
Vol.:(0123456789)

Machine Learning (2020) 109:1465–1507
https://doi.org/10.1007/s10994-020-05890-8

1 3

Propositionalization and embeddings: two sides of the same
coin

Nada Lavrač1,2 · Blaž Škrlj3 · Marko Robnik‑Šikonja4

Received: 15 February 2019 / Revised: 29 May 2020 / Accepted: 8 June 2020 / Published online: 28 June 2020
© The Author(s) 2020

Abstract
Data preprocessing is an important component of machine learning pipelines, which
requires ample time and resources. An integral part of preprocessing is data transforma-
tion into the format required by a given learning algorithm. This paper outlines some of
the modern data processing techniques used in relational learning that enable data fusion
from different input data types and formats into a single table data representation, focus-
ing on the propositionalization and embedding data transformation approaches. While both
approaches aim at transforming data into tabular data format, they use different terminol-
ogy and task definitions, are perceived to address different goals, and are used in different
contexts. This paper contributes a unifying framework that allows for improved understand-
ing of these two data transformation techniques by presenting their unified definitions, and
by explaining the similarities and differences between the two approaches as variants of a
unified complex data transformation task. In addition to the unifying framework, the nov-
elty of this paper is a unifying methodology combining propositionalization and embed-
dings, which benefits from the advantages of both in solving complex data transformation
and learning tasks. We present two efficient implementations of the unifying methodol-
ogy: an instance-based PropDRM approach, and a feature-based PropStar approach to data
transformation and learning, together with their empirical evaluation on several relational
problems. The results show that the new algorithms can outperform existing relational
learners and can solve much larger problems.

Keywords Inductive logic programming · Relational learning · Propositionalization ·
Embeddings · Knowledge graphs

Editors: Dimitar Kazakov and Filip Železny.

 * Blaž Škrlj
 blaz.skrlj@ijs.si

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9916-8756
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05890-8&domain=pdf

1466 Machine Learning (2020) 109:1465–1507

1 3

1 Introduction

Data preprocessing for machine learning is a great challenge for a data scientist faced with
large quantities of data in different forms and sizes. Most of the modern data processing
techniques enable data fusion from different data types and formats into a single table data
representation, which is expected by standard machine learning techniques including rule
learning, decision tree learning, support vector machines (SVMs), deep neural networks
(DNNs), etc. The key element of the success of modern data transformation methods is
that similarities of original instances and their relations are encoded as distances in the
target vector space.

Two of the most prominent data transformation approaches outlined in this paper are
propositionalization and embeddings. While propositionalization (Kramer et al. 2001;
Železný and Lavrač 2006) is a well known data transformation technique used in rela-
tional learning (RL) and inductive logic programming (ILP) (Muggleton 1992; Lavrač and
Džeroski 1994; De Raedt 2008), embeddings (Mikolov et al. 2013; Wu et al. 2018) have
only recently been recognized by RL and ILP researchers as a powerful technique for pre-
processing relational and complex structured data. In the relational learning context of this
paper, both approaches take as input a relational data set (e.g., a given relational database)
and transform it into a single data table format, which is then used as an input to a proposi-
tional learning algorithm of choice.

The first aim of this paper is to present a unifying survey of propositionalization and
embedding data transformation approaches. While both approaches aim at transforming
data into a tabular data format, the approaches use different terminology and task defini-
tions, claim to have different goals, and are used in very different contexts. This paper con-
tributes an improved understanding of these data transformation techniques by presenting
a unified terminology and definitions, by explaining the similarities and differences of the
two definitions as variants of a unified complex data transformation task, by exploring the
apparent differences between the two approaches, and by outlining some of their advan-
tages and disadvantages.

In addition to the unifying survey, the main novelty of this paper is a unifying methodol-
ogy that combines propositionalization and embeddings, which benefits from the advan-
tages of both in solving complex data transformation and learning tasks. The unifying
methodology resulted in two new pipelines, PropDRM and PropStar, which implement an
instance-based and a feature-based approach to data transformation and learning, respec-
tively. Both approaches are computationally efficient and can successfully solve much
larger tasks than the existing relational learning approaches. We made their code publicly
available.

The paper starts by motivating the need for transforming heterogeneous relational data
into a tabular format in Sect. 2. Section 3 introduces the data transformation approaches in
the context of information representation levels proposed by Gärdenfors (2000). Section 4
presents the related work, focusing on selected propositionalization and embeddings meth-
ods relevant to the relational learning context of this paper. Section 5 presents a unifying
framework for propositionalization and embeddings, allowing for the analysis of charac-
teristic properties of these data transformation approaches. Section 6 proposes a unifying
methodology that combines propositionalization and embeddings, which benefits from the
advantages of both, and presents two implementations of the proposed unifying framework:
an instance-based embedding approach PropDRM based on the existing Deep Relational
Machines (DRM) (Srinivasan et al. 2019; Lodhi 2013), followed by a novel feature-based

1467Machine Learning (2020) 109:1465–1507

1 3

embedding approach PropStar proposed in this paper, using the StarSpace entity embed-
ding approach (Wu et al. 2018). Experimental evaluation of the proposed implementations
is presented in Sect. 7. The paper concludes by a summary and some ideas for future work
in Sect. 8.

2 Motivation

Machine learning is the key enabler for computer systems to progressively improve their
performance when helping humans to solve difficult problem solving tasks. Nevertheless,
current machine learning approaches only come half-way in helping humans, as humans
still have to formulate the problem and prepare the data in the form that is best suited to the
powerful machine learning algorithms.

Most of the best performing machine learning algorithms, like Support Vector
Machines (SVMs) or deep neural networks, assume numeric data and outperform sym-
bolic approaches in terms of predictive performance, efficiency, and scalability. The domi-
nance of numeric algorithms started in 1980s with the advent of backpropagation and neu-
ral networks (Rumelhart et al. 1986), continued in late 1990s and early 2000s with SVMs
(Cortes and Vapnik 1995), and finally reached the current peak with deep neural networks
(Goodfellow et al. 2016). Deep neural networks are currently considered the most pow-
erful learners for solving many of previously unsolvable learning problems in computer
vision (face recognition rivals humans’ performance), game playing (a program has beaten
a human champion in the game of Go), and natural language processing (successful auto-
matic speech recognition and machine translation).

While the most powerful machine learning approaches are numeric, humans perceive
and describe real-world problems mostly in symbolic terms, using various data representa-
tion format, such as graphs, relations, texts or electronic health records, all involving dis-
crete representations. However, if we are to harness the power of successful numeric deep
learning approaches for discrete learning problems, discrete data should be transformed
into a form suitable for numeric learning algorithms. The viewpoint of addressing real-
world problems as numeric has a rationale even for discrete domains, as many symbolic
learners perform generalizations based on object similarity. For example, in graphs, nodes
can represent similar entities or have connections with similar other nodes; in text, words
can appear with similar contexts or play the same role in sentences; in medicine, patients
may have similar symptoms or similar disease histories. Such similarities are used by
numerous machine learning algorithms to generalize and learn, including classical bottom-
up learning approaches such as hierarchical clustering, as well as symbolic learners adapted
to top-down induction of clustering trees (Blockeel et al. 1998). If we want to exploit the
power of modern machine learning algorithms, like SVMs and deep neural networks, to
process the inherently discrete data, one has to transform discrete data into (numeric) vec-
tors in such a way that similarities between objects are preserved and encoded as distances
in the transformed (numeric) space.

Contemporary preprocessing approaches that prepare numeric vector data for machine
learning algorithms are called embeddings. Nevertheless, as demonstrated in this paper,
symbolic data transformations, as ancestors of the contemporary embedding approaches,
remain relevant: the role of propositionalization, a symbolic approach to relational
data transformation into feature vectors, is not only to enable contemporary machine

1468 Machine Learning (2020) 109:1465–1507

1 3

learning algorithms to induce better predictive models, but to allow descriptive data min-
ing approaches to discover interesting human-comprehensible patterns in symbolic data.

As this paper demonstrates, albeit propositionalization and embeddings represent dif-
ferent types of data transformations, these approaches actually represent the two sides of
the same coin. The main unifying element they have in common is that they transform the
data into a vector format and encode the relations between objects in the original space as
distances in the new vector space.

3 Data transformations and information representation levels

As this section will show, we consider data transformations as a particular subprocess of
data preprocessing. Data preprocessing aims to handle missing attribute values, control
out-of-range values and impossible attribute-value combinations, or handle noisy or unre-
liable data, to name just some of the types of data irregularities addressed in processing
real-life data. Data preprocessing may include data cleaning, instance selection, normaliza-
tion, feature engineering (feature extraction and/or feature construction), data transforma-
tion, feature selection, etc. The result of data preprocessing is the final training set, which is
used as input to a machine learning algorithm.

Data preprocessing can be manual, automated, or semi-automated. We focus on auto-
mated transformations of data, present in heterogeneous types and formats, into a uniform
tabular data representation. We refer to this specific automated data preprocessing task as
data transformation, and define it as follows.

Definition 1 (Data transformation) Data transformation is a step in the data preprocessing
task that automatically transforms the input data and the background knowledge into a uni-
form tabular representation, where each row represents a data instance, and each column
represents one of the dimensions in a multi-dimensional feature space.

In the above definition, we decided to distinguish between data and background knowl-
edge. This is an intentional decision, although it could be argued that in some settings,
we could refer to both as data. Let us provide an operational distinction between data and
background knowledge. Data is considered by the learner as the target data from which
the learner should learn a model (e.g., a classifier in the case of class labeled data) or a
set of descriptive patterns (e.g., a set of association rules in the case of unlabeled data).
Background knowledge is any additional knowledge used by the learner in model or pattern
construction from the target data. Simplest forms of background knowledge define hierar-
chies of features (attribute values), such as color green being more general than light green
or dark green. More complex background knowledge refers to any other declarative prior
domain knowledge, such as knowledge encoded in relational databases, knowledge graphs
or domain specific taxonomies and ontologies, such as the Gene Ontology, in its 2020-05-
02 release including 44,508 GO terms, 7,765,270 annotations, 1,464,358 gene products
and 4,593 species.

This data transformation setting is applicable in various data science scenarios involv-
ing relational data mining, inductive logic programming, text mining, graph and network
mining as well as tasks that require fusion of data of a variety of data types and formats
and their transformation into a joint data representation formalism.

1469Machine Learning (2020) 109:1465–1507

1 3

3.1 Information representation levels

As currently the most powerful machine learning (ML) algorithms take as input numeric
representations, users of ML algorithms tend to transform other forms of human knowl-
edge into the numeric representation space. Interestingly, even if this is countering a
standard RL and ILP viewpoint, this is true also for symbolic representations, which are
currently used to store most of the human knowledge.

The distinction between the symbolic and numeric representation space mentioned
above can be further clarified in terms of the levels of cognitive representations, intro-
duced by Gärdenfors (2000), i.e. the neural, spatial and symbolic representation levels.
In his theory, Gärdenfors assumes that when modeling cognitive systems in terms of
information processing, all three levels are connected: starting from the sensory inputs
at the lowest neural representation level, resulting in spatial representations at the mid-
dle conceptual spaces level, up to symbolic representations at the level of language.

Neural This representation level corresponds to the sub-conceptual connectionist level.
At this level, information is represented by activation patterns in densely con-
nected networks of primitive units. This enables concepts to be learned from
the observed data by modifying the connection weights between the units.

Spatial This representation level is modeled in terms of Gärdenfors’ conceptual spaces.
At this level, information is represented by points or regions in a conceptual
space built upon some dimensions that represent geometrical, topological or
ordinal properties of the observed objects. In spatial representations, the simi-
larity between concepts is represented in terms of the distances between the
points or regions in a multidimensional space, where concepts are learned by
modeling the similarity between the observed objects.

Symbolic At this representation level, information is represented by the language of sym-
bols (words), where the meaning is internal to the representation itself (i.e.
symbols have meaning only in terms of other symbols, while their semantics is
grounded in the spatial level), and concepts are learned by symbolic generali-
zation rules.

From the perspective of this paper, the above levels of cognitive representations
introduced by Gärdenfors (2000) provide a theoretical ground to separate the learning
approaches as well as the data transformation approaches into three categories based on
the levels of their output representation space: neural, spacial and symbolic. However,
given the scope of this paper, we do not consider neural transformations, and focus only
on two data transformation types:

• symbolic transformations, in this paper referred to as propositionalization, denoting
data transformations into a symbolic representation space, and

• numeric transformations, in this paper referred to as embeddings, denoting data
transformations into a spatial representation space.

These two data transformation approaches are briefly introduced below, and further
described in the related work (Sect. 4).

1470 Machine Learning (2020) 109:1465–1507

1 3

3.2 Transformations into symbolic representation space

The past decades of machine learning were characterized by symbolic learning, where
the result of a machine learning or data mining algorithm was a predictive model of a
set of patterns described in a symbolic representation language, resulting in symbolic
human-understandable patterns and models. Symbolic machine learning approaches
include rule learning (Michalski et al. 1986; Clark and Niblett 1989), decision tree
learning (Quinlan 1986) and learning logical representations by relational learning and
inductive logic programming (ILP) algorithms (Muggleton 1992; Lavrač and Džeroski
1994; De Raedt 2008).

To be able to apply a symbolic learner, the data is typically transformed into a single
tabular data format, where each row represents a single data instance, and each column
represents an attribute or a feature. Such transformation into symbolic vector space (i.e. a
symbolic data table format) is well known in the ILP and relational learning community,
where it is referred to as propositionalization. Propositionalization approaches are pre-
sented in Sect. 4.2.

