik,
Kralj Novak, Fortuna

Knowledge
Management
Lavra¢, Mladeni¢

M Decision

Human Language Support

Technologies Bohanec
Erjavec

Introductory seminar lecture

X. JSI & Knowledge Technologies

|:> I. Introduction

— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladeni¢ et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery
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Part I. Introduction

I:>Data Mining and the KDD process
» DM standards, tools and visualization

+ Classification of Data Mining techniques:
Predictive and descriptive DM




What is DM

« Extraction of useful information from data:
discovering relationships that have not
previously been known

« The viewpoint in this course: Data Mining is
the application of Machine Learning
techniques to solve real-life data analysis
problems
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Related areas

Database technology
and data warehouses
« efficient storage,
access and
manipulation
of data

databases

visualization
pattern

recognition

Related areas

Statistics,

machine learning,
pattern recognition
and soft computing®

« classification
techniques and
techniques for
knowledge extraction
from data

databases
text and Web .
mining

soft

machine
learning

visualization
pattern

recognition

*neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning
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Related areas

Text and Web mining
« Web page analysis
+ text categorization
acquisition, filtering
and structuring of

textual information

< natural language
processing

databases

text and Web
mining

pattern
recognition

Related areas

Visualization

« visualization of data
and discovered
knowledge

pattern
recognitiol

30

Point of view in this course

Knowledge
discovery using databases
machine
learning et
methods




Data Mining, ML and Statistics

+ All areas have a long tradition of developing inductive
techniques for data analysis.
— reasoning from properties of a data sample to properties of a
population
» DM vs. ML - Viewpoint in this course:
— Data Mining is the application of Machine Learning techniques to
hard real-life data analysis problems
+ DM vs. Statistics:
— Statistics
« Hypothesis testing when certain theoretical expectations
about the data distribution, independence, random sampling,
sample size, etc. are satisfied
« Main approach: best fitting all the available data
— Data mining
« Automated construction of understandable patterns, and
structured models
« Main approach: structuring the data space, heuristic search
for decision trees, rules, ... covering (parts of) the data space
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Data Mining and KDD

+ KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

» Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process

KDD process of discovering useful knowledge from data

Trans- Daa Incerpretation/
formation

&
] Pre-
- =) Selection processing Mining Evaluation

Target I Prepocesspd ITransfnrmedI Patterns I Knowledge
Data

Data ata

Data

+ KDD process involves several phases:
* data preparation
« data mining (machine learning, statistics)
« evaluation and use of discovered patterns

» Data mining is the key step, but represents only
15%-25% of the entire KDD process

4

MEDIANA - analysis of media research data

.‘ @ Data Interpretation/
p g Mining Evaluation
_— ﬁ A ? E = T

Data

Target Prepocesspd Transformed Patterns Knowledge
Data Data

» Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

» Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
interest for specific topics in media, social status

» good quality, “clean” data

« table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)

MEDIANA - media research pilot studyas

)

Data_

Pre- Trans- Y Interpretation/
Selection [ processing formation Evaluation
S @ ) (e e,

Target Preprocessed | Transformed |  Patterns Knowledge
Data Data Data

+ Patterns uncovering regularities concerning:
— Which other journals/magazines are read by readers of
a particular journal/magazine ?
— What are the properties of individuals that are
consumers of a particular media offer ?
— Which properties are distinctive for readers of different
journals ?
» Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)
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Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223 3 reads_Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads_Delo 157 (0.78)
4. reads_Money (Denar) 197 - reads_Delo 150 (0.76)

5. reads_Vip 181 & reads_Delo 134 (0.74)
Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also

Delo.




Simplified association rules

1. reads_Sara 332 > reads_Slovenske novice 211 (0.64)
2. reads_Ljubezenske zgodbe 283 >
reads_Slovenske novice 174 (0.61)
3. reads_Dolenijski list 520 >
reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
5. reads_Delavska enotnost 177 >
reads_Slovenske novice 102 (0.58)
Most of the readers of Sara, Love stories, Dolenjska
new, Omama in Workers new read also Slovenian
news.

Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.
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Decision tree

Finding reader profiles: decision tree for classifying people
into readers and non-readers of a teenage magazine

Part I. Introduction

40

Antena. Data Mining and the KDD process
y“@\g :> DM st.a.nde.lrds, tools anq \./lsuahzatl.on
Doesntread  Visiing Disco Clubs + Classification of Data Mining techniques:

% \ Predictive and descriptive DM
Interest in music, astrology, Interest in astrology
PRE N\
oesrtresd  Reads Gender Rea
oenrtress  Resis / yem.-,.e
41 42
CRISP Data Mining Process
CRISP-DM g

» Cross-Industry Standard Process for DM

* A collaborative, 18-months partially EC
founded project started in July 1997

* NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

+ DM from art to engineering

* Views DM more broadly than Fayyad et al.
(actually DM is treated as KDD process):

Interpretation/

)
e
=521 | Selection [ processmg furmancn I"lmlng E Evamauon
‘ >

I Target I Preprocessed Trans(ormed Patterns I Knowledge
ata Dat:

Data_

Business Data
Understanding Understanding

Modelling
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DM tools

35 KDNuggets Directory: Data Mining and Knowledge Discovery - Netscape

Miew Go Communicator Help

] jookmarks ;. Lacatiors [btp: /v kdruggets.com/

] @ what's Related I

KDNuggets.com Path: K DMuggets Home : -
Wﬁ Tools (Siftware) for Data Mining and Knowledge Discovery
ewsletter
Jaks Exnail new submissions and changes to editor@kdnuggets.com
Companies
dobs + Suites supporting muliple discovery tasks and data preparation
Courses  Classification -- for buiding a classification model
KDD-99° Approach: Multigle | Decision tree | Rules | Neural network | Bayesian | Other
Solutions * Clustering - for finding clusters or segments
Websites - Statistics, Estimation and Regression
 Links and ations - for fnding links, dependency networks, and
Meetings ° ial Patterns - tools for finding sequential patterns
—  Visualization - scientific and discovery-oriented visualization
o - Text and Web Mining
- Deviation and Fraud Detection =
- Reporting and Summarization
- Data Transformation and Cleaning
X e :
o 5] *OLAP and Analysis =
Eilal [Dosument Dane 7

Public DM tools

+ WEKA - Waikato Environment for Knowledge
Analysis

* Orange, Oranged4WS
» KNIME - Konstanz Information Miner
* R - Bioconductor, ...
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Visualization

+ can be used on its own (usually for
description and summarization tasks)

» can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization

46

Data visualization:
Scatter plot

DB Miner: Association rule v
visualization
ot Goey View idow Dot Holp

1= = 5 e 2

| o oot = Level. [over

=l meesa] g [T TS o
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MineSet: Decision tree visualization
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Orange: Visual programming and
subgroup discovery visualization

Tt

Discrelze Lineat Profection

el hp

> dlass=enb

ahypeyes aarheyes - class=emb
D_fioi=32.20 ecghlv=no > elass=ermb
D_chol=¢=6.30 D_fir=>4.20 hypo=no > class=ermb
D_age=>66.00 fhis=yes > class=emb
D_age=>66.00 D_chol=¢=630 5 class=erb
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Part I. Introduction

Data Mining and the KDD process
DM standards, tools and visualization

Classification of Data Mining techniques:
Predictive and descriptive DM

Types of DM tasks

« Predictive DM:
— Classification (learning of rules, decision H
trees, ...) '

— Prediction and estimation (regression)
— Predictive relational DM (ILP)
« Descriptive DM:

— description and summarization

— dependency analysis (association rule o
learning)

— discovery of properties and constraints @ 0 H

— segmentation (clustering)

— subgroup discovery
« Text, Web and image analysis

52

Predictive vs. descriptive induction

Predictive induction

N

Descriptive induction

G
>

Predictive vs. descriptive induction

+ Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

+ Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis

Predictive DM formulated as a
machine learning task:

Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)
Al A2 A3 Class
examplel vy Vi, Vi3 C,
example2 Vv, Voo Vog C,

By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

(Ai=vi) & (Aj=v;)) & ... P Class = C,




Data Mining in a Nutshell

knowledge discovery
from data

= o
’ Data Mining ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

Data Mining in a Nutshell

knowledge discovery
from data

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

symbolic model
symbolic patterns A\

black box classifier explanation 1 ™~

no ha

new unclassified instance | classified instance
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Predictive DM - Classification

» data are objects, characterized with attributes -
they belong to different classes (discrete labels)

+ given objects described with attribute values,
induce a model to predict different classes

+ decision trees, if-then rules, discriminant
analysis, ...

Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  Dore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  odre-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023 ..
024  presbyopic hypermetrope yes normal NONE

58

Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

tear prod.

reduced / N?rmal

yes
sort

myope hypermetrope
HARD NONE

Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X 2 C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE

60
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NO
02 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
05 young  hypermetrope no reduced NO

06-013
014  ore-presbyc hypermetrope no normal YES
015  ore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
017  presbyopic myope no reduced NO
018  presbyopic myope no normal NO

019-023 ..
024 presbyopic hypermetrope yes normal NO

lllustrative example:
Customer data

Customer Gender Age Income Spent | BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
c15 male 56 44000 12000 no
clé male 36 102000 13800 no
cl7 female 57 215000 29300 yes
ci8 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

Customer data: Decision trees

<102000 / > 102000
<58 >58
Lm0 | [ yes |
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Customer data:
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X 2 Y, if X then Y
X, Y conjunctions of items (binary-valued attributes)

1. Age > 52 & BigSpender = no & Sex = male
2. Age > 52 & BigSpender = no 2
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no

Predictive DM - Estimation

« often referred to as regression

« data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

+ given objects described with attribute values, induce a
model to predict the numeric class value

* regression trees, linear and logistic regression, ANN,
kNN, ...
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Customer data:
regression tree

<108000 / > 108000
a0 |
542.V >425
‘ 16500 ‘ ‘ 26700 ‘

In the nodes one usually has
Predicted value +- st. deviation




Relational Data Mining (Inductive Logic?
Programming) in a Nutshell

IS knowledge discovery
s2oe from data

Relational Data Mining

il v L Gl model, patterns, ...

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns
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Relational Data Mining (ILP)

Learning from multiple
tables

Complex relational
problems:

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

Mutagenesis

=
Ay
]

Relational Data Mining (ILP)

Custamer
D |Zip |S [So|la  [A|CI [Re
xSt [camelge b s

[3478(34677 m si

order
%ubomer %dcr I%T I\D‘cﬂhdv:ry Mag;c

3478 (214026712 |\ [regular |cash
3478 [3446778/12  \lexpress |check
3478 4726386|17  fregular |check
3479 (323344417 ress [credit
3479 34758861 lar  [credit

Stare ID[Size [Type |Locatian

12 iselci
17 large [indep  |rural

Relational representation of customers, orders and stores.

