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Nada Lavrač NADA .LAVRAC @IJS.SI
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Abstract

This paper investigates how to adapt standard classification rule learning approaches to subgroup
discovery. The goal of subgroup discovery is to find rules describing subsets of the population
that are sufficiently large and statistically unusual. The paper presents a subgroup discovery algo-
rithm, CN2-SD, developed by modifying parts of the CN2 classification rulelearner: its covering
algorithm, search heuristic, probabilistic classification of instances, and evaluation measures. Ex-
perimental evaluation ofCN2-SDon 23 UCI data sets shows substantial reduction of the number
of induced rules, increased rule coverage and rule significance, as well as slight improvements
in terms of the area under ROC curve, when compared with the CN2 algorithm. Application of
CN2-SDto a large traffic accident data set confirms these findings.
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1. Introduction

Rule learning is most frequently used in the context of classification rule learning (Michalski et al.,
1986, Clark and Niblett, 1989, Cohen, 1995) and association rule learning(Agrawal et al., 1996).
While classification rule learning is an approach topredictive induction(or supervised learning),
aimed at constructing a set of rules to be used for classification and/or prediction, association rule
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learning is a form ofdescriptive induction(non-classificatory induction or unsupervised learning),
aimed at the discovery of individual rules which define interesting patternsin data.

Descriptive induction has recently gained much attention of the rule learning research commu-
nity. Besides mining of association rules (e.g., the APRIORI association rule learning algorithm
(Agrawal et al., 1996)), other approaches have been developed, including clausal discovery as in
the CLAUDIEN system (Raedt and Dehaspe, 1997, Raedt et al., 2001), and database dependency
discovery (Flach and Savnik, 1999).

1.1 Subgroup Discovery: A Task at the Intersection of Predictiveand Descriptive Induction

This paper shows how classification rule learning can be adapted tosubgroup discovery, a task at the
intersection of predictive and descriptive induction, that has first beenformulated by Kl̈osgen (1996)
and Wrobel (1997, 2001), and addressed by rule learning algorithms EXPLORA (Klösgen, 1996)
and MIDOS (Wrobel, 1997, 2001). In the work of Klösgen (1996) and Wrobel (1997, 2001), the
problem of subgroup discovery has been defined as follows: Given apopulation of individuals and
a property of those individuals we are interested in, find population subgroups that are statistically
‘most interesting’, e.g., are as large as possible and have the most unusual statistical (distributional)
characteristics with respect to the property of interest.

In subgroup discovery, rules have the formClass←Cond, where the property of interest for
subgroup discovery is class valueClassthat appears in the rule consequent, and the rule antecedent
Cond is a conjunction of features (attribute-value pairs) selected from the features describing the
training instances. As rules are induced from labeled training instances (labeled positive if the
property of interest holds, and negative otherwise), the process of subgroup discovery is targeted at
uncovering properties of a selectedtargetpopulation of individuals with the given property of inter-
est. In this sense, subgroup discovery is a form of supervised learning. However, in many respects
subgroup discovery is a form of descriptive induction as the task is to uncover individual interesting
patternsin data. The standard assumptions made by classification rule learning algorithms (espe-
cially the ones that take the covering approach), such as ‘induced rulesshould be as accurate as
possible’ or ‘induced rules should be as distinct as possible, covering different parts of the popula-
tion’, need to be relaxed. In our approach, the first assumption, implemented in classification rule
learners by heuristic which aim at optimizing predictive accuracy, is relaxed by implementing new
heuristics for subgroup discovery which aim at finding ‘best’ subgroups in terms of rule coverage
and distributional unusualness. The relaxation of the second assumption enables the discovery of
overlapping subgroups, describing some population segments in a multiplicity ofways. Induced
subgroup descriptions may be redundant, if viewed from a classifier perspective, but very valuable
in terms of their descriptive power, uncovering genuine properties of subpopulations from different
viewpoints.

