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Abstract
This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and sub-
group discovery (SD) in a unifying framework namedsupervised descriptive rule discovery. While
all these research areas aim at discovering patterns in the form of rules induced from labeled data,
they use different terminology and task definitions, claim to have different goals, claim to use dif-
ferent rule learning heuristics, and use different means for selecting subsets of induced patterns.
This paper contributes a novel understanding of these subareas of data mining by presenting a uni-
fied terminology, by explaining the apparent differences between the learning tasks as variants of
a unique supervised descriptive rule discovery task and by exploring the apparent differences be-
tween the approaches. It also shows that various rule learning heuristics used in CSM, EPM and SD
algorithms all aim at optimizing a trade off between rule coverage and precision. The commonali-
ties (and differences) between the approaches are showcased on a selection of best known variants
of CSM, EPM and SD algorithms. The paper also provides a critical survey of existing supervised
descriptive rule discovery visualization methods.
Keywords: descriptive rules, rule learning, contrast set mining, emerging patterns, subgroup
discovery

1. Introduction

Symbolic data analysis techniques aim at discovering comprehensible patterns or models in data.
They can be divided into techniques forpredictive induction, where models, typically induced from
class labeled data, are used to predict the class value of previously unseen examples, anddescriptive
induction, where the aim is to find comprehensible patterns, typically induced from unlabeled data.
Until recently, these techniques have been investigated by two different research communities: pre-
dictive induction mainly by the machine learning community, and descriptive induction mainly by
the data mining community.
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Data mining tasks where the goal is to find humanly interpretable differences between groups
have been addressed by both communities independently. The groups canbe interpreted as class
labels, so the data mining community, using the association rule learning perspective, adapted as-
sociation rule learners like Apriori by Agrawal et al. (1996) to performa task namedcontrast set
mining (Bay and Pazzani, 2001) andemerging pattern mining(Dong and Li, 1999). On the other
hand, the machine learning community, which usually deals with class labeled data, was challenged
by, instead of building sets of classification/prediction rules (e.g., Clark andNiblett, 1989; Cohen,
1995), to build individual rules for exploratory data analysis and interpretation, which is the goal of
the task namedsubgroup discovery(Wrobel, 1997).

This paper gives a survey of contrast set mining (CSM), emerging pattern mining (EPM), and
subgroup discovery (SD) in a unifying framework, namedsupervised descriptive rule discovery.
Typical applications of supervised descriptive rule discovery include patient risk group detection
in medicine, bioinformatics applications like finding sets of overexpressed genes for specific treat-
ments in microarray data analysis, and identifying distinguishing features of different customer seg-
ments in customer relationship management. The main aim of these applications is to understand
the underlying phenomena and not to classify new instances. Take another illustrative example,
where a manufacturer wants to know in what circumstances his machines may break down; his
intention is not to predict breakdowns, but to understand the factors thatlead to them and how to
avoid them.

The main contributions of this paper are as follows. It provides a survey of supervised de-
scriptive rule discovery approaches addressed in different communities, and proposes a unifying
supervised descriptive rule discovery framework, including a critical survey of visualization meth-
ods. The paper is organized as follows: Section 2 gives a survey of past research done in the main
supervised descriptive rule discovery areas: contrast set mining, emerging pattern mining, subgroup
discovery and other related approaches. Section 3 is dedicated to unifyingthe terminology, defini-
tions and the heuristics. Section 4 addresses visualization as an important open issue in supervised
descriptive rule discovery. Section 5 provides a short summary.

2. A Survey of Supervised Descriptive Rule Discovery Approaches

Research on finding interesting rules from class labeled data evolved independently in three distinct
areas—contrast set mining, mining of emerging patterns and subgroup discovery—each area using
different frameworks and terminology. In this section, we provide a survey of these three research
areas. We also discuss other related approaches.

2.1 An Illustrative Example

Let us illustrate contrast set mining, emerging pattern mining and subgroup discovery using data
from Table 1, a very small, artificial sample data set,1 adapted from Quinlan (1986). The data set
contains the results of a survey on 14 individuals, concerning the approval or disapproval of an
issue analyzed in the survey. Each individual is characterized by fourattributes—Education (with
valuesprimary school,secondary school, oruniversity), MaritalStatus (single, married,
or divorced), Sex (male or female), andHasChildren (yes or no)—that encode rudimentary
information about the sociodemographic background. The last columnApproved is the designated

1. Thanks to Johannes Fürnkranz for providing this data set.
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Education Marital Status Sex Has ChildrenApproved

primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes

secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

Table 1: A sample database.

Marital Stat

0.357
14.0

Sex

0.600
5.0

single

no

1.000
3.0

male

yes

0.000
2.0

female

yes

0.000
4.0

married

Has Childre

0.400
5.0

divorced

yes

0.000
3.0

no

no

1.000
2.0

yes

Figure 1: A decision tree, modeling the data set shown in Table 1.

classattribute, encoding whether the individual approved or disapproved theissue. Since there is
no need for expert knowledge to interpret the results, this data set is appropriate for illustrating
the results of supervised descriptive rule discovery algorithms, whose task is to find interesting
patterns describing individuals that are likely to approve or disapprove the issue, based on the four
demographic characteristics.

The task ofpredictive inductionis to induce, from a given set oftraining examples, a domain
model aimed at predictive or classification purposes, such as thedecision treeshown in Figure 1, or
a rule setshown in Figure 2, as learned by C4.5 and C4.5rules (Quinlan, 1993), respectively, from
the sample data in Table 1.

Sex = female → Approved = yes
MaritalStatus = single AND Sex = male → Approved = no
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no
MaritalStatus = divorced AND HasChildren = no → Approved = yes

Figure 2: A set of predictive rules, modeling the data set shown in Table 1.
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MaritalStatus = single AND Sex = male → Approved = no
Sex = male → Approved = no
Sex = female → Approved = yes
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no
MaritalStatus = single → Approved = no

Figure 3: Selected descriptive rules, describing individual patterns in the data of Table 1.

In contrast to predictive induction algorithms,descriptive inductionalgorithms typically result
in rules induced from unlabeled examples. E.g., given the examples listed in Table 1, these al-
gorithms would typically treat the classApproved no differently from any other attribute. Note,
however, that in the learning framework discussed in this paper, that is, inthe framework ofsu-
pervised descriptive rule discovery, the discovered rules of the formX →Y are induced from class
labeled data: the class labels are taken into account in learning of patterns of interest, constraining
Y at the right hand side of the rule to assign a value to the class attribute.

