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Abstract

This paper gives a survey of contrast set mining (CSM), eingngattern mining (EPM), and sub-
group discovery (SD) in a unifying framework nam&gpervised descriptive rule discovelyhile

all these research areas aim at discovering patterns imthedf rules induced from labeled data,
they use different terminology and task definitions, clainave different goals, claim to use dif-
ferent rule learning heuristics, and use different meansdtecting subsets of induced patterns.
This paper contributes a novel understanding of these sabaf data mining by presenting a uni-
fied terminology, by explaining the apparent differencesvbeen the learning tasks as variants of
a unique supervised descriptive rule discovery task andkploeng the apparent differences be-
tween the approaches. It also shows that various rule legh@uristics used in CSM, EPM and SD
algorithms all aim at optimizing a trade off between rule@@ge and precision. The commonali-
ties (and differences) between the approaches are shaivoaseselection of best known variants
of CSM, EPM and SD algorithms. The paper also provides aatifiurvey of existing supervised
descriptive rule discovery visualization methods.

Keywords: descriptive rules, rule learning, contrast set mining, rging patterns, subgroup
discovery

1. Introduction

Symbolic data analysis techniques aim at discovering comprehensible paitemodels in data.
They can be divided into techniques faedictive inductionwhere models, typically induced from
class labeled data, are used to predict the class value of previousgnumsemples, andescriptive
induction where the aim is to find comprehensible patterns, typically induced fromelethdata.
Until recently, these techniques have been investigated by two differegdirch communities: pre-
dictive induction mainly by the machine learning community, and descriptive tratumainly by
the data mining community.

x. Also at University of Nova Gorica, Vipavska 13, 5000 Nova Goriday&nia.
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Data mining tasks where the goal is to find humanly interpretable differerategédn groups
have been addressed by both communities independently. The groups a#erpreted as class
labels, so the data mining community, using the association rule learning p@rspadapted as-
sociation rule learners like Apriori by Agrawal et al. (1996) to perfarask namedontrast set
mining (Bay and Pazzani, 2001) amenerging pattern miningDong and Li, 1999). On the other
hand, the machine learning community, which usually deals with class labeledvdatehallenged
by, instead of building sets of classification/prediction rules (e.g., Clark\ailett, 1989; Cohen,
1995), to build individual rules for exploratory data analysis and ineggpion, which is the goal of
the task namedubgroup discovergWrobel, 1997).

This paper gives a survey of contrast set mining (CSM), emerging pattgring (EPM), and
subgroup discovery (SD) in a unifying framework, nansgbervised descriptive rule discovery
Typical applications of supervised descriptive rule discovery incluateept risk group detection
in medicine, bioinformatics applications like finding sets of overexpresseesger specific treat-
ments in microarray data analysis, and identifying distinguishing featurefexiat customer seg-
ments in customer relationship management. The main aim of these applications detstand
the underlying phenomena and not to classify new instances. Take ailbhtsteative example,
where a manufacturer wants to know in what circumstances his machinesreay down; his
intention is not to predict breakdowns, but to understand the factorsetiito them and how to
avoid them.

The main contributions of this paper are as follows. It provides a surfeympervised de-
scriptive rule discovery approaches addressed in different commnsyratiel proposes a unifying
supervised descriptive rule discovery framework, including a critigatesy of visualization meth-
ods. The paper is organized as follows: Section 2 gives a surveysofgsearch done in the main
supervised descriptive rule discovery areas: contrast set mininggem@attern mining, subgroup
discovery and other related approaches. Section 3 is dedicated to urtifgitgrminology, defini-
tions and the heuristics. Section 4 addresses visualization as an impoearisspe in supervised
descriptive rule discovery. Section 5 provides a short summary.

2. A Survey of Supervised Descriptive Rule Discovery Approghes

Research on finding interesting rules from class labeled data evolvgueimdently in three distinct

areas—contrast set mining, mining of emerging patterns and subgroupelige-each area using
different frameworks and terminology. In this section, we provide aesuof these three research
areas. We also discuss other related approaches.

2.1 An lllustrative Example

Let us illustrate contrast set mining, emerging pattern mining and subgrocqvdiy using data
from Table 1, a very small, artificial sample data Setjapted from Quinlan (1986). The data set
contains the results of a survey on 14 individuals, concerning the zgdpoo disapproval of an
issue analyzed in the survey. Each individual is characterized byattibbutes—Educat i on (with
valuespri mary school,secondary school, oruni versity), Marital Status (single, married,

or di vorced), Sex (mal e or femal ), andHasChi | dren (yes or no)—that encode rudimentary
information about the sociodemographic background. The last cofpprroved is the designated

1. Thanks to Johannesifhkranz for providing this data set.
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Education Marital Status ~ Sex  Has ChildrérApproved

primary single male no no

primary single male yes no

primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

Table 1: A sample database.

YES
0.000 1.000
3.0 2.0
ves no

Figure 1: A decision tree, modeling the data set shown in Table 1.

classattribute, encoding whether the individual approved or disapproveisie. Since there is
no need for expert knowledge to interpret the results, this data set ispfgte for illustrating
the results of supervised descriptive rule discovery algorithms, whegkeidao find interesting
patterns describing individuals that are likely to approve or disapprevessine, based on the four
demographic characteristics.

The task ofpredictive inductions to induce, from a given set dfaining examplesa domain
model aimed at predictive or classification purposes, such atettision treeshown in Figure 1, or
arule setshown in Figure 2, as learned by C4.5 and C4.5rules (Quinlan, 198pgcatvely, from
the sample data in Table 1.

Sex = female — Approved = yes

Marital Status = single AND Sex = male — Approved = no
Marital Status = married — Approved = yes
Marital Status = divorced AND HasChildren = yes — Approved = no

Marital Status = divorced AND HasChildren = no — Approved = yes

Figure 2: A set of predictive rules, modeling the data set shown in Table 1.
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Marital Status = single AND Sex = male — Approved = no

Sex = male — Approved = no

Sex = femle — Approved = yes

Marital Status = married — Approved = yes

Marital Status = divorced AND HasChildren = yes — Approved = no
Marital Status = single — Approved = no

Figure 3: Selected descriptive rules, describing individual pattern®iddta of Table 1.

In contrast to predictive induction algorithngscriptive inductioralgorithms typically result
in rules induced from unlabeled examples. E.g., given the examples listedl@ Tathese al-
gorithms would typically treat the claggpr oved no differently from any other attribute. Note,
however, that in the learning framework discussed in this paper, that feeiframework ofsu-
pervised descriptive rule discovempne discovered rules of the forkh— Y are induced from class
labeled data: the class labels are taken into account in learning of patténterest, constraining
Y at the right hand side of the rule to assign a value to the class attribute.

