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Abstract: Lemmatisation is the process of finding the normalised forms of words
appearing in text. It is a useful preprocessing step for a number of language engineering
and text mining tasks, and especially important for languages with rich inflectional
morphology. This paper presents a new lemmatisation system, LemmaGen, which was
trained to generate accurate and efficient lemmatisers for twelve different languages.
Its evaluation on the corresponding lexicons shows that LemmaGen outperforms the
lemmatisers generated by two alternative approaches, RDR and CST, both in terms
of accuracy and efficiency. To our knowledge, LemmaGen is the most efficient publicly
available lemmatiser trained on large lexicons of multiple languages, whose learning
engine can be retrained to effectively generate lemmatisers of other languages.
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1 Introduction

Lemmatisation is a valuable preprocessing step for a large number of language
engineering and text mining tasks. It is the process of finding the normalised
forms of wordforms, i.e. inflected words as they appear in text. For example, in
English the lemma of wordforms dogs is dog, of wolves is wolf, of sheep is sheep,
of looking is look and of took is take.

Traditionally, lemmatisation rules were hand-crafted. However, machine learn-
ing approaches to morphological analysis and lemmatisation became an increas-
ingly interesting research subject. Machine learned lemmatisers are robust and
can handle out-of-vocabulary words; they can be trained on large datasets and
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thus have large coverage; and it is easier and cheaper to acquire training datasets
than rules. For example, a researcher in multilingual language processing who
needs the functionality of lemmatisation can acquire lexicons for many languages
via the European Language Resources Association ELRA or the U.S. based Lin-
guistic Data Consortium LDC, train the learner on them, and use the resulting
lemmatisers for text processing.

The goal of this work was to construct an efficient multilingual lemmatisation
engine and to make it publicly available under the GNU open source license. To
this end, we have developed a system, named LemmaGen, consisting of a learning
algorithm for automatic generation of lemmatisation rules in the form of Ripple
Down Rules (RDR) [Compton and Jansen 1990, Srinivasan et al. 1991] and an
algorithm for efficient lemmatisation using the generated rules.

The proposed LemmaGen approach assumes the availability of a lexicon of
lemmatised words. The main idea of our approach is: lemmatise a new—so far
unseen—wordform in the same way as the most similar wordform in the lexicon
was lemmatised. This can be achieved by transforming the problem of lemmati-
sation to the problem of classification: How to find the correct class (transfor-
mation) for the current wordform. Correspondingly, the lemmatisation problem
is translated to a problem of finding the most appropriate class, i.e. , the one of
the most similar wordform in the lexicon from which the lemmatiser is trained.

What remains is to define an appropriate measure of similarity between two
wordforms. As a measure of similarity we chose the length of the suffixes shared
by the two wordforms. For example, the similarity of wordforms computable and
compute is 1 (only the last -e is the same), while the similarity of wordforms
computable and permutable is 6 since they both share the -utable suffix. This
notion of similarity makes sense because our target languages (mostly) belong
to the Indo-European language group where inflection is commonly expressed by
suffixes. In these languages the words that have similar suffixes usually behave
alike when inflected, and as a consequence, their wordforms are similar when
considering suffixes.

The concept of lemmatisation by similarity can be extended to several ad-
ditional strategies, which in general increase the accuracy. Here we state just
the two included in our approach. First, one must resolve the ambiguity when
an unknown wordform has equal similarity to more than one wordform from
the lexicon. Considering there is no additional information, we choose the most
frequent class from the set of all similar wordform classes. In other words, we
complement the similarity measure of wordforms with the class frequency. Sec-
ond, it can also happen that one wordform has equal similarity to two wordforms
with the same class frequency. In this case we look for the second most similar
wordform to decide which class to prefer. These are some of the modifications
of the similarity measure which proved to improve the overall accuracy of our
lemmatisation approach.

The main advantages of the developed learner and multilingual lemmatiser
are the following. Firstly, LemmaGen implements a general, nonincremental
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RDR algorithm, specially tuned to learn from examples with a string-like struc-
ture. Secondly, it is a language independent learning engine, at least for inflec-
tional languages. Consequently, it has already been applied to generate lemma-
tisers for twelve different European languages. Next, the format of induced rules
is human readable and can be executed very efficiently (in constant time) when
used for lemmatisation of new words/texts. Finally, the learning algorithm and
the induced lemmatisers have been made freely available under the GNU open
source license (downloadable from http://kt.ijs.si/software/LemmaGen/v2/).

This paper presents the LemmaGen learning engine and lemmatisers for
twelve European languages, induced from eight Multext-East [Erjavec 2004] and
five Multext (Multilingual Text Tools and Corpora) lexicons [Ide and Véronis
1994] - English appears in both sets. [Section 2] introduces the definitions and
the lemmatisation problem. In [Section 3] we describe the LemmaGen input
and output formats, aimed at generating rules in an understandable decision
structure which enables efficient lemmatisation. [Section 4] describes how this
rule structure is automatically constructed from the lemmatisation examples by
LemmaGen. [Section 5] shows how the lemmatisation using constructed rules is
performed. In [Section 6] we describe the application of LemmaGen to 13 differ-
ent datasets, compare the results with two other publicly available lemmatisation
rule learners, and evaluate their performance in terms of lemmatisation accuracy,
efficiency, and applicability of the approach to different languages. [Section 7]
briefly discusses the implementation and availability of the algorithm and the
results. We conclude in [Section 8] with some conclusions and perspectives for
further research.

2 Background and Related Work

We first introduce some definitions. A wordform is the (inflected) form of the
word as it appears in a running text, e.g., wolves. This wordform can be mor-
phologically analysed into its stem wolf- and ending -s. As evident from the
example, phonological and morphological factors can influence how the abstract
stem and ending are combined to arrive at the wordform. These factors are es-
pecially complex in languages with heavy inflection, such as Slovene and other
Slavic languages, where stems can combine with many different endings, in a
many-to-many relation, and the selection of the appropriate ending for a given
stem and how they combine into a wordform can depend on a whole range of
factors, from phonological to semantic. Two methods are typically used to ab-
stract away from the variability of wordforms in preprocessing of texts (e.g., text
mining, search, information extraction and retrieval): stemming and lemmatisa-
tion. These two methods are introduced in this section, followed by an outline
of the related work.
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2.1 Stemming and Lemmatisation

The first method, stemming, is popular in information extraction and retrieval,
and essentially reduces a wordform to an invariant stem that semantically iden-
tifies it. This method often collapses different word-classes (parts-of-speech) and
does not, in general, produce a surface form. So, for example, the wordforms
computer, computing, computes, computable, computed would all be typically
stemmed to comput.