3.3 Transformations into numeric representation space

In the last 20 years we have been witnessing increasing dominance of statistical machine
learning and pattern-recognition methods, including neural network learning (Rumelhart
and McClelland 1986), Support Vector Machines (SVMs) (Vapnik 1995; Schölkopf and
Smola 2001), random forests (Breiman 2001), and boosting (Freund and Schapire 1997).
These statistical approaches are quite different from the symbolic approaches mentioned in
Sect. 3.2, however there are many approaches that cross these boundaries, including e.g.,
the CART decision tree learning algorithm (Breiman et al. 1984), the Bump hunting rule
learning algorithm (Friedman and Fisher 1999), which are firmly based in statistics. More-
over, ensemble techniques such as boosting (Freund and Schapire 1997), bagging (Breiman
1996) or random forests (Breiman 2001) also combine the predictions of multiple logical
models on a sound statistical basis (Schapire et al. 1998; Mease and Wyner 2008; Bennett
et al. 2008). All these are also considered to belong to the family of statistical learning
approaches.

To be able to apply a statistical learner, the data is typically transformed into a single
tabular data format, where each row represents a single data instance, and each column is
a numeric attribute or a numeric feature, with some predefined range of numeric values.
Such transformation into numeric vector space (i.e. a numeric data table format) is well
known in the deep learning community, where it is referred to as embedding. Approaches
to embedding relational structures are presented in Sect. 4.3.

4 Related work

In this section we first outline various transformation methods in Sect. 4.1, followed by
a more detailed description of the data transformation methods relevant for the context
of relational learning, i.e. propositionalization and embeddings, in Sects. 4.2 and 4.3,
respectively.

1471Machine Learning (2020) 109:1465–1507

1 3

4.1 Outline of data transformation methods

While there are many algorithms for transforming data into a spatial representation, it is
interesting that recent approaches rely on deep neural networks, thereby harnessing the
neural representation level as the means to transform symbolic representations into the
spatial representation. Below we list the main types of approaches that perform transfor-
mations between representations.

Community detection and graph traversal methods. Many complex data sets can be
represented as graphs, where nodes represent data instances and edges represent
their relations. Graphs can be homogeneous (consisting of a single type of nodes and
relations) or heterogeneous (consisting of different types of nodes and relations). To
encode a graph in a tabular form by preserving the information about the relations,
various graph encoding techniques were developed, such as propositionalization via
random walk graph traversal, representing nodes via their neighborhoods and com-
munities (Plantié and Crampes 2013). These approaches are frequently used for data
fusion in mining heterogeneous information networks. Neural network approaches
(presented below) are also very competitive as means for encoding graphs.
Matrix factorization methods. When data is not explicitly presented in the form of rela-
tions but the relations between objects are implicit, given by a similarity matrix, the
objects can be encoded in a numeric form using matrix factorization. As an example
take Latent Semantic Analysis used in text mining, which factorizes a word similarity
matrix to represent words in a vector form. Another example is factorization of graph
adjacency matrices. These types of embeddings were largely superseded by deep neural
networks which, instead of observing similarity between different objects, construct a
prediction task and forecast similarity. For example, for text, given a word, the word-
2vec embedding method (Mikolov et al. 2013) predicts words in its neighborhood.
Propositionalization methods are used to get tabular data from multirelational databases
as well as from a mixture of tabular data and background knowledge in the form of logic
programs or networked data, including ontologies. These transformations were mostly
developed within the Inductive Logic Programming and Relational Learning commu-
nity, and are still actively researched and used. Propositionalisation methods do not per-
form dimensionality reduction and are most often used with data mining and symbolic
machine learning algorithms. We discuss these methods in Sect. 4.2.
Neural networks based methods. In neural networks the information is represented by
activation patterns in interconnected networks of primitive units. This enables that
concepts are gradually learned from the observed data by modifying the connection
weights between the hierarchically organized units. These weights can be extracted
from neural networks and used as a spatial representation that transforms relations
between entities into distances. Recently, this approach became a prevalent way to
build representation for many different types of entities, e.g., texts, graphs, electronic
health records, images, relations, recommendations, etc. In Sect. 4.3 we describe the
data types and approaches, which are capable of embedding relational structures and
are therefore most relevant for the context of this paper. These include knowledge
graph embeddings (presented in Sect. 4.3.1), entity embeddings capable of forming
(both supervised and unsupervised) representations based on the similarity of enti-
ties (presented in Sect. 4.3.2), and Deep Relational Machines methodology that links
symbolic representations to deep neural networks (presented in Sect. 4.3.3).

1472 Machine Learning (2020) 109:1465–1507

1 3

Other embedding methods. Other forms of embeddings were developed by different
communities that observed the need to better represent the (symbolic) data. For exam-
ple, Latent Dirichlet Allocation (LDA) (Blei et al. 2003) used in text analysis learns dis-
tributions of words for different topics. These distributions can be used as an effective
embedding for words, topics, and documents. Feature extraction methods form a rich
representation of instances by projecting them into a high dimensional space (Lewis
1992). Another example of (implicit) transformation into high dimensional space is
the kernel convolutional approach proposed by Haussler (1999), which introduces the
idea that kernels can be used for discrete structures by iteratively applying convolution
and kernels to smaller parts of the data structure. Convolutional kernels exist for sets,
graphs, trees, strings, logical interpretations, and relations (Cumby and Roth 2003).
This allows methods such as SVM or Gaussian Processes to work with relational data.
Most of these embeddings are recently superseded or merged with neural networks.

All the above approaches perform data transformations from different data formats to a
single table representation. However, their underlying principles are different: while fac-
torization and neural embeddings perform dimensionality reduction, resulting in lower-
dimensional feature vector representations capturing the semantics of the data, proposi-
tionalization results in a vector representation using relational features with a higher
generalization potential than the features used in the original data representation. Note that
there exist also other approaches to data transformation and fusion, including HINMINE
(Kralj et al. 2018), metapath2vec (Zhu et al. 2018) and OhmNet (Žitnik and Leskovec
2017), which are out of the main scope of this paper.

4.2 Propositionalization

In propositionalization, relational feature construction is the most common approach
to data transformation. LINUS (Lavrač et al. 1991) was one of the pioneering proposi-
tionalization approaches using automated relational feature construction. LINUS was
restricted to generation of features that do not allow recursion and existential local vari-
ables, which means that the target relation cannot be many-to-many and self-referencing.
The second limitation was more serious: the queries could not contain joins (conjunctions
of literals). The LINUS descendant SINUS (Lavrač and Flach 2001) incorporates more
advanced feature construction techniques inspired by 1BC (Flach and Lachiche 1999).
The LINUS approach had many followers, including relational subgroup discovery system
RSD (Železný and Lavrač 2006), which is outlined also in the list of propositionalization
approaches below. Alternatives to relational feature construction include the construction
of aggregation queries.

In this section we first clearly define the distinction between attributes and features, fol-
lowed by an outline of selected propositionalization approaches and of the specific Wordi-
fication approach used in the algorithms developed in this work.

4.2.1 Features

To be able to apply a symbolic propositional learner, the data should be represented in a
single table data format, where each row represents a single data instance, and each column
represents an attribute or a feature. For the sake of clarity, let us distinguish between attrib-
utes and features below.

1473Machine Learning (2020) 109:1465–1507

1 3

Attributes that describe the data instances can be either numeric variables (with values
like 7 or 1.5) or nominal/discrete variables (with values like red or female). In contrast to
attributes, a feature describes the presence or absence of some property of an instance.
As a result, features are always Boolean-valued (values true or false). For example, for
attribute gender with values female and male, two separate features can be constructed: f1 :
gender=female and f2 : gender=male, and only one of these features is assumed to be true
for an individual data instance. Note that features are different even from binary-valued
attributes: e.g., for a binary attribute ai with values true and false, there are two corre-
sponding features: f3 : ai = true and f4 : ai = false . Furthermore, features can test a value
of a single attribute, like aj > 3 , or they can represent complex logical and numerical rela-
tions, integrating properties of multiple attributes, like f5 : ak < 2 ⋅ (aj − ai).

Previous feature types are referred to as propositional features. On the other hand, rela-
tional features relate the values of different attributes to each other. In the simplest case,
for example, they test for the equality or inequality of the values of two attributes of the
same type, such as Length and Height. More complex relational features can use the back-
ground relations, e.g., f6 : adjacent(NodeX, NodeY). Even more advanced, relational fea-
tures can introduce new variables. For example, if relations are used to encode a graph, a
relational feature such as f7 : color(CurrentNode, blue) ∧ link(CurrentNode, NewNode) ∧
color(NewNode, red), can introduce a new variable NewNode to subsequently test whether
there exists a previously not visited node in the graph that is colored red.

Take a simple toy trains example learning problem illustrated in Appendix A, and two
complex relational features describing trains:

f8 : hasCar(T,C) ∧ carLength(C,short) ∧ carRoof(C,peaked)
f9 : hasCar(T,C1) ∧ carLength(C1,short) ∧ hasCar(T,C2) ∧ carRoof(C2,peaked)
Feature f8 is a single complex relational feature, while f9 contains two distinct relational

features. Formally, a feature is defined as a minimal set of literals such that it introduces at
most one local (i.e. existential) variable in the feature set composing the relational feature.

The main point of relational features is that they localize variable sharing: this can be
made explicit by naming the features:

f10 : hasShortCar(T) ← hasCar(T,C) ∧ clength(C,short)
f11 : hasPeakedroofCar(T) ← hasCar(T,C) ∧ carRoof(C,peaked)
The propositionalization approach to relational learning captures exactly this idea: gen-

erating complex features, such as f8 , f10 and f11 , which will allow multi-relational data
representation of properties of target instances (such as trains T) through representations of
properties of their components (such as cars C). Selected propositionalization approaches,
which use complex feature construction in the automated multi-relational data transforma-
tion process are outlined below.

4.2.2 Outline of selected propositionalization algorithms

Below we outline a selection of propositionalization approaches, while an interested reader
can find extensive overviews of different feature construction approaches in the work of
Kramer et al. (2001) and Krogel et al. (2003).

Relaggs (Krogel and Wrobel 2001) stands for relational aggregation. It is a proposi-
tionalization approach that takes the input relational database schema as a basis for a
declarative bias, using optimization techniques usually used in relational databases (e.g.,

1474 Machine Learning (2020) 109:1465–1507

1 3

indexes). The approach employs aggregation functions in order to summarize non-target
relations with respect to the individuals in the target table.
1BC (Flach and Lachiche 1999) strives to enable the propositional naive Bayes classi-
fier to handle relational data. It does so by a transformation in which a set of first-order
conditions is generated and then used as attributes in the naive Bayes classifier. The
transformation, however, is done in a dynamic manner, as opposed to standard proposi-
tionalization, which is performed as a static step of data preprocessing. This approach
is extended by 1BC2 (Lachiche and Flach 2003), which allows distributions over sets,
tuples, and multisets, thus enabling the naive Bayes classifier to consider also structured
individuals.
Tertius (Flach and Lachiche 2001) is a top-down rule discovery system, incorporating
first-order clausal logic. The main idea is that no particular prediction target is specified
beforehand, hence Tertius can be seen as an ILP system that learns rules in an unsuper-
vised manner. Its relevance for this survey lies in the fact that Tertius encompasses 1BC,
i.e. relational data is handled through 1BC transformation.
RSD (Železný and Lavrač 2006) is a relational subgroup discovery algorithm composed
of two main steps: the propositionalization step and the (optional) subgroup discovery
step. The output of the propositionalization step can be used also as input to other prop-
ositional learners. RSD effectively produces an exhaustive list of first-order features that
comply with the user-defined mode constraints, similar to those of Progol (Muggleton
1995) and Aleph (Srinivasan 2007). Furthermore, RSD features satisfy the connectivity
requirement, which imposes that no feature can be decomposed into a conjunction of
two or more features. Mode declarations define the algorithm’s syntactic bias, i.e. the
space of possible features.
HiFi (Kuželka and Železný 2008) is a propositionalization approach that constructs
first-order features with hierarchical structure. Due to this feature property, the algo-
rithm performs the transformation in polynomial time of the maximum feature length.
Furthermore, the resulting features are the shortest in their semantic equivalence class.
The algorithm is shown to perform several orders of magnitude faster than RSD for
higher feature lengths.
RelF (Kuželka and Železný 2011) is the most relevant of the algorithms in the Tree-
Liker software (Kuželka and Železný 2011). It constructs a set of tree-like relational
features by combining smaller conjunctive blocks. RelF preserves the monotonicity of
feature reducibility and redundancy (instead of the typical monotonicity of frequency),
which allows the algorithm to scale far better than other state-of-the-art propositionali-
zation algorithms.
Cardinalization (Ahmed et al. 2015) is specifically designed to enable more than just
categorical attributes in propositionalization. Specifically, it can handle a threshold on
numeric attribute values and a threshold on the number of objects satisfying the condi-
tion on the attribute simultaneously. Cardinalization can be seen as an implicit form of
discretization. While in discretization one sets a threshold on a numeric attribute and see
how many objects satisfy the threshold later, and the cardinality follows implicitly from
the attribute value threshold; on the other hand, in cardinalization, we set a threshold
on the cardinality, and let an attribute-value learner decide where the threshold value
on the numerical attribute should lie. Hence, Cardinalization allows for context-aware
discretization. Quantiles (Ahmed et al. 2015) is a variant of Cardinalization. Instead of
choosing an absolute number as cardinality threshold, Quantiles uses a relative number.
CARAF (Charnay et al. 2015) approaches the problem of large relational feature search
space by aggregating base features into complex compounds, which makes CARAF

1475Machine Learning (2020) 109:1465–1507

1 3

similar to Relaggs. Complex aggregates run the risk of overfitting. While Relaggs tack-
les this problem by restricting itself to relatively simple aggregates, the distinguishing
feature of CARAF is that instead it incorporates more complex aggregates into a ran-
dom forest, which ameliorates the overfitting effect.
Aleph (Srinivasan 2007) is the most popular ILP algorithm and is actually an ILP toolkit
with many modes of functionality: learning of theories, feature construction, incremen-
tal learning, etc. Aleph uses mode declarations to define the syntactic bias. Input rela-
tions are Prolog clauses, defined either extensionally or intensionally. Aleph’s feature
construction functionality also means it is a propositionalization approach.
Wordification (Perovšek et al. 2013, 2015) is a propositionalization method inspired by
text mining that can be viewed as a transformation of a relational database into a corpus
of text documents. The distinguishing property of Wordification is its efficiency when
used on large relational data sets and the potential for using text mining approaches
on the transformed propositional data. While most of the outlined propositionalization
algorithms construct complex relational features including variables in the arguments of
relational features, Wordification constructs simple, easily interpretable features that are
treated as ‘words’ in the transformed Bag-Of-Words representation. It constructs fea-
tures of the kind ai = vij (formulated as ai_vij). In addition to such simple features, it
constructs also conjuncts (of size 2) of such features, e.g., ai = vij ∧ ak = vkl , formulated
as ai_vij__ak_vkl . To avoid confusion in case the same attribute name appeared in sev-
eral tables, the actual form of features is t_ai_vij including the indicator of the name of
table t in which attribute ai appears. For a simple example of how such features are gen-
erated, the reader is referred to Appendix A.

