
Transfer  Learning for Node Regression 

Applied to Spreading Prediction

Sebastian Mežnar

Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia

Nada Lavrac
ˇ

Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
and
University of Nova Gorica, Glavni trg 8, Vipava,  Slovenia 

Blaž Škrlj
Jožef Stefan Institute
and
Jožef Stefan International Postgraduate  School
Jamova 39, Ljubljana, Slovenia

Understanding  how  information  propagates  in  real-life  complex  net-
works yields a better understanding of dynamic processes such as misin-
formation  or  epidemic  spreading.  The  recently  introduced  branch  of
machine  learning  methods  for  learning  node  representations  offers
many  novel  applications,  one  of  them  being  the  task  of  spreading pre-
diction  addressed  in  this  paper.  We  explore  the  utility  of  the  state-of-
the-art  node  representation  learners  when  used  to  assess  the  effects  of
spreading  from  a  given  node,  estimated  via  extensive  simulations.  Fur-
ther,  as many real-life networks are topologically similar,  we systemati-
cally  investigate  whether  the  learned  models  generalize  to  previously
unseen networks, showing that in some cases very good model transfer
can be obtained. This  paper is one of the first  to explore transferability
of the learned representations for the task of node regression; we show
there  exist  pairs  of  networks  with  similar  structure  between  which  the
trained  models  can  be  transferred  (zero-shot)  and  demonstrate  their
competitive  performance.  To  our  knowledge,  this  is  one  of  the  first
attempts to evaluate the utility of zero-shot transfer for the task of node
regression. 
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transfer learning  

Introduction1.

Spreading  of  information  or  disease  spreading  are  examples  of  com-
mon  phenomena  of  spreading.  Modeling  the  spreading  process  and
spreading  prediction  has  many  practical  and  potentially  life-saving
applications,  including  the  creation  of  better  strategies  for  stopping
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the  spreading  of  misinformation  on  social  media  or  stopping  an  epi-
demic.  Further,  companies  can  analyze  spreading  to  create  better
strategies  for  marketing  their  product  [1,  2].  Spreading  analysis  can
also  be  suitable  for  analysis  of,  for  example,  fire  spreading,  implying
large  practical  value  in  terms  of  insurance  cost  analysis  [3].  Analysis
of  spreading  is  commonly  studied  via  extensive  simulations  [4],
exploiting  ideas  from  statistical  mechanics  to  better  understand  both
the extent of spreading and its speed [5].  

While  offering  high  utility,  reliable  simulations  of  spreading  pro-
cesses  can  be  expensive  when  performed  on  larger  networks.  This
issue  can  be  addressed  by  employing  machine  learning–based  model-
ing  techniques  [6].  The  contributions  of  this  paper  are  multifold  and
can be summarized as follows. 

We  propose  an  efficient  network  node  regression  algorithm  named
CaBoost,  which  achieves  state-of-the-art  performance  for  the  task  of
spreading  prediction  against  strong  baselines  such  as  graph  neural  net-
works. 

1.

We  demonstrate  that  machine  learning–based  spreading  prediction  can
be  utilized  for  fast  screening  of  potentially  problematic  nodes,  indicat-
ing  that  this  branch  of  methods  is  complementary  to  the  widely
adopted simulation-based approaches. 

2.

We  investigate to what extent the models learned on a given network A
are  transferable  to  a  network  B,  and  what  type  of  structural  features
preserves this property the best. This  hypothesis assumes that structure-
only properties could be sufficient  for model transfer in some cases. We
demonstrate that transfer learning for node regression is possible, albeit
only across topologically similar networks. 

3.

This work extends the paper “Prediction  of the Effects of Epidemic
Spreading with Graph Neural Networks” [7] from the Complex Net-
works 2020 conference by testing more approaches, using more simu-
lation  data,  and  using  different  node  centralities.  Additionally,  this
work tests if centrality-based features can be used for zero-shot trans-
fer learning. 

The remainder of this paper is structured as follows. Section 2 pre-
sents the related work that led to the proposed approach. In Section 3
we  present  the  proposed  methodology,  where  we  reformulate  the
task,  present  centrality  data  used  to  create  features  for  our  learners
and  show  how  we  approached  transfer  learning.  In  Section  4  we
present the datasets, the experimental setting, interpretation of the pre-
dictions, and the results of the empirical evaluation and transfer learn-
ing. We  conclude the paper with the discussion in Section 5. 
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Related Work     2.

This section presents the relevant related work. It starts by discussing
the  notion  of  contagion  processes,  followed  by  an  overview  of  graph
neural networks and transfer learning. 

Analysis of Spreading Processes  2.1

The  study  of  spreading  processes  on  networks  is  a  lively  research
endeavor [2]. Broadly,  spreading processes can be split into two main
branches, namely,  the simulation of epidemics and opinion dynamics.
The  epidemic  spreading  models  can  be  classical  or  network  based.
The  classical  models  are,  for  example,  systems  of  differential  equa-
tions that do not account for a given network’s  topology.  Throughout
this  paper,  we  are  interested  in  extensions  of  such  models  to  real-life
network settings.  

One of the most popular spreading models extended to networks is
the  susceptible  infected  recovered  (SIR)  model  [8].  The  spread  of  the
pandemic in the SIR model is dictated by parameters β, known as the
infection rate, and γ, known as the recovery rate. Nodes in this model
can  have  one  of  three  states  (susceptible,  infected,  recovered).  SIR
assumes that if an infected node comes into contact with a susceptible
one  during  a  generic  iteration,  the  susceptible  node  becomes  infected
with probability β. In each iteration after getting infected, a node can
recover with probability γ  (only transitions from S to I and from I to
R are allowed). 

Other  related  models  include,  for  example,  SEIR,  SEIS,  SWIR.
(Where  S-Susceptible,  I-Infected,  R-Recovered,  E-Exposed  and  W-
Weakened.)  Further,  we can also study the role of cascades [9] or the
threshold  model  [10].  For  the  interested  reader,  multiple  other
approaches are summarized in [11]. 