The second method, lemmatisation, transforms a wordform to its canonical
(normalised) form, the lemma, which corresponds to a headword in a dictionary.
This canonical form is a particular wordform which, by convention, serves to
identify an abstract word. The distinction between stems and lemmas is not so
important in English, where the stem is often identical to the lemma, but is
much more obvious in e.g. Slavic languages. For example, in English the lemma
of the wordform dogs is dog, of wolves is wolf, and of sheep is sheep. On the
other hand, in Slovene, for example, the wordform ovce (genitive of sheep) has
the stem owvc-, while the lemma form, by convention the nominative singular,
is ovca. In contrast to stemming, lemmatisation is more selective (a single stem
can have more than one lemma, e.g., verbal and nominal) and results in an
intuitively understandable form of the word. It is also more difficult: not only
does the word ending need to be removed from the wordform, but, in general, the
correct ending corresponding to the lemma has to be added, as illustrated by the
examples we used for stemming: the wordforms computing, computes, computed
should be lemmatised to compute; computer to computer; and computable to
computable.

Lemmatisation is also faced with the problem of ambiguity: a wordform, and
especially that of an unknown word can have multiple possible lemmas. So, for
example, the Slovene wordform hotela can be lemmatised as hotel (the noun ho-
tel), or hoteti (the verb to want). Which is the correct lemma depends on the
context that the wordform appears in. The task of morphosyntactic disambigua-
tion (i.e. , determining if a certain wordform in the text is a noun or a verb, and
also its other inflectional properties) is the domain of part-of-speech taggers, or,
more accurately, morphosyntactic taggers. By using the information provided by
such a tagger, a lemmatiser is in a much better position to correctly predict the
lemma form. However, as shown in this paper, even without such information,
a lemmatiser can still achieve a high lemmatisation accuracy. Moreover, since
our approach does not need morphosyntactic information, it can be used also
to lemmatise texts that are not part of complete sentences (contents of Short
Message Service, web queries, etc.).

2.2 Related Work

The problem of stemming and lemmatisation was already addressed in the
1960’s [Beth 1968]. Traditionally, hand-crafted morphological analysers (which,
as a side-effect, could also produce lemmas of wordforms) have been developed
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for a number of languages. Due to the existence of high-coverage, precise and
fast hand-crafted analysers, such as the well-known Porter stemmer [Porter 1990]
which is considered a de facto standard for English, and its successor, the mul-
tilingual Snowball stemmer (http://snowball.tartarus.org/), stemming and lem-
matisation were often taken as solved problems. However, these systems (often
using various methods such as finite state automata or transducers to compress
hand-crafted rules into a resulting language model) have several shortcomings:
lemmatisers do not do well on out-of-vocabulary words, and they are expensive
to construct. There are still languages without such an infrastructure, they are
difficult to adapt to language varieties, and are quite often not publicly available,
such as the stemmer for Slovene described in [Popovi¢ and Willett 1990].

Traditional hand-coded rules in grammars of natural languages typically obey
the Elsewhere condition [Kiparsky 1973]: “In cases where more than one rule
is applicable, the most specific rule should apply”. Hence, traditional hand-
coded lemmatisation rules are ordered, with exceptions coming first, followed
by more general rules. This principle has been followed also in most machine
learning approaches to learning lemmatisation rules: a rule induction system
ATRIS [Mladeni¢ 1993, Mladenié¢ 2002a), if-then classification rules and Naive
Bayes [Mladenié 2002b], a first-order rule learning system CLOG [Erjavec and
Dzeroski 2004], the CST lemmatiser [Dalianis and Jongejan 2006], and the Ripple
Down Rule (RDR) learning approach [Plisson et al. 2008].

The last three of these systems deserve special mention. The first-order deci-
sion list learner CLOG [Manandhar et al. 1998], described and evaluated in [Er-
javec and Dzeroski 2004, Dzeroski and Erjavec 2000, Erjavec and Sdrossy 2006,
relies on having information from a part-of-speech (POS) tagger; at a cost of
lower efficiency, POS tagging information allows CLOG to attain a high accuracy
(note, however, that such a tagger is not available for all languages). The CST
lemmatiser [Dalianis and Jongejan 2006] is one of the few trainable lemmatisers
that is available for download (from http://www.cst.dk/online/lemmatiser/uk/)
and we were therefore able to directly compare its results with the results
obtained by our lemmatiser, LemmaGen. Another publicly available lemma-
tiser, RDR [Plisson et al. 2008], was—like LemmaGen—inspired by the Ripple
Down Rule learning methodology for the GARVAN-ES1 expert system main-
tenance [Compton and Jansen 1988], where the idea was that new rules are
incrementally added to the system when new examples of decisions are avail-
able. However, new examples might contradict already existing rules, therefore
exceptions to the original rules have to be added as well. When executed, rules
are ‘fired’ top-down until the most specific applicable rule fires, thus obeying the
Elsewhere principle mentioned above.

To the best of our knowledge, the LemmaGen machine learning approach,
proposed in this paper, results in the most efficient publicly available lemmatisers
trained on large lexicons of several languages. Note also that the LemmaGen
learning engine can be retrained on additional languages, and could, most likely,
be generalised to deal with other ML problems involving string processing.
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3 Knowledge Representation

This section describes the LemmaGen input (training examples) and output
(lemmatisation rules) data structures.

3.1 Representation of Training Examples

The training data for lemmatisation is generally represented in the form of pairs
(Wordform, Lemma). However, for the sake of training by LemmaGen, training
examples are actually represented as pairs (Wordform, Class) where the Class
label is the transformation which replaces the wordform suffix by a suffix of the
lemma [see Table 1]. It is worth pointing out that our method can be used also
for stemming. One only has to replace the training pairs (Wordform, Lemma)
with (Wordform, Stem). Thus, even though we concentrate on lemmatisation,
one can easily switch to stemming by changing the training data.

Class
Wordform Lemma (WordformSuffix --> LemmaSuffix)

English

1 dogs dog (787 ==>7 ”f)

2 wolves  wolf "ves” —=>"{")

3 sheep  sheep (7 == ”)

4 looking  look 7ing” -->7" 7

5 took take ("00k” -=> "ake”)
Slovene

1 brat brati g” Vo—=> 75"

2 brala  brati ("la? ==> 7ti”)

4 beri brati Veri” ==>7 rati”)

4 berete  brati (Verete” -=> "rati”)

Table 1: Examples of class labels which are used to form training examples
(Wordform, Class) for lemmatisation of English and Slovene words. Note a great
variability of wordform endings for a single Slovene word brati (meaning to read
in English).

[Table 1] illustrates the variability of suffixes of wordforms of Slovene, a lan-
guage with high inflectional complexity. Note, however, that even in English
there are many different suffixes of wordforms sharing the same stem. [Table
2] lists a selected set of wordforms from the Multext English lexicons (used in
the experiments of [Section 6]) for lemmas starting with string writ-. The en-
tries in the lexicon have the form of triplets (Wordform, Lemma, MSD), where
MSD stands for the morphosyntactic description of the wordform, i.e. a feature
structure giving the part-of-speech and other morphosyntactic attributes of the
wordform.