Let us emphasize the difference between subgroup discovery (as a task at the intersection of
predictive and descriptive induction) and classification rule learning (asa form of predictive induc-
tion). The goal of standard rule learning is to generate models, one for each class, consisting of rule
sets describing class characteristics in terms of properties occurring in thedescriptions of training
examples. In contrast, subgroup discovery aims at discovering individual rules or ‘patterns’ of in-
terest, which must be represented in explicit symbolic form and which must be relatively simple in
order to be recognized as actionable by potential users. Moreover, standard classification rule learn-
ing algorithms cannot appropriately address the task of subgroup discovery as they use the covering
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algorithm for rule set construction which - as will be seen in this paper - hinders the applicability of
classification rule induction approaches in subgroup discovery.

Subgroup discovery is usually seen as different from classification, as it addresses different
goals (discovery of interesting population subgroups instead of maximizing classification accuracy
of the induced rule set). This is manifested also by the fact that in subgroupdiscovery one can often
tolerate many more false positives (negative examples incorrectly classifiedas positives) than in a
classification task. However, both tasks, subgroup discovery and classification rule learning, can
be unified under the umbrella of cost-sensitive classification. This is because when deciding which
classifiers are optimal in a given context it does not matter whether we penalize false negatives as is
the case in classification, or reward true positives as in subgroup discovery.

1.2 Overview of theCN2-SD Approach to Subgroup Discovery

This paper investigates how to adapt standard classification rule learning approaches to subgroup
discovery. The proposed modifications of classification rule learners can, in principle, be used
to modify any rule learner using the covering algorithm for rule set construction. In this paper,
we illustrate the approach by modifying the well-known CN2 rule learning algorithm (Clark and
Niblett, 1989, Clark and Boswell, 1991). Alternatively, we could have modified RL (Lee et al.,
1998), RIPPER (Cohen, 1995), SLIPPER (Cohen and Singer, 1999) or other more sophisticated
classification rule learners. The reason for modifying CN2 is that other more sophisticated learners
include advanced techniques that make them more effective in classificationtasks, improving their
classification accuracy. Improved classification accuracy is, however, not of ultimate interest for
subgroup discovery, whose main goal is to find interesting population subgroups.

We have implemented the new subgroup discovery algorithmCN2-SDby modifying CN2 (Clark
and Niblett, 1989, Clark and Boswell, 1991). The proposed approach performs subgroup discovery
through the following modifications of CN2: (a) replacing the accuracy-based search heuristic with
a new weighted relative accuracy heuristic that trades off generality andaccuracy of the rule, (b)
incorporating example weights into the covering algorithm, (c) incorporating example weights into
the weighted relative accuracy search heuristic, and (d) using probabilistic classification based on
the class distribution of covered examples by individual rules, both in the case of unordered rule sets
and ordered decision lists. In addition, we have extended the ROC analysisframework to subgroup
discovery and propose a set of measures appropriate for evaluating the quality of induced subgroups.

This paper presents theCN2-SDsubgroup discovery algorithm, together with its experimental
evaluation on 23 data sets of the UCI Repository of Machine Learning Databases (Murphy and
Aha, 1994), as well as its application to a real world problem of traffic accident analysis. The ex-
perimental comparison with CN2 demonstrates that the subgroup discovery algorithmCN2-SDpro-
duces substantially smaller rule sets, where individual rules have higher coverage and significance.
These three factors are important for subgroup discovery: smaller sizeenables better understanding,
higher coverage means larger support, and higher significance means that rules describe discovered
subgroups that have significantly different distributional characteristics compared to the entire pop-
ulation. The appropriateness for subgroup discovery is confirmed alsoby slight improvements in
terms of the area under ROC curve, without decreasing predictive accuracy.

