
Transfer Learning for Node Regression

Applied to Spreading Prediction

Sebastian Mežnar

Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia

Nada Lavrac
ˇ

Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
and
University of Nova Gorica, Glavni trg 8, Vipava, Slovenia

Blaž Škrlj
Jožef Stefan Institute
and
Jožef Stefan International Postgraduate School
Jamova 39, Ljubljana, Slovenia

Understanding how information propagates in real-life complex net-
works yields a better understanding of dynamic processes such as misin-
formation or epidemic spreading. The recently introduced branch of
machine learning methods for learning node representations offers
many novel applications, one of them being the task of spreading pre-
diction addressed in this paper. We explore the utility of the state-of-
the-art node representation learners when used to assess the effects of
spreading from a given node, estimated via extensive simulations. Fur-
ther, as many real-life networks are topologically similar, we systemati-
cally investigate whether the learned models generalize to previously
unseen networks, showing that in some cases very good model transfer
can be obtained. This paper is one of the first to explore transferability
of the learned representations for the task of node regression; we show
there exist pairs of networks with similar structure between which the
trained models can be transferred (zero-shot) and demonstrate their
competitive performance. To our knowledge, this is one of the first
attempts to evaluate the utility of zero-shot transfer for the task of node
regression.

Keywords: epidemics; neural networks; machine learning; spreading;
transfer learning

Introduction1.

Spreading of information or disease spreading are examples of com-
mon phenomena of spreading. Modeling the spreading process and
spreading prediction has many practical and potentially life-saving
applications, including the creation of better strategies for stopping

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

the spreading of misinformation on social media or stopping an epi-
demic. Further, companies can analyze spreading to create better
strategies for marketing their product [1, 2]. Spreading analysis can
also be suitable for analysis of, for example, fire spreading, implying
large practical value in terms of insurance cost analysis [3]. Analysis
of spreading is commonly studied via extensive simulations [4],
exploiting ideas from statistical mechanics to better understand both
the extent of spreading and its speed [5].

While offering high utility, reliable simulations of spreading pro-
cesses can be expensive when performed on larger networks. This
issue can be addressed by employing machine learning–based model-
ing techniques [6]. The contributions of this paper are multifold and
can be summarized as follows.

We propose an efficient network node regression algorithm named
CaBoost, which achieves state-of-the-art performance for the task of
spreading prediction against strong baselines such as graph neural net-
works.

1.

We demonstrate that machine learning–based spreading prediction can
be utilized for fast screening of potentially problematic nodes, indicat-
ing that this branch of methods is complementary to the widely
adopted simulation-based approaches.

2.

We investigate to what extent the models learned on a given network A
are transferable to a network B, and what type of structural features
preserves this property the best. This hypothesis assumes that structure-
only properties could be sufficient for model transfer in some cases. We
demonstrate that transfer learning for node regression is possible, albeit
only across topologically similar networks.

3.

This work extends the paper “Prediction of the Effects of Epidemic
Spreading with Graph Neural Networks” [7] from the Complex Net-
works 2020 conference by testing more approaches, using more simu-
lation data, and using different node centralities. Additionally, this
work tests if centrality-based features can be used for zero-shot trans-
fer learning.

The remainder of this paper is structured as follows. Section 2 pre-
sents the related work that led to the proposed approach. In Section 3
we present the proposed methodology, where we reformulate the
task, present centrality data used to create features for our learners
and show how we approached transfer learning. In Section 4 we
present the datasets, the experimental setting, interpretation of the pre-
dictions, and the results of the empirical evaluation and transfer learn-
ing. We conclude the paper with the discussion in Section 5.

458 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

Related Work 2.

This section presents the relevant related work. It starts by discussing
the notion of contagion processes, followed by an overview of graph
neural networks and transfer learning.

Analysis of Spreading Processes 2.1

The study of spreading processes on networks is a lively research
endeavor [2]. Broadly, spreading processes can be split into two main
branches, namely, the simulation of epidemics and opinion dynamics.
The epidemic spreading models can be classical or network based.
The classical models are, for example, systems of differential equa-
tions that do not account for a given network’s topology. Throughout
this paper, we are interested in extensions of such models to real-life
network settings.

One of the most popular spreading models extended to networks is
the susceptible infected recovered (SIR) model [8]. The spread of the
pandemic in the SIR model is dictated by parameters β, known as the
infection rate, and γ, known as the recovery rate. Nodes in this model
can have one of three states (susceptible, infected, recovered). SIR
assumes that if an infected node comes into contact with a susceptible
one during a generic iteration, the susceptible node becomes infected
with probability β. In each iteration after getting infected, a node can
recover with probability γ (only transitions from S to I and from I to
R are allowed).

Other related models include, for example, SEIR, SEIS, SWIR.
(Where S-Susceptible, I-Infected, R-Recovered, E-Exposed and W-
Weakened.) Further, we can also study the role of cascades [9] or the
threshold model [10]. For the interested reader, multiple other
approaches are summarized in [11].

Machine Learning on Networks 2.2

Learning by propagating information throughout a given network has
already been considered by approaches such as label propagation
[12]. However, in recent years, approaches that jointly exploit the
adjacency structure of a given network alongside features assigned to
its nodes are becoming prevalent in the network learning community.
The so-called graph neural networks have resurfaced with the intro-
duction of the graph convolutional networks (GCNs) [13], an idea
where the normalized adjacency matrix is directly multiplied with the
feature space and effectively represents a neural network layer.
Multiple such layers can be stacked to obtain better approximation
power/performance. One of the most recent methods from this
branch is the graph attention networks (GAT) [14], an extension of

Transfer Learning for Node Regression Applied to Spreading Prediction 459

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

GCNs, extended with the idea of neural attention. Here, part of the
neural network focuses on particular parts of the adjacency space,
offering more robust and potentially better performance.

Albeit being in widespread use, graph neural networks are not nec-
essarily the most suitable choice when learning solely from the net-
work adjacency structure. For such tasks, methods such as node2vec
[15], SGE [16], SNoRe [17] and DeepWalk [18] were developed. This
branch of methods corresponds to what we refer to as structural
representation learning. In our work, we focus mostly on learning this
type of representations using network centrality information.

Note that although graph neural networks are becoming the pre-
vailing methodology for learning from feature-rich complex net-
works, it is not clear whether they perform competitively with the
more established structural methods if the feature space is derived
solely from a given network’s structure.

Transfer Learning 2.3

The main bottleneck of spreading effect prediction is the expensive
simulations. While the number of simulations can be reduced by using
machine learning, computation of a large fraction of them might still
be infeasible on larger networks. One of the solutions for this prob-
lem is transfer learning [19]. Transfer learning can be performed in at
least two main ways: by fine-tuning a pretrained model (few-shot
learning) or by using a model trained on a related problem (zero-shot
learning). In this paper, we focus on zero-shot learning.

