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Abstract

Closed sets have been proven successful in the context of compacted data representation for associ-
ation rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. This
paper shows that when considering labeled data, closed sets can be adapted for classification and
discrimination purposes by conveniently contrasting covering properties on positive and negative
examples. We formally prove that these sets characterize the space of relevant combinations of fea-
tures for discriminating the target class. In practice, identifying relevant/irrelevant combinations of
features through closed sets is useful in many applications: to compact emerging patterns of typical
descriptive mining applications, to reduce the number of essential rules in classification, and to ef-
ficiently learn subgroup descriptions, as demonstrated in real-life subgroup discovery experiments
on a high dimensional microarray data set.

Keywords: rule relevancy, closed sets, ROC space, emerging patterns, essential rules, subgroup
discovery

1. Introduction

Rule discovery in data mining mainly explores unlabeled data and the focus resides on finding
itemsets that satisfy a minimum support constraint (namely frequent itemsets), and from them, con-
structing rules over a certain confidence. This is the case of the well-known Apriori algorithm of
Agrawal et al. (1996), and its successors, for example, Brin et al. (1997), Han and Pei (2000) and
Zaki (2000b) among others. From a different perspective, machine learning is mainly concerned
with the analysis of class labeled data, mainly resulting in the induction of classification and predic-
tion rules, and—more recently—also descriptive rules that aim at discovering insightful knowledge
from the data (subgroup discovery, contrast set mining). Traditional rule learning algorithms for
classification include CN2 (Clark and Niblett, 1989) and Ripper (Cohen, 1995). Other approaches
have been proposed that are based on the association rule technology but applied to class labeled
data, for example, a pioneer work towards this integration is Liu et al. (1998), and later followed
by others, for example, the Apriori-C classifier by Jovanoski and Lavra¢ (2001), and the Essence
algorithm for inducing “essential” classification rules based on the covering properties of frequent
itemsets, by Baralis and Chiusano (2004).
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Subgroup discovery is a learning task directed at finding subgroup descriptions that are char-
acteristic for examples with a certain property (class) of interest. Special rule learning algorithms
for subgroup discovery include Apriori-SD (Kavsek and Lavra€, 2006), CN2-SD (Lavrac et al.,
2004) or SD (Gamberger and Lavrag, 2002). The goal of these descriptive mining algorithms is to
find characteristic rules as combinations of features with high coverage. If there are several rules
with the same coverage, most specific rules (with more features) are appropriate for description and
explanation purposes. On the other hand, the closely related task of contrast set mining aims at
capturing discriminating features that contrast instances between classes. Algorithms for contrast
set mining are STUCCO (Bay and Pazzani, 2001), and also an innovative approach presented in the
form of mining emerging patterns (Dong and Li, 1999). Basically, Emerging Patterns (EP) are sets
of features in the data whose supports increase significantly from one class to another. Interestingly,
also good classifiers can be constructed by using the discriminating power of the mined EPs, for
example, see Li et al. (2000). A condensed representation of EPs, defined in terms of a support
growth rate measure, has been studied in Soulet et al. (2004).

Indeed, we can see all these tasks on labeled data (learning classification rules, subgroup dis-
covery, or contrast set mining) as a rule induction problem, that is, a process of searching a space
of concept descriptions (hypotheses in the form of rule antecedents). Some descriptions in this hy-
pothesis space may turn out to be more relevant than others for characterizing and/or discriminating
the target class. The question of relevance has attracted much attention in the context of feature
selection for propositional learning (Koller and Sahami, 1996; Liu and Motoda, 1998). This is an
important problem since non-relevant features can be excluded from the learning process, thus facil-
itating the search for the final solution and increasing the quality of the final rules. Feature filtering
can be applied during the learning process, or also, by pre-processing the set of training examples
(Lavrac et al., 1999; Lavra€ and Gamberger, 2005).

Searching for relevant descriptions for rule construction has been extensively addressed in de-
scriptive data mining as well. A useful insight was provided by closure systems (Carpineto and
Romano, 2004; Ganter and Wille, 1998), aimed at compacting the whole space of descriptions into
a reduced system of relevant sets that formally conveys the same information as the complete space.
The approach has successfully evolved towards mining closed itemsets (see, for example, Pasquier
et al., 2001; Zaki, 2004). Intuitively, closed itemsets can be seen as maximal sets of items/features
covering a maximal set of examples. Despite its success in the data mining community, the use of
closed sets is mainly descriptive. For example, they can be used to limit the number of association
rules produced without information loss (see, for example, how to characterize rules with respect to
their antecedent in Crémilleux and Boulicaut, 2002).

To the best of our knowledge, the notion of closed sets has not yet been exported to labeled
data, nor used in the learning tasks for labeled data described above. In this paper we show that
raw closed sets can be adapted for discriminative purposes by conveniently contrasting covering
properties on positive and negative examples. Moreover, by exploiting the structural properties and
the feature relevancy theory of Lavrac et al. (1999) and Lavrac and Gamberger (2005), we formally
justify that the obtained closed sets characterize the space of relevant combinations of features for
discriminating the target class.

In practice, our notion of closed sets in the labeled context (described in Sections 3 and 4)
can be naturally interpreted as non-redundant descriptive rules (discriminating the target class) in
the ROC space (Section 5). We also show that finding closed sets in labeled data turns out to be
very useful in many applications. We have applied our proposal to reduce the number of emerging
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patterns (Section 6.1), to compress the number of essential rules (Section 6.2), and finally, to learn
descriptions for subgroup discovery on potato microarray data (Section 6.3).1

2. Background

Features, used for describing the training examples, are logical variables representing attribute-
value pairs (called items in the association rule learning framework of Agrawal et al., 1996). If
F={f1,..., fn} is afixed set of features, we can represent a training example as a tuple of features
f € F with an associated class label. For instance, Table 1 contains examples for the simplified
problem of contact lens prescriptions (Witten and Frank, 2005). Patients are described by four
attributes: Age, Spectacle prescription, Astigmatism and Tear production rate; and each tuple is
labeled with a class label: none, soft or hard. Then, F is the set of all attribute-value pairs in the
data, that is, F = {Age=young, ..., Tear=normal} (the class label is not included in F), and each
example (a patient) corresponds to a subset of features in F with an associated class label. This
small data set will be used throughout the paper to ease the understanding of our proposals.

