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Course Schedule - 2007/08 
Data Mining and Knowledge Discovery (DM)

• 21 October 2008 15-19 Lectures (Lavrač)
• 22 October 2008 15-19 Practice (Kralj Novak)
• 11 November 2008 15-19 Lectures (Lavrač)
• 12 November 2008 15-19 Practice (Kralj Novak)
• 1 December 2008   16-17 written exam - theory
• 8 December 2008   15-17   seminar topics presentations
• 14 January 2009 15-19   seminar presentations (exam ?)
• Spare date, if needed:

(28 January 2009 15-19  seminar presentations ?, exam ?)

http://kt.ijs.si/petra_kralj/IPSKnowledgeDiscovery0809.html
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DM - Credits and coursework
“New Media and eScience” / “Statistics”

• 12 credits (30 hours / 36 hours)
• Lectures
• Practice 

– Theory exercises and hands-on (WEKA)
• Seminar – choice:

– Data analysis of your own data (e.g., using WEKA for 
questionnaire data analysis)

– Programming assignment  - write your own data 
mining module, and evaluate it on a (few) domain(s)

• Contacts: 
– Nada Lavrač nada.lavrac@ijs.si
– Petra Kralj Novak petra.kralj@ijs.si
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DM - Credits and coursework
Exam: Written exam (60 minutes) - Theory 
Seminar: topic selection + results presentation
• Oral presentations of your seminar topic (DM task or 

dataset presentation,  max. 4 minutes)
• Presentation of your seminar results (10 minutes + 

discussion)
• Deliver written report + electronic copy (in Information 

Society paper format, see instructions on the web page), 
– Report on data analysis of own data needs to follow the  

CRISP-DM methodology
– Report on DM SW development needs to include SW 

uploaded on a Web page – format to be announced
http://kt.ijs.si/petra_kralj/IPSKnowledgeDiscovery0809.html
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Course Outline
I. Introduction

– Data Mining and KDD process
– DM standards, tools and 

visualization
– Classification of Data Mining 

techniques: Predictive and 
descriptive DM
(Mladenić et al. Ch. 1 and 11, 
Kononenko & Kukar Ch. 1)

II. Predictive DM Techniques
– Bayesian classifier (Kononenko Ch.  

9.6)
– Decision Tree learning (Mitchell Ch. 

3, Kononenko Ch. 9.1)
– Classification rule learning

(Berthold book Ch. 7, Kononenko
Ch. 9.2)

– Classifier Evaluation (Bramer Ch. 6)

III. Regression 
(Kononenko Ch. 9.4)

IV. Descriptive DM
– Predictive vs. descriptive induction
– Subgroup discovery
– Association rule learning 

(Kononenko Ch. 9.3)
– Hierarchical clustering (Kononenko

Ch. 12.3)

– V. Relational Data Mining
– RDM and Inductive Logic 

Programming (Dzeroski & Lavrac 
Ch. 3, Ch. 4)

– Propositionalization approaches 
– Relational subgroup discovery
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Part I. Introduction

Data Mining and the KDD process
• DM standards, tools and visualization
• Classification of Data Mining techniques: 

Predictive and descriptive DM

8

What is DM

• Extraction of useful information from data: 
discovering relationships that have not 
previously been known

• The viewpoint in this course: Data Mining is 
the application of Machine Learning 
techniques to solve real-life data analysis 
problems

9

Related areas

Database technology
and data warehouses
• efficient storage, 

access and 
manipulation
of data DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases
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Statistics, 
machine learning,
pattern recognition
and soft computing* 
• classification 

techniques and 
techniques for 
knowledge extraction 
from data

* neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning

DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases

Related areas
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DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases

Related areas

Text and Web mining
• Web page analysis
• text categorization
• acquisition, filtering 

and structuring of 
textual information

• natural language 
processing

text and Web 
mining
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Related areas

Visualization
• visualization of data 

and discovered 
knowledge

DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases
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Point of view in this tutorial

Knowledge 
discovery using 
machine 
learning 
methods DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases
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Data Mining, ML and Statistics
• All areas have a long tradition of developing inductive 

techniques for data analysis.
– reasoning from properties of a data sample to properties of a 

population
• DM vs. ML - Viewpoint in this course:

– Data Mining is the application of Machine Learning techniques to
hard real-life data analysis problems

• DM vs. Statistics:
– Statistics 

• Hypothesis testing when certain theoretical expectations 
about the data distribution, independence, random sampling, 
sample size, etc. are satisfied

• Main approach: best fitting all the available data
– Data mining

• Automated construction of understandable patterns, and 
structured models

• Main approach: structuring the data space, heuristic search 
for decision trees, rules, … covering (parts of) the data space

15

Data Mining and KDD
• KDD is defined as “the process of identifying 

valid, novel, potentially useful and ultimately 
understandable models/patterns in data.” *

• Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data. 

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

16

KDD Process
KDD process of discovering useful knowledge from data

• KDD process involves several phases:
• data preparation
• data mining (machine learning, statistics)
• evaluation and use of discovered patterns

• Data mining is the key step, but represents only 
15%-25% of the entire KDD process

17

MEDIANA – analysis of media research data

• Questionnaires about journal/magazine reading, watching 
of TV programs and listening of radio programs, since 
1992, about 1200 questions. Yearly publication: frequency 
of reading/listening/watching, distribution w.r.t. Sex, Age, 
Education, Buying power,..

• Data for 1998, about 8000 questionnaires, covering 
lifestyle, spare time activities, personal viewpoints, 
reading/listening/watching of media (yes/no/how much), 
interest for specific topics in media, social status

• good quality, “clean” data
• table of n-tuples (rows: individuals, columns: attributes, in 

classification tasks selected class)

18

MEDIANA – media research pilot study

• Patterns uncovering regularities concerning:
– Which other journals/magazines are read by readers of 

a particular journal/magazine ?
– What are the properties of individuals that are 

consumers of a particular media offer ?
– Which properties are distinctive for readers of different 

journals ?
• Induced models: description (association rules, clusters) 

and classification (decision trees, classification rules)
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Simplified association rules
Finding profiles of readers of the Delo daily 

newspaper
1. read_Marketing_magazine 116 =>

read_Delo 95 (0.82)
2. read_Financial_News (Finance) 223 => read_Delo 180 

(0.81)
3. read_Views (Razgledi) 201 => read_Delo 157 (0.78)

4. read_Money (Denar) 197 => read_Delo 150 (0.76)

5. read_Vip 181 => read_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, 
Financial News, Views, Money and Vip read also 
Delo.

20Simplified association rules 
(in Slovene)

1. bere_Sara 332 => bere_Slovenske novice 211 (0.64)
2. bere_Ljubezenske zgodbe 283 =>

bere_Slovenske novice 174 (0.61)
3. bere_Dolenjski list 520 =>

bere_Slovenske novice 310 (0.6)
4. bere_Omama 154 => bere_Slovenske novice 90 (0.58)
5. bere_Delavska enotnost 177 =>

bere_Slovenske novice 102 (0.58)
Večina bralcev Sare, Ljubezenskih zgodb, 

Dolenjskega lista, Omame in Delavske enotnosti 
bere tudi Slovenske novice.

21Simplified association rules 
(in Slovene)

1. bere_Sportske novosti 303 =>
bere_Slovenski delnicar 164 (0.54)

2. bere_Sportske novosti 303 =>
bere_Salomonov oglasnik 155 (0.51)

3. bere_Sportske novosti 303 =>
bere_Lady 152 (0.5)

Več kot pol bralcev Sportskih novosti bere tudi 
Slovenskega delničarja, Salomonov oglasnik in 
Lady.

22Decision tree
Finding reader profiles: decision tree for classifying people 

into readers and non-readers of a teenage magazine.
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Part I. Introduction

Data Mining and the KDD process
• DM standards, tools and visualization
• Classification of Data Mining techniques: 

Predictive and descriptive DM

24

CRISP-DM
• Cross-Industry Standard Process for DM
• A collaborative, 18-months partially EC 

founded project started in July 1997
• NCR, ISL (Clementine), Daimler-Benz, OHRA 

(Dutch health insurance companies), and SIG 
with more than 80 members

• DM from art to engineering
• Views DM more broadly than Fayyad et al. 

(actually DM is treated as KDD process):
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CRISP Data Mining Process

• DM Tasks

26

DM tools

27

Public DM tools
• WEKA - Waikato Environment for Knowledge 

Analysis
• Orange
• KNIME - Konstanz Information Miner 
• R – Bioconductor, …

28

Visualization

• can be used on its own (usually for 
description and summarization tasks)

• can be used in combination with other DM 
techniques, for example
– visualization of decision trees
– cluster visualization
– visualization of association rules
– subgroup visualization

29Data visualization: 
Scatter plot

30DB Miner: Association rule 
visualization 
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MineSet: Decision tree 
visualization 

32Orange: Visual programming and
subgroup discovery visualization

33

Part I. Introduction

Data Mining and the KDD process
• DM standards, tools and visualization
• Classification of Data Mining techniques: 

Predictive and descriptive DM

34

Types of DM tasks 
• Predictive DM:

– Classification (learning of rules, decision 
trees, ...)

