Data Mining and Knowledge Discovery
Lecture notes

Data Mining Course participants
and Knowledge Discovery L S students I. Statistics students
. Aleksovski +  Breznik
. Bole + Golob
Part of . Cimperman . K_oroéec
“New Media and e-Science” M.Sc. Programme Do D ook
and “Statistics” M.Sc. Programme - Djuras - Suklan
. Dovgan
. Kaluza
2008 / 2009 . Miréevska
. Piltaver
Nada Lavraé¢ - Pollak
. RI.ISIJv
Jozef Stefan Institute : ;gﬁ:gﬁ;
Ljubljana, Slovenia Vukasinovié
Zenkovi¢

Course Schedule - 2007/08
Data Mining and Knowledge Discovery (DM)

DM - Credits and coursework
“New Media and eScience” / “Statistics”

* 12 credits (30 hours / 36 hours)
* Lectures
* Practice
— Theory exercises and hands-on (WEKA)
+ Seminar — choice:

— Data analysis of your own data (e.g., using WEKA for
questionnaire data analysis)

— Programming assignment - write your own data
mining module, and evaluate it on a (few) domain(s)

+ Contacts:
— Nada Lavra¢ nada.lavrac@ijs.si
— Petra Kralj Novak petra.kralj@ijs.si

» 21 October 2008 15-19
* 22 October 2008 15-19
* 11 November 2008 15-19
* 12 November 2008 15-19 Practice (Kralj Novak)
* 1 December 2008 16-17 written exam - theory
« 8 December 2008 15-17 seminar topics presentations
* 14 January 2009 15-19 seminar presentations (exam ?)
» Spare date, if needed:

(28 January 2009 15-19 seminar presentations ?, exam ?)

Lectures (Lavrac)
Practice (Kralj Novak)
Lectures (Lavrac)

http://kt.ijs.si/petra_kralj/IPSKnowledgeDiscovery0809.html

DM - Credits and coursework Course Outline

Exam: Written exam (60 minutes) - Theory . Introduction
— Data Mining and KDD process

Seminar: topic selection + results presentation
X . . — DM standards, tools and
» Oral presentations of your seminar topic (DM task or visualization
i H Classification of Data Mining
dataset presentation, max. 4 minutes) teehniques. Predictive and
+ Presentation of your seminar results (10 minutes + descriptive DM
discussion)

lll. Regression
(Kononenko Ch. 9.4)

IV. Descriptive DM
— Predictive vs. descriptive induction
— Subgroup discovery
— Association rule learning
(Kononenko Ch. 9.3)

(Mladeni¢ et al. Ch. 1 and 11,
Kononenko & Kukar Ch. 1)
 Deliver written report + electronic copy (in Information
Society paper format, see instructions on the web page),

— Report on data analysis of own data needs to follow the
CRISP-DM methodology

— Report on DM SW development needs to include SW
uploaded on a Web page — format to be announced

http://kt.ijs.si/petra_kralj/IPSKnowledgeDiscovery0809.html

Il. Predictive DM Techniques
— Bayesian classifier (Kononenko Ch.
9.6)

— Decision Tree learning (Mitchell Ch.
3, Kononenko Ch. 9.1)

— Classification rule learning
(Berthold book Ch. 7, Kononenko
Ch.9.2)

— Classifier Evaluation (Bramer Ch. 6)

— Hierarchical clustering (Kononenko
12.3)

— V. Relational Data Mining

— RDM and Inductive Logic
Programming (Dzeroski & Lavrac
Ch.3,Ch.4)

— Propositionalization approaches

Relational subgroup discovery
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Part Il. Introduction

I:>Data Mining and the KDD process
» DM standards, tools and visualization

+ Classification of Data Mining techniques:
Predictive and descriptive DM

What is DM

« Extraction of useful information from data:
discovering relationships that have not
previously been known

* The viewpoint in this course: Data Mining is
the application of Machine Learning
techniques to solve real-life data analysis
problems

Related areas

Database technology
and data warehouses
« efficient storage,

databases

accgss an_d text and Web
manipulation mining
of data

pattern
recognition)

Related areas

Statistics,

machine learning,
pattern recognition
and soft computing*

databases
text and Web ‘
« classification mining
techniques and
techniques for
knowledge extraction
from data

machine
learning

pattern
recognition)

* neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning

Related areas

Text and Web mining
* Web page analysis
 text categorization
+ acquisition, filtering
and structuring of
textual information

* natural language
processing

databases

text and Web
mining

pattern
recognition,

Related areas

Visualization

« visualization of data
and discovered
knowledge

databases

pattern
recognitiol




Point of view in this tutorial

Knowledge
discovery using databases
machine
learning e
methods
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Data Mining, ML and Statistics

« All areas have a long tradition of developing inductive
techniques for data analysis.
— reasoning from properties of a data sample to properties of a
population
« DM vs. ML - Viewpoint in this course:
— Data Mining is the application of Machine Learning techniques to
hard real-life data analysis problems
+ DM vs. Statistics:
— Statistics
» Hypothesis testing when certain theoretical expectations
about the data distribution, independence, random sampling,
sample size, etc. are satisfied
» Main approach: best fitting all the available data
— Data mining
» Automated construction of understandable patterns, and
structured models

» Main approach: structuring the data space, heuristic search
for decision trees, rules, ... covering (parts of) the data space

Data Mining and KDD

+ KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

» Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process

KDD process of discovering useful knowledge from data

Trans- Data Interpretatian/

pr.xcss \g forr mwn | Mining — Evaluation ot ie

Prepro(essnd Transformed Patterns HKnowledge
Data Data

Target
Data
Data

» KDD process involves several phases:
» data preparation
« data mining (machine learning, statistics)
« evaluation and use of discovered patterns

» Data mining is the key step, but represents only
15%-25% of the entire KDD process

MEDIANA - analysis of media research data

17

Target Prepyogessod Tr)annr\med Patterns
Data Data

. [\« D Interprecaton/
| | Evaluation  _adis
kL = S R Al

] Knowledge

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

« Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
interest for specific topics in media, social status

« good quality, “clean” data

« table of n-tuples (rows: individuals, columns: attributes, in

o )

MEDIANA — media research pilot study

s Pre- Trans- Interpretatian/
Selection SR processing formavon Evaluation _din.
— (8 Lo, Cee O S
Target Preprocessed | Transformed Patterns Knowledge
Data Data
Data

» Patterns uncovering regularities concerning:
— Which other journals/magazines are read by readers of
a particular journal/magazine ?
— What are the properties of individuals that are
consumers of a particular media offer ?
— Which properties are distinctive for readers of different
journals ?
* Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)




Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. read_Marketing_magazine 116 =>
read_Delo 95 (0.82)

2. read_Financial_News (Finance) 223 => read_Delo 180
(0.81)

3. read_Views (Razgledi) 201 => read_Delo 157 (0.78)
4. read_Money (Denar) 197 => read_Delo 150 (0.76)
5.read_Vip 181 =>read_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also
Delo

Data Mining and Knowledge Discovery
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Simplified association rules
(in Slovene)

1. bere_Sara 332 => bere_Slovenske novice 211 (0.64)
2. bere_Ljubezenske zgodbe 283 =>
bere_Slovenske novice 174 (0.61)
3. bere_Dolenjski list 520 =>
bere_Slovenske novice 310 (0.6)
4. bere_Omama 154 => bere_Slovenske novice 90 (0.58)
5. bere_Delavska enotnost 177 =>
bere_Slovenske novice 102 (0.58)
Vecina bralcev Sare, Ljubezenskih zgodb,
Dolenjskega lista, Omame in Delavske enotnosti
bere tudi Slovenske novice.

Simplified association rules “
(in Slovene)

1. bere_Sportske novosti 303 =>
bere_Slovenski delnicar 164 (0.54)

2. bere_Sportske novosti 303 =>
bere_Salomonov oglasnik 155 (0.51)

3. bere_Sportske novosti 303 =>
bere_Lady 152 (0.5)

Ve¢ kot pol bralcev Sportskih novosti bere tudi
Slovenskega delni¢arja, Salomonov oglasnik in
Lady.
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Decision tree

Finding reader profiles: decision tree for classifying people
into readers and non-readers of a teenage magazine.

Age

Doesn’t read Visiting Disco Clubs

no yes

Interest in music, astrology, Interest in astrology

travel and,scandals
no yes
n/ \ yes / \
Gender Reads
Doesr'tread  Reads
male female

Doesn’t read Age
<20 >=20

Reads Doesn’t read
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Part I. Introduction

Data Mining and the KDD process
|:>DM standards, tools and visualization

+ Classification of Data Mining techniques:
Predictive and descriptive DM

24

CRISP-DM

» Cross-Industry Standard Process for DM

* A collaborative, 18-months partially EC
founded project started in July 1997

* NCR, ISL (Clementine), Daimler-Benz, OHRA
(Dutch health insurance companies), and SIG
with more than 80 members

» DM from art to engineering
* Views DM more broadly than Fayyad et al.