We consider two-class learning problems where the set of examples E is divided into positives
(P, target-class examples identified by label +) and negatives (N, labeled by —), and E = PUN.
Multi-class problems can be translated to a series of two-class learning problems: each class is once
selected as the target class (positive examples), while examples of all the other classes are treated
as non-target class examples (thus, negative examples). For instance, when class soft of Table 1 is
the target class, all examples with label soft are considered as positive, as shown in Table 2, and all
examples labeled none and hard are considered as negative.

Given a rule X — 4 formed from a set of features X C F, true positives (TP) are those positive
examples covered by the rule, that is, p € P such that X C p; and false positives (FP) are those
negative examples covered by the rule, that is, n € N such that X C n; reciprocally, true negatives
(TN) are those negative examples not covered by X. Later, we will see that some combinations of
features X C F produce more relevant antecedents than others for the rules X — . Our study will
focus specifically on the combinations of features from the universe F which best define the space
of non-redundant rules for the target class. We will do it by integrating the notion of closed itemsets
and the concept of feature relevancy proposed in previous works.

2.1 Closed Itemsets

From the practical point of view of data mining algorithms, closed itemsets are the largest sets
(w.r.t. set-theoretic inclusion) among those other itemsets occurring in the same examples (Bastide
etal., 2000a; Crémilleux and Boulicaut, 2002; Pasquier et al., 2001; Taouil et al., 2000; Zaki, 2000a,
2004; Zaki and Ogihara, 1998). Formally, let support of itemset X C F, denoted by supp(X), be the
number of examples in the data where X is contained. Then: a set X C F is said to be closed when
there is no other setY C F such that X C Y and supp(X) = supp(Y ).

In the example of Table 2, the itemset corresponding to {Age=young} is not closed because it
can be extended to the maximal set { Age=young, Astigmatism=no, Tear=normal} that has the same
support in this data. Notice that by treating positive examples separately, the positive label will be
already implicit in the closed itemsets mined on the target class data. So, here we will work by

1. A preliminary version of this work appeared in Garriga et al. (2006). This paper is improved based on the valuable
reviewers’ comments, incorporates proofs, detailed explanations, extended comparisons with related work and more
experiments.
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Spectacle Tear
Id Age prescription  Astig.  prod. Lens
1 young myope no normal  soft
2 young hypermetrope  no normal  soft
3 | pre-preshbyopic myope no normal  soft
4 | pre-presbyopic hypermetrope  no normal  soft
5 presbyopic hypermetrope  no normal  soft
6 young myope no reduced none
7 young myope yes  reduced none
8 young hypermetrope no reduced none
9 young hypermetrope  yes  reduced none
10 | pre-presbyopic myope no reduced none
11 | pre-presbyopic myope yes  reduced none
12 | pre-presbyopic hypermetrope  no reduced none
13 | pre-presbyopic hypermetrope  yes  reduced none
14 | pre-presbyopic hypermetrope  yes  normal none
15 presbyopic myope no reduced none
16 presbyopic myope no normal  none
17 presbyopic myope yes  reduced none
18 presbyopic hypermetrope no reduced none
19 presbyopic hypermetrope  yes  reduced none
20 presbyopic hypermetrope  yes  normal none
21 young myope yes  normal hard
22 young hypermetrope  yes  normal hard
23 | pre-preshyopic myope yes normal  hard
24 presbyopic myope yes normal  hard

Table 1: The contact lens data set, proposed by Witten and Frank (2005).

Spectacle Tear
Id Age prescription  Astig. prod. Class
1 young myope no normal +
2 young hypermetrope no normal +
3 pre-presbyopic myope no normal +
4 pre-presbyopic  hypermetrope no  normal +
5 presbyopic hypermetrope no  normal +

Table 2: The set of positive examples when class soft of the contact lens data of Table 1 is selected
as the target class. These examples form the set P of positive examples, while instances of
classes none and hard are considered non-target, thus treated together as negative examples
N. Note that examples are represented here in a simplified tabular form instead of the
feature set representation.
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{Age=pre—presbyopic,
Spectacle=hypermetrope,
Astigmatism=no, Astigmatism=no, Astigmatism=no, Astigmatism=no,
Tear= normal} Tear=normal } Tear=normal} Tear=normal}

5 2 2 3 1

{Age=young,
Spectacle=hypermetrope,

{Age=young,
Spectacle=hypermetrope, Spectacle=myope,
Astigmatism=no,

Tear= normal}

Age=preshyopic,
Spectacle=myope,

rAgezpre—presbyopic,

{Spectacle=myope,
Astigmatism=no,
Tear=normal}

Age=pre-presbyopic, ? .
{Age=pre-presbyopic Astigmatism=no,

Astigmatism=no, Astigmatism=no,
Tear=normal}

Tear= normal} Tear=normal }
245 34 12 13

{Age=young,

{Spectacle=hypermetrope, ‘

[{Astigmatism:no, Tear=normal} }

12,345

Figure 1: The lattice of closed itemsets for data in Table 2.

constructing the closure system of items on our positive examples and use this system to study the
structural properties of the closed sets to discriminate the implicit label. Many efficient algorithms
have been proposed for discovering closed itemsets over a certain minimum support threshold; see
a compendium of them in Goethals and Zaki (2004).

The foundations of closed itemsets are based on the definition of a closure operator on a lattice
of items (Carpineto and Romano, 2004; Ganter and Wille, 1998). The standard closure operator
I for items acts as follows: the closure I'(X) of a set of items X C F includes all items that are
present in all examples having all items in X. According to the classical theory, operator I satisfies
the following properties: Monotonicity: X C X' = (X) C [(X’); Extensivity: X C I'(X); and
Idempotency: I'(I' (X)) =T(X).

From the formal point of view of I, closed sets are those coinciding with their closure, that is,
for X CF, X is closed iff [(X) = X. Also, when '(Y) =X forasetY # X, itis said that Y is a
generator of X. By extensivity of I' we always have Y C X forY generator of X. Intensive work has
focused on identifying which collection of generators is good to ensure that all closed sets can be
produced. The named d-free sets in Boulicaut et al. (2003) are minimal generators when & = 0, and
these are equivalent to key patterns in Bastide et al. (2000b). Different properties of these d-free
sets generators in Boulicaut et al. (2003) have been studied for different values of d.