In recent years, new approaches were proposed for transfer learn-
ing on networks; those adopted mostly fine-tune pretrained graph neu-
ral networks to solve the proposed problem. An example of this is
prediction of optoelectronic properties of conjugated oligomers [20],
where the graph neural network is trained on short oligomers and
then fine-tuned by using 100 long ones. The results showed that the
fine-tuned model performed much better and needed only a small sam-
ple of extra data to improve performance by a margin of 37%.
Another approach tries to predict traffic congestion of a network with
a small amount of historical data by training a recurrent neural net-
work on a traffic network with a lot of historic data [21]. Zero-shot
learning is less popular in the network setting, but the few approaches
that exist closely follow the paradigms of zero-shot learning [22]. One
such example [23] proposes a dense graph propagation module that
adds direct links between distant nodes in the knowledge networks to
exploit their hierarchical structure. Finally, pre-training graph neural
networks is becoming an active research venue, demonstrating that
this problem is possible to solve via systematic selection of pre-
training data [24, 25].

460 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

When transferring knowledge between different networks, one
must carefully craft features that are independent of a single network
and represent global node characteristics. Because of this, embedding
methods such as node2vec [15] and SNoRe [17] cannot be used, since
they learn node representation through node indices encountered dur-
ing random walks within the input network. On the other hand, trans-
fer learning with graph neural networks is an active field of research,
with most approaches fine-tuning the pre-trained models.

Proposed Methodology 3.

After introducing the task of spreading prediction, a brief methodol-
ogy overview is presented. After this we present the creation of target
variables, extraction of node features from the network, training of
machine learning models, and the transfer of models between the net-
works.

Task Formulation 3.1

In the case of a pandemic, the intensity of disease spreading can be
summarized with the following three values: the maximum number of
infected people (the peak), the time it takes to reach the maximum
number of infected people and the total number of infected people.
Let us consider why these three values are important. Knowing the
maximum number of infected people during a pandemic will help us
to better prepare for the crisis, as it provides a good estimation of
how many resources (e.g., hospital beds) will need to be allocated to
patients. In another example domain, companies might want to create
marketing campaigns on platforms such as Twitter and target specific
users to reach a certain number of retweets that are needed to become
trending. The time needed to reach the peak is important, for exam-
ple, to estimate the best time for developing a cure for the disease, or
for example, to estimate the maximum time for stopping the spread
of misinformation on social media. Finally, the total number of
infected nodes during an epidemic is important for assessing the dam-
age, or in another example, for estimating how many computers were
infected by some malware.

In this paper, we focus on predicting the maximum number of
infected nodes and the time needed to reach this number. We create
target data by simulating epidemics from each node with the SIR diffu-
sion model [26] and identify the number of nodes, as well as the time
when the maximum number of nodes is infected. We aggregate the
generated target data by taking the mean values for each node
(expected time and infection numbers). Finally, we normalize the data

Transfer Learning for Node Regression Applied to Spreading Prediction 461

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

as follows. We divide the maximum number of infected nodes by the
number of nodes in the observed network. This normalization is suit-
able since the maximum number of infected nodes cannot exceed the
number of nodes in the network. This normalization intuitively offers
insight into the percentage of infected nodes, regardless of scale. The
upper bound for the time when the maximum number of nodes is
infected does not exist. Because of this, we divide the time when the
maximum number of nodes is infected with the maximum from the
observed data. In practice we might not have this maximum, so a suit-
able number must be chosen by, for example, examining prior events.
Furthermore, in practice, we create the target data as described above
and save the number by which we divide (normalization constant).
After prediction, we multiply the prediction with this number to find
the “real-world” equivalent.

Methodology Overview 3.2

The overview of the proposed methodology is presented in Figure 1.
The methodology is composed of three main steps: input data cre-
ation, model training and transfer learning.

Figure 1. Overview of the proposed methodology.

462 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

In the first step, we create target variables and node features from
the starting (initial) network. Target variables are created by running
simulations on the starting network followed by their summarization
and processing. While target variable creation can be performed in
the same way on each network, feature creation depends on the
learner. Embeddings and feature extraction methods generate features
stored in tabular format, which is then used for model training.
Graph neural networks are, on the other hand, end-to-end learners,
meaning they learn features and perform regression at the same time.

In the second step, we train a regression model using the extracted
features and the target variables we created. We use this model to pre-
dict the target variables for the unknown nodes.

The model learned in the second step is used in the last step to
predict target variables of nodes from a new (unknown/unobserved)
network. For such predictions, we first extract features from the new
network and then use them on the pre-trained model. These predic-
tions transfer knowledge from the first network to the nodes of the
second one.

Training Data Creation 3.3

The first part of the methodology addresses input data generation.
Intuitively, the first step simulates epidemic spreading from individual
nodes of a given network to assess the time required to reach the max-
imum number of infected nodes, as well as the maximum number
itself. In this paper, we leverage the widely used SIR model [8, 26] to
simulate epidemics, formulated as follows:

dS

dt
 -

β · S · I

N

dI

dt


β · S · I

N
- γ · I

R

dt
 γ · I,

where S represents the number of susceptible, R the number of recov-
ered and I the number of infected individuals. Spreading is governed
by input parameters γ and β. The SIR model is selected due to many
existing and optimized implementations that are adapted from sys-
tems of differential equations to networks [1]. We use NDlib [26] to
simulate epidemics based on the SIR diffusion model.

Target data creation results in two real values for each node. We
attempt to predict these two values. The rationale for the construction
of such predictive models is that they are potentially much faster than
simulating multiple spreading processes for each node (prediction

Transfer Learning for Node Regression Applied to Spreading Prediction 463

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

time is the bottleneck) and can give more insight into why some nodes
are more “dangerous.”

The predictive task can be formulated as follows. Let G  (V, E)
represent the considered network. We are interested in finding the

mapping f :V  [0, 1] from the set of nodes V to the set of real values

that represent, for example, the maximum number of infected individ-
uals if the spreading process is started from a given node u ∈ V. Thus,

f corresponds to the process of node regression.

Learning on the Same Network: Prediction with
Simulation Data

3.4

The models we considered can broadly be split into two main cate-
gories: graph neural networks and propositional learners. The main
difference between the two is that the graph neural network learners,
such as GAT [14] and GIN [27], simultaneously exploit the structure
of a network, as well as node features, while the propositional learn-
ers take as input only the constructed feature space (and not the adja-
cency matrix). As an example, the feature space is passed through the
GIN’s structure via the update rule that can be stated as:

hv
k

 MLPk 1 + ϵk · hv
k-1

+ 

u∈V(v)

hu
k-1

,

where MLP corresponds to a multilayer perceptron, ϵ a hyperparame-

ter, hu
k

 the node u’s representations at layer k and V(v) the vth node’s
neighbors. We test both graph neural networks and propositional
learners, as it is to our knowledge not clear whether direct incorpora-
tion of the adjacency matrix offers any superior performance, as the
graph neural network models are computationally more expensive.
The summary of considered learners is presented in Table 1.