Figure 3 shows six descriptive rules, found for the sample data usingdigaduin Opus (Webb,
1995) software. Note that these rules were found using the default settiegpt that the critical
value for the statistical test was relaxed to 0.25. These descriptive lifflzsfibom the predictive
rules in several ways. The first rule is redundant with respect to tande The first is included as
a strong patterng{l 3 single males do not approve) whereas the second is weaker but neralge
(4 out of 7 males do not approve, which is not highly predictive, bubants for 4 out of all 5
respondents who do not approve). Most predictive systems will inahndtie one of these rules,
but either may be of interest to someone trying to understand the dataditggpepon the specific
application. This particular approach to descriptive pattern discovesg dot attempt to second
guess which of the more specific or more general patterns will be the mefid.us

Another difference between the predictive and the descriptive ruléessbes the descriptive rule
set does not include the pattern that divorcees without children a@pfdis is because, while the
pattern is highly predictive in the sample data, there are insufficient exatogbess the statistical
test which assesses the probability that, given the frequency of mspisrapproving, the apparent
correlation occurs by chance. The predictive approach often inglsdeh rules for the sake of
completeness, while some descriptive approaches make no attempt absyitbteness, assessing
each pattern on its individual merits.

Exactly which rules will be induced by a supervised descriptive rule dagoalgorithm de-
pends on the task definition, the selected algorithm, as well as the userebledinstraints concern-
ing minimal rule support, precision, etc. In the following section, the examplef Jable 1 is used
to illustrate the outputs of emerging pattern and subgroup discovery algo(gem&igures 4 and 5,
respectively), while a sample output for contrast set mining is shown irré&-gabove.

2.2 Contrast Set Mining

The problem of mining contrast sets was first defined by Bay and Pia2401) as finding con-
trast sets as “conjunctions of attributes and values that differ meaningfutheir distributions
across groups.” The example rules in Figure 3 illustrate this approadhding all conjunctions
of attributes and values that pass a statistical test for productivity (exglbiglew) with respect to
attributeAppr oved that defines the ‘groups.’
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2.2.1 GONTRASTSET MINING ALGORITHMS

The STUCCO algorithm (Search and Testing for Understandable Cartsixtatrasts) by Bay and
Pazzani (2001) is based on the Max-Miner rule discovery algorithmgil, 1998). STUCCO
discovers a set of contrast sets along with their supporiggroups. STUCCO employs a number
of pruning mechanisms. A potential contrast Xds discarded if it fails a statistical test for inde-
pendence with respect to the group variabldt is also subjected to what Webb (2007) calls a test
for productivity RuleX — Y is productive iff

VZ C X : confidencé&Z — Y) < confidencéX —Y)

whereconfidencéX — Y) is a maximum likelihood estimate of conditional probabil§Y |X), es-
timated by the rati%, wherecount(X,Y) represents the number of examples for which both
X andY are true, an@ouniX) represents the number of examples for whxcis true. Therefore a
more specific contrast set must have higher confidence than any ohésadjeations. Further tests
for minimum counts and effect sizes may also be imposed.

STUCCO introduced a novel variant of the Bonferroni correctionnfoiitiple tests which ap-
plies ever more stringent critical values to the statistical tests employed astienaf conditions
in a contrast set is increased. In comparison, the other techniquesglidcelow do not, by de-
fault, employ any form of correction for multiple comparisons, as resultlitiwthey have high
risk of makingfalse discoveriegWebb, 2007).

It was shown by Webb et al. (2003) that contrast set mining is a spedalaf the more general
rule learning task. A contrast set can be interpreted as the antecédelet ¥ — Y, and groupG;
for which it is characteristic—in contrast with gro—as the rule consequent, leading to rules of
the formContrastSet— G;. A standard descriptive rule discovery algorithm, such as an assoeiation
rule discovery system (Agrawal et al., 1996), can be used for theftéekconsequent is restricted
to a variable whose values denote group membership.

In particular, Webb et al. (2003) showed that when STUCCO and therglepurpose descrip-
tive rule learning system Magnum Opus were each run with their defdtiftg® but the consequent
restricted to the contrast variable in the case of Magnum Opus, the dsritiasd differed mainly
as a consequence only of differences in the statistical tests employeéén $ioe rules.

Hilderman and Peckham (2005) proposed a different approach toasbiset mining called
CIGAR (Contrasting Grouped Association Rules). CIGAR uses diftes@tistical teststo STUCCO
or Magnum Opus for both independence and productivity and intradaidest forminimum sup-
port.

Wong and Tseng (2005) have developed techniques for discoveiticasts that can include
negations of terms in the contrast set.

In general, contrast set mining approaches require discrete datd) istiicreal world appli-
cations frequently not the case. A data discretization method developeificaily for set mining
purposes is described by Bay (2000). This approach does noamfupleave been further used by
the contrast set mining community, except for Lin and Keogh (2006), whended contrast set
mining to time series and multimedia data analysis. They introduced a formal not@iroke
series contrast set along with a fast algorithm to find time series conttasfAseapproach to quan-
titative contrast set mining without discretization in the preprocessing fhaseposed by Simeon

2. The support of a contrast s8bntrastSetvith respect to a groufs;, supportfContrastSeiG;), is the percentage of
examples irG; for which the contrast set is true.
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and Hilderman (2007) with the algorithm G&)CSets. In this approach, a slightly modified equal
width binning interval method is used.

Common to most contrast set mining approaches is that they generate alatarmbntrast sets
from discrete (or discretized) data and later use statistical tests to identifit¢hesting ones. Open
guestions identified by Webb et al. (2003) are yet unsolved: selectiapprbpriate heuristics for
identifying interesting contrast sets, appropriate measures of qualitefero$ contrast sets, and
appropriate methods for presenting contrast sets to the end users.

2.2.2 FLECTEDAPPLICATIONS OFCONTRAST SET MINING

The contrast mining paradigm does not appear to have been pursuedyipuidished applications.
Webb et al. (2003) investigated its use with retail sales data. Wong and {&&0b) applied contrast
set mining for designing customized insurance programs. Siu et al. (P@®8)used contrast set
mining to identify patterns in synchrotron x-ray data that distinguish tissue lsarop different
forms of cancerous tumor. Kralj et al. (2007b) have addressed taasbiset mining problem of
distinguishing between two groups of brain ischaemia patients by transfotimengontrast set
mining task to a subgroup discovery task.

2.3 Emerging Pattern Mining

Emerging patterns were defined by Dong and Li (1999) as itemsets whppersincreases sig-
nificantly from one data set to another. Emerging patterns are said to eaharging trends in
time-stamped databases, or to capture differentiating characteristics betasses of data.