Considering Table 2, we have the following I" ({Age=young}) = { Age=young, Astigmatism=no,
Tear=normal}. Then, {Age=young} is a generator of this closed set. Note that for I'(Y) = X, both
Y and X are sets with exactly the same support in the data, but X being a largest set of items,
that is, Y < X for all Y such that '(Y) = X. This property is ensured by the extensivity of this
operator. Moreover, closed sets formalized with operator I" are exactly those sets obtained in closed
set mining process and defined above, which present many advantages (see, for example, Balcazar
and Baixeries, 2003; Crémilleux and Boulicaut, 2002).
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Closed itemsets are lossless in the sense that they uniquely determine the set of all frequent
itemsets and their exact support (cf. Pfaltz, 1996; Zaki and Ogihara, 1998, for more theoretical
details). Closed sets of items can be graphically organized in a Hasse diagram, where each node
corresponds to a closed itemset, and there is an edge between two nodes if and only if they are
comparable (w.r.t. set-theoretic inclusion) and there is no other intermediate closed itemset in the
lattice. In this partial order organization, ascending/descending paths represent the subset/superset
relation. Typically, the top of this lattice is represented by a constant T corresponding to a set of
items not included in any example.

Figure 1 shows the lattice of closed itemsets obtained from data from Table 2. Each node is
depicted along with the set of example identifiers where the closed set occurs. Notice that all closed
itemsets with the same support cover a different subset of transactions of the original data. In
practice, such exponential lattices are not completely constructed, as only a list of closed itemsets
over a certain minimum support suffices for practical purposes. Therefore, instead of closed sets
one needs to talk about frequent closed sets, that is, those closed sets over the minimum support
constraint given by the user. Also notice the difference of frequent closed sets from the popular
concept of maximal frequent sets (see, for example, Tan et al., 2005), which refers to those sets for
which none of their supersets are frequent.

Obviously, imposing a minimum support constraint will eliminate the largest closed sets whose
support is typically very low. The impact of such constraint depends on the application. In general,
there exists a trade-off between quality and speed up of the process. In the following we consider
a theoretical framework with all closed sets; in practice though, we will need a minimum support
constraint to consider only the frequent ones.

2.2 Relevant Features for Discrimination

The main aim of the theory of relevancy, described in Lavrac et al. (1999) and Lavra¢ and Gam-
berger (2005), is to reduce the hypothesis space by eliminating irrelevant features from F in the
pre-processing phase. Other related work, such as Koller and Sahami (1996) and Liu and Motoda
(1998), eliminate features in the model construction phase. However, here we concentrate on the
elimination of irrelevant features in the preprocessing phase, as proposed by Lavrac and Gamberger
(2005):

Definition 1 (Coverage of features) Feature f € F covers another feature f’ € F if and only if
true positives of f’ are a subset of true positives of f, and true negatives of f’ are a subset of true
negatives of f. In other words, TP(f’) C TP(f) and TN(f’) C TN(f) (or equivalently, TP(f’) C
TP(f) and FP(f) C FP(f")).

Using the definition of feature coverage, we further define that f’ € F is relatively irrelevant if
there exists another feature f € F such that f covers f’. To illustrate this notion we take the data
of Table 1: if examples of class none form our positives and the rest of examples are considered
negative, then the feature Tear=reduced covers Age=young, hence making this last feature irrelevant
for the discrimination of the class none.

Other notions of irrelevancy described in Lavrac¢ and Gamberger (2005) consider a minimum
coverage constraint in the true positives or accordingly, on the true negatives.
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3. Closed Setson Target-class Data

Given a set of examples E = PUN it is trivial to realize that for any rule X — + with a set of features
X C F, the support of itemset X in P (target class examples) exactly corresponds to the humber of
true positives (TP) of the rule; reciprocally, the support of X in N (non-target class examples) is
the number of false positives (FP) of the rule. Also, because of the anti-monotonicity property of
support (i.e., Y C X implies supp(X) < supp(Y)) the following useful property can be easily stated.

Proposition 2 Let X,Y C F such thatY C X, then TP(X) C TP(Y ) and FP(X) C FP(Y).

Proof The anti-monotonicity property of support on the set of positive examples ensures that
|TP(X)| <|TP(Y)|. Since Y C X, we necessarily have TP(X) C TP(Y ). The same reasoning applies
to the set of negative examples. |

For convenience, let supp™(X) denote the support of the set X in the positive set of examples
P, and supp~ (X) the support in the negative set of examples N. Notice that for a rule X — + we
indeed have that supp™(X) = |TP(X)| and supp~(X) = |FP(X)|. In the following we will use one
notation or the other according to the convenience of the context.

Following from the last proposition, the next property can be readily seen.

Lemma 3 Feature f € F covers another feature f’ € F (as in Definition 1), iff supp™ ({f’}) =
supp™ ({f, f'}) and supp™ ({ f}) = supp~ ({, f'}).

Proof That f covers f’ can be formulated as TP(f) C TP(f) and FP(f) C FP(f’). Because all the
true positives of f’ are also covered by f, it is true that TP(f") = TP(f, f’); similarly, because all
the false positives of f are also covered by f’ we have FP(f) = FP(f, f’). These two facts directly
imply that supp™ ({f'}) = supp™ ({f, f'}) and supp~({f}) = supp~ ({ f, f'}).

The other direction is proved as follows. The anti-monotonicity property of Proposition 2 ap-
plied over {f'} C {f, f’} leads to TP(f, f') C TP(f’). Indeed, from supp™ ({f'}) = supp™ ({ f, f'})
we have |TP(f")| = |TP(f, f’)|, which along with TP(f, f’) C TP(f’) implies an equivalence of true
positives between these two sets: that is, TP(f, f') = TP(f’). From here we deduce TP(f’) C TP(f).
Exactly the same reasoning applies to the negatives. Proposition 2 ensures that FP(f, f’) C FP(f)
because {f} C {f,f’}. But from supp=({f}) = supp~ ({f, f'}) we have |FP(f)| = |FP(f,f’)|,
which together with FP(f, f') C FP(f) leads to the equivalence of the false positives between these
two sets: that is, FP(f) = FP(f, f’). Then, we deduce FP(f) C FP(f’). Thatis f covers f’ as in
Definition 1. [

Indeed, this last result allows us to rewrite, within the data mining language, the definition
of relevancy proposed by Lavrac et al. (1999) and Lavra¢ and Gamberger (2005): a feature f is
more relevant than f” when supp™ ({f'}) = supp™® ({ f, f'}) and supp~ ({f}) =supp~ ({ f, f'}). For
instance, the support of {Age=young} over the class none of data from Table 1 is equal to the
support of {Age=young, Tear=reduced} in this same class none ; at the same time, the support of
{Tear=reduced} is zero in the negatives (formed here by the classes soft and hard together), thus
equal to the support in the negatives of {Age=young, Tear=reduced}. So, the feature Age=young
is irrelevant with respect to Tear=reduced, as we identified in Section 2.1. In other words, f’ is
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irrelevant with respect to f if the occurrence of f’ always implies the presence of f in the positives,
and at the same time, f always implies the presence of f’ in the negatives.