The paper is organized as follows. Section 2 introduces the backgroundof this work which in-
cludes the description of the CN2 rule learning algorithm, the weighted relativeaccuracy heuristic,
and probabilistic classification of new examples. Section 3 presents the subgroup discovery algo-
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LAVRA Č ET AL.

rithm CN2-SDby describing the necessary modifications of CN2. In Section 4 we discusssubgroup
discovery from the perspective of ROC analysis. Section 5 presents a range of metrics used in the
experimental evaluation ofCN2-SD. Section 6 presents the results of experiments on selected UCI
data sets as well as an application ofCN2-SDon a real-life traffic accident data set. Related work is
discussed in Section 7. Section 8 concludes by summarizing the main contributions and proposing
directions for further work.

2. Background

This section presents the background of our work: the classical CN2 rule induction algorithm,
including the covering algorithm for rule set construction, the standard CN2 heuristic, weighted
relative accuracy heuristic, and the probabilistic classification technique used in CN2.

2.1 The CN2 Rule Induction Algorithm

CN2 is an algorithm for inducing propositional classification rules (Clark and Niblett, 1989, Clark
and Boswell, 1991). Induced rules have the form “ifCondthenClass”, whereCond is a conjunc-
tion of features (pairs of attributes and their values) andClassis the class value. In this paper we
use the notationClass←Cond.

CN2 consists of two main procedures: the bottom-level search procedurethat performs beam
search in order to find a single rule, and the top-level control procedure that repeatedly executes the
bottom-level search to induce a rule set. The bottom-level performs beam search1 using classifica-
tion accuracy of the rule as a heuristic function. The accuracy of a propositional classification rule
of the formClass←Condis equal to the conditional probability of classClass, given that condition
Cond is satisfied:

Acc(Class←Cond) = p(Class|Cond) =
p(Class.Cond)

p(Cond)
.

Usually, this probability is estimated by relative frequencyn(Class.Cond)
n(Cond) .2 Different probability esti-

mates, like the Laplace (Clark and Boswell, 1991) or them-estimate (Cestnik, 1990, Džeroski et al.,
1993), can be used in CN2 for estimating the above probability. The standard CN2 algorithm used
in this work uses the Laplace estimate, which is computed asn(Class.Cond)+1

n(Cond)+k , wherek is the number
of classes (for a two-class problem,k = 2).

CN2 can also apply a significance test to an induced rule. A rule is considered to be significant,
if it expresses a regularity unlikely to have occurred by chance. To testsignificance, CN2 uses the
likelihood ratio statistic (Clark and Niblett, 1989) that measures the differencebetween the class
probability distribution in the set of training examples covered by the rule and the class probability
distribution in the set of all training examples (see Equation 2 in Section 5). Theempirical evaluation
in the work of Clark and Boswell (1991) shows that applying the significance test reduces the
number of induced rules at a cost of slightly decreased predictive accuracy.

1. CN2 constructs rules in a general-to-specific fashion, specializing only the rules in the beam (the best rules) by
iteratively adding features to conditionCond. This procedure stops when no specialized rule can be added to the
beam, because none of the specializations is more accurate than the rulesin the beam.

2. Here we use the following notation:n(Cond) stands for the number of instances covered by ruleClass← Cond,
n(Class) stands for the number of examples of classClass, andn(Class.Cond) stands for the number of correctly
classified examples (true positives). We usep(. . .) for the corresponding probabilities.
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Two different top-level control procedures can be used in CN2. Thefirst induces an ordered list
of rules and the second an unordered set of rules. Both proceduresadd a default rule (providing for
majority class assignment) as the final rule in the induced rule set. When inducing an ordered list of
rules, the search procedure looks for the most accurate rule in the current set of training examples.
The rule predicts the most frequent class in the set of covered examples.In order to prevent CN2
finding the same rule again, all the covered examples are removed before anew iteration is started
at the top-level. The control procedure invokes a new search, until allthe examples are covered or
no significant rule can be found. In the unordered case, the control procedure is iterated, inducing
rules for each class in turn. For each induced rule, only covered examples belonging to that class are
removed, instead of removing all covered examples, like in the ordered case. The negative training
examples (i.e., examples that belong to other classes) remain.

