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Abstract 

First generation expert systems rely on the use of surface 
knowledge, such as associational or heuristic. Second genera- 
tion technology is characterized by two additional features: 
deep knowledge and machine learning. Three second genera- 
tion methods for knowledge acquisition are reviewed: learning 
rules from examples, model-based rule learning, and semi- 
automatic model acquisition. The man-machine process of 
acquinng and refining knowledge extends the role of expert 
systems to expert support systems, since both man and 
machine learn through repeated knowledge refinement cycles. 
Explanation of solutions and of the knowledge base itself is 
crucial for this man-machine learning process. An extended 
expert system shell schema is presented that includes a 
knowledge acquisition and a knowledge explanation module. 

1 Introduction 

First generation expert systems rely on surface, or shal- 
low, operational knowledge acquired through a process of 
direct articulation. On the other hand, the trend of the second 
generation expert systems is to include deep knowledge as 
well, thus capturing the underlying causal structure of the 
problem domain (Steels 1985), and to at least partially 
automatize the knowledge acquisition process by using 
machine learning techniques (Michie et al. 1984). We review 
three methods for knowledge acquisition in expert systems: 
learning rules from examples, model-based rule learning, and 
qualitative model acquisition. All the methods were used in 
the development of a medical expert system KARDIO for the 
ECG diagnosis of cardiac arrhythmias (Bratko, Mozetic & 
Lavrac 1988, 1989). The reviewed methods can be considered 
as second generation knowledge acquisition methods, and 
could be incorporated into a knowledge acquisition module of 
a second generation expert system shell. 

The process of acquiring knowledge typically requires 
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several 'refinement cycles' in which the machine's perfor- 
mance is compared with the human expert's performance. 
Also, the machine representation of knowledge is compared 
with the original expert's knowledge. In the refinement 
cycles, both man and machine will learn, provided that the 
machine's representation of knowledge is compact and 
comprehensible. This man-machine learning process that con- 
sists of acquiring and refining knowledge, extends the role of 
expert systems to expert support systems (Luconi, Malone & 
Scott Morton 1986). Explanation of the solutions and of the 
knowledge base itself is crucial for this man-machine learning 
process. Bohanec, Rajkovic & Lavrac (1988) introduce an 
extended schema of an expert system shell that includes a 
knowledge acquisition and a knowledge explanation module. 
The task of the knowledge acquisition module is to support 
user-friendly encoding of knowledge as required by one of the 
reviewed methods. The task of the knowledge explanation 
module is not just to display knowledge in an understandable 
form, but also to represent knowledge from different 
viewpoints and at different levels of detail. 

2 Second generation methods for 
knowledge acquisition 

Knowledge acquisition is typically a demanding mental 
process, where a knowledge engineer collaborates with 
domain experts. In this process the knowledge engineer's 
objective is to convert human know-how into 'say-how' 
through a process of articulation. Direct encoding of rules, 
semantic nets, frames, etc., encounters 'the bottleneck prob- 
lem of applied artificial intelligence' (Feigenbaum 1977) and 
is named the 'old style knowledge engineer's route map' by 
Michie (1986). In Figure 1, which shows the flow of 
knowledge in different knowledge acquisition paradigms, this 
'route map' corresponds to the knowledge flow through box 
A. Recently, there have been a number of interview tech- 
niques (Welbank 1983, Hart 1986) and software tools 
developed, e.g., AQUINAS (Boose & Bradshaw 1987), 
KADS (Breuker & Wielinga 1987), MORE (Kahn, Nowlan & 
McDermott 1985). For the most part, they use a conceptual 
model to interact with the user thus hiding the complexity and 
unfamiliarity of the model (rules, nets, ets.) upon which the 
knowledge base is actually constructed. 
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Figure 1. Knowledge flow in different methods for knowledge acquisition. 

2.1 Learning rules from examples 

Second generation knowledge acquisition methods are 
characterized by two features: use of deep knowledge, and 
application of machine learning techniques. The method of 
learning rules from examples is recognized by Michie (1986) 
as a 'new style knowledge engineer's route map' where rules 
are elicited from the expert to the machine memory via the 
language of examples rather than via the language of explicit 
articulation. Effective algorithms for inductive inference are 
required. There are a number of inductive learning programs, 
such as the programs of the TDIDT family (top-down induc- 
tion of decision trees, e.g., Quinlan 1986), or the AQ family 
(Michalski et al. 1986) that accept tutorial examples and 
induce knowledge in the form of decision trees or rules, 
respectively. In Figure 1 this process is represented by box B 
where the source of knowledge is either an expert, formulating 
a series of thoroughly chosen examples, or preferably an exist- 
ing database of examples interpreted and 'cleaned' with the 
help of an expert. Results of applying machine learning sys- 
tems, i.e., ASSISTANT (Bratko & Kononenko 1987) and 
AQ15 (Michalski et al. 1986), on several real-life medical 
domains show that the systems' predictive accuracy is at the 
level of the best domain experts (Table 1). 