(actually DM is treated as KDD process):
Pre. Trans- [\ Daaa Interpretton/
3| Selection SR, processing [— o] formation (|l|| Mining — Evaluation
3 — _i] '.—f'-:”! > J L . /,-_.27- —

I Target I Preprocessed [Tranlfr:rmed Patterns ] Knowledge
Da

Data £a Data
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CRISP Data Mining Process DM tools

7 KOWupgets Dineeion: [aka Mineg asd Enowledge Dncovery - Melscape

Be [ Yow' bo Commrionn lidp
Tl ekt Lackart [ o Vg comd

L el |

KiNuggeteeum P KD itz Home ¢ —

ﬁm“:‘s%‘w Tools (Siftware) for Data Mining and Knowledge Discovery
eyrmeiiur

Tools ‘Famad pew submassions aed changes to editoriikdinggres.con

Modelling Sulutlans

ding b, depresdicne

v metwosks, md asaciations
ar finding ssquential patterns

Mostlings
Tratasets

i OLAF and Dimensional Analysis

| Document Done

Lok %o &9 (3 2
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Public DM tools

. X\/nill(i_;Walkato Environment for Knowledge - can be used on its own (usually for
ysl description and summarization tasks)
* Orange ) ) * can be used in combination with other DM
* KNIME - Konstanz Information Miner techniques, for example
* R - Bioconductor, ... — visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization

Visualization

Data visualization: # DB Miner: Associationrule *
Scatter plot visualization

Enn-mw—mmn—

alelx
=311 |l s TN B
o | =l et [ E T R R | e Gl S——" ) ]




MineSet: Decision tree
visualization

Bemoscemys 2

Gleason Score 2

fl‘___'.__"l
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Orange: Visual programming and ~
subgroup discovery visualization

[1_agesaBE (1) [ _cheiosts 41 3 classeents

33

Part . Introduction

Data Mining and the KDD process
» DM standards, tools and visualization

I:>Classification of Data Mining techniques:
Predictive and descriptive DM

* Predictive DM:

« Descriptive DM:

« Text, Web and image analysis

34

Types of DM tasks
— Classification (learning of rules, decision H
trees, ...)
— Prediction and estimation (regression) v
— Predictive relational DM (ILP)

— description and summarization

— dependency analysis (association rule
learning)

— discovery of properties and constraints D) ) H
— segmentation (clustering)
— subgroup discovery

35

Predictive vs. descriptive
induction

Predictive induction m
N
Descriptive induction

36

Predictive vs. descriptive
induction

Predictive induction: Inducing classifiers for solving
classification and prediction tasks,

— Classification rule learning, Decision tree learning, ...

— Bayesian classifier, ANN, SVM, ...

— Data analysis through hypothesis generation and testing
Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis
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Predictive DM formulated as a
machine learning task:

+ Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)
A1 A2 A3 Class
examplel v, , Via Vig C,
example2 v, Voo Vo3 C,

+ By performing generalization from examples
(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

(A= Vi) & (A= V;)) & ... > Class = C,

Data Mining and Knowledge Discovery
Lecture notes
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Data Mining in a Nutshell

knowledge discovery

1] 5| myose e from data
8T youmg | myope | yos | ro
young | myope ey
05 | yomg |pametope mo | reduced  NONE
o501 .
014 oroprestycypormotiops. 7o nomal | SOFT Data Mining
15 broprsty( ypomeliopel yos | oduced  NONE
16 oroprestyc hypemeiropo.yos |_nomal | NONE
17 prostyoic myope | ho | reduced  NONE
16 prosbyoric myope | o | nomal | NONE
ota008
024 presbyopic hypermelrope | yes | nomal | NONE model, patterns, ...

data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

39

Data Mining in a Nutshell

knowledge discovery

02 young myope. no. normal SOFT from data
05y | myope yes  reduced  NONE

04 yomo | myope | yes roma  HARD

05 youo |mpemerpe 1o reduced  NONE

oeor .
014 proprestychypormotips no nomal | SOFT Data Mining
015 orapresby(hypemetiope| yes _ reduced  NONE

016 oreprstycypemetropeyes  omal | NONE

Of presbyoic myope | noreducedNONE

18 prestyohic myope | no nomal | NONE

ooz

024 presbyopic hypormetrops yes normal | NONE model, patterns, ...
data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

symbolic model

new unclassified instance classified instance symbolic patterns ]
black box classifier explanation 1
no iha
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Predictive DM - Classification

+ data are objects, characterized with attributes -
they belong to different classes (discrete labels)

+ given objects described with attribute values,
induce a model to predict different classes

+ decision trees, if-then rules, discriminant
analysis, ...

4

Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. |Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
04 young myope yes normal HARD
o5 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015  pre-presbyc hypermetrope yes reduced NONE
016  pre-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

42

Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

tear prod.

reduced N:)rmal
astigmatism
myope hypermetrope
HARD NONE
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Contact lens data: Task reformulation: Concept learning problem
Classification rules (positive vs. negative examples of Target class)
Type of task: prediction and classification Person Age Spect. presc. Astigm. |Tear prod. Lenses
Hypothesis language: rules X = C, if Xthen C o1 young myope no reduced NO
X conjunction of attribute values, C class 8§ young myope no | normal YES
young myope yes reduced NO
. 04 I YES
tear production=reduced — lenses=NONE 05 mg hyp:r’,fsﬁope y:; ,r;zzzzd NO
tear production=normal & astigmatism=yes & 06-013 .
spect. pre.=hypermetrope — lenses=NONE 014  ore-presbyc hypermetrope no normal YES
Lo & ti fi _ 015  ore-presbyc hypermetrope yes reduced NO
tear productlon—normal astigmatism=no — 016  ore-presbyc hypermetrope  yes normal NO
lenses=SOFT 017  presbyopic myope no reduced NO
tear production=normal & astigmatism=yes & 0121323 presbyopic _myope no normal NO
SpeCt' pre.=myope — lenses=HARD 024  presbyopic hypermetrope yes normal NO
DEFAULT lenses=NONE
45 46
lllustrative example: Customer data: Decision trees
Customer data
Customer Gender Age Income Spent  BigSpender < 102000 > 102000
c1 male 30 214000 18800 yes
2 femal 19 139000 15100
23 m’?ilaee 55 50000 12400 y:os @ yee
c4 | female 48 26000 | 8600 no <58 > 56
c5 male 63 191000 28100 yes
06-013 ‘ no ‘ ‘ yes ‘
14 fe I 61 95000 18100
o5 e 56 44000 | 12000 o @
c16 male 36 102000 | 13800 no = female = male
c17 female 57 215000 29300 yes
18 I 33 67000 9700
21 9 fET:aTe 26 95000 11000 :Z @ “
c20 female 55 214000 28800 yes g49/ >49
[ no | [ yes |
a7 48
Customer data: oo . .
Type of task: description (pattern discovery) + often referred to as regression
Hypothesis language: rules X 9 Y, if X then Y « data are objects, characterlzt_ad with attrlbu_tes (discrete
] - ) . . or continuous), classes of objects are continuous
X, Y conjunctions of items (binary-valued attributes) (numeric)
« given objects described with attribute values, induce a
1. Age > 52 & BigSpender = no = Sex = male model to predict the numeric class value
2. Age > 52 & BigSpender = no =2 « regression trees, linear and logistic regression, ANN,
Sex = male & Income < 73250 kNN, ...
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no
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Customer data:
regression tree

> 108000

In the nodes one usually has
Predicted value +- st. deviation

Data Mining and Knowledge Discovery
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Relational Data Minina (ILP)

Learning from multiple Mutagenesis

tables
Complex relational
problems:

— temporal data: time
series in medicine, trafic
control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

lllustrative example:
structured objects - Trains

53

ID Zip Sex |Soc St |Income |Age Club |Resp

3478 34667 |m si 60-70 |32 me nr
3479 (43666 |f ma 80-90 |45 nm re

Basic table for analysis

Relational Data Mining (Inductive
Logic Programming) in a Nutshell

knowledge discovery
from data

Relational Data Mining

model, patterns, ...

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns

52

Relational Data Mining
(Inductive Loaic Proaramming)

Castiener
Zp 3 (3ol A
£l e L 1

1D

a7

3478 34677 m [ f60-
3479|3666 §  [ma

order
T e

T 21406712 | [remulnr  fonss
378 [30TTR12  \erpees (check
s arasise(iT cpilne [caeris
379 [323M441T  frpeess feredie
wr [samsssaiz  Pyper fceedic

N —
[Score 117 Size [Type  |Locanion

12 small francaise city
17 large findep  rural

Telational representation of customers. orders and stores.
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ID Zip Sex |Soc St |Income |Age Club |Resp

3478 |34667 |m si 60-70 |32 me nr
3479 |43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(Id,Zip,Sex,S0St,In,Age,Club,Re)

Prolog facts describing data in Table 2:
customer(3478,34667,m,si,60-70,32,me,nr).
customer(3479,43666,f ma,80-90,45,nm re).

Expressing a property of a relation:
customer(_,_f_._._.




Relational Data Mining
(Inductive Logic Programming)

Data bases:
» Name of relation p

Logic programming:

* Predicate symbol p

+ Attribute of p » Argument of predicate p

* n-tuple <vi, ..,va>=rowin * Ground fact p(vs, ..., Va)
a relational table + Definition of predicate p

+ relation p = set of n-tuples = + Set of ground facts

relational table + Prolog clause or a set of Prolog
clauses

Example predicate definition:

good_customer(C) :-

customer(C,_,female,_,_, , , )
order(C

._,_,creditcard).