2.2 The Weighted Relative Accuracy Heuristic

Weighted relative accuracy (Lavrač et al., 1999, Todorovski et al., 2000) is a variant of rule accuracy
that can be applied both in the descriptive and predictive induction framework; in this paper this
heuristic is applied for subgroup discovery. Weighted relative accuracy, a reformulation of one
of the heuristics used in EXPLORA (Klösgen, 1996) and MIDOS (Wrobel, 1997), is defined as
follows:

WRAcc(Class←Cond) = p(Cond) · (p(Class|Cond)− p(Class)). (1)

Like most other heuristics used in subgroup discovery systems, weighted relative accuracy consists
of two components, providing a tradeoff between rulegenerality(or the relative size of a subgroup
p(Cond)) and distributional unusualness orrelative accuracy(the difference between rule accuracy
p(Class|Cond) and default accuracyp(Class)). This difference can also be seen as the accuracy
gain relative to the fixed ruleClass← true, which predicts that all instances belong toClass: a rule
is interesting only if it improves upon this ‘default’ accuracy. Another aspect of relative accuracy
is that it measures the difference between true positives and the expectedtrue positives (expected
under the assumption of independence of the left and right hand-side ofa rule), i.e., the utility of
connecting rule bodyCondwith a given rule headClass. However, it is easy to obtain high relative
accuracy with highly specific rules, i.e., rules with low generalityp(Cond). To this end, generality
is used as a ‘weight’, so that weighted relative accuracy trades off generality of the rule (p(Cond),
i.e., rule coverage) and relative accuracy (p(Class|Cond)− p(Class)).

In the work of Klösgen (1996), these quantities are referred to asg (generality),p (rule accuracy
or precision) andp0 (default rule accuracy) and different tradeoffs between rule generality and
precision in the so-calledp-g (precision-generality) space are proposed. In addition to function
g(p−p0), which is equivalent to our weighted relative accuracy heuristic, other tradeoffs that reduce
the influence of generality are proposed, e.g.,

√
g(p− p0) or

√

g/(1−g)(p− p0). Here, we favor
the weighted relative accuracy heuristic, because it has an intuitive interpretation in ROC space,
discussed in Section 4.

2.3 Probabilistic Classification

The induced rules can be ordered or unordered. Ordered rules areinterpreted as a decision list
(Rivest, 1987) in a straightforward manner: when classifying a new example, the rules are sequen-
tially tried and the first rule that covers the example is used for prediction.
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if legs = 2 & feathers = yes then class = bird [13,0]
if beak = yes then class = bird [20,0]
if size = large & flies = no then class = elephant [2,10]

Table 1: A rule set consisting of two rules for class ‘bird’ and one rule for class ‘elephant’.

In the case of unordered rule sets, the distribution of covered training examples among classes
is attached to each rule. Rules of the form:

if Condthen Class[ClassDistribution]

are induced, where numbers in theClassDistributionlist denote, for each individual class, how
many training examples of this class are covered by the rule. When classifying a new example,
all rules are tried and those covering the example are collected. If a clash occurs (several rules
with different class predictions cover the example), a voting mechanism is used to obtain the final
prediction: the class distributions attached to the rules are summed to determine themost probable
class. If no rule fires, the default rule is invoked to predict the majority class of training instances
not covered by the other rules in the list.

Probabilistic classification is illustrated on a sample classification task, taken from Clark and
Boswell (1991). Suppose we need to classify an animal which is a two-legged, feathered, large,
non-flying and has a beak,3, and the classification is based on a rule set, listed in Table 1 formed
of three probabilistic rules with the [bird, elephant] class distribution assigned to each rule (for
simplicity, the rule set does not include the default rule). All rules fire for the animal to be classified,
resulting in a [35,10] class distribution. As a result, the animal is classified as abird.

3. TheCN2-SD Subgroup Discovery Algorithm

The main modifications of the CN2 algorithm, making it appropriate for subgroupdiscovery, involve
the implementation of the weighted covering algorithm, incorporation of example weights into the
weighted relative accuracy heuristic, probabilistic classification also in the case of the ‘ordered’
induction algorithm, and the area under ROC curve rule set evaluation. Thissection describes the
CN2 modifications, while ROC analysis and a novel interpretation of the weighted relative accuracy
heuristic in ROC space are given in Section 4.