2.3.1 BEMERGING PATTERN MINING ALGORITHMS

Efficient algorithms for mining emerging patterns were proposed by Dodd-a(1999) and Fan
and Ramamohanarao (2003). When first defined by Dong and Li }1889purpose of emerging
patterns was “to capture emerging trends in time-stamped data, or useftdsterbetween data
classes”. Subsequent emerging pattern research has largelydanuslee use of the discovered
patterns for classification purposes, for example, classification by e@mergtterns (Dong et al.,
1999; Li et al., 2000) and classification by jumping emerging patiefiiset al., 2001). An ad-
vanced Bayesian approach (Fan and Ramamohanara, 2003) andgbgdean et al., 2006) were
also proposed.

From a semantic point of view, emerging patterns are association rules witnaset in rule
antecedent, and a fixed consequétemSet— D1, for given data seD1 being compared to another
data seDo.

The measure of quality of emerging patterns isghmwth rate(the ratio of the two supports).
It determines, for example, that a pattern with a 10% support in one dadéadet% in the other
is better than a pattern with support 70% in one data set and 10% in the cﬁHﬁr;(aI%). From

the association rule perspecti@iowthRatéltemSetD;,D;) = 13%22%32?\%;22?&3&) Thus it can

be seen that growth rate provides an identical ordering to confiderceptethat growth rate is
undefined when confidence = 1.0.

3. Jumping emerging patterns are emerging patterns with support zeme hata set and greater then zero in the other
data set.
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Marital Status = single AND Sex = male — Approved = no
Marital Status = married — Approved = yes
Marital Status = divorced AND HasChildren = yes — Approved = no

Figure 4: Jumping emerging patterns in the data of Table 1.

Some researchers have argued that finding all the emerging pattexgsaabonimum growth
rate constraint generates too many patterns to be analyzed by a domain Eapeind Ramamoha-
narao (2003) have worked on selecting the interesting emerging patidrites Soulet et al. (2004)
have proposed condensed representations of emerging patterns.

Boulesteix et al. (2003) introduced a CART-based approach to disemwerging patterns in
microarray data. The method is based on growing decision trees from Wisi@merging patterns
are extracted. It combines pattern search with a statistical procedw® twas-isher’'s exact test to
assess the significance of each emerging pattern. Subsequently, sksgification based on the
inferred emerging patterns is performed using maximum-likelihood linear disairhanalysis.

Figure 4 shows all jumping emerging patterns found for the data in Table & udirg a min-
imum support of 15%. These were discovered using the Magnum Oftuses, limiting the con-
sequent to the variablgpproved setting minimum confidence to 1.0 and setting minimum support
to 2.

2.3.2 FLECTEDAPPLICATIONS OFEMERGING PATTERNS

Emerging patterns have been mainly applied to the field of bioinformatics, meusfisplly to
microarray data analysis. Li et al. (2003) present an interpretabkfidadased on simple rules that
is competitive to the state of the art black-box classifiers on the acute lymghiotidaukemia (ALL)
microarray data set. Li and Wong (2002) have focused on findingpgrofi genes by emerging
patterns and applied it to the ALL/AML data set and the colon tumor data seg.é3ah (2001) used
emerging patterns together with unexpected change and the addedgevishe® mine customer
behavior.

2.4 Subgroup Discovery

The task of subgroup discovery was defined byd¢en (1996) and Wrobel (1997) as follows:
“Given a population of individuals and a property of those individuals\weaare interested in, find
population subgroups that are statistically ‘most interesting’, for exampeasalarge as possible
and have the most unusual statistical (distributional) characteristics wbae® the property of
interest”.

2.4.1 SYBGROUPDISCOVERY ALGORITHMS

Subgroup descriptions are conjunctions of features that are chistictéor a selected class of
individuals (property of interest). A subgroup description can be aséhe condition part of a rule
SubgroupDescription- Class Therefore, subgroup discovery can be seen as a special case of
more general rule learning task.

Subgroup discovery research has evolved in several directionghéOone hand, exhaustive
approaches guarantee the optimal solution given the optimization criterioa.sy3tem that can
use both exhaustive and heuristic discovery algorithms is Explora isgéh (1996). Other algo-
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Sex = female — Approved = yes

Marital Status = married — Approved = yes

Marital Status = divorced AND HasChildren = no — Approved = yes
Education = university — Approved = yes

Marital Status = single AND Sex = male — Approved = no

Figure 5: Subgroup descriptions induced by Apriori-SD from the dafabfe 1.

rithms for exhaustive subgroup discovery are the SD-Map method byiAnand Puppe (2006)
and Apriori-SD by Kagek and Lavréa (2006). On the other hand, adaptations of classification rule
learners to perform subgroup discovery, including algorithm SD by &age and Lavra (2002)

and algorithm CN2-SD by Laviteet al. (2004b), use heuristic search techniques drawn from classi-
fication rule learning coupled with constraints appropriate for descripiies.

Relational subgroup discovery approaches have been proposéttdipel (1997, 2001) with
algorithm Midos, by Kdsgen and May (2002) with algorithm SubgroupMiner, which is designed
for spatial data mining in relational space databases, ariezry and Lavr& (2006) with the
algorithm RSD (Relational Subgroup Discovery). RSD uses a propogiiZation approach to
relational subgroup discovery, achieved through appropriatelytiagapile learning and first-order
feature construction. Other non-relational subgroup discoveryitigms were developed, including
an algorithm for exploiting background knowledge in subgroup disgof&tzmuller et al., 2005a),
and an iterative genetic algorithm SDIGA by del Jesus et al. (2007) imphkemgea fuzzy system
for solving subgroup discovery tasks.

Different heuristics have been used for subgroup discovery. Hyitien, the interestingness
of a subgroup depends on its unusualness and size, therefore tloygality evaluation heuristics
needs to combine both factors. Weighted relative accutdiyAc¢ see Equation 2 in Section 3.3)
is used by algorithms CN2-SD, Apriori-SD and RSD and, in a differennfdation and in dif-
ferent variants, also by MIDOS and EXPLORA. Generalization quotigntgee Equation 3 in
Section 3.3) is used by the SD algorithm. SubgroupMiner uses the clagsicalibal test to verify
if the target share is significantly different in a subgroup.

Different approaches have been used for eliminating redundantauigy Algorithms CN2-SD,
Apriori-SD, SD and RSD use weighted covering (Lavet al., 2004b) to achieve rule diversity.
Algorithms Explora and SubgroupMiner use an approach called supgupression (Kisgen,
1996). A sample set of subgroup describing rules, induced by A@BiDriwith parametersupport
set to 15% (requiring at least 2 covered training examples per rule@mftienceset to 65%, is
shown in Figure 5.