Machine Learning on Networks    2.2

Learning by propagating information throughout a given network has
already  been  considered  by  approaches  such  as  label  propagation
[12].  However,  in  recent  years,  approaches  that  jointly  exploit  the
adjacency  structure  of  a  given  network  alongside  features  assigned  to
its nodes are becoming prevalent in the network learning community.
The  so-called  graph  neural  networks  have  resurfaced  with  the  intro-
duction  of  the  graph  convolutional  networks  (GCNs)  [13],  an  idea
where the normalized adjacency matrix is directly multiplied with the
feature  space  and  effectively  represents  a  neural  network  layer.
Multiple  such  layers  can  be  stacked  to  obtain  better  approximation
power/performance.  One  of  the  most  recent  methods  from  this
branch  is  the  graph  attention  networks  (GAT)  [14],  an  extension  of

Transfer  Learning for Node Regression Applied to Spreading Prediction 459

https://doi.org/10.25088/ComplexSystems.30.4.457

https://doi.org/10.25088/ComplexSystems.30.4.457


GCNs,  extended  with  the  idea  of  neural  attention.  Here,  part  of  the
neural  network  focuses  on  particular  parts  of  the  adjacency  space,
offering more robust and potentially better performance.  

Albeit being in widespread use, graph neural networks are not nec-
essarily  the  most  suitable  choice  when  learning  solely  from  the  net-
work  adjacency  structure.  For  such  tasks,  methods  such  as  node2vec
[15], SGE [16], SNoRe [17] and DeepWalk  [18] were developed. This
branch  of  methods  corresponds  to  what  we  refer  to  as  structural
representation learning. In our work, we focus mostly on learning this
type of representations using network centrality information. 

Note  that  although  graph  neural  networks  are  becoming  the  pre-
vailing  methodology  for  learning  from  feature-rich  complex  net-
works,  it  is  not  clear  whether  they  perform  competitively  with  the
more  established  structural  methods  if  the  feature  space  is  derived
solely from a given network’s structure. 

Transfer  Learning  2.3

The  main  bottleneck  of  spreading  effect  prediction  is  the  expensive
simulations. While the number of simulations can be reduced by using
machine  learning,  computation  of  a  large  fraction  of  them  might  still
be  infeasible  on  larger  networks.  One  of  the  solutions  for  this  prob-
lem is transfer  learning [19]. Transfer  learning can be performed in at
least  two  main  ways:  by  fine-tuning  a  pretrained  model  (few-shot
learning) or by using a model trained on a related problem (zero-shot
learning). In this paper,  we focus on zero-shot learning. 

In  recent  years,  new  approaches  were  proposed  for  transfer  learn-
ing on networks; those adopted mostly fine-tune pretrained graph neu-
ral  networks  to  solve  the  proposed  problem.  An  example  of  this  is
prediction  of  optoelectronic  properties  of  conjugated  oligomers  [20],
where  the  graph  neural  network  is  trained  on  short  oligomers  and
then  fine-tuned  by  using  100  long  ones.  The  results  showed  that  the
fine-tuned model performed much better and needed only a small sam-
ple  of  extra  data  to  improve  performance  by  a  margin  of  37%.
Another approach tries to predict traffic  congestion of a network with
a  small  amount  of  historical  data  by  training  a  recurrent  neural  net-
work  on  a  traffic  network  with  a  lot  of  historic  data  [21].  Zero-shot
learning is less popular in the network setting, but the few approaches
that exist closely follow the paradigms of zero-shot learning [22]. One
such  example  [23]  proposes  a  dense  graph  propagation  module  that
adds direct links between distant nodes in the knowledge networks to
exploit  their  hierarchical  structure.  Finally,  pre-training  graph  neural
networks  is  becoming  an  active  research  venue,  demonstrating  that
this  problem  is  possible  to  solve  via  systematic  selection  of  pre-
training data [24, 25].
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When  transferring  knowledge  between  different  networks,  one
must carefully craft features that are independent of a single network
and  represent  global  node  characteristics.  Because  of  this,  embedding
methods such as node2vec [15] and SNoRe [17] cannot be used, since
they learn node representation through node indices encountered dur-
ing random walks within the input network. On the other hand, trans-
fer learning with graph neural networks is an active field  of research,
with most approaches fine-tuning the pre-trained models. 

Proposed Methodology   3.

After  introducing  the  task  of  spreading  prediction,  a  brief  methodol-
ogy overview is presented. After  this we present the creation of target
variables,  extraction  of  node  features  from  the  network,  training  of
machine learning models, and the transfer of models between the net-
works.  

Task  Formulation   3.1

In  the  case  of  a  pandemic,  the  intensity  of  disease  spreading  can  be
summarized with the following three values: the maximum number of
infected  people  (the  peak),  the  time  it  takes  to  reach  the  maximum
number  of  infected  people  and  the  total  number  of  infected  people.
Let  us  consider  why  these  three  values  are  important.  Knowing  the
maximum  number  of  infected  people  during  a  pandemic  will  help  us
to  better  prepare  for  the  crisis,  as  it  provides  a  good  estimation  of
how  many  resources  (e.g.,  hospital  beds)  will  need  to  be  allocated  to
patients. In another example domain, companies might want to create
marketing campaigns on platforms such as Twitter  and target specific
users to reach a certain number of retweets that are needed to become
trending.  The  time  needed  to  reach  the  peak  is  important,  for  exam-
ple, to estimate the best time for developing a cure for the disease, or
for  example,  to  estimate  the  maximum  time  for  stopping  the  spread
of  misinformation  on  social  media.  Finally,  the  total  number  of
infected nodes during an epidemic is important for assessing the dam-
age, or in another example, for estimating how many computers were
infected by some malware.  