3.1 Weighted Covering Algorithm

If used for subgroup discovery, one of the problems of standard rulelearners, such as CN2 and
RIPPER, is the use of the covering algorithm for rule set construction. The main deficiency of the
covering algorithm is that only the first few induced rules may be of interestas subgroup descriptions
with sufficient coverage and significance. In the subsequent iterationsof the covering algorithm,
rules are induced from biased example subsets, i.e., subsets including onlypositive examples that
are not covered by previously induced rules, which inappropriately biases the subgroup discovery
process.

3. The animal being classified is a weka.
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As a remedy to this problem we propose the use of a weighted covering algorithm (Gamberger
and Lavrǎc, 2002), in which the subsequently induced rules (i.e., rules induced in thelater stages)
also represent interesting and sufficiently large subgroups of the population. The weighted covering
algorithm modifies the classical covering algorithm in such a way that covered positive examples
are not deleted from the current training set. Instead, in each run of thecovering loop, the algorithm
stores with each example a count indicating how often (with how many rules) theexample has
been covered so far. Weights derived from these example counts then appear in the computation of
WRAcc. Initial weights of all positive examplesej equal 1,w(ej ,0) = 1. The initial example weight
w(ej ,0) = 1 means that the example has not been covered by any rule, meaning ‘please cover this
example, since it has not been covered before’, while lower weights, 0< w < 1 mean ‘do not try
too hard on this example’. Consequently, the examples already covered byone or more constructed
rules decrease their weights while the uncovered target class examples whose weights have not been
decreased will have a greater chance to be covered in the following iterations of the algorithm.

For a weighted covering algorithm to be used, we have to specify the weighting scheme, i.e.,
how the weight of each example decreases with the increasing number of covering rules. We have
implemented two weighting schemes described below.

3.1.1 MULTIPLICATIVE WEIGHTS

In the first scheme, weights decrease multiplicatively. For a given parameter 0 < γ < 1, weights of
covered positive examples decrease as follows:w(ej , i) = γi , wherew(ej , i) is the weight of example
ej being covered byi rules. Note that the weighted covering algorithm withγ = 1 would result in
finding the same rule over and over again, whereas withγ = 0 the algorithm would perform the
same as the standard CN2 covering algorithm.

3.1.2 ADDITIVE WEIGHTS

In the second scheme, weights of covered positive examples decrease according to the formula
w(ej , i) = 1

i+1. In the first iteration all target class examples contribute the same weightw(ej ,0) = 1,
while in the following iterations the contributions of examples are inversely proportional to their
coverage by previously induced rules.

3.2 Modified WRAcc Heuristic with Example Weights

The modification of CN2 reported in the work of Todorovski et al. (2000)affected only the heuristic
function: weighted relative accuracy was used as a search heuristic, instead of the accuracy heuristic
of the original CN2, while everything else remained the same. In this work, theheuristic function
is further modified to handle example weights, which provide the means to consider different parts
of the example space in each iteration of the weighted covering algorithm.

In theWRAcccomputation (Equation 1) all probabilities are computed by relative frequencies.
An example weight measures how important it is to cover this example in the next iteration. The
modifiedWRAccmeasure is then defined as follows:

WRAcc(Class←Cond) =
n′(Cond)

N′
· (n′(Class.Cond)

n′(Cond)
− n′(Class)

N′
).
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if legs = 2 & feathers = yes then class = bird [1, 0]
if beak = yes then class = bird [1, 0]
if size = large & flies = no then class = elephant [0.17,0.83]

Table 2: The rule set of Table 1 as treated byCN2-SD.

In this equation,N′ is the sum of the weights of all examples,n′(Cond) is the sum of the weights
of all covered examples, andn′(Class.Cond) is the sum of the weights of all correctly covered
examples.