Figure 3 shows six descriptive rules, found for the sample data using the Magnum Opus (Webb,
1995) software. Note that these rules were found using the default settings except that the critical
value for the statistical test was relaxed to 0.25. These descriptive rules differ from the predictive
rules in several ways. The first rule is redundant with respect to the second. The first is included as
a strong pattern (all 3 single males do not approve) whereas the second is weaker but more general
(4 out of 7 males do not approve, which is not highly predictive, but accounts for 4 out of all 5
respondents who do not approve). Most predictive systems will includeonly one of these rules,
but either may be of interest to someone trying to understand the data, depending upon the specific
application. This particular approach to descriptive pattern discovery does not attempt to second
guess which of the more specific or more general patterns will be the more useful.

Another difference between the predictive and the descriptive rule setsis that the descriptive rule
set does not include the pattern that divorcees without children approve. This is because, while the
pattern is highly predictive in the sample data, there are insufficient examplesto pass the statistical
test which assesses the probability that, given the frequency of respondents approving, the apparent
correlation occurs by chance. The predictive approach often includes such rules for the sake of
completeness, while some descriptive approaches make no attempt at such completeness, assessing
each pattern on its individual merits.

Exactly which rules will be induced by a supervised descriptive rule discovery algorithm de-
pends on the task definition, the selected algorithm, as well as the user-defined constraints concern-
ing minimal rule support, precision, etc. In the following section, the example set of Table 1 is used
to illustrate the outputs of emerging pattern and subgroup discovery algorithms(see Figures 4 and 5,
respectively), while a sample output for contrast set mining is shown in Figure 3 above.

2.2 Contrast Set Mining

The problem of mining contrast sets was first defined by Bay and Pazzani (2001) as finding con-
trast sets as “conjunctions of attributes and values that differ meaningfullyin their distributions
across groups.” The example rules in Figure 3 illustrate this approach, including all conjunctions
of attributes and values that pass a statistical test for productivity (explained below) with respect to
attributeApproved that defines the ‘groups.’

380



SUPERVISEDDESCRIPTIVERULE DISCOVERY

2.2.1 CONTRAST SET M INING ALGORITHMS

The STUCCO algorithm (Search and Testing for Understandable Consistent Contrasts) by Bay and
Pazzani (2001) is based on the Max-Miner rule discovery algorithm (Bayardo, 1998). STUCCO
discovers a set of contrast sets along with their supports2 on groups. STUCCO employs a number
of pruning mechanisms. A potential contrast setX is discarded if it fails a statistical test for inde-
pendence with respect to the group variableY. It is also subjected to what Webb (2007) calls a test
for productivity. RuleX →Y is productive iff

∀Z ⊂ X : confidence(Z →Y) < confidence(X →Y)

whereconfidence(X →Y) is a maximum likelihood estimate of conditional probabilityP(Y|X), es-
timated by the ratiocount(X,Y)

count(X) , wherecount(X,Y) represents the number of examples for which both
X andY are true, andcount(X) represents the number of examples for whichX is true. Therefore a
more specific contrast set must have higher confidence than any of its generalizations. Further tests
for minimum counts and effect sizes may also be imposed.

STUCCO introduced a novel variant of the Bonferroni correction formultiple tests which ap-
plies ever more stringent critical values to the statistical tests employed as the number of conditions
in a contrast set is increased. In comparison, the other techniques discussed below do not, by de-
fault, employ any form of correction for multiple comparisons, as result of which they have high
risk of makingfalse discoveries(Webb, 2007).

It was shown by Webb et al. (2003) that contrast set mining is a special case of the more general
rule learning task. A contrast set can be interpreted as the antecedent of rule X →Y, and groupGi

for which it is characteristic—in contrast with groupG j—as the rule consequent, leading to rules of
the formContrastSet→Gi . A standard descriptive rule discovery algorithm, such as an association-
rule discovery system (Agrawal et al., 1996), can be used for the taskif the consequent is restricted
to a variable whose values denote group membership.

In particular, Webb et al. (2003) showed that when STUCCO and the general-purpose descrip-
tive rule learning system Magnum Opus were each run with their default settings, but the consequent
restricted to the contrast variable in the case of Magnum Opus, the contrasts found differed mainly
as a consequence only of differences in the statistical tests employed to screen the rules.

Hilderman and Peckham (2005) proposed a different approach to contrast set mining called
CIGAR (ContrastIng Grouped Association Rules). CIGAR uses different statistical tests to STUCCO
or Magnum Opus for both independence and productivity and introduces a test forminimum sup-
port.

Wong and Tseng (2005) have developed techniques for discovering contrasts that can include
negations of terms in the contrast set.

In general, contrast set mining approaches require discrete data, which is in real world appli-
cations frequently not the case. A data discretization method developed specifically for set mining
purposes is described by Bay (2000). This approach does not appear to have been further used by
the contrast set mining community, except for Lin and Keogh (2006), who extended contrast set
mining to time series and multimedia data analysis. They introduced a formal notion ofa time
series contrast set along with a fast algorithm to find time series contrast sets. An approach to quan-
titative contrast set mining without discretization in the preprocessing phaseis proposed by Simeon

2. The support of a contrast setContrastSetwith respect to a groupGi , support(ContrastSet,Gi), is the percentage of
examples inGi for which the contrast set is true.
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and Hilderman (2007) with the algorithm GenQCSets. In this approach, a slightly modified equal
width binning interval method is used.

Common to most contrast set mining approaches is that they generate all candidate contrast sets
from discrete (or discretized) data and later use statistical tests to identify theinteresting ones. Open
questions identified by Webb et al. (2003) are yet unsolved: selection ofappropriate heuristics for
identifying interesting contrast sets, appropriate measures of quality for sets of contrast sets, and
appropriate methods for presenting contrast sets to the end users.

2.2.2 SELECTED APPLICATIONS OFCONTRAST SET M INING

The contrast mining paradigm does not appear to have been pursued in many published applications.
Webb et al. (2003) investigated its use with retail sales data. Wong and Tseng (2005) applied contrast
set mining for designing customized insurance programs. Siu et al. (2005)have used contrast set
mining to identify patterns in synchrotron x-ray data that distinguish tissue samples of different
forms of cancerous tumor. Kralj et al. (2007b) have addressed a contrast set mining problem of
distinguishing between two groups of brain ischaemia patients by transformingthe contrast set
mining task to a subgroup discovery task.

2.3 Emerging Pattern Mining

Emerging patterns were defined by Dong and Li (1999) as itemsets whose support increases sig-
nificantly from one data set to another. Emerging patterns are said to capture emerging trends in
time-stamped databases, or to capture differentiating characteristics between classes of data.

2.3.1 EMERGING PATTERN M INING ALGORITHMS

Efficient algorithms for mining emerging patterns were proposed by Dong and Li (1999) and Fan
and Ramamohanarao (2003). When first defined by Dong and Li (1999), the purpose of emerging
patterns was “to capture emerging trends in time-stamped data, or useful contrasts between data
classes”. Subsequent emerging pattern research has largely focused on the use of the discovered
patterns for classification purposes, for example, classification by emerging patterns (Dong et al.,
1999; Li et al., 2000) and classification by jumping emerging patterns3 (Li et al., 2001). An ad-
vanced Bayesian approach (Fan and Ramamohanara, 2003) and bagging (Fan et al., 2006) were
also proposed.