Input Learner Method Description

A, F GAT graph attention networks

A, F GIN graph isomorphism networks

A node2vec + XGBoost node2vec-based features + XGBoost

A, F node2vec + features + XGBoost node2vec-based features + centrality-based

features + XGBoost

A SNoRe + XGBoost SNoRe-based features + XGBoost

A, F SNoRe + features + XGBoost SNoRe-based features + centrality-based

features + XGBoost

F CaBoost XGBoost trained solely on centrality-based

features

Table 1. Summary of the considered learners with descriptions, where A

denotes the adjacency matrix and F the feature matrix.

464 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

As the considered complex networks do not possess node
attributes, we next discuss which features derived solely from the net-
work structure were used in the considered state-of-the-art implemen-
tations of GAT [14] and GIN [27], or concatenated to an embedding
generated using node2vec [15] or SNoRe [17] for use in XGBoost.
Further, we also test models where only the constructed structural fea-
tures are considered, as well as a standalone method capable of learn-
ing node representations, combined with the XGBoost [28] classifier.
In this paper, we explore whether centrality-based descriptions of
nodes are suitable for the considered learning task. The rationale for
selecting such features is that they are potentially fast to compute and
entail global relation of a given node with regard to the remaining
part of the network. The centralities, computed for each node, are
summarized in Table 2. These centralities are then normalized and
concatenated to create features used with some learners. In Sec-
tion 4.3 we refer to the XGBoost model trained with these features as
CaBoost, which is one of the contributions of this paper.

Centrality Time Complexity Description

degree
centrality 29

 E The number of edges of a given node.

eigenvector
centrality 29

 V
3
 Importance of the node,

where nodes are more important
if they are connected to other
important nodes.This can be
calculated using the eigenvectors
of the adjacency matrix.

PageRank 30  E Probability that a random
walker is at a given node.

average out-
degree

 V ·w · s The average out-
degree of nodes encountered during
w random walks of mean length s.

number of
second neighbors

 V · E Number of nodes that are neighbors
to neighbors of a given node.This
number is between 0 and V.

Table 2. Summary of the centralities considered in our work.

During model training, we minimize the mean squared error (MSE)

between the prediction f (u) and the observed state yu, which is

defined for the uth node as follows:

MSE 
1

N


u∈N

f (u) - yu
2.

Transfer Learning for Node Regression Applied to Spreading Prediction 465

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

In Section 4.3 we use the root mean squared errors (RMSE),
defined as follows:

RMSE  MSE ,

to present the results.

Transfer Learning from Other Networks 3.5

In Section 3.4 we use the centrality data to create the features used for
model training. Since these features represent (normalized) global
characteristics of nodes and not the specific relations between them
(as for example in node2vec or SNoRe), they have the advantage of
being transferable between different networks. This gives us the abil-
ity to train a model on one network and use it for prediction on a dif-
ferent network.

In this paper, we use the approach outlined in the following para-
graphs to train and test a regression model for transfer learning. We
will use the term training network to highlight the network used for
training the model, and test network as the network composed of
nodes used in prediction of spreading effects.

First we create simulations with nodes from the training network
as patient(s) zero, and create target variables as shown in Sections 3.1
and 3.3. After this, we create centrality-based features and use them
to train the CaBoost model from Section 3.4. To predict target vari-
ables of the test network, we generate its centrality-based features and
use them with the previously trained model.

In Section 4.4 we use the following methodology to benchmark the
performance of transfer learning models. First we create target vari-
ables and centrality-based features of all networks. Then we normal-
ize the features and use all instances to train one CaBoost model for
each network. Transfer learning scores are then calculated for each
model and each (different) network as the RMSE between the pre-
dicted values and target variables. We use five-fold cross-validation as
the baseline score for each network.

We represent the performance of transfer learning as a heatmap.
The columns of the heatmap represent the test networks, while the
rows represent the training network used to create the model. The
values on the diagonal represent the RMSE values of the five-fold
cross-validation. The other values represent the transfer learning score
(score on the test network) divided by the baseline score. The values
can be interpreted as the decrease in performance if we use a model
trained on another network relative to the estimated performance
on the initial network obtained in the process of five-fold cross-
validation.

466 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

Empirical Evaluation 4.

In this section, we present the baselines and datasets used for evalua-
tion and show the empirical results of the approaches outlined in Sec-
tion 3. We also present how predictions from the SNoRe+features
model can be explained with SHAP [31].

Baselines for Regression (Initial Network) 4.1

We compared the results of the proposed method to the following five
baselines:

◼ Random baseline creates an embedding of size N 64 with random

numbers drawn from Unif0, 1. We use this embedding as the input

data for the XGBoost model.

◼ node2vec [15] learns a low-dimensional representation of nodes that
maximizes the likelihood of neighborhood preservation using random
walks. During testing, we use the default parameters.

◼ SNoRe [17] learns an interpretable representation of nodes based on
the similarity between their neighborhoods. These neighborhoods are
created with short random walks. During testing, we use the default
parameters.

◼ GAT [14] includes the attention mechanism that helps learn the impor-
tance of neighboring nodes. In our tests, we use the implementation
from PyTorch Geometric [32].

◼ GIN [27] learns a representation that can provably achieve the maxi-
mum discriminative power. In our tests, we use the implementation
from PyTorch Geometric [32].

For comparison we also add the averaged simulation error. We cal-

culate this error with the RMSE formula, where y  0 and f (u) is the

mean absolute difference between simulation results and their mean
value. This baseline corresponds to the situation, where only a single
simulation would be used to approximate the expected value of multi-
ple ones (the goal of this work).

Experimental Setting 4.2

We used the following datasets for testing (available at github.com/
smeznar/Epidemic-spreading-CN2020): Hamsterster [33], Advogato
[34], Wikipedia Vote [35], FB Public Figures [36] and HEP-PH [37]
taken from the Network Repository website [38]. Some basic statis-
tics of the networks we used can be seen in Table 3. Two of the
networks used during testing are visualized in Figure 2. The network
nodes in this figure are colored based on the values of the target
variables.