Data Mining and Knowledge Discovery
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Part I: Summary

» KDD is the overall process of discovering useful
knowledge in data
— many steps including data preparation, cleaning,
transformation, pre-processing
» Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics
» Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

* Many application areas
» Many powerful tools available

57

Part ll. Predictive DM techniques

=)« Naive Bayesian classifier
* Decision tree learning
+ Classification rule learning
+ Classifier evaluation

+ Bayesian methods — simple but powerful

* Main methods:

58

Bayesian methods

classification methods
— Based on Bayesian formula
p(DIH)

H|D)=
p(H | D) o(D)

p(H)

— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course

59

Naive Bayesian classifier
» Probability of class, for given attribute values

V,..V, | C

p(e, 1vv,) = ple,)- Pal®)

P(Vy--Vy)

+ Forall C; compute probability p(C), given values v; of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; |v)))

p(c; [V;..v,) » P@,-)T[M

i plcy)
» Output Cyax With maximal posterior probability of class:

Cuax =arg maXg; p(cj [Viv,)

p(Cy [Vevy) = =

60

Naive Bayesian classifier

p(c;-vi..v,)  p(vp..v, |¢;)- p(c;) _
p(v...v,)

P(Vyv,)
H p(Vi |Cj)' p(ci)

_P(e) ypPee;lvi)p(v)
URTA R TTSTALY STy
¢y LLP0) e, w) pte) T 21

P e L i) 1 o,)
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Semi-naive Bayesian classifier Probability estimation
 Naive Bayesian estimation of probabilities » Relative frequency:
(reliable) p(c, v, . p(c; |v,) p(c;) = n(’f‘j) L pe;Ivi) = nﬁc(lv,.\;,) j=1..k for k classes
p(c;)  p(cy) . .
* Prior probability: Laplace law
n(c;)+1
+ Semi-naive Bayesian estimation of plcy) = —v s v
probabilities (less reliable) .
* m-estimate:
M n(c_)+m.pa(cv)
p(c)) P =N

63

Explanation of Bayesian
Probability estimation: intuition xplanan yesl

classifier

+ Experiment with N trials, n successful
+ Estimate probability of success of next trial
* Relative frequency: n/N

» Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

— reliable estimate when number of trials is large p ()
— Unreliable when number of trials is small, e.g., » Explanation based of the sum of information gains of
11=1 individual attribute values v; (Kononenko and Bratko 1991,
« Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes Kononenko 1993)

— Assumes uniform distribution of classes

—log(p(c; v;..v,)) =
+ m-estimate: (n+m.pa)/(N+m) 9(P(S; [¥--¥n)

— Prior probability of success pa, parameter m = —Iog(p(cj))_i(_log p(c;)+log(p(c; [v))
(weight of prior probability, i.e., number of ‘virtual’ i
examples )

* log p denotes binary logarithm

B Visualization of information ~
Example of explanation of semi-naive : )
Bayesian classifier gains for/against C,
Hip surgery prognosis 50 o
Class = no (“no complications”, most probable class, 2 class problem) 40
|\
Attribute value For decision] Against 30
(bit) (bit) o
Age = 70-80 0.07 £ 2 8
Sex = Female -0.19 o ow
Mobility before injury = Fully mobile 0.04 s 10
State of health before injury = Other 0.52 'IZv- 3]
Mechanism of injury = Simple fall ~0.08 g 0
Additional injuries = None 0 = 2 0w
Time between injury and operation > 10 days 0.42 € -10
ification acc. To Garden = Garden IIl -0.3 -
acc. To Pauwels = Pauwels 1l 014 20 a7
Transfusion = Yes 0.07
Antibiotic profilaxies = Yes -0.32 -30
Hospital rehabilitation = Yes 0.05
General complications = None 0 -40
Combinati 0.2 [ c2
Time between injury and examination < 6 hours
AND H italization time between 4 and 5 weeks
Combination: 0.63
Therapy = Artroplastic AND anticoagulant therapy = Yes
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.. . . 7 Improved classification accuracy due *
Naive Bayesian classifier to using m-estimate
» Naive Bayesian classifier can be used i i
— when we have sufficient number of training examples Pt”mary Breast | thyroid | Rheumatology
for reliable probability estimation st u;;gr Czrécser 557 w5
+ It achieves good classification accuracy Folass A > ) 5
— can be used as ‘gold standard’ for comparison with :vaa:mb 127 21(; ;51 9321
e ues . . .
other classifiers majorty | 25% | 80% | 56% 6%
* Resistant to noise (errors) entropy 3.64 0.72 1.59 1.7
— Reliable probability estimation . .
— Uses all available information Relative freq. | m-estimate
- Successful in many application domains Primary tumor 48.20% 52.50%
— Web page and document classification Breast cancer 77.40% 79.70%
— Medical diagnosis and prognosis, ... hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
69 70

lllustrative example:

Part ll. Predictive DM techniques Contact lenses data

o Na |Ve BayeSIan C|aSSIerI' Person Age Spect. presc. Astigm. | Tear prod. Lenses
.. . o1 young myope no reduced NONE
e 02 young myope no normal SOFT
DeC|S|On tree Iearnlng o3 young myope yes reduced NONE
] . . o4 young myope yes normal HARD
® CIaSSlfl Catlon I’U Ie Iearn | ng 05 young  hypermetrope no reduced NONE

06-013
° CIaSS'ﬂer evaluatlon 014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023 .

024  presbyopic hypermetrope yes normal NONE

7 72

Decision tree for Decision tree for
contact lenses recommendation contact lenses recommendation

tear prod.

reduced N?rmm
.
reduced N?rmal astigmatism
no yes
| owe | [N=12,3+H=0]
no yes

[S=5,H+N=1] myope hypermetrope
HARD NONE

myope hypermetrope
[H=3,5+N=2] [N=2, S+H=1]
HARD NONE
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PlayTennis: Training examples

Day Outlook | Temperature | Humidity =~ Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Data Mining and Knowledge Discovery
Lecture notes

Decision tree representation
for PlayTennis

Outlook
Sunn/ ‘ Overcast Rain
Humidity Yes Wind
High ANcrmal StroNuk
No Yes No Yes

- each internal node is a test of an attribute

- each branch corresponds to an attribute value
- each path is a conjunction of attribute values
- each leaf node assigns a classification

74
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Decision tree representation
for PlayTennis

Outlook
Sunn/ ‘ Overcast Rain
Humidity Yes Wind
High /\Normul STranmk
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
v ( Outlook=Overcast )
v ( Outlook=Rain A Wind=Weak )

PlayTennis:
Other representations

« Logical expression for PlayTennis=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

« Converting a tree to if-then rules

— IF Outlook=Sunny A Humidity=Normal THEN PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayTennis=No

IF Outlook=Rain A Wind=Strong THEN PlayTennis=No

76
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PlayTennis: Using a decision tree for

classification
Outlook
Sunn/ ‘ Overcast Rain
Humidity Yes Wind
High /\Nur‘mul Sfranmk
No Yes No Yes

Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis = No, because Outlook=Sunny A Humidity=High

Appropriate problems for
decision tree learning

78

+ Classification problems: classify an instance into one

of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)
* Characteristics:
— instances described by attribute-value pairs
(discrete or real-valued attributes)
— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Lecture notes

Learning of decision trees

+ ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree

— if all examples from S belong to the same class Cj
« then label the root with Cj

— else

« select the ‘most informative’ attribute A with values
vl, v2, ... vn

« divide training set S into 81,... , Sn according to

values v1,...,vn

« recursively build sub-trees

T1,...,Tn for 81,...,Sn

79
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Search heuristics in ID3

» Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

» Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

+ First define a measure commonly used in
information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.

Entropy

* 8 - training set, C,,...,Cy - classes

» Entropy E(S) — measure of the impurity of
training set S

P, - prior probability of class C,
(relative frequency of C_in )

N
E(S)=-)_ p.log,p,
c=1

» Entropy in binary classification problems

E(S) =-p. |0g2p+ -p. |0g2p-

81

Entropy — why ?

» Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

* Why ?

+ Information theory: optimal length code assigns
- log,p bits to a message having probability p

» So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

P, (- logyp,) + p_(-log,p.) = - p. log,p, - p.log,p.

83
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Entropy

*+ E(S)=-p,logyp. - p.log,p.

» The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between 0 and 1

s
09
08
07
Z o6
205
g o
£ 04 / \
&
sl [ \
02
0.1
0

* Training set S: 14 examples (9 pos., 5 neg.)

» Notation: S = [9+, 5-]

* E(S) =- p.logyp. - p_log,p.

» Computing entropy, if probability is estimated by

84

PlayTennis: Entropy

relative frequency
{151 {15 gl
£ [|S| *Ts1) st s
E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
=0.940
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PlayTennis: Entropy

+ E(S)=-p.log,p,-p.log,p.
+ E(9+,5-) = -(9/14) 1og,(9/14) - (5/14) log,(5/14) = 0.940

s {D1,D2D8,DI, DY [2+,3-] E=0.970
Outlook? % {D3.D7D12DI13}  [4+,0-] E=0
» {D4,D5,06,D10,D14}  [3+,2-] E=0.970
i [3+,4-] E=0.985
Humidary?% [6+,1-] E=0592
wea [6+,2-] E=0.811
Wind? [3+,3-]1 E=1.00
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Information gain
search heuristic

* Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+5-], E=0.94
[6+,2-] [3+,3-] [9+, 0-] [0+, 5-]
E=0.811 E=1.00 E=0.0 E=0.0

+ Gain(S,A1) = 0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048

* Gain(S,A2)=0.94-0=0.94 A2 has max Gain

Data Mining and Knowledge Discovery
Lecture notes
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Information gain
search heuristic

Information gain measure is aimed to minimize the
number of tests needed for the classification of a new
object
Gain(S,A) — expected reduction in entropy of S due to
sorting on A

Gain(s, A)=E(S)- Y IS, |

veValues(A) | S |

Most informative attribute: max Gain(S,A)

-E(S)
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PlayTennis: Information gain

Gain(S,A)=E(S)- Z m E(S,)
veValues(A) | S |
* Values(Wind) = {Weak, Strong}
Wedl [6+,2-] E=0.811
Wind? [3+,3-] E=1.00
— S =[9+,5-], E(S)=0.940
— Syeak = [6+,27], E(Syeq¢) = 0.811
- Ss(rongz [3+,3-], E(Sstrong) =10
Gain(S,Wind) = E(S) - (8/14)E(S,eac) - (6/14)E(Syong) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048
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PlayTennis: Information gain

* Which attribute is the best?
— Gain(S,0Outlook)=0.246 MAX !
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S,Temperature)=0.029
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PlayTennis: Information gain

Rain {D4,D5,06,D10,D14} [3+,2-] E>07???