In  this  paper,  we  focus  on  predicting  the  maximum  number  of
infected  nodes  and  the  time  needed  to  reach  this  number.  We  create
target data by simulating epidemics from each node with the SIR diffu-
sion model [26] and identify the number of nodes, as well as the time
when  the  maximum  number  of  nodes  is  infected.  We  aggregate  the
generated  target  data  by  taking  the  mean  values  for  each  node
(expected time and infection numbers). Finally,  we normalize the data
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as  follows.  We  divide  the  maximum  number  of  infected  nodes  by  the
number of nodes in the observed network. This  normalization is suit-
able  since  the  maximum  number  of  infected  nodes  cannot  exceed  the
number of nodes in the network. This  normalization intuitively offers
insight  into  the  percentage  of  infected  nodes,  regardless  of  scale.  The
upper  bound  for  the  time  when  the  maximum  number  of  nodes  is
infected  does  not  exist.  Because  of  this,  we  divide  the  time  when  the
maximum  number  of  nodes  is  infected  with  the  maximum  from  the
observed data. In practice we might not have this maximum, so a suit-
able number must be chosen by,  for example, examining prior events.
Furthermore, in practice, we create the target data as described above
and  save  the  number  by  which  we  divide  (normalization  constant).
After  prediction,  we  multiply  the  prediction  with  this  number  to  find
the “real-world” equivalent. 

Methodology Overview  3.2

The  overview  of  the  proposed  methodology  is  presented  in  Figure  1.
The  methodology  is  composed  of  three  main  steps:  input  data  cre-
ation, model training and transfer learning.  

Figure 1. Overview of the proposed methodology.   
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In  the  first  step,  we  create  target  variables  and  node  features  from
the  starting  (initial)  network.  Target  variables  are  created  by  running
simulations  on  the  starting  network  followed  by  their  summarization
and  processing.  While  target  variable  creation  can  be  performed  in
the  same  way  on  each  network,  feature  creation  depends  on  the
learner.  Embeddings and feature extraction methods generate features
stored  in  tabular  format,  which  is  then  used  for  model  training.
Graph  neural  networks  are,  on  the  other  hand,  end-to-end  learners,
meaning they learn features and perform regression at the same time. 

In the second step, we train a regression model using the extracted
features and the target variables we created. We  use this model to pre-
dict the target variables for the unknown nodes. 

The  model  learned  in  the  second  step  is  used  in  the  last  step  to
predict  target  variables  of  nodes  from  a  new  (unknown/unobserved)
network.  For  such  predictions,  we  first  extract  features  from  the  new
network  and  then  use  them  on  the  pre-trained  model.  These  predic-
tions  transfer  knowledge  from  the  first  network  to  the  nodes  of  the
second one. 

Training  Data Creation   3.3

The  first  part  of  the  methodology  addresses  input  data  generation.
Intuitively,  the first  step simulates epidemic spreading from individual
nodes of a given network to assess the time required to reach the max-
imum  number  of  infected  nodes,  as  well  as  the  maximum  number
itself. In this paper,  we leverage the widely used SIR model [8, 26] to
simulate epidemics, formulated as follows:

dS

dt
 -

β · S · I

N

dI

dt


β · S · I

N
- γ · I

R

dt
 γ · I,

where S represents the number of susceptible, R the number of recov-
ered  and  I  the  number  of  infected  individuals.  Spreading  is  governed
by  input  parameters  γ  and  β.  The  SIR  model  is  selected  due  to  many
existing  and  optimized  implementations  that  are  adapted  from  sys-
tems  of  differential  equations  to  networks  [1].  We  use  NDlib  [26]  to
simulate epidemics based on the SIR diffusion model.  

Target  data  creation  results  in  two  real  values  for  each  node.  We
attempt to predict these two values. The rationale for the construction
of such predictive models is that they are potentially much faster than
simulating  multiple  spreading  processes  for  each  node  (prediction
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time is the bottleneck) and can give more insight into why some nodes
are more “dangerous.”  

The  predictive  task  can  be  formulated  as  follows.  Let  G  (V, E)
represent  the  considered  network.  We  are  interested  in  finding  the

mapping f :V  [0, 1] from the set of nodes V to the set of real values

that represent, for example, the maximum number of infected individ-
uals if the spreading process is started from a given node u ∈ V. Thus,

f  corresponds to the process of node regression. 

Learning on the Same Network: Prediction with
Simulation Data   

3.4

The  models  we  considered  can  broadly  be  split  into  two  main  cate-
gories:  graph  neural  networks  and  propositional  learners.  The  main
difference between the two is that the graph neural network learners,
such as GAT  [14] and GIN [27], simultaneously exploit the structure
of  a  network,  as  well  as  node  features,  while  the  propositional  learn-
ers take as input only the constructed feature space (and not the adja-
cency matrix). As  an example, the feature space is passed through the
GIN’s structure via the update rule that can be stated as:  

hv
k

 MLPk 1 + ϵk · hv
k-1

+ 

u∈V(v)

hu
k-1

,

where MLP corresponds to a multilayer perceptron, ϵ a hyperparame-

ter,  hu
k

 the node u’s  representations at layer k and V(v) the vth  node’s
neighbors.  We  test  both  graph  neural  networks  and  propositional
learners, as it is to our knowledge not clear whether direct incorpora-
tion  of  the  adjacency  matrix  offers  any  superior  performance,  as  the
graph  neural  network  models  are  computationally  more  expensive.
The summary of considered learners is presented in Table  1.  