4.2.3 Wordification

Given that in a previous experimental evaluation of propositionalization algorithms
(Perovšek et al. 2013, 2015) the Wordification algorithm was shown to be the most effec-
tive, we selected Wordification as the propositionalization algorithm of choice in the pro-
posed implementations combining propositionalization and embeddings in Sect. 6, where
the Wordification algorithm was adapted to handle large data sets.

In the Wordification implementation, described in detail in Sect. 6.2.1, the original fea-
ture representation TableName_AttributeName_AttributeValue was—for implementational
convenience—replaced by a tuple representation (t.name, c, v), where t.name refers to a
table name, c to a given colon (attribute) in the table t, and v to a given value v of attrib-
ute c. Such features will be referred to as features or as relational items in the algorithm
description, as appropriate.

Using this feature representation, Wordification of a multi-relational database can be
summarized as the following operation:

where m maps a given table t’s indices to target (initial) table indices (i) and T is the set of
all tables from which a foreign key path exists to the target table. The ⊎ operator represents
a disjoint union of multisets (sum), yielding a single multiset (duplicates are allowed).

Foreign keys are designated columns that link data between distinct tables. Value of a
foreign key in a given table is referred to as the instance id (the row is uniquely determined
by this value). Let C represent the set of all columns that are not foreign keys, ids or target

DBi =
⨄
t∈T

WORDIFY(t(m(i)))

1476 Machine Learning (2020) 109:1465–1507

1 3

classes. The WORDIFY method returns a multiset (a bag) of relational items (for the i-th
instance) constructed as follows:

where t[c] represents the values v of table t in column c, and t.name is the name of table t.
Thus, Wordification is naïve in the sense that it simply concatenates attribute values across
tables by maintaining the column and table name information in constructing features. The
original implementation, however, can become spatially intractable (see (Perovšek et al.
2013), proof of complexity) as its spatial complexity is O(row ⋅ tables ⋅ 2col) . Details of a
more efficient implementation of Wordification are available in Sect. 6.2.1.

4.3 Embedding relational structures

In this section, we discuss methodologies capable of embedding relational structures. We
start with an introduction to knowledge graph embeddings, an emerging group of meth-
ods that operate on large, real-world, annotated graphs, in Sect. 4.3.1. We proceed by the
presentation of entity embeddings, a more general methodology capable of supervised, as
well as unsupervised embeddings of many entities, including texts and knowledge graphs
in Sect. 4.3.2. Finally, in Sect. 4.3.3, we present Deep Relational Machines, an emerging
methodology that links symbolic representations to deep neural networks.

4.3.1 Knowledge graph embeddings

In knowledge graphs (KG), edges correspond to relations between entities (nodes) and
the graphs present Subject-Predicate-Object triplets. The KG handling algorithms attempt
to solve the problems like triplet completion, relation extraction, and entity resolution.
The KG embedding algorithms, briefly discussed below, outline some of the key ideas
which render these methods highly scalable and useful for large, semantics-rich graphs.
For detailed description and a recent, extensive overview of the field, we refer the reader
to Wang et al. (2017), from where we next summarize some of the key ideas underlying
knowledge graph embedding.

In the below description of KG embedding algorithms, the Subject-Predicate-Object
triplet notation is replaced by the (h, r, t) triplet notation, where h is referred to as the
head of a triplet, t as the tail, and r as the relation connecting the head and the tail.
A schematic representation of triplet embedding is shown in Fig. 1. The embedding

WORDIFY(t(m(i))) =
⨄

v∈t[m(i)][c∈C]

(t.name, c, v)

Fig. 1 Schematic representation of knowledge graph embedding. Head-Relation-Tail (h, r, t) triplets are
used as inputs. Triplets are embedded in a common d-dimensional vector space

1477Machine Learning (2020) 109:1465–1507

1 3

methods briefly outlined below optimize the total plausibility of the input set of triplets,
where plausibility of a single triplet is denoted with fr(h, t).

• The first group of KG embedding algorithms are termed translational distance mod-
els, as they exploit distance-based scoring functions. They measure the plausibility
of a fact as the distance between the two entities, usually after a translation carried
out by the relation. One of the representative methods for this type of embedding is
transE (Bordes et al. 2013), where the cost function being optimized can be stated
as:

 For vectors � , � , and � in the obtained embedding, score fr(h, t) is high if triplet (h, r, t)
is present in the data.

• The second group of KG embedding algorithms is not deterministic, as it takes into
account the uncertainty of observing a given triplet. A representative method for this
type of embeddings is KG2E (He et al. 2015), which models the triplets with multi-
variate Gaussians. It models individual entities, as well as relations as vectors, drawn
from multivariate Gaussians, assuming that � , � and � vectors are normally distrib-
uted, with mean vectors �h,�r,�t ∈ ℝ

d and covariance matrices Σh,Σr,Σt ∈ ℝ
d×d ,

respectively. KG2E uses Kullback-Liebler divergence to directly compare the distri-
butions as follows:

 where Nx denotes the probability density function of the normal distribution.
• Semantic matching models exploit similarity-based scoring functions. They measure

plausibility of facts by matching latent semantics of entities and relations embodied
in their vector space representations. One of the representative algorithms for learn-
ing by semantic matching is RESCAL (Nickel et al. 2011). RESCAL optimizes the
following expression:

where � and � are representations of entities, and Mr ∈ ℝ
d×d is a matrix associated with

relations.
• Matching using neural networks. Deep neural networks model triplets via training

of neural network architectures. One of the first approaches was Semantic Match-
ing Energy (SME) (Bordes et al. 2014). This method first projects entities and their
relations to their corresponding vector embeddings. The relation’s representation is
next combined with the relation’s head and tail entities to obtain g1(�, �) and g2(�, �)
entity-relation representations in the hidden layer. Finally, a dot product is used to
score the triplet relation matching

 The simplest version of SME defines the g1 and g2 as:

fr(h, t) = −||� + � − �||2.

fr(h, t) = KL(N(�t − �h),N(�r))

= ∫ Nx(�t − �h,Σt + Σh) ln
Nx(�t − �h,Σt + Σh)

Nx(�r,Σr)
dx,

fr(h, t) = �
T
⋅Mr ⋅ �,

fr(h, t) = g1(�, �)
T
⋅ g2(�, �).

1478 Machine Learning (2020) 109:1465–1507

1 3

 Here, W (1)

1
,W

(2)

1
,W

(1)

2
 and W (2)

2
 are ℝd×d dimensional weight matrices and b1 and b2 are

bias vectors.
Recent advances in embeddings of knowledge graphs show interesting research direc-
tions. For example, hyperbolic geometry could be used to better capture latent hierarchies,
commonly present in real-world graphs (Nickel and Kiela 2017). Further, KG embedding
methods are increasingly tested on large, multi-topic data collections, for example, the
Linked Data (LD) which standardize and fuse data from different resources. Knowledge
graph embeddings, such as RDF2vec (Ristoski and Paulheim 2016) attempt to exploit vast
amounts of information in LD and transform it into a learning-suitable format. As knowl-
edge graphs are not necessarily the only source of available information, algorithms exploit
also other information, e.g., textual information available for each triplet (Wang et al.
2014). Recent trends in knowledge graph embeddings also explore how symbolic, logical
structures could be used during embedding construction. Approaches such as KALE (Guo
et al. 2016) construct embeddings by taking into account logical rules (e.g., Horn clauses)
related to the knowledge graph, thus increasing the quality of embeddings. Similar work
was proposed by Rocktäschel et al. (2015), where pairs of embeddings were considered
during optimization. The same group also showed how relations can be modeled without
grounding the head and tail entities for simple implication-like clauses (Demeester et al.
2016). Wang et al. (2015) demonstrated that logical rules can aid in knowledge graph com-
pletion on large knowledge bases. They showed that inclusion of rules can reduce the solu-
tion space and significantly improve the inference accuracy of embedding models.

4.3.2 Entity embedding with the StarSpace approach

The guiding principle behind all embeddings, described in the previous section, is the per-
sistence of similarity, i.e. that entities which are similar in the knowledge graph must be
represented by vectors that are similar in the embedding space. A general approach imple-
menting this principle is to use any similarity function between entities to form a prediction
task for a neural network. Below we describe a successful example of this approach, called
StarSpace (Wu et al. 2018). As this approach assumes discrete features from a fixed dic-
tionary, it is particularly appealing to relational learning and inductive logic programming.

The idea of StarSpace is to form a prediction task where a neural network is trained to
predict the similarity between an entity and its related entity (e.g., its label or some other
entity). The resulting neural network can be used for several purposes: directly in classifi-
cation, to rank instances by their similarity, or weights of the trained network can be used
as pretrained embeddings.

In StarSpace, each entity has to be described by a set of discrete features from a fixed-
length dictionary and forms a so called Bag-Of-Features. This representation is general
enough to cover texts (documents or sentences can be described by bags-of-words or bags-
of-n-grams), users (described by bags of documents, movies, or items they like), relations
and links in graphs (described by semantic triples), etc. During training, entities of differ-
ent kinds are embedded in the same latent space, suitable for various down-stream learning
tasks, e.g., a user can be compared with the recommended items. Note that entities can be
embedded along with target classes, resulting in supervised embedding learning. This type

g1(�, �) = W
(1)

1
⋅ � +W

(2)

1
⋅ � + b1

g2(�, �) = W
(1)

2
⋅ � +W

(2)

2
⋅ � + b2.

1479Machine Learning (2020) 109:1465–1507

1 3

of representation learning is the key element of the proposed PropStar algorithm outlined
in Sect. 6.1.2 and presented in detail in Sect. 6.2.3.

The StarSpace approach trains a neural network model to predict which pairs of enti-
ties are similar and which are dissimilar. Two kinds of training instances are formed, posi-
tive (a, b) ∈ E+ , which are task dependent and contain correct relations between entities
(e.g., document a with its correct label b), and negative instances (a, b−

1
),… , (a, b−

k
) ∈ E−

a
 .

For each entity a (e.g., a document) appearing in the positive instances, negative instances
are formed using k-negative sampling from labels {b−

i
}k
i=1

 as in word2vec (Mikolov et al.
2013). In each batch, the neural network tries to minimize the loss function L, defined as
follows:

For each batch update in the training of neural network, k negative examples (a param-
eter) are formed by randomly sampling labels b−

i
 from within the set of entities that can

appear in b. For example, in the document classification task, document a has its correct
label b, while k negative instances have their labels b−

i
 sampled from the set of all pos-

sible labels. Similarity function sim represents the similarity between the vector represen-
tations of the two entities; typically a dot product similarity is used. Within one batch,
loss function Loss sums the losses of the positive instance (a, b) and the average of the
k negative instances (a, b−

i
), i ∈ 1… k . To asses the loss, margin ranking loss is used,

Loss = max(0,m − sim(a, b�)) , where m is the margin parameter, i.e. the similarity thresh-
old, and b′ is a label.

The trained network can be used for several purposes. To classify a new instance a, one
iterates over all possible labels b′ and chooses argmaxb�sim(a, b�) as the prediction. For
ranking, entities can be sorted by their predicted similarity score. The embedding vectors
can also be extracted and used for some other downstream task. Wu et al. (2018) recom-
mend that the similarity function sim(⋅, ⋅) is shaped in such a way that it will directly fit the
intended application, so that training will be more effective.

A few examples of tasks successfully tackled with the StarSpace feature transformation
approach are described below.

• In multiclass text classification the positive instances (a, b) are taken from the training
set of documents E+ , represented with bags-of-words and their labels b. For negative
instances, entities b−

i
 are sampled from the set of possible labels.

• In recommender systems users are described with a bag of items they liked (or bought).
The positive instances use a single user ID as a and one of the items that user liked as
b. Negative instances take b−

i
 from the set of possible items. Alternatively, to work for

new users, the a part of user representation is composed of all the items that user liked,
except one, which is used as b.

• For link prediction the concepts in a graph are represented as triples head-relation-tail
(h, r, t), e.g., gene-generates-protein. A positive instance a consists either of h and r,
while b consists of t; alternatively, a consists of h, and b consists of r and t. Negative
instances b−

i
 are sampled from the set of possible concepts. The trained network can

then predicted links, e.g., gene-generates-what.

L =
�

(a,b)∈E+

⎛
⎜⎜⎜⎜⎜⎝

Loss(sim(a, b)) +
1

k

k�
i = 1

(a, b−
i
) ∈ E−

a

Loss(sim(a, b−
i
))

⎞⎟⎟⎟⎟⎟⎠

1480 Machine Learning (2020) 109:1465–1507

1 3

• For sentence embedding in an unsupervised fashion, a collection of documents, con-
taining sentences, is turned into a training set. For positive instances, a and b are sen-
tences from the same document (or are close together in a document), while for nega-
tive instances, sentences b−

i
 are coming from different documents. This definition of a

task tries to capture the semantic similarity between sentences in a document.