3.2 Representation of Lemmatisation Rules

This subsection describes the output of the learning algorithm. We first describe
the standard Ripple Down Rule (RDR) structure and show how lemmatisation
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Wordform Lemma MSD

write write  Vvb---
write-off write-off Ncns-
write-offs write-off Nenp-
writer writer Ncfs-
writer writer Ncms-
writers  writer Ncfp-
writers  writer Ncmp-
writes write  Vvfps3
writhe writhe Vvb---
writhe writhe Vvipp-
writhe writhe Vvipsli
writhe writhe Vvfps2
writhed  writhe Vvfs--
writhed  writhe Vvps--
writhes  writhe Vvfps3
writhing writhe Vvpp--
writing ~ write = Vvpp—-
writing  writing Ncns-
writings writing Ncnp-

writs writ Ncnp-
written  write = Vvps--
wrote write  Vvfs--

Table 2: Triplets of the form (Wordform, Lemma, MSD), where MSD stands
for the wordform morphosyntactic description. This is the set of all lemmas
starting with writ-, as they appear in the Multext English lexicon (used in the
experiments of [Section 6]).

rules can be expressed using it. Then, a description of our refinement of the RDR
structure is given.

3.2.1 Standard RDR Format

Ripple Down Rules (RDRs) [Compton and Jansen 1990, Srinivasan et al. 1991]
were originally used for incremental knowledge acquisition and maintenance of
rule-based systems. Compared to standard if-then classification rules, RDRs re-
semble decision lists of the IF-THEN-ELSE form [Rivest 1987]. However, the main
idea of RDRs is that the most general rules are constructed first, and later, as
counter examples are encountered, exceptions to the rules are added (EXCEPT
branches) in an iterative, incremental rule building process. Consequently, RDRs
form a tree-like decision structure: rules and their exceptions are ordered, and
the first condition that is satisfied and has no exceptions, fires the correspond-
ing consequent. [Figure 1] shows a simple Ripple Down Rule describing flying
properties of birds and objects.

IF bird THEN flies EXCEPT
IF young bird THEN doesn’t fly
ELSE IF penguin THEN doesn’t fly EXCEPT
IF penguin in airplane THEN flies
ELSE IF airplane THEN flies

Figure 1: A simple Ripple Down Rule structure.
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A small - but realistic - RDR for wordform lemmatisation, constructed incre-
mentally from examples in [Table 2], is shown in [Figure 2]. The individual rules
in the RDR structure are ordered and need to be interpreted sequentially. A
valuable feature of RDR rules is also that one can attach examples to individual
clauses. For instance, in a rule such as

IF suffix("ote") THEN transform("ote" -->"ite") EG wrote

the additional EG keyword lists an example from the training set that caused the
creation of the decision branch. This feature of RDRs turns out to be helpful for
better understanding of complex rules.

1 IF suffix("") THEN transform(""-->"") EXCEPT

1.1 IF suffix("ote") THEN transform("ote"-->"ite")
1.2 ELSE IF suffix("ten") THEN transform("ten"-->"e")
1.3 ELSE IF suffix("s") THEN transform("s"-->"")

1.4 ELSE IF suffix("g") THEN transform(""-->"") EXCEPT
1.4.1 IF suffix("hing") THEN transform("ing"-->"e")
1.5 ELSE IF suffix("d") THEN transform("d"-->"")

1.6 ELSE IF suffix("e") THEN transform(""-->"")

1.7 ELSE IF suffix("r") THEN transform(""-->"")

1.8 ELSE IF suffix("f") THEN transform(""-->"")

1.9 ELSE IF suffix("t") THEN transform(""-->"")

Figure 2: A RDR structure, constructed by incremental learning algorithm
RDR [Plisson et al. 2008] from examples in [Table 2].

3.2.2 Refined RDR Format

In the case of learning lemmatisation rules, training examples in the form of
large lexicons are readily available. Therefore, there is no need for incrementally
adding exceptions while maintaining the initial, general rules. A compact RDR
structure, including all the exceptions, can be computed by a non-incremental
algorithm. In this subsection we show how the original RDR representation can
be refined in order to improve the readability and efficiency of RDRs for lem-
matisation.

Focusing on a single if-then rule inside the rule structure in [Figure 2] we can
see that it has the following form:

— A rule condition is the suffix of a wordform which fires the rule, e.g. ote in
Rule 1.1.

— A rule consequent is a class, i.e. , a transformation of the form Wordform-
Suffix —=> LemmaSuffiz, e.g. ote ——> ite in Rule 1.1.

Utilising the original RDR structure for lemmatisation has some disadvan-
tages considering our two main objectives, efficiency and readability. Firstly,
efficiency suffers because one is not able to directly detect which exception ap-
plies to the wordform that is currently being lemmatised. Therefore, at each level
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of the tree one must test conditions of all the exceptions until either the one that
applies is found or the end of the list is encountered. These lists of exceptions
can be long (i.e. , up to 200 for real lexicons) and their processing can take a
relatively large amount of time. The readability also suffers due to the long lists
of exceptions and sequential triggering of rules. For example, in [Figure 2], Rule
1.6 is more general then Rule 1.1 and has to be checked after Rule 1.1 for correct
interpretation.

To solve the problems of efficiency and readability we have refined the orig-
inal RDR structure, illustrated in [Figure 3]. Note that, from now on, in the
IF-THEN-ELSE rule format we will ommit the ELSE keyword in order to increase
the readability of rules.

The refined RDR structure was achieved by imposing equal-similarity con-
straint that solves both problems and can be elegantly expressed using the sim-
ilarity measure defined in [Section 1]: the similarity among conditions (suffixes)
inside one exception list must be the same for all possible pairs. For instance,
in [Figure 3], the similarity among conditions of the exception list of Rule 1 (-d,
-ote, -ing, -ten, -s) is zero. On the other hand, if we focus on the exception list of
Rule 1 in [Figure 2] we can notice that in the RDR structure the equal-similarity
constraint is violated: similarities among different suffixes are not the same: while
the similarity between suffixes 1.1 -ote and 1.2 -ten is 0, the similarity between
1.1 -ote and 1.6 -eis 1.

IF suffix("") THEN transform(""-->"") EXCEPT

1 IF suffix("d") THEN transform("d"-->"")

2 IF suffix("ote") THEN transform("ote"-->"ite")

3 IF suffix("ing") THEN transform("ing"-->"e") EXCEPT

3.1 IF suffix("ting") THEN transform(""-->"")

4 IF suffix("ten") THEN transform("ten"-->"e")

5 IF suffix("s") THEN transform("s"-->"")

Figure 3: A refined RDR tree structure, constructed by LemmaGen from En-

glish words in [Table 2].

Assertion.

Conditions in the same exception list of refined RDR structure satisfy the fol-
lowing constraints:

1. All the suffixes share the same ending (k — 1 characters).

2. The first character that is different among suffixes (the k-th character from
the right) is different for all the suffixes, therefore it disjunctively separates
all the suffixes.