Input Learner Method Description

A, F GAT graph attention networks

A, F GIN graph isomorphism networks

A node2vec + XGBoost node2vec-based features + XGBoost

A, F node2vec + features + XGBoost node2vec-based features + centrality-based 

features + XGBoost 

A SNoRe + XGBoost SNoRe-based features + XGBoost

A, F SNoRe + features + XGBoost SNoRe-based features + centrality-based 

features + XGBoost

F CaBoost XGBoost trained solely on centrality-based 

features

Table 1. Summary  of  the  considered  learners  with  descriptions,  where A

denotes the adjacency matrix and F the feature matrix. 
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As  the  considered  complex  networks  do  not  possess  node
attributes, we next discuss which features derived solely from the net-
work structure were used in the considered state-of-the-art implemen-
tations of GAT  [14] and GIN [27], or concatenated to an embedding
generated  using  node2vec  [15]  or  SNoRe  [17]  for  use  in  XGBoost.
Further, we also test models where only the constructed structural fea-
tures are considered, as well as a standalone method capable of learn-
ing  node  representations,  combined  with  the  XGBoost  [28]  classifier.
In  this  paper,  we  explore  whether  centrality-based  descriptions  of
nodes  are  suitable  for  the  considered  learning  task.  The  rationale  for
selecting such features is that they are potentially fast to compute and
entail  global  relation  of  a  given  node  with  regard  to  the  remaining
part  of  the  network.  The  centralities,  computed  for  each  node,  are
summarized  in  Table  2.  These  centralities  are  then  normalized  and
concatenated  to  create  features  used  with  some  learners.  In  Sec-
tion 4.3 we refer to the XGBoost model trained with these features as
CaBoost, which is one of the contributions of this paper.  

Centrality Time Complexity Description

degree
centrality 29

 E The number of edges of a given node.

eigenvector
centrality 29

 V
3
 Importance of the node,

where nodes are more important
if they are connected to other
important nodes.This can be
calculated using the eigenvectors
of the adjacency matrix.

PageRank 30  E Probability that a random
walker is at a given node.

average out-
degree

 V ·w · s The average out-
degree of nodes encountered during
w random walks of mean length s.

number of
second neighbors

 V · E Number of nodes that are neighbors
to neighbors of a given node.This
number is between 0 and V.

Table 2. Summary of the centralities considered in our work.  

During model training, we minimize the mean squared error (MSE)

between  the  prediction  f (u)  and  the  observed  state  yu,  which  is

defined for the uth node as follows: 

MSE 
1

N


u∈N

f (u) - yu
2.
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In  Section  4.3  we  use  the  root  mean  squared  errors  (RMSE),
defined as follows: 

RMSE  MSE ,

to present the results.  

Transfer  Learning from Other Networks  3.5

In Section 3.4 we use the centrality data to create the features used for
model  training.  Since  these  features  represent  (normalized)  global
characteristics  of  nodes  and  not  the  specific  relations  between  them
(as  for  example  in  node2vec  or  SNoRe),  they  have  the  advantage  of
being  transferable  between  different  networks.  This  gives  us  the  abil-
ity to train a model on one network and use it for prediction on a dif-
ferent network.  

In  this  paper,  we  use  the  approach  outlined  in  the  following  para-
graphs  to  train  and  test  a  regression  model  for  transfer  learning.  We
will  use  the  term  training  network  to  highlight  the  network  used  for
training  the  model,  and  test  network  as  the  network  composed  of
nodes used in prediction of spreading effects. 

First  we  create  simulations  with  nodes  from  the  training  network
as patient(s) zero, and create target variables as shown in Sections 3.1
and  3.3.  After  this,  we  create  centrality-based  features  and  use  them
to  train  the  CaBoost  model  from  Section  3.4.  To  predict  target  vari-
ables of the test network, we generate its centrality-based features and
use them with the previously trained model. 

In Section 4.4 we use the following methodology to benchmark the
performance  of  transfer  learning  models.  First  we  create  target  vari-
ables  and  centrality-based  features  of  all  networks.  Then  we  normal-
ize  the  features  and  use  all  instances  to  train  one  CaBoost  model  for
each  network.  Transfer  learning  scores  are  then  calculated  for  each
model  and  each  (different)  network  as  the  RMSE  between  the  pre-
dicted values and target variables. We  use five-fold  cross-validation as
the baseline score for each network. 

We  represent  the  performance  of  transfer  learning  as  a  heatmap.
The  columns  of  the  heatmap  represent  the  test  networks,  while  the
rows  represent  the  training  network  used  to  create  the  model.  The
values  on  the  diagonal  represent  the  RMSE  values  of  the  five-fold
cross-validation. The other values represent the transfer learning score
(score  on  the  test  network)  divided  by  the  baseline  score.  The  values
can  be  interpreted  as  the  decrease  in  performance  if  we  use  a  model
trained  on  another  network  relative  to  the  estimated  performance
on the  initial  network  obtained  in  the  process  of  five-fold  cross-
validation. 
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Empirical Evaluation   4.

In this section, we present the baselines and datasets used for evalua-
tion and show the empirical results of the approaches outlined in Sec-
tion  3.  We  also  present  how  predictions  from  the  SNoRe+features
model can be explained with SHAP [31].  

Baselines for Regression (Initial Network)    4.1

We  compared the results of the proposed method to the following five
baselines:  

◼ Random  baseline  creates  an  embedding  of  size  N 64  with  random

numbers  drawn  from  Unif0, 1.  We  use  this  embedding  as  the  input

data for the XGBoost model. 

◼ node2vec  [15]  learns  a  low-dimensional  representation  of  nodes  that
maximizes  the  likelihood  of  neighborhood  preservation  using  random
walks. During testing, we use the default parameters. 

◼ SNoRe  [17]  learns  an  interpretable  representation  of  nodes  based  on
the  similarity  between  their  neighborhoods.  These  neighborhoods  are
created  with  short  random  walks.  During  testing,  we  use  the  default
parameters. 

◼ GAT [14] includes the attention mechanism that helps learn the impor-
tance  of  neighboring  nodes.  In  our  tests,  we  use  the  implementation
from PyTorch  Geometric [32]. 

◼ GIN  [27]  learns  a  representation  that  can  provably  achieve  the  maxi-
mum  discriminative  power.  In  our  tests,  we  use  the  implementation
from PyTorch  Geometric [32]. 

For comparison we also add the averaged simulation error.  We  cal-

culate this error with the RMSE formula, where y  0 and f (u) is the

mean  absolute  difference  between  simulation  results  and  their  mean
value.  This  baseline  corresponds  to  the  situation,  where  only  a  single
simulation would be used to approximate the expected value of multi-
ple ones (the goal of this work). 