70

[ ader
T

s [siuerliz \fropse casn
s fssiemsh \egrow ek
s [srasoses e oo
s [t foprem i
v sz it

Reluionn epesencaton of astmr, andes 2 scees

ID Zip Sex |Soc St |Income |Age Club | Resp

3478 34667 |m si 60-70 |32 me nr
3479 |43666 ma 80-90 |45 nm re

—

Basic table for analysis

ID Zip Sex |Soc St |Income |Age Club | Resp

3478 |34667 |m si 60-70 |32 me nr
3479 43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(Id,Zip,Sex,So0St,In,Age,Club Re)

Prolog facts describing data in Table 2:
customer(3478,34667 m,si,60-70,32,me,nr).
customer(3479,43666,f ma,80-90,45,nm,re).

Expressing a property of a relation:
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Relational Data Mining (ILP)

Data bases: Logic programming:

« Name of relation p * Predicate symbol p
« Attribute of p « Argument of predicate p
* n-tuple <vi,..,va>=rowin < Ground fact p(v, ..., Va)
a relational table « Definition of predicate p
« relation p = set of n-tuples = + Set of ground facts
refational table « Prolog clause or a set of Prolog
clauses

Example predicate definition:

good_customer(C) :-
customer(C,_.female, , , , ,

order(C,_,_,_,creditcard).




XX. Talk outline

> Data mining in a nutshell revisited
» Subgroup discovery in a nutshell

» Relational data mining and
propositionalization in a nutshell
« Semantic data mining: Using ontologies in SD

Data Mining in a nutshell

Ferson | Age | Spent presc Asign [ Tearpod Temes | knowledge discovery
or T yomg | myape [ o reducad | NONE |

Toducod | NONE
02 yong | myopm | o nomal | SOFT from data

05 | jowo | mope | yes | rdned | NOWE

0 youg mop | yes | roma

05| Young pomaticpe] o | duced | NONE

o501 L
014 brepeesby(ypermetiopeno | pomal | SOFT Data Mining
015 roproty( ypometiope| yes | ediced | NONE

016 o sty pemetrpsyes | roma | NONE

17 prosoyopc myopo | no redeed | NOKE

016 prvonc more | None

model, patterns, ...

024 _prosbyopic ypermetrope yes | nomal | NONE

data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

74
Part I: Summary Introductory seminar lecture
« KDD is the overall process of discovering useful X. JSI & Knowledge Technologies
knowledge in data I. Introduction
— many steps including data preparation, cleaning, — Data Mining and KDD process
transformation, pre-processing — DM standards, tools and visualization
» Data Mining is the data analysis phase in KDD Classificati ’fD Mini hni - Predicti
— DM takes only 15%-25% of the effort of the overall KDD = Classification of Data Mining techniques: Predictive
process Y 197022570 and descriptive DM
— employing techniques from machine learning and statistics g\fl1la1d)enié etal. Ch. 1 and 11, Kononenko & Kukar
» Predictive and descriptive induction have different ) L .
goals: classifier vs. pattern discovery I:> XX. Selected data mining techniques:
« Many application areas Advanced subgroup discovery techniques
. n lication:
» Many powerful tools available and applications .
XXX. Recent advances: Cross-context link
discovery
75 76

Example: Learning a classification
model from contact lens data

Person | Age | Spect. presc._Astigm. Tear prod.__Lenses

of young myope no | reduced  NONE

02 | young myope no  nomal  SOFT

03 young myope yes | reduced  NONE

04 | young myope yes | normal  HARD

05 | young hypermetrope| no | reduced  NONE Data Mining
06-013 .

014 ore-presbychypermetrope,  no | normal  SOFT
015 ore-presbychypermetrope| yes | reduced  NONE
016 ore-presbychypermetrope| yes | normal  NONE

017 presbyopic  myope no | reduced  NONE
018 presbyopic  myope no | nomal  NONE
019023 ..

024 presbyopic hypermetrope| yes | normal  NONE

Example: Learning a classification
model from contact lens data

Person __Age _ Spect. presc._Astigm._ Tear prod.__Lenses.

ot young myope no | reduced  NONE

o2 young myope no | normal SOFT

03 young myope yes | reduced  NONE

04 young myope yes | normal  HARD

05 young |hypermetrope  no | reduced  NONE Data Mining
06013 .

014 ore-presbychypermetrope  no | normal  SOFT

015 ore-presbychypermetrope  yes | reduced  NONE

016 ore-presbychypermetrope  yes | normal  NONE o

017 presbyopic  myope no | reduced NONE e ) o

018 presbyopic  myope no | normal  NONE one gt
019-023

024 presbyopic hypermetrope  yes normal NONE sorm

lenses=NONE « tear production=reduced

lenses=NONE « tear production=normal & astigmatism=yes &

spect. pre.=hypermetrope
lenses=SOFT « tear production=normal & astigmatism=no

lenses=HARD « tear production=normal & astigmatism=yes &

spect. pre.=myope
lenses=NONE




Data/task reformulation

Person | Age | Spect. presc.|_Astigm._Tear prod.| Lenses

o1 young | myope o reduced | NO
02 | young | myope no  normal YES
03 | young | myope yes  reduced | NO
04 young | myope yes  nomal | YES

05 young |hypermetrope.  no  reduced | NO

014 ore-presbychypermetrope. _no  normal | YES
015 ore-presbyc hypermetrope,  yes  reduced | NO.

016 ore-presbyc hypermetrope| yes  normal NO
017 presbyopic  myope no  reduced | NO
018 presbyopic  myope no  nomal NO
019-023 . .
024 presbyopic hypermetrope| _yes  normal NO

Data/task reformulation:
Positive (vs. negative) examples of the Target class
« for Concept learning (predictive induction)
« for Subgroup discovery (descriptive pattern induction)

Classification versus Subgroup Discovery

+ Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

* Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules
— aimed at finding interesting patterns in target class

examples
« large subgroups (high target class coverage)

« with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge

Classification versus Subgroup discovery

) Subgroup discovery in a nutshell

b [ ol
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XX. Talk outline
« Data mining in a nutshell revisited

+ Relational data mining and
propositionalization in a nutshell
+ Semantic data mining: Using ontologies in SD

Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

— Given: a population of individuals and a property
of interest (target class, e.g. CHD)
— Find: "'most interesting’ descriptions of population
subgroups
« are as large as possible
(high target class coverage)
» have most unusual distribution of the target
property
(high TP/FP ratio, high significance)

Subgroup discovery example: "
CHD Risk Group Detection

Input: Patient records described by stage A (anamnestic),
stage B (an. & lab.), and stage C (an., lab. & ECG)
attributes

Task: Find and characterize population subgroups with high
CHD risk (large enough, distributionally unusual)

From best induced descriptions, five were selected by the
expert as most actionable for CHD risk screening (by GPs):

CHD-risk «~ male & pos. fam. history & age > 46
CHD-risk « female & bodymassindex > 25 & age > 63
CHD-risk « ...

CHD-risk « ...

CHD-risk « ...




Subgroup discovery algorithms

EXPLORA (Kloesgen, Wrobel 1996)

+ MIDOS (Wrobel, PKDD 1997)

+ SD algorithm (Gamberger & Lavrac, JAIR 2002)
APRIORI-SD (Kavsek & Lavrac, AAl 2006)

+ CN2-SD (Lavrac et al., JMLR 2004): Adapting
CN2 classification rule learner to Subgroup
Discovery:

— Weighted covering algorithm

— Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

* Numerous other recent approaches ...

Characteristics of SD Algorithms
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« SD algorithms do not look for [Gassa
a single complex rule to
describe all examples of
target class A (all CHD-risk
patients), but several rules

2

Class B

that describe parts
(subgroups) of A.

Characteristics of SD Algorithms

+ SD algorithms do not look for [Gassa Class B
a single complex rule to 2
describe all examples of
target class A (all CHD-risk
patients), but several rules
that describe parts
(subgroups) of A.

+ SD algorithms naturally use
example weights in their
procedure for repetitive
subgroup generation, via the
weighted covering algo., and
rule quality evaluation
heuristics.
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Weighted covering algorithm for

rule set construction

CHD patients

10 10
10 10 0

1010 49 10
LTI 10
a 1.0
10 1.0 1.
10 10

10 10

1.0 1.0

1.
1.0 10

other patients

« For learning a set of subgroup describing rules, SD
implements an iterative weigthed covering algorithm.

» Quality of a rule is measured by trading off coverage

and precision.

Weighted covering algorithm for
rule set construction

f2 and f3

CHD patients other patients

Rule quality measure in SD: q(Cl «— Cond) = TP/(FP+g)

Rule quality measure in CN2-SD: WRAcc(Cl «—Cond) = p(Cond) x
[p(Cl| Cond) — p(Cl)] = coverage x (precision — default precision)
*Coverage = sum of the covered weights, *Precision = purity of the covered examples
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Weighted covering algorithm for

rule set construction

CHD patients

other patients

In contrast with classification rule learning algorithms (e.g. CN2),
the covered positive examples are not deleted from the training
set in the next rule learning iteration; they are re-weighted, and a

next ‘best’ rule is learned.




Subgroup visualization

all
il A?
ubjects’ A1 A2

The CHD task: Find,
characterize and visualize
population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)

Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m2 (typically 29)
AND
age over 63 years

Supporting characteristics (computed using X2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol
values.

XX. Talk outline

» Data mining in a nutshell revisited
» Subgroup discovery in a nutshell

elational data mining and
propositionalization in a nutshell
« Semantic data mining: Using ontologies in SD

Relational Data Mining (Inductive
Logic Programming) in a nutshell

knowledge discovery
from data

Relational Data Mining .k

model, patterns, ...

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns

Sample ILP problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

o o 2 Hooolmh . LatoooH®h
PR e s o Ha -
v 1<z oh + e ==
ol o lal\a/s Y o \ooHE= o/ @ °
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Relational data representation

D TRAIN_TABLE

o o HaHoool03—  @eoacke wen TRAIN _EASTBOUND
] drde 1 3l TRUE
2 1 12 TRUE

o | —z_ T

t6 FALSE

CAB TRAIN _SHAPE LENGTH ROOF WHERS
¢ 11 redangle shot  none 2
@ t1_ redangle long _none 3
38 11 rectangle shot  peaked 2
c4 11 rectangle long _none 2




Relational data representation

TRAIN_TABLE

o o HaHoooHmY

CAR TRAIN SHAPE LENGTH ROOF WHEES

ol t1_ rectangle shot _nome 2
c2 11 __rectangle long __none 3
©3 11 rectangle shot  peaked 2
o4 t1___rectangle long __nome 2

-
"

Propositionalization in a nutshell
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L TRAWN_TABLE
o o | TaMHoool Y oo oseee wes =
N o Ml
e e eam 1
ey o . B @ e 1|
Propositionalization task U ot mme 3
Transform a multi-relational [CAR TRAIN SHAPE LENGTH | ROOF WHEELS |
. cl t rectangle short none 2
(multiple-table) © 1 _rectangle long _none 3
N c3 t rectangle short peaked 2
representation to a o4 11 _reclangle long _mone 2
propositional representation —
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),
1BC (Flach and Lachiche 1999), ...
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Propositionalization in a nutshell

TRAIN_TABLE

Main propositionalization step:
first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L), CAR TRAN SHAPE LENGTH ROOF WHEES
N cl t1 rectangle short none 2
loadShape(L,circle) @ 1 _rectangle long _none 3
. 3 t1 rectangle hort aked 2
B(T) EEE :A 1 mq::.i s\ang p:ane 2

Propositional learning:
PROPQSITIONAL
t(T) < FL(T), f4(T) > TRAR_TABLE
train(M  f1(T) | f2(T) B3I fam o 5m

Relational interpretation: 12

eastbound(T) «— [
hasShortCar(T),hasClosedCar(T).