– Prediction and estimation (regression)
– Predictive relational DM (ILP) 

• Descriptive DM:
– description and summarization
– dependency analysis (association rule 

learning)
– discovery of properties and constraints
– segmentation (clustering)
– subgroup discovery

• Text, Web and image analysis
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35Predictive vs. descriptive 
induction
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Predictive vs. descriptive 
induction

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
– Classification rule learning, Decision tree learning, ...
– Bayesian classifier, ANN, SVM, ...
– Data analysis through hypothesis generation and testing

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ...
– Exploratory data analysis
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Predictive DM formulated as a 
machine learning task:

• Given a set of labeled training examples (n-tuples of 
attribute values, labeled by class name) 

A1        A2        A3         Class
example1     v1,1 v1,2           v1,3                C1
example2     v2,1 v2,2           v2,3                C2
. . 

• By performing generalization from examples 
(induction) find a hypothesis (classification rules, 
decision tree, …) which explains the training 
examples, e.g. rules of the form:

(Ai = vi,k) & (Aj = vj,l) & ... Class = Cn

38

Data Mining in a Nutshell

data

Data MiningData Mining

knowledge discovery
from data

model, patterns, …

Given: transaction data table, relational database, text
documents, Web pages

Find: a classification model, a set of interesting patterns

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE
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Data Mining in a Nutshell

data

Data MiningData Mining

knowledge discovery
from data

model, patterns, …

Given: transaction data table, relational database, text
documents, Web pages

Find: a classification model, a set of interesting patterns

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE

new unclassified instance classified instance

black box classifier
no explanation

symbolic model  
symbolic patterns

explanation
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Predictive DM - Classification

• data are objects, characterized with attributes -
they belong to different classes (discrete labels)

• given objects described with attribute values, 
induce a model to predict different classes

• decision trees, if-then rules, discriminant
analysis, ...

41

Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE

42

Contact lens data: Decision tree

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

Type of task: prediction and classification
Hypothesis language: decision trees

(nodes: attributes, arcs: values of attributes,  
leaves: classes)
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Contact lens data: 
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X C,  if X then C

X conjunction of attribute values, C class

tear production=reduced → lenses=NONE
tear production=normal & astigmatism=yes & 

spect. pre.=hypermetrope → lenses=NONE
tear production=normal & astigmatism=no →
lenses=SOFT
tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=HARD
DEFAULT lenses=NONE

44

Task reformulation: Concept learning problem 
(positive vs. negative examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NO
O2 young myope no normal  YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
O5 young hypermetrope no reduced NO

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal YES
O15 pre-presbyohypermetrope yes reduced NO
O16 pre-presbyohypermetrope yes normal NO
O17 presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NO

45

Illustrative example:
Customer data

Customer Gender Age Income Spent BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

46

Customer data: Decision trees
Income

Age

no

yes

≤ 102000 > 102000

≤ 58 > 58

yes

Gender

Age

no

no

= female = male

≤ 49 > 49

yes

47Customer data: 
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X Y, if X then Y 

X, Y conjunctions of items (binary-valued attributes)

1. Age > 52 & BigSpender = no Sex = male 
2. Age > 52 & BigSpender = no

Sex = male & Income ≤ 73250
3. Sex = male & Age > 52 & Income ≤ 73250 

BigSpender = no

48

Predictive DM - Estimation

• often referred to as regression
• data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 
(numeric)

• given objects described with attribute values, induce a 
model to predict the numeric class value

• regression trees, linear and logistic regression, ANN, 
kNN, ...
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Customer data: 
regression tree

Income

Age

16500

12000

≤ 108000 > 108000

≤ 42.5 > 42.5

26700

In the nodes one usually has 
Predicted value +- st. deviation

50Relational Data Mining (Inductive
Logic Programming) in a Nutshell

RelationalRelational Data MiningData Mining

knowledge discovery
from data

model, patterns, …

Given: a relational database, a set of tables. sets of logical
facts, a graph, …
Find: a classification model, a set of interesting patterns

51

Relational Data Mining (ILP)
• Learning from multiple 

tables
• Complex relational 

problems:
– temporal data: time 

series in medicine, trafic
control, ...

– structured data: 
representation of 
molecules and their 
properties in protein 
engineering, 
biochemistry, ...

• Illustrative example: 
structured objects - Trains

52Relational Data Mining 
(Inductive Logic Programming)

53

........................
renm4580-90maf436663479
nrme3260-70sim346673478

........................
RespClubAgeIncomeSoc StSexZipID

Basic table for analysis

54

........................
renm4580-90maf436663479
nrme3260-70sim346673478

........................
RespClubAgeIncomeSoc StSexZipID

Data table presented as logical facts (Prolog format)
customer(Id,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2:
customer(3478,34667,m,si,60-70,32,me,nr).
customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation:
customer(_,_,f,_,_,_,_,_).
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(Inductive Logic Programming)

Logic programming:
• Predicate symbol p
• Argument of predicate p
• Ground fact p(v1, ..., vn)
• Definition of predicate p 

• Set of ground facts
• Prolog clause or a set of Prolog 

clauses 

Example predicate definition:

good_customer(C)  :-
customer(C,_,female,_,_,_,_,_), 

order(C,_,_,_,creditcard).

Data bases:
• Name of relation p
• Attribute of p
• n-tuple < v1, ..., vn > = row in 

a relational table
• relation p = set of n-tuples = 

relational table

56

Part I: Summary
• KDD is the overall process of discovering useful 

knowledge in data
– many steps including data preparation, cleaning, 

transformation, pre-processing
• Data Mining is the data analysis phase in KDD

– DM takes only 15%-25% of the effort of the overall KDD 
process

– employing techniques from machine learning and statistics
• Predictive and descriptive induction have different 

goals: classifier vs. pattern discovery
• Many application areas
• Many powerful tools available

57

Part II. Predictive DM techniques

• Naive Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation

58

Bayesian methods

• Bayesian methods – simple but powerful 
classification methods
– Based on Bayesian formula

• Main methods:
– Naive Bayesian classifier
– Semi-naïve Bayesian classifier
– Bayesian networks *

* Out of scope of this course
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Naïve Bayesian classifier
• Probability of class, for given attribute values

• For all Cj compute probability p(Cj), given values vi of all 
attributes describing the example which we want to classify 
(assumption: conditional independence of attributes, when 
estimating p(Cj) and p(Cj |vi))

• Output CMAX with maximal posterior probability of class: 
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Naïve Bayesian classifier
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Semi-naïve Bayesian classifier

• Naive Bayesian estimation of probabilities 
(reliable)

• Semi-naïve Bayesian estimation of 
probabilities (less reliable)

)(
)|(

)(
)|(

j

kj

j

ij

cp
vcp

cp
vcp

⋅

)(
),|(

j

kij

cp
vvcp

62

Probability estimation

• Relative frequency:

• Prior probability: Laplace law

• m-estimate:
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Probability estimation: intuition
• Experiment with N trials, n successful
• Estimate probability of success of next trial 
• Relative frequency: n/N

– reliable estimate when number of trials is large
– Unreliable when number of trials is small, e.g., 

1/1=1
• Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes

– Assumes uniform distribution of classes
• m-estimate: (n+m.pa) /(N+m)

– Prior probability of success pa, parameter m 
(weight of prior probability, i.e., number of ‘virtual’
examples )

64Explanation of Bayesian 
classifier

• Based on information theory
– Expected number of bits needed to encode a message = 

optimal code length -log p for a message, whose probability is 
p (*)

• Explanation based of the sum of information gains of 
individual attribute values vi (Kononenko and Bratko 1991, 
Kononenko 1993)

*  log p denotes binary logarithm
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Example of explanation of semi-naïve 
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision Against
(bit) (bit)

Age = 70-80 0.07
Sex = Female -0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0
Time between injury and operation > 10 days 0.42
Fracture classification acc. To Garden = Garden III -0.3
Fracture classification acc. To Pauwels = Pauwels III -0.14
Transfusion = Yes 0.07
Antibiotic profilaxies = Yes -0.32
Hospital rehabilitation = Yes 0.05
General complications = None 0
Combination: 0.21
   Time between injury and examination < 6 hours
   AND Hospitalization time between 4 and 5 weeks
Combination: 0.63
 Therapy = Artroplastic AND anticoagulant therapy = Yes

66Visualization of information 
gains for/against Ci
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Naïve Bayesian classifier
• Naïve Bayesian classifier can be used

– when we have sufficient number of training examples 
for reliable probability estimation

• It achieves good classification accuracy
– can be used as ‘gold standard’ for comparison with 

other classifiers
• Resistant to noise (errors)

– Reliable probability estimation
– Uses all available information

• Successful in many application domains
– Web page and document classification 
– Medical diagnosis and prognosis, …