One can always choose such k that the first statement holds, e.g., if the
suffixes share no common ending then k is set to 1. Subsequently, when k is
identified we must only prove that the second statement holds; namely, that
there are no two suffixes having the same character at the position k from the
end. This assertion is proved by contradiction; if two such suffixes exist, the
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similarity between them is greater (at least k) than between the others (k — 1).
This violates the equal-similarity constraint, therefore no such two suffixes exist.
With this we have proved that the proposed assertion holds if the equal-similarity
constraint is obeyed.

Using the above assertion we can derive the following properties of the refined
RDR structure.

1. It can always be decided which sub-rule fires on a specific wordform by
examining just one character (the k-th) of a wordform suffix. In combination
with a proper implementation (e.g., a hash table), the RDR structure can
be traversed very efficiently.

2. Exceptions are disjunctive. Consequently, there is always at most one sub-
rule that fires for a specific wordform. Moreover, all the rules dealing with
similar suffixes are grouped together; therefore the readability is considerably
improved.

3. The maximal number of exceptions of one rule is limited by the number of
characters in the alphabet. As conditions are disjunctive with respect to the
character at the k-th position, the number of disjunctive conditions cannot
be greater than the number of characters in an alphabet. For majority of
European languages, this number is less than 30 (note that in the original
RDR structure constructed by the incremental RDR learner there can be
several hundreds of exceptions in constructed rules). This also contributes
to improved efficiency and readability.

To summarise, the proposed refined RDR structure overcomes two weak-
nesses of original RDRs, improving their readability and enabling efficient exe-
cution in lemmatisation tasks.

4 The LemmaGen Learning Algorithm

This section describes the LemmaGen learning algorithm which learns lemma-
tisation rules in the form of a refined RDR structure. The learning algorithm
is efficient and language independent since it can be used for training on new
lexicons of lemmatised wordforms.

There are two main properties of the learning algorithm. Firstly, in contrast
to most of the RDR algorithms it is not an incremental learner. Secondly, it is
very efficient and has a low time complexity as compared to the original RDR
learners. These two properties—non-incrementality and efficiency—are the core
improvements of the LemmaGen learning algorithm.
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The pseudocode of the algorithm is given in [Figures 4 and 5]: the top level
function and recursive learning of a rule, respectively. To describe the algorithms,
we use an object oriented representation of the recursive RDR structure. Each
rule has three components: a condition, a class, and a (possibly empty) list of
exceptions:

RDR ::= IF rule.condition THEN rule.class EXCEPT rule.exceptions
where
— rule.condition is a wordform suffix,

— rule.class is a transformation to be applied to a wordform, and
— rule.exceptions ::= nil | RDR+ (list of RDRs).

The input to learning is a list of training examples, and the output is a RDR
structure. The top level function, LearnRDR [Figure 4], just sorts the examples
by their wordforms with character strings reversed (line 1.2), and invokes recur-
sive rule learning (function LearnRecursive) on the sorted list of examples (line
1.3).

.1 function LearnRDR(examplesList)

2 sortedExamplesList = Sort(examplesList, 'reverse dictionary sort’)
.3 entireRDR = LearnRecursive(sortedExamplesList)

4 return entireRDR

Figure 4: Top level function of the LemmaGen learning algorithm.

The LearnRecursive function [Figure 5] is the core of the learning algorithm.
The function assumes that the examples are sorted by their wordforms, and that
each recursive invocation deals with example wordforms which share increasingly
longer suffixes. The recursion stops when all the remaining wordforms in the
currentExamplesList are equal or when there remains just a single example in
this list. The LearnRecursive function is executed as follows:

— It first finds the common suffix of all examples from the currentExampleList.
commonSuffix can be determined by just comparing the suffixes of the first
and last wordforms (line 2.2) because the currentExamplesList is sorted.

— Next, it initialises the main variable currentRule to an empty RDR structure
(line 2.4), assigns to its condition the commonSuffiz (line 2.5), and to its
class the most frequent class of the current set of examples (line 2.6). When
determining the most frequent class (function MostFreqClass), it ignores such
classes X-->Y in which X is more specific than the current commonSuffiz.

— The list of exceptions (currentRule.exceptions) is constructed in the part of
the pseudocode between lines 2.7 and 2.19.

e Line 2.8 sets the index to start grouping of examples into subsets with
longer common suffixes (longer than current commonSuffiz). The subsets
are identified iteratively in the for loop (line 2.9). These subsets will later
be used to form new exceptions of the current rule.
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First, two adjacent wordforms are extracted from currentExamplesList
(lines 2.10 and 2.11). Then the character which distinguishes the suffixes
of the two wordforms needs to be determined. It is the first character
left of the common suffix of the two wordforms; in the pseudocode, the
position of this “distinguishing” character is determined by subtracting
the length of the common suffix from the wordlength of each of the two
wordforms (lines 2.12 and 2.13).

Once the subgroup of examples with a longer common suffix is deter-
mined (through identifying the two wordforms with different “distin-
guishing” character - i.e. when the condition 2.14 is no longer satisfied),
the exception to the current rule is constructed (2.17) by recursively
calling the LearnRecursive procedure for the current group of examples
(a subset of currentEramplesList from position start to current position
7). Finally, the created exception is added to the list of exceptions of the
currentRule (line 2.18).

The pseudocode is an abstraction of the actual implementation and does
not deal with the details of boundary conditions. It also omits some heuristics
which optimise the resulting RDR structure by taking into account subsumption
between the rules.

2.1 function LearnRecursive(currentExamplesList)

2.2

2.3

N
[G23SN

el e e el i e N SN B e

commonSuffix = EqualSuffix(currentExamplesList.First().wordform,
currentExamplesList.Last().wordform)
lengthCommonSuffix = StringLength(commonSuffix)

currentRule = RDR()
currentRule.condition = commonSuffix
currentRule.class = MostFreqClass(currentExamplesList)

currentRule.exceptions = nil
start = 1;
for i = 1 to Length(currentExamplesList)-1
wfl = currentExamplesList[i].wordform
wi2 = currentExamplesList|[i+1].wordform
charPosition1 = StringLength(wfl) - lengthCommonSuffix
charPosition2 = StringLength(wf2) - lengthCommonSuffix
if (GetChar(wfl,charPositionl) == GetChar(wf2,charPosition2))
continue
else
exceptionRule = LearnRecursive(currentExamplesList[start..i])
currentRule.exceptions. Append(exceptionRule)
start = i+1

return currentRule

Figure 5: Recursive function for learning a RDR structure (top level rule and
all exception subrules) from a current list of examples.

Theoretical time complexity of the algorithm is O(N - M) where N is the
number of all training examples in examplesList and M is the length of the

longest

wordform in the examples. There are two main parts of the algorithm
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which need to be considered for time complexity calculation. Firstly, there is
lexicographic sorting of the examples (line 1.2 in [Figure 4]); the time complexity
of sorting is in general O(N - logN), however, since we are dealing with strings
of limited length we can use radix sort which has the time complexity of O(N -
M). The second part refers to learning of a RDR (line 1.3), specifically the
function LearnRecursive(examplesList). The worst-case time complexity here is
again O(N - M) - the algorithm tests each word in the list of examples (N)
and each time progresses by at least one character, therefore at most M such
repetitions can happen for a word. Thus, we conclude that also the overall time
complexity is O(N - M). Furthermore, as M is usually fixed for a given language,
it can be considered a constant and the actual time complexity of the learning
is O(N), i.e. it is linear with respect to the number of examples.