2.4.2 FLECTEDAPPLICATIONS OFSUBGROUPDISCOVERY

Subgroup discovery was used in numerous real-life applications. THlieajons in medical do-
mains include the analysis of coronary heart disease (Gamberger arait,L.2002) and brain is-
chaemia data analysis (Kralj et al., 2007b,a; Lawhtal., 2007), as well as profiling examiners for
sonographic examinations (AtZiter et al., 2005b). Spatial subgroup mining applications include
mining of census data (Kkgen et al., 2003) and mining of vegetation data (May and Ragia, 2002).
There are also applications in other areas like marketing (del Jesus €04, |avr& et al., 2004a)

and analysis of manufacturing shop floor data (Jenkole et al., 2007).
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2.5 Related Approaches

Research in some closely related areas of rule learning, performeceimdimqutly from the above
described approaches, is outlined below.

2.5.1 (HANGE MINING

The paper by Liu et al. (2001) diundamental rule changgsoposes a technique to identify the
set of fundamental changes in two given data sets collected from two tincalpehe proposed
approach first generates rules and in the second phase it identifiggesh@ules) that can not be
explained by the presence of other changes (rules). This is achig\auplying statisticak? test
for homogeneity of support and confidence. This differs from cehtsat discovery through its
consideration of rules for each group, rather than itemsets. A change fretjuency of just one
itemset between groups may affect many association rules, potentially althakhave the itemset
as either an antecedent or consequent.

Liu et al. (2000) and Wang et al. (2003) present techniques that igedifierences in the
decision trees and classification rules, respectively, found on twoaliffelata sets.

2.5.2 MINING CLOSED SETS FROMLABELED DATA

Closed sets have been proven successful in the context of compatseckdresentation for asso-
ciation rule learning. However, their use is mainly descriptive, dealing ofily unlabeled data. It
was recently shown that when considering labeled data, closed sets adagted for classification
and discrimination purposes by conveniently contrasting covering grepen positive and nega-
tive examples (Garriga et al., 2006). The approach was succesgiplig@ in potato microarray
data analysis to a real-life problem of distinguishing between virus senaitiveesistant transgenic
potato lines (Kralj et al., 2006).

2.5.3 EXCEPTIONRULE MINING

Exception rule mining considers a problem of finding a set of rule paih ewhich consists
of an exception rule (which describes a regularity for fewer objecs&)dated with a strong rule
(description of a regularity for numerous objects with few counterexamphlasexample of such
a rule pair is “using a seat belt is safe” (strong rule) and “using a saaisbrisky for a child”
(exception rule). While the goal of exception rule mining is also to find desegiptiles from
labeled data, in contrast with other rule discovery approaches des$anitbeis paper, the goal of
exception rule mining is to find “weak” rules—surprising rules that are aejgton to the general
belief of background knowledge.

Suzuki (2006) and Daly and Taniar (2005), summarizing the reseamtception rule mining,
reveal that the key concerns addressed by this body of reseatatennterestingness measures,
reliability evaluation, practical application, parameter reduction and kngeleepresentation, as
well as providing fast algorithms for solving the problem.

2.5.4 IMPACT RULES, BUMP HUNTING, QUANTITATIVE ASSOCIATIONRULES

Supervised descriptive rule discovery seeks to discover sets oftiomsdthat are related to devia-
tions in the class distribution, where the class is a qualitative variable. A rddathdof research
seeks to discover sets of conditions that are related to deviations in aqaaygtitative variable.
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Contrast Set Mining

Emerging Pattern Mining

Subgroup Discovery Rule Learning

contrast set itemset subgroup description rule condition
groupsGy, ...Gp data set®; andD» class/propertL class/concept;
attribute-value pair item logical (binary) feature  condition
examples in groups transactions in data sets examples of examples of
Gy, ...Gy Dy andDz CandC Ci...Cy
examples for which transactions containing subgroup of instarjcesvered examples
the contrast set is true the itemset

support of contrast set d&
support of contrast set dg;

support of EP in data s€t;
support of EP in data s€t,

true positive rate
false positive rate

true positive rate
false positive rate

Table 2: Table of synonyms from different communities, showing the comifigtit terms.

Such techniques include Bump Hunting (Friedman and Fisher, 1999),tiatise Association
Rules (Aumann and Lindell, 1999) and Impact Rules (Webb, 2001).

3. A Unifying Framework for Supervised Descriptive Rule Induction

This section presents a unifying framework for contrast set mining, eéngepattern mining and
subgroup discovery, as the main representatives of supervisaiptigecule discovery approaches.
This is achieved by unifying the terminology, the task definitions and the ruleitepheuristics.

3.1 Unifying the Terminology

Contrast set mining (CSM), emerging pattern mining (EPM) and subgroaep\aisy (SD) were
developed in different communities, each developing their own terminologynhdels to be clar-
ified before proceeding. Below we show that terms used in different contiesiare compatible,
according to the following definition of compatibility.

Definition 1: Compatibility of terms. Terms used in different communities are compatible if they
can be translated into equivalent logical expressions and if they bareatine sneaning, that is, if
terms from one community can replace terms used in another community.

Lemma 1: Terms used in CSM, EPM and SD are compatible.

Proof The compatibility of terms is proven through a term dictionary, whose aim is telatnall
the terms used in CSM, EPM and SD into the terms used in the rule learning comninatierm
dictionary is proposed in Table 2. More specifically, this table providestadary of equivalent
terms from contrast set mining, emerging pattern mining and subgroup digcava unifying ter-
minology of classification rule learning, and in particular of concept legr(gonsidering clas§;
as the concept to be learned from the positive examples of this concdpgheanegative examples
formed of examples of all other classes). |

3.2 Unifying the Task Definitions

Having established a unifying view on the terminology, the next step is to mavighifying view
on the different task definitions.

386



SUPERVISEDDESCRIPTIVERULE DISCOVERY

CSM A contrast set mining task is defined as follows (Bay and Pazzani, 20@t)A1l Ay, ...,
A be a set ok variables called attributes. Eaghcan take values from the sfti1, vip, . ..,
Vim}. Given a set of user defined grou@s, G, ..., G, of data instances, a contrast set is
a conjunction of attribute-value pairs, defining a pattern that best disctiesitize instances
of different user-defined groups. A special case of contrasinggdhg considers only two
contrasting groupsd; andGy). In such cases, we wish to find characteristics of one group
discriminating it from the other and vice versa.

EPM An emerging patterns mining task is defined as follows (Dong and Li, 1999). £ {i4, iy,
...,In} be a set of items (note that an item is equivalent to a binary feature in Sarand
individual attribute-value pair in CSM). A transaction is a subkeif I. A datasetis a set
D of transactions. A subset of | is called anitemset Transactionl contains an itemset
X in a data seD, if X C T. For two data set®; andD»,, emerging pattern mining aims at
discovering itemsets whose support increases significantly from onsetataanother.