Experimental Setting    4.2

We  used  the  following  datasets  for  testing  (available  at  github.com/
smeznar/Epidemic-spreading-CN2020):  Hamsterster  [33],  Advogato
[34],  Wikipedia  Vote  [35],  FB  Public  Figures  [36]  and  HEP-PH  [37]
taken  from  the  Network  Repository  website  [38].  Some  basic  statis-
tics  of  the  networks  we  used  can  be  seen  in  Table  3.  Two  of  the
networks  used  during  testing  are  visualized  in  Figure  2.  The  network
nodes  in  this  figure  are  colored  based  on  the  values  of  the  target
variables.  
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Name Nodes Edges Components 
Percentage of Nodes in 

Largest Component

Wikipedia Vote  [35] 889 2914 1 1.00

Hamsterster [33] 2426 16630 148 0.82

Advogato [34] 6551 43427 1441 0.77

FB Public Figures [36] 11565 67114 1 1.00

HEP-PH [37] 12008 118521 278 0.93

Table 3. Basic statistics of the networks used for testing.  

(a) (b)

Figure 2. (a)  Visualization  of  Advogato  and  (b)  Hamsterster  networks.  The
color  represents  the  target  value  we  get  when  spreading  starts  from  a  given
node.  Color  on  the  Advogato  dataset  represents  the  maximum  number  of
infected  nodes,  while  on  the  Hamsterster  dataset  time  until  the  maximum
number  of  infected  nodes  is  reached  is  shown.  Blue  colors  represent  low  val-
ues,  while  red  ones  represent  high  ones.  Since  nodes  with  similar  centrality
values have similar characteristics, these nodes should be colored similarly.       

We  used  the  following  approach  to  test  the  proposed  method  as
well  as  the  baselines  mentioned  in  Section  4.1.  We  created  the  target
data  by  simulating  10  epidemics  starting  from  each  node  of  every
dataset.  We  created  each  simulation  using  the  SIR  diffusion  model
from  the  NDlib  [26]  Python  library  with  parameters  β  5%  and
γ  0.5%.  We  then  created  the  target  variables  by  identifying  and
aggregating  the  maximum  number  of  infected  nodes  and  the  time
when this happens. We  used these target variables to test the methods
using  five-fold  cross-validation.  We  used  XGBoost  [28]  with  default
parameters  as  the  regression  model  with  proposed  features  based
on  the  mentioned  centralities,  the  random  baseline,  SNoRe  [17],
SNoRe+centrality  features,  node2vec  [15]  and  node2vec+centrality
features  baselines.  Baselines  GIN  and  GAT  were  trained  for  200
epochs  using  the  Adam  optimizer  [39].  Since  GIN  and  GAT  are  pri-
marily  used  for  node  classification,  we  changed  the  output  layer  to  a
ReLU [40] layer,  so they perform regression. 
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Results of Models Trained  with Simulation Data4.3

The results of the evaluation described in Section 4.2 are presented in
Tables  4–7. Tables  4 and 5 show the results on all the nodes from the
network,  while  Tables  6  and  7  show  results  only  on  the  nodes  from
the  network’s  largest  component.  The  results  show  that  the  learners
significantly  outperform  the  random  baseline  and  the  averaged  simu-
lation  error,  especially  when  predicting  effects  on  networks  with
several  components.  Models  CaBoost,  node2vec+features  and
SNoRe+features  perform  significantly  better  than  others  and  all  use
centrality-based  features  to  train  the  XGBoost  model.  These  best
approaches  achieve  RMSE  scores  around  0.05,  which  corresponds  to
an error of around 5% of nodes on average.  

Dataset Learner Advogato Hamsterster HEP-PH 

CaBoost 0.0519 (± 0.0045) 0.0429 (± 0.0116) 0.0481 (± 0.0017) 

GAT 0.1748 (± 0.0072) 0.1534 (± 0.0024) 0.1761 (± 0.0019) 

GIN 0.0646 (± 0.0238) 0.0712 (± 0.0597) 0.1753 (± 0.0806) 

Random 0.3156 (± 0.0024) 0.2915 (± 0.0029) 0.2107 (± 0.0012) 

SNoRe 0.1743 (± 0.0057) 0.1591 (± 0.0053) 0.1611 (± 0.0048) 

SNoRe+features 0.0515 (± 0.0044) 0.0438 (± 0.0114) 0.0467 (± 0.0018) 

node2vec 0.0673 (± 0.0054) 0.0841 (± 0.0143) 0.0835 (± 0.0031) 

node2vec+features 0.0574 (± 0.0037) 0.0431 (± 0.0114) 0.0494 (± 0.0031) 

Simulation error 0.0644 0.0576 0.0796 

Dataset Learner FB Public Figures Wikipedia Vote  

CaBoost 0.0521 (± 0.0007) 0.0600 (± 0.0020) 

GAT 0.0594 (± 0.0010) 0.0608 (± 0.0013) 

GIN 0.0579 (± 0.0015) 0.2076 (± 0.2531) 

Random 0.0625 (± 0.0003) 0.0732 (± 0.0039) 

SNoRe 0.0600 (± 0.0003) 0.0667 (± 0.0032) 

SNoRe+features 0.0514 (± 0.0004) 0.0597 (± 0.0009) 

node2vec 0.0575 (± 0.0005) 0.0690 (± 0.0021) 

node2vec+features 0.0515 (± 0.0004) 0.0590 (± 0.0010) 

Simulation error 0.0982 0.1064 

Table 4. Cross-validation  results  for  maximum  number  of  infected  nodes  on
the whole network.  