68Improved classification accuracy due 
to using m-estimate

Relative freq. m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%

Primary Breast thyroid Rheumatology
tumor cancer

#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32

#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7

69

Part II. Predictive DM techniques

• Naïve Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation

70

Illustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE
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Decision tree for
contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD
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Decision tree for
contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]
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PlayTennis: Training examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision tree representation 
for PlayTennis

Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes

- each internal node is a test of an attribute

- each branch corresponds to an attribute value

- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation 
for PlayTennis

Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes
Decision trees represent a disjunction of conjunctions of constraints 

on the attribute values of instances

( Outlook=Sunny  ∧ Humidity=Normal )   
V           ( Outlook=Overcast )
V     ( Outlook=Rain  ∧ Wind=Weak )
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PlayTennis:
Other representations

• Logical expression for PlayTennis=Yes:

– (Outlook=Sunny  ∧ Humidity=Normal) ∨ (Outlook=Overcast) ∨

(Outlook=Rain  ∧ Wind=Weak)

• Converting a tree to if-then rules

– IF Outlook=Sunny ∧ Humidity=Normal THEN PlayTennis=Yes

– IF Outlook=Overcast THEN PlayTennis=Yes

– IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

– IF Outlook=Sunny ∧ Humidity=High THEN PlayTennis=No

– IF Outlook=Rain ∧ Wind=Strong THEN PlayTennis=No
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PlayTennis: Using a decision tree for 
classification

Is Saturday morning OK for playing tennis?

Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong

PlayTennis = No,  because Outlook=Sunny ∧ Humidity=High

Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes
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Appropriate problems for 
decision tree learning

• Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …)

• Characteristics:
– instances described by attribute-value pairs       

(discrete or real-valued attributes)
– target function has discrete output values             

(boolean or multi-valued, if real-valued then regression trees)
– disjunctive hypothesis may be required
– training data may be noisy                                     

(classification errors and/or errors in attribute values)
– training data may contain missing attribute values
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Learning of decision trees
• ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 

WEKA, ...
– create the root node of the tree
– if all examples from S belong to the same class Cj

• then label the root with Cj
– else

• select the ‘most informative’ attribute A with values 
v1, v2, … vn

• divide training set S into S1,… , Sn according to 
values v1,…,vn

• recursively build sub-trees
T1,…,Tn for S1,…,Sn

A

...

...T1 Tn

vnv1
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Search heuristics in ID3
• Central choice in ID3: Which attribute to test at 

each node in the tree ? The attribute that is most 
useful for classifying examples. 

• Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification.

• First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples.
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Entropy

• S - training set, C1,...,CN - classes
• Entropy E(S) – measure of the impurity of 

training set S

∑
=

−=
N

c
cc ppSE

1
2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

• Entropy in binary classification problems 
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Entropy
• E(S) = - p+ log2p+ - p- log2p-

• The entropy function relative to a Boolean 
classification, as the proportion p+ of positive 
examples varies between 0  and 1

0
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Entropy – why ?
• Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 
object in S (under the optimal, shortest-length 
code)

• Why ?
• Information theory: optimal length code assigns      

- log2p bits to a message having probability p
• So, in binary classification problems, the expected 

number of bits to encode + or – of a random 
member of S is:

p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-
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PlayTennis: Entropy

• Training set S: 14 examples (9 pos., 5 neg.)
• Notation: S = [9+, 5-] 
• E(S) = - p+ log2p+ - p- log2p-
• Computing entropy, if probability is estimated by 

relative frequency

• E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        
= 0.940 
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PlayTennis: Entropy

• E(S) = - p+ log2p+ - p- log2p-

• E(9+,5-) = -(9/14) log2(9/14) - (5/14) log2(5/14) = 0.940 

Outlook?

{D1,D2,D8,D9,D11}       [2+, 3-]   E=0.970  

{D3,D7,D12,D13}          [4+, 0-]   E=0

{D4,D5,D6,D10,D14}     [3+, 2-]   E=0.970  

Sunny

Overcast

Rain

Humidity?

[3+, 4-]    E=0.985 

[6+, 1-]    E=0.592

High

Normal

Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong

86Information gain 
search heuristic

• Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object

• Gain(S,A) – expected reduction in entropy of S due to 

sorting on A 

• Most informative attribute: max Gain(S,A)

)(
||
||)(),(

)(
v

AValuesv

v SE
S
SSEASGain ⋅−= ∑

∈

87Information gain 
search heuristic

• Which attribute is more informative, A1 or A2 ?

• Gain(S,A1) = 0.94 – (8/14 x 0.811 + 6/14 x 1.00) = 0.048

• Gain(S,A2) = 0.94 – 0 = 0.94                 A2 has max Gain

Α1

[9+,5−],  Ε = 0.94 

[3+, 3−][6+, 2−]
Ε=0.811 Ε=1.00

Α2

[0+, 5−][9+, 0−]
Ε=0.0 Ε=0.0

[9+,5−],  Ε = 0.94 
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PlayTennis: Information gain

• Values(Wind) = {Weak, Strong}

– S = [9+,5-],  E(S) = 0.940

– Sweak = [6+,2-], E(Sweak ) = 0.811

– Sstrong = [3+,3-], E(Sstrong ) = 1.0

– Gain(S,Wind) = E(S) - (8/14)E(Sweak) - (6/14)E(Sstrong) = 0.940 -

(8/14)x0.811 - (6/14)x1.0=0.048

)(
||
||)(),(

)(
v

AValuesv

v SE
S
SSEASGain ⋅−= ∑

∈

Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong
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PlayTennis: Information gain

• Which attribute is the best?

– Gain(S,Outlook)=0.246        MAX  !

– Gain(S,Humidity)=0.151

– Gain(S,Wind)=0.048

– Gain(S,Temperature)=0.029
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PlayTennis: Information gain

• Which attribute should be tested here?
– Gain(Ssunny, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970    MAX  !

– Gain(Ssunny,Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

– Gain(Ssunny,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

Outlook?

{D1,D2,D8,D9,D11}     [2+, 3-]   E > 0  ???

{D3,D7,D12,D13}        [4+, 0-]   E = 0  OK - assign class Yes
Sunny

Overcast

{D4,D5,D6,D10,D14}   [3+, 2-]   E > 0 ???Rain
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Probability estimates
• Relative frequency :

– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes

)(
).(

)|(

Condn
CondClassn

CondClassp

=

=

kCondn
CondClassn

+
+

=
)(

1).( 2=k

[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9
[2+,0-] (2) = 2+1 / 2+2 = 3/4
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Heuristic search in ID3
• Search bias: Search the space of decision trees 

from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees)

• Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly

• Stopping criteria: A node becomes a leaf
– if all examples belong to same class Cj, label the 

leaf with Cj
– if all attributes were used, label the leaf with the 

most common value Ck of examples in the node
• Extension to ID3: handling noise - tree pruning 
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Pruning of decision trees
• Avoid overfitting the data by tree pruning
• Pruned trees are

– less accurate on training data
– more accurate when classifying unseen data

94

Handling noise – Tree pruning

Sources of imperfection

1.  Random errors (noise) in training examples

• erroneous attribute values

• erroneous classification

2. Too sparse training examples (incompleteness)

3.  Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples
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Handling noise – Tree pruning

• Handling imperfect data 

– handling imperfections of type 1-3

• pre-pruning (stopping criteria)

• post-pruning / rule truncation

– handling missing values

• Pruning avoids perfectly fitting noisy data: relaxing 
the completeness (fitting all +) and consistency (fitting 
all -) criteria in ID3
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Prediction of breast cancer 
recurrence: Tree pruning

Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3 ≥ 3

< 15 ≥ 15 < 3 ≥ 3

< 40 ≥40

no_rec 4      rec1



Data Mining and Knowledge Discovery
Lecture notes

97

Accuracy and error
• Accuracy: percentage of correct classifications

– on the training set
– on unseen instances

• How accurate is a decision tree when classifying unseen 
instances
– An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs:
• split the example set into training set (e.g. 70%) and test set (e.g. 30%) 
• induce a decision tree from training set, compute its  accuracy on test 

set

• Error = 1 - Accuracy
• High error may indicate data overfitting
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Overfitting and accuracy
• Typical relation between tree size and accuracy

• Question: how to prune optimally?

0.5

0.55

0.6

0.65
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0.8

0.85

0.9

0 20 40 60 80 100 120

On training data
On test data
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Avoiding overfitting
• How can we avoid overfitting?