Relational Subgroup Discovery
by upgrading CN2-SD

RSD algorithm (Zelezny and Lavrac, MLJ 2006)
+ Implementing an propositionalization
approach to relational learning, through
efficient first-order feature construction
— Syntax-driven feature construction, using
Progol/Aleph style of modeb/modeh declaration
f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
« Using CN2-SD for propositional subgroup
discovery mutagenic(M) « feature121(M), feature235(M)

First-order Subgroup
feature = discovery
construction
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RSD Lessons learned
Efficient propositionalization can be applied to
individual-centered, multi-instance learning problems:
— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)

Talk outline

« Data mining in a nutshell revisited

» Subgroup discovery in a nutshell

+ Relational data mining and
propositionalization in a nutshell
Semantic data mining: Using ontologies in SD

» Recent advances: cross-context bisociative link
discovery

102




Semantic Data Mining:
Using ontologies in data mining

Exploiting two aspects of semantics in data mining
— Using domain ontologies as background knowledge for
data mining, using propositionalization as means of
information fusion for
« Discovering predictive rules
« Extracting pattern (frequent pattern mining, subgroup
discovery,...) - Presented in this talk
— Developing a Data Mining ontology and using it for
automated data mining workflow composition
+ Out of scope of this talk (see e.g.papers of
ECML/PKDD-09 SoKD Workshop)
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Gene Ontology (GO)

* GO is a database of terms for genes:
— Function - What does the gene product do?
— Process - Why does it perform these activities?
— Component - Where does it act?

12093 biological process
1812 cellular components
7459 molecular functions
« Known genes are annotated to GO terms
(www.ncbi.nlm.nih.gov)

« Terms are connected as a directed acyclic graph (is_a,

20009308
amine metabolism

« Levels represent specificity
of the terms o

G0:0006576
biogenic amine

metabolism

00042401

id GO:00¢
biosynthesis biogenic amine synthesis.
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

Joint work with
Igor Trajkovski
and Filip Zelezny

Multi-Relational representation

[ sEnE-FuncTION | [ ] ]

‘ FUNCTION ‘

Y Y

is_a part_of

‘ PROCESS ‘ ‘ COMPONENT ‘
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Ontology encoded as relational
background knowledge (Prolog facts)

Prolog facts:

predicate (genel

Basic, plus generalized background
knowledge using GO

zinc ion binding ->
metal ion binding, ion binding, binding

« Two-class diagnosis problem of distinguishing between acute
lymphoblastic leucemia (ALL, 27 samples) and acute myeloid
leukemia (AML, 11 samples), with 34 samples in the test set. Every
sample is described with gene expression values for 7129 genes.

« Multi-class cancer diagnosis problem with 14 different cancer types,
in total 144 samples in the training set and 54 samples in the test
set. Every sample is described with gene expression values for
16063 genes.

. http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi.




Standard approach to identifying sets of ™
differentially expressed genes and building a
classification model (e.g. AML vs ALL)

1 © Identify marker genes ‘ l

TR

L © Build model J J

e oo A o)
A2 4

© Apply model 557
Avd

A\
Class A 1092

Identifying sets of differentially ™
expressed genes in preprocessing

To identify genes that display a large difference in
gene expression between groups (class A and class B)
and are homogeneous within groups, statistical tests
(e.g. t-test) and p-values (e.g. permutation test) are

computed.
Two sample t-statistic is used to test T, = e
the equality of group means ma and ms. Sy Sm

T4 lp
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Ranking of differentially expressed

Gene Score The genes can be ordered in a ranked list L, according to
gene, (1) score 1 their differential expression between the classes.
gene, (o) score 2
The challenge is to extract meaning from this list, to
gene, (3 score 3 .
describe them.
gene, (4 score 4
The terms of the Gene Ontology were used as a vocabulary
gene, 10 score 100 for the description of the genes.
gene, (101 score 101

gene,gggs)  score 9905

Gene expression data (Prolog facts): '™
Positive and negative examples for data
mining
fact (class, genelD, weight).
fact (‘diffexp', 64499, 5.434).
fact (‘diffexp',2534, 4.423).
fact (‘diffexp',5199, 4.234).

fact (‘diffexp',1052, 2.990).
fact (‘diffexp',6036, 2.500).

fact (‘ranc

re 11,7443, 1.0).
fact ('random', 9221, 1.0).
fact ('random',23395,1.0) .
fact ('random', 9657, 1.0).
fact ('random',19679, 1.0).

Ontology encoded as relational background™
knowledge + gene expression data (Prolog
facts)

fact(class, geneID, weight).

Prolog facts:

predicate (gene ANT) .
on(geneID, genelID).

fact(‘diffexp',64499, 5.434).

fact (“dif ,2534, 4.423).
fact (‘dif ',5199, 4.234).
fact (“dif ',1052, 2.990).

',6036, 2.500).

fact (‘dif

fact (’

', 7443, 1.0).

fact ( ',9221, 1.0).

Basic, plus generalized background fact('re ',23395,1.0).
knowledge using GO fact (' ',9657, 1.0).

fact ( ',19679, 1.0).

zinc ion binding ->
metal ion binding, ion binding, binding
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Relational Subgroup Discovery with SEGS

» The SEGS (Searching for Enriched gene Sets)
approach: Discovery of gene subgroups which

— largely overlap with those associated by the classifier
with a given class

— can be compactly summarized in terms of their
features
* What are features?
— attributes of the original attributes (genes), and

— recent work (SEGS): first-order features generated
from GO, ENTREZ and KEGG




SEGS: A RSD-like first-order feature
construction approach

First order features with support > min_support

(7,A):-function(A,'GO:0046872").
(8,A):-function(A,'GO:0004871").
(11,A):-process(A,'GO:0007165").
(14,A):-process(A,'GO:0044267").
(15,A):-process(A,'GO:0050874").
(20,A):-function(A,'G0O:0004871"), process(A,'GO:0050874").
(26,A):-component(A,'GO:0016021").
(29,A):- function(A,'G0:0046872"), component(A,'GO:0016020'
(122,A):-interaction(A,B),function(B,'G0:0004872').
_— f(223,A):-interaction(A,B),function(B,'GO:0004871"),
process(B,'G0:0009613').
f(224,A):-interaction(A,B),function(B,'GO:0016787"),
component(B,'G0O:0043231").

existential

Propositionalization

f1|£2 | £3 | £f4 | £5|£6 | .. w | fn

gl 1l 0 0 1 1 1 0 0 1 0 1 1

g2| 0|1 1 0 1 1 0 0 0 1 1 0

g3| 0|1 1 1 0 0 1 1 0 0 0 1

g4 | 1 1 1 0 1 1 0 0 1 1 1 0

g5| 1 1 1 0 0 1 0 1 1 0 1 0

gl| 0|0 1 1 0 0 0 1 0 0 0 1

g2| 1 1 0 0 1 1 0 1 0 1 1 1

g3l 0|0 0 0 1 0 0 1 1 1 0 0

g4| 1 0 1 1 1 0 1 0 0 1 0 1

17

Propositional learning: subgroup
discovery

f1 (|£2 | £3]| £4 | £5 | £6 | .. w | fn

f2 and f3
[4,0]

gl|1 0 0 1 1 1 0 0 1 0 1 1

gz|offr{zffofr|2]ofo]ol1]|2

o

g3| o0 1 1 1 0 0 1 1 0 0|0 1

g4 | 1 1 1 0 1 1 0 0 1 1 1 0

g5| 1 1 1 0 0 1 0 1 1 0|1 0

gl| o0 0 1 1 0 0 0 1 0 0|0 1

g2| 1 1 off o 1 1 0 1 0 1 1 1

g3| o0 0 off o 1 0 0 1 1 1 0 0

g4 | 1 0 1 1 1 0 1 0 0 1 0 1

Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1010 ;4 10
1.

0 40 o 10
0 10

10 4

1.
10 10

10
10

119

Subgroup Discovery

f2 and f3

diff. exp. genes Not diff. exp. genes

10
10 10
10

o 10

10

In RSD (using propositional learner CN2-SD):
Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights
*Precision = purity of the covered genes

120

Subgroup Discovery

diff. exp. genes Not diff. exp. genes

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy




Summary: SEGS, using the RSD *
approach

. of genes such as

interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding)
Feature subject to constraints (undecomposability, minimum support, ...)

« Then SEGS using these features that
are differentially expressed (e.g., belong to class DIFFEXP of
top 300 most differentially expressed genes) in contrast with
RANDOM genes (randomly selected genes with low
differential expression).

+ Sample subgroup description:

diffexp(A) :- interaction(A,B) & function(B,'G0:0004871') &

process(B,'G0:0009613")

Summary: SEGS, using the RSD *
approach

» The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

* In past 2-3 years, the SEGS approach proved
effective in several biomedical applications (JBI
2008, ...)

« The work on semantic data mining - using ontologies as
background knowledge for subgroup discovery with SEGS - was
done in collaboration with |.Trajkovski, F. Zelezny and J. Tolar
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XX. Talk outline

» Data mining in a nutshell revisited
» Subgroup discovery in a nutshell

» Relational data mining and
propositionalization in a nutshell
« Semantic data mining: Using ontologies in SD
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Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction
— Data Mining and KDD process
— DM standards, tools and visualization
— Classification of Data Mining techniques: Predictive
and descriptive DM
(Mladeni¢ et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery
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The BISON project

» EU project: Bisociation networks for creative
information discovery (www.bisonet.eu), 2008-
2010

« Exploring the idea of bisociation (Arthur
Koestler, The act of creation, 1964):

— The mixture - in one human mind — of two different contexts or
different categories of objects, that are normally considered
separate categories by the processes of the mind.

— The thinking process that is the functional basis of analogical
or metaphoric thinking as compared to logical or associative
thinking.

» Main challenge: Support humans to find new
interesting associations accross domains

126
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The BISON project

+ BISON challenge: Support humans to find new,
interesting links accross domains, named
bisociations
— across different contexts
— across different types of data and knowledge sources

* Open problems:

— Fusion of heterogeneous data/knowledge sources
into a joint representation format - a large information
network named BisoNet (consisting of nodes and
relatioships between nodes)

— Finding unexpected, previously unknown links
between BisoNet nodes belonging to different
contexts

Heterogeneous data sources
(BISON, M. Berthold, 2008)

-
Text
Repository |

Cther
\_Sources |

Bridging concepts
(BISON, M. Berthold, 2008)

it
Q\ﬁ\ é) ’_Q

Chains of associations across domains
(BISON, M. Berthold, 2008)

o e

.