To add a rule to the generated rule set, the rule with the maximumWRAccmeasure is chosen
out of those rules in the search space, which are not yet present in therule set produced so far (all
rules in the final rule set are thus distinct, without duplicates).

3.3 Probabilistic Classification

Each CN2 rule returns a class distribution in terms of the number of examples covered, as distributed
over classes. The CN2 algorithm uses class distribution in classifying unseen instances only in the
case of unordered rule sets, where rules are induced separately foreach class. In the case of ordered
decision lists, the first rule that fires provides the classification. In our modifiedCN2-SDalgorithm,
also in the ordered case all applicable rules are taken into account, henceprobabilistic classification
is used in both classifiers. This means that the terminology ‘ordered’ and ‘unordered’, which in CN2
distinguished between decision list and rule set induction, has a differentmeaning in our setting:
the ‘unordered’ algorithm refers to learning classes one by one, while the ‘ordered’ algorithm refers
to finding best rule conditions and assigning the majority class in the rule head.

Note thatCN2-SDdoes not use the same probabilistic classification scheme as CN2. Unlike
CN2, where the rule class distribution is computed in terms of the numbers of examples covered,
CN2-SDtreats the class distribution in terms of probabilities (computed by the relative frequency
estimate). Table 2 presents the three rules of Table 1 with the class distribution expressed with
probabilities. A two-legged, feathered, large, non-flying animal with a beak is again classified as a
bird but now the probabilities are averaged (instead of summing the numbers of examples), resulting
in the final probability distribution [0.72,0.28]. By using this voting scheme the subgroups covering
a small number of examples are not so heavily penalized (as is the case in CN2) when classifying a
new example.

3.4 CN2-SD Implementation

Two variants ofCN2-SDhave been implemented. TheCN2-SDsubgroup discovery algorithm used
in the experiments in this paper is implemented in C and runs on a number of UNIX platforms. Its
predecessor, used in the experiments reported by Lavrač et al. (2002), is implemented in Java and
incorporated in the WEKA data mining environment (Witten and Frank, 1999).The C implemen-
tation is more efficient and less restrictive than the Java implementation, which is limited to binary
class problems and to discrete attributes.
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Figure 1: The ROC space withTPr on theX axis andFPr on theY axis. The solid line connecting
seven optimal subgroups (marked by�) is the ROC convex hull.B1 andB2 denote
suboptimal subgroups (marked by x). The dotted line – the diagonal connecting points
(0,0) and (100,100) – indicates positions of insignificant rules with zero relative accuracy.

4. ROC Analysis for Subgroup Discovery

In this section we describe how ROC (Receiver Operating Characteristic)analysis (Provost and
Fawcett, 2001) can be used to understand subgroup discovery and to visualize and evaluate discov-
ered subgroups.

A point in ROC spaceshows classifier performance in terms of false alarm orfalse positive rate
FPr = FP

TN+FP (plotted on theX-axis), and sensitivity ortrue positive rate TPr= TP
TP+FN (plotted

on theY-axis). In terms of the expressions introduced in Sections 2.1 and 2.2,TP (true positives),
FP (false positives),TN (true negatives) andFN (false negatives) can be expressed as:TP =
n(Class.Cond), FP= n(Class.Cond), TN= n(Class.Cond) andFN = n(Class.Cond), whereClass
andCondstand for¬Classand¬Cond, respectively.

The ROC space is appropriate for measuring the success of subgroup discovery, since rules/sub-
groups whoseTPr/FPr tradeoff is close to the diagonal can be discarded as insignificant. Con-
versely, significant rules/subgroups are those sufficiently distant from the diagonal. Significant rules
define the points in ROC space from which a convex hull can be constructed. The best rules define
the ROC convex hull. Figure 1 shows seven rules on the convex hull (marked by�), while two rules
B1 andB2 below the convex hull (marked by x) are of lower quality.
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4.1 The Interpretation of Weighted Relative Accuracy in ROC Space