– Pre-pruning (forward pruning): stop growing the tree e.g., 
when data split not statistically significant or too few 
examples are in a split

– Post-pruning: grow full tree, then post-prune

• forward pruning considered inferior (myopic)
• post pruning makes use of sub trees 

Pre-pruning

Post-pruning
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How to select the “best” tree
• Measure performance over training data (e.g., 

pessimistic post-pruning, Quinlan 1993)
• Measure performance over separate validation data 

set (e.g., reduced error pruning, Quinlan 1987) 
– until further pruning is harmful DO:

• for each node evaluate the impact of replacing a subtree by a 
leaf, assigning the majority class of examples in the leaf, if the 
pruned tree performs no worse than the original over the 
validation set

• greedily select the node whose removal most improves tree 
accuracy over the validation set

• MDL: minimize
size(tree)+size(misclassifications(tree)) 
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Selected decision/regression 
tree learners

• Decision tree learners

– ID3 (Quinlan 1979)
– CART (Breiman et al. 1984)
– Assistant (Cestnik et al. 1987)
– C4.5 (Quinlan 1993), C5 (See5, Quinlan)
– J48 (available in WEKA)

• Regression tree learners, model tree learners

– M5, M5P (implemented in WEKA)
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Features of C4.5

• Implemented as part of the WEKA data mining 
workbench

• Handling noisy data: post-pruning

• Handling incompletely specified training 
instances: ‘unknown’ values (?)

– in learning assign conditional probability of value v: 
p(v|C) = p(vC) / p(C)

– in classification: follow all branches, weighted by 
prior prob. of missing attribute values
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Other features of C4.5
• Binarization of attribute values

– for continuous values select a boundary value 
maximally increasing the informativity of the 
attribute: sort the values and try every possible 
split (done automaticaly)

– for discrete values try grouping the values until two 
groups remain *

• ‘Majority’ classification in NULL leaf (with no 
corresponding training example)
– if an example ‘falls’ into a NULL leaf during 

classification, the class assigned to this example 
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping
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Part II. Predictive DM techniques

• Naïve Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation

105

Rule Learning in a Nutshell

data

RuleRule learninglearning

knowledge discovery
from data

Model: a set of rules
Patterns: individual rules

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual
rules

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE
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Rule set representation
• Rule base is a disjunctive set of conjunctive rules
• Standard form of rules:

IF Condition THEN Class
Class IF Conditions
Class ← Conditions

IF Outlook=Sunny ∧ Humidity=Normal THEN 
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes
IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

• Form of CN2 rules:    
IF Conditions THEN MajClass [ClassDistr]

• Rule base:   {R1, R2, R3, …, DefaultRule}
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Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE
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Contact lens data: 
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X C,  if X then C

X conjunction of attribute values, C class

tear production=reduced → lenses=NONE
tear production=normal & astigmatism=yes & 

spect. pre.=hypermetrope → lenses=NONE
tear production=normal & astigmatism=no →
lenses=SOFT
tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=HARD
DEFAULT lenses=NONE
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Rule learning
• Two rule learning approaches:

– Learn decision tree, convert to rules
– Learn set/list of rules

• Learning an unordered set of rules
• Learning an ordered list of rules

• Heuristics, overfitting, pruning 
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Contact lenses: convert decision tree to  
an unordered rule settear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

tear production=reduced => lenses=NONE [S=0,H=0,N=12] 
tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE  [S=0,H=1,N=2]
tear production=normal & astigmatism=no => lenses=SOFT [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD 
[S=0,H=3,N=2]
DEFAULT lenses=NONE                      Order independent rule set (may overlap)
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Contact lenses: convert decision tree to 
decision listtear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/

IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD 
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE                                         Ordered (order dependent) rule list 
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

• Very frequently used method, e.g., in C4.5
and J48

• Procedure:
– grow a full tree (allowing overfitting)
– convert the tree to an equivalent set of rules
– prune each rule independently of others
– sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NO
O2 young myope no normal  YES
O3 young myope yes reduced NO
O4 young myope yes normal YES
O5 young hypermetrope no reduced NO

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal YES
O15 pre-presbyohypermetrope yes reduced NO
O16 pre-presbyohypermetrope yes normal NO
O17 presbyopic myope no reduced NO
O18 presbyopic myope no normal NO

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NO
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Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C1, …, CN

for each class Ci do
– Ei := Pi U Ni (Pi pos., Ni neg.)
– RuleBase(Ci) := empty
– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive 
examples and no negatives 

• add R to RuleBase(Ci)
• delete from Pi all pos. ex. covered by R

– until Pi = empty 
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+
+ +

+
-

-
-

-
-

+
-



Data Mining and Knowledge Discovery
Lecture notes

115

Covering algorithm

+ +

+

+

+

+

+

+

+

++ +

+
+

+

+

++

+

+
+

+

+

- -

-

-

-

-

-

-

-

--

-
-

-

-

--

-

-
-

-

-

PositivePositive examplesexamples NNegativeegative examplesexamples

-

116

Covering algorithm
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Covering algorithm
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Covering algorithm

+
+

+

+

+

+

+
+

+

+

++

+

+
+

+

+

- -

-

-

-

-

-

-

-

--

-
-

-

-

--

-

-
-

-

-

PositivePositive examplesexamples NNegativeegative examplesexamples

-
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Covering algorithm
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PlayTennis: Training examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:
PlayTennis example 

PlayTennis = yes [9+,5-] (14)
PlayTennis = yes ← Wind=weak  [6+,2-] (8)

← Wind=strong [3+,3-] (6) 
← Humidity=normal [6+,1-] (7)
← …

PlayTennis = yes ← Humidity=normal
Outlook=sunny [2+,0-] (2)

← …
Estimating rule accuracy (rule precision) with the probability that 

a covered example is positive
A(Class ← Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered 
pos. ex. / all covered ex.  

[6+,1-] (7) = 6/7,                    [2+,0-] (2) = 2/2 = 1 

122

Probability estimates
• Relative frequency :

– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes
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[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9
[2+,0-] (2) = 2+1 / 2+2 = 3/4

123Learn-one-rule:
search heuristics

• Assume a two-class problem
• Two classes (+,-),  learn rules for + class (Cl). 
• Search for specializations R’ of a rule R = Cl ← Cond

from the RuleBase.
• Specializarion R’ of rule R = Cl ← Cond

has the form    R’ = Cl ← Cond & Cond’
• Heuristic search for rules: find the ‘best’ Cond’ to be

added to the current rule R, such that rule accuracy is 
improved, e.g., such that Acc(R’) > Acc(R)
– where the expected classification accuracy can be

estimated as A(R) = p(Cl|Cond)
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Learn-one-rule:
Greedy vs. beam search

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’
descendant, no backtracking
– e.g., the best descendant of the initial rule

PlayTennis = yes ←
– is rule PlayTennis = yes ← Humidity=normal

• beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates
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Learn-one-rule as search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

...
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Learn-one-rule as heuristic search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)
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What is “high” rule accuracy
(rule precision) ?

• Rule evaluation measures: 
– aimed at maximizing classification accuracy 
– minimizing Error = 1 - Accuracy
– avoiding overfitting

• BUT: Rule accuracy/precision should be traded 
off against the “default” accuracy/precision of the 
rule Cl ←true

– 68% accuracy is OK if there are 20% examples of that class in 
the training set, but bad if there are 80%

• Relative accuracy
– RAcc(Cl ←Cond) = p(Cl | Cond) – p(Cl)
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Weighted relative accuracy

• If a rule covers a single example, its accuracy/precision 
is either 0% or 100%
– maximising relative accuracy tends to produce many overly 

specific rules

• Weighted relative accuracy
WRAcc(Cl←Cond) = p(Cond) . [p(Cl | Cond) – p(Cl)]

• WRAcc is a fundamental rule evaluation measure: 
– WRAcc can be used if you want to assess both accuracy and 

significance
– WRAcc can be used if you want to compare rules with different 

heads and bodies

129Learn-one-rule:
search heuristics

• Assume two classes (+,-),  learn rules for + class (Cl). Search 
for specializations of one rule R = Cl ← Cond from RuleBase.

• Expected classification accuracy:   A(R) = p(Cl|Cond)
• Informativity (info needed to specify that example covered by 

Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond)
• Accuracy gain (increase in expected accuracy):

AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
• Information gain (decrease in the information needed):

IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond)
• Weighted measures favoring more general rules: WAG, WIG

WAG(R’,R) = 
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

• Weighted relative accuracy trades off coverage and relative 
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))
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Ordered set of rules:
if-then-else rules

• rule  Class IF Conditions is learned by first 
determining Conditions and then Class

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase

• But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification

• Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules

• If no rule fires, then DefaultClass (majority class in
Ecur)
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Sequential covering algorithm
(similar as in Mitchell’s book)

• RuleBase := empty 
• Ecur:= E 
• repeat 

– learn-one-rule R
– RuleBase := RuleBase U R
– Ecur := Ecur - {examples covered and correctly 

classified by R}  (DELETE ONLY POS. EX.!)
– until performance(R, Ecur) < ThresholdR

• RuleBase := sort RuleBase by performance(R,E)
• return RuleBase
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

• RuleBase := empty 
• Ecur:= E 
• repeat 

– learn-one-rule R
– RuleBase := RuleBase U R
– Ecur := Ecur - {all examples covered by R}  

(NOT ONLY POS. EX.!)
• until performance(R, Ecur) < ThresholdR
• RuleBase := sort RuleBase by performance(R,E)
• RuleBase := RuleBase U DefaultRule(Ecur)
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Learn-one-rule:
Beam search in CN2

• Beam search in CN2 learn-one-rule algo.:
– construct BeamSize of best rule bodies 

(conjunctive conditions) that are statistically 
significant

– BestBody - min. entropy of examples covered 
by Body 

– construct best rule R := Head ← BestBody by 
adding majority class of examples covered by 
BestBody in rule Head

• performance (R, Ecur) : - Entropy(Ecur) 
– performance(R, Ecur) < ThresholdR (neg. num.)
– Why? Ent. > t is bad, Perf. = -Ent < -t is bad
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Variations
• Sequential vs. simultaneous covering of data (as 

in TDIDT): choosing between attribute-values vs. 
choosing attributes

• Learning rules vs. learning decision trees and  
converting them to rules

• Pre-pruning vs. post-pruning of rules
• What statistical evaluation functions to use
• Probabilistic classification

135

Probabilistic classification
• In the ordered case of standard CN2 rules are interpreted in an IF-

THEN-ELSE fashion, and the first fired rule assigns the class.
• In the unordered case all rules are tried and all rules which fire are 

collected. If a clash occurs, a probabilistic method is used to resolve the 
clash.