Transfer Learning for Node Regression Applied to Spreading Prediction 467

https://doi.org/10.25088/ComplexSystems.30.4.457

https://github.com/smeznar/Epidemic-spreading-CN2020
https://github.com/smeznar/Epidemic-spreading-CN2020
https://doi.org/10.25088/ComplexSystems.30.4.457

Name Nodes Edges Components
Percentage of Nodes in

Largest Component

Wikipedia Vote [35] 889 2914 1 1.00

Hamsterster [33] 2426 16630 148 0.82

Advogato [34] 6551 43427 1441 0.77

FB Public Figures [36] 11565 67114 1 1.00

HEP-PH [37] 12008 118521 278 0.93

Table 3. Basic statistics of the networks used for testing.

(a) (b)

Figure 2. (a) Visualization of Advogato and (b) Hamsterster networks. The
color represents the target value we get when spreading starts from a given
node. Color on the Advogato dataset represents the maximum number of
infected nodes, while on the Hamsterster dataset time until the maximum
number of infected nodes is reached is shown. Blue colors represent low val-
ues, while red ones represent high ones. Since nodes with similar centrality
values have similar characteristics, these nodes should be colored similarly.

We used the following approach to test the proposed method as
well as the baselines mentioned in Section 4.1. We created the target
data by simulating 10 epidemics starting from each node of every
dataset. We created each simulation using the SIR diffusion model
from the NDlib [26] Python library with parameters β  5% and
γ  0.5%. We then created the target variables by identifying and
aggregating the maximum number of infected nodes and the time
when this happens. We used these target variables to test the methods
using five-fold cross-validation. We used XGBoost [28] with default
parameters as the regression model with proposed features based
on the mentioned centralities, the random baseline, SNoRe [17],
SNoRe+centrality features, node2vec [15] and node2vec+centrality
features baselines. Baselines GIN and GAT were trained for 200
epochs using the Adam optimizer [39]. Since GIN and GAT are pri-
marily used for node classification, we changed the output layer to a
ReLU [40] layer, so they perform regression.

468 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

Results of Models Trained with Simulation Data4.3

The results of the evaluation described in Section 4.2 are presented in
Tables 4–7. Tables 4 and 5 show the results on all the nodes from the
network, while Tables 6 and 7 show results only on the nodes from
the network’s largest component. The results show that the learners
significantly outperform the random baseline and the averaged simu-
lation error, especially when predicting effects on networks with
several components. Models CaBoost, node2vec+features and
SNoRe+features perform significantly better than others and all use
centrality-based features to train the XGBoost model. These best
approaches achieve RMSE scores around 0.05, which corresponds to
an error of around 5% of nodes on average.

Dataset Learner Advogato Hamsterster HEP-PH

CaBoost 0.0519 (± 0.0045) 0.0429 (± 0.0116) 0.0481 (± 0.0017)

GAT 0.1748 (± 0.0072) 0.1534 (± 0.0024) 0.1761 (± 0.0019)

GIN 0.0646 (± 0.0238) 0.0712 (± 0.0597) 0.1753 (± 0.0806)

Random 0.3156 (± 0.0024) 0.2915 (± 0.0029) 0.2107 (± 0.0012)

SNoRe 0.1743 (± 0.0057) 0.1591 (± 0.0053) 0.1611 (± 0.0048)

SNoRe+features 0.0515 (± 0.0044) 0.0438 (± 0.0114) 0.0467 (± 0.0018)

node2vec 0.0673 (± 0.0054) 0.0841 (± 0.0143) 0.0835 (± 0.0031)

node2vec+features 0.0574 (± 0.0037) 0.0431 (± 0.0114) 0.0494 (± 0.0031)

Simulation error 0.0644 0.0576 0.0796

Dataset Learner FB Public Figures Wikipedia Vote

CaBoost 0.0521 (± 0.0007) 0.0600 (± 0.0020)

GAT 0.0594 (± 0.0010) 0.0608 (± 0.0013)

GIN 0.0579 (± 0.0015) 0.2076 (± 0.2531)

Random 0.0625 (± 0.0003) 0.0732 (± 0.0039)

SNoRe 0.0600 (± 0.0003) 0.0667 (± 0.0032)

SNoRe+features 0.0514 (± 0.0004) 0.0597 (± 0.0009)

node2vec 0.0575 (± 0.0005) 0.0690 (± 0.0021)

node2vec+features 0.0515 (± 0.0004) 0.0590 (± 0.0010)

Simulation error 0.0982 0.1064

Table 4. Cross-validation results for maximum number of infected nodes on
the whole network.

The results for the prediction of the maximum number of infected
nodes on the whole network are shown in Table 4. The results show
that the SNoRe+features model has the lowest RMSE on most net-
works, but that this is mostly because of the centrality-based features,
since all the learners that use them give similar results. We also see
that graph neural networks perform poorly, on most networks only
beating the random baseline. This might be because we use features
extracted from the network and a small amount of training data. It is
also worth mentioning that the three best-performing models perform

Transfer Learning for Node Regression Applied to Spreading Prediction 469

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

notably better than the averaged simulation error and that the node
embedding methods node2vec and SNoRe perform much worse when
used without the centrality-based features.

Table 5 shows the performance results for prediction of the time
needed to reach the maximum number of infected nodes on the whole
network. We see that the SNoRe+features model performs the best
overall. This is probably due to features that represent both the simi-
larity between neighborhoods of nodes and their global character-
istics. The results also show that GIN and GAT are not suitable for
such a task, since they often perform much worse than some other
learners (especially GAT) and in some cases worse than the simula-
tion error.

Dataset Learner Advogato Hamsterster HEP-PH

CaBoost 0.0571 (± 0.0032) 0.0540 (± 0.0037) 0.0459 (± 0.0012)

GAT 0.1411 (± 0.0021) 0.1027 (± 0.0012) 0.0971 (± 0.0006)

GIN 0.0782 (± 0.0274) 0.0766 (± 0.0162) 0.0717 (± 0.0142)

Random 0.2073 (± 0.0013) 0.1209 (± 0.0014) 0.1095 (± 0.0003)

SNoRe 0.1463 (± 0.0033) 0.1007 (± 0.0022) 0.0904 (± 0.0006)

SNoRe+features 0.0557 (± 0.0038) 0.0545 (± 0.0014) 0.0451 (± 0.0006)

node2vec 0.0758 (± 0.0014) 0.0824 (± 0.0039) 0.0634 (± 0.0016)

node2vec+features 0.0602 (± 0.0032) 0.0600 (± 0.0035) 0.0467 (± 0.0015)

Simulation error 0.0840 0.0906 0.0839

Dataset Learner FB Public Figures Wikipedia Vote

CaBoost 0.0448 (± 0.0005) 0.0647 (± 0.0027)

GAT 0.0642 (± 0.0008) 0.0760 (± 0.0021)

GIN 0.0497 (± 0.0035) 0.0701 (± 0.0069)

Random 0.0817 (± 0.0004) 0.0992 (± 0.0019)

SNoRe 0.0646 (± 0.0011) 0.0753 (± 0.0073)

SNoRe+features 0.0434 (± 0.0004) 0.0641 (± 0.0037)

node2vec 0.0590 (± 0.0009) 0.0845 (± 0.0018)

node2vec+features 0.0440 (± 0.0004) 0.0638 (± 0.0016)

Simulation error 0.0847 0.1178

Table 5. Cross-validation results for time when maximum number of infected
nodes is reached on the whole network.

