Data Mining and Knowledge Discovery

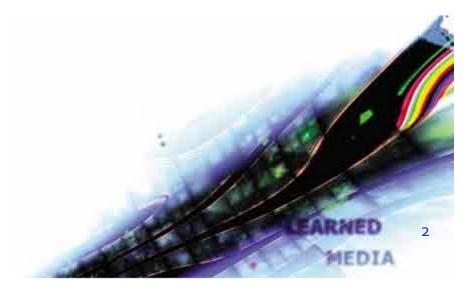
Knowledge Discovery and Knowledge Management in e-Science

Petra Kralj Novak Petra.Kralj.Novak@ijs.si

Practice, 2008/11/11

1

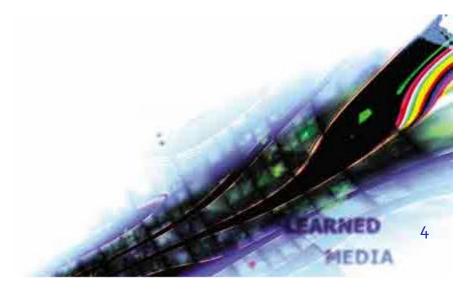
- List evaluation methods for classification.
 - How much is the information gain for the "attribute" Person? How would it perform on the test set?
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - How would you compute the information gain for a numeric attribute?
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



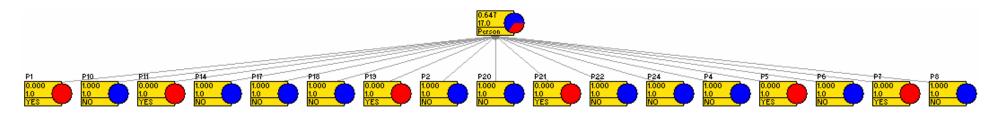
List of evaluation methods

- Separate train and test set
- K-fold cross validation
- Leave one out
 - used with very small datasets (few 10 examples)
 - For each example *e*:
 - use *e* as test example and the rest for training
 - Count the correctly classified examples
- Optimistic estimate: test on training set
- Random sampling

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - How would you compute the information gain for a numeric attribute?
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



Information gain of the "attribute" Person



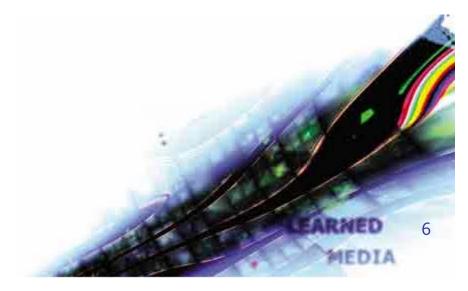
On training set

- As many values as there are examples
- Each leaf has exactly one example
- E(1/1, 0/1) = 0 (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)

On testing set

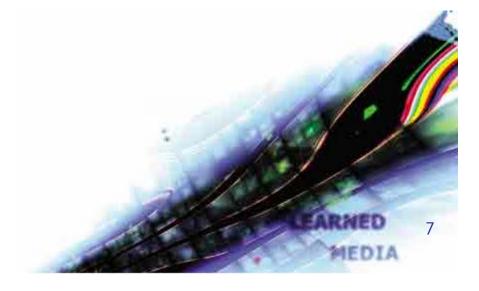
• The values from the testing set do not appear in the tree

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - How would you compute the information gain for a numeric attribute?
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