Outlook?
Overcast
S {D3,b7,D12,D13} [4+,0-] E=0 OK - assign class Yes
unny
{D1,D2,D8,D9, D11} [2+,3-] E>O ???'>

» Which attribute should be tested here?
~ Gain(Sqyp,, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !
— Gain(Sy,,,,, Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

— Gain(Syym,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny:
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Probability estimates

* Relative frequency :

p(Class|Cond) =
— problems with small samples

_ n(ClassCond)
" n(Cond)
[6+,1-] (7) = 6/7

[2+,0-] (2)=2/2=1

» Laplace estimate : _ n(ClassCond)+1 | _»

— assumes uniform prior n(Cond) +k
distribution of k classes

[6+,1-] (7) = 6+1/ 7+2 = 7/9
[2+,0-] (2) = 241/ 2+2 = 3/4

Data Mining and Knowledge Discovery
Lecture notes
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Heuristic search in ID3

» Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

« Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

» Stopping criteria: A node becomes a leaf
— if all examples belong to same class C;, label the

leaf with C;
—if all attributes were used, label the leaf with the
most common value C, of examples in the node

» Extension to ID3: handling noise - tree pruning

93

Pruning of decision trees

Avoid overfitting the data by tree pruning

Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
« erroneous attribute values
« erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples

95

Handling noise — Tree pruning

* Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
« post-pruning / rule truncation
— handling missing values
+ Pruning avoids perfectly fitting noisy data: relaxing

the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3

96

Prediction of breast cancer
recurrence: Tree pruning

Degree_of_malig

<3 >3

Tumor_size Involved_nodes

<15 >15 <3 >3

Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 18 recurrence 10
<4 N N VRN VRS
no_recur 4

recurrence 1 no_recur 4

FA
no_rec4 recl
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Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— on unseen instances
How accurate is a decision tree when classifying unseen
instances
— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
« split the example set into training set (e.g. 70%) and test set (e.g. 30%)
« induce a decision tree from training set, compute its accuracy on test
set
Error = 1 - Accuracy

High error may indicate data overfitting

Data Mining and Knowledge Discovery
Lecture notes
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Overfitting and accuracy

» Typical relation between tree size and accuracy

07 — On training datal
— Ontest data

* Question: how to prune optimally?

99

Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning

\ Post-pruning

forward pruning considered inferior (myopic)
post pruning makes use of sub trees

100

How to select the “best” tree

» Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

» Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)
— until further pruning is harmful DO:

« for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

« greedily select the node whose removal most improves tree
accuracy over the validation set

* MDL: minimize
size(tree)+size(misclassifications(tree))
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Selected decision/regression
tree learners

» Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

* Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5

» Implemented as part of the WEKA data mining

workbench

* Handling noisy data: post-pruning

» Handling incompletely specified training

instances: ‘unknown’ values (?)

— in learning assign conditional probability of value v:
p(vIC) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values
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Other features of C4.5

+ Binarization of attribute values
— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)
— for discrete values try grouping the values until two
groups remain *
» ‘Majority’ classification in NULL leaf (with no
corresponding training example)
— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
is the majority class of the parent of the NULL leaf

* the basic 4.5 doesn't support binarisation of discrete attributes, it supports grouping

Data Mining and Knowledge Discovery
Lecture notes
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Part Il. Predictive DM techniques

* Naive Bayesian classifier
* Decision tree learning

=)+ Classification rule learning
* Classifier evaluation

105

Rule Learning in a Nutshell

knowledge discovery
from data

myope
05 young | nypermetrope

Rule learning Model: a set of rules
Patterns: individual rules

3
014 pre-prosby( hypermetiope.
o15 o ypem

o18 pr
019023
024 prosbyopic hypermetrope yes

data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;
or a set of interesting patterns in the form of individual
rules
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Rule set representation

* Rule base is a disjunctive set of conjunctive rules
» Standard form of rules:

IF Condition THEN Class

Class IF Conditions

Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

* Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

* Rule base: {R1, R2,R3, ..., DefaultRule}

Data mining example
Input: Contact lens data

Person Age Spect. presc. Astigm. |Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
04 young myope yes normal HARD
o5 young | hypermetrope no reduced NONE

06-013 .
014  ore-presbyc hypermetrope no normal SOFT
015  pre-presbyc hypermetrope yes reduced NONE
016  pre-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

108

Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X =& C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE
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Contact lenses: convert decision tree to

an unordered rule set
+ Two rule learning approaches: reduced I/ T formal

— Learn decision tree, convert to rules [ none |

— Learn set/list of rules IN=12,5+H=0] " yes

* Learning an unordered set of rules

* Learning an ordered list of rules [S=5H+N=1]  ™YoPe hypermetrope
* Heuristics, overfitting, pruning HARD NONE

[H=3,5+N=2] [N=2, S+H=1]

Rule learning

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to

112

Converting decision tree to rules, and

e0|5|on list rule post-pruning (Quinlan 1993)

reduced normal

« Very frequently used method, e.g., in C4.5
[N=12,S+H=0] no yes and J48
' + Procedure:
[S=5,H+N=1] myope hypermetrope — grow a full tree (allowing overfitting)
’ HARD NONE — convert the tree to an equivalent set of rules
[H=3.5+N=2] [N=2, S+H=1] — prune each rule independently of others
Ft duc duced THEN | ' NONE ’ — sort final rules into a desired sequence for use
ear production=reduce enses=|

ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list

13

Concept learning: Task reformulation for rule

114

Original covering algorithm

learning: (pos. vs. neg. examples of Target class) (AQ! Michalski 1969!86)

Person Age Spect. presc. Astigm. Tear prod. Lenses Given examples of N classes C“ B Cw
o1 young myope no reduced NO for each class Ci do + + B
02 young myope no normal YES —Ei:=Pi U Ni (PI pos. Ni neg.) + +
03 young myope yes reduced NO . ’

04 young myope yes normal YES — RuleBase(Ci) := empty
05 young  hypermetrope no reduced NO _ repeat {Iearn-set-of-rules}

06-013 i »
014  ore-presbyc hypermetrope no normal YES * learn-one-rule R covering some posmve
015  ore-presbyc hypermetrope|  yes reduced NO examples and no negatives
016  ore-presbyc hypermetrope yes normal NO «add R to RuIeBase(Ci)

017  presbyopic myope no reduced NO .
018  presbyopic  myope no normal NO + delete from Pi all pos. ex. covered by R

019-023 .

— until Pi = empty
024  presbyopic hypermetrope yes normal NO
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Covering algorithm

Positive examples Negative examples

Data Mining and Knowledge Discovery
Lecture notes

Covering algorithm

. Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1

116

Negative examples

17

Covering algorithm

Rulel: Cl=+ <« Cond2 AND Cond3

Positive examples Negative examples

Covering algorithm

Rule1: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples

/
Rule2: Cl=+ « Cond8 AND Cond6

118

19

Covering algorithm

Rule1: Cl=+ « Cond2 AND Cond3
e

Positive examples Negative examples

Rule2: Cl=+ <« Cond8 AND Cond6

PlayTennis: Training examples

Day Outlook | Temperature = Humidity |  Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

120




Data Mining and Knowledge Discovery
Lecture notes

121

Heuristics for learn-one-rule:
PlayTennis example

PlayTennis = yes [9+,5-] (14)
PlayTennis = yes <« Wind=weak [6+,2-] (8)
<« Wind=strong [3+,3-] (6)
< Humidity=normal [6+,1-] (7)
PlayTennis = yes < Humidity=normal
Outlook=sunny [2+,0-] (2)
.
Estimating rule accuracy (rule precision) with the probability that
a covered example is positive
A(Class « Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+,1-] (7) = 6/7, [2+,0-] (2)=2/2 = 1
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Probability estimates

* Relative frequency :
— problems with small samples

p(Class|Cond) =
_ n(ClassCond)
~ n(Cond)
[6+,1-] (7) = 6/7

[2+,0-] (2)=2/2=1

» Laplace estimate : _ n(ClassCond)+1 | _»

— assumes uniform prior n(Cond) +k
distribution of k classes

[6+,1-] (7) = 6+1/7+2 = 7/9
[2+,0-] (2) = 2+1/2+2 = 3/4
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Learn-one-rule:
search heuristics

» Assume a two-class problem
» Two classes (+,-), learn rules for + class (Cl).
+ Search for specializations R’ of a rule R = Cl « Cond
from the RuleBase.
Specializarion R’ of rule R = Cl « Cond

has the form R’ = Cl « Cond & Cond’
Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule:
Greedy vs. beam search

+ learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking
— e.g., the best descendant of the initial rule

PlayTennis = yes «
— is rule PlayTennis = yes «— Humidity=normal

» beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Learn-one-rule as search:
PlayTennis example

Play tennis = yes IF

Play tennis = yes

Play tennis = yes
IF Wind=weak

) IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong  LF Humidity=normal

Play tennis = yes
IF Humidity=normal,

Wind=weak Play tennis = yes
. X IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
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Learn-one-rule as heuristic search:
PlayTennis example

Play tennis =yes IF  [9+5-](14)

Play tennis = yes
IF Wind=weak
[6+.2-] (8)

Play tennis = yes
) IF Humidity=high
Play tennis = yes ~_Play tennis = yes B+4-1()
IF Wind=strong  IF Humidity=normal

[3+,3-1 (6) o117

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes

IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0-] (2)
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What is “high” rule accuracy
(rule precision) ?

* Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
» BUT: Rule accuracy/precision should be traded
off against the “default” accuracy/precision of the
rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

* Relative accuracy
—RAcc(Cl «~Cond) = p(Cl | Cond) — p(Cl)

Data Mining and Knowledge Discovery
Lecture notes

Weighted relative accuracy

 If arule covers a single example, its accuracy/precision
is either 0% or 100%

— maximising relative accuracy tends to produce many overly
specific rules

* Weighted relative accuracy
WRAcc(Cl«—Cond) = p(Cond) . [p(CI | Cond) — p(Cl)]

* WRACcc is a fundamental rule evaluation measure:
— WRACcc can be used if you want to assess both accuracy and
significance
— WRACcc can be used if you want to compare rules with different
heads and bodies

128
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Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl <~ Cond from RuleBase.
Expected classification accuracy: A(R) = p(Cl|Cond)
Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)
Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
Information gain (decrease in the information needed):
IG(R’,R) = log,p(Cl|Cond’) - log,p(Cl|Cond)
Weighted measures favoring more general rules: WAG, WIG
WAG(R'|R) =
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))
Weighted relative accuracy trades off coverage and relative
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))

Ordered set of rules:
if-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
instance: rules are sequentially tried and the first
rule that “fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in

E

CUI')
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Sequential covering algorithm
(similar as in Mitchell’s book)

RuleBase := empty
ECLJI':= E
repeat

—learn-one-rule R

— RuleBase := RuleBase U R

— Eg = Eg, - {examples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E,,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase

Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
ECUI’:= E
repeat

—learn-one-rule R

— RuleBase := RuleBase U R

— E¢ur := Egr - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E_,,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E,,,)

132
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Learn-one-rule:
Beam search in CN2

Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by
adding maijority class of examples covered by
BestBody in rule Head

performance (R, E.,) : - Entropy(E,,)
— performance(R, E,,) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad

134

Variations

» Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

* Learning rules vs. learning decision trees and
converting them to rules

* Pre-pruning vs. post-pruning of rules
« What statistical evaluation functions to use
» Probabilistic classification

Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an 1F-

THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

. tear production=normal & astigmatism=yes & spect. pre.=myope =>

lenses=HARD [S=0,H=3,N=2]

o A W N2

. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.

135
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Part ll. Predictive DM techniques

* Naive Bayesian classifier
* Decision tree learning
+ Classification rule learning

=)« Classifier evaluation

Classifier evaluation

» Accuracy and Error
n-fold cross-validation
» Confusion matrix

« ROC

137

138

Evaluating hypotheses

« Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

« split the example set into training set (e.g. 70%) to
induce a concept, and test set (e.g. 30%) to test its
accuracy

» more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance




Data Mining and Knowledge Discovery

Lecture notes

139

n-fold cross validation

» A method for accuracy estimation of classifiers

+ Partition set D into n disjoint, almost equally-sized
folds T;where U; T,=D

* fori=1,..,ndo
— form a training set out of n-1 folds: Di = D\T;
— induce classifier H; from examples in Di
— use fold T, for testing the accuracy of H;

» Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T;

140

*Partition D

I‘
w

E‘ q‘
5

*Partition D
[ —

*Train : : :
DVT,=D;

*Partition @m
*Train . : :
[ A [ A
DD, [D\T,=D, |D\T;=D;
143
Partition D

Confusion matrix and
rule (in)accuracy

* Accuracy of a classifier is measured as TP+TN / N.

« Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?
— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!
« Conclusion: classification accuracy is not always an
appropriate rule quality measure
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Confusion matrix ROC space

Predicted positive | Predicted negative « True positive rate = Classifier 1
Positive examples | True positives False negatives #true pos. / #pos. S - Im»:o wwwww }mm:m.w,} -
Negative examples | False positives | True i — TPr, = 40/50 = 80% N-v"wwv“i i } a } ) Classifier 2

— TPr, =30/50 = 60%
« False positive rate
= #false pos. / #neg.
— FPr, =10/50 = 20%
— FPr,=0/50 = 0%
+« ROC space has

+ also called contingency table

Classifier 1

Predicted positive | Predicted negative — FPron X axis _
Posiive examples 20 10 50 e TPron Y axis
Negalive oxampes 10 40 50 Classifier 2
50 50 100
Predicted positive | Predicted negative 20%
Posilive examples 30 20 50
Negalive exampies 0 50 50
30 70 100 0% 20% 0% 60% 80% 100%
Faise positive rate
147 148
100%
—
.
80% /
° ®
8 . E /
2 o £ oo%
H g |
.
Fy o 4% /
4 . 2
[’ Contrmetion e 20%
= WRace
onz
0%
' S o o o o0 0% 20% 40% 60% 80% 100%
false positive rate false positive rate
149 150

Summary of evaluation Part Ill. Numeric prediction

« 10-fold cross-validation is a standard classifier

evaluation method used in machine learning :> Baseline
« ROC analysis is very natural for rule learning * Linear Regression
and subgroup discovery * Regression tree
— can take costs into account « Model Tree
— here used for evaluation « KNN

— also possible to use as search heuristic




Data Mining and Knowledge Discovery

Lecture notes

151

Regression ‘ Classification

Data: attribute-value description

152

Example
+ data about 80 people: Age and Height

Age | Height

2 3 1.03

LM R S 5 1.19

5 ;.'3 PR NI IEL 6 | 126

‘ ‘} 9 139

£ 15 1.69

s ¢ 19| 167

22 1.86

0.5 1 25 185

a1 | 1ss

0 ‘ 43 160

0 50 100 54 190

Age 71 182

Target variable: Target variable:
Continuous Categorical (nominal)
Evaluation: cross validation, separate test set, ...
Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:
Linear regression, regression Decision trees, Naive Bayes, ...
trees,...
Baseline predictor: Baseline predictor:
Mean of the target variable Majority class
153
Test set
Age Height
2 0.85
10 1.4
35 1.7
70 1.6

154

Baseline numeric predictor

» Average of the target variable

155

Baseline predictor: prediction

Average of the target variable is 1.63

Age Height |Baseline
2 0.85

10 1.4

35 1.7

70 1.6

2
1.8 R s ‘:" 0:"‘” :" e '..:' 'o -
16 = . %
144 8
=121 &
S e
() >
T 08+
06
o + Height I
o ‘ ‘ = Average predictor| |
0 20 40 60 80 100
Age
156
Linear Regression Model
Height = 0.0056 * Age + 1.4181
25
2 P AN B R g .
= 15 ’7&’-.'35‘9"5.'-50‘%“ 6 ©¢
= - ot
2
[
T s

0.5 * Height =
= Prediction

0 20 40 60
Age

80 100
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Linear Regression: prediction

Height = 0.0056 * Age + 1.4181

Linear
Age Height |regression
2 0.85
10 1.4
35 1.7
70 1.6

157

158

Regression tree
L2

159

Regression tree: prediction

_uu.sg‘,m
e Height =
Q it?ﬂ%

e Helght = .
T ﬁ““‘ Regression
Height = Height = Age Height |tree
1.3932

a0z 2 0.85
10 1.4
35 1.7
70 1.6

161
Model tree: prediction
Age Height |Model tree
2 0.85
10 1.4
35 1.7
70 1.6
==125§ =125
Height = Height =
0.0333 * Age 0.0011 * Age
+1.1366 +1.6692

_u!2.5 *125
A T Height =
@ T
= i | Helght = 2
— ot GRS L
1.4644 S8t Se,
wiemn Wi oL SRR S
Height = Height = :
1.3932 1.4025 £
o2 9
> 1
==
0.5
+ Height
m Prediction
0 T
0 50 100
Age
Model tree /".\
=125 125
o] e
Height = Height =
0.0333 * Age 0.0011 * Age
+1.1366 +1.6692
2 B >ote Pt % o.i . -
st < -
I~ W e MCII

Height

0.5 1 o Height [
= Prediction

0 20 40 60 80 100
Age

kNN — K nearest neighbors

» Looks at K closest examples (by age) and predicts the
average of their target variable

+ K=3

Height

o223
o
™

040 + Height
0.20 = Prediction KNN, n=3 [

0 20 40 60 80 100
Age
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kNN prediction

kNN prediction
Age | Height
1 0.90
1 0.99 Age | Height | kNN
2 1.01 2 0.85
3 1.03 10 1.4
3 1.07 35 17
5 1.19 70 16
5 1.17
kNN prediction
Age || Height
30 1.57
2(1) :]] 3? Age Height KNN
34 | 155 120 01'845
37 1.65 :
37 || 1.80 ® ] 1
38 1.60 g 13
39 1.69
39 1.80

Age ([ Height
8 1.36
8 1.33 Age Height KNN
9 1.45 2 0.85
9 1.39 -
1 149 10 1.4
12 1.66 35 1.7
12 1.52 70 16
13 1.59
14 1.58
kNN prediction
Age || Height
67 1.56
67 1.87 Age | Height | kNN
69 1.67 2 0.85
69 1.86 10 1.4
71 1.74 35 17
71 1.82 70 16
72 1.70
76 1.88

Which predictor is the best?