Medical domain ASSISTANT AQ15  Medical specialists 
Lymphography 77% 82% 85% estimate 
Breast cancer 72% 68% 64% 5 
Primary tumor 46% 41% 42% 4 

Table 1. Diagnostic accuracy of the learning programs ASSIS- 
TANT and AQ15, averaged over 4 experiments, as compared to 
medical specialists. The last column denotes the number of special- 
ism tested. 

2.2 Model-based rule learning 

Second generation knowledge acquisition methods are 
also concerned with the elicitation of deep knowledge that 
captures the underlying causal structure of the problem 
domain. Such knowledge can be represented in the form of a 
model that states the 'first principles' or basic 'rules of the 
game' from which operational decisions can be derived. The 
prevailing type of knowledge in such a model is qualitative 
(de Kleer & Brown 1984; Forbus 1984; Kuipers 1986; Bratko, 
Mozetic & Lavrac 1989). This has several advantages over 
conventional numerical modeling: the qualitative view is often 
closer to reasoning about the physical or physiological 
processes being modeled; to execute the model we do not 
have to know the exact numerical values of the parameters in 
the model; a qualitative simulation may be computationally 
less complex than numerical simulation. A qualitative simula- 
tion can be used for the explanation of the mechanisms of a 
system which is being modeled more naturally than in numeri- 
cal modeling. 

In principle, a qualitative model can be used for prob- 
lem solving directly. It can answer prediction, diagnostic, and 
control type of questions. The prediction task is to find the 
observable results of applying some input to the system, given 
a functional state of the system. The diagnostic task is: given 
the inputs to the system and the observable manifestations, 
find the system's functional state (normal or faulty, which 
components are failed). The control task is to determine the 
input control to the system, assuming its state, in order to 
achieve a desired output. 

However, a model is primarily designed for simulation 
and prediction. Using it to solve diagnostic and control tasks 
might be computationally expensive. On the other hand, by 
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Figure 2. Deep and surface levels of cardiological knowledge, and transformations between representations. 

exhaustive qualitative simulation, the model can be used to 
automatically generate examples of any possible behavior. 
From such an exhaustive set of examples operational decision 
rules can be generated by inductive learning methods. So, 
what we call model-based rule learning consists of two steps: 
example generation using a qualitative model (box C in Figure 
1), and learning rules from the automatically generated exam- 
pies (box B in Figure 1). This knowledge acquisition para- 
digm has been used in KARDIO to generate compressed diag- 
nostic and prediction rules as shown in Figure 2. We have 
developed a deep qualitative model of the electrical activity of 
the heart, and have used it for the automatic synthesis 
(through simulation) of the surface knowledge about the ECG 
interpretation. This has the form of pairs (Arrhythmia, ECG 
description) relating one of the 2,419 possible combined 
arrhythmias to the corresponding ECG patterns (there are alto- 
gether 140,966 ECG patterns). The surface representation 
facilitates fast ECG diagnosis, but is rather complex in terms 
of memory space (over 5 MB, stored as text file). This 
motivated the compression of the surface knowledge by 
means of an inductive learning program of the AQ family into 
a compact and diagnostically efficient representation (Mozetic 
1986). In Figure 2 the representations are arranged as to 
emphasize the distinction between the deep and surface levels 
of knowledge. 

In KARDIO, we demonstrated how the qualitative 
modeling approach and the machine learning technology can 
be used to construct knowledge bases with complexity far 
beyond the capability of traditional dialogue-based techniques 
for knowledge acquisition. The KARDIO knowledge acquisi- 
tion paradigm, described in detail in (Bratko, Mozetic & Lav- 
rac 1989) may become a standard technique in the develop- 
ment of practical expert systems. It has already been used in 
the development of a satellite power supply fault diagnosis 
system by Pearce (1988). 