Entropy{hard=4, soft=5, none=13}=

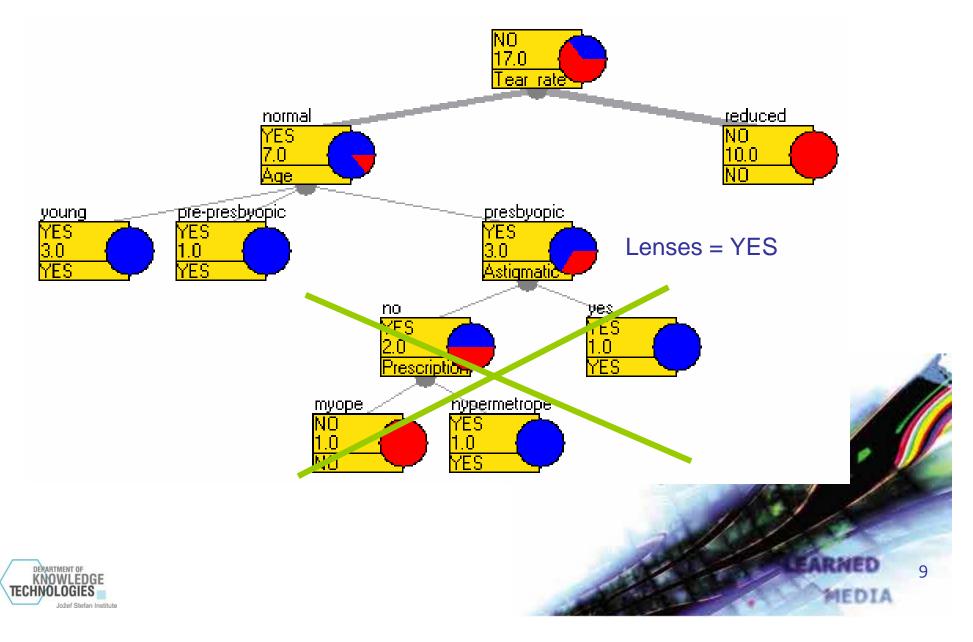
- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22$ $- 13/22* \log_2 13/22$
- = 1.38



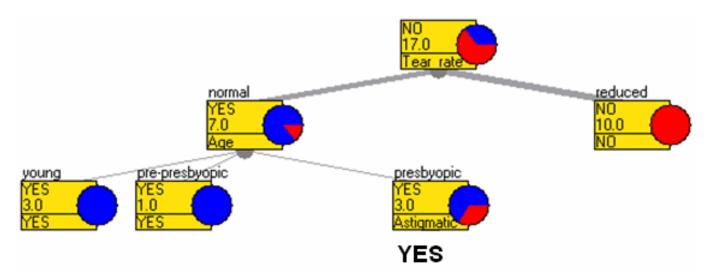
- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

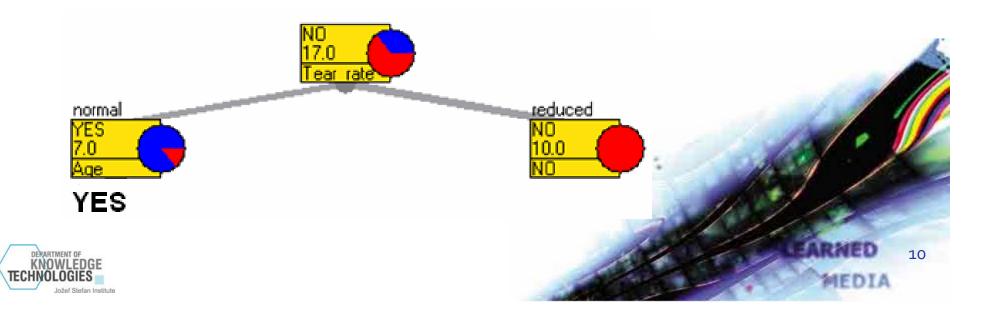


Decision tree



These two trees are equivalent

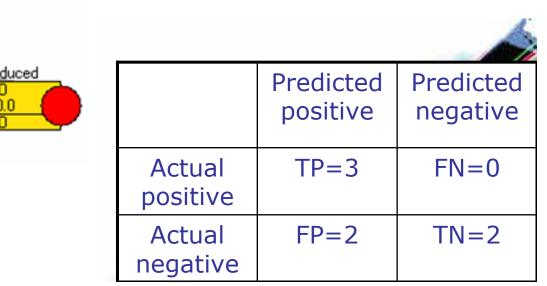




Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Ca = (3+2)/(3+2+2+0) = 0,71%