To the effect of our later arguments it will be useful to cast the result of Lemma 3 in terms of
the formal closure operator I". This will provide the desired mapping from relevant sets of features
to the lattice of closed itemsets constructed on target class examples. Again, because we need to
formalize our arguments against positive and negative examples separately, we will use T or [~
for the closure of itemsets on P or N respectively.

Lemma4 A feature f is more relevant than ' iff Tt ({f'}) = r*({f,f'}) and T~ ({f}) =
r=({f f'}).

Proof It follows immediately from Lemma 3 and the formalization of operator I'. A feature f is
more relevant than f/ when f covers f’ according to Definition 1. Then, by Lemma 3 we have that
supp™ ({f'}) =supp™ ({f, f'})and supp~ ({f}) =supp~ ({f, f'}). By construction of I, this means
that the sets {f’} and { f, f’} have the same closure on the positives, and the sets {f} and {f, f’}
have the same closure on the negatives. That is: because I' is an extensive operator, we can rewrite
itasTT({f'})=rT({f,f'Hand T~ ({f})=T"({f, f'}). [ |

Interestingly, operator I' is formally defined for the universe of sets of items, so that these
relevancy results on single features can be directly extended to sets of features. This provides a
proper generalization, which we express in the following definition.

Definition 5 (Relevancy of feature sets) Set of features X C F is more relevant than setY C F iff
FH(Y)=rt(XuY)and - (X)=T—(XUY).

To illustrate Definition 5 take the positive examples from Table 2, with negative data formed
by classes none and hard together. Feature Spectacle=myope alone cannot be compared to feature
Astigmatism=no alone with Definition 1 (because Astigmatism=no does not always imply Specta-
cle=myope in the negatives). For the same reason, Spectacle=myope cannot be compared to feature
Tear=normal alone. However, when considering these two features together, then Spectacle=myope
turns out to be irrelevant w.r.t. the set {Astigmatism=no, Tear=normal}. So, the new semantic
notion of Definition 5 allows us to decide if a set of features is structurally more important than
another for discriminating the target class. In the language of rules: rule Y — + is irrelevant if
there exists another rule X — + satisfying two conditions: first, T+ (Y) =" (X UY); and second,
M~(X)=r—(XuY). E.g., when soft is the target class: the rule Spectacle=myope — + is not
relevant because at least the rule {Astigmatism=no, Tear=normal} — + will be more relevant.

Finally, from the structural properties of operator I" and from Proposition 2, we can deduce that
the semantics of relevant sets in Definition 5 is consistent.

Lemma 6 A set of features X C F is more relevant than setY C F (Definition 5) iff TP(Y ) C TP(X)
and FP(X) C FP(Y).

Proof That X is more relevant thanY means F*(Y) =" (XUY)and F~(X) =T~ (X UY). Propo-
sition 2 ensures that TP(X UY) C TP(Y) because Y C X UY. Then, from F*(Y) =TT (X UY) we
naturally have that [TP(Y )| = [TP(X UY )| (by formalization of I'), which together with TP(X UY ) C
TP(Y) leads to the equality of the true positives between the following sets: TP(X UY) = TP(Y).
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From here, TP(Y) C TP(X). On the other hand, it is implied by the definition of relevancy that
Y C X, thus directly from Proposition 2 we have that FP(X) C FP(Y).

The other direction is proved as follows. Let X and Y be two sets such that TP(Y ) C TP(X) and
FP(X) C FP(Y). As all the true positives of Y are also covered by X, it is true that TP(Y ) = TP(X U
Y); similarly, as all the false positives of X are also covered by Y we have that FP(X) = FP(X UY).
This directly implies that supp™ (Y ) = supp™ (X UY ) and supp~ (X) = supp~ (X UY). By construc-
tion of I, this means we can directly rewrite thisas T *(Y) =T*(XUY)and I~ (X) =T~ (XUY).
That is: set X is more relevant than Y by Definition 5. |

In the language of rules, Lemma 6 implies that when a set of features X C F is more relevant
thanY C F, thenrule Y — + is less relevant than rule X — + for discriminating the target class.
Moreover, Lemma 6 proves the consistency of Definition 5. If we consider X = {f} andY = {f'},
then the definition is simply reduced to the coverage of Definition 1. Yet, the interestingness of
Definition 5 is that we can use this new concept to study the relevancy of itemsets (discovered in
the mining process) for discrimination problems. Also, it can be immediately seen that if X is
more relevant than Y in the positives, then Y will be more relevant than X in the negatives (by just
reversing Definition 5).

Next subsection characterizes the role of closed itemsets to find relevant sets of features for
discrimination. Notice that the first condition to consider a set X more relevant than Y in the dis-
crimination of target class examples is that T (Y) =" (X UY). So, the closure system constructed
on the positive examples will be proved to be structurally important for inducing target class rules.

3.1 Closed Sets for Discrimination

Together with the result of Lemma 6, it can be shown that only closed itemsets mined in the set of
positive examples suffice for discrimination.

Theorem 7 LetY C F be a set of features such that F*(Y) =X and Y # X. Then, setY is less
relevant than X (as in Definition 5).?

Proof By the extensivity property of I we know Y C X. Then, Proposition 2 ensures that TP(X) C
TP(Y) and FP(X) C FP(Y). However, by hypothesis we have (Y ) = X, which by construction
ensures that |TP(Y )| = |TP(X)[; but because Y C X, it must be true that TP(Y) = TP(X). In all,
we obtained that TP(Y ) = TP(X) and FP(X) C FP(Y), and from Lemma 6 we have that X is more
relevant than Y. [ |

Typically, in approaches such as Apriori-C (Jovanoski and Lavrac, 2001), Apriori-SD (Kavsek
and Lavra€, 2006) or RLSD (Zhang et al., 2004), frequent itemsets with very small minimal support
constraint are initially mined and subsequently post-processed in order to find the most suitable rules

2. We are aware that some generators Y of a closed set X might be exactly equivalent to X in terms of TP and FP,
thus forming equivalence classes of rules (i.e., Y — + might be equivalent to X — +). The result of this theorem
characterizes closed sets in the positives as those representatives of relevant rules; so, any set which is not closed can
be discarded, and thus, efficient closed mining algorithms can be employed for discrimination purposes. The next
section will approach the notion of the shortest representation of a relevant rule, which will be conveyed by these
mentioned equivalent generators.
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for discrimination. The new result presented here states that not all frequent itemsets are necessary:
as shown in Theorem 7 only the closed sets have the potential to be relevant.