The  results  for  the  prediction  of  the  maximum  number  of  infected
nodes  on  the  whole  network  are  shown  in  Table  4.  The  results  show
that  the  SNoRe+features  model  has  the  lowest  RMSE  on  most  net-
works, but that this is mostly because of the centrality-based features,
since  all  the  learners  that  use  them  give  similar  results.  We  also  see
that  graph  neural  networks  perform  poorly,  on  most  networks  only
beating  the  random  baseline.  This  might  be  because  we  use  features
extracted from the network and a small amount of training data. It is
also worth mentioning that the three best-performing models perform
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notably  better  than  the  averaged  simulation  error  and  that  the  node
embedding methods node2vec and SNoRe perform much worse when
used without the centrality-based features. 

Table  5  shows  the  performance  results  for  prediction  of  the  time
needed to reach the maximum number of infected nodes on the whole
network.  We  see  that  the  SNoRe+features  model  performs  the  best
overall.  This  is  probably  due  to  features  that  represent  both  the  simi-
larity  between  neighborhoods  of  nodes  and  their  global  character-
istics.  The  results  also  show  that  GIN  and  GAT  are  not  suitable  for
such  a  task,  since  they  often  perform  much  worse  than  some  other
learners  (especially  GAT)  and  in  some  cases  worse  than  the  simula-
tion error.  

Dataset Learner Advogato Hamsterster HEP-PH 

CaBoost 0.0571 (± 0.0032) 0.0540 (± 0.0037) 0.0459 (± 0.0012) 

GAT 0.1411 (± 0.0021) 0.1027 (± 0.0012) 0.0971 (± 0.0006) 

GIN 0.0782 (± 0.0274) 0.0766 (± 0.0162) 0.0717 (± 0.0142) 

Random 0.2073 (± 0.0013) 0.1209 (± 0.0014) 0.1095 (± 0.0003) 

SNoRe 0.1463 (± 0.0033) 0.1007 (± 0.0022) 0.0904 (± 0.0006)

SNoRe+features 0.0557 (± 0.0038) 0.0545 (± 0.0014) 0.0451 (± 0.0006) 

node2vec 0.0758 (± 0.0014) 0.0824 (± 0.0039) 0.0634 (± 0.0016) 

node2vec+features 0.0602 (± 0.0032) 0.0600 (± 0.0035) 0.0467 (± 0.0015) 

Simulation error 0.0840 0.0906 0.0839 

Dataset Learner FB Public Figures Wikipedia Vote  

CaBoost 0.0448 (± 0.0005) 0.0647 (± 0.0027) 

GAT 0.0642 (± 0.0008) 0.0760 (± 0.0021) 

GIN 0.0497 (± 0.0035) 0.0701 (± 0.0069) 

Random 0.0817 (± 0.0004) 0.0992 (± 0.0019) 

SNoRe 0.0646 (± 0.0011) 0.0753 (± 0.0073) 

SNoRe+features 0.0434 (± 0.0004) 0.0641 (± 0.0037) 

node2vec 0.0590 (± 0.0009) 0.0845 (± 0.0018)

node2vec+features 0.0440 (± 0.0004) 0.0638 (± 0.0016) 

Simulation error 0.0847 0.1178 

Table 5. Cross-validation results for time when maximum number of infected
nodes is reached on the whole network.  

Similarly  to  Table  4,  Table  6  shows  the  prediction  scores  for  the
maximum  number  of  infected  nodes  on  the  largest  component  of  the
network.  Results  for  networks  Wikipedia  vote  and  FB  Public  Figures
are the same, since they have only one component. Contrary to scores
on  the  whole  network,  scores  on  the  biggest  component  show  that
node2vec+features performs the best overall. We  also see that the ran-
dom  baseline  performs  much  better  on  the  single  component  than  on
the whole network. This  is because the maximum number of infected
nodes  is  usually  smaller  in  smaller  components,  which  makes  the
mean value of target data smaller and the variance higher.  Because of
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high variance of target data, the random baseline predicts scores with
higher error,  since the range of predictions is bigger.  

Dataset Learner Advogato Hamsterster HEP-PH 

CaBoost 0.0556 (± 0.0011) 0.0437 (± 0.0017) 0.0496 (± 0.0004) 

GAT 0.0668 (± 0.0088) 0.0455 (± 0.0014) 0.0536 (± 0.0014) 

GIN 0.0651 (± 0.0039) 0.0566 (± 0.0057) 0.1147 (± 0.0355) 

Random 0.0622 (± 0.0007) 0.0513 (± 0.0014) 0.0556 (± 0.0005) 

SNoRe 0.0588 (± 0.0005) 0.0520 (± 0.0014) 0.0551 (± 0.0003) 

SNoRe+features 0.0552 (± 0.0007) 0.0447 (± 0.0008) 0.0482 (± 0.0004) 

node2vec 0.0592 (± 0.0008) 0.0504 (± 0.0012) 0.0520 (± 0.0002) 

node2vec+features 0.0548 (± 0.0010) 0.0437 (± 0.0016) 0.0489 (± 0.0003) 

Simulation error 0.0975 0.0769 0.0883 

Dataset Learner FB Public Figures Wikipedia Vote  

CaBoost 0.0521 (± 0.0007) 0.0600 (± 0.0020) 

GAT 0.0594 (± 0.0010) 0.0608 (± 0.0013) 

GIN 0.0579 (± 0.0015) 0.2076 (± 0.2531) 

Random 0.0625 (± 0.0003) 0.0732 (± 0.0039) 

SNoRe 0.0600 (± 0.0003) 0.0667 (± 0.0032) 

SNoRe+features 0.0514 (± 0.0004) 0.0597 (± 0.0009) 

node2vec 0.0575 (± 0.0005) 0.0690 (± 0.0021) 

node2vec+features 0.0515 (± 0.0004) 0.0590 (± 0.0010) 

Simulation error 0.0982 0.1064 

Table 6. Cross-validation  results  for  maximum  number  of  infected  nodes  on
the biggest component of the network.  