In the PropStar algorithm proposed in this work, we use StarSpace similarly to the first case
mentioned above (multiclass text classification). Namely, Wordification returns a bag of
features (relational items) for each instance in the target table. The embeddings are learned
for each feature separately, and class labels are also embedded in the same space. During
classification, representations of relational items associated with a given instance (bag of
features) are averaged to obtain the representation of the instance—a similar idea as in
the document representation adopted in the highly efficient doc2vec branch of algorithms
aimed at document classification (Le and Mikolov 2014). The embedded instances, now
located in the same vector space as the embeddings of class labels, are directly used for
classification. The label, closest to the representation of a given target instance is selected
as the final prediction.

4.3.3 Deep relational machines

Deep neural networks are effective learners in numeric space, capable of constructing inter-
mediate knowledge constructs and thereby improve semantics of baseline input represen-
tation. Training deep neural networks on propositionalized relational data were explored
by Srinivasan et al. (2019), following the work of Lodhi (2013), where Deep Relational
Machines (DRMs) were first introduced. In Lodhi’s work, the DRMs used bodies of first
order Horn clauses as input to restricted Boltzmann machines, where conjuncts of bonds
and other molecular structure information compose individual complex features; when all
structural properties are present in a given instance, the target’s value is true, and false oth-
erwise. For example, consider the following propositional representation of five instances
(rows), where complex features are comprised of conjuncts of atoms fi , as illustrated in
Fig. 2.

Note that the propositionalized data set P is usually a sparse matrix, which can represent
additional challenge for neural networks. The DRMs proposed by Lodhi (2013) were used
for prediction of protein folding properties, as well as mutagenicity assessment of small
molecules. This approach used feature selection with information theoretic measures such
as information gain as the sparse matrix resulting from the propositionalization was not

Fig. 2 Example input data for
a deep relational machine that
operates on the instance level

1481Machine Learning (2020) 109:1465–1507

1 3

suitable as an input to the neural network. The initial studies regarding DRMs explored
how deep neural networks could be used as an extension of relational learning.

Recently, promising results were demonstrated in the domain of molecule classification
(Dash et al. 2018) using ILP learner Aleph in its propositionalization mode for feature con-
struction. After obtaining propositional representation of data, the obtained data table was
fed into a neural network that associated such representations with the output space (e.g.,
a molecule’s activity). Again, sparsity and size of the propositionalized representation is a
problem for deep neural networks. Again, stochastic feature selection of relational features
that are used as input to deep relational machines can improve the performance and inter-
pretability (Dash et al. 2019).

The work of Srinivasan et al. (2019) is relevant for the interpretability of deep relational
machines, proposing a logical approximation of well-known prediction explanation method
LIME (Ribeiro et al. 2016) and showing how it can be efficiently computed.

In summary, DRMs address the following issues at the intersection of deep learning and
relational learning:

• DRMs demonstrated that deep learning on propositionalized relational structures is a
sensible approach to relational learning.

• Their input is comprised of logical conjuncts, offering the opportunity to obtain human-
understandable explanations.

• DRMs were successfully employed for classification and regression.
• Emerging ideas in the area of representation learning have only recently been explored

in the ILP context (Dumančić et al. 2018), indicating there are many possible improve-
ments both in terms of execution speed, as well as more informative feature construc-
tion on the symbolic side of computation.

We further discuss DRMs in the context of efficiency of their implementation in
Sects. 6.1.1 and 6.2.2. Development of DRMs that are efficient with respect to both space
and time is an ongoing research effort. Building on the ideas of DRMs, we implemented
a variant of this approach, capable of learning directly from large, sparse matrices that
are returned from Wordification of a given relational database, rather than using feature
selection or the output of Aleph’s feature construction approach. Our novel, efficient DRM
implementation is presented in Sect. 6.2.2.

5 Unifying framework for propositionalization and embeddings

The connection we made between different information representation levels and differ-
ent transformation techniques shows that propositionalization and embeddings are two
sides of the same coin. If we view embeddings as transformations for texts, graphs, recom-
mendations, electronic health records, and other entities with defined similarity function,
we can conclude that all these transformation present a multifaceted approach to feature
construction.

To this end, the paper contributes a novel understanding of these data transformation
techniques. In Sect. 5.1, we first present a unified terminology and definitions, and explain
the apparent differences between the definitions of propositionalizationa and embed-
dings as variants of a complex data transformation task. In further sections we explore the
apparent differences between the two approaches. In Sects. 5.2, 5.3, and 5.4 we discuss

1482 Machine Learning (2020) 109:1465–1507

1 3

differences in data representation, learning, and use. Finally, in Sect. 5.5 we summarize
strengths and limitations of propositionalization and embeddings.

5.1 Unifying definitions

Below we present a unified view on the definitions of propositionalization and embedding
tasks, as instances of a general data transformation task defined in Sect. 1 via Definition 1.

Definition 2 (Propositionalization)

Given: Input data of a given data type and format, and heterogeneous background
knowledge of various data types and formats.

Find: A tabular representation of the data enriched with the background knowledge,
where each row represents a single data instance, and each column represents a
feature in a d-dimensional symbolic1 vector space Fd.

Definition 3 (Embedding)

Given: Input data of a given data type and format, and heterogeneous background
knowledge of various data types and formats.

Find: A tabular representation of the data enriched with the background knowledge,
where each row represents a single data instance, and each column represents
one of the dimensions in the d-dimensional numeric vector space ℝd.

5.2 Unifying propositionalization and embeddings in terms of data representation

Both data transformation techniques result in a vector space representation. The unifying
dimensions of propositionalization and embeddings in terms of data representation, which
are summarized in Table 1, are explained below.

In propositionalization, the transformation results in a binary matrix of sparse
binary vectors, where rows corresponds to training instances and columns correspond

Table 1 Unifying and
differentiating aspects of
propositionalization and
embeddings in terms of data
representation

Representation Propositionalization Embeddings

Vector space Symbolic Numeric
Features/variables Symbolic Numeric
Feature values Boolean (0 or 1) Numeric
Sparsity Sparse Dense
Space complexity Space consuming Mostly efficient
Interpretability Interpretable features Non-interpretable

1 In the case of binary valued features, each value in each column is ∈ {0, 1}.

1483Machine Learning (2020) 109:1465–1507

1 3

to symbolic features constructed by a particular propositionalization algorithm. These
features are human interpretable, as they are either simple logical features (such as
attribute values), conjunctions of such features, relations among simple features (such
as e.g., a test for the equality or inequality of values of two attributes of the same
type), or relations among entities (such as links among nodes in a graph). Given that
the number of constructed features is usually large, such transformation results in a
sparse binary matrix with few non-zero elements.

Embeddings output is usually a dense matrix of a user-defined dimensionality, com-
posed of vectors of numeric values, one for each object of interest. For neural network
based embeddings, vectors usually represent the activation of neural network nodes
of one or more levels of a deep neural network. Given a relatively low dimensional-
ity of these vectors (from 100 to 1000) this dense representation is efficient in terms
of space. However, the features/dimensions are non-interpretable, therefore a separate
explanation mechanisms and visualizations are required.

5.3 Unifying propositionalization and embeddings in terms of learning

For both data transformation techniques, the resulting vector space representation is
used as an input to a learning algorithm of the user’s choice. The unifying dimen-
sions of propositionalization and embeddings in terms of most frequently used learners
(summarized in Table 2) are explained below.

After propositionalization, any learner capable of processing symbolic features can
be used. Typical learners include rule learning, decision tree learning, random for-
ests for a supervised setting, or association rules and symbolic clustering algorithms
applied in a non-supervised learning setting. Learners usually use heuristic search to
find a global optimum in terms of heuristics to be optimized (exceptions being, e.g.,
association rule learners using exhaustive search with constraints). Typical algorithms
are decision tree learners, rule learners, linear regression and SVMs. Learners require
some parameter tuning to achieve optimal results, but parameters are relatively few.
Learning is typically performed on CPUs.

The embedded vectors are best suited for distance-based learners, such as neural
networks, and to a lesser degree for kernel methods or logistic regression. Deep neural
networks use greedy search to find locally optimal solutions, and are usually trained
on GPUs, but can be used for prediction on both CPUs or GPUs. As a weakness, deep
learning algorithms require substantial (hyper)parameter tuning.

Table 2 Unifying and
differentiating aspects of
propositionalization and
embeddings in terms of learning
context

Learning Propositionalization Embeddings

Meaning capturing Via symbols Via distances
Search strategy Heuristic search Greedy
Search goal Global optimum Local optimum
Typical algorithms Symbolic, linear

regression, SVM
Deep neural networks

Parameters Few Many
Hardware CPU CPU/GPU

1484 Machine Learning (2020) 109:1465–1507

1 3

5.4 Unifying propositionalization and embeddings in terms of use

The unifying dimensions of propositionalization and embeddings in terms of their use
(summarized in Table 3) are explained below.

Propositionalization (Kramer et al. 2001) is one of the established methodologies used
in relational learning (Džeroski and Lavrač 2001; De Raedt 2008) and ILP (Muggleton
1992; Lavrač and Džeroski 1994; De Raedt 2008) (see the propositionalization methods
outlined in Sect. 4.2). The propositionalization approach was applied also in the semantic
data mining where ontologies are used as a background knowledge in relational learning
(Podpečan et al. 2011; Lavrač et al. 2009; Vavpetič and Lavrač 2011).

The embedding technologies are mostly used in the context of deep learning for vari-
ous data formats, including tabular data, texts, images, and graphs (including knowledge
graphs). In addition to knowledge graph embedding approaches (see Sect. 4.3.1), we out-
line some other approaches to graph embeddings below.

The first studies of graph embeddings were influenced by embedding construction from
textual data. For example, the well known skip-gram model, initially used as part of word-
2vec (Mikolov et al. 2013) was successfully applied to learn node representations. Deep-
Walk (Perozzi et al. 2014) was one of the first learners that treats short random walks in
graphs as sentences (or short phrases) to learn latent node embeddings. DeepWalk was
revisited as node2vec (Grover and Leskovec 2016) to take into account different types
of random walks, parameterized by breadth, as well as depth-first search. LINE (Tang
et al. 2015b) performs similarly well for the tasks of classification and link prediction by
attempting to optimize both local, as well as global network structure.

As for fusing heterogeneous data types, a propositionalization approach was proposed
as a mechanism for heterogeneous data fusion (Grčar et al. 2013). As for data type fusion
using embedding-based methods, PTE (Tang et al. 2015a) exploits heterogeneous networks
of texts for supervised embedding construction. NetMF (Qiu et al. 2018) is a generaliza-
tion of Deepwalk, node2vec, LINE and PTE, re-formulating them as a matrix factorization
problem. Furthermore, struc2vec (Ribeiro et al. 2017) builds on two main ideas: repre-
sentations of two nodes must be close if the two nodes are structurally similar, and the
latent node representation should not depend on any node or edge attribute, including the
node labels. Examples of approaches to heterogeneous graph embeddings include HIN-
MINE (Kralj et al. 2018), metapath2vec (Zhu et al. 2018) and OhmNet (Žitnik and Lesko-
vec 2017), an extension of node2vec to a heterogeneous biological setting. Heterogeneous
data embeddings (Chang et al. 2015) of images, videos and text were also formulated as a
task of heterogeneous graph embedding.

Concerning the interpretability of results, propositionalization approaches are mostly
used with symbolic learners whose results can be interpretable, given the interpretability
of features used in the transformed data description. For embedding-based methods, given
the non-interpretable numeric features/dimensions, specific mechanisms need to be imple-
mented to ensure results explanation (Robnik-Šikonja and Kononenko 2008; Štrumbelj and

Table 3 Unifying and
differentiating aspects of
propositionalization and
embeddings in terms of use

Use Propositionalization Embeddings

Problems/context Relational Tabular, texts, graphs
Data type fusion Enabled Enabled
Explanation Directly interpretable Special approaches

1485Machine Learning (2020) 109:1465–1507

1 3

Kononenko 2014). A recent well-known approach, which can be used in a post-process-
ing phase of an arbitrary prediction model, is named SHAP (Lundberg and Lee 2017).
In this approach, Shapley values offer insights into instance-level predictions by assign-
ing fair credit to individual features for participation in prediction-explaining interactions.
Explanation methods such as SHAP are commonly used to understand and debug black-
box models. We refer the reader to Lundberg and Lee (2017) for a detailed overview of the
method.

5.5 Summary of strengths and limitations of propositionalization and embeddings

Let us summarize the unified presentation of propositionalization and embeddings by pre-
senting the strengths and weaknesses of the two approaches. The main strength of propo-
sitionalization is the interpretability of the constructed features, while the main strength
of embeddings is high performance of classifiers learned from embeddings due to their
compact representation in a vector space.

In terms of their strengths, both approaches to data transformation are: (a) automated,
(b) fast, (c) semantic similarity of instances is preserved in the transformed instance space
(as a remark, due to a more compact representation, embeddings preserve semantic simi-
larity of features even better than propositionalization), (d) transformed data can be used as
input to standard propositional learners, as well as to contemporary approaches.

In addition to these characteristics, embeddings have other favorable properties: (a)
embedded vectors representations allow for transfer learning, e.g., for cross-lingual appli-
cations in text mining or image classification from different types of images, (b) cover a
very wide range of data types (text, relations, graphs, images, time series), and (c) have a
very wide community of developers and users, including industry.

In terms of their limitations when used in a multi-relational setting, both approaches to
data transformation: (a) are limited to 1-many relationships (cannot handle many-to-many
relationships between the connected data tables), (b) cannot handle recursion, and (c) can-
not be used for predicate invention.

In addition to these characteristics, limitations of propositionalization include: (a) only
boolean values are used in the transformed vector space, (b) generated sparse vectors can
be memory inefficient, (c) limited range of data types are handled (relations, graphs), and
(d) a small community of developers and users (mainly from ILP).