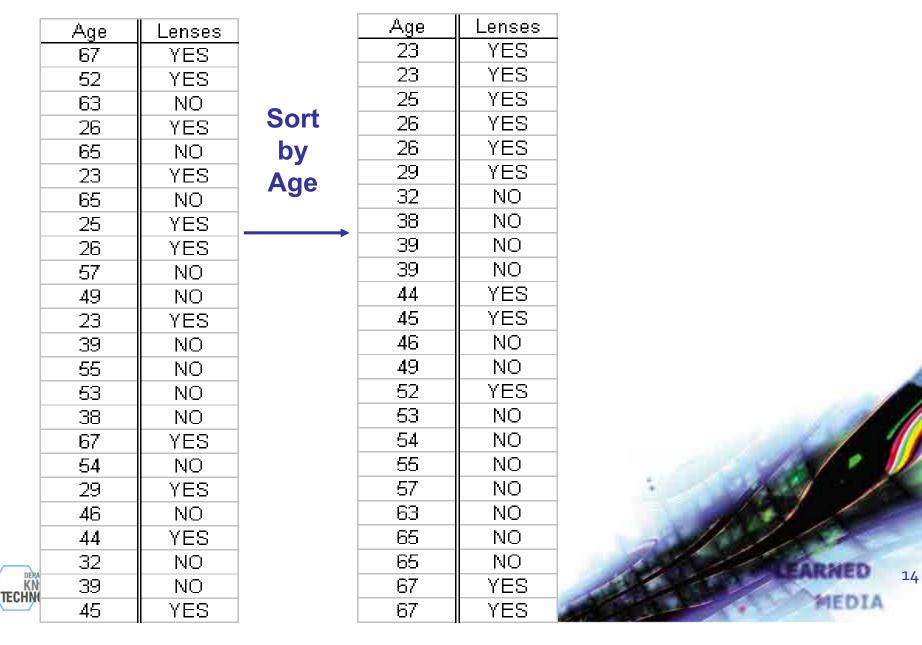


Jožef Stefan Institute

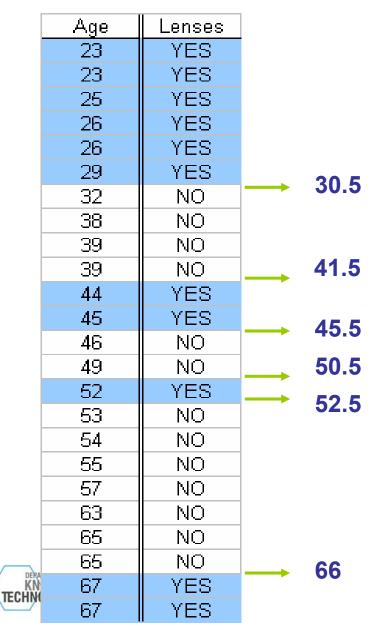
- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
 - What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 - Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

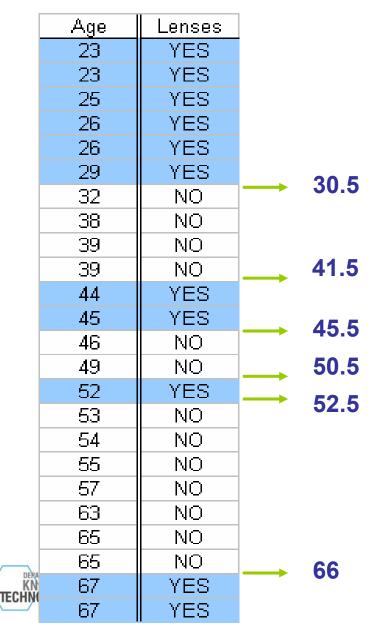
	Age	Lenses		
	67	YES		
	52	YES		
	63	NO		
	26	YES		
	65	NO		
	23	YES		
	65	NO		
	25	YES		
	26	YES		
	57	NO		
	49	NO		
	23	YES		
	39	NO		
	55	NO		
	53	NO		
	38	NO		
	67	YES		
	54	NO		
	29	YES		
	46	NO		
	44	YES		
	32	NO		
	39	NO		
	45	YES		