Table  7  shows  the  prediction  score  of  time  needed  to  reach  the
maximum number of infected nodes on the biggest component of the
network.  As  with  the  other  results,  CaBoost,  node2vec+features  and
SNoRe+features  give  the  best  performance  on  all  datasets.  Compared
to  the  results  in  Table  5,  we  see  that  the  difference  between  the
random  baseline  and  other  learners  is  smaller  and  that  the  random
baseline  results  are  in  some  cases  only  around  50%  worse  than  the
best-performing  learner.  Interestingly,  the  random  baseline  gives  bet-
ter results overall than the averaged simulation error.  This is probably
because  spreading  is  “highly”  stochastic  and  simulations  can  end
before spreading begins. In such a case, the averaged simulation error
increases  significantly,  while  the  random  baseline  is  not  affected
much, since the model is trained with already processed target data. If
we chose a random value x ∈ [0, 1] as the prediction for the node, the
result would be much worse. 

We  can  see  that  predictions  with  the  proposed  learners  on  all
datasets  give  better  results  than  a  single  simulation.  This  shows  that
such models are useful because they can estimate the joint distribution
of  spreading  across  multiple  simulations,  which  is  better  than  a  ran-
dom simulation run.
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Dataset Learner Advogato Hamsterster HEP-PH 

CaBoost 0.0529 (± 0.0018) 0.0442 (± 0.0020) 0.0436 (± 0.0006) 

GAT 0.0790 (± 0.0063) 0.0883 (± 0.0031) 0.0643 (± 0.0008) 

GIN 0.0614 (± 0.0016) 0.0536 (± 0.0058) 0.0538 (± 0.0118) 

Random 0.0855 (± 0.0010) 0.0907 (± 0.0014) 0.0845 (± 0.0003) 

SNoRe 0.0702 (± 0.0011) 0.0680 (± 0.0026) 0.0651 (± 0.0005) 

SNoRe+features 0.0517 (± 0.0014) 0.0454 (± 0.0015) 0.0425 (± 0.0003) 

node2vec 0.0708 (± 0.0010) 0.0702 (± 0.0018) 0.0557 (± 0.0006) 

node2vec+features 0.0519 (± 0.0017) 0.0471 (± 0.0030) 0.0431 (± 0.0002) 

Simulation error 0.0941 0.0789 0.0816 

Dataset Learner FB Public Figures Wikipedia Vote  

CaBoost 0.0448 (± 0.0005) 0.0647 (± 0.0027) 

GAT 0.0642 (± 0.0008) 0.0760 (± 0.0021) 

GIN 0.0497 (± 0.0035) 0.0701 (± 0.0069) 

Random 0.0817 (± 0.0004) 0.0992 (± 0.0019) 

SNoRe 0.0646 (± 0.0011) 0.0753 (± 0.0073) 

SNoRe+features 0.0434 (± 0.0004) 0.0641 (± 0.0037) 

node2vec 0.0590 (± 0.0009) 0.0845 (± 0.0018) 

node2vec+features 0.0440 (± 0.0004) 0.0638 (± 0.0016) 

Simulation error 0.0847 0.1178 

Table 7. Cross-validation results for time when maximum number of infected
nodes is reached on the biggest component of the network.  

Results of Transfer  Learning4.4

In  this  section,  we  show  the  results  of  transfer  learning  between  the
presented  networks.  The  results  are  represented  in  the  form  of  a
heatmap  where  the  values  on  the  diagonal  represent  the  baseline
RMSE of five-fold  cross-validation and the nondiagonal values repre-
sent the RMSE of the dataset in the column with the model trained on
the dataset in the row.  The  error of nondiagonal cells is calculated on
all nodes and divided by the baseline score and thus shows how much
worse  the  RMSE  we  get  from  transfer  learning  is  when  compared
with the RMSE we get with the five-fold cross-validation.  

The  transfer  learning  results  for  the  prediction  of  the  maximum
number of infected nodes can be seen on the heatmap in Figure 3. We
can  see  that  most  errors  are  1–3  times  higher  than  the  baseline.  The
two major exceptions are the results of the Advogato  dataset with the
FB  Public  Figures  model  and  the  result  of  the  Wikipedia  Vote  net-
work  with  the  FB  Public  Figures  model.  The  5.4  times  higher  RMSE
on  the  FB  Public  Figure  dataset  is  probably  caused  by  the  big
difference between the number of components, since the large number
of  components  lowers  the  highest  number  of  infected  nodes.  It  is
interesting  to  see  that  the  FB  Public  Figures  model  works  better  than
the baseline for the Wikipedia  network. This is probably because both
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networks  have  similar  structure  but  Wikipedia  vote  has  fewer  nodes
and  thus  less  training  data.  These  results  show  that  transfer  learning
between  two  topologically  similar  networks  is  possible  without  addi-
tional data and can yield good results. 

On the heatmap in Figure 4, we see transfer learning results for pre-
diction of the time needed to reach the maximum number of infected
nodes.  We  can  see  that  overall  these  results  are  better  than  those  in
Figure  3  and  that  the  Advogato  dataset  performs  much  worse  with
other  models.  This  is  probably  because  Advogato  has  1441  compo-
nents  while  the  other  networks  have  significantly  fewer.  We  can  also
see  that  the  FB  Public  Figures  and  Wikipedia  vote  datasets  give  good
predictions (below two times worse) with all the models, especially in
the case where the error is the same as with the baseline. 

Figure 3. Heatmap  with transfer  learning  results  for  predictions  of maximum
number of infected nodes.  

Figure 4. Heatmap with transfer learning results for predictions of time when
maximum number of nodes were infected.  
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The results of transfer learning can be better explained with the dis-
tribution plot of target values shown in Figure 5. The  first  row shows
the  distribution  of  the  maximum  number  of  infected  nodes.  We  can
see that the distributions of FB Public Figures and Wikipedia  vote are
very  similar.  This  reflects  the  results,  where  the  Wikipedia  vote  net-
work performs better with the FB Public Figures model than with the
five-fold  cross-validation. We  also see that the Advogato  and FB Pub-
lic  Figures  networks  have  very  different  distributions.  This  matches
the results, since the transferred model performs very poorly.  