To illustrate this result we use again data in Table 2, where '™ ({Astigmatism=no}) =
{Astigmatism=no, Tear=normal}. Thus, rule Astigmatism=no — + can be discarded: it covers ex-
actly the same positives as { Astigmatism=no, Tear=normal}, but more negatives. Thus, a rule whose
antecedent is { Astigmatism=no, Tear=normal} would be preferred for discriminating the class soft.

However, Theorem 7 simply states that those itemsets which are not closed in the set of positive
examples cannot form a relevant rule to discriminate the target class, thus they do not correspond to
a relevant combination of features. In other words, closed itemsets suffice but some of them might
not be necessary to discriminate the target class. It might well be that a closed itemset is irrelevant
with respect to another closed itemset in the system.

As illustrated above, when considering class soft as the target class (identified by +), we had
that feature Spectacle=myope is irrelevant with respect to set { Astigmatism=no, Tear=normal}; yet,
set {Spectacle=myope, Astigmatism=no, Tear=normal} is closed in the system (see the lattice of
Figure 1). Indeed, this latter closed set is still irrelevant in the system according to our Definition 5
and can be pruned away. The next section is dedicated to the task of reducing the closure system of
itemsets to characterize the final space of relevant sets of features.

4. Characterizing the Space of Relevant Sets of Features

This section studies how the dual closure system on the negative examples is used to reduce the
lattice of closed sets on the positives. This reduction will characterize a complete space of relevant
sets of features for discriminating the target class. First of all, we raise the following two important
remarks following from Proposition 2.

Remark 8 Given two different closed sets on the positives X and X’ such that X ¢ X" and X’ ¢
X (i.e., there is no ascending/descending path between them in the lattice), then they cannot be
compared in terms of relevancy, since they cover different positive examples.

We exemplify Remark 8 with the lattice in Figure 1. The two closed sets: {Age=young, Astigma-
tism=no, Tear=normal} and { Spectacle=myope, Astigmatism=no, Tear=normal}, are not comparable
with subset relation: they cover different positive examples and they cannot be compared in terms
of relevance.

Remark 9 Given two closed sets on the positives X and X’ with X c X’, we have by construction
that TP(X’) c TP(X) and FP(X’) C FP(X) (from Proposition 2). Notice that because X and X’
are different closed sets in the positives, TP(X’) is necessarily a proper subset of TP(X); however,
regarding the coverage of false positives, this inclusion is not necessarily proper.

To illustrate Remark 9 we use the lattice of closed itemsets in Figure 1. By construction the
closed set { Spectacle=myope, Astigmatism=no, Tear=normal} from Figure 1 covers fewer positives
than the proper predecessor {Astigmatism=no, Tear=normal}. However, both closed sets cover ex-
actly one negative example. In this case {Astigmatism=no, Tear= normal} is more relevant than
{Spectacle=myope, Astigmatism=no, Tear=normal}.

Remark 9 points out that two different closed sets in the positives, yet being one included in
the other, may end up covering exactly the same set of false positives. In this case, we would like

568



CLOSED SETS FOR LABELED DATA

Transaction occurrence list \ Closed Set

1,2,3,4,5 {Astigmatism=no, Tear=normal }

2,45 {Spectacle=hypermetrope,

Astigmatism=no, Tear=normal }
3,4 {Age=pre-presbyopic,
Astigmatism=no, Tear=normal }
1,2 {Age=young, Astigmatism=no,
Tear=normal }

Table 3: The four closed sets corresponding to the space of relevant sets of features for data in Table
2.

to discard the closed set covering less true positives. Because of the anti-monotonicity property of
support, the smaller one will be the most relevant.
From these two remarks we obtain the following result.

Theorem 10 Let X C F and X’ C F be two different closed sets in the positives such that X c X'.
Then, we have that X’ is less relevant than X (as in Definition 5) iff [~ (X) =T~ (X’).

Proof That X’ is less relevant than X is defined as: ' *(X’) =" (X'UX) and I~ (X) =T~ (X"UX).
Since X C X’ by hypothesis, we always have that X" = X’ U X, so that the above two conditions can
be rewritten as " (X’) =" (X’) (always true) and '~ (X) = ~(X’), as we wanted to prove.

In the backward direction we start from ' ~(X) =T~ (X’), where X C X' as stated by hypothesis
of the theorem. Because X C X' it is true that X’ = X" UX. Then, we can rewrite [~ (X) =T~ (X’)
as I~ (X) =T~ (X"UX), thus satisfying already the first condition of Definition 5. Also, [ *(X') is
simply the same as 't (X’) = (X’ UX), thus satisfying the second condition of Definition 5. W

Thus, by Theorem 10 we can reduce the closure system constructed on the positives by discard-
ing irrelevant nodes: if two closed itemsets are connected by an ascending/descending path on the
lattice of positives (i.e., they are comparable by set inclusion C), yet they have the same closure on
the negatives (i.e., they cover the same false positives, or equivalently, their support on the negatives
is exactly the same), then just the shortest set is relevant.

Finally, after Theorem 7 and Theorem 10, we can characterize the space of relevant sets of
features for discriminating the selected target class as follows.

Definition 11 (Space of relevant sets of features) The space of relevant combinations of features
for discriminating the target class is defined as those sets X for which it holds that: ' *(X) = X and
there is no other closed set 't (X’) = X’ such that I~ (X') =T~ (X).

It is trivial to see after Remarks 8 and 9, that by construction, any two sets in this space always
cover a different set of positives and a different set of negatives. These final sets can be directly
interpreted as antecedents of rules for classifying the target class (i.e., for each relevant X C F in
the space, we have a relevant rule X — + for classifying the positives).

The four closed sets forming the space of relevant sets of features for the class soft are shown in
Table 3. It can be checked that the CN2 algorithm (Clark and Niblett, 1989) would output a single
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rule whose antecedent corresponds to the closed set in the first row of Table 3. On the other hand,
Ripper (Cohen, 1995) would obtain the most specific relevant rules, that is, those corresponding to
the three last rows from Table 3. Finally, other algorithms such as Apriori-C would also output rules
whose antecedents are not relevant as such, for example, Astigmatism=no — Lenses= soft.