Text

co-expressed
CO-OCCUTES

GIP-Network: | .
_..encodes...
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Bisociative link discovery
with SEGS and Biomine

+ Application: Glioma cancer treatment
* Approach: SEGS+Biomine

— Analysis of microarray data

— SEGS: Find groups of genes

— Biomine: Find cross-context links in biomedical
databases

« Recent work in creative knowledge discovery (in BISON) is
performed in collaboration with
— JSI team: P. Kralj Novak, I. Mozeti¢, M. Jursi¢ and V.
Podpecan
— UH team: H. Toivonen from UH

SEGS+Biomine approach

Exploratory
link discovery

Microarray Gene sets

genel: + +
genel: +
gened: + SEGS Biomine ;-y

e.g. slow-vs-fast
cell growth

132




. . . . 133 134
SEGS: BisoNet node identification Gene Anaiytics
Query: Results: —
TR TRl A TS . Tl absolute values are taken)
2| Project: ] |- with absolute JogFC value lower than: [0.1
Enriched genesets for class A SEGS input:
)1 e
d ga | (S r»:_-'h__“m‘ (a“;_-;@g (Bacore) | Prvalse
=
J == ———ee 1 = Note: by using the same number you can repeat your experiment!
135 136
Biomine (University of Helsinki) Biological databases used in Biomine
« The Biomine project develops methods for the
analysis of biological databases that contain Vertex type Source database | Number of vertices | Mean degree
Iarge amounts of rich data: Article PubMed 330970 6.92
Biological process GOA 10744 6.76
— annotated sequences,
. Cellular component |GOA 1807 16.21
- prOteI ns, Conserved domain Entrez Domains 15727 99.82
— orthology groups, Gene Entrez Gene 395611 6.09
—genes and gene eXpreSSionS, Gene cluster UniGene 362155 2.36
I . I [ X
_gene and protem |nteract|0n3, Homoogygrou? HomoloGene 35478 14.68
) Molecular function  |GOA 7922 7.28
- PUbMEd artICIES’ OMIM entry OMIM 15253 34.35
—ontologies. Protein Entrez Protein 741856 536
Structural property  |Entrez Structure 26425 3.33
137

Biomine graph exploration
e Given:
—nodes (~1 mio) correspond to different

concepts (such as gene, protein, domain,
phenotype, biological process, tissue)

—semantically labeled edges (~7 mio) connect
related concepts
¢ Answer queries:
— Discover links between entities in queries by
sophisticated graph exploration algorithms

Biomine: Bisociative link discovery
Query: Result:

Ty

0

Shnenrer | @tkrsins | @ ki

BIOMINE

o o W # e 0 R e
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Summary

« SEGS discovers interesting gene group descriptions as
conjunctions of concepts (possibly from different
contexts/ontologies)

« Biomine finds cross-context links (paths) between
concepts discovered by SEGS

¢ The SEGS+Biomine approach has the potential for

creative knowledge and bisociative link discovery

Preliminary results in stem cell microarray data analysis

(EMBC 2009, ICCC Computational Creativity 2010)

indicate that the SEGS+Biomine methodology may lead

to new insights — in vitro experiments will be planned at

NIB to verify and validate the preliminary insights

Cross-context link discovery in Text Mining,”o
Web Mining and Social Network Analysis:
First attempts

Cross-context link
discovery
d
Text/Web Mining,

Social Network Analysis

Cross-context links in text
documents, web pages,
cross-domain links in
social networks, ...

Goal of the rest of these slides:

Establish a Cross-context link
with lectures on text mining and semantic web by Dunja Mladeni¢
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OntoSight & OntoGen Demo

» OntoSight

— Application that helps the user decide which data to
include into the process and how to set the weights,

— developed by Miha Gréar

* OntoGen
— A system for data-driven semi-automatic ontology
construction
— Developed by Blaz Fortuna, Marko Grobelnik, Dunja
Mladeni¢
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OntoSight

* Visualization
— Networks
— Semantic spaces

* Interaction with the
user

» Helps the user decide
which data to include
into the process and
how to set the weights

Contextualisation inlText Mining:
Context creation through OntoGen

* OntoGen: A system for data-driven semi-
automated ontology construction from text
documents

— Semi-automatic: it is an interactive tool that aids the
user

— Data-driven: aid provided by the system is based on
some underlying data provided by the user

» SEKT technology
(http://sekt-project.org)

» Freely available at http://ontogen.ijs.si

]
5
B

|5 OntoGen -- Text Garden

File  About
Ontalogy details

New Move Delste Ontology visu Concept's documents  Concept visualization

>

= 11 omotaton, even. documert
1 map, features, gazetteer

(Concept Font size: Relation font size E|

1) annotation, gate, corpus
1 document, resource, data
=) exception, impl, words
| exception. methods, exception_exception =
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Part Il. Predictive DM techniques

=)« Naive Bayesian classifier
+ Decision tree learning

+ Classification rule learning
+ Classifier evaluation

Bayesian methods

+ Bayesian methods — simple but powerful
classification methods
— Based on Bayesian formula

p(DI1H)

HI|D)=
p( ) »(D)

p(H)

+ Main methods:
— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course
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Naive Bayesian classifier

» Probability of class, for given attribute values
pv..v,lc;)

p(v,..v,)

+ For all C; compute probability p(C;), given values v; of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; |v;))

plc;1v)
plc; vy = ple)) [[——
o ! H plc;)
+ Output Cyax With maximal posterior probability of class:

plc;lv..v,)=p(c;)-

Cyux =argmax g p(c; Iv..v,)

Naive Bayesian classifier

plc; v..v,) _ p(v..v,lc;)- p(c;) _

plc;lvi.w,)= P )
_ HP(V,- le;)-plc) _ ey ple, 1) p(v) _
pv..v,) pv.v,) " p(c;)
IT r0)  pic;1v) ple;1v)
=) p(v]...v,,)H plc;) =) H p(c))
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Semi-naive Bayesian classifier

« Naive Bayesian estimation of probabilities
reliable
( ) plc;1v,) . plc;1vy)

p(c;) p(c;)

» Semi-naive Bayesian estimation of
probabilities (less reliable)

ple;lv,v,)
p(c;)

Probability estimation

 Relative frequency:
n(c;) 1 )_n(cj,v,)
N P TV = n(v,)

plc;)=

* Prior probability: Laplace law
_on (c j) + 1
ple,) = N + k

e m-estimate:

n(c;)+m- pa(c;)

)=
pley) N +m

j=1 .k, for k classes

156




157

Probability estimation: intuition

» Experiment with N trials, n successful
» Estimate probability of success of next trial
» Relative frequency: n/N
— reliable estimate when number of trials is large
- U/nreliable when number of trials is small, e.g.,
11=1
» Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes
— Assumes uniform distribution of classes
* m-estimate: (n+m.pa)/(N+m)
— Prior probability of success ps, parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )

Explanation of Bayesian
classifier

» Based on information theory
— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is
p()
» Explanation based of the sum of information gains of
individual attribute values v; (Kononenko and Bratko 1991,

Kononenko 1993)
—log(p(c, 1v,..v,)) =

= fIOg(p(c‘,))fZ":(fIOg plc;)+log(plc; 1v,))

* log p denotes binary logarithm

Example of explanation of semi-naive
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision] Against
(bit) (bit)

Age = 70-80 0.07

Sex = Female .19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall 0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture ion acc. To Garden = Garden Il 0.3

Fracture fon acc. To Pauwels = Pauwels 11l .14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes 032

Hospital rehabilitation = Yes 0.05

General i = None 0

Combi i 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks
Combinati 0.63
Therapy = Antroplastic AND anticoagulant therapy = Yes

159

Visualization of information
gains for/against C,
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Naive Bayesian classifier

» Naive Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

« It achieves good classification accuracy
— can be used as ‘gold standard’ for comparison with
other classifiers
» Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

» Successful in many application domains
— Web page and document classification
— Medical diagnosis and prognosis, ...
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Improved classification accuracy due
to using m-estimate

Primary | Breast | thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. | m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
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Part Il. Predictive DM techniques

* Naive Bayesian classifier
=)« Decision tree learning

+ Classification rule learning

» Classifier evaluation

164

lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
[e]] young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013 .
O14  ore-presbyc hypermetrope no normal SOFT

O15  ore-presbyc hypermetrope yes reduced NONE
O16  ore-presbyc hypermetrope yes normal NONE

O17  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023

024  presbyopic hypermetrope yes normal NONE
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Decision tree for
contact lenses recommendation

tear prod.

reduced / N‘Drmal

astigmatism

no yes

sorT

myope hypermetrope
HARD NONE

Decision tree for
contact lenses recommendation

tear prod.

reduced / N‘ormal

[N=12,S+H=0]

no yes

sorT

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,5+N=2] [N=2, S+H=1]

167

PlayTennis: Training examples

Day Outlook = Temperature = Humidity |~ Wind Play Tennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Ovwercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Owercast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision tree representation
for PlayTennis

Outlook
Humidity Yes Wind
High /\Nurmal STron/\Weuk
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation
for PlayTennis

Outlook
Humidity Yes Wind
High A\lormal Srrcmeak
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
v ( Outlook=Overcast )
v ( Outlook=Rain A Wind=Weak )

PlayTennis:
Other representations

 Logical expression for PlayTennis=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

+ Converting a tree to if-then rules
— IF Outlook=Sunny A Humidity=Normal THEN PlayTennis=Yes
— IF Outlook=Overcast THEN PlayTennis=Yes
— IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayTennis=No

IF Outlook=Rain A Wind=Strong THEN PlayTennis=No

171

PlayTennis: Using a decision tree for

classification
Outlook
Sun,,/ ‘ OVE’N"
Humidity Yes Wind
High A\lormal Srrcmeak
No Yes No Yes

Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis = No, because Outlook=Sunny A Humidity=High

Appropriate problems for

decision tree learning

« Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

+ Characteristics:

— instances described by attribute-value pairs
(discrete or real-valued attributes)
— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Learning of decision trees

+ ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree
— if all examples from S belong to the same class Cj
« then label the root with Cj

— else
« select the ‘most informative’ attribute A with values
vi,v2,...vn

« divide training set S into S1,..., Sn according to
values v1i,...,vn

« recursively build sub-trees V‘/ W

T1,...,Tn for $1,...,Sn @ @

« Central choice in ID3: Which attribute to test at

» Define a statistical property, called information

« First define a measure commonly used in
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Search heuristics in ID3

each node in the tree ? The attribute that is most
useful for classifying examples.

gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.




Entropy

+ S - training set, Cy,...,Cy, - classes
+ Entropy E(S) — measure of the impurity of
training set S

N
E(S)=-) p.log,p,

c=1

P, - prior probability of class C,
(relative frequency of C, in S)

« Entropy in binary classification problems

E(S) = - p, log,p, - p.log,p.
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Entropy

+ E(S)=-p.log,p, - p.logzp.

» The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between 0 and 1

D‘E \

o7 / N\
4 AN
Fos|/ \
2./ \

i \

02 ] \

ol \

Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?