Similarly to Table 4, Table 6 shows the prediction scores for the
maximum number of infected nodes on the largest component of the
network. Results for networks Wikipedia vote and FB Public Figures
are the same, since they have only one component. Contrary to scores
on the whole network, scores on the biggest component show that
node2vec+features performs the best overall. We also see that the ran-
dom baseline performs much better on the single component than on
the whole network. This is because the maximum number of infected
nodes is usually smaller in smaller components, which makes the
mean value of target data smaller and the variance higher. Because of

470 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

high variance of target data, the random baseline predicts scores with
higher error, since the range of predictions is bigger.

Dataset Learner Advogato Hamsterster HEP-PH

CaBoost 0.0556 (± 0.0011) 0.0437 (± 0.0017) 0.0496 (± 0.0004)

GAT 0.0668 (± 0.0088) 0.0455 (± 0.0014) 0.0536 (± 0.0014)

GIN 0.0651 (± 0.0039) 0.0566 (± 0.0057) 0.1147 (± 0.0355)

Random 0.0622 (± 0.0007) 0.0513 (± 0.0014) 0.0556 (± 0.0005)

SNoRe 0.0588 (± 0.0005) 0.0520 (± 0.0014) 0.0551 (± 0.0003)

SNoRe+features 0.0552 (± 0.0007) 0.0447 (± 0.0008) 0.0482 (± 0.0004)

node2vec 0.0592 (± 0.0008) 0.0504 (± 0.0012) 0.0520 (± 0.0002)

node2vec+features 0.0548 (± 0.0010) 0.0437 (± 0.0016) 0.0489 (± 0.0003)

Simulation error 0.0975 0.0769 0.0883

Dataset Learner FB Public Figures Wikipedia Vote

CaBoost 0.0521 (± 0.0007) 0.0600 (± 0.0020)

GAT 0.0594 (± 0.0010) 0.0608 (± 0.0013)

GIN 0.0579 (± 0.0015) 0.2076 (± 0.2531)

Random 0.0625 (± 0.0003) 0.0732 (± 0.0039)

SNoRe 0.0600 (± 0.0003) 0.0667 (± 0.0032)

SNoRe+features 0.0514 (± 0.0004) 0.0597 (± 0.0009)

node2vec 0.0575 (± 0.0005) 0.0690 (± 0.0021)

node2vec+features 0.0515 (± 0.0004) 0.0590 (± 0.0010)

Simulation error 0.0982 0.1064

Table 6. Cross-validation results for maximum number of infected nodes on
the biggest component of the network.

Table 7 shows the prediction score of time needed to reach the
maximum number of infected nodes on the biggest component of the
network. As with the other results, CaBoost, node2vec+features and
SNoRe+features give the best performance on all datasets. Compared
to the results in Table 5, we see that the difference between the
random baseline and other learners is smaller and that the random
baseline results are in some cases only around 50% worse than the
best-performing learner. Interestingly, the random baseline gives bet-
ter results overall than the averaged simulation error. This is probably
because spreading is “highly” stochastic and simulations can end
before spreading begins. In such a case, the averaged simulation error
increases significantly, while the random baseline is not affected
much, since the model is trained with already processed target data. If
we chose a random value x ∈ [0, 1] as the prediction for the node, the
result would be much worse.

We can see that predictions with the proposed learners on all
datasets give better results than a single simulation. This shows that
such models are useful because they can estimate the joint distribution
of spreading across multiple simulations, which is better than a ran-
dom simulation run.

Transfer Learning for Node Regression Applied to Spreading Prediction 471

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

Dataset Learner Advogato Hamsterster HEP-PH

CaBoost 0.0529 (± 0.0018) 0.0442 (± 0.0020) 0.0436 (± 0.0006)

GAT 0.0790 (± 0.0063) 0.0883 (± 0.0031) 0.0643 (± 0.0008)

GIN 0.0614 (± 0.0016) 0.0536 (± 0.0058) 0.0538 (± 0.0118)

Random 0.0855 (± 0.0010) 0.0907 (± 0.0014) 0.0845 (± 0.0003)

SNoRe 0.0702 (± 0.0011) 0.0680 (± 0.0026) 0.0651 (± 0.0005)

SNoRe+features 0.0517 (± 0.0014) 0.0454 (± 0.0015) 0.0425 (± 0.0003)

node2vec 0.0708 (± 0.0010) 0.0702 (± 0.0018) 0.0557 (± 0.0006)

node2vec+features 0.0519 (± 0.0017) 0.0471 (± 0.0030) 0.0431 (± 0.0002)

Simulation error 0.0941 0.0789 0.0816

Dataset Learner FB Public Figures Wikipedia Vote

CaBoost 0.0448 (± 0.0005) 0.0647 (± 0.0027)

GAT 0.0642 (± 0.0008) 0.0760 (± 0.0021)

GIN 0.0497 (± 0.0035) 0.0701 (± 0.0069)

Random 0.0817 (± 0.0004) 0.0992 (± 0.0019)

SNoRe 0.0646 (± 0.0011) 0.0753 (± 0.0073)

SNoRe+features 0.0434 (± 0.0004) 0.0641 (± 0.0037)

node2vec 0.0590 (± 0.0009) 0.0845 (± 0.0018)

node2vec+features 0.0440 (± 0.0004) 0.0638 (± 0.0016)

Simulation error 0.0847 0.1178

Table 7. Cross-validation results for time when maximum number of infected
nodes is reached on the biggest component of the network.

Results of Transfer Learning4.4

In this section, we show the results of transfer learning between the
presented networks. The results are represented in the form of a
heatmap where the values on the diagonal represent the baseline
RMSE of five-fold cross-validation and the nondiagonal values repre-
sent the RMSE of the dataset in the column with the model trained on
the dataset in the row. The error of nondiagonal cells is calculated on
all nodes and divided by the baseline score and thus shows how much
worse the RMSE we get from transfer learning is when compared
with the RMSE we get with the five-fold cross-validation.