To complete the example of the contact lenses database: the lattice of closed itemsets on the
class hard contains a total of 7 nodes, which is reduced to only 3 relevant sets; on the other hand,
the lattice of closed itemsets on the class none contains a total of 61 nodes, which is reduced to 19
relevant sets.

The space of relevant combinations defines exhaustively all the relevant antecedents for dis-
criminating the target class. Not to generate this space completely, in large sets of data a minimum
support threshold will be usually imposed (see more details in the experimental section). As ex-
pected, too large relevant sets will be naturally pruned by the minimum support constraint, which
might have an undesired effect depending on the application. Still, it is known that very long closed
sets, that is, too specific sets of features in our contribution, tend to overestimate when constructing
a classifier or learning a discriminative model. In general, it will be up to the user to find a proper
trade off between quality of the results and speed up of the process.

4.1 Shortest Representation of a Relevant Set

Based on Theorem 7 we know that generators Y of a closed set X are characterized to cover exactly
the same positive examples, and at least the same negative examples. Because of this property, any
generator will be redundant w.r.t. its closure. That is:

Remark 12 Let Y be a generator of X in the closure system on the positives; then, F*(Y) = X
always implies TP(Y) = TP(X) and FP(X) C FP(Y) (from Lemma 6 and Theorem 7). However,
note that the inclusion between the set of false positives is not necessarily proper.

However, we have FP(X) C FP(Y) forY generator of X; so, it might happen that some generators
Y are equivalent to their closed set X in that they cover exactly the same true positives and also the
same false positives.

Definition 13 (Equivalent generators) Let F*(Y) =X and Y # X. We say that a generator Y is
equivalent to its closure X iff FP(X) = FP(Y).

The equivalence between true positives of Y and X is guaranteed because ' * (Y ) = X. Therefore,
it would be only necessary to check if generators cover the same false positives than its closure
to check equivalence. Generators will provide a more general representation of the relevant set
(because Y C X by construction). So, Y — + is shorter than the rule X — + and it is up to the
user to choose the more meaningful to her or to the application. For example, this may depend on a
minimume-length criterion of the final classification rules: a generator Y equivalent to a closed set X
satisfies by construction that Y C X, so Y — + is shorter than the rule X — +. Then, the minimal
equivalent generators of a closed itemset X naturally correspond to the minimal representation of
the relevant rule X — +.

In terms of the closure operator of negatives, we have the following way of characterizing these
equivalent generators.
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Figure 2: The evaluation of relevant combinations of features in the ROC space.

Proposition 14 Let T*(Y) =X and Y # X. ThenY is an equivalent generator of X iff [ ~(X) =
F=(Y).

Proof It is defined that the generator Y is equivalent to its closure X when FP(X) = FP(Y ), which
directly implies '~ (X) = I~ (Y) by construction of I". On the other direction: '~ (X) =T"(Y)
implies |[FP(Y )| = |[FP(X)|, but because Y C X by the extensivity of I', we necessarily have that
FP(Y) = FP(X). [ |

It is well-known that minimal generators of a closed set X can be computed by traversing the
hypergraph of differences between X and their proper predecessors in the system (see, for example,
Pfaltz and Taylor, 2002). In practice, efficient algorithms have been designed for computing free
sets and their generalizations (see, for example, Calders and Goethals, 2003).

5. Evaluation of Relevant Setsin the ROC Space

The ROC space (Provost and Fawcett, 2001) is a 2-dimensional space that shows a classifier (rule/

ruleset) performance in terms of its false positive rate (also called ‘false alarm’), FPr = % =
|FP|

N plotted on the _X-axis, and true po:sitive rate_ (also called ‘sgnsitivity’) '_FPr = % = %
plotted on the Y -axis. The ROC space is appropriate for measuring the quality of rules since rules
with the best covering properties are placed in the top left corner, while rules that have similar
distribution of covered positives and negatives as the distribution in the entire data set are close to
the main diagonal.

A set of features from Definition 5 can be interpreted as a condition part of a rule or also
as a subgroup description. A set of relevant sets of features from Definition 11 can therefore be
visualized and evaluated in the ROC space as a ruleset.

Relevant sets are induced with a minimum support constraint on the positives (as discussed in
Section 4). This means that in the ROC space they all lie above the minimum true positive rate
constraint line (in Figure 2 denoted as minTPr). Relevant sets are depicted in Figure 2 as circles.
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Sometimes, depending on the application, additional filtering criteria are applied. In such cases
a maximum false positive rate constraint can be imposed (in Figure 2 this constraint is represented
by a dashed line, rules eliminated by this constraint are shown as circles with backslash), or we
can apply a minimum confidence constraint (represented by a dotted line, rules eliminated by this
constraint are shown as slashed circles in Figure 2). Alternatively we may simply select just the
rules on the convex hull.

Let us interpret and visualize Theorems 7 and 10 in the ROC space. According to Theorem 7,
sets of features Y, s.t. Y C X, that cover the same positives as X (i.e., TP(Y) = TP(X)), are filtered
out. Since Y and X have the same true positive rate (i.e., TPr(Y) = TPr(X)), both lie on the same
horizontal line in the ROC space. Since Y is a subset of X, which in rule learning terminology
translates into “rule X is a specialization of rule Y”, FPr(X) < FPr(Y) so Y is located at the right
hand side of X. In Figure 2, a sample feature set filtered out according to Theorem 7 is depicted as a
diamond. Note that this captures exactly the notion of relevancy defined by Lavrac and Gamberger
(2005) and Lavrac et al. (1999).

According to Theorem 10, sets of features X', s.t. X C X’, that cover the same negatives as
X (i.e., FP(X’") = FP(X)), are filtered out. Since X" and X have the same false positive rate (i.e.,
FPr(X’) = FPr(X)), both lie on the same vertical line in the ROC space. Since X is a subset
of X/, which in rule learning terminology translates into “rule X’ is a specialization of rule X ”,
TPr(X) > TPr(X’), therefore X is located above X’ in the ROC space. In Figure 2, a sample feature
set filtered out according to Theorem 10 is depicted as a square.

Note that the feature sets filtered out by the relevancy filter are never those on the ROC convex
hull. Furthermore, it can be proved that there are no sets of features outside the convex hull (grey
area on Figure 2 denotes an area without sets/rules).