5 The LemmaGen Lemmatisation Algorithm

This section describes the LemmaGen lemmatisation algorithm, which uses the
refined RDR structure to assign lemmas to words of a given language. The
efficiency of this algorithm is due to the design and compactness of the refined
RDR structure.

In the following we present how the learned RDR structure is applied to
the classification of new words during lemmatisation. [Figure 6] shows the pseu-
docode of the lemmatisation algorithm. The code is simple, although one point
needs some elaboration: how to (effectively) choose the next exception (if it
exists):

— First, the position of a character (keyChar) which disjunctively separates
the exceptions inside the wordform is retrieved (line 1.3). charPosition is
calculated by subtracting the length of the current rule suffix from the length
of the wordform (line 1.2). In such a way we get the k-th character of the
wordform (as defined in [Section 3.2.2]).

— Using the k-th character as the key, the exception is directly retrieved from
the hash table rootRule.exceptions if it exists (lines 1.4 and 1.5). The key in
the hash table is just one (distinguishing) character, while the value is the
exception-sub-rule that corresponds to the given character.

— With this procedure one retrieves exception rules along the tree path until
there are no more exceptions. When the last one (i.e. the most specific one)
is found, it is used to lemmatise the wordform by applying the assigned
transformation to it (line 1.8).

The worst-case time complexity of the lemmatising algorithm is O(M ), where
M is depth of the RDR tree, i.e. in the worst case the length of the longest
wordform from the examples. However, since the longest training wordform is
limited, lemmatisation can be performed in constant time O(1).
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1.1 function Lemmatise(wordform, rootRule)

1.2 charPosition = StringLength(wordform) - StringLength(rootRule.condition)
1.3 keyChar = GetChar(wordform,charPosition)

1.4 if (rootRule.exceptions.Exist(keyChar))

1.5 exceptionRule = rootRule.exceptions.Get(keyChar)

1.6 return Lemmatise(wordform, exceptionRule)

1.7 else

1.8 lemma = rootRule.class.Transform(wordform)

1.9 return lemma

Figure 6: The lemmatisation function implements a recursive descent through
the RDR structure until there is no exception to the current rule.

6 Learning Multi-lingual Lemmatisation Rules: LemmaGen
Application to Multext-East and Multext data

This section describes how the LemmaGen learner was used to induce lemmati-
sation rules for all the languages for which training lexicons are available through
EU projects Multext [Ide and Véronis 1994] (Multilingual Text Tools and Cor-
pora) and Multext-East [Erjavec 2004] (Multext for Central and Eastern Euro-
pean Languages). The lexicons were used to automatically learn lemmatisers for
different languages. The accurate and efficient publicly available lemmatisers for
12 European languages represent an important contribution of this paper.

6.1 Multext-East and Multext Lexicons

There were altogether 13 lexicons for 12 European languages available for learn-
ing (there are two different training sets available for English). The sizes and
properties of these training sets are listed in [Table 3]. Some observations can be
made from this table:

— The sizes of the lexicons differ very much across languages, and the expec-
tation would be that the larger the lexicon (training set), the better the
achieved lemmatisation accuracy.

— Each lexicon contains records in the form of triples (Wordform, Lemma,
MSD), where MSD stands for the wordform morphosyntactic description.

— The number of distinct MSDs for a language may seem to indicate its inflec-
tional complexity; however, it should be noted that the differences in their
numbers are also due to different MSD design principles employed for var-
ious languages. So, for example, Slovene has significantly more MSDs than
Serbian or Czech, although the languages are inflectionally of comparable
complexity. The main reason for this is a very detailed pronoun typology for
Slovene, which leads to over one thousand MSDs for pronouns alone.

— The ratio of the number of wordforms against the number of distinct lemmas
should indicate the size of inflectional paradigms of various languages, and
also give an indication of their inflectional complexity. However, this is not
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overall the case, as different principles were adopted in constructing the
lexica: some languages (i.e. Multext languages, Slovene, Romanian) include
the complete paradigms for each lemma, while the others include only entries
of wordforms actually attested in a reference corpus.

— The number of lemmas per wordform and per wordform-MSD pair indicate
the upper bound on lemmatisation accuracy. With the ratio greater than
1, a lemmatiser will be, even theoretically, unable to always generate the
correct lemma given a wordform or wordform-MSD pair. As can be seen, this
problem can be quite severe if the lemmatiser operates only on wordforms;
in the worst case (Estonian) the ambiguity is over 15%. If the MSD is taken
into account, some ambiguity still remains, but is, even in the worst case
(Hungarian), under 1.4%.

— The percentage of entries where the wordform is identical to the lemma
(WF=Lemma in [Table 3]) gives the accuracy of a baseline lemmatiser, which
would simply assume that the lemma is always identical to the wordform. As
can be seen, this approach would already give about 60% accuracy for En-
glish. However, with other languages the situation corresponds less well with
intuitions, again due to the differences in design criteria discussed above. Lex-
icons including complete inflectional paradigms have a much lower percent-
age, as lemma-identical wordforms will tend to occur much more frequently
in corpora than in paradigms. Especially surprising is the very low number
for Spanish - inspection of the lexicon reveals that the lexicon contains a
large number of verbs, which, in Spanish, have a large number of different
wordforms, leading to under 3% of lemma-identical wordforms.

In summary, the statistics over the lexicons have as much to do with the
decisions made in the design of the MSD sets and what wordforms to include in
the lexica, as with the morphological complexity of the various languages.

6.2 Learners Used in the Experimental Evaluation of LemmaGen

We have compared the performance of LemmaGen to the performance of other
available lemmatisation rule learners: CST [Dalianis and Jongejan 2006] and
RDR [Plisson et al. 2008].