2.3 Qualitative model acquisition 

The model design process can be at least partially 
automated by means of machine learning. A Qualitative 
Model Acquisition System (QuMAS), described in (Mozetic 
1987a, b; Bratko, Mozetic & Lavrac 1989), supports the con- 
struction of a deep model, and the representation of a model at 
different levels of detail. In QuMAS, partial knowledge about 
the model and examples of its behavior are provided by the 
user, and the complete model is automatically constructed and 
incrementally refined until the desired behavior is achieved. 
This knowledge acquisition paradigm is represented by box D 
in Figure 1. 

In this approach, we restrict ourselves to functional 
qualitative models, where a model is defined by its structure (a 
set of components and their connections) and functions of the 
individual components. QuMAS consists of three subsystems: 
a learner that hypothesizes functions of components from 
examples of their behavior, an interpreter that can use the 
hypothesized model to derive its behavior, and a debugger 
that locates faulty functions of components and proposes how 
to correct them. It is assumed that partial knowledge about 
the model is given - its structure. Further, examples of the 
behavior of the model and its constituent components are pro- 
vided from which the learning part of the system hypothesizes 
functions of the components. The interpreter of the model is 
then able to derive its behavior. The user may test the model 
and compare it with the intended behavior. When a difference 
between the derived and the intended behavior of the model 
occurs, a debugger is invoked. The debugger locates faulty 
hypotheses defining functions of components, proposes exam- 
pies of behavior that guarantee the intended behavior of the 
model, and invokes the learner that incrementally refines the 
hypotheses. The cycle of deriving the behavior of the model, 
debugging the model, and incremental learning is repeated 
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Figure 3. An overview of the qualitative model acquisition system (a), and the top-down model construction method (b). 

until the intended behavior of the model is achieved, i.e., the 
user believes that the model is correct and complete with 
respect to the actual system being modeled. An overview of 
QuMAS is in Figure 3a. 

QuMAS embodies two types of learning. Initial data- 
driven learning generalizes examples of components' behavior 
into rules on the basis of similarities and differences and does 
not require any user interaction. The second type of learning 
is model-driven where the debugger actively constructs exam- 
pies of components' behavior which satisfy the intended 
model behavior, and then queries the user for confirmation. 
QuMAS therefore offers a tradeoff between the initial amount 
of knowledge provided by the user, and the time one is willing 
to spend on debugging the model. QuMAS is used interac- 
tively by the model designer, and takes advantage of the 
hierarchical model representation to speed up the automatic 
learning of the model (Figure 3b). The hierarchy also has a 
role in generating good and concise explanations on points 
selected by the user. A substantial submodel of the KARDIO 
heart model was reconstructed semi-automatically using 
QuMAS (Mozetic 1987a, b; Bratko, Mozetic & Lavrac 1989). 

3 The role of refinement cycles 
in knowledge acquisition 

Development of an expert system is essentially an 
iterative process that typically needs several refinement cycles. 
In each cycle an expert and a knowledge engineer refine the 
knowledge base by comparing the human performance with 
the machine performance, and the original human knowledge 
with the generated machine representation. The refinement 
cycles need to be repeated until the intended performance of 
the system is achieved. 

Expert system shells have to integrate a variety of 
tools that allow for acquisition, explanation and utilization of 
complex domain knowledge. The classical expert system 

schema (Figure 4a) cannot cover all the required functions of 
the system. In this schema, an expert system consists of a 
domain dependent knowledge base, and of a domain indepen- 
dent expert system shell which incorporates an inference 
engine and a user interface. In Figure 4b we propose a new 
schema of an expert system shell. Here the structure of the 
shell is extended to incorporate: the knowledge acquisition 
module which provides tools for acquiring and editing the 
knowledge base, the knowledge explanation module allowing 
for different representations of the knowledge base, and the 
knowledge utilization module which applies the knowledge 
base to find solutions to a problem. It also has to provide 
explanations of particular solutions, and enable the knowledge 
base validation. 

The new schema covers all functional requirements of 
expert systems as recognized by Gaines (1987), namely, 
apply, explain, acquire, display, edit, and validate the 
knowledge base. According to our view, an expert system 
shell is not aimed just to support problem solving, but should 
also actively support knowledge acquisition and refinement of 
the acquired knowledge. Therefore two new modules are 
introduced: the knowledge acquisition and the knowledge 
explanation module. 