From a semantic point of view, emerging patterns are association rules with anitemset in rule
antecedent, and a fixed consequent:ItemSet→ D1, for given data setD1 being compared to another
data setD2.

The measure of quality of emerging patterns is thegrowth rate(the ratio of the two supports).
It determines, for example, that a pattern with a 10% support in one data setand 1% in the other
is better than a pattern with support 70% in one data set and 10% in the other (as 10

1 >
70
10). From

the association rule perspective,GrowthRate(ItemSet,D1,D2) = confidence(ItemSet→D1)
1−confidence(ItemSet→D1)

. Thus it can
be seen that growth rate provides an identical ordering to confidence, except that growth rate is
undefined when confidence = 1.0.

3. Jumping emerging patterns are emerging patterns with support zero inone data set and greater then zero in the other
data set.
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MaritalStatus = single AND Sex = male → Approved = no
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = yes → Approved = no

Figure 4: Jumping emerging patterns in the data of Table 1.

Some researchers have argued that finding all the emerging patterns above a minimum growth
rate constraint generates too many patterns to be analyzed by a domain expert. Fan and Ramamoha-
narao (2003) have worked on selecting the interesting emerging patterns,while Soulet et al. (2004)
have proposed condensed representations of emerging patterns.

Boulesteix et al. (2003) introduced a CART-based approach to discover emerging patterns in
microarray data. The method is based on growing decision trees from whichthe emerging patterns
are extracted. It combines pattern search with a statistical procedure based on Fisher’s exact test to
assess the significance of each emerging pattern. Subsequently, sample classification based on the
inferred emerging patterns is performed using maximum-likelihood linear discriminant analysis.

Figure 4 shows all jumping emerging patterns found for the data in Table 1 when using a min-
imum support of 15%. These were discovered using the Magnum Opus software, limiting the con-
sequent to the variableapproved, setting minimum confidence to 1.0 and setting minimum support
to 2.

2.3.2 SELECTED APPLICATIONS OFEMERGING PATTERNS

Emerging patterns have been mainly applied to the field of bioinformatics, more specifically to
microarray data analysis. Li et al. (2003) present an interpretable classifier based on simple rules that
is competitive to the state of the art black-box classifiers on the acute lymphoblastic leukemia (ALL)
microarray data set. Li and Wong (2002) have focused on finding groups of genes by emerging
patterns and applied it to the ALL/AML data set and the colon tumor data set. Song et al. (2001) used
emerging patterns together with unexpected change and the added/perished rule to mine customer
behavior.

2.4 Subgroup Discovery

The task of subgroup discovery was defined by Klösgen (1996) and Wrobel (1997) as follows:
“Given a population of individuals and a property of those individuals that we are interested in, find
population subgroups that are statistically ‘most interesting’, for example, are as large as possible
and have the most unusual statistical (distributional) characteristics with respect to the property of
interest”.

2.4.1 SUBGROUPDISCOVERY ALGORITHMS

Subgroup descriptions are conjunctions of features that are characteristic for a selected class of
individuals (property of interest). A subgroup description can be seenas the condition part of a rule
SubgroupDescription→Class. Therefore, subgroup discovery can be seen as a special case ofa
more general rule learning task.

Subgroup discovery research has evolved in several directions. Onthe one hand, exhaustive
approaches guarantee the optimal solution given the optimization criterion. One system that can
use both exhaustive and heuristic discovery algorithms is Explora by Klösgen (1996). Other algo-
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Sex = female → Approved = yes
MaritalStatus = married → Approved = yes
MaritalStatus = divorced AND HasChildren = no → Approved = yes
Education = university → Approved = yes
MaritalStatus = single AND Sex = male → Approved = no

Figure 5: Subgroup descriptions induced by Apriori-SD from the data ofTable 1.

rithms for exhaustive subgroup discovery are the SD-Map method by Atzmüller and Puppe (2006)
and Apriori-SD by Kav̌sek and Lavrǎc (2006). On the other hand, adaptations of classification rule
learners to perform subgroup discovery, including algorithm SD by Gamberger and Lavrǎc (2002)
and algorithm CN2-SD by Lavrač et al. (2004b), use heuristic search techniques drawn from classi-
fication rule learning coupled with constraints appropriate for descriptiverules.

Relational subgroup discovery approaches have been proposed byWrobel (1997, 2001) with
algorithm Midos, by Kl̈osgen and May (2002) with algorithm SubgroupMiner, which is designed
for spatial data mining in relational space databases, and byŽelezńy and Lavrǎc (2006) with the
algorithm RSD (Relational Subgroup Discovery). RSD uses a propositionalization approach to
relational subgroup discovery, achieved through appropriately adapting rule learning and first-order
feature construction. Other non-relational subgroup discovery algorithms were developed, including
an algorithm for exploiting background knowledge in subgroup discovery (Atzmüller et al., 2005a),
and an iterative genetic algorithm SDIGA by del Jesus et al. (2007) implementing a fuzzy system
for solving subgroup discovery tasks.

Different heuristics have been used for subgroup discovery. By definition, the interestingness
of a subgroup depends on its unusualness and size, therefore the rulequality evaluation heuristics
needs to combine both factors. Weighted relative accuracy (WRAcc, see Equation 2 in Section 3.3)
is used by algorithms CN2-SD, Apriori-SD and RSD and, in a different formulation and in dif-
ferent variants, also by MIDOS and EXPLORA. Generalization quotient (qg, see Equation 3 in
Section 3.3) is used by the SD algorithm. SubgroupMiner uses the classical binominal test to verify
if the target share is significantly different in a subgroup.

Different approaches have been used for eliminating redundant subgroups. Algorithms CN2-SD,
Apriori-SD, SD and RSD use weighted covering (Lavrač et al., 2004b) to achieve rule diversity.
Algorithms Explora and SubgroupMiner use an approach called subgroup suppression (Klösgen,
1996). A sample set of subgroup describing rules, induced by Apriori-SD with parameterssupport
set to 15% (requiring at least 2 covered training examples per rule) andconfidenceset to 65%, is
shown in Figure 5.

2.4.2 SELECTED APPLICATIONS OFSUBGROUPDISCOVERY

Subgroup discovery was used in numerous real-life applications. The applications in medical do-
mains include the analysis of coronary heart disease (Gamberger and Lavrač, 2002) and brain is-
chaemia data analysis (Kralj et al., 2007b,a; Lavrač et al., 2007), as well as profiling examiners for
sonographic examinations (Atzmüller et al., 2005b). Spatial subgroup mining applications include
mining of census data (Klösgen et al., 2003) and mining of vegetation data (May and Ragia, 2002).
There are also applications in other areas like marketing (del Jesus et al., 2007; Lavrǎc et al., 2004a)
and analysis of manufacturing shop floor data (Jenkole et al., 2007).
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2.5 Related Approaches

Research in some closely related areas of rule learning, performed independently from the above
described approaches, is outlined below.