6. Experimental Evaluation

The results presented above lead to the concept of closed sets in the context of labeled data. In
practice, closed sets can be discovered from labeled data as follows.

1. First, mining the set S = {X1,...,Xn} of frequent closed itemsets from the target class (The-
orem 7). This requires a minimum support constraint on positives. For our experiments we
will use the efficient LCM algorithm by Uno et al. (2004).

2. Second, reducing S to the space of relevant set of features by checking the coverage in the
negatives (Theorem 10). Schematically, for any closed set X; € S, if there exists another
closed set X; € S such that both have the same support in the negatives and Xj C X;, then X; is
removed.

The first step of this process usually requires a minimum support constraint on true positives,
while the second step can be computed automatically without any constraints. However, depend-
ing on the purpose of the application we can apply an extra filtering criterion (such as forcing a
maximum false positive constraint on the negatives, or a minimum accuracy constraint), or com-
pute minimal equivalent generators of the relevant sets as described above. For short, we will name
this computing process as RelSets (i.e., the process of discovering the Relevant Sets of features of
Definition 5).
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Emerging Patterns

Growth rate > 1.5 Growth rate oo
Data set | Class | Distrib. % EPs RelSets CF% | EPs  RelSets CF%
Lenses soft 20.8 31 4 87.10 8 3 62.5
hard 16.9 34 3 91.18 6 2 66.67
none 62.5 50 12 76.00 42 4 90.48
Iris setosa 33.3 83 16 80.72 71 7 90.14
versicolor 33.3 134 40 70.15 63 10 84.13
virginica 33.3 92 16 82.61 68 6 91.18
Breast-w benign 65.5 6224 316 9492 | 5764 141 97.55
malignant 345 3326 628 81.12 | 2813 356 87.34
SAheart 0 34.3 4557 1897 58.37 | 2282 556 75.64
1 65.7 9289 2824 69.60 | 3352 455 86.43
Balance-scale B 7.8 271 75 72.32 49 49 0.00
R 46 300 84 72.00 90 90 0.00
Yeast MIT 16.4 3185 675 78.81 | 250 40 84.00
CYT 31.2 3243 808 75.08 68 16 76.47
ERL 0.3 1036 5 99.52 | 438 4 99.09
Monk-1 0 64.3 1131 828 26.79 | 321 18 94.39
1 35.7 686 9 98.69 | 681 4 99.41
Lymphography | metastases 54.72 36435 666 98.17 | 10970 90 99.18
10% min supp. malign 41.21 61130 740 98.79 | 19497 55 99.72
Crx + 445 3366 782 76.76 | 304 26 91.44
10% min supp. — 55.5 3168 721 77.24 12 5 58.33

Table 4: Compression factor (CF% = (1 — ‘Réggls‘) x 100) of EPs in several UCI data sets. Note

that we did not impose any minimum true positive threshold on any data set, except for
Lymphography and Crx, where all EPs and RelSets were discovered with a 10% threshold
on true positives.

As discussed above, the minimum support constraint on the first phase will tend to prune too
long closed sets and this might have an impact in the application. In practice however, it is known
that the longest sets of features are sometimes too specific, thus leading to overfitting problems. It is
up to the user to trade off between the specificity of the closed sets and the speed up of the process.
Also notice that the lowest the minimum support constraint, the largest the number of closed sets,
and thus, the most expensive it becomes to compute the second phase of the approach. Our goal is
not to present efficient algorithms but to illustrate the concept of relevancy.

Still we find important to point out that the notion of relevancy explored in the paper prefers
typically the shortest closed sets. This is obvious by the second reduction phase shown in Theorem
10, where the shortest sets are always more relevant than the longest ones if they cover the same
negative examples. Thus, finding a proper threshold level for the minimum support is not critical in
our experiments as different minimum support thresholds lead to very similar results.
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6.1 Emerging Patterns on UCI data

Emerging Patterns (EP) (Dong and Li, 1999; Li et al., 2000; Dong et al., 1999) are sets of features
in the data whose supports change significantly from one class to another. More specifically, EPs
are itemsets whose growth rates (the ratio of support from one class to the other, that is, % of the
pattern) are larger than a user-specified threshold. In this experimental setting we want to show that
some of the EPs mined by these approaches are redundant, and that our relevant sets correspond to
the notion of compacted data representation for labeled data. Indeed, EPs are a superset of the result
returned by RelSets.

In our comparisons we calculate relevant sets over a certain growth rate threshold (1.5 and
infinite), and we compare this with the number of EPs by using the same growth rate constraint.
Numerical attributes in the data sets are discretized when necessary by using four equal frequency
intervals. Although being a very simple discretization scheme, we want to point out that our goal in
this experiment is to compare the number of EPs with our relevant sets, and thus, any preprocessing
decision on the original data will affect in the same way the two methods we wish to compare.

Results are shown in Table 4. We observe that compression factor may vary according to the data
set. When data is structurally redundant, compression factors are higher since many frequent sets
are redundant with respect to the closed sets. However, in data sets where this structural redundancy
does not exist (such as the Balance-scale data), the compression factor is zero, or close to zero.

A set of relevant properties of EPs have been studied in Soulet et al. (2004). This latter work
also identifies condensed representations of EPs from closed sets mined in the whole database. Our
approach is different in that we deal with pieces of the data for each class separately, and this allows
for a reduction phase given by Theorem 10. Indeed, the amount of compression that this second
phase provides in our approach depends on the distribution of the negative examples in the data, but
at least, the number of relevant sets obtained by RelSets will be always smaller than the number of
condensed EPs from Soulet et al. (2004).

6.2 Essential Rules on UCI Data

Essential rules were proposed by Baralis and Chiusano (2004) to reduce the number of association
rules to those with nonredundant properties for classification purposes. Technically, they correspond
to mining all frequent itemsets and removing those sets X such that there exists another frequent
Y with Y C X and having both the same support in positives and negatives. This differs from our
proposal in the way of treating the positive class with closed sets. The compression factor achieved
for these rules is shown in Table 5. Note that essential rules are not pruned by growth rate threshold,
and this is why their number is usually higher than the number of emerging patterns shown in
previous subsection.