Weighted relative accuracy is appropriate for measuring the quality of a single subgroup, because it
is proportional to the distance from the diagonal in ROC space.4 To see that this holds, note first that
rule accuracyp(Class|Cond) is proportional to the angle between theX-axis and the line connecting
the origin with the point depicting the rule in terms of itsTPr/FPr tradeoff in ROC space. So, for
instance, theX-axis has always rule accuracy 0 (these are purely negative subgroups), theY-axis
has always rule accuracy 1 (purely positive subgroups), and the diagonal represents subgroups with
rule accuracyp(Class), the prior probability of the positive class. Consequently, all point on the
diagonal represent insignificant subgroups.

Relative accuracy,p(Class|Cond)− p(Class), re-normalizes this such that all points on the
diagonal have relative accuracy 0, all points on theY-axis have relative accuracy 1− p(Class) =
p(Class) (the prior probability of the negative class), and all points on theX-axis have relative
accuracy−p(Class). Notice that all points on the diagonal also haveWRAcc= 0. In terms of
subgroup discovery, the diagonal represents all subgroups with the same target distribution as the
whole population; only the generality of these ‘average’ subgroups increases when moving from
left to right along the diagonal. This interpretation is slightly different in classifier learning, where
the diagonal represents random classifiers that can be constructed without any training.

More generally,WRAccisometrics lie on straight lines parallel to the diagonal (Flach, 2003,
Fürnkranz and Flach, 2003). Consequently, a point on the lineTPr= FPr+a, wherea is the vertical
distance of the line to the diagonal, hasWRAcc= a.p(Class)p(Class). Thus, given a fixed class
distribution,WRAccis proportional to the vertical distancea to the diagonal. In fact, the quantity
TPr−FPr would be an alternative quality measure for subgroups, with the additional advantage
that it allows for comparison of subgroups from populations with different class distributions.

4.2 Methods for Constructing ROC Curves and AUC Evaluation

Subgroups obtained by CN2-SD can be evaluated in ROC space in two different ways.

4.2.1 AUC-METHOD-1

The first method treats each rule as a separate subgroup which is plotted in ROC space in terms
of its true and false positive rates (TPr andFPr). We then generate the convex hull of this set
of points, selecting the subgroups which perform optimally under a particular range of operating
characteristics. The area under this ROC convex hull (AUC) indicates the combined quality of the
optimal subgroups, in the sense that it does evaluate whether a particular subgroup has anything to
add in the context of all the other subgroups. However, this method does not take account of any
overlap between subgroups, and subgroups not on the convex hull are simply ignored.

Figure 2 presents two ROC curves, showing the performance of CN2 andCN2-SDalgorithms
on the Australian UCI data set.

4.2.2 AUC-METHOD-2

The second method employs the combined probabilistic classifications of all subgroups, as indi-
cated below. If we always choose the most likely predicted class, this corresponds to setting a fixed
threshold 0.5 on the positive probability (the probability of the target class):if the positive probabil-

4. Some of the reasoning supporting this claim is further discussed in the last two paragraphs of Section 5.1.
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Figure 2: Example ROC curves (AUC-Method-1) on the Australian UCI dataset: the solid curve
for the standard CN2 classification rule learner, and the dotted curve forCN2-SD.

ity is larger than this threshold we predict positive, else negative. The ROCcurve can be constructed
by varying this threshold from 1 (all predictions negative, corresponding to (0,0) in ROC space) to 0
(all predictions positive, corresponding to (1,1) in ROC space). This results inn+1 points in ROC
space, wheren is the total number of classified examples (test instances). Equivalently, wecan
order all the classified examples by decreasing predicted probability of being positive, and tracing
the ROC curve by starting in (0,0), stepping up when the example is actually positive and stepping
to the right when it is negative, until we reach (1,1).5 Each point on this curve corresponds to a
classifier defined by a possible probability threshold, as opposed to AUC-Method-1, where a point
on the ROC curve corresponds to one of the optimal subgroups. The ROCcurve depicts a set of
classifiers, whereas the area under this ROC curve indicates the combinedquality of all subgroups
(i.e., the quality of the entire rule set). This method can be used with a test set orin cross-validation,
but the resulting curve is not necessarily convex.6