2.5.1 CHANGE M INING

The paper by Liu et al. (2001) onfundamental rule changesproposes a technique to identify the
set of fundamental changes in two given data sets collected from two time periods. The proposed
approach first generates rules and in the second phase it identifies changes (rules) that can not be
explained by the presence of other changes (rules). This is achieved by applying statisticalχ2 test
for homogeneity of support and confidence. This differs from contrast set discovery through its
consideration of rules for each group, rather than itemsets. A change in the frequency of just one
itemset between groups may affect many association rules, potentially all rules that have the itemset
as either an antecedent or consequent.

Liu et al. (2000) and Wang et al. (2003) present techniques that identify differences in the
decision trees and classification rules, respectively, found on two different data sets.

2.5.2 MINING CLOSED SETS FROMLABELED DATA

Closed sets have been proven successful in the context of compacted data representation for asso-
ciation rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. It
was recently shown that when considering labeled data, closed sets can be adapted for classification
and discrimination purposes by conveniently contrasting covering properties on positive and nega-
tive examples (Garriga et al., 2006). The approach was successfully applied in potato microarray
data analysis to a real-life problem of distinguishing between virus sensitiveand resistant transgenic
potato lines (Kralj et al., 2006).

2.5.3 EXCEPTION RULE M INING

Exception rule mining considers a problem of finding a set of rule pairs, each of which consists
of an exception rule (which describes a regularity for fewer objects) associated with a strong rule
(description of a regularity for numerous objects with few counterexamples). An example of such
a rule pair is “using a seat belt is safe” (strong rule) and “using a seat belt is risky for a child”
(exception rule). While the goal of exception rule mining is also to find descriptive rules from
labeled data, in contrast with other rule discovery approaches described in this paper, the goal of
exception rule mining is to find “weak” rules—surprising rules that are an exception to the general
belief of background knowledge.

Suzuki (2006) and Daly and Taniar (2005), summarizing the research inexception rule mining,
reveal that the key concerns addressed by this body of research include interestingness measures,
reliability evaluation, practical application, parameter reduction and knowledge representation, as
well as providing fast algorithms for solving the problem.

2.5.4 IMPACT RULES, BUMP HUNTING, QUANTITATIVE ASSOCIATIONRULES

Supervised descriptive rule discovery seeks to discover sets of conditions that are related to devia-
tions in the class distribution, where the class is a qualitative variable. A relatedbody of research
seeks to discover sets of conditions that are related to deviations in a targetquantitative variable.
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning

contrast set itemset subgroup description rule condition
groupsG1, . . .Gn data setsD1 andD2 class/propertyC class/conceptCi

attribute-value pair item logical (binary) feature condition
examples in groups transactions in data sets examples of examples of

G1, . . .Gn D1 andD2 C andC C1 . . .Cn

examples for which transactions containing subgroup of instancescovered examples
the contrast set is true the itemset

support of contrast set onGi support of EP in data setD1 true positive rate true positive rate
support of contrast set onG j support of EP in data setD2 false positive rate false positive rate

Table 2: Table of synonyms from different communities, showing the compatibility of terms.

Such techniques include Bump Hunting (Friedman and Fisher, 1999), Quantitative Association
Rules (Aumann and Lindell, 1999) and Impact Rules (Webb, 2001).

3. A Unifying Framework for Supervised Descriptive Rule Induction

This section presents a unifying framework for contrast set mining, emerging pattern mining and
subgroup discovery, as the main representatives of supervised descriptive rule discovery approaches.
This is achieved by unifying the terminology, the task definitions and the rule learning heuristics.

3.1 Unifying the Terminology

Contrast set mining (CSM), emerging pattern mining (EPM) and subgroup discovery (SD) were
developed in different communities, each developing their own terminology that needs to be clar-
ified before proceeding. Below we show that terms used in different communities are compatible,
according to the following definition of compatibility.

Definition 1: Compatibility of terms. Terms used in different communities are compatible if they
can be translated into equivalent logical expressions and if they bare the same meaning, that is, if
terms from one community can replace terms used in another community.

Lemma 1: Terms used in CSM, EPM and SD are compatible.
Proof The compatibility of terms is proven through a term dictionary, whose aim is to translate all
the terms used in CSM, EPM and SD into the terms used in the rule learning community.The term
dictionary is proposed in Table 2. More specifically, this table provides a dictionary of equivalent
terms from contrast set mining, emerging pattern mining and subgroup discovery, in a unifying ter-
minology of classification rule learning, and in particular of concept learning (considering classCi

as the concept to be learned from the positive examples of this concept, and the negative examples
formed of examples of all other classes).

3.2 Unifying the Task Definitions

Having established a unifying view on the terminology, the next step is to provide a unifying view
on the different task definitions.
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CSM A contrast set mining task is defined as follows (Bay and Pazzani, 2001). Let A1, A2, . . . ,
Ak be a set ofk variables called attributes. EachAi can take values from the set{vi1, vi2, . . . ,
vim}. Given a set of user defined groupsG1, G2, . . . , Gn of data instances, a contrast set is
a conjunction of attribute-value pairs, defining a pattern that best discriminates the instances
of different user-defined groups. A special case of contrast setmining considers only two
contrasting groups (G1 andG2). In such cases, we wish to find characteristics of one group
discriminating it from the other and vice versa.

EPM An emerging patterns mining task is defined as follows (Dong and Li, 1999). Let I = {i1, i2,
. . . , iN} be a set of items (note that an item is equivalent to a binary feature in SD, andan
individual attribute-value pair in CSM). A transaction is a subsetT of I . A datasetis a set
D of transactions. A subsetX of I is called anitemset. TransactionT contains an itemset
X in a data setD, if X ⊆ T. For two data setsD1 andD2, emerging pattern mining aims at
discovering itemsets whose support increases significantly from one dataset to another.

SD In subgroup discovery, subgroups are described as conjunctions of features, where features
are of the formAi = vi j for nominal attributes, andAi > valueor Ai ≤ valuefor continuous
attributes. Given the property of interestC, and the population of examples ofC andC, the
subgroup discovery task aims at finding population subgroups that are as large as possible and
have the most unusual statistical (distributional) characteristics with respect to the property
of interestC (Wrobel, 1997).

The definitions of contrast set mining, emerging pattern mining and subgroupdiscovery appear
different: contrast set mining searches for discriminating characteristicsof groups called contrast
sets, emerging pattern mining aims at discovering itemsets whose support increases significantly
from one data set to another, while subgroup discovery searches forsubgroup descriptions. By us-
ing the dictionary from Table 2 we can see that the goals of these three mining tasks are very similar,
it is primarily the terminology that differs.