6.3 Subgroup Discovery in Microarray Data Analysis

Microarray gene expression technology offers researchers the ability to simultaneously examine
expression levels of hundreds or thousands of genes in a single experiment. Knowledge about gene
regulation and expression can be gained by dividing samples into control samples (in our case mock
infected plants), and treatment samples (in our case virus infected plants). Studying the differences
between gene expression of the two groups (control and treatment) can provide useful insights into
complex patterns of host relationships between plants and pathogens (Taiz and Zeiger, 1998).
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Data set | Class | Distrib. % [ Essential rules RelSets CF%

Lenses soft 20.8 43 4 90.69

hard 16.9 39 3 92.30

none 62.5 89 19 78.65

Iris setosa 33.3 76 20 73.68

versicolor 333 111 41 63.06

virginica 33.3 96 27 71.87

Breast-w benign 65.5 3118 377 87.90

malignant 345 2733 731 73.25

SAheart 0 34.3 6358 4074 35.92
1 65.7 9622 4042 58

Balance-scale B 7.8 415 147 88.67

R 46 384 364 5.20

Yeast MIT 16.4 2258 1125 50.17

CYT 31.2 2399 1461 80.78

ERL 0.3 417 5 98.80

Monk-1 0 64.3 1438 1135 21.07

1 35.7 1477 363 75.42

Lymphography | metastases 54.72 1718 369 78.52

10% min supp. malign 41.21 2407 476 80.22

Crx + 445 2345 1091 53.47

10% min supp. — 55.5 2336 1031 55.86

Table 5: Compression factor (CF% = (1 — “—“’eE'ﬁjq) x 100) of essential rules in UCI data sets. Note

that essential rules and RelSets are not pruned by any growth rate threshold.

Microarray data analysis problems are usually addressed by statistical and data mining/machine
learning approaches (Speed, 2003; Causton et al., 2003; Parmigiani et al., 2003). State-of-the-art
machine learning approaches to microarray data analysis include both supervised learning (learning
from data with class labels) and unsupervised learning (such as conceptual clustering). A review
of these various approaches can be found in Molla et al. (2004). It was shown by Gamberger et al.
(2004) that microarray data analysis problems can be approached also through subgroup discovery,
where the goal is to find a set of subgroup descriptions (a rule set) for the target class, that preferably
has a low number of rules while each rule has high coverage and accuracy (Lavrac et al., 2004;
Gamberger and Lavrac, 2002).

The goal of the real-life experiment addressed in this paper is to investigate the differences
between virus sensitive and resistant transgenic potato lines. For this purpose, 48 potato samples
were used, leading to 24 microarrays. The laboratory experiment was carried out at the National
Institute of Biology, Ljubljana, Slovenia.

Our data set contains 12 examples. Each example is a pair of microarrays (8 and 12 hours after
infection) from the same transgenic line. All the data was discretized by using expert background
knowledge. Features of the form |gene expression value| > 0.3 were generated and enumerated.
Three groups of features were generated: first group corresponding to gene expression levels 8 hours
after infection (feature numbers € [1,12493]); second group corresponding to gene expression levels
12 hours after infection (feature numbers € [12494,24965]); finally, a third group corresponding
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Data set Class Num. of rules AUC Time
RelSets | RelSets-ROC | SD || RelSets | SD | RelSets | SD
potatoes | sensitive 1 1 20 || 100% | 100% <1s >1h
resistant 1 1 20 100% | 91% <1s >1h

Table 6: Comparison of algorithms RelSets and SD on the potato microarray data. Column RelSets-
ROC shows the number of RelSets rules on the ROC convex hull.

to the difference between gene expression levels 12 and 8 hours after infection (feature numbers
€ [24966, 37559]).

We used the RelSets algorithm to analyze the differences between gene expression levels char-
acteristic for virus sensitive potato transgenic lines, discriminating them from virus resistant potato
transgenic lines and vice versa. We ran it twice: once the sensitive examples were considered pos-
itive and once the resistant ones were considered positive. In both cases the constraint of minimal
true positive count was set to 4, and in the first phase the algorithm returned 22 closed sets on pos-
itives. Rule relevancy filtering according to Definition 5, filtered the rules to just one relevant rule
with a 100% true positive rate and a 0% false positive rate for each class. The results gained are
shown below, where features are represented by numbers.

Twelve features determine the virus sensitive class for the potato samples used:

{13031, 13066, 19130, 23462, 24794, 25509, 29938, 33795, 33829, 35003, 35190, 36266} —
sensitive

Sixteen features determine the virus resistant class for the potato samples used:

{16441, 20474, 20671, 24030, 25141, 29777, 30111, 32459, 33225, 33248, 33870, 34108, 34114,
34388, 37252, 37484} — resistant

When comparing our results with the SD algorithm for subgroup discovery (Gamberger and
Lavrag, 2002), we observe that the running time of SD degrades considerably due to the high di-
mensionality of this data set. Moreover, SD obtains a larger set of rules which are less interpretable
and do not have the same quality as the rules obtained with RelSets. Table 6 shows the numbers of
discovered rules, area under ROC curve and the running time of both algorithms.

The results obtained with RelSets were validated by the experts from the National Institute of
Biology, Ljubljana, Slovenia, and evaluated as insightful. Based on the tested samples, the experts
have observed that the response to the infection after 8 hours is not strong enough to distinguish
between resistant transgenic lines and sensitive ones. None of the gene expression changes after 8
hours appeared significant for the RelSets algorithm. However, selected gene expression levels after
12 hours and the comparison of gene expression difference (12-8) characterize the resistance to the
infection with potato virus for the transgenic lines tested.®

3. Details of this analysis are beyond the scope of this paper: first qualitative analysis results have appeared in Kralj
et al. (2006), while a more thorough analysis is to appear in a biological journal.
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7. Conclusions

We have presented a theoretical framework that, based on the covering properties of closed itemsets,
characterizes those sets of features that are relevant for discrimination. We call them closed sets
for labeled data, since they keep similar structural properties of classical closed sets, yet taking into
account the positive and negative labels of examples. We show that these sets define a nonredundant
set of rules in the ROC space.

This study extends previous results where the notion of relevancy was analyzed for single fea-
tures (LavraC and Gamberger, 2005; Lavrac et al., 1999), and it provides a new formal perspec-
tive for relevant rule induction. In practice the approach shows major advantages for compacting
emerging patterns and essential rules and solving hard subgroup discovery problems. Thresholds on
positives make the method tractable even for large databases with many features. The application
to potato microarray data, where the goal was to find differences between virus resistant and virus
sensitive potato transgenic lines, shows that our approach is not only fast, but also returns a small
set of rules that are meaningful and easy to interpret by domain experts.

Future work will be devoted to adapting efficient algorithms of emerging patterns by Dong and
Li (1999) for the discovery of the presented relevant sets.
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