The knowledge acquisition module is to support one or 
more methods for knowledge acquisition described in the pre- 
vious section. It has to incorporate a machine learning system 
and/or a system that supports direct or semi-automatic con- 
struction of qualitative models. The knowledge explanation 
module is aimed at generating different explanations - from 
displaying the knowledge base in a compact and comprehensi- 
ble form, to representing the knowledge from different 
viewpoints and at different levels of detail. This may be 
achieved by varying the syntax and the semantic of the 
representation and by varying the level of detail (Bohanec, 
Rajkovic & Lavrac 1988). By a 'different syntax' we mean 
the representation of the same knowledge in a different 
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Figure 4. A classical (a) and an extended schema (b) of an expert system shell. 

language, e.g., a graphical or tabular representation. By a 
'different semantic' we understand either the reorganization of 
knowledge (e.g., grouping rules, or expressing one set of rules 
with another), or the representation of additional information 
derived from the original knowledge base (e.g., different 
statistics, Bayesian probabilities, informativity of attributes, 
etc.). By a 'different level of detail' we mean knowledge 
representation by using attributes at a chosen level of the taxo- 
nomic hierarchy, or by eliminating too specific knowledge, 
e.g., presenting only the most important rules. Some of these 
features are provided in the machine learning systems ASSIS- 
TANT and AQ15, mentioned in the previous section. 

According to our expert system shell schema, we distin- 
guish between the acquisition, utilization and explanation 
refinement cycle (represented by dashed lines in Figure 4b). 
These refinement cycles have to be supported by appropriate 
development tools. 

Depending on the type of the system's knowledge base, 
the acquisition refinement cycle in Figure 4b consists of a 
feedback loop from any type of acquired knowledge back to 
the source of knowledge (see Figure 1). In the case when a 
knowledge base is induced from a set of tutorial examples this 
corresponds to Michie's 'first refinement cycle' of his 'new 

style knowledge engineer's route map' (Michie 1986). His 
'second refinement cycle' corresponds to what we call here 
the utilization refinement cycle in which the system's perfor- 
mance is compared with the human expert's performance. 

The knowledge explanation module is aimed to provide 
different representations of the knowledge base. This 
motivates the expert and the knowledge engineer to further 
check and elaborate the knowledge base as new ideas are trig- 
gered that may lead to finding inadequate or missing 
knowledge. In the process of knowledge acquisition we call 
this the explanation refinement cycle. In this cycle, the gen- 
erated machine representation of knowledge is compared with 
the original expert's knowledge. Differences between the two 
can result from either an error in the machine representation, 
or a slip in the original human codification of knowledge. In 
the former case, the error is a consequence of incorrectly 
encoded rules, errors in learning examples, or an error in the 
deep causal model, depending on the type of the system's 
knowledge base. In the latter case, the refinement cycles may 
expose blemishes in the existing, original expert formulations, 
and may thus help to improve them. 

In the man-machine dialogue through several refinement 
cycles both man and machine learn (Chambers & Michie 
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1969). This enables considering the process of knowledge eli- 
citation as a man-machine learning process consisting of the 
stepwise acquisition and refinement of knowledge. The level 
of human and machine knowledge grows. From this point of 
view, the role of an expert system :is not only in solving prob- 
lems and explaining the solutions, but also in building (new) 
human-type knowledge through refinement cycles. By acquir- 
ing this refined knowledge the: machine knowledge is 
improved and allows for better performance. This man- 
machine learning process that consists of acquiring and 
refining knowledge, extends the role of expert systems to 
expert support systems (Luconi, Malone & Scott Morton 
1986). In contrast to expert systems, where main goal is to 
simulate experts' performance in problem solving, expert sup- 
port systems stimulate human mental processes in the process 
of knowledge acquisition, and therefore supporting human 
learning as well. 

4 Conclusion 

The development of an expert system is typically an 
iterative process. It consists of refinement cycles that are 
repeated until the intended performance of the system is 
achieved. In the utilization refinement cycle, a machine's per- 
formance is compared with the human expert's performance. 
In the acquisition and in the explanation refinement cycle, the 
generated machine representation of knowledge is compared 
with the original expert's knowledge. The three refinement 
cycles are named according to the three modules proposed in 
the extended expert system shell schema. We emphasize the 
importance of the knowledge acquisition, and the knowledge 
explanation cycle. They allow seeing the development of an 
expert system as a process in which both man and machine 
learn, and in which (new) human-type knowledge is gen- 
erated. The reviewed methods for knowledge acquisition and 
refinement, all actually used in KARDIO to model a substan- 
tial real-life problem, emphasize the role of machine learning 
techniques in the development of second generation expert 
systems. 
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