Definition 2: Compatibility of task definitions. Definitions of different learning tasks are compat-
ible if one learning task can be translated into another learning task without substantially changing
the learning goal.

Lemma 2: Definitions of CSM, EPM and SD tasks are compatible.

Proof To show the compatibility of task definitions, we propose a unifying table (Table3) of task
definitions, allowing us to see that emerging pattern mining taskEPM(D1,D2) is equivalent to
CSM(Gi ,G j). It is also easy to show that a two-group contrast set mining taskCSM(Gi ,G j) can be
directly translated into the following two subgroup discovery tasks:SD(Gi) for C = Gi andC = G j ,
andSD(G j) for C = G j andC = Gi .
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning

Given Given Given Given
examples inG1 vs. G j transactions inD1 andD2 in examplesC examples inCi

from G1, . . .Gi from D1 andD2 from C andC from C1 . . .Cn

Find Find Find Find
ContrastSetik → Gi ItemSet1k → D1 SubgrDescrk →C {RuleCondik →Ci}
ContrastSetj l → G j ItemSet2l → D2

Table 3: Table of task definitions from different communities, showing the compatibility of task
definitions in terms of output rules.

Having proved that the subgroup discovery task is compatible with a two-group contrast set
mining task, it is by induction compatible with a general contrast set mining task, as shown below.

CSM(G1, . . .Gn)
for i=2 to ndo

for j=1, j, i to n-1do
SD(C = Gi vs. C = G j)

Note that in Table 3 of task definitions column ‘Rule Learning’ again corresponds to a concept
learning task instead of the general classification rule learning task. In theconcept learning setting,
which is better suited for the comparisons with supervised descriptive rule discovery approaches,
a distinguished classCi is learned from examples of this class, and examples of all other classes
C1, . . . , Ci−1, Ci+1, CN are merged to form the set of examples of classCi . In this case, induced
rule set{RuleCondik → Ci} consists only of rules for distinguished classCi . On the other hand,
in a general classification rule learning setting, from examples ofN different classes a set of rules
would be learned{. . . , RuleCondik →Ci , RuleCondik+1 →Ci , . . . ,RuleCondj l →Cj , . . . ,Default},
consisting of sets of rules of the formRuleCondik →Ci for each individual classCi , supplemented
by the default rule.

While the primary tasks are very closely related, each of the three communities has concen-
trated on different sets of issues around this task. The contrast set discovery community has paid
greatest attention to the statistical issues of multiple comparisons that, if not addressed, can result in
high risks of false discoveries. The emerging patterns community has investigated how supervised
descriptive rules can be used for classification. The contrast set andemerging pattern communi-
ties have primarily addressed only categorical data whereas the subgroup discovery community has
also considered numeric and relational data. The subgroup discovery community has also explored
techniques for discovering small numbers of supervised descriptive rules with high coverage of the
data.

3.3 Unifying the Rule Learning Heuristics

The aim of this section is to provide a unifying view on rule learning heuristics used in different
communities. To this end, we first investigate the rule quality measures.

Most rule quality measures are derived by analyzing the covering properties of the rule and the
class in the rule consequent considered as positive. This relationship can be depicted by a confusion
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predicted
actual # of positives # of negatives

# of positives p = |TP(X,Y)| p = |FN(X,Y)| P
# of negatives n = |FP(X,Y)| n = |TN(X,Y)| N

p+n p+n P+N

Table 4: Confusion matrix:TP(X,Y) stands for true positives,FP(X,Y) for false positives,
FN(X,Y) for false negatives andTN(X,Y) for true negatives, as predicted by ruleX →Y.

matrix (Table 4, see, e.g., Kohavi and Provost, 1998), which considersthat ruleR = X → Y is
represented as(X,Y), and definesp as the number of true positives (positive examples correctly
classified as positive by rule(X,Y)), n as the number of false positives, etc., from which other
covering characteristics of a rule can be derived: true positive rateTPr(X,Y) = p

P and false positive
rateFPr(X,Y) = n

N .

CSM Contrast set mining aims at discovering contrast sets that best discriminate the instances
of different user-defined groups. The support of contrast setX with respect to groupGi ,
support(X,Gi), is the percentage of examples inGi for which the contrast set is true. Note
thatsupport of a contrast set with respect to group Gis the same astrue positive ratein the
classification rule and subgroup discovery terminology, that is,support(X,Gi) = count(X,Gi)

|Gi |
=

TPr(X,Gi). A derived goal of contrast set mining, proposed by Bay and Pazzani (2001), is to
find contrast sets whose support differs meaningfully across groups, for δ being a user-defined
parameter.

SuppDiff(X,Gi ,G j) = |support(X,Gi)−support(X,G j)| ≥ δ.

EPM Emerging pattern mining aims at discovering itemsets whose support increasessignificantly
from one data set to another Dong and Li (1999), wheresupportof itemsetX in data setD
is computed assupport(X,D) = count(X,D)

|D| , for count(X,D) being the number of transactions
in D containingX. Suppose we are given an ordered pair of data setsD1 and D2. The
GrowthRateof an itemsetX from D1 to D2, denoted asGrowthRate(X,D1,D2), is defined as
follows:

GrowthRate(X,D1,D2) =
support(X,D1)

support(X,D2)
. (1)

Definitions of special cases ofGrowthRate(X,D1,D2) are as follows, ifsupport(X,D1) = 0
thenGrowthRate(X,D1,D2) = 0, if support(X,D2) = 0 thenGrowthRate(X,D1,D2) = ∞.

SD Subgroup discovery aims at finding population subgroups that are as large as possible and have
the most unusual statistical (distributional) characteristics with respect to theproperty of in-
terest (Wrobel, 1997). There were several heuristics developed and used in the subgroup
discovery community. Since they follow from the task definition, they try to maximizesub-
group size and the distribution difference at the same time. Examples of such heuristics are
theweighted relative accuracy(Equation 2, see Lavrač et al., 2004b) and thegeneralization
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Contrast Set Mining Emerging Pattern Mining Subgroup Discovery Rule Learning

SuppDiff(X,Gi ,G j ) WRAcc(X,C) Piatetski-Shapiro heuristic
leverage

GrowthRate(X,D1,D2) qg(X,C) odds ratio forg = 0
accuracy/precision, forg = p

Table 5: Table of relationships between the pairs of heuristics, and their equivalents in classification
rule learning.

quotient(Equation 3, see Gamberger and Lavrač, 2002) , forg being a user-defined parameter.

WRAcc(X,C) =
p+n
P+N

·

(

p
p+n

−
P

P+N

)

, (2)

qg(X,C) =
p

n+g
. (3)

Let us now investigate whether the heuristics used in CSM, EPM and SD are compatible, using
the following definition of compatibility.