Linear [Regression
Age | Height | Baseline | regression tree Model tree kNN
2 10.85] 163 | 143 | 1.39 1.20 | 1.01
10 | 1.4 1163 | 147 | 1.46 147 | 1.51
35 1171163 | 1.61 1.71 1.71 | 1.67
70 | 16 ] 163 | 1.81 1.71 1.75 | 1.81

167

68

Evaluating numeric prediction 1

Performance measure Formula

=) +..+{p.—a,)

mean-squared error

root mean-squared error

mean absolute arror

relative squared error

root relative squared error

relative absolute error

correlation coefficient
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Predictive vs. descriptive
Part IV. Descriptive DM techniques induction
 Predictive induction: Inducing classifiers for solving
mmm) « Predictive vs. descriptive induction classification and prediction tasks,
. — Classification rule learning, Decision tree learning, ...
* Subgroup discovery — Bayesian classifier, ANN, SVM, ...
« Association rule |eaming — Data analysis through hypothesis generation and testing
T . . + Descriptive induction: Discovering interesting
Hierarchical clustering regularities in the data, uncovering patterns, ... for
solving KDD tasks
— Symbolic clustering, Association rule learning, Subgroup
discovery, ...
— Exploratory data analysis

171 172

Descriptive DM Descriptive DM

» Description
« Often used for preliminary explanatory data — Data description and summarization: describe elementary and
analysis aggregated data characteristics (statistics, ...)
y i — Dependency analysis:
» User gets feel for the data and its structure « describe associations, dependencies, ...
+ Aims at deriving descriptions of characteristics * discovery of properties and constraints
of the data + Segmentation
. . . L. .. — Clustering: separate objects into subsets according to distance and/or
* Visualization and descriptive statistical similarity (clustering, SOM, visualization, ...)
techniques can be used — Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)

. . . . 173 . . 174
Predictive vs. descriptive Supervised vs. unsupervised
induction: A rule learning learning: A rule learning

perspective perspective
 Predictive induction: Induces rulesets acting as  Supervised learning: Rules are induced from
classifiers for solving classification and prediction labeled instances (training examples with class
tasks assignment) - usually used in predictive induction
» Descriptive induction: Discovers individual rules * Unsupervised learning: Rules are induced from
describing interesting regularities in the data unlabeled instances (training examples with no
class assignment) - usually used in descriptive
» Therefore: Different goals, different heuristics, mductl.on .
different evaluation criteria * Exception: Subgroup discovery
Discovers individual rules describing interesting
regularities in the data from labeled examples
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Subgroup Discove
Part IV. Descriptive DM techniques g P y

o o ) Given: a population of individuals and a target
» Predictive vs. descriptive induction class label (the property of individuals we are

E==) .« Subgroup discovery interested in)
« Association rule learning Find: pg_pulatlor? SL’Jng’OUpS that are statistically
most “interesting’, e.g., are as large as
* Hierarchical clustering possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)

177 178

Subgroup Discovery:

Subgroup interestingness Medical Case Study
Interestingness criteria: * Find and characterize population subgroups with high
. risk for coronary heart disease (CHD) (Gamberger, Lavrag,
— As large as possible Krstagic)
— Class distribution as different as possible from * A1 for males: principal risk factors
the distribution in the entire data set CHD « pos. fam. history & age > 46

« A2 for females: principal risk factors

B Slgnlfllclant CHD « bodyMassIndex > 25 & age >63
— Surprising to the user « A1, A2 (anamnestic info only), B1, B2 (an. and physical
— Non-redundant examination), C1 (an., phy. and ECG)
Simol « A1: supporting factors (found by statistical analysis):
- olmpie psychosocial stress, as well as cigarette smoking,
— Useful - actionable hypertension and overweight
179 180
Subgroup visualization Subgroups vs. classifiers

+ Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model

Subgroups of + Subgroups:
ge}l_:gr:ti:kwnh — Rules describing subgroups aim at significantly higher proportion of

positives

[Gamberger, Lavrad — Each rule is an independent chunk of knowledge

& Wettschereck, . Link

IDAMAP2002] — SD can be viewed as
cost-sensitive
classification

— Instead of FNcost we
aim at increased TPprofit

positives

true
positives
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

» Only first few rules induced by the covering
algorithm have sufficient support (coverage)

» Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

* ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list

182

CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

» Weighted covering algorithm

* Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
+ Probabilistic classification

+ Evaluation with different interestingness
measures

183

CN2-SD: CN2 Adaptations

» General-to-specific search (beam search) for best rules
* Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =
= p(Class|Cond) = (n+1)/ (N +K)
— CN2-SD: Weighted Relative Accuracy
WRAcc(Class « Cond) =
p(Cond) (p(Class|Cond) - p(Class))
» Weighted covering approach (example weights)
+ Significance testing (likelihood ratio statistics)
» Output: Unordered rule sets (probabilistic classification)

185

Subgroup Discovery

Positive examples Negative examples

10
10 4,

10 44 10

10
1.0 1o

10

184

CN2-SD: Weighted Covering

+ Standard covering approach:
covered examples are deleted from current training set
» Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
« Additive weights: w(e,i) = 1/(i+1)
w(e, i) — pos. example e being covered i times

186

Subgroup Discovery

Positive examples Negative examples

0 10 4

o 10

010 14 10
10
10
10
10

10
1o 10

10
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Subgroup Discovery Subgroup Discovery

Positive examples

Negative examples Positive examples Negative examples

10 10

10 10
10 1o 10

10 1o 10
1010 14 10

1010 14 10

CN2-SD: Weighted WRAcc Search
Heuristic

» Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Part IV. Descriptive DM techniques

WRAGG(CI < Cond) = p(Cond) (p(ClICond) - p(Cl)) * Predictive vs. descriptive induction
increased coverage, decreased # of rules, approx. equal . Subgroup discovery
accuracy (PKDD-2000) I:> Lo .
* In WRAcc computation, probabilities are estimated * Association rule learning
with relative frequencies, adapt: « Hierarchical clustering
WRACcc(Cl < Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N’ )

— N’ : sum of weights of examples
— n’'(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples

Association Rule Learning Association Rule Learning:
Rules: X =>Y, if X then Y Examples

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

192

» Market basket analysis

Given: Transactions 112 s i50 ~ beer & coke = peanuts & chips (5%, 65%)
itemsets (records) o1 o (IF beer AND coke THEN peanuts AND chips)
© 1 0 — Support 5%: 5% of all customers buy all four items
.............................. — Confidence 65%: 65% of customers that buy beer and coke
Find: A set of association rules in the form X =>Y also buy peanuts and chips
Example: Market basket analysis * Insurance , _
. — mortgage & loans & savings = insurance (2%, 62%)
beer & coke => peanUtS & ChIpS (0'05' 0'65) — Support 2%: 2% of all customers have all four
» Support: Sup(X,Y) = #XY/#D = p(XY) — Confidence 62%: 62% of all customers that have mortgage,
) loan and savings also have insurance
» Confidence: Conf(X,Y) = #XYH##X = Sup(X,Y)/Sup(X) =

= p(XY)/p(X) = p(YIX)
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Association rule learning

* X=>Y ...IFXTHENY, where X and Y are itemsets

« intuitive meaning: transactions that contain X tend to contain Y

* Items - binary attributes (features) m,f,headache, muscle pain,
arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour

+ Example transactions — itemsets formed of patient records

i1 i2 i50
t 1 0 0
2 0 1 0

» Association rules
spondylitic = arthritic & stiff_gt_1_hour [5%, 70%)]
arthrotic & spondylotic = stiff_less_1_hour [20%, 90%)]

194

Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification

195

Searching for the associations

» Find all large itemsets

» Use the large itemsets to generate
association rules

+ If XY is a large itemset, compute
r =support(XY) / support(X)

e If r > MinConf, then X = Y holds
(support > MinSup, as XY is large)

196

Large itemsets

» Large itemsets are itemsets that appear in at
least MinSup transaction

» All subsets of a large itemset are large
itemsets (e.g., if A,B appears in at least
MinSup transactions, so do A and B)

» This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)

197

Association vs. Classification

rules rules
» Exploration of « Focused prediction
dependencies « Predict one attribute
« Different combinations (class) from the others

of dependent and « Heuristic search (subset
independent attributes of rules found)

» Complete search (all
rules found)

198

Part IV. Descriptive DM techniques

 Predictive vs. descriptive induction
» Subgroup discovery
» Association rule learning

=)« Hierarchical clustering
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Hierarchical clustering Hierarchical clustering
» Fusing the nearest pair of clusters
M Algorlthm (agglomerative ] Dendogram
hierarchical clustering): L. )
; * Minimizing intra-cluster
Each instance is a cluster; Si m | |al’|ty
repeat - =0 * Maximizing inter-cluster
find nearest pair Ciin Cj; ] . .
fuse C,in G, in a now cluster = similarity
Ci=CiUC; E
determine dissimilarities between ‘__’;
C: and other clusters; T
until one cluster left;
» Computing the dissimilarities
from the “new” cluster
201 202