SD In subgroup discovery, subgroups are described as conjunctidiesitares, where features
are of the formA; = v;; for nominal attributes, ané; > valueor A; < valuefor continuous
attributes. Given the property of inter&tand the population of examples ©fandC, the
subgroup discovery task aims at finding population subgroups thas éaega as possible and
have the most unusual statistical (distributional) characteristics with rep#te property
of interestC (Wrobel, 1997).

The definitions of contrast set mining, emerging pattern mining and subgiscqvery appear
different: contrast set mining searches for discriminating characteridtigeoups called contrast
sets, emerging pattern mining aims at discovering itemsets whose suppoasgggnificantly
from one data set to another, while subgroup discovery searchestigroup descriptions. By us-
ing the dictionary from Table 2 we can see that the goals of these three migksggie very similar,
it is primarily the terminology that differs.

Definition 2: Compatibility of task definitions. Definitions of different learning tasks are compat-
ible if one learning task can be translated into another learning task withdugtamtially changing
the learning goal.

Lemma 2: Definitions of CSM, EPM and SD tasks are compatible.

Proof To show the compatibility of task definitions, we propose a unifying table (T2)bt# task
definitions, allowing us to see that emerging pattern mining &BKM(D1,D;) is equivalent to
CSMG;,Gj). Itis also easy to show that a two-group contrast set mining@&M G;, G;) can be
directly translated into the following two subgroup discovery taS&G;) for C = G; andC = G;,
andSD(G;j) for C = Gj andC = G,.
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Contrast Set Mining Emerging Pattern Mining  Subgroup Discov[ery Rule Learning

Given Given Given Given
examples irG; vs. Gj  transactions ifD; andD; in example examples irG;
from Gy, ...G from D1 andD» from C andC fromC; ...Cy
Find Find Find Find
ContrastSgf — G; ltemSef, — D1 SubgrDesgr — C {RuleCong, — Ci}
ContrastSqf — G;j ltemSej, — D>

Table 3: Table of task definitions from different communities, showing thepatibility of task
definitions in terms of output rules.

Having proved that the subgroup discovery task is compatible with a twapgecontrast set
mining task, it is by induction compatible with a general contrast set mining tasiy@avn below.

CSMGy, ...Gp)
for i=2tondo
for j=1,j#1 ton-1do
SD(C: Gi vs C = Gj)

Note that in Table 3 of task definitions column ‘Rule Learning’ again comedp to a concept
learning task instead of the general classification rule learning task. botieept learning setting,
which is better suited for the comparisons with supervised descriptive isdewery approaches,

a distinguished clasg; is learned from examples of this class, and examples of all other classes
Ci, ...,GCi_1, Gii1, Cy are merged to form the set of examples of cl@ssIn this case, induced

rule set{RuleCong — C;} consists only of rules for distinguished claSs On the other hand,

in a general classification rule learning setting, from examplds different classes a set of rules
would be learned. .., RuleCong, — C;, RuleCong,,, — G, ...,RuleCong — C;j, ..., Default},
consisting of sets of rules of the forRuleCong, — C; for each individual clas€;i, supplemented

by the default rule. [ ]

While the primary tasks are very closely related, each of the three commurasesoncen-
trated on different sets of issues around this task. The contrast sevelig community has paid
greatest attention to the statistical issues of multiple comparisons that, if nesaddr can resultin
high risks of false discoveries. The emerging patterns community has iratestigow supervised
descriptive rules can be used for classification. The contrast setraecying pattern communi-
ties have primarily addressed only categorical data whereas the splaisgsovery community has
also considered numeric and relational data. The subgroup discaxamuenity has also explored
techniques for discovering small numbers of supervised descripte® with high coverage of the
data.

3.3 Unifying the Rule Learning Heuristics

The aim of this section is to provide a unifying view on rule learning heuristsesi un different
communities. To this end, we first investigate the rule quality measures.

Most rule quality measures are derived by analyzing the covering giegef the rule and the
class in the rule consequent considered as positive. This relationshiye ckepicted by a confusion

388



SUPERVISEDDESCRIPTIVERULE DISCOVERY

predicted
actual # of positives  # of negativeg
# of positives| p=|TP(X,Y)| Pp=|FN(X,Y)] P
# of negatives n= |FP(X,Y)| Ti=|TN(X,Y)] N
p+n p+n P+N

Table 4: Confusion matrix: TP(X,Y) stands for true positivesiP(X,Y) for false positives,
FN(X,Y) for false negatives antiN(X,Y) for true negatives, as predicted by ride— Y.

matrix (Table 4, see, e.g., Kohavi and Provost, 1998), which consttatsuleR=X — Y is
represented afX,Y), and definegp as the number of true positives (positive examples correctly
classified as positive by ruleX,Y)), n as the number of false positives, etc., from which other
covering characteristics of a rule can be derived: true positiveTiatéX,Y) = § and false positive
rateFPr(X,)Y) = 3.

CSM Contrast set mining aims at discovering contrast sets that best discrimieatestances
of different user-defined groups. The support of contrasiXsetith respect to grous;,
supportX,G;), is the percentage of examples@ for which the contrast set is true. Note
thatsupport of a contrast set with respect to groupsGhe same asue positive raten the
classification rule and subgroup discovery terminology, thatipportX,G;) = % =

TPr(X,G;). A derived goal of contrast set mining, proposed by Bay and Pag2@@l), is to

find contrast sets whose support differs meaningfully across gréargsbeing a user-defined

parameter.

SuppDif(X,G;, Gj) = |supportX,G;) — supportX,Gj)| > o.

EPM Emerging pattern mining aims at discovering itemsets whose support inceigsisantly
from one data set to another Dong and Li (1999), wheengportof itemsetX in data seD
is computed asupportX,D) = COUTST’D), for couniX, D) being the number of transactions
in D containingX. Suppose we are given an ordered pair of data Betand D,. The
GrowthRateof an itemsek from D1 to D2, denoted a&rowthRat€X,D1,D>), is defined as

follows:

_supportX,Dy)

GrowthRat¢X,D1,D;) = SUpportX.Dy)"

(1)

Definitions of special cases &@rowthRatéX,D1,D,) are as follows, ifsupportX,D1) =0
thenGrowthRat¢X,D1,D2) = 0, if suppor{X,D,) = 0 thenGrowthRat¢X, D1, D) = oo.