Definition 3: Compatibility of heuristics.
Heuristic function h1 is compatiblewith h2 if h2 can be derived from h1 and if for any two rules R
and R′, h1(R) > h1(R′) ⇔ h2(R) > h2(R′).

Lemma 3: Definitions of CSM, EPM and SD heuristics are pairwise compatible.
Proof The proof of Lemma 3 is established by proving two sub-lemmas, Lemma 3a and Lemma 3b,
which prove the compatibility of two pairs of heuristics, whereas the relationships between these
pairs is established through Table 5, and illustrated in Figures 6 and 7.

Lemma 3a: The support difference heuristic used in CSM and the weighted relative accuracy
heuristic used in SD are compatible.
Proof Note that, as shown below, weighted relative accuracy (Equation 2) can be interpreted in
terms of probabilities of rule antecedentX and consequentY (classC representing the property of
interest), and the conditional probability of classY givenX, estimated by relative frequencies.

WRAcc(X,Y) = P(X) · (P(Y|X)−P(Y)).

From this equation we see that, indeed, when optimizing weighted relative accuracy of ruleX →Y,
we optimize two contrasting factors: rule coverageP(X) (proportional to the size of the subgroup),
and distributional unusualnessP(Y|X)−P(Y) (proportional to the difference of the number of posi-
tive examples correctly covered by the rule and the number of positives in the original training set).
It is straightforward to show that this measure is equivalent to the Piatetski-Shapiro measure, which
evaluates the conditional (in)dependence of rule consequent and ruleantecedent as follows:

PS(X,Y) = P(X ·Y)−P(X) ·P(Y).
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Weighted relative accuracy, known from subgroup discovery, and support difference between
groups, used in contrast set mining, are related as follows:4

WRAcc(X,Y) =
= P(X) · [P(Y|X)−P(Y)] = P(Y ·X)−P(Y) ·P(X)
= P(Y ·X)−P(Y) · [P(Y ·X)+P(Y ·X)]
= (1−P(Y)) ·P(Y ·X)−P(Y) ·P(Y ·X)
= P(Y) ·P(Y) ·P(X|Y)−P(Y) ·P(Y) ·P(X|Y)
= P(Y) ·P(Y) · [P(X|Y)−P(X|Y)]
= P(Y) ·P(Y) · [TPr(X,Y)−FPr(X,Y)].

Since the distribution of examples among classes is constant for any data set,the first two factors
P(Y) and P(Y) are constant within a data set. Therefore, when maximizing the weighted relative
accuracy, one is maximizing the second factorTPr(X,Y)−FPr(X,Y), which actually is support
difference when we have a two group contrast set mining problem. Consequently, forC = G1, and
C = G2 the following holds:

WRAcc(X,C) = WRAcc(X,G1) = P(G1) ·P(G2) · [support(X,G1)−support(X,G2)].

Lemma 3b: The growth rate heuristic used in EPM and the generalization quotient heuristic used
in SD are compatible.
Proof Equation 1 can be rewritten as follows:

GrowthRate(X,D1,D2) =
support(X,D1)

support(C,D2)
=

=
count(X,D1)

count(X,D2)
·
|D2|

|D1|
=

p
n
·
N
P

.

Since the distribution of examples among classes is constant for any data set,the quotientNP is
constant. Consequently, the growth rate is the generalization quotient withg = 0, multiplied by a
constant. Therefore, the growth rate is compatible with the generalization quotient.

GrowthRate(X,C,C) = q0(X,C) ·
N
P

.

The lemmas prove that heuristics used in CSM and EPM can be translated into heuristics used in
SD and vice versa. In this way, we have shown the compatibility of CSM and SDheuristics, as well
as the compatibility of EPM and SD heuristics. While the lemmas do not prove directcompatibility
of CSM and EPM heuristics, they prove that heuristics used in CSM and EPMcan be translated into
two heuristics used in SD, both aiming at trading-off between coverage anddistributional difference.

4. Peter A. Flach is acknowledged for having derived these equations.
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Figure 6: Isometrics forqg. The dotted lines show the isometrics for a selectedg> 0, while the full
lines show the special case wheng = 0, compatible to the EPMgrowth rateheuristic.

Figure 7: Isometrics forWRAcc, compatible to the CSMsupport differenceheuristic.

Table 5 provides also the equivalents of these heuristics in terms of heuristics known from
the classification rule learning community, details of which are beyond the scope of this paper
(an interested reader can find more details on selected heuristics and their ROC representations in
Fürnkranz and Flach, 2003).

Note that the growth rate heuristic from EPM, as a special case of the generalization quotient
heuristic withg= 0, does not consider rule coverage. On the other hand, its compatible counterpart,
the generalization quotientqg heuristic used in SD, can be tailored to favor more general rules by
setting theg parameter value, as for a generalg value, theqg heuristic provides a trade-off between
rule accuracy and coverage. Figure 65 illustrates theqg isometrics, for a generalg value, as well as
for valueg = 0.

Note also that standard rule learners (such as CN2 by Clark and Niblett, 1989) tend to generate
very specific rules, due to using accuracy heuristicAcc(X,Y) = p+n

P+N or its variants: the Laplace
and them-estimate. On the other hand, the CSM support difference heuristic and its SD counterpart
WRAccboth optimize a trade-off between rule accuracy and coverage. TheWRAccisometrics are
plotted in Figure 7.6

3.4 Comparison of Rule Selection Mechanisms

Having established a unifying view on the terminology, definitions and rule learning heuristics, the
last step is to analyze rule selection mechanisms used by different algorithms.The motivation for
rule selection can be either to find only significant rules or to avoid overlapping rules (too many
too similar rules), or to avoid showing redundant rules to the end users. Note that rule selection is
not always necessary and that depending on the goal, redundant rules can be valuable (e.g., clas-

5. This figure is due to Gamberger and Lavrač (2002).
6. This figure is due to F̈urnkranz and Flach (2003).

392



SUPERVISEDDESCRIPTIVERULE DISCOVERY

sification by aggregating emerging patterns by Dong et al., 1999). Two approaches are commonly
used: statistic tests and the (weighted) covering approach. In this section,we compare these two
approaches.

Webb et al. (2003) show that contrast set mining is a special case of the more general rule
discovery task. However, an experimental comparison of STUCCO, OPUS AR and C4.5 has shown
that standard rule learners return a larger set of rules compared to STUCCO, and that some of them
are also not interesting to end users. STUCCO (see Bay and Pazzani 2001 for more details) uses
several mechanisms for rule pruning. Statistical significance pruning removes contrast sets that,
while significant and large, derive these properties only due to being specializations of more general
contrast sets: any specialization is pruned that has a similar support to its parent or that fails aχ2

test of independence with respect to its parent.
In the context of OPUSAR, the emphasis has been on developing statistical tests that are robust

in the context of the large search spaces explored in many rule discoveryapplications Webb (2007).
These include tests for independence between the antecedent and consequent, and tests to assess
whether specializations have significantly higher confidence than their generalizations.