. . . Results of clusterin
Hierarchical clustering: example g

I e Ll L =1#| A dendogram of
T A e resistance vectors
STTRRN P Y ) 1 6 =] ] e

.
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Part V: Learning as search

Relational Data Mining

:> Learning as search » Structuring the state space: Representing a partial
. order of hypotheses (e.g. rules) as a graph
* What is RDM? — nodes: concept descriptions (hypotheses/rules)
» Propositionalization techniques — arcs defined by specialization/generalization
« Inductive Logic Programming operators : an arc from parent to child exists if-

and-only-if parent is a proper most specific
generalization of child

» Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}

* Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}

» Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayTennis example

Play tennis = yes IF

Play tennis = yes

? Play tennis = yes
IF Wind=weak

_ IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong  LF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny

Data Mining and Knowledge Discovery
Lecture notes

206

Learn-one-rule as heuristic search:
PlayTennis example

Play tennis = yes IF  [9+5-](14)

Play tennis = yes
IF Wind=weak
[6+.2-1(8)

Play tennis = yes
) IF Humidity=high
Play tennis = yes Play tennis = yes [B34+4-1(7)
IF Wind=strong ~ IF Humidity=normal

[3+,3-] (6) [6+,1-](7)

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

207

Learning as search
(Mitchell’s version space model)

* Hypothesis language Ly too general
defines the state space

» How to structure the
hypothesis space L,?

* How to move from one
hypothesis to another?

more
general

complete and consis more

* The version space: region specific
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

too specific

Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
[2+,0-]1(2)
208
Learning as search
» Search/move by applying 100 general .

generalization and

specialization generalize

* Prune generalizations:
— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

Q
7
Q ¢ 9 specialize
4
too specific
O

* Prune specializations:
— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

209

Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy

« depth-first

* breath-first

* heuristic search (best first, hill-climbing, beam search)
— search heuristics

» measure of attribute ‘informativity’

» measure of ‘expected classification accuracy’ (relative

frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)

210

Learn-one-rule:
search heuristics

» Assume a two-class problem
» Two classes (+,-), learn rules for + class (Cl).

» Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.
 Specializarion R’ of rule R = Cl <~ Cond
has the form R’ = Cl « Cond & Cond’
* Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

* learn-one-rule by greedy general-to-specific
search, at each step selecting the “best’
descendant, no backtracking
— e.g., the best descendant of the initial rule

PlayTennis = yes «
— is rule PlayTennis = yes «— Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates

Data Mining and Knowledge Discovery
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Part V:
Relational Data Mining

» Learning as search

[===) What is RDM?

* Propositionalization techniques
* Inductive Logic Programming

213

Predictive relational DM

« Data stored in relational databases
 Single relation - propositional DM

— example is a tuple of values of a fixed number of
attributes (one attribute is a class)

— example set is a table (simple field values)
» Multiple relations - relational DM (ILP)
— example is a tuple or a set of tuples
(logical fact or set of logical facts)
— example set is a set of tables (simple or complex
structured objects as field values)

Data for propositional DM

Sample single relation data table

[0 [Racoa | Feme [Ftrme [City
Mo

(L0 €2 5 [Solin TA JCI [ie|
EER RTINS R - x5 fcume e o

M Coe  [Tase M, floves

Customer table for analysis.

D [Zip
£

=
&

Paymt g_l.unu Store  [Store
Mode |Size  [Type Locatn

BATRI36TT[m |5 |60-70{32 regularcash  |small |[f 3
T N R0-00l45 lit (large |indep  [rural

Customer table including order and store information.

215

Multi-relational data made

proposmonal
+ Sample Sl el ) T
relation regutir ashs  fonatl franchiveleity
express  check pmall franchise cty
table l::uln check |..-; — m‘}..l
] me large b russl
reguler  jeredit pmall franchie oty

Customer table with multipbe orders.

* Making data
using summary

Chstomer table asing summary attributes.

216

Relational Data Mining (ILP)

« Learning from multiple ]
tables L [
« Complex relational

problems:

— temporal data: time
series in medicine, order ]
trafic control, ... 54“’"‘" ]ﬁﬁ‘i" L [Lﬁ."a."“' |§.'3:‘

— structured data: wars 210m67 12 \ regulnr fenss
representation of ) ot e o LE;
molecules and their M9 32344417 frpress credie
properties in protein M it N i i i“"m
engineering, )

[Store 13 Sine [Type  |Location

12 small francaise city
17 large findep  rural

biochemistry, ... ’ whien

Telational representation of customers. orders and stores.
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Basic Relational Data Mining tasks

Predictive RDM

Descriptive RDM

219

Predictive ILP

+ Given:

— A set of observations

« positive examples E *

* negative examples E -
— background knowledge B
— hypothesis language L,
— covers relation
— quality criterion

* Find:
A hypothesis H e Ly, such that (given B) H is
optimal w.r.t. some quality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H < L, such
that (given B) H covers all positive and no
negative examples)

Data Mining and Knowledge Discovery
Lecture notes
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Predictive ILP

Given:
— A set of observations
« positive examples E *
« negative examples E -
— background knowledge B
— hypothesis language L
— covers relation

Find:
A hypothesis H e Ly, such that (given B) H
covers all positive and no negative examples

In logic, find H such that
- VeeE*":B A H|= e (His complete)
— Ve e E":B A H|=/=e (His consistent)

In ILP, E are ground facts, B and H are
(sets of) definite clauses
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Descriptive ILP

Given:
— A set of observations
(positive examples E *)
— background knowledge B
— hypothesis language L
— covers relation

Find:
Maximally specific hypothesis H LH, such

that (given B) H covers all positive examples

In logic, find H such that vc € H, c is true in
some preferred model of B UE (e.g., least
Herbrand model M (B UE ))

In ILP, E are ground facts, B are (sets of)
general clauses
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Sample problem
Knowledge discovery

E * = {daughter(mary,ann) ,daughter(eve,tom)}
E - = {daughter (tom,ann) ,daughter(eve,ann)}

B = {mother(ann,mary), mother(ann,tom),
father(tom,eve), father(tom,ian), female(ann),
female(mary), female(eve), male(pat),male(tom),
parenth,Yg}e mother(X,Y), parent(X,Y) «

father(X,Y
ann

mary tom

/N

eve ian
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Sample problem
Knowledge discovery

+ E *={daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann) ,daughter(eve,ann)}

+ B={mother(ann,mary),mother(ann,tom) ,father(tom,eveg .
father(tom, ian), female(ann) ,female(mary) ,female(eve),
male(pat) ,male(tom),parent(X,Y)<«mother(X,Y),
parent(X,Y)«father(X,Y)}

» Predictive ILP - Induce a definite clause
daughter(X,Y) « female(X), parent(Y,X).
or a set of definite clauses
daughter(X,Y) « female(X), mother(Y,X).
daughter(X,Y) « female(X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses

<« daughter(X,Y), mother(X,Y).
female(X)« daughter(X,Y).

mother(X,Y); father(X,Y) « parent(X,Y).
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Sample problem:
East-West trains

Sample problem
Logic programming

E*={sort([2,1,3].[1.2,31)}
E- = {sort([2.11, [11),sort([3,1,2]1.[2.1.3D} L TRANS GONG EAST 2 ToAs comG wesT

B : definitions of permutation/2 and sorted/1
* Predictive ILP
sort(X,Y) <« permutation(X,Y), sorted(Y).

» Descriptive ILP

sorted(Y) <« sort(X,Y).
permutation(X,Y) <« sort(X,Y)
sorted(X) <« sort(X,X)
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RDM knowledge representation™

ER diagram for East-West trains
R (database) N
LOAD CAR ('BJEI:I' NUM:BER I??IN EAS::(]J:ND
:§ % r::xagclxn 1 t2 TRUE Train

14 c4  rectangle

T
\em;\'RAIN SHAPE LENGTH ROOF WHEBRS

ol t1  rectangle short  none 2

c2  t1  rectangle  long  none 3
©3  t1  rectangle short  peaked 2 N

¢4 t1  rectangle  long  none 2

1 1
Car Load
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ILP representation: ILP representation:
Datalog ground facts Datalog ground clauses
« Example: o o 2 J{ooo
eastbound(t1). . Example:
eastbound(t1):-
« Background theory: car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4). load(c1,11),circle(I1),one_load(1),
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4). car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
short(c1). long(c2). short(c3). long(c4). load(c2,12),hexagon(I2),one_load(I2),
none(c1). none(c2). peaked(c3).  none(c4). car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4). load(c3,13),triangle(I3),one_load(13),
load(c1,1). load(c2,12). load(c3,13). load(c4,14). car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
circle(l1). hexagon(l2).  triangle(I3). rectangle(l4). load(c4,14),rectangle(14),three_load(l4).
one_load(l1). one_load(12). one_load(I3). three_loads(l4).

* Background theory: empty

: it . » Hypothesis:
* Hypothesis (predictive ILP): .
eastbound(T) :- car(T,C),short(C),not none(C). eastbound(T):-car(T,C),short(C),not none(C).
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ILP representation: Prolog terms

+ Example:
eastbound([c(rectangle,short,none,2,l(circle, 1)),
c(rectangle,long,none,3,I(hexagon, 1)),
c(rectangle,short,peaked,2 |(triangle, 1)),
c(rectangle,long,none,2,|(rectangle,3))]).
» Background theory: member/2, arg/3

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).