SD Subgroup discovery aims at finding population subgroups that areggsdapossible and have
the most unusual statistical (distributional) characteristics with respect fordiperty of in-
terest (Wrobel, 1997). There were several heuristics developgdised in the subgroup
discovery community. Since they follow from the task definition, they try to maxirsige
group size and the distribution difference at the same time. Examples of sudbtfts are
theweighted relative accuracfequation 2, see Lavéeaet al., 2004b) and thgeneralization
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Contrast Set Mining  Emerging Pattern Mining  Subgroup Discov1ery Rule Learning

SuppDifi(X, Gj, Gj) WRACc¢X,C) Piatetski-Shapiro heuristic
leverage
GrowthRatéX,D1,D>) 0g(X,C) odds ratio forg =0
accuracy/precision, fag = p

Table 5: Table of relationships between the pairs of heuristics, and thuditadents in classification
rule learning.

quotient(Equation 3, see Gamberger and Lay12002) , forg being a user-defined parameter.

_ p+n p P
WRACEX,C) = 5= <p+n P+N>’ 2)
%(X.C)= oo ©

Let us now investigate whether the heuristics used in CSM, EPM and Shaugatible, using
the following definition of compatibility.

Definition 3: Compatibility of heuristics.
Heuristic function h is compatiblewith hy if h, can be derived fromhand if for any two rules R
and R, hl(R) > hl(R') -~ hz(R) > hz(R’)

Lemma 3: Definitions of CSM, EPM and SD heuristics are pairwise compatible.

Proof The proof of Lemma 3 is established by proving two sub-lemmas, Lemma 3a and&.8b,
which prove the compatibility of two pairs of heuristics, whereas the relatipadietween these
pairs is established through Table 5, and illustrated in Figures 6 and 7. |

Lemma 3a: The support difference heuristic used in CSM and the weighted relativeagc
heuristic used in SD are compatible.

Proof Note that, as shown below, weighted relative accuracy (Equation 2) eamtdrpreted in
terms of probabilities of rule antecedexitand consequent (classC representing the property of
interest), and the conditional probability of claggiven X, estimated by relative frequencies.

WRACcEX,Y) = P(X) - (P(Y|X) = P(Y)).

From this equation we see that, indeed, when optimizing weighted relativeaagaf ruleX — Y,

we optimize two contrasting factors: rule coverdX) (proportional to the size of the subgroup),
and distributional unusualneBsgY |X) — P(Y) (proportional to the difference of the number of posi-
tive examples correctly covered by the rule and the number of positives orifinal training set).

It is straightforward to show that this measure is equivalent to the Piatetsli#® measure, which
evaluates the conditional (in)dependence of rule consequent arehteleedent as follows:

PSX,Y)=P(X-Y)—-P(X)-P(Y).
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Weighted relative accuracy, known from subgroup discovery, appat difference between
groups, used in contrast set mining, are related as folfows:

WRACEX,Y) =
=P(X) - [P(Y|X) = P(Y)]
=P(Y-X) —P(Y)-[P(Y-
=(1=P(Y))-P(Y-X) - P(Y~
=P(Y)-P(Y) - P(X]Y) —
=P(Y)-P(Y) - [P(X]Y) - XIY)
=P(Y)-P(Y) - [TPr(X,Y) — FPr(X,Y)].

Since the distribution of examples among classes is constant for any dalte $iest two factors
P(Y) and RY) are constant within a data set. Therefore, when maximizing the weightedeelati
accuracy, one is maximizing the second fackdtr(X,Y) — FPr(X,Y), which actually is support
difference when we have a two group contrast set mining problem. Goesty, forC = G, and
C = G; the following holds:

/\

WRACcEX,C) = WRACEX, G1) = P(Gy) - P(Gy) - [supportX,G1) — supportX, Gy)].

Lemma 3b: The growth rate heuristic used in EPM and the generalization quotient Heused
in SD are compatible.
Proof Equation 1 can be rewritten as follows:

supportX,D1)
supportC,D,)

_coun(X,D1) |D2] p N

~coun(X,Dp) |Di] n P’

GrowthRat¢X,D1,D2) =

Since the distribution of examples among classes is constant for any dataasqﬂptient% is
constant. Consequently, the growth rate is the generalization quotieng with, multiplied by a
constant. Therefore, the growth rate is compatible with the generalizatidieio

— N
GrowthRat¢X,C,C) = qo(X,C) - P
[

The lemmas prove that heuristics used in CSM and EPM can be translateduntibg used in
SD and vice versa. In this way, we have shown the compatibility of CSM anklesibistics, as well
as the compatibility of EPM and SD heuristics. While the lemmas do not prove doagtatibility
of CSM and EPM heuristics, they prove that heuristics used in CSM anddaPNMe translated into
two heuristics used in SD, both aiming at trading-off between coveragdistnithutional difference.

4. Peter A. Flach is acknowledged for having derived these equations.
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S5 g0 N
Figure 6: Isometrics fogg. The dotted lines show the isometrics for a selegtedd, while the full
lines show the special case whgga- 0, compatible to the EPMyrowth rateheuristic.

0 —n
Figure 7: Isometrics foWRAc¢ compatible to the CSMupport differencéeuristic.

Table 5 provides also the equivalents of these heuristics in terms of heukistievn from
the classification rule learning community, details of which are beyond thessabthis paper
(an interested reader can find more details on selected heuristics and@tireRresentations in
Furnkranz and Flach, 2003).

Note that the growth rate heuristic from EPM, as a special case of theajjgagon quotient
heuristic withg = 0, does not consider rule coverage. On the other hand, its compatilvieqoart,
the generalization quotiey heuristic used in SD, can be tailored to favor more general rules by
setting theg parameter value, as for a genegalalue, thegy heuristic provides a trade-off between
rule accuracy and coverage. Figureilbustrates theny isometrics, for a generalvalue, as well as
for valueg = 0.

Note also that standard rule learners (such as CN2 by Clark and Niblg®) t&hd to generate
very specific rules, due to using accuracy heurisioc(X,Y) = FE’J%E or its variants: the Laplace
and them-estimate. On the other hand, the CSM support difference heuristic arid deuhterpart
WRACcchoth optimize a trade-off between rule accuracy and coverage WRWccisometrics are
plotted in Figure 7.

3.4 Comparison of Rule Selection Mechanisms

Having established a unifying view on the terminology, definitions and rulaileguheuristics, the
last step is to analyze rule selection mechanisms used by different algoritliasnotivation for
rule selection can be either to find only significant rules or to avoid overigpples (too many
too similar rules), or to avoid showing redundant rules to the end usets. thNat rule selection is
not always necessary and that depending on the goal, redundiesican be valuable (e.qg., clas-

5. This figure is due to Gamberger and La(2002).
6. This figure is due to#rnkranz and Flach (2003).
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sification by aggregating emerging patterns by Dong et al., 1999). Twoagpes are commonly
used: statistic tests and the (weighted) covering approach. In this seggagmpare these two
approaches.