In subgroup discovery, theweighted covering approach(Lavrǎc et al., 2004b) is used with the
aim of ensuring the diversity of rules induced in different iterations of thealgorithm. In each iter-
ation, after selecting the best rule, the weights of positive examples are decreased according to the
number of rules covering each positive examplerule count(e); they are set tow(e) = 1

rule count(e) .
For selecting the best rule in consequent iterations, the SD algorithm (Gamberger and Lavrǎc, 2002)
uses—instead of the unweightedqg measure (Equation 3)—the weighted variant ofqg defined in
Equation 4, while the CN2-SD (Lavrač et al., 2004b) and APRIORI-SD (Kavšek and Lavrǎc, 2006)
algorithms use the weighted relative accuracy (Equation 2) modified with example weights, as de-
fined in Equation 5, wherep′ = ∑TP(X,Y) w(e) is the sum of the weights of all covered positive
examples, andP′ is the sum of the weights of all positive examples.

q′g(X,Y) =
p′

n+g
, (4)

WRAcc′(X,Y) =
p′ +n
P′ +N

·

(

p′

p′ +n
−

P
P+N

)

. (5)

Unlike in the sections on the terminology, task definitions and rule learning heuristics, the com-
parison of rule pruning mechanisms described in this section does not result in a unified view;
although the goals of rule pruning may be the same, the pruning mechanisms used in different
subareas of supervised descriptive rule discovery are—as shown above—very different.

4. Visualization

Webb et al. (2003) identify a need to develop appropriate methods for presenting contrast sets to
end users, possibly through contrast set visualization. This open issue, concerning the visualization
of contrast sets and emerging patterns, can be resolved by importing some of the solutions proposed
in the subgroup discovery community. Several methods for subgroup visualization were developed
by Wettschereck (2002), Wrobel (2001), Gamberger et al. (2002),Kralj et al. (2005) and Atzm̈uller
and Puppe (2005). They are here illustrated using the coronary heartdisease data set, originally
analyzed by Gamberger and Lavrač (2002). The visualizations are evaluated by considering their
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Figure 8: Subgroup visualization by pie charts.Figure 9: Subgroup visualization by box plots.

intuitiveness, correctness of displayed data, usefulness, ability to display contents besides the nu-
merical properties of subgroups, (e.g., plot subgroup probability densities against the values of an
attribute), and their extensibility to multi-class problems.

4.1 Visualization by Pie Charts

Slices of pie charts are the most common way of visualizing parts of a whole. They are widely used
and understood. Subgroup visualization by pie chart, proposed by Wettschereck (2002), consists
of a two-level pie for each subgroup. The base pie represents the distribution of individuals in
terms of the property of interest of the entire example set. The inner pie represents the size and the
distribution of individuals in terms of the property of interest in a specific subgroup. An example of
five subgroups (subgroups A1, A2, B1, B2, C1), as well as the basepie “all subjects” are visualized
by pie charts in Figure 8.

The main weakness of this visualization is the misleading representation of the relative size
of subgroups. The size of a subgroup is represented by the radius ofthe circle. The faultiness
arises from the surface of the circle which increases with the square of itsradius. For example, a
subgroup that covers 20% of examples is represented by a circle that covers only 4% of the whole
surface, while a subgroup that covers 50% of examples is representedby a circle that covers 25%
of the whole surface. In terms of usefulness, this visualization is not veryhandy since—in order to
compare subgroups—one would need to compare sizes of circles, which isdifficult. The comparison
of distributions in subgroups is also not straightforward. This visualizationalso does not show the
contents of subgroups. It would be possible to extend this visualization to multi-class problems.

4.2 Visualization by Box Plots

In subgroup visualization by box plots, introduced by Wrobel (2001), each subgroup is represented
by one box plot (all examples are also considered as one subgroup andare displayed in the top
box). Each box shows the entire population; the horizontally stripped areaon the left represents
the positive examples and the white area on the right-hand side of the box represents the negative
examples. The grey area within each box indicates the respective subgroup. The overlap of the grey
area with the hatched area shows the overlap of the group with the positive examples. Hence, the
more to the left the grey area extends the better. The less the grey area extends to the right of the
hatched area, the more specific a subgroup is (less overlap with the subjects of the negative class).
Finally, the location of the box along the X-axis indicates the relative share ofthe target class within
each subgroup: the more to the right a box is placed, the higher is the shareof the target value within
this subgroup. The vertical line (in Figure 9 at value 46.6%) indicates the default accuracy, that is,
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the number of positive examples in the entire population. An example box plot visualization of five
subgroups is presented in Figure 9.

On the negative side, the intuitiveness of this visualization is relatively poor since an extensive
explanation is necessary for understanding it. It is also somewhat illogicalsince the boxes that are
placed more to the right and have more grey color on the left-hand side represent the best subgroups.
This visualization is not very attractive since most of the image is white; the greyarea (the part of
the image that really represents the subgroups) is a relatively tiny part of the entire image. On the
positive side, all the visualized data are correct and the visualization is useful since the subgroups
are arranged by their confidence. It is also easier to contrast the sizesof subgroups compared to
their pie chart visualization. However, this visualization does not display thecontents of the data. It
would also be difficult to extend this visualization to multi-class problems.

4.3 Visualizing Subgroup Distribution w.r.t. a Continuous Attribute

The distribution of examples w.r.t. a continuous attribute, introduced by Gamberger and Lavrǎc
(2002) and Gamberger et al. (2002), was used in the analysis of several medical domains. It is
the only subgroup visualization method that offers an insight of the visualized subgroups. The
approach assumes the existence of at least one numeric (or ordered discrete) attribute of expert’s
interest for subgroup analysis. The selected attribute is plotted on the X-axis of the diagram. The
Y-axis represents the target variable, or more precisely, the number of instances belonging to target
propertyC (shown on theY+ axis) or not belonging toC (shown on theY− axis) for the values of
the attribute on the X-axis. It must be noted that both directions of the Y-axis are used to indicate
the number of instances. The entire data set and two subgroups A1 and B2are visualized by their
distribution over a continuous attribute in Figure 10.

This visualization method is not completely automatic, since the automatic approach does not
provide consistent results. The automatic approach calculates the number of examples for each value
of the attribute on the X-axis by moving a sliding window and counting the number of examples in
that window. The outcome is a smooth line. The difficulty arises when the attributefrom the X-axis
appears in the subgroup description. In such a case, a manual correction is needed for this method
to be realistic.