• A simplified example:
1. tear production=reduced => lenses=NONE [S=0,H=0,N=12] 
2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>

lenses=NONE  [S=0,H=1,N=2]
3. tear production=normal & astigmatism=no => lenses=SOFT 

[S=5,H=0,N=1]
4. tear production=normal & astigmatism=yes & spect. pre.=myope =>

lenses=HARD [S=0,H=3,N=2]
5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and 
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and 
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total 
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into 
class H with probability 0.5 and N with probability 0.5. In this case, the 
clash can not be resolved, as both probabilities are equal.
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Part II. Predictive DM techniques

• Naïve Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation
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Classifier evaluation

• Accuracy and Error
• n-fold cross-validation
• Confusion matrix
• ROC

138

Evaluating hypotheses
• Use of induced hypotheses

– discovery of new patterns, new knowledge
– classification of new objects

• Evaluating the quality of induced hypotheses
– Accuracy, Error = 1 - Accuracy
– classification accuracy on testing examples = 

percentage of correctly classified instances
• split the example set into training set (e.g. 70%) to 

induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)
– information contents (information score), significance 
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n-fold cross validation
• A method for accuracy estimation of classifiers
• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D
• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di
– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 
averaging accuracies over 10 folds Ti 
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•Partition D

T1 T2 T3

141

•Partition

•Train
D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train
D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

•Test

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3

T1 T2 T3
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Confusion matrix and 
rule (in)accuracy

• Accuracy of a classifier is measured as TP+TN / N.
• Suppose two rules are both 80% accurate on an 

evaluation dataset, are they always equally good? 
– e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out 

of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives

– on a test set which has more negatives than positives, Rule 2 is
preferable; 

– on a test set which has more positives than negatives, Rule 1 is
preferable; unless…

– …the proportion of positives becomes so high that the ‘always 
positive’ predictor becomes superior!

• Conclusion: classification accuracy is not always an 
appropriate rule quality measure
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Confusion matrix

• also called contingency table

 Predicted positive Predicted negative  
Positive examples True positives False negatives  
Negative examples False positives True negatives  
     

Classifier 1 
 Predicted positive Predicted negative  
Positive examples 40 10 50 
Negative examples 10 40 50 
 50 50 100   

Classifier 2 
 Predicted positive Predicted negative  
Positive examples 30 20 50 
Negative examples 0 50 50 
 30 70 100 
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ROC space
• True positive rate = 

#true pos. / #pos.
– TPr1 = 40/50 = 80% 
– TPr2 = 30/50 = 60%

• False positive rate
= #false pos. / #neg.
– FPr1 = 10/50 = 20%
– FPr2 = 0/50 = 0%

• ROC space has 
– FPr on X axis 
– TPr on Y axis
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The ROC convex hull
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Summary of evaluation

• 10-fold cross-validation is a standard classifier 
evaluation method used in machine learning

• ROC analysis is very natural for rule learning 
and subgroup discovery
– can take costs into account
– here used for evaluation
– also possible to use as search heuristic

150

Part III. Numeric prediction

• Baseline
• Linear Regression
• Regression tree
• Model Tree
• kNN
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Data: attribute-value description

ClassificationRegression

Algorithms:
Decision trees, Naïve Bayes, …

Algorithms:
Linear regression, regression 
trees,…

Baseline predictor:
Majority class

Baseline predictor:
Mean of the target variable

Error:
1-accuracy

Error:
MSE, MAE, RMSE, …

Evaluation: cross validation, separate test set, …

Target variable:
Categorical (nominal)

Target variable:
Continuous
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Example
• data about 80 people: Age and Height
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Test set
154

Baseline numeric predictor
• Average of the target variable
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155

Baseline predictor: prediction

Average of the target variable is 1.63
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Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Linear Regression: prediction

Height =    0.0056 * Age + 1.4181
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Regression tree
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Regression tree: prediction
160

Model tree
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Model tree: prediction
162

kNN – K nearest neighbors
• Looks at K closest examples (by age) and predicts the 

average of their target variable
• K=3
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kNN prediction
Age Height

1 0.90
1 0.99
2 1.01
3 1.03
3 1.07
5 1.19
5 1.17
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kNN prediction
Age Height

8 1.36
8 1.33
9 1.45
9 1.39
11 1.49
12 1.66
12 1.52
13 1.59
14 1.58
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kNN prediction
Age Height
30 1.57
30 1.88
31 1.71
34 1.55
37 1.65
37 1.80
38 1.60
39 1.69
39 1.80
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kNN prediction
Age Height
67 1.56
67 1.87
69 1.67
69 1.86
71 1.74
71 1.82
72 1.70
76 1.88
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Which predictor is the best?
Age Height Baseline

Linear 
regression

Regression 
tree Model tree kNN

2 0.85 1.63 1.43 1.39 1.20 1.01
10 1.4 1.63 1.47 1.46 1.47 1.51
35 1.7 1.63 1.61 1.71 1.71 1.67
70 1.6 1.63 1.81 1.71 1.75 1.81

168

Evaluating numeric prediction
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule learning
• Hierarchical clustering

170

Predictive vs. descriptive 
induction

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
– Classification rule learning, Decision tree learning, ...
– Bayesian classifier, ANN, SVM, ...
– Data analysis through hypothesis generation and testing

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ...
– Exploratory data analysis
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Descriptive DM

• Often used for preliminary explanatory data 
analysis

• User gets feel for the data and its structure
• Aims at deriving descriptions of characteristics 

of the data
• Visualization and descriptive statistical 

techniques can be used
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Descriptive DM
• Description

– Data description and summarization: describe elementary and 
aggregated data characteristics (statistics, …)

– Dependency analysis:
• describe associations, dependencies, …
• discovery of properties and constraints

• Segmentation
– Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...)
– Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 
distribution)
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Predictive vs. descriptive 
induction: A rule learning 

perspective
• Predictive induction: Induces rulesets acting as 

classifiers for solving classification and prediction 
tasks

• Descriptive induction: Discovers individual rules 
describing interesting regularities in the data

• Therefore: Different goals, different heuristics, 
different evaluation criteria
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Supervised vs. unsupervised 
learning: A rule learning 

perspective
• Supervised learning: Rules are induced from 

labeled  instances (training examples with class 
assignment) - usually used in predictive induction

• Unsupervised learning: Rules are induced from 
unlabeled  instances (training examples with no 
class assignment) - usually used in descriptive 
induction

• Exception: Subgroup discovery 
Discovers individual rules describing interesting 
regularities in the data from labeled examples
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule learning
• Hierarchical clustering

176

Subgroup Discovery

Given: a population of individuals and a target
class label (the property of individuals we are 
interested in)

Find: population subgroups that are statistically 
most `interesting’, e.g., are as large as 
possible and have most unusual statistical 
(distributional) characteristics w.r.t. the target
class (property of interest)
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Subgroup interestingness
Interestingness criteria:

– As large as possible
– Class distribution as different as possible from 

the distribution in the entire data set
– Significant
– Surprising to the user
– Non-redundant
– Simple
– Useful - actionable

178Subgroup Discovery: 
Medical Case Study

• Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrač, 
Krstačić) 

• A1 for males: principal risk factors
CHD ← pos. fam. history & age > 46

• A2 for females: principal risk factors
CHD ← bodyMassIndex > 25 & age >63

• A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG)

• A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight
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Subgroup visualization

Subgroups of 
patients with 
CHD risk

[Gamberger, Lavrač
& Wettschereck, 
IDAMAP2002]
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Subgroups vs. classifiers
• Classifiers:

– Classification rules aim at pure subgroups
– A set of rules forms a domain model