The transfer learning results for the prediction of the maximum
number of infected nodes can be seen on the heatmap in Figure 3. We
can see that most errors are 1–3 times higher than the baseline. The
two major exceptions are the results of the Advogato dataset with the
FB Public Figures model and the result of the Wikipedia Vote net-
work with the FB Public Figures model. The 5.4 times higher RMSE
on the FB Public Figure dataset is probably caused by the big
difference between the number of components, since the large number
of components lowers the highest number of infected nodes. It is
interesting to see that the FB Public Figures model works better than
the baseline for the Wikipedia network. This is probably because both

472 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

networks have similar structure but Wikipedia vote has fewer nodes
and thus less training data. These results show that transfer learning
between two topologically similar networks is possible without addi-
tional data and can yield good results.

On the heatmap in Figure 4, we see transfer learning results for pre-
diction of the time needed to reach the maximum number of infected
nodes. We can see that overall these results are better than those in
Figure 3 and that the Advogato dataset performs much worse with
other models. This is probably because Advogato has 1441 compo-
nents while the other networks have significantly fewer. We can also
see that the FB Public Figures and Wikipedia vote datasets give good
predictions (below two times worse) with all the models, especially in
the case where the error is the same as with the baseline.

Figure 3. Heatmap with transfer learning results for predictions of maximum
number of infected nodes.

Figure 4. Heatmap with transfer learning results for predictions of time when
maximum number of nodes were infected.

Transfer Learning for Node Regression Applied to Spreading Prediction 473

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

The results of transfer learning can be better explained with the dis-
tribution plot of target values shown in Figure 5. The first row shows
the distribution of the maximum number of infected nodes. We can
see that the distributions of FB Public Figures and Wikipedia vote are
very similar. This reflects the results, where the Wikipedia vote net-
work performs better with the FB Public Figures model than with the
five-fold cross-validation. We also see that the Advogato and FB Pub-
lic Figures networks have very different distributions. This matches
the results, since the transferred model performs very poorly.

Figure 5. Distribution of target values for the maximum number of infected
nodes and the time when this happens. The first row shows the target values
for the number of infected nodes, while the second one shows the time when
this happens. The x axis represents the value of the target variable. On the
other hand, the values of the y axis represent the density at some value.

The second row shows the distribution of time needed to reach the
maximum number of infected nodes. As with the maximum number
of infected nodes, these distributions also show that the distribution is
closely related to how well the model performs. We see that the distri-
bution of target values on the Advogato network vastly differs from
the distributions on other networks and that this reflects the results
where transfer learning models have higher RMSE. Similarly, the dis-
tributions of datasets FB Public Figures, HEP-PH and Wikipedia vote
are similar and have transfer learning results that do not differ much
from the five-fold cross-validation results.

474 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

Interpretation of a Prediction 4.5

We can explain predictions using model explanation approaches such
as SHapley Additive exPlanations (SHAP) [31, 41]. SHAP is a game-
theoretic approach for explaining classification and regression
models. The algorithm perturbs subsets of input features to take into
account the interactions and redundancies between them. The expla-
nation model can then be visualized, showing how the feature values
of an instance impact a prediction.

An example of such an explanation is shown in Figure 6 using the
model SNoRe+features. We can see that the prediction is impacted
mostly by the eigenvector centrality, node 1696, number of second
neighbors and the degree centrality. We can also see that a very small
value of eigenvector centrality raises the prediction value and that the
low values of the number of second neighbors and the degree central-
ity lower it. This is expected because the low value of eigenvector cen-
trality usually shows that the node is not that “important” and is in a
neighborhood with many nodes. Similarly it is expected that the low
value of degree centrality and low number of second neighbors lower
the prediction because having fewer nodes gives a smaller chance of
infection. Lastly, the high similarity between neighborhoods of node
1696 and the instance we try to predict lowers the prediction.

Figure 6. An example of a model explanation for an instance using the
SNoRe+features model. Blue arrows indicate how much the prediction is low-
ered by some feature value, while the red ones indicate how much it is raised.
Prediction starts at model’s expected value 0.799 and finishes at 0.918. Fea-
tures and their values are shown on the left. The visualization shows, for
example, that the prediction rose from 0.788 to 0.918 because of the low
value of eigenvector centrality.

Transfer Learning for Node Regression Applied to Spreading Prediction 475

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457

Discussion and Conclusion5.

In this paper, we showcase that machine learning methods can be
used for fast estimation of epidemic spreading effect from a given
node. We show that by reformulating the task as node regression, we
can obtain realistic estimations much faster than by performing com-
putationally expensive simulations, even though such simulations are
initially used to fine-tune the machine learning models. Further,
employment of predictive modeling instead of relying on a single simu-
lation also shows promising results. We also demonstrate that trans-
fer learning can be used to predict spreading effects between networks
with similar characteristics without big performance loss.

We show that while graph neural networks outperform the ran-
dom baseline and can give us great results, centrality scores and
embedding feature representation methods coupled with XGBoost
mostly outperform them. We also see that machine learning models
might overall give a more accurate representation of an epidemic than
data gathered from a small number of simulations. This makes the
machine learning approach faster and more reliable, while also giving
an interpretation of why a node was predicted as it was. Further, this
paper demonstrates the complementarity between the accepted
simulation-based spreading modeling and fast machine learning–
based screening in data-scarce regimes.

A crucial part of our paper shows that transfer of knowledge
between networks is possible. This implies that our features capture
characteristics that are crucial and transferable between different net-
works. Since we derive features for models from centralities that are
explainable, machine learning models can be used to study which
characteristics of the networks play a crucial role in epidemic spread-
ing and how they affect it.

An obvious limitation of the proposed task is that the spreading is
probabilistic and even the best classifiers might make significant
errors. Similarly, when observing prediction results of the maximum
number of infected nodes we must be careful, since we predict an aver-
age outcome from some nodes and not the true maximum. This gives
us the ability to predict which nodes are the most “dangerous” as
patient zero. When trying to predict an outcome of an epidemic that
has already spread, one must adjust data accordingly and get rid of
simulations where epidemics have not spread.

In future work, we plan to research different centralities and
algorithms to better describe network structure and achieve more
accurate results. The proposed approach lowers the number of simu-
lations needed to create good approximations, but the approach
might still not be scalable to larger networks. In the future, we would
like to develop methods to further reduce the number of simulations
needed, making the solution more scalable. Another area of our

476 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

interest is the ability to solve such tasks by using unsupervised algo-
rithms. Finally, as the current work is focused on the node-level
aspects, we believe that similar ideas could be adopted to model
higher-order structures and their spreading potential, including con-
vex skeletons and communities.

Acknowledgments

S. Mežnar’s work was funded by the Slovenian Research Agency

through a young researcher grant (BŠ). The work of the other authors
was supported by the Slovenian Research Agency (ARRS) core
research programs P2-0103 and P6-0411, and research projects
J7-7303, L7-8269 and N2-0078 (financed under the ERC Comple-
mentary Scheme).