CST [Dalianis and Jongejan 2006] is one of the few trainable lemmatisers
that is available for download, and therefore we were able to directly compare
its results with the results obtained by our lemmatiser, LemmaGen. The other
publicly available lemmatiser, RDR [Plisson et al. 2008] was—Ilike LemmaGen—
inspired by the Ripple Down Rule learning methodology [Compton and Jansen
1988], implementing the idea of iterative ruleset construction: new rules are
incrementally added to the system when new examples of decisions are made
available.
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Lemmas per WF=
Language Records Wordforms Lemmas MSDs WF WF-MSD Lemma

Multext-East

Slovene 557,970 198,083 16,352 2,083 1.0444 1.0008 5.75%
Serbian 20,294 16,809 8,355 906 1.0288 1.0025 25.08%
Bulgarian 55,200 40,708 22,790 338 1.1017 1.0058 28.92%
Czech 184,628 56,795 23,030 1,428 1.0464 1.0062 39.36%
English 71,784 48,309 27,343 135 1.0208 1.0007 61.08%
Estonian 135,094 89,128 46,747 642 1.1540 1.0079 24.88%
Hungarian 64,042 50,908 27,991 619 1.1219 1.0138 29.45%
Romanian 428,194 352,003 39,275 616 1.0453 1.0010 11.77%

Multext

English 66,216 43,273 22,794 133 1.0184  1.0006 58.17%
French 306,795 231,734 29,319 380 1.0166 1.0014 11.71%

German 233,858 50,085 10,485 227 1.0319 1.0024 22.11%
Italian 145,530 115,614 8,877 247 1.0636 1.0042  6.47%
Spanish 510,709 474,150 13,232 264 1.0069 1.0010 2.73%

Table 3: Sizes and properties of the Multext-East and Multext lexicons, in
terms of numbers of records, different wordforms, lemmas and MSDs, as well as
average numbers of lemmas per wordform, lemmas per pair (Wordform, MSD),
and the percentage of records where the wordform is identical to the lemma.

6.3 Experimental Settings

For training and testing experiments we used 5-fold cross validation repeated 20
times. Five-fold cross validation is adequate for our experiments as it is estimated
that on the average, for all the twelve languages, approximately 80% of all the
words of a given language are present in the lexicon. The procedure is repeated
20 times to ensure the stability of statistical evaluation measures (e.g. average
accuracy, standard deviation).

The three learning algorithm were tested in two different experimental set-
tings. Recall that in the original lexicons the records are formed of triples (Word-
form, Lemma, Morphosyntactic description). The two settings differ in terms of
whether they use the morphosyntactic descriptions (MSD) assigned to the pairs
wordform-lemma or not.

— In the first experimental setting the MSDs were not used. This is the more
difficult experimental setting, mimicking the situation in applications work-
ing on raw text data (e.g., web page analysis, information retrieval, document
clustering and classification, etc.), where stemming and lemmatisation are
standardly used in the preprocessing of text documents and in which data
is usually not (manually or automatically) annotated by morphosyntactic
tags. This realistic setting does not need, apart from tokenisation and case
normalisation, any additional processing. However, the achieved accuracies
are lower than those achieved in the second setting.

— In the second experimental setting, MSD information was used in the follow-
ing way: for every language the available training set was split into separate
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training sets, one per MSD. For Slovene this amounts to 2,083 training sets,
for Serbian 906 training sets, etc. (c.f. MSDs column of [Table 3]). While
being more complex for experiments, due to the separation into numerous
separate training sets, the learning task in each training sets is simpler. The
main reason is that this separation by itself eliminates many ambiguities:
the same wordform string may have several lemmas, but if these are sep-
arated into different training sets for different MSDs, the ambiguities are
automatically resolved. In this experimental setting the overall classification
accuracy is expected to be higher than in the first one. In practice, using
MSD information means that, in order to lemmatise a text, it needs to be
first tagged with such MSDs. We do not address this issue here, but see the
experiments with CLOG [Erjavec and Dzeroski 2004].

6.4 Experimental Results Without Using MSDs

In these experiments, only pairs (Wordform,Lemma) from the lexicons were used.
LemmaGen was compared to RDR and CST.

6.4.1 Accuracy Testing

Training Set Test Set
Language RDR CST LemmaGen RDR CST LemmaGen
Mult-East
Slovene 95.5 +£0.04 97.7 £0.02 97.7 £0.02 78.4 £0.21 78.9 +£0.21 79.8 +0.22
Serbian 94.3 +0.14 97.8 +0.08 97.9 +0.08 63.8 £0.80 64.0 £0.82 65.3 £0.77
Bulgarian 91.1 £0.11 93.5 £0.07 93.7 £0.07 68.7 £0.52 69.3 £0.51 70.4 +0.49
Czech 96.7 £0.06 97.9 £0.04 97.9 £0.03 75.0 £0.56 76.9 +£0.50 78.3 +0.51
English 97.7 £0.05 98.8 £0.03 98.8 £0.03 89.1 £0.36 90.4 £0.34 90.8 +0.32
Estonian 87.1 +0.08 89.6 £0.07 89.7 £0.07 62.7 £0.35 62.3 £0.33 63.3 £+0.32
Hungarian 90.2 £0.07 91.8 £0.06 91.9 +£0.06 72.0 £0.39 71.7 £0.37 72.3 £0.37
Romanian 94.9 +£0.03 96.8 £0.02 96.8 £0.02 72.6 £0.16 72.7 £0.16 73.1 +£0.16

Multext

English 98.1 £0.05 99.0 £0.03 99.0 £0.03 90.7 £0.34 92.0 £0.31 92.4 +0.29
French 96.7 £0.04 98.8 £0.02 98.8 £0.02 86.4 +0.22 86.4 +0.22 87.5 +£0.20

German 94.6 +0.08 98.0 +0.05 98.0 £0.04 77.1 £0.43 81.2 £+0.42 82.7 +0.43
Italian 93.8 £0.05 95.6 £0.04 95.7 £0.04 80.6 +0.27 79.8 £0.26 80.5 £0.25
Spanish 99.1 +£0.01 99.4 +£0.01 99.4 £0.01 94.3 £0.07 95.2 +0.06 95.4 +0.06

Table 4: Comparison of accuracies achieved by RDR, CST and LemmaGen in
the first experimental setting (without using the MSD information).

Results of the comparison are given in Table 4]. Some further explanations
are required before analysing the results table.

— Accuracy: Lemmatisation assigns a transformation (class) to a wordform. If

there are P correctly lemmatised wordforms, and N is the total number of

wordforms, then Acc = %.
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— Accuracy was averaged separately on training and test sets over 100 runs (20
times 5-fold cross validation). When constructing a test set we made sure
that no two words with the same wordform and lemma appeared in both the
training and test set in the same validation step.

— The pairwise differences in the accuracy were tested for statistical signifi-
cance by a paired Wilcoxon signed-ranks test [Wilcoxon 1945]. When the
highest accuracy is significantly different from the rest (for a p-value = 0.05)
this is indicated by a bold value in the table.

6.4.2 Algorithm Ranking in Terms of Accuracy

The goal of our experimental evaluation is to verify a hypothesis that LemmaGen
performs significantly better in comparison to RDR and CST, over multiple data
sets. The widely used t-test is usually inappropriate and statistically unsafe for
such a comparison [Demsar 2006].

To compare two classifiers over multiple data sets, the Wilcoxon signed-
ranks test [Wilcoxon 1945] is recommended. However, in our case we want to
compare three classifiers in terms of their accuracies. To test the significance of
differences between multiple means, a common statistical method is the well-
known ANOVA [Fisher 1959] and its non-parametric counterpart, the Friedman
test [Friedman 1940].