• Subgroups:
– Rules describing subgroups aim at significantly higher proportion of 

positives
– Each rule is an independent chunk of knowledge

• Link 
– SD can be viewed as

cost-sensitive 
classification

– Instead of FNcost we 
aim at increased TPprofit

negativespositives

true
positives

false
pos.
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Classification Rule Learning for 
Subgroup Discovery: Deficiencies
• Only first few rules induced by the covering 

algorithm have sufficient support (coverage)
• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 
not covered by previously induced rules), which 
hinders their ability to detect population 
subgroups 

• ‘Ordered’ rules are induced and interpreted 
sequentially as a if-then-else decision list 
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CN2-SD: Adapting CN2 Rule 
Learning to Subgroup Discovery

• Weighted covering algorithm
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights
• Probabilistic classification
• Evaluation with different interestingness 

measures
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CN2-SD: CN2 Adaptations
• General-to-specific search  (beam search) for best rules 
• Rule quality measure: 

– CN2: Laplace: Acc(Class ← Cond) = 
= p(Class|Cond) = (nc+1)/(nrule+k)

– CN2-SD: Weighted Relative Accuracy
WRAcc(Class ← Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 
• Weighted covering approach (example weights)
• Significance testing (likelihood ratio statistics)
• Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering 
• Standard covering approach: 

covered examples are deleted from current training set
• Weighted covering approach:

– weights assigned to examples 
– covered pos. examples are re-weighted: 

in all covering loop iterations, store 
count i how many times (with how many 
rules induced so far) a pos. example has 
been covered: w(e,i), w(e,0)=1

• Additive weights:  w(e,i) = 1/(i+1)
w(e,i) – pos. example e being covered i times

185

Subgroup Discovery
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Subgroup Discovery

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.01.0 1.0

1.0
1.0

1.0

1.0

1.01.0

1.0

1.0
1.0

1.0

1.0

1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.01.0 1.0

1.0
1.0

1.0

1.0

1.01.0

1.0

1.0
1.0

1.0

1.0

PositivePositive examplesexamples NNegativeegative examplesexamples
Rule1: Rule1: ClCl=+ =+ ← Cond6 AND Cond2Cond6 AND Cond2



Data Mining and Knowledge Discovery
Lecture notes

187

Subgroup Discovery 
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Subgroup Discovery 
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CN2-SD: Weighted WRAcc Search 
Heuristic

• Weighted relative accuracy (WRAcc) search 
heuristics, with added example weights 
WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl))
increased coverage, decreased # of rules, approx. equal 

accuracy (PKDD-2000)
• In WRAcc computation, probabilities are estimated 

with relative frequencies, adapt:
WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
– N’ : sum of weights of examples
– n’(Cond) : sum of weights of all covered examples
– n’(Cl.Cond) : sum of weights of all correctly covered examples
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule learning
• Hierarchical clustering

191

Association Rule Learning
Rules: X =>Y,  if X then Y

X and Y are itemsets (records, conjunction of items), 
where items/features are binary-valued attributes)

Given: Transactions i1     i2  ………………… i50

itemsets (records) t1     1      1                 0 
t2     0      1             0

… … ………………...  …

Find: A set of association rules in the form X =>Y
Example: Market basket analysis

beer & coke => peanuts & chips (0.05, 0.65)
• Support:  Sup(X,Y) = #XY/#D = p(XY)

• Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y|X)

192

Association Rule Learning: 
Examples

• Market basket analysis
– beer & coke ⇒ peanuts & chips  (5%, 65%)                   

(IF beer AND coke THEN peanuts AND chips)
– Support 5%: 5% of all customers buy all four items
– Confidence 65%: 65% of customers that buy beer and coke 

also buy peanuts and chips

• Insurance
– mortgage & loans & savings ⇒ insurance (2%, 62%)
– Support 2%: 2% of all customers have all four 
– Confidence 62%: 62% of all customers that have mortgage, 

loan and savings also have insurance
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Association rule learning
• X ⇒ Y . . . IF X THEN Y, where X and Y are itemsets
• intuitive meaning: transactions that contain X tend to contain Y

• Items - binary attributes (features) m,f,headache, muscle pain, 
arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour

• Example transactions – itemsets formed of patient records
i1        i2  …… … i50 

t1      1          0                   0           

t2      0          1                   0 

… … … ...  

• Association rules
spondylitic ⇒ arthritic & stiff_gt_1_hour       [5%, 70%]

arthrotic & spondylotic ⇒ stiff_less_1_hour    [20%, 90%]

194

Association Rule Learning
Given: a set of transactions D

Find: all association rules that hold on the set of transactions 
that have 
– user defined minimum support, i.e., support > MinSup, and 

– user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis 
verification

195

Searching for the associations

• Find all large itemsets

• Use the large itemsets to generate 
association rules

• If XY is a large itemset, compute 

r =support(XY) / support(X)

• If r > MinConf, then X ⇒ Y holds 
(support > MinSup, as XY is large)

196

Large itemsets

• Large itemsets are itemsets that appear in at 
least MinSup transaction

• All subsets of a large itemset are large 
itemsets (e.g., if A,B appears in at least 
MinSup transactions, so do A and B)

• This observation is the basis for very efficient 
algorithms for association rules discovery 
(linear in the number of transactions)
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Association  vs.  Classification
rules             rules

• Exploration of 
dependencies

• Different combinations 
of dependent and 
independent attributes

• Complete search (all 
rules found)

• Focused prediction
• Predict one attribute 

(class) from the others
• Heuristic search (subset 

of rules found)

198

Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule learning
• Hierarchical clustering
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Hierarchical clustering

• Algorithm (agglomerative 
hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ci in Cj;
fuse Ci in Cj in a new cluster

Cr = Ci U Cj;
determine dissimilarities between

Cr and other clusters;

until one cluster left;

• Dendogram:

200

Hierarchical clustering

• Fusing the nearest pair of clusters

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

• Minimizing intra-cluster 
similarity

• Maximizing inter-cluster 
similarity

• Computing the dissimilarities   
from the “new” cluster
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Hierarchical clustering: example

202

Results of clustering
A dendogram of 
resistance vectors

[Bohanec et al., “PTAH: 
A system for supporting 
nosocomial infection 
therapy”, IDAMAP 
book, 1997]
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Part V: 
Relational Data Mining

• Learning as search
• What is RDM?
• Propositionalization techniques
• Inductive Logic Programming

204

Learning as search 
• Structuring the state space: Representing a partial 

order of hypotheses (e.g. rules) as a graph
– nodes: concept descriptions (hypotheses/rules)
– arcs defined by specialization/generalization 

operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific 
generalization of child 

• Specialization operators: e.g., adding conditions: 
s(A=a2 & B=b1) = {A=a2 & B=b1 &  D=d1, A=a2 & B=b1 & D=d2}

• Generalization operators: e.g., dropping 
conditions: g(A=a2 & B=b1) = {A=a2, B=b1} 

• Partial order of hypotheses defines a lattice 
(called a refinement graph)
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Learn-one-rule as search - Structuring the 
hypothesis space: PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

...
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Learn-one-rule as heuristic search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)

207Learning as search 
(Mitchell’s version space model)
• Hypothesis language  LH 

defines the state space 
• How to structure the 

hypothesis space LH?
• How to move from one 

hypothesis to another?

• The version space: region 
between S (maximally 
specific) and G (maximally 
general) complete and 
consistent concept 
descriptions

too general

too specific

more
general

more
specific

complete and consistent 

208

Learning as search
• Search/move by applying 

generalization and 
specialization

• Prune generalizations: 
– if H covers example e then 

all generalizations of H will 
also cover e (prune using 
neg. ex.)

• Prune specializations:
– if H does not cover 

example e, no 
specialization will cover e 
(prune using if H pos. ex.)

too general

too specific

generalize

specialize

e-

e+
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Learning as search: 
Learner’s ingredients

– structure of the search space (specialization and 
generalization operators)

– search strategy
• depth-first
• breath-first
• heuristic search (best first, hill-climbing, beam search)

– search heuristics 
• measure of attribute ‘informativity’
• measure of ‘expected classification accuracy’ (relative 

frequency, Laplace estimate, m-estimate), ...

– stopping criteria (consistency, completeness, statistical 
significance, …)

210Learn-one-rule:
search heuristics

• Assume a two-class problem
• Two classes (+,-),  learn rules for + class (Cl). 
• Search for specializations R’ of a rule R = Cl ← Cond

from the RuleBase.
• Specializarion R’ of rule R = Cl ← Cond

has the form    R’ = Cl ← Cond & Cond’
• Heuristic search for rules: find the ‘best’ Cond’ to be

added to the current rule R, such that rule accuracy is 
improved, e.g., such that Acc(R’) > Acc(R)
– where the expected classification accuracy can be

estimated as A(R) = p(Cl|Cond)
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Learn-one-rule – Search strategy: 
Greedy vs. beam search

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’
descendant, no backtracking
– e.g., the best descendant of the initial rule

PlayTennis = yes ←
– is rule PlayTennis = yes ← Humidity=normal

• beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates

212

Part V: 
Relational Data Mining

• Learning as search
• What is RDM?
• Propositionalization techniques
• Inductive Logic Programming

213

Predictive relational DM
• Data stored in relational databases
• Single relation - propositional DM

– example is a tuple of values of a fixed number of 
attributes (one attribute is a class)

– example set is a table (simple field values)
• Multiple relations - relational DM (ILP)

– example is a tuple or a set of tuples
(logical fact or set of logical facts)

– example set is a set of tables (simple or complex 
structured objects as field values)

214

Data for propositional DM
Sample single relation data table

215

Multi-relational data made 
propositional

• Sample                                                multi-
relation                                                 data 
table

• Making data                             propositional:          
using summary                              attributes

216

Relational Data Mining (ILP)
• Learning from multiple 

tables
• Complex relational 

problems:
– temporal data: time 

series in medicine, 
trafic control, ...