Information theory: optimal length code assigns

- log,p bits to a message having probability p

So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

p, (-log,p, )+ p._(-log,p.) = - p, log,p, - p_log,p.
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PlayTennis: Entropy

+ Training set S: 14 examples (9 pos., 5 neg.)
» Notation: S = [9+, 5-]
* E(S) =" p+ |092p+ - p. |092p-

« Computing entropy, if probability is estimated by
relative frequency

1,1 IS0} (151, 151
E(S):_[ st o8 ]‘[m‘“gmj
o E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
=0.940

PlayTennis: Entropy

+ E(S)=-p,log,p,-p.log,p.
« E(9+,5-) = -(9/14) l0g,(9/14) - (5/14) log,(5/14) = 0.940

oy~ (DLD2,DBDIDI)  [2+,3] E=0.970
Outlook? <§ (D3D7D12,D13)  [4+,0-] E=0
{D4,D5,06, 10,014}  [3+,2-] E=0.970

% [3+,4-] E=0.985
Humidity? [6+,1-] E=0.592

4\@?21 [6+,2-] E=0.811
Wind? [3+,3-] E=100
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Information gain
search heuristic

Information gain measure is aimed to minimize the
number of tests needed for the classification of a new

object

Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain(S,A)=ES)- Y. 15,1

veValues(A) IS1

* Most informative attribute: max Gain(S,A)

E(S,)




* Which attribute is more informative, A1 or A2 ?

. Gain(S,A1) = 0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048
. Gain(S,A2) =0.94—0=0.94
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Information gain
search heuristic

[9+.5-], E=0.94 [9+.5-], E=0.94

[6+,2-] [3+,3-] [9+,0-] [0+, 5-]
E=0.811 E=1.00 E=0.0 E=0.0

A2 has max Gain

PlayTennis: Information gain

Gain(S,A)=E(S)— . 5,1

vevatmes(ay |51

-E(S,)

» Values(Wind) = {Weak, Strong}
Weal [6+,2-] E=0.811
Wind? 4: [3+,3-] E=1.00
— S =[9+,5-], E(S)=0.940
— Syeax = [6+,2], E(Syenc) = 0.811
= Sgirong = [3+,3-], E(Sgyong) = 1.0

~ Gain(S,Wind) = E(S) - (8/14)E(Syea) -~ (6/14)E(Sypang) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048
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PlayTennis: Information gain

« Which attribute is the best?
— Gain(S,0Outlook)=0.246 MAX !
— Gain(S,Humidity)=0.151
- Gain(S,Wind)=0.048

— Gain(S,Temperature)=0.029
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PlayTennis: Information gain

Rain {D4,D5,06,010,D14} [3+,2-] E>0??2?

Outlook?
Overcast
s {D3,b7,b12,D13} [4+,0-] E=0 OK - assign class Yes
unny
{D1,D2,D8,D9,D11} [2+,3-] E>0 ???1>

» Which attribute should be tested here?

— Gain(S, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny?
~ GaiN(S,uy, Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

— Gain(Sg,,,,,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny
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Probability estimates

» Relative frequency :
— problems with small samples

p(Class| Cond) =

_ n(Class.Cond)
n(Cond)

[6+,1-] (7) = 6/7

[2+,0-] (2) =2/2 =1

» Laplace estimate :

— assumes uniform prior
distribution of k classes

_ n(Class.Cond) +1 k=2
n(Cond) +k

[6+,1-] (7) = 641/ 7+2 = 7/9
[2+,0-] (2) = 241/ 2+2 = 3/4
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Heuristic search in ID3

» Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

« Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

» Stopping criteria: A node becomes a leaf
—if all examples belong to same class C;, label the

leaf with G;
—if all attributes were used, label the leaf with the
most common value C, of examples in the node

« Extension to ID3: handling noise - tree pruning




Pruning of decision trees

Avoid overfitting the data by tree pruning

Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
» erroneous attribute values
« erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples

Handling noise — Tree pruning

» Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
* post-pruning / rule truncation
— handling missing values

» Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3
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Prediction of breast cancer
recurrence: Tree pruning

Degree_of_malig

<3 >3
Tumor_size Involved_nodes
<1 >15 <3 >3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 18

<4 >40

no_recur 4

recurrence 1 no_recur 4

¥ y
no_rec4 recl

recurrence 10

Accuracy and error

Accuracy: percentage of correct classifications

— on the training set

— onunseen instances

How accurate is a decision tree when classifying unseen

instances

— An estimate of accuracy on unseen instances can be computed,

e.g., by averaging over 4 runs:
« split the example set into training set (e.g. 70%) and test set (e.g. 30%)
« induce a decision tree from training set, compute its accuracy on test
set
Error = 1 - Accuracy

High error may indicate data overfitting
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Overfitting and accuracy

+ Typical relation between tree size and accuracy

——On training datd]
——On test data

+ Question: how to prune optimally?

192
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Avoiding overfitting

+ How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning

\ Post-pruning

forward pruning considered inferior (myopic)
post pruning makes use of sub trees

How to select the “best” tree

Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)
— until further pruning is harmful DO:

- for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

« greedily select the node whose removal most improves tree
accuracy over the validation set

+ MDL: minimize
size(tree)+size(misclassifications(tree))
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Selected decision/regression
tree learners

» Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

» Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)

Features of C4.5

+ Implemented as part of the WEKA data mining
workbench

+ Handling noisy data: post-pruning
+ Handling incompletely specified training
instances: ‘unknown’ values (?)

— in learning assign conditional probability of value v:
p(v|C) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values
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Other features of C4.5

« Binarization of attribute values
— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)
— for discrete values try grouping the values until two
groups remain *

» ‘Majority’ classification in NULL leaf (with no
corresponding training example)
— if an example ‘falls’ into a NULL leaf during

classification, the class assigned to this example
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping

Part ll. Predictive DM techniques

» Naive Bayesian classifier
+ Decision tree learning

=)+ Classification rule learning
+ Classifier evaluation

198




Rule Learning in a Nutshell

Pemon e Spect presc. Astign. Tearprod_Tenses | knowledge discovery
[l iz o from data

NONE

HARD

None

sor Rule learning Model: a set of rules
NORE

NotE Patterns: individual rules

19023
024 presbyopic hypemetrope.

data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;
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or a set of interesting patterns in the form of individual

rules

Rule set representation

» Rule base is a disjunctive set of conjunctive rules
+ Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

* Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]
* Rule base: {R1, R2,R3, ..., DefaultRule}

Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
o2 young myope no normal SOFT
o3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
O18  presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE

Rule learning

« Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
* Learning an unordered set of rules
* Learning an ordered list of rules
* Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to

an unordered rule set

reduced N:)rmal
astigmatism

no yes
[N=12,8+H=0]

sorT

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,5+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to
decision list

reduced / N‘?rmal

astigmatism
[N=12,S+H=0]

no yes

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,8+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE

Ordered (order dependent) rule list

Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

« Very frequently used method, e.g., in C4.5
and J48
« Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod., Lenses
o1 young myope no reduced NO
02 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
05 young  hypermetrope no reduced NO

06-013
014  ore-presbyc hypermetrope no normal YES
015  ore-presbyc hypermetrope yes reduced NO
O16  ore-presbyc hypermetrope yes normal NO
017  presbyopic myope no reduced NO
018  presbyopic myope no normal NO

019-023 .
024  presbyopic hypermetrope yes normal NO

Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes Ci, ..., Cv

for each class Ci do +
—Ei :=Pi U Ni (Pi pos., Ni neg.) + +
— RuleBase(Ci) := empty
—repeat {learn-set-of-rules}

* learn-one-rule R covering some positive
examples and no negatives

+ add R to RuleBase(Ci)
« delete from Pi all pos. ex. covered by R
—until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

Positive examples Negative examples




Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples

Covering algorithm

Rule1: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples

Rule2: Cl=+ « Cond8AND Condé
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Covering algorithm PlayTennis: Training examples
Rule1: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples Day | Outlook | Temperature | Humidity | _Wind__| PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
// + D9 Sunny Cool Normal Weak Yes
. - D10 Rain Mild Normal Weak Yes
Rule2: Cl=+ ¢ Cond8 AND Cond6 D11 Sunny Mild Normal Strong Yes
D12 Owercast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:
PlayTennis example

PlayTennis = yes [9+,5-] (14)
PlayTennis = yes « Wind=weak [6+,2-] (8)
« Wind=strong [3+,3-] (6)
« Humidity=normal [6+,1-] (7)
PlayTennis = yes « Humidity=normal
Outlook=sunny [2+,0-] (2)
Estimating rule accuracy (rule precision) with the probability that
a covered example is positive
A(Class « Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+,1-] (7) = 6/7, [2+,0] (2) =2/2 = 1

Probability estimates

« Relative frequency :

p(Class| Cond) =
— problems with small samples

_ n(Class.Cond)
- n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) =2/2=1

« Laplace estimate :

— assumes uniform prior
distribution of k classes

_ n(Class.Cond) +1 k=2
n(Cond)+k

[6+,1-] (7) = 6+1/ 742 = 7/9
[2+,0-] (2) = 2+1/2+2 = 3/4




217

Learn-one-rule:
search heuristics

» Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).
Search for specializations R’ of a rule R = Cl « Cond
from the RuleBase.
Specializarion R’ of rule R = Cl « Cond

has the form R’ = Cl « Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be

added to the current rule R, such that rule accuracy is

improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)

Learn-one-rule:
Greedy vs. beam search

« learn-one-rule by greedy general-to-specific
search, at each step selecting the “best’
descendant, no backtracking
— e.g., the best descendant of the initial rule

PlayTennis = yes «
— is rule PlayTennis = yes < Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates

Learn-one-rule as search:
PlayTennis example

Play tennis = yes IF

Play tennis = yes

. Play tennis = yes
IF Wind=weak

. IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong ~ LF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak
Play tennis = yes Play tennis = yes
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny

Play tennis = yes
IF Humidity=normal,
Outlook=rain
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Learn-one-rule as heuristic search:
PlayTennis example

Play tennis =yes IF  [9+,5-](14)

Play tennis = yes
IF Wind=weak
[6+.2-] (8)

Play tennis = yes
. IF Humidity=high
Play tennis = yes Play tennis = yes [34,4-1 (7)
IF Wind=strong IF Humidity=normal

[3+,3-] (6) [6+,1-] (7)

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
X . IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny

[2+.0-] 2)
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What is “high” rule accuracy
(rule precision) ?

* Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
» BUT: Rule accuracy/precision should be traded
off against the “default” accuracy/precision of the
rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

» Relative accuracy
— RAcc(Cl «~Cond) = p(ClI | Cond) — p(Cl)
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Weighted relative accuracy

« If arule covers a single example, its accuracy/precision
is either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

» Weighted relative accuracy
WRACcc(Cl«—Cond) = p(Cond) . [p(CI | Cond) — p(Cl)]

* WRACcc is a fundamental rule evaluation measure:
— WRACcc can be used if you want to assess both accuracy and
significance
— WRACcc can be used if you want to compare rules with different
heads and bodies
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Learn-one-rule:
search heuristics

+ Assume two classes (+,-), learn rules for + class (Cl). Search

for specializations of one rule R = Cl «- Cond from RuleBase.
Expected classification accuracy: A(R) = p(Cl|Cond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)

Information gain (decrease in the information needed):
IG(R’,R) = log,p(Cl|Cond’) - log,p(Cl|Cond)

+ Weighted measures favoring more general rules: WAG, WIG

WAG(R',R) =
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

+ Weighted relative accuracy trades off coverage and relative

accuracy WRAcc(R) = p(Cond).(p(Cl[Cond) - p(Cl)
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Ordered set of rules:
if-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
instance: rules are sequentially tried and the first
rule that “fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
E

cur)

Sequential covering algorithm
(similar as in Mitchell’s book)

* RuleBase := empty
* Ecur:= E
* repeat
—learn-one-rule R
— RuleBase := RuleBase U R

—Ey = Eg, - {examples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E_,) < ThresholdR
« RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
Ecur:= E

repeat

—learn-one-rule R

— RuleBase := RuleBase U R

- E., = E., - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E,,,)

Learn-one-rule:
Beam search in CN2

» Beam search in CN2 learn-one-rule algo.:
— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant
— BestBody - min. entropy of examples covered
by Body
— construct best rule R := Head « BestBody by
adding majority class of examples covered by
BestBody in rule Head
« performance (R, E_,) : - Entropy(E,,)

— performance(R, E,) < ThresholdR (neg. num.)

— Why? Ent. > tis bad, Perf. = -Ent < -t is bad
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Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification




Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an TF—

THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

clolleﬁ;ted. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverz'i_?e as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.

Part Il. Predictive DM techniques

Naive Bayesian classifier
Decision tree learning
Classification rule learning
)« Classifier evaluation

Classifier evaluation

 Accuracy and Error

» n-fold cross-validation
» Confusion matrix

« ROC

Evaluating hypotheses

» Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

« split the example set into training set (e.g. 70%) to
induce a concept, and test set (e.g. 30%) to test its
accuracy

» more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance

n-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T;where U; T,=D

for i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T;
— induce classifier H;from examples in Di

— use fold T, for testing the accuracy of H;

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T;
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ePartition

o]
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ePartition

*Train
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ePartition

eTrain

i
o3
oo 8

]

ePartition
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Confusion matrix and
rule (in)accuracy

» Accuracy of a classifier is measured as TP+TN / N.
» Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?
— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives
— on atest set which has more negatives than positives, Rule 2 is
preferable;
— on atest set which has more positives than negatives, Rule 1 is
preferable; unless...
— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!
+ Conclusion: classification accuracy is not always an
appropriate rule quality measure

Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

+ also called contingency table

Classifier 1

Predicted positive | Predicted negative

Positive examples 20

50

Negative examples 10

50

50

100

Classifier 2

Posilive examples

Predicted posilive | Predicted negative
30 20

Negaive examples 0

50

30

70
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ROC space

« True positive rate =
#true pos. / #pos.
— TPr, =40/50 = 80%
— TPr, =30/50 = 60%
* False positive rate
= #false pos. / #neg.
— FPr, =10/50 = 20%
— FPr, =0/50 = 0%
* ROC space has
— FPron X axis
— TPronY axis

Classifier 1

| restsostive | Progcatnegav |
)

s | Classifier 2
o

100% ‘

0% 20% 0% 0% 80% 100%
False positive rate




The ROC space

true positive rate

o % an o A 0%

false positive rate

The ROC convex hull

true positive rate

0% 20% 40% 60% 80% 100%

false positive rate

Summary of evaluation

» 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

» ROC analysis is very natural for rule learning
and subgroup discovery
— can take costs into account
— here used for evaluation
— also possible to use as search heuristic

Part lll. Numeric prediction

:> « Baseline

+ Linear Regression
» Regression tree
* Model Tree

* kNN
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Regression Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:

MSE, MAE, RMSE, ... 1-accuracy

Algorithms: Algorithms:

Linear regression, regression Decision trees, Naive Bayes, ...
trees,...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class
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Example
+ data about 80 people: Age and Height

Age | Height

5 3 103

E AR SR T SR 5 1.19

i :.‘% LK SO °..°o:3 . ® B 176

: a 139

£, 15 1589

3 : 19 167

22 186

0.5 25 1.85

41 | 159

0 ‘ 48 180

0 50 100 54 1.90

Age 7 182




Test set

Baseline numeric predictor

» Average of the target variable

Age Height 2 o0 o0 G 00 O
18 TP e S e
2 0.85 16 == o
144 8
10 1.4 5 "12 -
% 0.8 hd
35 1.7 06
8‘2‘ + Height i
70 1.6 " ‘ ‘ = Average predictor | |
0 20 40 60 80 100
Age
Baseline predictor: prediction Linear Regression Model
Average of the target variable is 1.63 Height = 0.0056 * Age + 1.4181
25
Age Height |Baseline 5
A o L
2 0.85 s ,..',_#‘*..:‘--,fg..s A So
10 1.4 5 7;9
I
35 1.7 ¥
05  Height |~
e 1 = Prediction

0 T T T T
0 20 40 60 80 100
Age
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Linear Regression: prediction

Height = 0.0056 * Age + 1.4181
Linear
Age Height |regression
2 0.85
10 1.4
35 1.7
70 1.6

Height =

1.3932

Regression tree

L3
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SN ¥ Ne, e S
Py =

«=125 =125
/‘ '/\ o
=65 >6.5 Height =
s 17098
=4 = Height = 2
o e
Height = 1.5 ol
14025 £z 4
2 9
(7] 4
==
0.5

0

* Height
® Prediction

0

50

100




Regression tree: prediction

®

==12.5 >175\
£ s Ganesrz)
=65 =65 Height =
\_ 1.7096
= . Height = .
_/ \_1.4644 Regression
Height = Height = Age Height |tree
1.3932 1.4025
2 0.85

10 1.4

35 1.7

70 1.6

Model tree
JEe)
Height = Height =
0.0333 * Age 0.0011 * Age|
+1.1366 +1.6692
2 P S T S
e e ol

0.5 + Height
= Prediction
0 T T T T
0 20 40 60 80 100

Age

Model tree: prediction

kNN - K nearest neighbors

» Looks at K closest examples (by age) and predicts the
Age | Height |Modeltree average of their target variable
2 0.85 *« K=8
10 1.4 ‘
35 1.7 j
70 1.6 o
gt
=125 =12 5\ T 8428
_— 040 + Height ]
_ _ g-ég = Prediction KNN, n=3 | —
Height = Height = - i i i ;
0.0333 * Age 0.0011 * Age 0 20 40 e 60 80 100
+1.1366 +1.6692
257 258
kNN prediction kNN prediction
Age [[Height Age | Height
1 | 0.90 g } gg
1 0.99 Age | Height KNN 5 1' YTz Age | Height KNN
2 1.01 2 0.85 ) 1:39 2 0.35
3 103 10 1.4 11 1.49 10 1.4
3 1.07 35 1.7 12 1.66 sE ezt
5 1.19 70 16 12 | 1.52 70 16
5 1.17 13 1.59
14 1.58




kNN prediction

Age [[ Height
30 1.57
2(1) :: 3? Age Height kNN
34 1.55 120 01'845
37 1.65 :
37 || 1.80 el B
38 1.60 e =
39 1.69
39 1.80

kNN prediction

Age || Height

67 1.56

67 1.87 Age Height kNN
69 1.67 2 0.85

69 1 86 10 1.4

71 1.74 35 17

71 1.82 70 16

72 1.70

76 1.88

Which predictor is the best?

Linear |Regression
Age | Height | Baseline | regression tree Model tree kNN

2 1085163 | 1.43 | 1.39 | 1.20 | 1.01
10 | 1.4 ] 1.63 | 1.47 | 1.46 | 1.47 | 1.51
35 | 1.7 1.63 | 1.61 1.71 1.71 | 1.67
70 | 1.6 ] 1.63 | 1.81 1.71 1.75 | 1.81
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Evaluating numeric prediction 2

Performance measure Formula

(p,|-a)7+,v.+(p,,:@i
n

mean-squared error

SRR TR PR
root mean-squared error ‘J‘,Q‘Mﬂ
n

mean absolute error S

Br=)' 4.+ (P —a,)
@-3) +..+(8,-8)
[pi-a)'+.. +(p.-a)
N @-3)+...+(3,-3)
o —al+...+1p, —al
la—al+...+la.-al

3 <
relative squared error , where @ :72 a3
i

root relative squared error

relative absolute error

S > pi-p)a-2)
i ici =T whorg Spy= ST~
correlation coefficient 7SS, where Sp, 75
(pi-pY -8y
D YLD ¥
n-1 n-1
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Part IV. Descriptive DM techniques

:>- Predictive vs. descriptive induction
» Subgroup discovery
+ Association rule learning
+ Hierarchical clustering

Predictive vs. descriptive
induction

Predictive induction: Inducing classifiers for solving

classification and prediction tasks,

— Classification rule learning, Decision tree learning, ...

— Bayesian classifier, ANN, SVM, ...

— Data analysis through hypothesis generation and testing

Descriptive induction: Discovering interesting

regularities in the data, uncovering patterns, ... for

solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis




Descriptive DM

+ Often used for preliminary explanatory data
analysis

+ User gets feel for the data and its structure

» Aims at deriving descriptions of characteristics
of the data

+ Visualization and descriptive statistical
techniques can be used

Descriptive DM

» Description
— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
« describe associations, dependencies, ...
« discovery of properties and constraints
+ Segmentation
— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)
— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)

Predictive vs. descriptive
induction: A rule learning
perspective

Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction
tasks

+ Descriptive induction: Discovers individual rules
describing interesting regularities in the data

Therefore: Different goals, different heuristics,
different evaluation criteria
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Supervised vs. unsupervised
learning: A rule learning
perspective

» Supervised learning: Rules are induced from
labeled instances (training examples with class
assignment) - usually used in predictive induction

» Unsupervised learning: Rules are induced from
unlabeled instances (training examples with no
class assignment) - usually used in descriptive
induction

« Exception: Subgroup discovery

Discovers individual rules describing interesting
regularities in the data from labeled examples
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Part IV. Descriptive DM techniques

« Predictive vs. descriptive induction

:>- Subgroup discovery
+ Association rule learning

+ Hierarchical clustering
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Subgroup Discovery

Given: a population of individuals and a target
class label (the property of individuals we are
interested in)

Find: population subgroups that are statistically
most “interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)




Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Subgroup Discovery:
Medical Case Study

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavragc,
Krstagdic)
A1 for males: principal risk factors

CHD « pos. fam. history & age > 46
A2 for females: principal risk factors

CHD « bodyMassIndex > 25 & age >63
A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)
A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight

Subgroup visualization

Subgroups of
patients with
CHD risk

Il
subjects A1

& Wettschereck,
IDAMAP2002]

[Gamberger, Lavrag
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Subgroups vs. classifiers

+ Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
+ Subgroups:
— Rules describing subgroups aim at significantly higher proportion of
positives
— Each rule is an independent chunk of knowledge
+ Link
— SD can be viewed as
cost-sensitive
classification
— Instead of FNcost we
aim at increased TPprofit

positives

true
positives

Classification Rule Learning for
Subgroup Discovery: Deficiencies

» Only first few rules induced by the covering
algorithm have sufficient support (coverage)

» Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

» ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

» Weighted covering algorithm
» Weighted relative accuracy (WRAcc) search

heuristics, with added example weights

 Probabilistic classification
 Evaluation with different interestingness

measures
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CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =
= p(Class|Cond) = (n_+1) / (n,.+k)
— CN2-SD: Weighted Relative Accuracy
WRAcc(Class « Cond) =
p(Cond) (p(Class|Cond) - p(Class))
Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)

CN2-SD: Weighted Covering

+ Standard covering approach:
covered examples are deleted from current training set
« Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
+ Additive weights: w(e, i) = 1/(i+1)
w(e, i) — pos. example e being covered i times

Subgroup Discovery

Positive examples

10 10 4

10 40

10 10

1010 ;4 10
1.
° 10 10 10
® 10

10

0 10 10
10
Ny 10

1.
10 10

1.0

10

1.0

Negative examples

Subgroup Discovery

. Rule1: Cl=+ « Cond6é AND Cond2
Positive examples 1

Negative examples
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Subgroup Discovery

Positive examples

10

.0 14
10
1o 10

10

Rule2: Cl=+ « Cond3 AND Cond4

Negative examples

Subgroup Discovery

Positive examples

Negative examples




CN2-SD: Weighted WRAcc Search
Heuristic

* Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRACcc(Cl «— Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

« In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRACcc(Cl «— Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N")

— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples

— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Part IV. Descriptive DM techniques

» Predictive vs. descriptive induction
» Subgroup discovery

) . Association rule learning

» Hierarchical clustering

Association Rule Learning
Rules: X =>Y, if Xthen Y

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)
Given: Transactions i o2 .i50
itemsets (records) o1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
* Support: Sup(X,Y) = #XY/#D = p(XY)
» Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y|X)

Association Rule Learning:
Examples

» Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer and coke
also buy peanuts and chips

+ Insurance
— mortgage & loans & savings = insurance (2%, 62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have mortgage,
loan and savings also have insurance
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Association rule learning

*« X=>VY ...IFXTHENY, where X and Y are itemsets
intuitive meaning: transactions that contain X tend to contain Y

ltems - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour
Example transactions — itemsets formed of patient records

i1 2 i50
t 1 0 0
2 0 1 0

+ Association rules
spondylitic = arthritic & stiff_gt_1_hour [5%, 70%)]
arthrotic & spondylotic = stiff_less_1_hour [20%, 90%]
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification
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Searching for the associations

Find all large itemsets

association rules

Use the large itemsets to generate

If XY is a large itemset, compute

r =support(XY) / support(X)

If r > MinConf, then X = Y holds

(support > MinSup, as XY is large)

Large itemsets

» Large itemsets are itemsets that appear in at
least MinSup transaction

+ All subsets of a large itemset are large
itemsets (e.g., if A,B appears in at least
MinSup transactions, so do A and B)

+ This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)

Association vs.

rules

» Exploration of
dependencies

« Different combinations
of dependent and
independent attributes

» Complete search (all
rules found)
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Classification
rules

Focused prediction
Predict one attribute
(class) from the others
Heuristic search (subset
of rules found)

Part IV. Descriptive DM techniques

» Predictive vs. descriptive induction
» Subgroup discovery
+ Association rule learning

:>- Hierarchical clustering

Hierarchical clustering

. Algorlthm (agglomerative

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ciin Cj;
fuse Ciin C; in a new cluster
C=CUC;
determine dissimilarities between
Crand other clusters;

until one cluster left;

293

« Dendogram:

cluster level
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Hierarchical clustering

» Fusing the nearest pair of clusters

* Minimizing intra-cluster
similarity

* Maximizing inter-cluster
similarity

» Computing the dissimilaritiesj]
from the “new” cluster




Hierarchical clustering: example
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Part V:
Relational Data Mining

ﬁ Learning as search
+ What is RDM?

» Propositionalization techniques
* Inductive Logic Programming

Learning as search

+ Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph
— nodes: concept descriptions (hypotheses/rules)
— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child
+ Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}
+ Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}
 Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayTennis example

Play tennis = yes IF

Play tennis = yes

Play tennis = yes
IF Wind=weak ay fennis = ye:

) IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong ~ IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
X ) IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,

Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:
PlayTennis example

Play tennis = yes IF  [9+,5-] (14)

Play tennis = yes
. IF Humidity=high
Play tennis = yes Play tennis = yes [3+.4-] (7)
IF Wind=strong ~ LF Humidity=normal

[3+,3-1 (6) [6+,1-1(7)

Play tennis = yes
IF Wind=weak
[6+.2-1(8)

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
[2+.0-] (2)
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Learning as search
(Mitchell’s version space model)

i

¢ o
more
O & & specific
too specific
o

» Hypothesis language Ly
defines the state space

+ How to structure the
hypothesis space Ly?

+ How to move from one
hypothesis to another?

more
general

complete and consis

« The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

Learning as search

+ Search/move by applying
generalization and

specialization .
generalize

» Prune generalizations:
— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)
» Prune specializations:
— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

specialize

too specific

Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy

« depth-first

* breath-first

« heuristic search (best first, hill-climbing, beam search)
— search heuristics

+ measure of attribute ‘informativity’

« measure of ‘expected classification accuracy’ (relative

frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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Learn-one-rule:
search heuristics

» Assume a two-class problem

» Two classes (+,-), learn rules for + class (Cl).

» Search for specializations R’ of a rule R = Cl « Cond
from the RuleBase.

» Specializarion R’ of rule R = Cl « Cond

has the form R’ = Cl « Cond & Cond’

* Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

+ learn-one-rule by greedy general-to-specific
search, at each step selecting the “best’
descendant, no backtracking

- e.g., the best descendant of the initial rule
PlayTennis = yes «
— is rule PlayTennis = yes «— Humidity=normal

» beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Part V:
Relational Data Mining

+ Learning as search

> What is RDM?

+ Propositionalization techniques
* Inductive Logic Programming
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Predictive relational DM Data for propositional DM
+ Data stored in relational databases Sample single relation data table
+ Single relation - propositional DM
— example is a tuple of values of a fixed number of i v e e
attributes (one attribute is a class) vt e |35, [ [5i677 e b [0 |55 o oo D[R e a[SE
— example set is a table (simple field values) e [ I P oo worrin i (6o
3479 Doe  |Jane |43, 1 43666 i80- |45 [pon-  |res-
» Multiple relations - relational DM (ILP) bea Jion fied [0k el e
— example is a tuple or a set of tuples T e e
(logical fact or set of logical facts) ORI 5 T AT [ s [are[oiore
— example set is a set of tables (simple or complex 2 P Mode [Mode Siae |Type [Locstn
structured objects as field values) 3478346770m |5t [60-70132]melur [regular|cash  |omall |franchisel
3479]43666|f 80-90/45 it |large [indep |rural
Customer table including order and store information.
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Multi-relational data made Relational Data Mining (ILP)
propositional

« Learning from multiple Customer
Iab|eS D |Zip S [So |[In A [C] [Re
. Samp|e D [ [5,]5 [Eone [ [P ivery [Faymmt [Shore [Store [store X|St |comelBeiud |
lex|St [comelgelub (S [Mode ~ |Mode [S77e  [Type  |Locatn « Complex relational o e o
relation 3478134677/m [si [60-70]32{melur [regular [cash small [franchiselc problems:
347 77|m [si [60- lexpress [check [small iselci .
table 3478]34677]m [si |60 lvegular [check [large [indep [rural — temporal data: time
0 [P [oredit orge fmdep series in medicine, arder
lregular |credit [sm: oy . de Deli
o oo e o [ trafic control, ... %mm“ e %‘T Mode Mag(;!elt
Customer table with multiple orders. _ StrUCtUred data: il?s 5140261 {2 ;eg\du vuv!h
i 3478 3446778|12 heck
M k- d t D 17 replreselntatlozogl . 3478 4728386/ 17 ::\Iuc: z.h&k
. D |z o A No. of No. of 3479 cred
aking data e e moscuesanater bR I [ R
using summary [~ |~ - properties in p . S P A
lm st 607032 5 2 engineering, \
7 1 80-90/45 amfre |2 o biochemistry, ... | stoze
Stcre D]5iae [Type [iocatica
Customer table using summary attributes. PO W S
17 large indep [rural

Relational representation of customers, orders and stores.
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Basic Relational Data Mining tasks Predictive ILP

+ Given:
— A set of observations

Predictive RDM « positive examples E *
+ negative examples E -

— background knowledge B
H — hypothesis language L
— covers relation

+ Find:
A hypothesis He Ly, such that (given B) H
covers all positive and no negative examples

Descriptive RDM
* Inlogic, find H such that
— Vee E*:B A H|= e (His complete)
— Vee E":B A H|=/=e (His consistent)

* InILP, E are ground facts, Band H are
(sets of) definite clauses




Predictive ILP

+ Given:

— A set of observations

« positive examples E *

« negative examples E~
— background knowledge B
— hypothesis language L,
— covers relation
— quality criterion

+ Find:
A hypothesis He Ly, such that (given B) His
optimal w.r.t. some %uality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis He L, such
that (given B) H covers all positive and no
negative examples)
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Descriptive ILP

Given:

— A set of observations
(positive examples E *)

— background knowledge B

— hypothesis language L

— covers relation

Find:
Maximally specific hypothesis He Ly, such
that (given B) H covers all positive examples

In logic, find H such that Vc e H, cis true in
some preferred model of BUE (e.g., least
Herbrand model M (B UE)))

In ILP, E are ground facts, B are (sets of)
general clauses
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Sample problem
Knowledge discovery

E * = {daughter (mary, ann), daughter (eve, tom) }
E "= {daughter (tom, ann) ,daughter (eve, ann) }

B= {mother (ann,mary), mother (ann,tom),
father (tom,eve), father(tom,ian), female (ann),
female (mary), female(eve), male(pat),male(tom),

(
parent (X,Y) <« mother(X,Y), parent(X,Y) <«
father (X,Y)}
ann
"R
eve fan
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Sample problem
Knowledge discovery

E * = {daughter (mary, ann) , daughter (eve, tom) }

E = {daughter (tom, ann),daughter (eve, ann) }

B= {mother (ann, mary) ,mother (ann, tom), father (tom, eve),
father (tom, ian), female (ann), female (mary), female (eve),
male (pat),male (tom), parent (X,Y)<«mother (X,Y),

parent (X,Y)<«father (X,Y) }

Predictive ILP - Induce a definite clause

daughter (X,Y) « female(X), parent(Y,X).
or a set of definite clauses

daughter (X,Y) « female(X), mother(Y,X).

daughter (X,Y) ¢« female(X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses
< daughter (X,Y), mother(X,Y).
female (X) ¢ daughter(X,Y).
mother (X,Y); father(X,Y) <« parent(X,Y).
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Sample problem
Logic programming

E*={sort([2,1,3],[1,2,31)}
E = {sort([2,1],[1]),sort ([

3,1,21,102,1,31)}
B : definitions of permutation/2 and sorted/1
« Predictive ILP
sort (X,Y) « permutation(X,Y), sorted(Y).
» Descriptive ILP
sorted(Y) <= sort(X,Y).

permutation(X,Y) ¢ sort(X,Y)
sorted(X) <= sort(X,X)
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Sample problem:
East-West trains

1L TRAINS GOING EAST 2 TRAINS GOING WEST
g ] g ]
o o (T2 HoooHBh w Latmoor




RDM knowledge representation™

(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
" cl circle 1 1 TRUE
12 c2 hexagon 1 2 TRUE
13 €3 triangle 1
14 c4  rectangle 3 16 FALSE
;T
CAR “TRAIN SHAPE LENGTH ROOF WHEBRS
cl t1 rectangle short none 2
c2 t rectangle long none 3
c3  t1  rectangle short  peaked 2
c4  t1  rectangle  long none 2
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ER diagram for East-West trains

® e

1 1
Car Load

ILP representation:
Datalog ground facts

Example: ol © |{aMooomh
eastbound(t1).