We applied the Friedman test and its corresponding Bonferroni-Dunn [Dunn
1961] post-hoc test. The Friedman test ranks the algorithms for each data set
separately, the best performing algorithm getting the rank of 1, the second best
rank 2, etc. In the case of ties (we used accuracies computed to a precision of
just one decimal point), average ranks are assigned. The Friedman test then
compares the average ranks of the algorithms. The null-hypothesis states that
all the algorithms are equivalent and so their ranks should be equal. If the null-
hypothesis is rejected, we can proceed with a post-hoc test.

— The Nemenyi test [Nemenyi 1963] should be used if all the classifiers are to
be compared to each other.

— In our case, however, we want to compare other classifiers (RDR and CST)
to our control classifier (LemmaGen). Consequently, the Bonferroni-Dunn
[Dunn 1961] test is used since it has a much greater power when all classifiers
are compared only to a control classifier and not between themselves [Demsar
2006].

The Bonferroni-Dunn test computes the critical distance (in our case 0.88
for given p-value 0.05) between a classifier and the control classifier, and con-
cludes that the accuracy of the two classifiers is significantly different if the
corresponding average ranks differ by at least the critical distance.

The results of the Bonferroni-Dunn post-hoc tests are graphically represented
by a simple diagram. [Figure 7] shows the two results of the analysis of the
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Critical Distance (0.88) Critical Distance (0.88)

3 2 1 3 2 1
Jﬁ 1 | L 1 |
RDR (3.00) LemmaGen (1.31) RDR (2.65) LemmaGen (1.07)

CST (1.69) CST (2.27)

(a) Training Set (b) Test Set

Figure 7: Visualisation of Bonferroni-Dunn post-hoc tests for the first experi-
ment (without MSDs), using average ranks of algorithms on data from [Table 4].

accuracies from [Table 4]. On the axis of each diagram we plot the average rank
of the algorithms. The lowest (best) ranks are to the right. We also show the
critical distance on the top, and connect the algorithms that are not significantly
different. From the results we can draw two conclusion. On the training sets,
LemmaGen is significantly better then RDR, but not significantly different from
CST. However, on the test sets, LemmaGen is in terms of accuracy significantly
better than both CST and RDR.

6.5 Experimental Results When Using MSDs

In these experiments, MSD information was used, and datasets were separated
by language and by MSD. LemmaGen was again compared to RDR and CST.

6.5.1 Accuracy Testing

Language

RDR

Training Set

CST

LemmaGen

RDR

Test Set
CST

LemmaGen

Mult-East
Slovene
Serbian
Bulgarian
Czech
English
Estonian
Hungarian

Romanian

99.8 £0.01
99.7 £0.03
99.4 £0.02
99.4 +0.03
99.7 £0.02
99.1 £0.02
98.7 £0.03
99.7 £0.00

99.9 £0.00
99.7 £0.03
99.5 £0.02
99.4 £0.03
99.9 £0.01
99.2 £0.02
98.8 +0.04
99.9 £0.00

99.9 £0.00
99.8 £0.02
99.5 £0.02
99.5 +£0.03
99.9 £0.01
99.3 +£0.02
98.9 £0.03
99.9 £0.00

93.2 £0.16
85.2 £0.60
93.7 £0.22
90.0 £0.35
97.5 £0.12
90.3 £0.22
92.1 £0.25
88.3 £0.10

91.1 £0.18
83.0 £0.63
84.0 £0.40
89.3 £0.36
95.4 £0.23
80.4 +£0.29
79.9 £0.34
83.0 £0.14

93.4 +0.16
86.1 +£0.61
94.1 £0.21
90.6 +0.35
97.7 £0.17
90.8 £0.21
92.3 +0.24
88.6 +£0.11

Multext
English
French
German
Italian
Spanish

99.8 £0.01
99.6 £0.01
99.7 £0.01
99.3 £0.02
99.8 £0.00

99.9 £0.01
99.8 £0.01
99.7 £0.01
99.6 +0.01
99.9 £0.00

99.9 £0.01
99.8 £0.01
99.8 £0.01
99.6 £0.01
99.9 £0.00

97.8 £0.16
96.8 £0.09
96.2 £0.17
95.4 £0.14
98.1 £0.05

96.0 £0.19
94.8 £0.13
95.4 £0.20
88.3 £0.23
97.5 £0.05

98.0 +0.13
97.1 £0.08
96.3 +0.16
95.7 £0.14
98.4 £0.04

Table 5: Comparison of accuracies achieved by RDR, CST and LemmaGen in
the second experimental setting (using the MSD information).

The methodology of testing for second experimental setting is the same as in

case of first experimental setting, therefore all the results from [Table 5] are di-
rectly comparable to [Table 4]. We notice an overall increase of accuracies in this
setting as expected, since MSD tags can be used by algorithms to disambiguate
between ambiguous wordforms.



Jursic M., Mozetic |, Erjavec T., Lavrac N.: LemmaGen: Multilingual ... 1209

6.5.2 Algorithms Ranking in Terms of Accuracy

Methodology of ranking is again the same as in the first experimental setting
and the conclusions are also similar. In terms of accuracy, LemmaGen is, on
training sets, significantly better then RDR, but not significantly different from
CST. However, on the test sets, LemmaGen is significantly better than CST and
RDR, as shown in [Figure 8].

Critical Distance (0.88) Critical Distance (0.88)
3 2 1 3 2 1
Ly 1 | |
RDR (2.88) LemmaGen (1.31) CST (3.00) LemmaGen (1.05)
CST (1.81) RDR (2.00)
(a) Training Set (b) Test Set

Figure 8: Visualisation of Bonferroni-Dunn post-hoc tests for the second exper-
iment (with MSDs), using average ranks of algorithms on data from [Table 5].

6.6 Accuracy Comparison by Language

In this section we briefly compare and discuss the accuracy results achieved by
LemmaGen on the test sets according to language, with the results summarised
in [Table 6].

The accuracy rank of a language corresponds much better to the traditional
notion of inflection complexity of languages and language families than do most
statistics over the lexicons, with weakly inflecting West-European languages
coming first, followed by heavily inflecting Slavic languages. The two non-Indo-
European (and non-inflecting, but rather agglutinating) languages, Hungarian
and Estonian are grouped together and appear among the Slavic languages.

There are, however, some outliers. Spanish should appear close to Italian,
and the fact that it is first seems especially surprising as only about 3% of the
wordforms in the lexicon are identical to their lemmas (c.f. [Table 3]), meaning
that some morphological operation needs to be performed on practically every
wordform. The explanation seems to be, as discussed in Section 6.1 that Spanish
contains full paradigms for a large number of verbs, but while these paradigms
contain many wordforms, the relation of the wordforms to the lemmas is quite
regular and simple.