– structured data:
representation of 
molecules and their 
properties in protein 
engineering, 
biochemistry, ...
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Basic Relational Data Mining tasks

Predictive RDM

Descriptive RDM

+

-

+
+ +

+
- -

--
-

-

+ + +
+++

Η

Η
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Predictive ILP
• Given:

– A set of observations
• positive examples E +
• negative examples E -

– background knowledge B
– hypothesis language LH
– covers relation

• Find:
A hypothesis H ∈ LH, such that (given B) H
covers all positive and no negative examples

• In logic, find H such that
– ∀e ∈ E + : B  ∧ H |=  e  (H is complete)
– ∀e ∈ E - : B  ∧ H |=/= e  (H is consistent)

• In ILP, E are ground facts, B and H are 
(sets of) definite clauses

+ + +
+++

- - - --
-

Η
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Predictive ILP
• Given:

– A set of observations
• positive examples E +
• negative examples E -

– background knowledge B
– hypothesis language LH
– covers relation
– quality criterion

• Find:
A hypothesis H ∈ LH, such that (given B) H is 
optimal w.r.t. some quality criterion, e.g., max. 
predictive accuracy A(H)  

(instead of finding a hypothesis H ∈ LH, such 
that (given B) H covers all positive and no
negative examples)

+ +
++

- - - --
-

Η
+

++
+

-
-
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Descriptive ILP
• Given:

– A set of observations
(positive examples E +)

– background knowledge B
– hypothesis language LH
– covers relation

• Find:
Maximally specific hypothesis H ∈ LH, such 
that (given B) H covers all positive examples

• In logic, find H such that ∀c ∈ H, c is true in 
some preferred model of B ∪E (e.g., least 
Herbrand model M (B ∪E ))

• In ILP, E are ground facts, B are (sets of) 
general clauses

+ + +
+++ Η

221Sample problem
Knowledge discovery

E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

B = {mother(ann,mary), mother(ann,tom), 
father(tom,eve), father(tom,ian), female(ann), 
female(mary), female(eve), male(pat),male(tom), 
parent(X,Y) ← mother(X,Y), parent(X,Y) ←
father(X,Y)}

ann

mary tom

eve ian

222Sample problem
Knowledge discovery

• E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

• B = {mother(ann,mary),mother(ann,tom),father(tom,eve),
father(tom,ian),female(ann),female(mary),female(eve),
male(pat),male(tom),parent(X,Y)←mother(X,Y),
parent(X,Y)←father(X,Y)}

• Predictive ILP - Induce a definite clause
daughter(X,Y) ← female(X), parent(Y,X).

or a set of definite clauses
daughter(X,Y) ← female(X), mother(Y,X).
daughter(X,Y) ← female(X), father(Y,X).

• Descriptive ILP - Induce a set of (general) clauses
← daughter(X,Y), mother(X,Y).
female(X)← daughter(X,Y).
mother(X,Y); father(X,Y) ← parent(X,Y).
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Logic programming

E + = {sort([2,1,3],[1,2,3])}
E - = {sort([2,1],[1]),sort([3,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1

• Predictive ILP

sort(X,Y) ← permutation(X,Y), sorted(Y).

• Descriptive ILP

sorted(Y) ← sort(X,Y).

permutation(X,Y) ← sort(X,Y)
sorted(X) ← sort(X,X)
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Sample problem: 
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

225RDM knowledge representation 
(database)

TRAIN EASTBOUND
t 1 TRUE
t 2 TRUE
… …
t6 FALSE
… …

TRAIN EASTBOUND
t 1 TRUE
t 2 TRUE
… …
t6 FALSE
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 t riangle 1
l4 c4 rect angle 3
… … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 t riangle 1
l4 c4 rect angle 3
… … …

LOAD_TABLELOAD_TABLE

CAR_TABLECAR_TABLE
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ER diagram for East-West trains

TrainTrainDirectionDirection

HasHas

CarCar

ShapeShape

LengthLength

RoofRoof

WheelsWheels

11

MM

HasHas LoadLoad
11 11

NumberNumber ObjectObject
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ILP representation: 
Datalog ground facts

• Example: 
eastbound(t1).

• Background theory:
car(t1,c1).     car(t1,c2).       car(t1,c3).    car(t1,c4).
rectangle(c1).   rectangle(c2).    rectangle(c3).  rectangle(c4).
short(c1).      long(c2).       short(c3).    long(c4).
none(c1).        none(c2). peaked(c3).    none(c4).
two_wheels(c1).  three_wheels(c2).  two_wheels(c3). two_wheels(c4).
load(c1,l1).     load(c2,l2).      load(c3,l3).    load(c4,l4).
circle(l1).      hexagon(l2).      triangle(l3).   rectangle(l4).
one_load(l1).    one_load(l2).     one_load(l3).   three_loads(l4).

• Hypothesis (predictive ILP):
eastbound(T) :- car(T,C),short(C),not none(C).
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ILP representation: 
Datalog ground clauses

• Example: 
eastbound(t1):-

car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
load(c1,l1),circle(l1),one_load(l1),

car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,l2),hexagon(l2),one_load(l2),

car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,l3),triangle(l3),one_load(l3),

car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(l4),three_load(l4).

• Background theory: empty 
• Hypothesis: 

eastbound(T):-car(T,C),short(C),not none(C).
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ILP representation: Prolog terms

• Example: 
eastbound([c(rectangle,short,none,2,l(circle,1)),

c(rectangle,long,none,3,l(hexagon,1)),
c(rectangle,short,peaked,2,l(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

• Background theory: member/2, arg/3
• Hypothesis: 

eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).
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First-order representations

• Propositional representations: 
– datacase is fixed-size vector of values
– features are those given in the dataset

• First-order representations: 
– datacase is flexible-size, structured object

• sequence, set, graph
• hierarchical: e.g. set of sequences

– features need to be selected from potentially infinite set

231

Complexity of RDM problems

• Simplest case: single table with primary key
– example corresponds to tuple of constants
– attribute-value or propositional learning

• Next: single table without primary key
– example corresponds to set of tuples of constants
– multiple-instance problem

• Complexity resides in many-to-one foreign keys
– lists, sets, multisets
– non-determinate variables
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Part V: 
Relational Data Mining

• Learning as search
• What is RDM?
• Propositionalization techniques
• Inductive Logic Programming

233

Rule learning: 
The standard view

• Hypothesis construction: find a set of n rules
– usually simplified by n separate rule constructions

• exception: HYPER

• Rule construction: find a pair (Head, Body)
– e.g. select head (class) and construct body by 

searching the VersionSpace
• exceptions: CN2, APRIORI

• Body construction: find a set of m literals
– usually simplified by adding one literal at a time

• problem (ILP): literals introducing new variables

234

Rule learning revisited

• Hypothesis construction: find a set of n rules
• Rule construction: find a pair (Head, Body)
• Body construction: find a set of m features

– Features can be either defined by background knowledge or 
constructed through constructive induction

– In propositional learning features may increase expressiveness 
through negation

– Every ILP system does constructive induction 
• Feature construction: find a set of k literals

– finding interesting features is discovery task rather than classification 
task e.g. interesting subgroups, frequent itemsets

– excellent results achieved also by feature construction through 
predictive propositional learning and ILP (Srinivasan)
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First-order feature construction

• All the expressiveness of ILP is in the features
• Given a way to construct (or choose) first-order 

features, body construction in ILP becomes 
propositional
– idea: learn non-determinate clauses with LINUS by 

saturating background knowledge (performing 
systematic feature construction in a given language bias)

236Standard LINUS
• Example: learning family relationships

• Transformation to propositional form:

• Result of propositional rule learning:
Class = ⊕ if (female(X) = true) ∧ (parent(Y,X) = true

• Transformation to program clause form:
daughter(X,Y) ← female(X),parent(Y,X)

Training examples
daughter(sue,eve).       (+) parent(eve,sue). female(ann).
daughter(ann,pat).       (+) parent(ann,tom). female(sue).
daughter(tom,ann).      (-) parent(pat,ann). female(eve).
daughter(eve,ann).       (-) parent(tom,sue).