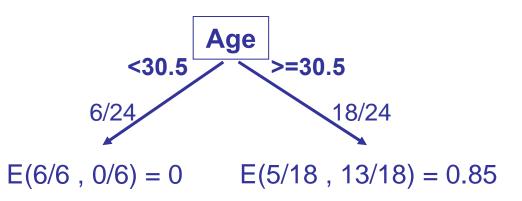


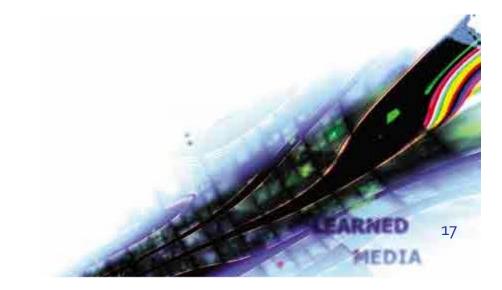


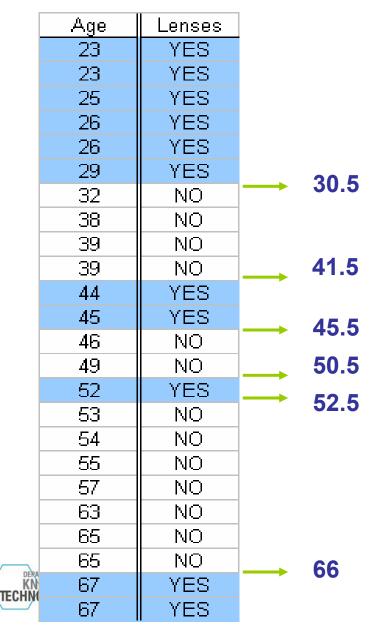
	Age	Lenses		Age	Lenses		Age	Lenses
	67	YES	Sort by	23	YES	Define possible splitting points	23	YES
	52	YES		23	YES		23	YES
_	63	NO		25	YES		25	YES
	26	YES		26	YES		26	YES
	65	NO		26	YES		26	YES
	23	YES	Age	29	YES		29	YES
	65	NO		32	NO		32	NO
	25	YES		38	NO		38	NO
	26	YES		39	NO		39	NO
	57	NO		39	NO		39	NO
	49	NO		44	YES		44	YES
	23	YES		45	YES		45	YES
	39	NO		46	NO		46	NO
	55	NO		49	NO		49	NO 🕻
	53	NO		52	YES		52	YES 🍃
	38	NO		53	NO		53	NO 🎽
	67	YES		54	NO		54	NO 🖉
	54	NO		55	NO		55	NO 🚺
	29	YES		57	NO		57	NO 📕
	46	NO		63	NO		63	NO
	44	YES		65	NO	2 //	65	NO
	32	NO		65	NO	AN AN	65	NO
	39	NO		67	YES		67	YES
	45	YES		67	YES	and the second	67	YES



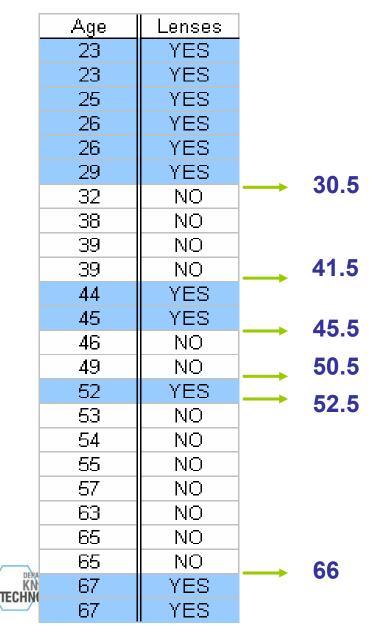






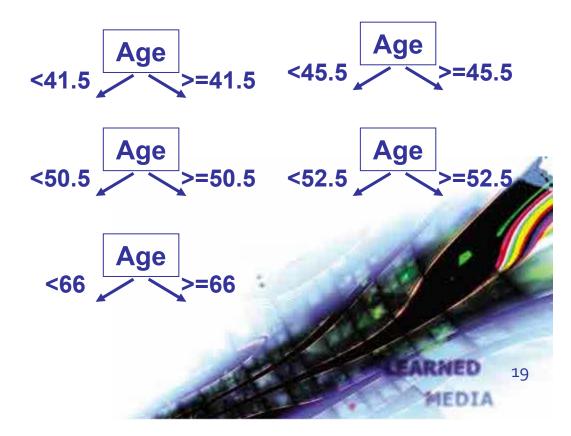


E(S) = E(11/24, 13/24) = 0.99Age <30.5 >=30.5 6/24 18/24 E(6/6, 0/6) = 0 E(5/18, 13/18) = 0.85InfoGain (S, Age_{30.5})= $= E(S) - \sum p_v E(p_v)$ = 0.99 - (6/24*0 + 18/24*0.85) = 0.3518 IEDIA



<30.5 Age >=30.5

InfoGain (S, Age_{30.5}) = 0.35



- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Handling missing values: Naïve Bayes

Will the spider catch these two ants?