Embeddings also have several limitations: (a) loss of explainability of features and con-
sequently of the models trained on the embedded representations, (b) many user-defined
hyper-parameters, (c) high memory consumption due to many weights in neural networks,
and (d) requirement for specialized hardware (GPU) for efficient training of embeddings,
which may be out of reach for many researchers.

6 Proposed unification methodology and its two implementations

The unifying aspects analyzed in Sect. 5 can be used as a basis for a unifying methodology
that combines propositionalization and embeddings, and benefits from the advantages of
both. The propositionalization successfully captures relational information through com-
plex relational feature construction, but results in a sparse symbolic feature vector represen-
tation. This weakness can be successfully overcome by embedding the constructed feature

1486 Machine Learning (2020) 109:1465–1507

1 3

vectors into a lower dimensional numeric vector space, resulting in a condensed numeric
feature vector representation appropriate for use by modern deep learning algorithms.

To this end, we describe two novel data transformation algorithms, combining proposi-
tionalization and embedding based transformations into a joint data transformation frame-
work. We first briefly outline the two approaches in Sect. 6.1, followed by their detailed
descriptions in Sect. 6.2.

6.1 Outline of proposed data transformation and learning methods

We first overview the proposed unifying data transformation approaches. The first, named
PropDRM, is an instance-based data transformation approach. The second one is a feature-
based data transformation pipeline, called PropStar. The approaches are outlined in the
next two subsections.

6.1.1 PropDRM: an instance‑based approach

The first unifying approach for embedding of multi-relational databases is based on Deep
Relational Machines (Dash et al. 2018) (DRMs), presented in Sect. 4.3.3. Rather than using
the output of Aleph’s feature construction approach, as was the case in the DRM implemen-
tation of Dash et al. (2018), we implemented a variant of this approach, capable of learning
directly from large, sparse matrices that are returned by the Wordification (Perovšek et al.
2015) approach to propositionalization of relational databases. In this work, following the
paradigm of propositionalization by Wordification, each instance is described by a bag (a
multiset that allows for multiple appearances of its elements) of features of the form Table-
Name_AttributeName_Value. Wordification treats these simple easily interpretable features
as ‘words’ in the transformed Bag-Of-Words representation. In this work, they represent
individual ‘relational items’ and we use the notation (table.name, column.name, value).

Relational representations are thus obtained for individual instances, resulting in embed-
dings of instances (e.g., molecules, persons, companies etc). Batches of instances are then

Fig. 3 Overview of the PropDRM instance-based embedding methodology, based on DRMs. Note that fea-
tures in the propositionalized relational database represent either single features fi or conjuncts of features,
e.g., fi ∧ fj , given that Wordifications constructs both feature forms. For simplicity, the propositionalized
database shows only two instances

1487Machine Learning (2020) 109:1465–1507

1 3

fed to a neural network, which performs the desired down-stream task, such as classifica-
tion or regression. Schematically, the approach is illustrated in Fig. 3.2

Note that although propositionalization and subsequent learning are conceptually two
distinct steps, they are not necessarily separated when implemented in practice: as neural
networks operate with small batches of input data, if propositionalization is capable of sim-
ilar batch functionality, relational features can be generated in a lazy manner when needed
by the neural network. The technical details of the proposed PropDRM implementation are
presented in Sect. 6.2.2.

When compared to our PropStar algorithm presented in Sects. 6.1.2 and 6.2.3 below,
the key difference of the outlined DRM-based implementation of the unifying methodol-
ogy is the type of embeddings: PropDRM embeds instances (i.e. whole bags of constructed
features), whereas PropStar embeds features along with the class values in the same vector
space.

6.1.2 PropStar: a feature‑based approach

In this section, we outline the proposed PropStar algorithm for classification via feature
embedding. Its details and implementation are presented in Sect. 6.2.3. Unlike the Prop-
DRM algorithm, where each embedding vector represents a single data instance, the idea
of PropStar is to use embedding vectors to represent the features of the data set. Here, indi-
vidual relational features, obtained as the result of propositionalization by Wordification,
are used by a supervised embeddings learner to obtain representations, co-located with
instance labels. This approach is conceptually different in the sense that representations are
not learned for individual instances (as is the case of DRMs); instead, they are learned for
every single relational feature that is the output of the selected propositionalization algo-
rithm (i.e. Wordification).

The fact that PropStar produces vector representations of features means that the labels
(label=true and label=false) are also represented by vectors in the same dense space as
the other vectors. This leads to an intuitive direct classification of new examples. We can
observe the set of vectors representing the relational items present in the itemset represent-
ing the new example. To classify a new instance, the embeddings of the set of its features
(i.e. true values) are averaged and the result is compared to the embedding of class labels.
The nearest class label is chosen as the predicted value.

Figure 4 illustrates how new instances are classified by direct comparison of the repre-
sentations of their features in the latent dense semantics-preserving space that also contains
the information on labels. The classification is based on the proximity to a given label (in
the latent space). If the center of feature vectors of a given instance is closer to the vector
representing the feature label=true, then the example is classified as positive.

In contrast to the instance-based embeddings discussed in Sect. 6.1.1, which relies
on batches, the whole data set is needed to obtain representations for individual fea-
tures. To avoid high spatial complexity, this class of algorithms would ideally operate
on sparse inputs. An example of feature-based embeddings are items that are to be rec-
ommended to users, where the representation of a given item is obtained by jointly opti-
mizing the item’s co-occurrence with other items, as well as other user’s properties. In

2 As its last step, the methodology includes the explanation of results using the SHAP approach. However,
as Sect. 6 focuses on our research contributions, this well known approach and its results are presented in
Appendix D.

1488 Machine Learning (2020) 109:1465–1507

1 3

a relational setting considered in this work, we follow the paradigm of propositionaliza-
tion by Wordification, where each instance is described by a bag of features of the form
(table.name, column.name, value) . Consequently, in the PropStar approach the embed-
dings represent bags of such features and their conjunctions (of size 2). There are as many
embeddings as there are unique features in the propositionalized representation of a given
relational database. As such embeddings by themselves do not contain any information
which relates them to the desired output space, target values get embedded alongside other
features in a supervised manner.

6.2 Detailed description of proposed data transformation and learning methods

This section presents the implementations of the proposed methods, preceded by the
description of the updates to the Wordification algorithm (Perovšek et al. 2015 for multi-
propositionalization algorithm presented in Sect. 6.2.1. In Sect. 6.2.2 we discuss how Deep
Relational Machines (described briefly in Sect. 4.3.3), which use neural networks for learn-
ing from relational databases, were adapted to operate on sparse matrices generated by an
improved Wordification algorithm. In Sect. 6.2.3 we describe a novel algorithm, called
PropStar, which embeds relational features, extracted as part of propositionalization.

6.2.1 Improving the efficiency of Wordification

In this work we significantly extend the ideas proposed in Wordification (Perovšek et al.
2013, 2015) with the aim to maintain the classification performance, yet improve its scal-
ability. Both proposed algorithms build on the idea of Wordification, yet its use in our
algorithms is differentiated by the following design decisions:

1. Inputs do not need to be hosted in relational databases. PropStar operates on .sql files
directly. The algorithm supports SQL conventions, as commonly used in the ILP com-

Fig. 4 Overview of the proposed feature-based embedding methodology PropStar. Note that embedded fea-
tures represent embeddings of single features fi or of conjuncts of features, e.g., fi ∧ fj , given that Wordi-
fications constructs both feature forms. For simplicity, the propositionalized database shows two instances
Blank and shaded circles correspond to embedded representations of instances and features, respectively

1489Machine Learning (2020) 109:1465–1507

1 3

munity.3 This modification renders the method completely local, enabling offline exe-
cution without additional overhead. Such setting also offers easier parallelism across
computing clusters.

2. Algorithm is implemented in Python 3 with minimum dependencies for computationally
more intense parts, such as the Scikit-learn (Pedregosa et al. 2011), Pandas, and Numpy
libraries (Van Der Walt et al. 2011). All database operations are implemented as array
queries, filters or similar, unlocking the potential to run PropDRM and PropStar also
on GPUs.

3. As shown by Perovšek et al. (2015), Wordification’s caveat is extensive sampling of (all)
tables. We relax this constraint to close (up to second order) foreign key neighborhood,
notably speeding up the relational item sampling part, but with some loss in terms of
relational item diversity. For larger databases, minimum relational item frequency can
be specified, constraining potentially noisy parts of the feature space.

One of the original Wordification’s most apparent problems is its spatial complexity. In this
work we address this issue as follows:

1. Relational items are hashed for minimal spatial overhead during sampling.
2. During construction of the final representation, a sparse matrix is filled based on rela-

tional item occurrence.
3. The matrix is serialized directly into list-like structures, suitable for StarSpace algorithm

and thus we maintain minimal spatial overhead.
4. Only the final representation is stored as a low-dimensional (e.g., 32) dense matrix.

6.2.2 Detailed description of the proposed PropDRM implementation

The novelty of the proposed implementation of DRM instance-based embedding, inspired
by the work of Dash et al. (2018), concerns its capability to effectively handle the sparse-
ness of the data with deep neural networks. The main novelty of the proposed implementa-
tion is that it is indeed capable of operating on larger, sparse matrices directly. Such capa-
bility is necessary for DRMs to be compatible with propositionalization, which yields large
sparse matrices as the main output. Below we discuss the neural network architecture and
its adaptations.

Let P represent a sparse item matrix, as returned by Wordification (discussed in
Sects. 4.2.3 and 6.2.1). Note that Wordification is unsupervised, and thus does not include
any information on instance labels. The neural network we use (termed �) represents the
mapping � ∶ P → C , where C is the set of classes. In this work, we experimented with
dense feed-forward neural networks, regularized using dropout (Srivastava et al. 2014),
and ELU activation function (Clevert et al. 2016) (of intermediary weights). The output
weights are activated using sigmoid activation (�) in order to obtain binary predictions.

where c is the user-specified constant. For a given input matrix P, an example of a single
hidden-layer neural network is defined as follows.

ELU(x) =

{
c(ex − 1), for x < 0

x for x ≥ 0
,

3 https ://relat ional .fit.cvut.cz/.

https://relational.fit.cvut.cz/

1490 Machine Learning (2020) 109:1465–1507

1 3

Here, the � is a sigmoid activation, defined as �(x) = 1

1+e−x
 . The W1 is the weight matrix,

P the sparse input space, and bl the bias vector of a given layer l ∈ {0, 1} . The described
neural network returned satisfactory results, hence, we did not perform neuroevolution or
similar large-scale search for potentially better performing architectures. Throughout this
work, we use the binary cross-entropy loss, referred to as Loss. For a given probabilistic
classifier, which returns a probability pij of an instance i belonging to a class j, the loss
function is defined as follows:

Here yij is a binary value (0 or 1) indicating whether class j is the correct class label
assigned to instance i, and C is a set of all the target classes. In the case of DRMs, where
the instances of a relational database (one of the tables) are classified, each of the |C| output
neurons predicts a single probability pij for a given target class j ∈ C . If the neural net-
works are trained in small batches, the results of the Loss function are averaged to obtain
the overall loss of a given batch of instances.

Neural networks are adapted for dense inputs such as images and texts, and are not nec-
essarily suitable for large sparse matrices, as considered in this work (i.e. P). The proposed
variant of DRMs is adapted as follows. Once the batch size bs (a free parameter) is deter-
mined, propositionalized representation P is traversed (in chunks of bs instances). Note
that each instance is effectively a d-dimensional vector. As the neural network operates
with dense batches, each batch is converted to a dense matrix of bs ⋅ d elements that is used
during matrix multiplication within the neural network. The spatial complexity is thus at
most O(bs ⋅ d) . We observed that even by considering batch size of one, the DRMs are
stable and efficient.

6.2.3 Detailed description of the PropStar algorithm

We next present the novel feature-based embedding algorithm that can operate directly on
the propositionalized relational databases. The proposed PropStar algorithm merges sym-
bolic and non-symbolic representations as part of a single procedure for obtaining real-
valued representations of features in arbitrary relational databases. The pseudocode of the
PropStar algorithm is given in Algorithm 1.

� = �(WT
o
(ELU(Drop(WT

1
P + b1))) + bo).

Loss(i) =
∑
j∈C

yij ⋅ log pij.

1491Machine Learning (2020) 109:1465–1507

1 3

The algorithm consists of two main steps. First, a relational database is transformed into
sets of features describing individual instances. The WORDIFY method constructs fea-
tures of the form (table.name, column.name, value) and uses them to describe each indi-
vidual instance (see Sect. 6.2.1 for a detailed formulation of this step).

Second, sets of relational items (features) are used as input to the StarSpace entity
embedding algorithm (described in Sect. 4.3.2), producing embeddings for each distinct
relational item. The StarSpace embeddings are computed using efficient C++ implementa-
tion. We wrote a wrapper which seemingly integrates the first part of PropStar (sampling
and propositionalization) with the embedding construction. The problem is formulated as
a multiclass classification, where the positive pair generator comes directly from a training
set of labeled data specifying (a, b) ∈ E+ pairs where a are relational item ‘documents’ and
b are labels (singleton features). Negative entities b−

i
 are sampled from the set of possible

labels. Inputs can be described as (multi) sets comprised of both relational items fi , their
conjuncts, as well as class labels ci . For example,

represents a simple input consisting of three relational items, a conjunct and the target label
c1 . Note that we apply StarSpace in such manner that the representations are learned for
individual relational items. A representation matrix of dimension ℝ|W|×d is produced as the
final output (|W| represents the number of unique relational items considered). Intuitively,
the embedding construction can be understood as determining relational item locations in a
latent space based on their co-occurrence with other items present in all training instances.
The wrapper can be called via ‘fit’ and ‘predict’ methods, commonly used in contemporary
data science and machine learning. In this work, we consider the inner product similarity

{f1, f2, f6, f6 ∧ f2, c1}

1492 Machine Learning (2020) 109:1465–1507

1 3

between a pair of vectors e1, e2 for the construction of embeddings.4, i.e. The complexity
of obtainingsim(e1, e2) = e

T
1
⋅ e2. As the class labels are embedded in the same space as

individual relational items, classification of novel bags of relational items is possible by
direct comparison, as common tasks operating on word embeddings. We discuss this clas-
sification below.