The first Slavic language is, unsurprisingly, Bulgarian, as it has lost almost
all its nominal inflection, and is by far the least inflecting among the Slavic
languages covered. It is interesting to note that Bulgarian, while being ranked
seventh in the second experiment, was only the eleventh in the first - meaning
that the lemma of its wordforms is very difficult to predict without recourse to
the MSD. Next comes Slovene, which is also, to a certain extent, an outlier, as it
would be expected to be quite close to Czech and Serbian. This is, as mentioned
in Section 6.1, largely due to the different principles in constructing the lexica -
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Slovene contains full inflectional paradigms, which Czech and Serbian have only
the wordforms attested in the reference corpus used to construct the lexicon.
They thus cover fewer wordforms per lemma, making for a sparser — and more
irregular — dataset.

Next come the two agglutinating languages, Hungarian and Estonian, which
have significantly different properties than inflectional ones - but, it would seem
from the results, are still simpler than Slavic ones when the construction princi-
ples of the lexicons (taking only corpus wordforms and not full paradigms) are
the same. After Czech comes, somewhat surprisingly, Romanian, which should
intuitively be simpler than Slavic languages, although more complex than other
Romance ones. An inspection of the lexicon reveals that at least a part of the
reason is in their treatment of abbreviations and bound wordforms. The first are
often expanded (e.g. “ADN” has the lemma “acid_dezoxiribonucleic”), while the
second exhibit changes also in the first part of the word, rather than only in the
suffix (e.g. “-mbarcasem” has the lemma “mbarca” and “amorul-propriu” the
lemma “amor-propriu”). Such cases cannot be adequately covered by a lemma-
tiser that operates on word suffixes.

The worst ranked is Serbian — but this is likely due to the much smaller
lexicon (training set) than is available for the other languages.

Language  MSDs Experiment 1 Experiment 2
Accuracy Rank Accuracy Rank

Spanish 264 95.4 1 98.4 1
English MTE 133 92.4 2 98.0

English MT 135 90.8 3 97.7 3
French 380 87.5 4 97.1 4
German 227 82.7 5 96.3 5
Italian 247 80.5 6 95.7 6
Bulgarian 338 70.4 11 94.1 7
Slovene 2,083 79.8 7 93.4 8
Hungarian 619 72.3 10 92.3 9
Estonian 643 63.3 13 90.8 10
Czech 1,428 78.3 8 90.6 11
Romanian 616 73.1 9 88.6 12

Serbian 906 65.3 12 86.1 13

Table 6: Comparison of LemmaGen accuracy by language. The first column
gives the language, the second the number of different MSDs in the lexicon,
the third and fourth columns the accuracy and rank for the first experiment
with LemmaGen, and the fifth and sixth the accuracy and rank for the second
experiment. The rows are sorted according to the rank of the second experiment
(when MSDs were used).

6.7 Efficiency Testing

[Table 7] shows the results of efficiency testing. Numbers in the table represent
the average time (in ps) needed to learn (Training time) and lemmatise (Lem-
matisation time) one wordform. Hence, the table values should be read as: The
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Training time Lemmatisation time
per word [ps] per word [ps]
Language RDR CST LemmaGen RDR CST LemmaGen

Multext-East

Slovene 14.3 87.8 3.9 3.2 4.6 0.6
Serbian 9.7 58.6 5.8 2.5 5.2 0.7
Bulgarian 22.2 725 4.6 5.5 5.3 0.7
Czech 10.8 63.1 3.4 2.3 4.2 0.6
English 8.2 574 3.2 2.0 4.8 0.6
Estonian 14.3 118.7 4.8 3.0 6.0 0.7
Hungarian 10.5 79.2 4.5 2.2 6.0 0.7
Romanian 120.7 210.2 6.7 46.2 7.2 0.7
Multext
English 7.6 52.1 3.1 1.8 4.7 0.6
French 16.6 92.5 4.6 3.7 6.2 0.7
German 12.0 74.9 3.1 2.7 4.2 0.7
Italian 9.2 86.9 4.6 2.0 6.1 0.7
Spanish 17.4 92.4 4.7 40 7.6 0.7

Table 7: Efficiency Testing: Comparison of the learning and lemmatisation ef-
ficiency between RDR, CST and LemmaGen.

lower the better. We do not provide ranking tests for efficiency results, since it is
obvious that LemmaGen is by far more efficient than the other two algorithms.

7 Implementation and Availability

The LemmaGen learning algorithm (implemented in C++) and the 13 induced
lemmatisers (lemmatisation rules in the refined RDR form, together with the
reasoner which assigns a lemmatised form to a new word to be lemmatised)
are freely available under the GNU open source license and downloadable from
http://kt.ijs.si/software/LemmaGen/v2/. The original implementation is in the
form of a set of command line utilities. However, we also provide much nicer
web user interface (http://lemmagen.ijs.si/), were users can directly lemmatise
individual texts or entire files in any described language without the need to
download, install or compile the software locally. Our lemmatisers have already
been used in practice: lemmatisers for 12 different languages have been incorpo-
rated into the Orange data mining toolkit [Orange 2009].

The Multext-East lexicons are also freely available from our website at
http://nlijs.si/ME/, and the Multext lexicons are available from ELRA
(http://www.elra.info).

8 Summary and Further Work

We have developed LemmaGen, a learning algorithm for automatic generation
of lemmatisation rules in the form of a refined RDR tree structure. The al-
gorithm has O(NV) learning time complexity, is very efficient in lemmatisation,
and can produce accurate lemmatisers from sufficiently large lexicons. The main
contributions of this paper are the following:
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— Improved compactness and readability of rule representation, by refining
the RDR structure, resulting in condensed rules according to the similarity
between conditions (suffixes) inside one exception list [see Section 3.

— Design of a generic, non-incremental RDR learning algorithm with low worst-
case time complexity [see Section 4].

— Efficiency of the LemmaGen lemmatisation algorithm, empirically validated
against RDR and CST, which uses the refined RDR lemmatisation rules to
assign lemmas to words of a given language. Improved efficiency is achieved
by exploiting the design and compactness of the refined RDR structure [see
Section 5).

— Lemmatisation rules, induced from Multext-East and Multext training lex-
icons, which improve the accuracy and efficiency of lemmatisation for most
of the 12 European languages covered [see Section 6].

— Finally, the availability of the LemmaGen software, the language models,
as well as the public data from which the results were achieved, enabling
the reproducibility of the reported experimental results, and direct use of
the developed software and models for further research and applications [see
Section 7).

This work leaves ample room for further research. It would be worthwhile to
perform linguistic analysis of the LemmaGen rules, especially those obtained in
the second experimental setting in which the data was separated into subsets
according to different MSDs. Next, it is our plan to incorporate LemmaGen into
other text analytics toolboxes, in the first instance into Ontogen [Fortuna et al.
2006].

Testing LemmaGen on other languages is also on our future agenda; the
ultimate test will be the application of LemmaGen to lexicons of radically dif-
ferent languages, such as Arabic, which will most likely show the limitations of
wordform suffix analysis approach used in our work.

In further work it would be also interesting to test whether the developed
non-incremental RDR learning algorithm can be adapted to learning from other
examples with a string-like structure, such as aminoacids in the case of proteins,
and nucleotides in the case of genes.
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