References

[1] A. Guille, H. Hacid, C. Favre and D. A. Zighed, “Information Diffusion
in Online Social Networks: A Survey,” ACM Special Interest Group
on Management of Data Record, 42(2), 2013 pp. 17–28.
doi:10.1145/2503792.2503797.

[2] C. Nowzari, V. M. Preciado and G. J. Pappas, “Analysis and Control
of Epidemics: A Survey of Spreading Processes on Complex Networks,”
IEEE Control Systems Magazine, 36(1), 2016 pp. 26–46.
doi:10.1109/MCS.2015.2495000.

[3] A. Kacem, C. Lallemand, N. Giraud, M. Mense, M. De Gennaro,
Y. Pizzo, J.-C. Loraud, P. Boulet and B. Porterie, “A Small-World Net-
work Model for the Simulation of Fire Spread Onboard Naval Vessels,”
Fire Safety Journal, 91, 2017 pp. 441–450.
doi:10.1016/j.firesaf.2017.04.009.

[4] S. Kesarev, O. Severiukhina and K. Bochenina, “Parallel Simulation of
Community-Wide Information Spreading in Online Social Networks,”
in Proceedings of the 4th Russian Supercomputing Days (RuSCDays
2018), Moscow (V. Voevodin and Sergey Sobolev, eds.), Cham, Switzer-
land: Springer, 2018 pp. 136–148. doi:10.1007/978-3-030-05807-4_12.

[5] S. Dong, F.-H. Fan and Y.-C. Huang, “Studies on the Population
Dynamics of a Rumor-Spreading Model in Online Social Networks,”
Physica A: Statistical Mechanics and Its Applications, 492, 2018
pp. 10–20. doi:10.1016/j.physa.2017.09.077.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, “A Compre-
hensive Survey on Graph Neural Networks,” IEEE Transactions on
Neural Networks and Learning Systems, 32(1), 2020 pp. 4–24.
doi:10.1109/TNNLS.2020.2978386.

Transfer Learning for Node Regression Applied to Spreading Prediction 477

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.1145/2503792.2503797
https://doi.org/10.1109/MCS.2015.2495000
https://doi.org/10.1016/j.firesaf.2017.04.009
https://doi.org/10.1007/978-3-030-05807-4_12
https://doi.org/10.1016/j.physa.2017.09.077
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.25088/ComplexSystems.30.4.457

[7] S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj, “Prediction of the Effects of Epi-

demic Spreading with Graph Neural Networks,” in Complex Networks
& Their Applications IX (R. M. Benito, C. Cherifi, H. Cherifi, E. Moro,
L. M. Rocha and M. Sales-Pardo, eds.), Cham, Switzerland: Springer
International Publishing, 2021 pp. 420–431.
doi:10.1007/978-3-030-65347-7_35.

[8] W. O. Kermack, A. G. McKendrick, “A Contribution to the Mathemat-
ical Theory of Epidemics,” Proceedings of the Royal Society of London
A, 115(772), 1927 pp. 700–721. doi:10.1098/rspa.1927.0118.

[9] D. Kempe, J. Kleinberg and É. Tardos, “Maximizing the Spread of Influ-
ence through a Social Network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’03), New York: Association for Computing Machinery,
2003 pp. 137–146. doi:10.1145/956750.956769.

[10] M. Granovetter, “Threshold Models of Collective Behavior,” American
Journal of Sociology, 83(6), 1978 pp. 1420–1443. doi:10.1086/226707.

[11] M. Li, X. Wang, K. Gao and S. Zhang, “A Survey on Information Diffu-
sion in Online Social Networks: Models and Methods,” Information,
8(4), 2017 118. doi:10.3390/info8040118.

[12] Z. Xiaojin and G. Zoubin, “Learning from Labeled and Unlabeled Data
with Label Propagation,” Technical Report CMU-CALD-02–107,
Carnegie Mellon University, Pittsburgh, 2002.

[13] T. N. Kipf and M. Welling, “Semi-supervised Classification with Graph
Convolutional Networks,” in Proceedings of the 5th International
Conference on Learning Representations (ICLR 2017), Toulon, France,
Conference Track Proceedings, 2017.
openreview.net/forum?id=SJU4ayYgl.

[14] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò and
Y. Bengio, “Graph Attention Networks,” in Proceedings of the 6th
International Conference on Learning Representations (ICLR 2018),
Vancouver, Canada, Conference Track Proceedings, 2018.
openreview.net/forum?id=rJXMpikCZ.

[15] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’16), San
Francisco, CA (B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal,
D. Shen and R. Rastogi, eds.), New York: Association for Computing
Machinery, 2016 pp. 855–864. doi:10.1145/2939672.2939754.

[16] B. Škrlj, N. Lavrac
ˇ

 and J. Kralj, “Symbolic Graph Embedding Using

Frequent Pattern Mining,” Discovery Science (DS 2019), Split, Croatia

(P. K. Novak, T. Šmuc and S. Džeroski, eds.), Cham, Switzerland:
Springer International Publishing, 2019 pp. 261–275.
doi:10.1007/978-3-030-33778-0_21.

478 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

https://doi.org/10.1007/978-3-030-65347-7_35
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1145/956750.956769
https://doi.org/10.1086/226707
https://doi.org/10.3390/info8040118
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1007/978-3-030-33778-0_21

[17] S. Mežnar, N. Lavrac
ˇ

 and B. Škrlj, “SNoRe: Scalable Unsupervised
Learning of Symbolic Node Representations,” IEEE Access, 8, 2020
pp. 212568–212588. doi:10.1109/ACCESS.2020.3039541.

[18] B. Perozzi, R. Al-Rfou and S. Skiena, “Deepwalk: Online Learning of
Social Representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD ’14), New York (S. A. Macskassy, C. Perlich, J. Leskovec,
W. Wang and R. Ghani, eds.), New York: Association for Computing
Machinery, 2014 pp. 701–710. doi:10.1145/2623330.2623732.

[19] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and
Q. He, “A Comprehensive Survey on Transfer Learning,” Proceedings
of the IEEE, 109(1), 2020 pp. 43–76.
doi:10.1109/JPROC.2020.3004555.

[20] C.-K. Lee, C. Lu, Y. Yu, Q. Sun, C.-Y. Hsieh, S. Zhang, Q. Liu and
L. Shi, “Transfer Learning with Graph Neural Networks for Optoelec-
tronic Properties of Conjugated Oligomers,” The Journal of Chemical
Physics, 154(2), 2021 024906. doi:10.1063/5.0037863.

[21] T. Mallick, P. Balaprakash, E. Rask and J. Macfarlane, “Transfer Learn-
ing with Graph Neural Networks for Short-Term Highway Traffic Fore-
casting,” arxiv.org/abs/2004.08038.