Let M represent a novel instance to be classified. Note that M (without additional index)
is considered a multiset of relational items. For prediction purposes, StarSpace averages
the representations of relational items present in a given input instance (a bag). The rep-
resentation is normalized (as during training) and compared to label embeddings in the
common space. Representation of a relational bag eM is computed (with considered hyper-
parameters) as:

which is a d-dimensional, real-valued vector. Note that ⊕ in this expression denotes ele-
ment-wise summation. The Munique represents the set of all (unique) relational features cur-
rently considered. Note that original bags of features can be redundant (multisets), yet rep-
resentations are learned for unique features. Next, the similarity of this vector is compared
to the label embeddings in the same space. The label that is the most similar to eM is the
top-ranked prediction, the second most similar label is the second-ranked prediction, etc.
In this work we consider only the top-ranked prediction, resulting in the following label
assignment:

The complexity of obtaining a single prediction is hence O(|C|) , not taking the complexity
of scalar product for function sim into account. The PropStar algorithm first samples the
relational items with respect to the target table (lines 2-11 in Algorithm 1). Binary indica-
tor function (relationalFeatures) is applied to obtain the propositionalized representation
of the target table (line 12). Here, zeros represent absence of a given relational items, and
ones their presence.5 Finally, StarSpace is used to embed the table into a low-dimensional,
real valued embedding (line 19).

The spatial complexity of PropStar is linear with respect to the number of non-zero ele-
ments in the propositionalized version of a relational database. The exact spatial complex-
ity can be formulated as follows. Let row represent the average number of rows per table.
Let nt represent the number of tables and col the average number of columns per table. We
improve the original spatial complexity of O(rows ⋅ nt ⋅ 2

col) by introducing a constraint,
which determines the maximum number of relational items that can be considered. The
exponential term in the initial complexity thus reduces to col times some constant, yielding
the complexity of O(rows ⋅ col ⋅ nt) . This formulation yields a scalable propositionalization.

eM =

⊕
fi∈M

efi

√
|Munique|

,

label(eM) = argmax
c∈C

[
sim(eM , ec)

]
.

4 Note that e1, e2 represent vector representations of relational items (i.e. features) in the output of proposi-
tionalization.
5 Note that in the actual implementation CSR format of sparse matrices is used to reduce the spatial over-
head of storing zeros.

1493Machine Learning (2020) 109:1465–1507

1 3

7 Experimental evaluation

In this section we describe the implementation details of the proposed methods, the rela-
tional data sets used in the experiments, and the experimental evaluation of the proposed
methods.

7.1 Implementation and hyperparameters

We discuss how the proposed methods were implemented, along with the hyperparameters
explored. Both new methods (PropDRM and PropStar) are implemented in Python, with
the following exceptions. In PropDRM, the DRMs are implemented in PyTorch. For Prop-
Star we used the efficient StarSpace implementation written in C++, for which we build a
wrapper offering basic embedding training and prediction functionality.

We used 10-fold stratified cross validation, which was conducted for individual hyper-
parameter settings. The best setting is reported, other are discussed in ablation studies.
Experiments were performed on an of-the-shelf workstation with no GPUs (even though
PropDRM and PropStar can exploit them). We intentionally omit the GPU-based training
to explore the minimum hardware, required to perform competitively on the selected data
sets—ILP baselines, such as Aleph and RSD are Prolog-based, and are to our knowledge
not able to use multiple GPU threads simultaneously. The machine on which experiments
were conducted had 128GB of RAM and 12 CPUs (Intel i8 series).

In PropDRM, we varied the dropout rate, learning rate, number of epochs, and the hid-
den layer size. In PropStar, we varied the number of negative samples, embedding dimen-
sion, learning rate, and the number of epochs.

The source code of our implementation is publicly available6.

7.2 Relational data sets

Five relational database sources7 (Motl and Schulte 2015) were used in the experiments.
Their characteristics are summarized in Table 4.

Trains (Michie et al. 1994) data set is used in the East-West trains challenge problem,
which is well-known in ILP. The East-West trains challenge is to predict whether a train
is eastbound or westbound, based on the properties of eastbound and westbound cars.
Trains contain variable number of cars, each having one of various shapes and carrying
various loads.
Carcinogenesis (Srinivasan et al. 1997) task is to predict carcinogenicity of a diverse
set of chemical compounds. The data set was obtained by testing different chemicals on
rodents, where each trial would take several years and hundreds of animals. The data set
consists of 329 compounds, of which 182 are carcinogens.
Mutagenesis (Debnath et al. 1991) task addresses the problem of predicting mutagen-
icity of aromatic and heteroaromatic nitro compounds. Predicting mutagenicity is an
important task as it is very relevant to the prediction of carcinogenesis. The compounds
from the data are known to be more structurally heterogeneous than in any other ILP

6 https ://githu b.com/SkBla z/PropS tar.
7 Freely accessible at https ://relat ional .fit.cvut.cz/.

https://github.com/SkBlaz/PropStar
https://relational.fit.cvut.cz/

1494 Machine Learning (2020) 109:1465–1507

1 3

Table 4 Properties of the experimental data tables

Trains #rows #attributes

Cars 63 10
trains 20 2

Carcinogenesis #rows #attributes

atom 9,064 5
canc 329 2
sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4,134 4

Mutagenesis 42 #rows #attributes

atoms 1,001 5
bonds 1,066 5
drugs 42 7
ring_atom 1,785 3
ring_strucs 279 3
rings 259 2

Mutagenesis 188 #rows #attributes

atoms 4,893 5
bonds 5,243 5
drugs 188 7
ring_atom 9,330 3
ring_strucs 1,433 3
rings 1,317 2

IMDB #rows #attributes

actors 7,118 4
directors 130 3
directors_genres 1,123 4
movies 166 4
movies_directors 180 3
movies_genres 408 3
roles 7,738 4

MovieLens #rows #attributes

actors 99,129 3
directors 2,201 3
movies 3,832 5
movies2actors 152,532 3
movies2directors 4,141 3
u2base 946,828 3
users 6,039 4

1495Machine Learning (2020) 109:1465–1507

1 3

data set of chemical structures. The database contains 230 compounds of which 138
have positive levels of mutagenicity and are labeled as ‘active’. Others have class value
‘inactive’ and are considered to be negative examples. We took the data sets from the
original paper (Debnath et al. 1991), where the data was split into two subsets: a 188
compound data set and a smaller data set with 42 compounds.
IMDB database is publicly available in the SQL format.8 This database contains tables
of movies, actors, movie genres, directors, and director genres. The data set used in our
experiments encompasses only movies whose titles and years of production appear in
the IMDB’s top-250 and bottom-100 chart (Snapshot taken on July 2, 2012). The snap-
shot contains 166 movies, along with all of their actors, genres and directors. We des-
ignate movies present in the IMDB top-250 chart as positive examples, and those in the
bottom-100 as negatives.
MovieLens data set from the UC Irvine machine learning repository.9 The data set is
similar to IMDB above, however is much larger. Overall, the database consists of more
than 1.2 million instances. The task is to predict gender of the movie database’s users.

7.3 Results

We present the results of the empirical evaluation of the proposed methodologies on the
presented set of standard benchmark ILP data sets. The accuracies of individual learners
are given in Table 5, and the AUC scores are reported in Table 6. The results for Aleph,
RSD, RelF and Wordification were taken from previous work of Perovšek et al. (2015).

It can be observed that the proposed unifying approaches perform competitively on
most data sets. We can observe a distinct difference in performance on the Mutagenesis
data sets, where both PropDRM as well as PropStar do not outperform the baselines on
the smaller data set (Mut42), yet notably outperform the (best) baselines on the larger one
(Mut188). Further, minor improvement over the baseline algorithms is also achieved on
Carcinogenesis data set.

In terms of spatial complexity, the proposed methodology greatly outperforms the alter-
natives under a given set of constraints. Only PropDRM and PropStar scale to very large
relational databases without specialized hardware. Detailed studies regarding the sensitiv-
ity of PropDRM and PropStar to their parameters are discussed in Appendices B and C,
respectively.

We consider the presented results as very favorable for the two proposed approaches. In
particular, PropStar is better than current state-of-the-art methods on 3 out of 6 data sets,
and is therefore a method to take into consideration when attempting to solve any new rela-
tional problem.

7.3.1 Study of propositionalization projections

The considered propositionalization is entirely unsupervised. Only once the symbolic rep-
resentations of instances are obtained, PropDRM and PropStar learn the associations to

9 https ://relat ional .fit.cvut.cz/datas et/Movie Lens.

8 http://www.webst epboo k.com/suppl ement s/datab ases/imdb.sql.

https://relational.fit.cvut.cz/dataset/MovieLens
http://www.webstepbook.com/supplements/databases/imdb.sql

1496 Machine Learning (2020) 109:1465–1507

1 3

individual classes. A good representation, however, already contains relevant information
on the instance space. In Fig. 5, we projected the propositionalized Mutagenesis 188 and
Trains instance space to two dimensions to qualitatively explore whether instances group
or any meaningful patterns emerge. Understanding whether the symbolic space exhibits
distinct structure on its own could offer insights into why the proposed methods perform
well. For projecting the 10,000 dimensional space to two dimensions we used UMAP, a
recently introduced non-linear dimensionality reduction method based on insights from
manifold theory (McInnes et al. 2018).

We can observe an apparent distinction in the clustering of the UMAP projections of
the two propositionalized data sets. The Mutagenesis 188 data set consists of two distinct
clusters that, when colored according to the class labels, approximately correspond to the
two classes (Fig. 5a). On the other hand, the clustering is not apparent in the case of the
Trains data set (Fig. 5b), where the instances do not group distinctly. The purpose of the
considered visualizations is twofold. First, we show how the symbolic space can exhibit
clustering properties, related to properties of instances such as class labels. Next, we show
that projections do not necessarily exhibit such properties, indicating potentially harder
classification problems. We believe that UMAP and similar tools offer insights into repre-
sentation structure.

Table 5 Classification accuracy on different relational data sets

The best score for each dataset is in bold
For the proposed methods, we report average performance over 5 runs. The runs, marked with—were una-
ble to finish in 12 h

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains MovieLens
MajorityVote 0.55 0.73 0.67 0.69 0.50 0.72

Aleph (Perovšek et al. 2015) J48 0.55 0.73 0.60 0.69 0.55 –
Aleph (Perovšek et al. 2015) SVM 0.55 0.73 0.60 0.69 0.70 –
RSD (Perovšek et al. 2015) J48 0.60 0.75 0.68 0.98 0.60 –
RSD (Perovšek et al. 2015) SVM 0.56 0.73 0.71 0.69 0.80 –
RelF (Perovšek et al. 2015) J48 0.60 0.70 0.75 0.76 0.65 –
RelF (Perovšek et al. 2015) SVM 0.56 0.73 0.69 0.76 0.80 –
Wordification (Perovšek et al.

2015)
J48 0.62 0.82 0.67 0.98 0.50 –

Wordification (Perovšek et al.
2015)

SVM 0.61 0.73 0.82 0.79 0.50 –

Aleph (replicated) J48 0.55 – 0.80 0.76 0.70 –
Aleph (replicated) SVM 0.55 – 0.80 0.79 0.60 –
RSD (replicated) J48 0.56 0.84 0.88 0.92 0.60 –
RSD (replicated) SVM 0.60 0.82 0.89 0.84 0.80 –
Wordification (replicated) J48 0.47 0.85 0.91 0.88 0.90 0.60
Wordification (replicated) SVM 0.39 0.80 0.83 0.33 0.50 0.72
Treeliker J48 0.58 – 0.77 0.81 0.50 –
Treeliker SVM 0.60 – 0.90 0.80 0.70 –
PropDRM 0.63 0.73 0.91 0.86 0.70 0.72
PropStar 0.66 0.74 0.92 0.90 0.80 0.74

1497Machine Learning (2020) 109:1465–1507

1 3

7.3.2 Statistical comparison of PropDRM and PropStar

In previous sections, we demonstrated that both PropDRM and PropStar perform well on
the considered data sets, indicating that both approaches are successfully unifying proposi-
tionalization and embeddings. We further study the differences in performances of the two
approaches. For this purpose, we employ the hierarchical Bayesian t-test, a Bayesian test
capable of comparing a pair of classifiers across multiple data sets (Benavoli et al. 2017;
Corani et al. 2017). For this comparison, we selected the overall best performing hyperpa-
rameter sets for each method, and conducted ten repetitions of stratified ten-fold cross valida-
tion (for each data set). The results are visualized as probability distributions across the space
of both classifiers and the ‘rope’ region (region of practical equivalence) within which the
two classifiers perform the same. The size of this region is a free parameter of the hierarchical

Table 6 AUC scores on individual data sets

The best score for each dataset is in bold
We report average performance over 5 runs. The runs, marked with—were unable to finish in 12 h

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains Movies

Aleph (from Perovšek et al. 2015) J48 0.50 0.50 0.68 0.50 0.55 –
Aleph (from Perovšek et al. 2015) SVM 0.50 0.50 0.68 0.50 0.70 –
RSD (from Perovšek et al. 2015) J48 0.59 0.59 0.54 0.96 0.60 –
RSD (from Perovšek et al. 2015) SVM 0.52 0.50 0.58 0.50 0.80 –
RelF (from Perovšek et al. 2015) J48 0.59 0.66 0.68 0.68 0.75 –
RelF (from Perovšek et al. 2015) SVM 0.52 0.50 0.54 0.62 0.75 –
Wordification (from Perovšek et al. 2015) J48 0.61 0.75 0.55 0.96 0.95 –
Wordification (from Perovšek et al. 2015) SVM 0.58 0.50 0.78 0.65 0.50 –
Alpeh (replicated) J48 0.50 – 0.71 0.72 0.70 –
Aleph (replicated) SVM 0.50 – 0.75 0.73 0.60 –
RSD (replicated) J48 0.55 0.71 0.87 0.92 0.60 –
RSD (replicated) SVM 0.58 0.65 0.90 0.73 0.80 –
Wordification (replicated) J48 0.48 0.72 0.90 0.86 0.90 0.52
Wordification (replicated) SVM 0.42 0.62 0.81 0.50 0.50 0.50
Treeliker J48 0.58 – 0.75 0.71 0.50 –
Treeliker SVM 0.58 – 0.88 0.68 0.70 –
PropDRM 0.63 0.68 0.90 0.87 0.80 0.54
PropStar 0.63 0.66 0.87 0.87 0.95 0.56

(a) (b)

Fig. 5 Two UMAP projections of selected propositionalized data sets

1498 Machine Learning (2020) 109:1465–1507

1 3

t-test, and was set to 0.05 in this work. Other parameters of the test were left as defaults. The
exact methodology for the interested reader is explained by Benavoli et al. (2017).