229
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First-order representations

. representations:

— datacase is

— features are those given in the dataset
» First-order representations:

— datacase is flexible-size, structured object
« sequence, set, graph
« hierarchical: e.g. set of sequences
— features need to be selected from potentially infinite set

Complexity of RDM problems

» Simplest case: single table with primary key
— example corresponds to tuple of constants
— attribute-value or propositional learning
» Next: single table without primary key
— example corresponds to set of tuples of constants
- problem
» Complexity resides in many-to-one foreign keys
— lists, sets, multisets
— non-determinate variables

231
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Part V:
Relational Data Mining
* Learning as search
+ What is RDM?

> Propositionalization techniques
* Inductive Logic Programming

Rule learning:
The standard view

* Hypothesis construction: find a set of n rules
— usually simplified by n separate rule constructions
« exception: HYPER
* Rule construction: find a pair (Head, Body)
— e.g. select head (class) and construct body by
searching the VersionSpace
« exceptions: CN2, APRIORI
* Body construction: find a set of m literals

— usually simplified by adding one literal at a time
 problem (ILP): literals introducing new variables

233
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Rule learning revisited

» Hypothesis construction: find a set of n rules
* Rule construction: find a pair (Head, Body)
* Body construction: find a set of m features

— Features can be either defined by background knowledge or
constructed through constructive induction

— In propositional learning features may increase expressiveness
through negation

— Every ILP system does constructive induction
+ Feature construction: find a set of k literals
— finding interesting features is discovery task rather than classification
task e.g. interesting subgroups, frequent itemsets
— excellent results achieved also by feature construction through
predictive propositional learning and ILP (Srinivasan)
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First-order feature construction

» All the expressiveness of ILP is in the features

» Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)

Data Mining and Knowledge Discovery
Lecture notes
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Standard LINUS
« Example: learning family relationships
Training ex Background knowledge
daughter(sue,eve). (+) |parent(eve,sue). female(ann).
daughter(ann, pat). (+) [parent(ann,tom). female(sue).
daughter(tom,ann).  (-)  [parent(pat,ann). female(eve).
daughter(eve,ann). (-) |parent(tom,sue).

« Transformation to propositional form:

Class | Variables Propositional features
X Y f(X) | f(Y) | p(X.X) | p(X,Y) | p(Y.X) | p(Y,Y) X=Y
@ |sue|eve| true | true | false | false | true | false false
@ |ann| pat | true | false | false | false | true false false
© |tom |ann | false | true | false | false | true false false
© |eve|ann| true | true | false | false | false | false false

* Result of propositional rule learning:
Class = @ if (female(X) = true) A (parent(Y,X) = true
« Transformation to program clause form:

daughter(X,Y) « female(X),parent(Y,X)
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Representation issues (1)

+ In the database and Datalog ground fact
representations individual examples are not
easily separable

» Term and Datalog ground clause
representations enable the separation of
individuals

» Term representation collects all information
about an individual in one structured term

238

Representation issues (2)

» Term representation provides strong
language bias
» Term representation can be flattened to be
described by ground facts, using
— structural predicates (e.g. car(t1,c1),
load(c1,I1)) to introduce substructures
— utility predicates, to define properties of
invididuals (e.g. long(t1)) or their parts
(e.g., long(c1), circle(11)).
» This observation can be used as a language
bias to construct new features
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Declarative bias for first-order
feature construction

In ILP, features involve interactions of local variables
Features should define properties of individuals (e.g. trains,
molecules) or their parts (e.g., cars, atoms)

Feature construction in LINUS, using the following language
bias:

— one free global variable (denoting an individual, e.g. train)

— one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

— one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

— all variables should be used

— parameter: max. number of predicates forming a feature

Sample first-order features

* The following rule has two features ‘has a short car’ and ‘has a
closed car”:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

» The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

+ Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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Propositionalization in a nutshell

TRAIN_TABLE

Propositionalization task

CAR TRAN SHAPE LENGTH _ROOF WHERS

A ) o1 t1  rectangle  short none 2
Transform a multi-relational 2 11 reclangle long _none 3

. c3 11 rectangle  short peaked 2
(mmtlple—table) o4 t1_ rectangle  long none 2

representation to a
propositional representation

(single table) PROPOSITIONAL TRAIN_TABLE
train(T) f1(T) | f(T) | f3(T) | f4(T) 15(T) |

t t [t [ [ t t
2]t |
8 f [
t |

1

t
Proposed in ILP systems :
LINUS (1991), 1BC (1999), ...

t4 |

t | t [ t

[ t T f

ol t T
l |

Propositionalization in a nutshell

Main propositionalization step: i sere TRAIN_TABLE
first-order feature construction ' & e
M

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L), GAR TRAN SHAPE LENGTH ROOF WHEAS
. ct t1  rectangle  short none 2
loadShape(L,circle) 2 11 reclangle long _none 3
f3(T) I c3 t1  rectangle  short  peaked ;

c4 11 rectangle long none.

Propositional learning:

PROPOSITIONAL
t(T) « fL(T), f4(T) > TRAWN_TABLE
train(m) f(T) | £2(T) U VIR UN
t t t f t |
Relational interpretation: 2 G g I G t |
13 f f t f f
eastbound(T) <« “ t f t f £
hasShortCar(T),hasClosedCar(T). —— =]
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LINUS revisited

» Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

* Revisited LINUS:

— Systematic first-order feature construction in a given
language bias

* Too many features?
— use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).
Meaning:
eastbound(T):-
hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-
not (hasCar(T,C1),cshape(C1,ellipse)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Part V:
Relational Data Mining
» Learning as search
* What is RDM?

» Propositionalization techniques
:> Inductive Logic Programming
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ILP as search of program clauses

* An ILP learner can be described by
— the structure of the space of clauses

« based on the generality relation
« Let Cand D be two clauses.
C is more general than D (C |= D) iff
covers(D) c covers(C)
« Example: p(X,Y) « r(Y,X) is more general than
P(X,Y) « r(Y.X), a(X)
— its search strategy
« uninformed search (depth-first, breadth-first, iterative
deepening)
« heuristic search (best-first, hill-climbing, beam search)
— its heuristics
« for directing search
« for stopping search (quality criterion)
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ILP as search of program clauses The role of subsumption in ILP

+ Semantic generality
Hypothesis H, is semantically more general than H, w.r.t.
background theory B if and only if B U H, |=H,
+ Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause ¢, 6-subsumes c, (¢, 2> ,C,)
if and only if 36: c,0 cc,
— Hypothesis H, > 6 H,
if and only if vc, € H, exists ¢, € H; such that ¢, > dc, « if C doesn’t cover a pos. example then its specializations
+ Example need not be considered

c1 = daughter(X,Y) « parent(Y,X) . _ i
¢2 = daughter{mary,ann) <- female(mary), Top-down search of refinement graphs

Generality ordering for hypotheses
Pruning of the search space:

— generalization

« if C covers a neg. example then its generalizations need
not be considered

— specialization

parent(ann,mary), + Bottom-up search of the hypo. space by
parent(ann,tom). - -
¢1 9-subsumes ¢, under 6= {X/mary,Y/ann} — building least general generalizations, and

— inverting resolutions
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Structuring the Two strategies for learning

hypothesis space

» General-to-specific

flies(0) foo general — if ®-subsumption is used then refinement
les| «
more operators
flies(X) « bird(X) general
* Specific-to-general search
flies(X) « bird(X),
normal(X) — if ®-subsumption is used then Igg-operator or
more generalization operator
specific
too specific
251 252
More general
ILP as search of program clauses o oS o

» Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
* inverting resolution (CIGOL)
* inverting entailment (PROGOL)

More
specific .




Data Mining and Knowledge Discovery
Lecture notes

Generality ordering of clauses

Background knowledge
female(ann.).

Training examples
daughter(mary,ann). @ (
daughter(eve,tom). @ | parent(ann,tom).
daughter(tom,ann). © | parent(
daughter(eve,ann). © | parent(tom,ian).

parent(ann,mary).

female(mary).

tom,eve). female(eve).

daughter(X,Y) «

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z2)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) «
female (X) female(X)
female(Y) parent(Y,X)

Part of the refinemen
graph for the family
relations problem.
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t

Greedy search of the best clause

Training examples Background knowledge

daughter(mary,ann).

parent(ann,mary). female(ann.).

&)
daughter(eve,tom). @ | parent(ann,tom). female(mary).
daughter(tom,ann). e

S

daughter(eve,ann).

parent(tom,eve). female(eve).

parent(tom,ian).

daughter(X,Y) « 2/4

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z2)
2/3

daughter(X,Y) « female(X)
2/3

daughter(X,Y) « daughter(X,Y) «
female (X) 1o female(X) /2
female(Y) parent(Y,X)
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FOIL

» Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

» Algorithm: covering

» Search heuristics: weighted info gain

» Search strategy: hill climbing

+ Stopping criterion: encoding length restriction

» Search space reduction: types, infout modes
determinate literals

» Ground background knowledge, extensional
coverage

* Implemented in C
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Part V: Summary

+ RDM extends DM by allowing multiple tables
describing structured data

» Complexity of representation and therefore of
learning is determined by one-to-many links

* Many RDM problems are individual-centred
and therefore allow strong declarative bias
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