Figure 5. Distribution  of  target  values  for  the  maximum  number  of  infected
nodes and the time when this happens. The  first  row shows the target values
for the number of infected nodes, while the second one shows the time when
this  happens.  The  x  axis  represents  the  value  of  the  target  variable.  On  the
other hand, the values of the y axis represent the density at some value.  

The second row shows the distribution of time needed to reach the
maximum  number  of  infected  nodes.  As  with  the  maximum  number
of infected nodes, these distributions also show that the distribution is
closely related to how well the model performs. We  see that the distri-
bution  of  target  values  on  the  Advogato  network  vastly  differs  from
the  distributions  on  other  networks  and  that  this  reflects  the  results
where  transfer  learning  models  have  higher  RMSE.  Similarly,  the  dis-
tributions of datasets FB Public Figures, HEP-PH and Wikipedia  vote
are  similar  and  have  transfer  learning  results  that  do  not  differ  much
from the five-fold cross-validation results. 
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Interpretation  of a Prediction  4.5

We  can explain predictions using model explanation approaches such
as  SHapley  Additive  exPlanations  (SHAP)  [31,  41].  SHAP  is  a  game-
theoretic  approach  for  explaining  classification  and  regression
models.  The  algorithm  perturbs  subsets  of  input  features  to  take  into
account  the  interactions  and  redundancies  between  them.  The  expla-
nation  model  can  then  be  visualized,  showing  how  the  feature  values
of an instance impact a prediction.  

An example of such an explanation is shown in Figure 6 using the
model  SNoRe+features.  We  can  see  that  the  prediction  is  impacted
mostly  by  the  eigenvector  centrality,  node  1696,  number  of  second
neighbors and the degree centrality.  We  can also see that a very small
value of eigenvector centrality raises the prediction value and that the
low values of the number of second neighbors and the degree central-
ity lower it. This is expected because the low value of eigenvector cen-
trality usually shows that the node is not that “important”  and is in a
neighborhood  with  many  nodes.  Similarly  it  is  expected  that  the  low
value of degree centrality and low number of second neighbors lower
the  prediction  because  having  fewer  nodes  gives  a  smaller  chance  of
infection.  Lastly,  the  high  similarity  between  neighborhoods  of  node
1696 and the instance we try to predict lowers the prediction. 

Figure 6. An  example  of  a  model  explanation  for  an  instance  using  the
SNoRe+features model. Blue arrows indicate how much the prediction is low-
ered by some feature value, while the red ones indicate how much it is raised.
Prediction  starts  at  model’s  expected  value  0.799  and  finishes  at  0.918.  Fea-
tures  and  their  values  are  shown  on  the  left.  The  visualization  shows,  for
example,  that  the  prediction  rose  from  0.788  to  0.918  because  of  the  low
value of eigenvector centrality.   
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Discussion and Conclusion5.

In  this  paper,  we  showcase  that  machine  learning  methods  can  be
used  for  fast  estimation  of  epidemic  spreading  effect  from  a  given
node. We  show that by reformulating the task as node regression, we
can  obtain  realistic  estimations  much  faster  than  by  performing  com-
putationally  expensive  simulations,  even  though  such  simulations  are
initially  used  to  fine-tune  the  machine  learning  models.  Further,
employment of predictive modeling instead of relying on a single simu-
lation  also  shows  promising  results.  We  also  demonstrate  that  trans-
fer learning can be used to predict spreading effects between networks
with similar characteristics without big performance loss.  

We  show  that  while  graph  neural  networks  outperform  the  ran-
dom  baseline  and  can  give  us  great  results,  centrality  scores  and
embedding  feature  representation  methods  coupled  with  XGBoost
mostly  outperform  them.  We  also  see  that  machine  learning  models
might overall give a more accurate representation of an epidemic than
data  gathered  from  a  small  number  of  simulations.  This  makes  the
machine learning approach faster and more reliable, while also giving
an interpretation of why a node was predicted as it was. Further,  this
paper  demonstrates  the  complementarity  between  the  accepted
simulation-based  spreading  modeling  and  fast  machine  learning–
based screening in data-scarce regimes. 

A  crucial  part  of  our  paper  shows  that  transfer  of  knowledge
between  networks  is  possible.  This  implies  that  our  features  capture
characteristics  that  are  crucial  and  transferable  between  different  net-
works.  Since  we  derive  features  for  models  from  centralities  that  are
explainable,  machine  learning  models  can  be  used  to  study  which
characteristics of the networks play a crucial role in epidemic spread-
ing and how they affect it. 

An obvious limitation of the proposed task is that the spreading is
probabilistic  and  even  the  best  classifiers  might  make  significant
errors.  Similarly,  when  observing  prediction  results  of  the  maximum
number of infected nodes we must be careful, since we predict an aver-
age outcome from some nodes and not the true maximum. This  gives
us  the  ability  to  predict  which  nodes  are  the  most  “dangerous”  as
patient  zero.  When  trying  to  predict  an  outcome  of  an  epidemic  that
has  already  spread,  one  must  adjust  data  accordingly  and  get  rid  of
simulations where epidemics have not spread. 

In  future  work,  we  plan  to  research  different  centralities  and
algorithms  to  better  describe  network  structure  and  achieve  more
accurate  results.  The  proposed  approach  lowers  the  number  of  simu-
lations  needed  to  create  good  approximations,  but  the  approach
might still not be scalable to larger networks. In the future, we would
like  to  develop  methods  to  further  reduce  the  number  of  simulations
needed,  making  the  solution  more  scalable.  Another  area  of  our
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interest  is  the  ability  to  solve  such  tasks  by  using  unsupervised  algo-
rithms.  Finally,  as  the  current  work  is  focused  on  the  node-level
aspects,  we  believe  that  similar  ideas  could  be  adopted  to  model
higher-order  structures  and  their  spreading  potential,  including  con-
vex skeletons and communities. 
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