- Color = white, Time = night missing value Size
- Color = black, Size = large, Time = day

$$p(c_{1}|v_{1}, v_{2}) =$$

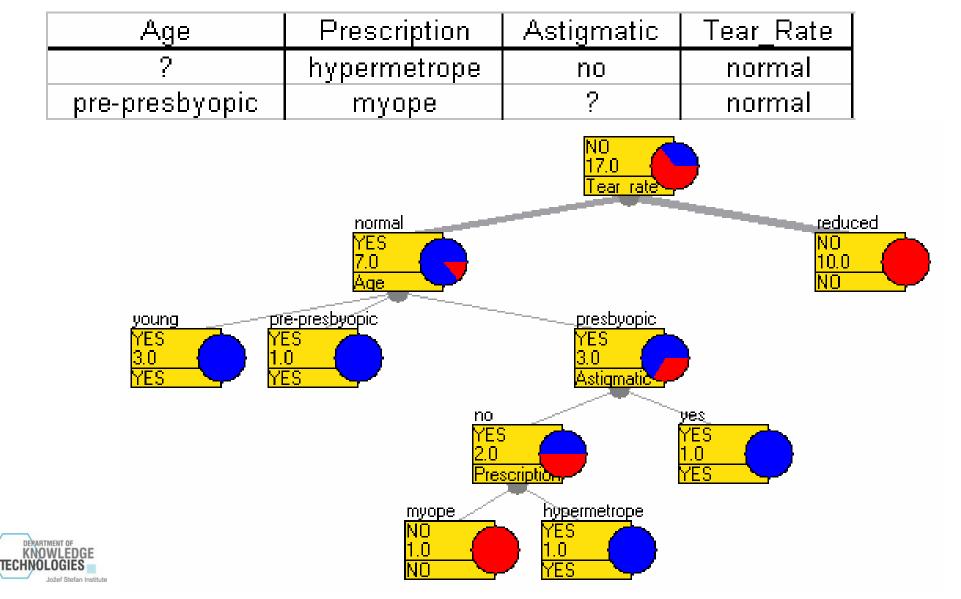
$$p(Caught = YES|Color = white, Time = night) =$$

$$p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} =$$

$$\frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$$
Naïve Bayes uses all the available information!

21

Handling missing values: Decision trees - 1

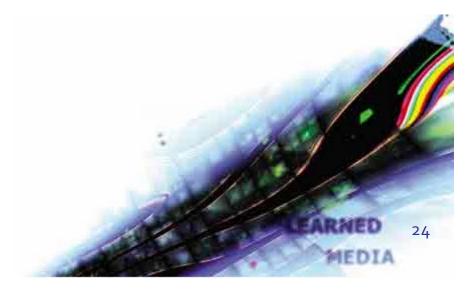


Handling missing values: Decision trees - 2

Algorithm **ID3**: does not handle missing values Algorithm **C4.5** (J48) deals with two problems:

- Missing values in train data:
 - Missing values are not used in gain and entropy calculations
- Missing values in test data:
 - A missing continuous value is replaced with the median of the training set
 - A missing categorical values is replaced with the most frequent value

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model



Continuous attributes: decision trees & naïve bayes

- Decision trees ID3 algorithm: does not handle continuous attributes → data need to be discretized
- Decision trees C4.5 (J48 in Weka) algorithm: deals with continuous attributes as shown earlier
- Naïve Bayes: does not handle continuous attributes →

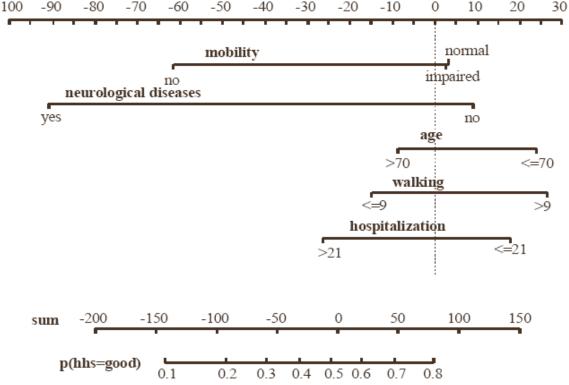
data need to be discretized

(some implementations do handle)