Webb et al. (2003) show that contrast set mining is a special case of treegaoeral rule
discovery task. However, an experimental comparison of STUCCO SO&RJand C4.5 has shown
that standard rule learners return a larger set of rules compared ©6GSDUand that some of them
are also not interesting to end users. STUCCO (see Bay and Pazgdnid2dnore details) uses
several mechanisms for rule pruning. Statistical significance pruningvestaontrast sets that,
while significant and large, derive these properties only due to beirgedigations of more general
contrast sets: any specialization is pruned that has a similar support toets pa that fails g?
test of independence with respect to its parent.

In the context of OPURAR, the emphasis has been on developing statistical tests that are robust
in the context of the large search spaces explored in many rule disamgligations Webb (2007).
These include tests for independence between the antecedent ardumnis and tests to assess
whether specializations have significantly higher confidence than thesrgjerations.

In subgroup discovery, theeighted covering approadfavret et al., 2004b) is used with the
aim of ensuring the diversity of rules induced in different iterations ofaigerithm. In each iter-
ation, after selecting the best rule, the weights of positive examples aieaded according to the
number of rules covering each positive exampile_counte); they are set tav(e) = m
For selecting the best rule in consequent iterations, the SD algorithm (@Ggenlaed Lavrg, 2002)
uses—instead of the unweightggl measure (Equation 3)—the weighted variantgfdefined in
Equation 4, while the CN2-SD (Lavtet al., 2004b) and APRIORI-SD (K&gk and Lavré, 2006)
algorithms use the weighted relative accuracy (Equation 2) modified with deamegights, as de-
fined in Equation 5, wher@ = Y rpx v)W(e) is the sum of the weights of all covered positive
examples, an@ is the sum of the weights of all positive examples.

p/

/ —

qg(xvY) - n+gv (4)
B p/+n p/ B P

WRACKX,Y) = 5N <p,+n P+N>. (5)

Unlike in the sections on the terminology, task definitions and rule learningstiesy the com-
parison of rule pruning mechanisms described in this section does ndtt iresuunified view;
although the goals of rule pruning may be the same, the pruning mechanisthé udiéferent
subareas of supervised descriptive rule discovery are—as stimwe-a-very different.

4. Visualization

Webb et al. (2003) identify a need to develop appropriate methods feeqtiag contrast sets to
end users, possibly through contrast set visualization. This open @sweerning the visualization

of contrast sets and emerging patterns, can be resolved by importing stileesolutions proposed

in the subgroup discovery community. Several methods for subgrougliziation were developed

by Wettschereck (2002), Wrobel (2001), Gamberger et al. (20603); et al. (2005) and Atzriller

and Puppe (2005). They are here illustrated using the coronary disa#se data set, originally
analyzed by Gamberger and Labrg2002). The visualizations are evaluated by considering their
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Figure 8: Subgroup visualization by pie chartsFigure 9: Subgroup visualization by box plots.

intuitiveness, correctness of displayed data, usefulness, ability to ylisptdents besides the nu-
merical properties of subgroups, (e.g., plot subgroup probabilityitienagainst the values of an
attribute), and their extensibility to multi-class problems.

4.1 Visualization by Pie Charts

Slices of pie charts are the most common way of visualizing parts of a whoby. arlke widely used
and understood. Subgroup visualization by pie chart, proposed bydheteck (2002), consists
of a two-level pie for each subgroup. The base pie represents thiowtisin of individuals in
terms of the property of interest of the entire example set. The inner pieses the size and the
distribution of individuals in terms of the property of interest in a specifigsoip. An example of
five subgroups (subgroups Al, A2, B1, B2, C1), as well as the jpias®&ll subjects” are visualized
by pie charts in Figure 8.

The main weakness of this visualization is the misleading representation oflétigeresize
of subgroups. The size of a subgroup is represented by the radibg afrcle. The faultiness
arises from the surface of the circle which increases with the squarerafiitss. For example, a
subgroup that covers 20% of examples is represented by a circle tresamly 4% of the whole
surface, while a subgroup that covers 50% of examples is repredantedircle that covers 25%
of the whole surface. In terms of usefulness, this visualization is nothemgy since—in order to
compare subgroups—one would need to compare sizes of circles, whifffcidt. The comparison
of distributions in subgroups is also not straightforward. This visualizatisn does not show the
contents of subgroups. It would be possible to extend this visualization to chags-problems.

4.2 Visualization by Box Plots

In subgroup visualization by box plots, introduced by Wrobel (20049hesubgroup is represented
by one box plot (all examples are also considered as one subgrougramlisplayed in the top
box). Each box shows the entire population; the horizontally strippedaardhe left represents
the positive examples and the white area on the right-hand side of the bheseafs the negative
examples. The grey area within each box indicates the respective spbditte overlap of the grey
area with the hatched area shows the overlap of the group with the positivgkes. Hence, the
more to the left the grey area extends the better. The less the grey amedseixi¢he right of the
hatched area, the more specific a subgroup is (less overlap with thetsudfjite negative class).
Finally, the location of the box along the X-axis indicates the relative shahedérget class within
each subgroup: the more to the right a box is placed, the higher is theohiaegarget value within
this subgroup. The vertical line (in Figure 9 at value 46.6%) indicates tlaaild@ccuracy, that is,
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the number of positive examples in the entire population. An example box platlization of five
subgroups is presented in Figure 9.

On the negative side, the intuitiveness of this visualization is relatively pooe &n extensive
explanation is necessary for understanding it. It is also somewhat illcgiiczg the boxes that are
placed more to the right and have more grey color on the left-hand sideseayithe best subgroups.
This visualization is not very attractive since most of the image is white; theagesy (the part of
the image that really represents the subgroups) is a relatively tiny part efitire image. On the
positive side, all the visualized data are correct and the visualization fisl sg&ce the subgroups
are arranged by their confidence. It is also easier to contrast thedadizebgroups compared to
their pie chart visualization. However, this visualization does not displagdhtents of the data. It
would also be difficult to extend this visualization to multi-class problems.

4.3 Visualizing Subgroup Distribution w.r.t. a Continuous Attribute

The distribution of examples w.r.t. a continuous attribute, introduced by Ggeband Lavra
(2002) and Gamberger et al. (2002), was used in the analysis ofabevedical domains. It is
the only subgroup visualization method that offers an insight of the visuaimbgroups. The
approach assumes the existence of at least one numeric (or orderezrigjisttribute of expert’s
interest for subgroup analysis. The selected attribute is plotted on thésXofthe diagram. The
Y-axis represents the target variable, or more precisely, the numbestahoes belonging to target
propertyC (shown on thér + axis) or not belonging t& (shown on they — axis) for the values of
the attribute on the X-axis. It must be noted that both directions of the Y-agiased to indicate
the number of instances. The entire data set and two subgroups Al aare BBualized by their
distribution over a continuous attribute in Figure 10.