Background knowledge

falsefalsefalsefalsefalsetruetrueanneve
falsefalsetruefalsefalsetruefalseanntom
falsefalsetruefalsefalsefalsetruepatann⊕

falsefalsetruefalsefalsetruetrueevesue⊕

X=Yp(Y,Y)p(Y,X)p(X,Y)p(X,X)f(Y)f(X)YX
Propositional featuresVariablesClass
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Representation issues (1)
• In the database and Datalog ground fact 

representations individual examples are not 
easily separable 

• Term and Datalog ground clause 
representations enable the separation of 
individuals

• Term representation collects all information 
about an individual in one structured term 

238

Representation issues (2)
• Term representation provides strong 

language bias
• Term representation can be flattened to be 

described by ground facts, using
– structural predicates (e.g. car(t1,c1), 

load(c1,l1))  to introduce substructures
– utility predicates, to define properties of 

invididuals (e.g. long(t1)) or their parts 
(e.g., long(c1), circle(l1)).

• This observation can be used as a language 
bias to construct new features
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Declarative bias for first-order 
feature construction

• In ILP, features involve interactions of local variables
• Features should define properties of individuals (e.g. trains, 

molecules) or their parts (e.g., cars, atoms) 
• Feature construction in LINUS, using the following language 

bias:
– one free global variable (denoting an individual, e.g. train)
– one or more structural predicates: (e.g., has_car(T,C)) ,each 

introducing a new existential local variable (e.g. car, atom), using either 
the global variable (train, molecule) or a local variable introduced by 
other structural predicates (car, load)

– one or more utility predicates defining properties of individuals or their 
parts: no new variables, just using variables

– all variables should be used
– parameter: max. number of predicates forming a feature

240

Sample first-order features
• The following rule has two features ‘has a short car’ and ‘has a 

closed car’: 
eastbound(T):-hasCar(T,C1),clength(C1,short),

hasCar(T,C2),not croof(C2,none).
• The following rule has one feature ‘has a short closed car’: 

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

• Equivalent representation: 

eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):-hasCar(T,C),clength(C,short).

hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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Propositionalization in a nutshell

T RAI N EAS T BOUND
t 1 T RUE
t 2 T RUE
… …
t 6 FAL SE
… …

T RAI N EAS T BOUND
t 1 T RUE
t 2 T RUE
… …
t 6 FAL SE
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 triangle 1
l4 c4 rectangle 3
… … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 triangle 1
l4 c4 rectangle 3
… … …

train(T) f1(T) f2(T)        f3(T) f4(T)     f5(T)
t1 t t f t t 
t2 t t t t t 
t3 f f t f f 
t4 t f t f f 
… … …   … 

 

train(T) f1(T) f2(T)        f3(T) f4(T)     f5(T)
t1 t t f t t 
t2 t t t t t 
t3 f f t f f 
t4 t f t f f 
… … …   … 

 

PROPOSITIONAL TRAIN_TABLEPROPOSITIONAL TRAIN_TABLE

Propositionalization task

Transform a multi-relational
(multiple-table)
representation to a 
propositional representation
(single table)

Proposed in ILP systems
LINUS (1991), 1BC (1999), …
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Propositionalization in a nutshell

T RAI N EAS T BOUND
t 1 T RUE
t 2 T RUE
… …
t 6 FAL SE
… …

T RAI N EAS T BOUND
t 1 T RUE
t 2 T RUE
… …
t 6 FAL SE
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 triangle 1
l4 c4 rectangle 3
… … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 triangle 1
l4 c4 rectangle 3
… … …

train(T) f1(T) f2(T)        f3(T) f4(T)     f5(T)
t1 t t f t t 
t2 t t t t t 
t3 f f t f f 
t4 t f t f f 
… … …   … 

 

train(T) f1(T) f2(T)        f3(T) f4(T)     f5(T)
t1 t t f t t 
t2 t t t t t 
t3 f f t f f 
t4 t f t f f 
… … …   … 

 

PROPOSITIONAL TRAIN_TABLEPROPOSITIONAL TRAIN_TABLE

Main propositionalization step:
first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).
f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)
f3(T) :- ….

Propositional learning:

t(T) ← f1(T), f4(T)

Relational interpretation:

eastbound(T) ←
hasShortCar(T),hasClosedCar(T).
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LINUS revisited
• Standard LINUS: 

– transforming an ILP problem to a propositional problem
– apply background knowledge predicates

• Revisited LINUS: 
– Systematic first-order feature construction in a given 

language bias
• Too many features?

– use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two 
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T),  not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:
eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)).

westbound(T):-
not (hasCar(T,C1),cshape(C1,ellipse)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Part V: 
Relational Data Mining

• Learning as search
• What is RDM?
• Propositionalization techniques
• Inductive Logic Programming
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ILP as search of program clauses

• An ILP learner can be described by
– the structure of the space of clauses

• based on the generality relation 
• Let C and D be  two clauses. 

C is more general than D (C |= D) iff
covers(D) ⊆ covers(C) 

• Example: p(X,Y) ← r(Y,X) is more general than 
p(X,Y) ← r(Y,X), q(X) 

– its search strategy
• uninformed search (depth-first, breadth-first, iterative 

deepening)
• heuristic search (best-first, hill-climbing, beam search)

– its heuristics
• for directing search
• for stopping search (quality criterion)
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• Semantic generality
Hypothesis H1 is semantically more general than H2 w.r.t. 
background theory B if and only if  B ∪ H1 |= H2

• Syntactic generality or θ-subsumption
(most popular in ILP)
– Clause c1 θ -subsumes c2 (c1 ≥ θ c2) 

if and only if ∃θ : c1θ ⊆ c2
– Hypothesis H1 ≥ θ H2

if and only if ∀c2 ∈ H2 exists c1 ∈ H1 such that c1 ≥ θ c2

• Example
c1 = daughter(X,Y) ← parent(Y,X)
c2 = daughter(mary,ann) ← female(mary),

parent(ann,mary),
parent(ann,tom).

c1 θ -subsumes c2 under θ = {X/mary,Y/ann}

ILP as search of program clauses 
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The role of subsumption in ILP
• Generality ordering for hypotheses
• Pruning of the search space:

– generalization
• if C covers a neg. example then its generalizations need 

not be considered

– specialization
• if C doesn’t cover a pos. example then its specializations 

need not be considered

• Top-down search of refinement graphs
• Bottom-up search of the hypo. space by

– building least general generalizations, and
– inverting resolutions
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Structuring the 
hypothesis space

too general

too specific

more
general

more
specific

flies(X) ←

flies(X) ← bird(X), 
normal(X)

flies(X) ← bird(X)
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Two strategies for learning

• General-to-specific

– if Θ-subsumption is used then refinement 
operators

• Specific-to-general search

– if Θ-subsumption is used then lgg-operator or 
generalization operator
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• Two strategies for learning
– Top-down search of refinement graphs
– Bottom-up search

• building least general generalizations
• inverting resolution (CIGOL)
• inverting entailment (PROGOL)

ILP as search of program clauses
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More general 
(induction)

More 
specific
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Generality ordering of clauses

parent(tom,ian).daughter(eve,ann).          
female(eve).parent(tom,eve).daughter(tom,ann).         
female(mary).parent(ann,tom).daughter(eve,tom).       ⊕

female(ann.).parent(ann,mary).daughter(mary,ann).        ⊕
Background knowledgeTraining examples

daughter(X,Y) ←

daughter(X,Y) ← X=Y daughter(X,Y) ←
parent(Y,X)

daughter(X,Y) ←
parent(X,Z)

daughter(X,Y) ← female(X)

daughter(X,Y) ←
female (X)
female(Y)

daughter(X,Y) ←
female(X)

parent(Y,X)

...
...

... ...

Part of the refinement 
graph for the family 
relations problem.

254

Greedy search of the best clause

daughter(X,Y) ←

daughter(X,Y) ← X=Y daughter(X,Y) ←
parent(Y,X)

daughter(X,Y) ←
parent(X,Z)

daughter(X,Y) ← female(X)

daughter(X,Y) ←
female (X)
female(Y)

daughter(X,Y) ←
female(X)

parent(Y,X)

...
...

... ...

2/4

0/0
2/3

2/3

1/2 2/2

parent(tom,ian).daughter(eve,ann).          
female(eve).parent(tom,eve).daughter(tom,ann).         
female(mary).parent(ann,tom).daughter(eve,tom).       ⊕

female(ann.).parent(ann,mary).daughter(mary,ann).        ⊕
Background knowledgeTraining examples
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FOIL
• Language:   function-free normal programs 

recursion, negation, new variables in the body, no 
functors, no constants (original)

• Algorithm:   covering
• Search heuristics:   weighted info gain
• Search strategy:   hill climbing
• Stopping criterion:   encoding length restriction
• Search space reduction:   types, in/out modes 

determinate literals
• Ground background knowledge, extensional 

coverage
• Implemented in C
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Part V: Summary

• RDM extends DM by allowing multiple tables 
describing structured data

• Complexity of representation and therefore of 
learning is determined by one-to-many links

• Many RDM problems are individual-centred 
and therefore allow strong declarative bias