[22] W. Wang, V. W. Zheng, H. Yu and C. Miao, “A Survey of Zero-Shot
Learning: Settings, Methods, and Applications,” ACM Transactions on
Intelligent Systems and Technology , 10(2), 2019 pp. 1–37.
doi:10.1145/3293318.

[23] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang and
E. P. Xing, “Rethinking Knowledge Graph Propagation for Zero-Shot
Learning,” in Proceedings of the 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR 2019), Long Beach, CA,
Los Alamitos, CA: IEEE Computer Society, 2019 pp. 11479–11488.
doi:10.1109/CVPR.2019.01175.

[24] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang and
J. Tang, “Gcc: Graph Contrastive Coding for Graph Neural Network
Pre-training,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’20), 2020
pp. 1150–1160. doi:10.1145/3394486.3403168.

[25] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande and J. Leskovec,
“Strategies for Pre-training Graph Neural Networks,”
arxiv.org/abs/1905.12265.

[26] G. Rossetti, L. Milli, S. Rinzivillo, A. Sîrbu, D. Pedreschi and F. Gian-
notti, “NDLIB: A Python Library to Model and Analyze Diffusion Pro-
cesses over Complex Networks,” International Journal of Data Science
and Analytics, 5(1), 2018 pp. 61–79. doi:10.1007/s41060-017-0086-6.

Transfer Learning for Node Regression Applied to Spreading Prediction 479

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.1109/ACCESS.2020.3039541
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1063/5.0037863
https://arxiv.org/abs/2004.08038
https://doi.org/10.1145/3293318
https://doi.org/10.1109/CVPR.2019.01175
https://doi.org/10.1145/3394486.3403168
https://arxiv.org/abs/1905.12265
https://doi.org/10.1007/s41060-017-0086-6
https://doi.org/10.25088/ComplexSystems.30.4.457

[27] K. Xu, W. Hu, J. Leskovec and S. Jegelka, “How Powerful Are Graph
Neural Networks?,” in Proceedings of the 7th International Conference
on Learning Representations (ICLR 2019), New Orleans, LA, 2019.
openreview.net/forum?id=ryGs6iA5Km.

[28] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16), San Francisco, New
York: Association for Computing Machinery, 2016 pp. 785–794.
doi:10.1145/2939672.2939785.

[29] F. A. Rodrigues, “Network Centrality: An Introduction,” A Mathemati-
cal Modeling Approach from Nonlinear Dynamics to Complex Systems
(E. Macau, ed.), Cham, Switzerland: Springer, 2019 pp. 177–196.
doi:10.1007/978-3-319-78512-7_10.

[30] L. Page, S. Brin, R. Motwani and T. Winograd, “The PageRank Cita-
tion Ranking: Bringing Order to the Web,” Technical Report 422, Stan-
ford InfoLab. ilpubs.stanford.edu:8090/422.

[31] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting
Model Predictions,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems (NIPS ’17), Long Beach, CA
(U. von Luxburg, I. Guyon, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan and R. Garnett, eds.), Red Hook, NY: Curran
Associates, Inc., 2017 pp. 4768–4777.
dl.acm.org/doi/10.5555/3295222.3295230.

[32] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019. (Nov 3, 2021)
rlgm.github.io/papers/2.pdf.

[33] Hamsterster. “Hamsterster Social Network.” (Oct 4, 2021)
networkrepository.com/soc-hamsterster.php.

[34] P. Massa, M. Salvetti and D. Tomasoni, “Bowling Alone and Trust
Decline in Social Network Sites,” in Proceedings of the Eighth IEEE
International Conference on Dependable, Autonomic and Secure
Computing (DASC’09), Chengdu, China (B. Yang, W. Zhu, Y. Dai,
L. T. Yang and J. Ma, eds.), Los Alamitos, CA: IEEE Computer Society,
2009 pp. 658–663. doi:10.1109/DASC.2009.130.

[35] J. Leskovec, D. P. Huttenlocher and J. M. Kleinberg, “Signed Networks
in Social Media,” in Proceedings of the 28th International Conference
on Human Factors in Computing Systems (CHI 2010), Atlanta, GA
(E. D. Mynatt, D. Schoner, G. Fitzpatrick, S. E. Hudson, W. K. Edwards
and T. Rodden, eds.), New York: Association for Computing Machin-
ery, 2010 pp. 1361–1370. doi:10.1145/1753326.1753532.

480 S. Mežnar, N. Lavrac
ˇ
 and B. Škrlj

Complex Systems, 30 © 2021

https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-319-78512-7_10
http://ilpubs.stanford.edu:8090/422/
https://dl.acm.org/doi/10.5555/3295222.3295230
https://rlgm.github.io/papers/2.pdf
https://networkrepository.com/soc-hamsterster.php
https://doi.org/10.1109/DASC.2009.130
https://doi.org/10.1145/1753326.1753532

[36] B. Rozemberczki, R. Davies, R. Sarkar and C. Sutton, “GEMSEC:
Graph Embedding with Self Clustering, in Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM ’19), Vancouver, Canada (F. Spezzano,
W. Chen and X. Xiao, eds.), New York: Association for Computing
Machinery, 2019 pp. 65–72. doi:10.1145/3341161.3342890.

[37] J. Leskovec, J. Kleinberg and C. Faloutsos, “Graph Evolution: Densifica-
tion and Shrinking Diameters,” ACM Transactions on Knowledge Dis-
covery from Data, 1(1), 2007 p. 2–es. doi:10.1145/1217299.1217301.

[38] R. A. Rossi and N. K. Ahmed, “The Network Data Repository with
Interactive Graph Analytics and Visualization,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX
(B. Bonet and S. Koenig, eds.), AAAI Press, 2015 pp. 4292–4293.
www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/
9553/9856.

[39] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in Proceedings of the 3rd International Conference for Learning
Representations (ICLR 2015), San Diego, CA (Y. Bengio and Y. LeCun,
eds.), Conference Track Proceedings, 2015.

[40] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML ’10), Haifa, Israel (J. Fürnkranz and
T. Joachims, eds.), Madison, WI: Omnipress, 2010 pp. 807–814.
dl.acm.org/doi/10.5555/3104322.3104425.

[41] E. Štrumbelj and I. Kononenko, “Explaining Prediction Models and
Individual Predictions with Feature Contributions,” Knowledge and
Information Systems, 41(3), 2014 pp. 647–665.
doi:10.1007/s10115-013-0679-x.

Transfer Learning for Node Regression Applied to Spreading Prediction 481

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.1145/3341161.3342890
https://doi.org/10.1145/1217299.1217301
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/9553/9856
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/9553/9856
https://dl.acm.org/doi/10.5555/3104322.3104425
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.25088/ComplexSystems.30.4.457