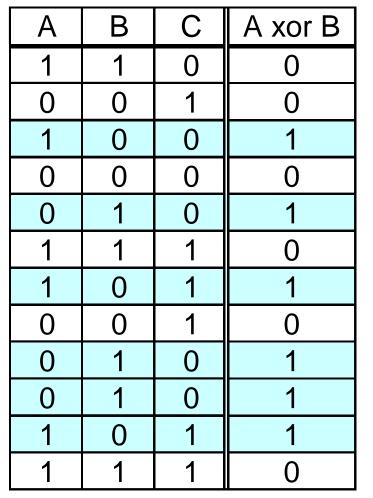
- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Interpretability of decision tree and naïve bayes models

- Decision trees are easy to understand and interpret (if they are of a reasonably small size)
- Naïve bayes models are of the "black box type". Naïve bayes models have been visualized by nomograms.
 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10



Trees are shortsighted – part 1



• Three attributes:

A, B and C

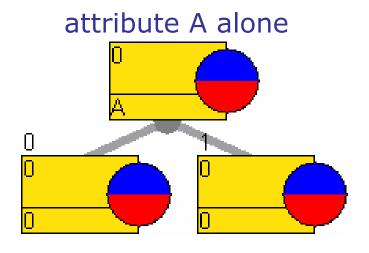
 Target variable is a logical combination attributes A and B

class = A xor B

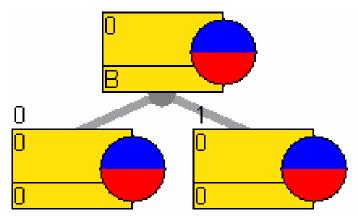
 Attribute C is random w.r.t. the target variable

28

Trees are shortsighted – part 2



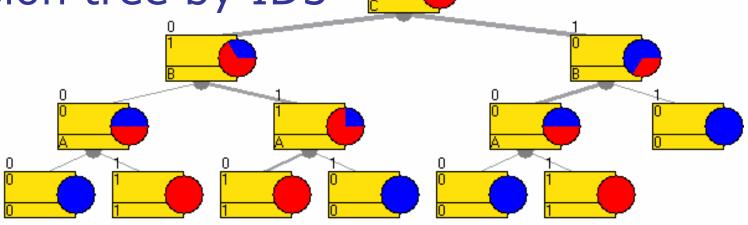
attribute B alone

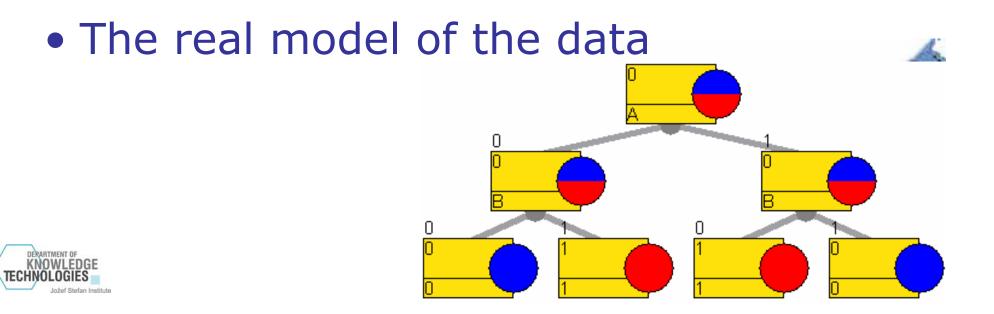


attribute C alone

Trees are shortsighted – part 3

Decision tree by ID3





Overcoming shortsightedness of decision trees

- Random forests
 - (Breinmann & Cutler, 2001)
 - A random forest is a set of decision trees
 - Each tree is induced from a bootstrap sample of examples
 - For each node of the tree, select among a subset of attributes

21

- All the trees vote for the classification
- See also "bagging" and "boosting"
- ReliefF for attribute estimation (Kononenko el al., 1997)