This visualization method is very intuitive since it practically does not need muchexplanation.
It is attractive and very useful to the end user since it offers an insightin the contents of displayed

Figure 10: Subgroup visualization w.r.t. a continuous attribute. For clarity ofthe picture, only the
positive (Y+) side of subgroup A1 is depicted.
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Figure 11: Representation of subgroups in
the ROC space.

all

A2

C1

B1

B2

A1

Figure 12: Subgroup visualization by bar
charts.

examples. However, the correctness of displayed data is questionable. It is impossible to generalize
this visualization to multi-class problems.

4.4 Representation in the ROC Space

The ROC (Receiver Operating Characteristics) (Provost and Fawcett,2001) space is a 2-dimensional
space that shows classifier (rule/rule set) performance in terms of its falsepositive rate (FPr) plotted
on the X-axis, and true positive rate (TPr) plotted on the Y-axis. The ROC space is appropriate for
measuring the success of subgroup discovery, since subgroups whose TPr

FPr tradeoffs are close to the
main diagonal (line connecting the points (0, 0) and (1, 1) in the ROC space)can be discarded
as insignificant (Kav̌sek and Lavrǎc, 2006); the reason is that the rules with theTPr

FPr ration on the
main diagonal have the same distribution of covered positives and negatives (TPr= FPr) as the
distribution in the entire data set. An example of five subgroups representedin the ROC space is
shown in Figure 11.

Even though the ROC space is an appropriate rule visualization, it is usually used just for the
evaluation of discovered rules. The ROC convex hull is the line connectingthe potentially optimal
subgroups. The area under the ROC convex hull (AUC, area under curve) is a measure of quality of
the resulting ruleset.7

This visualization method is not intuitive to the end user, but is absolutely clear toevery machine
learning expert. The displayed data is correct, but there is no content displayed. An advantage of this
method compared to the other visualization methods is that it allows the comparison of outcomes
of different algorithms at the same time. The ROC space is designed for two-class problems and is
therefore inappropriate for multi-class problems.

4.5 Bar Charts Visualization

The visualization by bar charts was introduced by Kralj et al. (2005). Inthis visualization, the
purpose of the first line is to visualize the distribution of the entire example set. The area on the
right represents the positive examples and the area on the left represents the negative examples of the
target class. Each following line represents one subgroup. The positive and the negative examples
of each subgroup are drawn below the positive and the negative examples of the entire example set.
Subgroups are sorted by the relative share of positive examples (precision).

7. Note that in terms ofTPr
FPr ratio optimality, two subgroups (A1 and B2) are suboptimal, lying below the ROC convex

hull.
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An example of five subgroups visualized by bar charts is shown in Figure 12. It is simple, un-
derstandable and shows all the data correctly. This visualization method allows simple comparison
between subgroups and is therefore useful. It is relatively straight-forward to understand and can be
extended to multi-class problems. It does not display the contents of data, though.

4.6 Summary of Subgroup Visualization Methods

In this section, we (subjectively) compare the five different subgroup visualization methods by con-
sidering their intuitiveness, correctness of displayed data, usefulness, ability to ability to display
contents besides the numerical properties of subgroups, (e.g., plot subgroup probability densities
against the values of an attribute), and their extensibility to multi-class problems.The summary of
the evaluation is presented in Table 6.

Continuous
Pie chart Box plot attribute ROC Bar chart

Intuitiveness + - + +/- +
Correctness - + - + +
Usefulness - + + + +
Contents - - + - -
Multi-class + - - - +

Table 6: Our evaluation of subgroup visualization methods.

Two visualizations score best in Table 6 of our evaluation of subgroup visualization methods:
the visualization of subgroups w.r.t. a continuous attribute and the bar chartvisualization. The
visualization of subgroups w.r.t. a continuous attribute is the only visualization that directly shows
the contents of the data; its main shortcomings are the doubtful correctness of the displayed data
and its difficulty to be extended to multi-class problems. It also requires a continuous or ordered
discrete attribute in the data. The bar chart visualization combines the good properties of the pie
chart and the box plot visualization. In Table 6, it only fails in displaying the contents of the data.
By using the two best visualizations, one gets a very good understanding of the mining results.

To show the applicability of subgroup discovery visualizations for supervised descriptive rule
discovery, the bar visualizations of results of contrast set mining, jumping emerging patterns and
subgroup discovery on the survey data analysis problem of Section 2 are shown in Figures 13, 14
and 15, respectively.
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0.60

0.80

0.20

0.00

0.40

0.60

1.00

0.00

0.33

0.67

0.44

0.00

0.22

Positives Rule

→Approved=yes

MaritalStatus=single AND Sex=male Approved=no→

Sex=male Approved=no→

Sex=female Approved=yes→

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=yes Approved=no→

MaritalStatus=single Approved=no→

Figure 13: Bar visualization of contrast sets of Figure 3.
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Negatives

1.00

0.60

0.00

0.40

1.00

0.00

0.44

0.00

Positives Rule

→Approved=yes

MaritalStatus=single AND Sex=male Approved=no→

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=yes Approved=no→

Figure 14: Bar visualization of jumping emerging patterns of Figure 4.

Negatives

1.00

0.00

0.00

0.20

0.20

1.00

0.44

0.33

0.67

0.33

Positives Rule

→Approved=yes

MaritalStatus=married Approved=yes→

MaritalStatus=divorced AND HasChildren=no Approved=yes→

Sex=female Approved=yes→

Education=university Approved=yes→

Figure 15: Bar visualization of subgroups of Figure 5 of individuals whohave approved the issue.

5. Conclusions

Patterns in the form of rules are intuitive, simple and easy for end users to understand. Therefore, it
is not surprising that members of different communities have independently addressed supervised
descriptive rule induction, each of them solving similar problems in similar ways and developing
vocabularies according to the conventions of their respective research communities.

This paper sheds a new light on previous work in this area by providing a systematic compari-
son of the terminology, definitions, goals, algorithms and heuristics of contrast set mining (CSM),
emerging pattern mining (EPM) and subgroup discovery (SD) in a unifying framework called su-
pervised descriptive rule discovery. We have also shown that the heuristics used in CSM and EPM
can be translated into two well-known heuristics used in SD, both aiming at trading-off between
coverage and distributional difference. In addition, the paper presents a critical survey of exist-
ing visualization methods, and shows that some methods used in subgroup discovery can be easily
adapted for use in CSM and EPM.
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Gemma C. Garriga, Petra Kralj, and Nada Lavrač. Closed sets for labeled data. InProceedings of
the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD-06), pages 163 – 174, 2006.

Robert J. Hilderman and Terry Peckham. A statistically sound alternative approach to mining con-
trast sets. InProceedings of the 4th Australia Data Mining Conference (AusDM-05), pages 157–
172, 2005.
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Application of closed itemset mining for class labeled data in functional genomics. Informatica
Medica Slovenica, (1):40–45, 2006.
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