Background theory:

car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,I1). load(c2,12). load(c3,13). load(c4,14).
circle(l1). hexagon(l2).  triangle(I3). rectangle(14).
one_load(I1). one_load(l2). one_load(I3). three_loads(l4).

* Hypothesis (predictive ILP):
eastbound(T) :- car(T,C),short(C),not none(C).

ILP representation:
Datalog ground clauses

oH o HaHoog Dl

« Example:
eastbound(t1):-
car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
load(c1,!1),circle(I1),one_load(I1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,12),hexagon(l2),one_load(I2),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,13),triangle(13),one_load(I3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(l4) three_load(14).
< Background theory: empty

« Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).
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ILP representation: Prolog terms
o H_o HaHoool3

« Example:

eastbound([c(rectangle,short,none,2,l(circle, 1)),
c(rectangle,long,none,3,l(hexagon, 1)),
c(rectangle,short,peaked,2,|(triangle, 1)),
c(rectangle,long,none,2,I(rectangle,3))]).

» Background theory: member/2, arg/3

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).
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First-order representations

. representations:

— datacase is

— features are those given in the dataset
 First-order representations:

— datacase is flexible-size, structured object
* sequence, set, graph
« hierarchical: e.g. set of sequences
— features need to be selected from potentially infinite set




Complexity of RDM problems

Simplest case: single table with primary key

— example corresponds to tuple of constants

— attribute-value or propositional learning

Next: single table without primary key

— example corresponds to set of tuples of constants

- problem

Complexity resides in many-to-one foreign keys
— lists, sets, multisets

— non-determinate variables

Part V:
Relational Data Mining
» Learning as search
» What is RDM?

> Propositionalization techniques
* Inductive Logic Programming

Rule learning:
The standard view

» Hypothesis construction: find a set of nrules

— usually simplified by n separate rule constructions
« exception: HYPER

* Rule construction: find a pair (Head, Body)
— e.g. select head (class) and construct body by
searching the VersionSpace
« exceptions: CN2, APRIORI
» Body construction: find a set of mliterals

— usually simplified by adding one literal at a time
« problem (ILP): literals introducing new variables

Rule learning revisited

* Hypothesis construction: find a set of nrules
* Rule construction: find a pair (Head, Body)
» Body construction: find a set of m features

— Features can be either defined by background knowledge or
constructed through constructive induction

— In propositional learning features may increase expressiveness
through negation

— Every ILP system does constructive induction
» Feature construction: find a set of k literals
— finding interesting features is discovery task rather than classification
task e.g. interesting subgroups, frequent itemsets
— excellent results achieved also by feature construction through
predictive propositional learning and ILP (Srinivasan)
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First-order feature construction

+ All the expressiveness of ILP is in the features

+ Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)

Standard LINUS

Example: learning family relationships

Training ex Background knowledge
daughter(sue,eve). (+) |parent(eve,sue). female(ann).
daughter(ann,pat). (+) _|parent(ann,tom). female(sue).
daughter(tom,ann). ~ (-)  |parent(pat,ann). female(eve).
daughter(eve,ann). () |parent(tom,sue).

Transformation to propositional form:

Class | Variables Propositional features
X 1Y [0 ] 10 [pxx) ey [pv.x) [ pev.y) | x=Y

sue | eve | true | true | false | false | true | false false

pat | true | false | false | false | true false false
tom | ann | false | true | false | false | true false false
© |eve|ann| true | true | false | false | false | false false
Result of propositional rule learning:

Class = @ if (female(X) = true) A (parent(Y,X) = true
Transformation to program clause form:

daughter(X,Y) « female(X),parent(Y,X)

O|e|e
»
]
El




Representation issues (1)

+ In the database and Datalog ground fact
representations individual examples are not
easily separable

« Term and Datalog ground clause
representations enable the separation of
individuals

» Term representation collects all information
about an individual in one structured term

Representation issues (2)

» Term representation provides strong
language bias
» Term representation can be flattened to be
described by ground facts, using
— structural predicates (e.g. car(t1,c1),
load(c1,11)) to introduce substructures
— utility predicates, to define properties of
invididuals (e.g. long(t1)) or their parts
(e.g., long(c1), circle(I1)).
» This observation can be used as a language
bias to construct new features

Declarative bias for first-order
feature construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,

molecules) or their parts (e.g., cars, atoms)

E_eature construction in LINUS, using the following language
ias:

— one free global variable (denoting an individual, e.g. train)

— one or more structural predicates: (e.g., has_car(T,C)) ,each

introducing a new existential local variable (e.g. car, atom), using either

the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

all variables should be used

parameter: max. number of predicates forming a feature

Sample first-order features

» The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

» The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

» Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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Propositionalization in a nutshell

TRAN_TABLE

o o {aHooo

Propositionalization task

CAB TRAIN _SHAPE LENGTH _ROOF _WHEHS

) . Bl 11 rectangle  short none 2

Transform a multi-relational 2 11 redtangle long none 3
'] 3 t1 rect angle hort aked 2

(multiple-table) BN - e o W

representation to a

propositional representation

(single table) PROPOSITIONAL TRAWN_TABLE

train(  11(T) | f2(T) 13(T) | f4(T) 15(T)
t t ||t f t

Proposed in ILP systems
LINUS (1991), 1BC (1999), ...

t [ t t
3 f t f
t | t f

|

Propositionalization in a nutshell

Main propositionalization step: TRAIN_TABLE

£}

T MR,

first-order feature construction & & o

K1 o s s

f1(T):-hasCar(T,C),clength(C,short). ~
f2(T):-hasCar(T,C), hasLoad(C,L), TRAIN | SHAPE LENGTH _ROOF _WHEES
. ol t1 rectangle  short none 2
loadShape(L,circle) 2 1 rectangle long _none 3
3(T) - ... BN pETn o W

Propositional learning:

t(T) « FL(T), FA(T) TRAR_YABLE

train(T) | f1(T) 12(T) | 13(T) | f4(T)

o[t t T
Relational interpretation: 2
eastbound(T) < t4

hasShortCar(T),hasClosedCar(T).

15(T) |
t

t t
f T
f L

t

t [t

t T f

t | f
|




LINUS revisited

+ Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates
» Revisited LINUS:
— Systematic first-order feature construction in a given
language bias
» Too many features?
— use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:
eastbound(T):-
hasCarHasLoadSingleTriangle(T),
not hasCarlLongJagged(T),
not hasCarLongHasLoadCircle(T).
Meaning:
eastbound(T):-
hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-
not (hasCar(T,C1),cshape(C1,ellipse)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).

westbound(T):-
not hasCarEllipse(T),
not hasCarShortFlat(T),
not hasCarPeakedTwo(T).

Part V:
Relational Data Mining

» Learning as search
* What is RDM?
» Propositionalization techniques

:> Inductive Logic Programming
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ILP as search of program clauses

* An ILP learner can be described by
— the structure of the space of clauses

* based on the generality relation
* Let C and D be two clauses.
C is more general than D (C |= D) iff
covers(D) c covers(C)
« Example: p(X,Y) «< r(Y,X) is more general than
P(X,Y) < 1(Y,X), q(X)
— its search strategy
« uninformed search (depth-first, breadth-first, iterative
deepening)
« heuristic search (best-first, hill-climbing, beam search)
— its heuristics
« for directing search
« for stopping search (quality criterion)

ILP as search of program clauses

Semantic Igenerality
Hypothesis H, is semantically more general than H, w.r.t.
background theory Bif and only if Bu H; |= H,
Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause ¢, #-subsumes ¢, (¢; = ,C,)

ifand only if 36: ¢,0 c ¢,
— Hypothesis H, > 6H,

if and only if V¢, € H, exists ¢, € H, such that ¢, > 8¢,
Example

c1 = daughter(X,Y) « parent(Y,X?

c2 = daughter(mary,ann) « female(mary),

parentéann,mar ,

parent(ann,tom).
c1 #-subsumes ¢, under 6= {X/mary,Y/ann}
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The role of subsumption in ILP

» Generality ordering for hypotheses

+ Pruning of the search space:

— generalization

« if C covers a neg. example then its generalizations need
not be considered

— specialization

« if C doesn't cover a pos. example then its specializations
need not be considered

» Top-down search of refinement graphs

+ Bottom-up search of the hypo. space by
— building least general generalizations, and
— inverting resolutions




Structuring the
hypothesis space

too general
flies(X) «
more
flies(X) « bird(X) general
flies(X) « bird(X),
normal(X)
more
specific

too specific
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Two strategies for learning

» General-to-specific
— if ®@-subsumption is used then refinement
operators
+ Specific-to-general search

— if ®-subsumption is used then Igg-operator or
generalization operator
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ILP as search of program clauses

» Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
« building least general generalizations
« inverting resolution (CIGOL)
« inverting entailment (PROGOL)

More general
(induction) D
More
specific .

Generality ordering of clauses

Training examples Background knowledge

daughter(mary,ann). @ | parent(ann,mary). female(ann.).

daughter(eve,tom). @ | parent(ann,tom). female(mary).

daughter(tom,ann). © | parent(tom,eve). female(eve).
( o (

daughter(eve,ann). parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) «X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) ¢ daughter(X,Y) «
female (X) female(X)
female(Y) parent(Y,X)

Part of the refinement
graph for the family
relations problem.
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Greedy search of the best clause

Training examples Background knowledge

daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). @ | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).

daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) « 2/4

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z)
2/3

laughter(X,Y) « female(X)

d

daughter(X,Y) « daughter(X,Y) «
female (X) 1,2 female(X) 272
female(Y) parent(Y,X)




FOIL

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, in/out modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C

Part V: Summary

» RDM extends DM by allowing multiple tables
describing structured data

» Complexity of representation and therefore of
learning is determined by one-to-many links

+ Many RDM problems are individual-centred
and therefore allow strong declarative bias