In terms of AUC, the probabilities returned by the Bayesian test were as follows:
p(PropStar) = 0.07 and p(PropDRM) = 0.54), and in terms of classification accuracy,
p(PropStar) = 0.96 and p(PropDRM) = 0.04 . The results of statistical analysis indicate that
with respect to AUC performance, the two approaches perform similarly, even though the prob-
ability that PropDRM will outperform PropStar is higher. With respect to the classification accu-
racy, PropStar outperforms PropDRM in majority of comparisons. Thus, considering the 95%
or higher as the probability denoting significance boundary, we can determine that PropStar is
(significantly) more suitable choice if accuracy is being optimized for. As Bayesian comparisons
are computationally expensive, we compared the two methods using default hyperparameter set-
tings. The PropStar’s default configuration is not necessarily optimal when AUC is considered.

8 Conclusions and further work

This paper first provides a critical survey of propositionalization and embedding tech-
niques, especially relevant for relational learning and inductive learning programming.
While both data approaches, propositionalization and embeddings, aim at transforming
data into the tabular data format, the research papers describing the approaches use dif-
ferent terminology and task definitions, claim to have different goals, and are used in very
different contexts. In this paper, we define the main categories of data transformation tech-
niques based on the representation they use and approaches employed. Propositionalization
approaches produce tabular data from multirelational databases as well as from a mixture
of tabular data and background knowledge in the form of logic programs or networked
data, including ontologies. Knowledge stored in graphs can be assessed with commu-
nity detection and graph traversal methods. Relations described with similarity matrices
are encoded in a numeric form using matrix factorization. Currently, the most promising
approach to data transformations are neural networks based methods which can be applied
to text, graphs, and other entities for which we can define a suitable similarity function.

One of the main strategic problems machine learning has to solve is better integration
of knowledge and models across different domains and representations. While the research
area of embeddings can unify different representations in a numeric space, symbolic learn-
ing may be an essential ingredient for integration of different knowledge areas. We see
our PropStar approach that combines advantages of propositionalization and neural embed-
dings in the same data fusion pipeline as a step in that direction.

The first minor contribution of the paper is that our exposition is based on three cogni-
tive representation levels introduced by Gärdenfors (2000), i.e. neural, spatial, and sym-
bolic. As most of human knowledge is stored in the symbolic form, while the most powerful
machine learning algorithms take as input spatial representations, this explains a plethora of
techniques that transform other forms of human knowledge into the spatial representation
space. The next contribution is the unifying framework in which we describe propositionali-
zation and embedding techniques in terms of their joint properties and their differences. We
show how the propositionalization techniques can be merged with deep neural network based
embedding to produce a joint embedding, such that spatial representation can be used with
any deep learning algorithm and the predictions can be comprehensively explained. The main
contributions of our work are thus the two implementations that merge propositionalization
and embeddings in the same unifying methodology. The first is an efficient reimplementation

1499Machine Learning (2020) 109:1465–1507

1 3

of existing Deep Relational Machines, while the second one is the novel Deep Proposition-
alization algorithm. We also contribute an experimental evaluation of the two algorithms and
show favorable results in terms of predictive performance, as well as time and space require-
ments. The source code of both algorithms, DeepProp and PropDRM, is publicly available.10

In further work, it is worth investigating the integration of symbolic and deep learn-
ing, considering them as multitask learning approaches which try to integrate many differ-
ent learning tasks and use embeddings as input representations. The issue is that different
embedding methods have so far only been used in isolation. We already address this chal-
lenge in the current work of the authors, where we combine complementary embedding
methods from different classes: in particular, to use network traversal methods to produce
initial embeddings that are then refined using a deep neural network (Škrlj et al. 2019).

Acknowledgements We acknowledge the financial support of the Slovenian Research Agency through
core research programmes P2-0103 and P6-0411 and project Semantic Data Mining for Linked Open Data
(financed under the ERC Complementary Scheme, N2-0078). The authors have received funding also from
the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825153
(EMBEDDIA). The work of the second author was funded by the Slovenian Research Agency through a
young researcher grant. We wish to thank Jan Kralj for his insightful comments on the formulation of the
proposed framework and for mathematical proofreading. Further, we are grateful to Vid Podpečan and Nika
Eržen for their help with the implementation of the new version of the PyRDM library. Finally, we would
like to thank the anonymous reviewers for careful reading, many insightful observations, and the encourage-
ments to expand the initial work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Appendix A: Wordification example

The Wordification approach is illustrated on a modified and substantially simplified version
of the well-known East-West Trains domain (Michie et al. 1994). Our input database con-
sists of just two tables shown in Fig. 6, where we have only one east-bound and one west-
bound train, each with just two cars with certain properties11.

The TRAIN table is the main table and the trains are the instances, with a class label
denoting the direction of the train (east of west). As Fig. 7 shows, a multiset (a bag) of
features is generated for each train t1 and t5 with the class label appended to the resulting
feature vector (bag of features). Both single features and conjunctive features are shown in
this example.

10 https ://githu b.com/SkBla z/PropS tar.
11 Note that in the experiments we use the standard version of the East-West Trains domain.

http://creativecommons.org/licenses/by/4.0/
https://github.com/SkBlaz/PropStar

1500 Machine Learning (2020) 109:1465–1507

1 3

Fig. 6 Example input for Wordification in the East-West Trains domain

Fig. 7 The database from Fig. 6 in the bag-of-features representation (as in the original Wordification
implementation, conjunctions of features are denoted by a long underscore instead of ∧)

(a) Dependence on hidden layer size. (b) Dependence on the number of epochs.

(c) Dependence on the learning rate. (d) Dependence on Dropout.

Fig. 8 Sensitivity of PropDRM to hyperparameter settings

1501Machine Learning (2020) 109:1465–1507

1 3

Appendix B: Ablation study—PropDRM

We discuss the impact of individual hyperparameters on the performance of PropDRM. We
first visualize the performance of PropDRM w.r.t. individual hyperparameters in Fig. 8.

We can observe that the relevance of individual hyperparameters varies from data set to
data set. The learning rate, when too small, decreases the performance. In terms of embed-
ding dimension, even smaller dimensions are sufficient for the considered data sets. This
result potentially implies that the considered data sets are relatively small and contain
only a small set of relevant features (when propositionalized). Thus, if the neural network
detects the correct features as relevant, not many parameters are needed for a successful
classification. An alternative explanation would imply that PropDRM learns hierarchi-
cal representations efficiently, albeit not optimized with their hierarchical nature in mind,
which was previously demonstrated to capture hierarchical relations well (Nickel and Kiela
2017).

ality.
(a) Dependence on embedding dimension- (b) Dependence on the number of epochs.

(c) Dependence on the learning rate. (d) Dependence on the maximum negative
sampling number.

Fig. 9 Sensitivity of PropStar to various hyperparameter settings

1502 Machine Learning (2020) 109:1465–1507

1 3

Appendix C: Ablation study—PropStar

We first explore the behavior with respect to various hyperparameter settings and visual-
ize them in Fig. 9. We can observe that the amount of negative samples (Subfigure 9d))
impacts the PropStar’s performance the most on the mutagenesis 42 data set, overall reduc-
ing the performance, even though a handful of models (outliers marked as dots) perform
well. This indicates the importance of negative sample selection. As StarSpace does not
use any sophisticated technique for sampling negative examples, the variability in perfor-
mance could be notable due to this parameter.

It can be observed that a relatively small relational item embedding dimensionality is
needed for successful performance. The dependence on other parameters varies from data
set to data set. For example, the learning rate does not impact the larger Mutagenesis data
set (Mut188) as much as it does the Trains data set. As the proposed methodology is not
well adapted to such small data sets (e.g., tens of instances), large variability in perfor-
mance could be linked to potential overfitting. Further, sufficient number of epochs are
needed for PropStar to converge on individual data sets.

Appendix D: Interpretability of embedding‑based methods using
SHAP

The approximation power of deep neural network which are commonly used with embed-
dings comes at a cost of lesser interpretability. Compared to symbolic relational (or propo-
sitional) learners, one cannot understand the deep relational models’ deductive process by
inspecting the model. However, post hoc explanation methods for prediction models can
be used to better understand which parts of the feature space are relevant for the neural
network’s individual predictions. In this work, we leverage the state-of-the-art explanation
tool SHAP (Lundberg and Lee 2017), based on the coalitional game theory. This tool cap-
tures the importance of interactions between features with Shapley values.

When considered in a feature importance scenario, the contribution of the i-th instance
�i , is approximated by SHAP with the following expression:

where S is a subset of all features F, f is the used predictive model, and xS is an instance
containing only features from the subset S. Shapley valufs offer insights into instance-level
predictions by assigning fair credit to individual features for participation in interactions.
They are commonly used to understand and debug black-box models.

In this work, we use the SHAP kernel approximator, the recently introduced, model-
agnostic method for explaining model outputs. The used SHAP kernel explainer is consid-
ered an additive feature attribution method. Such methods are characterized as having an
explanation model g that is a linear function of binary variables:

𝜏i =
∑

S⊆F⧵{i}

|S|!(|F| − |S| − 1)!

|F|!
�������������������������������������

All possible subsets

[
f (xS∪{i}) − f (xS)

]
���������������������

Difference in predictive performance

1503Machine Learning (2020) 109:1465–1507

1 3

where z� ∈ {0, 1}|F| , |F| is the number of input features and �i ∈ ℝ . This class of models
assign an effect �i to each feature, and summing the effects of all such feature attributions
approximates the output f(x) of the original model. Detailed theoretical analysis of how this
idea can be extended to approximation of outputs via a kernel is given in Lundberg and Lee
(2017).

As an example demonstrating the explainability of the two paradigms, we visualize
the Shapley values as explanations of learned classifiers for Mutagenesis 188 problem in
Fig. 10. Explanations indicate parts of the feature space that have the largest impact on the
model’s output. Even though the considered SHAP kernel explainer is known to be a com-
putationally expensive variant of SHAP (it is also the most general one), explanations were
obtained in the order of minutes, indicating the potential of this methodology for explana-
tions of predictors in larger relational databases.

References

Ahmed, C. F., Lachiche, N., Charnay, C., Jelali, S. E., & Braud, A. (2015). Flexible propositionalization of
continuous attributes in relational data mining. Expert Systems with Applications, 42(21), 7698–7709.

g(z�) = �0 +

|F|∑
i=1

�i ⋅ z
�
i

instances for PropDRM.
(a) Mean of SHAP explanations over the (b) Mean of SHAP explanations over the

instances for PropStar.

Fig. 10 SHAP Kernel explanations of the two developed approaches

1504 Machine Learning (2020) 109:1465–1507

1 3

Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2017). Time for a change: A tutorial for compar-
ing multiple classifiers through Bayesian analysis. Journal of Machine Learning Research, 18(1),
2653–2688.

Bennett, K. P., Buja, A., Freund, W. S. Y., Schapire, R. E., Friedman, J., Hastie, T., et al. (2008). Responses
to [52]. Journal of Machine Learning Research, 9, 157–194.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning
Research, 3(Jan), 993–1022.

Blockeel, H., Raedt, L. D., & Ramon, J. (1998). Top-down induction of clustering trees. In Proceedings of
the 15th international conference on machine learning, pp. 55–63. Morgan Kaufmann.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. Advances in Neural Information Processing Systems, pp. 2787–2795.

Bordes, A., Glorot, X., Weston, J., & Bengio, Y. (2014). A semantic matching energy function for learning
with multi-relational data. Machine Learning, 94(2), 233–259.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. (1984). Classification and regression trees. Pacific

Grove, CA: Wadsworth & Brooks.
Chang, S., Han, W., Tang, J., Qi, G. J., Aggarwal, C. C., & Huang, T. S. (2015). Heterogeneous network

embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 119–128. ACM.

Charnay, C., Lachiche, N., & Braud, A. (2015). CARAF: Complex aggregates within random forests. In
Inductive logic programming—25th international conference, ILP 2015, Kyoto, Japan, August 20–22,
2015, Revised Selected Papers, pp. 15–29. Springer.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261–283.
Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by expo-

nential linear units (ELUs). In International conference on representation learning, ICLR. arXiv
:1511.07289 .

Corani, G., Benavoli, A., Demšar, J., Mangili, F., & Zaffalon, M. (2017). Statistical comparison of classi-
fiers through Bayesian hierarchical modelling. Machine Learning, 106(11), 1817–1837.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Cumby, C. M., & Roth, D. (2003). On kernel methods for relational learning. In Proceedings of the 20th

international conference on machine learning (ICML-03), pp. 107–114.
Dash, T., Srinivasan, A., Vig, L., Orhobor, O. I., & King, R. D. (2018). Large-scale assessment of deep rela-

tional machines. In Proceedings of the international conference on inductive logic programming, pp.
22–37. Springer, Berlin.