This visualization method is not completely automatic, since the automatic approasmaoi
provide consistent results. The automatic approach calculates the nurakammples for each value
of the attribute on the X-axis by moving a sliding window and counting the nunftetamples in
that window. The outcome is a smooth line. The difficulty arises when the attfitmumbethe X-axis
appears in the subgroup description. In such a case, a manualticoriegeeded for this method
to be realistic.

This visualization method is very intuitive since it practically does not need raxplanation.
It is attractive and very useful to the end user since it offers an ingighie contents of displayed

,]\ all CHD

number of patients

healthy

3 4 5 6 7 8 9
total cholesterol value (mmol/L)

Figure 10: Subgroup visualization w.r.t. a continuous attribute. For claritigeopicture, only the
positive (Y+) side of subgroup Al is depicted.
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Figure 11: Representation of subgroups in Figure 12: Subgroup visualization by bar
the ROC space. charts.

examples. However, the correctness of displayed data is questiortdablepossible to generalize
this visualization to multi-class problems.

4.4 Representation in the ROC Space

The ROC (Receiver Operating Characteristics) (Provost and Fa®@6it) space is a 2-dimensional
space that shows classifier (rule/rule set) performance in terms of itpfageve rate FPr) plotted
on the X-axis, and true positive rat€Rr) plotted on the Y-axis. The ROC space is appropriate for
measuring the success of subgroup discovery, since subgroupe%@cﬁdradeoffs are close to the
main diagonal (line connecting the points (0, 0) and (1, 1) in the ROC spacepe discarded
as insignificant (Kasek and Lavrg, 2006); the reason is that the rules with %ﬁ ration on the
main diagonal have the same distribution of covered positives and negétive= FPr) as the
distribution in the entire data set. An example of five subgroups represintiee ROC space is
shown in Figure 11.

Even though the ROC space is an appropriate rule visualization, it is ussaltiyjust for the
evaluation of discovered rules. The ROC convex hull is the line connetttengotentially optimal
subgroups. The area under the ROC convex hull (AUC, area undez)ds a measure of quality of
the resulting ruleset.

This visualization method is not intuitive to the end user, but is absolutely clesety machine
learning expert. The displayed data is correct, but there is no contetaylsl. An advantage of this
method compared to the other visualization methods is that it allows the compafisottomes
of different algorithms at the same time. The ROC space is designed folas®roblems and is
therefore inappropriate for multi-class problems.

4.5 Bar Charts Visualization

The visualization by bar charts was introduced by Kralj et al. (2005)this visualization, the
purpose of the first line is to visualize the distribution of the entire example sut.aflea on the
right represents the positive examples and the area on the left refsrtmenegative examples of the
target class. Each following line represents one subgroup. The goaitty the negative examples
of each subgroup are drawn below the positive and the negative exaaiphe entire example set.
Subgroups are sorted by the relative share of positive exampless{prgc

7. Note that in terms o% ratio optimality, two subgroups (Al and B2) are suboptimal, lying below th€ RGnvex
hull.
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An example of five subgroups visualized by bar charts is shown in Figurét is simple, un-
derstandable and shows all the data correctly. This visualization method alimple comparison
between subgroups and is therefore useful. Itis relatively straigivafol to understand and can be
extended to multi-class problems. It does not display the contents of daightho

4.6 Summary of Subgroup Visualization Methods

In this section, we (subjectively) compare the five different subgrasyelization methods by con-
sidering their intuitiveness, correctness of displayed data, usefulaeiity to ability to display
contents besides the numerical properties of subgroups, (e.g., plpbspbprobability densities
against the values of an attribute), and their extensibility to multi-class problEmessummary of
the evaluation is presented in Table 6.

Continuous
Pie chart Boxplot attribute ROC Bar chart
Intuitiveness + - + +/- +
Correctness - + - + +
Usefulness - + + + +
Contents - - + - -
Multi-class + - - - +

Table 6: Our evaluation of subgroup visualization methods.

Two visualizations score best in Table 6 of our evaluation of subgrow@lzstion methods:
the visualization of subgroups w.r.t. a continuous attribute and the bar \dkadlization. The
visualization of subgroups w.r.t. a continuous attribute is the only visualizatairdttectly shows
the contents of the data; its main shortcomings are the doubtful correctnéesdisplayed data
and its difficulty to be extended to multi-class problems. It also requires a cout$nor ordered
discrete attribute in the data. The bar chart visualization combines the gopdrfies of the pie
chart and the box plot visualization. In Table 6, it only fails in displaying tvetents of the data.
By using the two best visualizations, one gets a very good understarfdimg mining results.

To show the applicability of subgroup discovery visualizations for supedvdescriptive rule
discovery, the bar visualizations of results of contrast set mining, jumpirerging patterns and
subgroup discovery on the survey data analysis problem of Sectiomshawn in Figures 13, 14
and 15, respectively.

Negatives iti Rule
—Approved=yes

MaritalStatus=single AND Sex=male - Approved=no
Sex=male - Approved=no

Sex=female - Approved=yes

MaritalStatus=married — Approved=yes
MaritalStatus=divorced AND HasChildren=yes — Approved=no

MaritalStatus=single -~ Approved=no

Figure 13: Bar visualization of contrast sets of Figure 3.
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Negatives iti Rule
—Approved=yes

MaritalStatus=single AND Sex=male - Approved=no
MaritalStatus=married -~ Approved=yes

MaritalStatus=divorced AND HasChildren=yes — Approved=no

Figure 14: Bar visualization of jumping emerging patterns of Figure 4.

Negatives Positives Rule
—Approved=yes

MaritalStatus=married -~ Approved=yes
MaritalStatus=divorced AND HasChildren=no — Approved=yes
Sex=female - Approved=yes

Education=university -~ Approved=yes

Figure 15: Bar visualization of subgroups of Figure 5 of individuals Wwaee approved the issue.

5. Conclusions

Patterns in the form of rules are intuitive, simple and easy for end usenslevsiand. Therefore, it
is not surprising that members of different communities have independealtthessed supervised
descriptive rule induction, each of them solving similar problems in similar wagsdaveloping
vocabularies according to the conventions of their respective réseantmunities.

This paper sheds a new light on previous work in this area by providiygtarsatic compari-
son of the terminology, definitions, goals, algorithms and heuristics of tr#ea mining (CSM),
emerging pattern mining (EPM) and subgroup discovery (SD) in a unifyisméwork called su-
pervised descriptive rule discovery. We have also shown that théstiesiused in CSM and EPM
can be translated into two well-known heuristics used in SD, both aiming at graffifbetween
coverage and distributional difference. In addition, the paper presenritical survey of exist-
ing visualization methods, and shows that some methods used in subgrooyedjstan be easily
adapted for use in CSM and EPM.
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