Dash, T., Srinivasan, A., Joshi, R. S., & Baskar, A. (2019). Discrete stochastic search and its application to
feature-selection for deep relational machines. In I. V. Tetko, V. Kůrková, P. Karpov, & F. Theis (Eds.),
Artificial neural networks and machine learning: ICANN 2019–deep Learning (pp. 29–45). Berlin:
Springer.

De Raedt, L. (2008). Logical and relational learning. Berlin: Springer.
Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., & Hansch, C. (1991). Struc-

ture-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with
molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2), 786–797.

Demeester, T., Rocktäschel, T., & Riedel, S. (2016). Lifted rule injection for relation embeddings. In Pro-
ceedings of the 2016 conference on empirical methods in natural language processing, pp. 1389–1399.

Dumančić, S., Guns, T., Meert, W., & Blockleel, H. (2018). Auto-encoding logic programs. In Proceedings
of the international conference on machine learning, Stockholm, Sweden.

Džeroski, S., & Lavrač, N. (Eds.). (2001). Relational data mining. Berlin: Springer.
Flach, P., & Lachiche, N. (1999). 1BC: A first-order Bayesian classifier. In International conference on

inductive logic programming, pp. 92–103. Berlin: Springer.
Flach, P., & Lachiche, N. (2001). Confirmation-guided discovery of first-order rules with Tertius. Machine

Learning, 42(1/2), 61–95.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an applica-

tion to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Friedman, J. H., & Fisher, N. I. (1999). Bump hunting in high-dimensional data. Statistics and Computing,

9(2), 123–143.
Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA: MIT Press.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.
Grčar, M., Trdin, N., & Lavrač, N. (2013). A methodology for mining document-enriched heterogeneous

information networks. The Computer Journal, 56(3), 321–335.

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

1505Machine Learning (2020) 109:1465–1507

1 3

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 855–864.

Guo, S., Wang, Q., Wang, L., Wang, B., & Guo, L. (2016). Jointly embedding knowledge graphs and logical
rules. In Proceedings of the 2016 conference on empirical methods in natural language processing, pp.
192–202.

Haussler, D. (1999). Convolution kernels on discrete structures. Tech. rep., Department of Computer Sci-
ence, University of California.

He, S., Liu, K., Ji, G., & Zhao, J. (2015). Learning to represent knowledge graphs with Gaussian embed-
ding. In Proceedings of the 24th ACM international on conference on information and knowledge man-
agement, pp. 623–632. ACM.

Kralj, J., Robnik-Šikonja, M., & Lavrač, N. (2018). HINMINE: Heterogeneous information network mining
with information retrieval heuristics. Journal of Intelligent Information Systems, 50(1), 29–61.

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S.
Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 262–291). Berlin: Springer.

Krogel, M. A., & Wrobel, S. (2001). Transformation-based learning using multirelational aggregation.
In Proceedings of international conference on inductive logic programming, pp. 142–155. Berlin:
Springer.

Krogel, M. A., Rawles, S., Železný, F., Flach, P., Lavrač, N., & Wrobel, S. (2003). Comparative evalu-
ation of approaches to propositionalization. In T. Horvath & A. Yamamoto (Eds.), Proceedings of
the 13th international conference on inductive logic programming (ILP-2003 (pp. 197–214). Ber-
lin: Springer.

Kuželka, O., & Železný, F. (2008). HiFi: Tractable propositionalization through hierarchical feature con-
struction. In Železný, F., Lavrač, N. (Eds.) Late breaking papers, the 18th international conference
on inductive logic programming, pp. 69–74.

Kuželka, O., & Železný, F. (2011). Block-wise construction of tree-like relational features with mono-
tone reducibility and redundancy. Machine Learning, 83(2), 163–192.

Lachiche, N., & Flach, P. A. (2003). 1BC2: A true first-order Bayesian classifier. Proceedings of induc-
tive logic programming, pp. 133–148.

Lavrač, N., Džeroski, S., & Grobelnik, M. (1991). Learning nonrecursive definitions of relations with
LINUS. In Proceedings of the 5th European working session on learning (EWSL-91), pp. 265–281.
Springer, Porto, Portugal.

Lavrač, N., Kralj Novak, P., Mozetič, I., Podpečan, V., Motaln, H., Petek, M., & Gruden, K. (2009).
Semantic subgroup discovery: Using ontologies in microarray data analysis. In Proceedings of the
31st annual international conference of the IEEE EMBS, pp. 5613–5616.

Lavrač, N., & Džeroski, S. (1994). Inductive logic programming: Techniques and applications. New
York: Ellis Horwood.

Lavrač, N., & Flach, P. (2001). An extended transformation approach to inductive logic programming.
ACM Transactions on Computational Logic, 2(4), 458–494.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of
international conference on machine learning, pp. 1188–1196.

Lewis, D. D. (1992). An evaluation of phrasal and clustered representations on a text categorization task.
In Proceedings of the 15th annual international ACM SIGIR conference on research and develop-
ment in information retrieval, pp. 37–50 .

Lodhi, H. (2013). Deep relational machines. In Proceedings of the international conference on neural
information processing, pp. 212–219. Berlin: Springer.

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.) Advances
in neural information processing systems, pp. 4765–4774.

McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform manifold approximation
and projection. The Journal of Open Source Software, 3(29), 861.

Mease, D., & Wyner, A. (2008). Evidence contrary to the statistical view of boosting. Journal of
Machine Learning Research, 9, 131–156.

Michalski, R. S., Mozetič, I., Hong, J., & Lavrač, N. (1986). The multi-purpose incremental learn-
ing system AQ15 and its testing application on three medical domains. In Proceedings of the 5th
national conference on artificial intelligence, pp. 1041–1045. Philadelphia, PA.

Michie, D., Muggleton, S., Page, D., & Srinivasan, A. (1994). To the international computing commu-
nity: A new East-West challenge. Tech. rep., Oxford University Computing laboratory, Oxford, UK.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z.

1506 Machine Learning (2020) 109:1465–1507

1 3

Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 26
(pp. 3111–3119). New York, USA: Curran Associates Inc.

Motl, J., & Schulte, O. (2015). The CTU Prague relational learning repository. arXiv :1511.03086 .
Muggleton, S. H. (Ed.). (1992). Inductive logic programming. London: Academic Press Ltd.
Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3–4), 245–286.
Nickel, M., & Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations. In

Advances in neural information processing systems, pp. 6338–6347.
Nickel, M., Tresp, V., & Kriegel, H. P. (2011). A three-way model for collective learning on multi-rela-

tional data. Proceedings of International Conference on Machine Learning, 11, 809–816.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-

learn: Machine learning in python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
Perovšek, M., Vavpetič, A., Cestnik, B., & Lavrač, N. (2013). A wordification approach to relational

data mining. In Proceedings of the international conference on discovery science, pp. 141–154.
Berlin: Springer.

Perovšek, M., Vavpetič, A., Kranjc, J., Cestnik, B., & Lavrač, N. (2015). Wordification: Propositionali-
zation by unfolding relational data into bags of words. Expert Systems with Applications, 42(17–
18), 6442–6456.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 701–710. ACM.

Plantié, M., & Crampes, M. (2013). Survey on social community detection. In N. Ramzan, R. Zwol, J. S.
Lee, K. Clüver, & X. S. Hua (Eds.), Social media retrieval (pp. 65–85). London: Springer.

Podpečan, V., Lavrač, N., Mozetič, I., Kralj Novak, P., Trajkovski, I., Langohr, L., et al. (2011). SegMine
workflows for semantic microarray data analysis in Orange4WS. BMC Bioinformatics, 12, 416.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as matrix factoriza-
tion: Unifying DeepWalk, LINE, PTE, and Node2Vec. In Proceedings of the eleventh ACM inter-
national conference on web search and data mining, WSDM ’18, pp. 459–467. ACM.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017). Struc2vec: Learning node representations

from structural identity. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, KDD ’17, pp. 385–394. New York: ACM.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1135–1144. ACM.

Ristoski, P., & Paulheim, H. (2016). Rdf2vec: Rdf graph embeddings for data mining. In P. Groth, E.
Simperl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck, & Y. Gil (Eds.), The semantic web:
ISWC 2016 (pp. 498–514). Cham: Springer.

Robnik-Šikonja, M., & Kononenko, I. (2008). Explaining classifications for individual instances. IEEE
Transactions on Knowledge and Data Engineering, 20(5), 589–600.

Rocktäschel, T., Singh, S., & Riedel, S. (2015). Injecting logical background knowledge into embed-
dings for relation extraction. In Proceedings of the 2015 conference of the north American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 1119–1129.

Rumelhart, D. E., & McClelland, J. L. (Eds.) (1986). Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1: Foundations. MIT Press, Cambridge, MA.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323(6088), 533.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation
for the effectiveness of voting methods. The Annals of Statistics, 26(5), 1651–1686.

Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization,
optimization, and beyond. Cambridge: The MIT Press.

Škrlj, B., Kralj, J., Konc, J., Robnik-Šikonja, M., & Lavrač, N. (2019). Deep node ranking: An algorithm
for structural network embedding and end-to-end classification. arXiv :1902.03964 .

Srinivasan, A. (2007). Aleph manual. http://www.cs.ox.ac.uk/activ ities /machi nelea rning /Aleph /.
Srinivasan, A., King, R. D., Muggleton, S., & Sternberg, M. J. (1997). Carcinogenesis predictions using

ILP. In Proceedings of the international conference on inductive logic programming, pp. 273–287.
Berlin: Springer.

Srinivasan, A., Vig, L., & Bain, M. (2019). Logical explanations for deep relational machines using rel-
evance information. Journal of Machine Learning Research, 20(130), 1–47.

http://arxiv.org/abs/1511.03086
http://arxiv.org/abs/1902.03964
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/

1507Machine Learning (2020) 109:1465–1507

1 3

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1),
1929–1958.

Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with
feature contributions. Knowledge and Information Systems, 41(3), 647–665.

Tang, J., Qu, M., & Mei, Q. (2015a). PTE: Predictive text embedding through large-scale heterogeneous
text networks. In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 1165–1174. ACM.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015b). LINE: Large-scale information
network embedding. In Proceedings of the 24th international conference on world wide web, pp.
1067–1077.

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for efficient
numerical computation. Computing in Science & Engineering, 13(2), 22.

Vapnik, V. (1995). The nature of statististical learning theory. New York: Springer.
Vavpetič, A., & Lavrač, N. (2011). Semantic data mining system g-SEGS. In Proceedings of the work-

shop on planning to learn and service-oriented knowledge discovery (PlanSoKD-11), ECML
PKDD conference, pp. 17–29.

Wang, Q., Wang, B., & Guo, L. (2015). Knowledge base completion using embeddings and rules. In
Proceedings of the 24th international joint conference on artificial intelligence, pp. 1859–1865.

Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph and text jointly embedding. In Pro-
ceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.
1591–1601.

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and Data Engineering, 29(12), 2724–2743.

Wu, L. Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., & Weston, J. (2018). Starspace: Embed all the
things! In Proceedings of the 32nd AAAI conference on artificial intelligence, pp. 5569–5577.

Železný, F., & Lavrač, N. (2006). Propositionalization-based relational subgroup discovery with RSD.
Machine Learning, 62, 33–63.

Zhu, S., Bing, J., Min, X., Lin, C., & Zeng, X. (2018). Prediction of drug–gene interaction by using metapa-
th2vec. Frontiers in Genetics, 9.

Žitnik, M., & Leskovec, J. (2017). Predicting multicellular function through multi-layer tissue networks.
Bioinformatics, 33(14), i190–i198.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Nada Lavrač1,2 · Blaž Škrlj3 · Marko Robnik‑Šikonja4

 Nada Lavrač
 nada.lavrac@ijs.si

 Marko Robnik-Šikonja
 marko.robnik@fri.uni-lj.si

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 University of Nova Gorica, Glavni trg 8, 5271 Vipava, Slovenia
3 International Postgraduate School Jožef Stefan, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana,

Slovenia
4 University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113,

1000 Ljubljana, Slovenia

http://orcid.org/0000-0002-9916-8756

	Propositionalization and embeddings: two sides of the same coin
	Abstract
	1 Introduction
	2 Motivation
	3 Data transformations and information representation levels
	3.1 Information representation levels
	3.2 Transformations into symbolic representation space
	3.3 Transformations into numeric representation space

	4 Related work
	4.1 Outline of data transformation methods
	4.2 Propositionalization
	4.2.1 Features
	4.2.2 Outline of selected propositionalization algorithms
	4.2.3 Wordification

	4.3 Embedding relational structures
	4.3.1 Knowledge graph embeddings
	4.3.2 Entity embedding with the StarSpace approach
	4.3.3 Deep relational machines

	5 Unifying framework for propositionalization and embeddings
	5.1 Unifying definitions
	5.2 Unifying propositionalization and embeddings in terms of data representation
	5.3 Unifying propositionalization and embeddings in terms of learning
	5.4 Unifying propositionalization and embeddings in terms of use
	5.5 Summary of strengths and limitations of propositionalization and embeddings

	6 Proposed unification methodology and its two implementations
	6.1 Outline of proposed data transformation and learning methods
	6.1.1 PropDRM: an instance-based approach
	6.1.2 PropStar: a feature-based approach

	6.2 Detailed description of proposed data transformation and learning methods
	6.2.1 Improving the efficiency of Wordification
	6.2.2 Detailed description of the proposed PropDRM implementation
	6.2.3 Detailed description of the PropStar algorithm

	7 Experimental evaluation
	7.1 Implementation and hyperparameters
	7.2 Relational data sets
	7.3 Results
	7.3.1 Study of propositionalization projections
	7.3.2 Statistical comparison of PropDRM and PropStar

	8 Conclusions and further work
	Acknowledgements
	References