Figure 3 presents two ROC curves, showing the performance of the CN2 and CN2-SDalgo-
rithms on the Australian UCI data set. It is apparent from this figure that CN2is badly overfitting
on this data set, because almost all of its ROC curve is below the diagonal. Thisis because CN2
has learned many overly specific rules, which bias the predicted probabilities. These overly specific
rules are visible in Figure 2 as points close to the origin.

5. In the case of ties, we make the appropriate number of steps up and to the right at once, drawing a diagonal line
segment.

6. A description of this method applied to decision tree induction can be foundin the paper by Ferri-Raḿırez et al.
(2002).
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Figure 3: Example ROC curves (AUC-Method-2) on the Australian UCI dataset: the solid curve
for the standard CN2 classification rule learner, and the dotted curve forCN2-SD.

4.2.3 COMPARISON OF THETWO AUC METHODS

Which of the two methods is more appropriate for subgroup discovery is open for debate. The
second method seems more appropriate if the discovered subgroups are intended to be applied also
in the predictive setting, as a rule set (a model) used for classification. Its advantage is also that it is
easier to apply cross-validation. In the experimental evaluation in Section 6 we use AUC-Method-2
in the comparison of the predictive performance of rule learners.

An argument in favor of using AUC-Method-1 for subgroup evaluation isbased on the obser-
vation that AUC-Method-1 suggests to eliminate, from the induced set of subgroup descriptions,
those rules which are not on the ROC convex hull. This seems appropriate,as the ‘best’ subgroups
according to theWRAccevaluation measure, are subgroups most distant from the ROC diagonal.
However, disjoint subgroups, either on or close to the convex hull, should not be eliminated, as (due
to disjoint coverage and possibly different symbolic descriptions) they mayrepresent interesting
subgroups, regardless of the fact that there is another ‘better’ subgroup on the ROC convex hull,
with a similarTPr/FPr tradeoff.

Notice that the area under ROC curve (AUC-Method-1) cannot be usedas a predictive qual-
ity measure when comparing different subgroup miners, because it doesnot take into account the
overlapping structure of subgroups. An argument against the use of this measure is here elaborated
through a simple example.7 Consider for instance two subgroup mining results, of say 3 subgroups
in each resulting rule set. The first result set consists of three disjoint subgroups of equal size that
together cover all the examples of the selectedClassvalue and have a 100% accuracy. Thus these
three subgroups are a perfect classifier for theClassvalue. In ROC space the three subgroups
collapse at the point (0,1/3). The second result set consists of three equal subgroups (having a max-

7. We are grateful to the anonymous reviewer who provided this illustrative example.
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imum overlap: with different descriptions, but equal extensions), also with a 100% accuracy and
covering one third of the class examples. Clearly the first result is better, but the representation of
the results in ROC space (and the area under ROC curve) is the same for both cases.

5. Subgroup Evaluation Measures

In this section we distinguish betweenpredictiveand descriptiveevaluation measures, which is
in-line with the distinction of predictive induction and descriptive induction madein Section 1.
Descriptive measures are used to evaluate the quality of individual rules (individual patterns). These
quality measures are the most appropriate for subgroup discovery, as the task of subgroup discovery
is to induce individual patterns of interest. Predictive measures are usedin addition to descriptive
measures just to show that theCN2-SDsubgroup discovery mechanisms perform well also in the
predictive induction setting, where the goal is to induce a classifier.

5.1 Descriptive Measures of Rule Interestingness

Descriptive measures of rule interestingness evaluate each individual subgroup and are thus appro-
priate for evaluating the success of subgroup discovery. The proposed quality measures compute
the average over the induced set of subgroup descriptions, which enables the comparison between
different algorithms.

Coverage. The average coverage measures the percentage of examples coveredon average by one
rule of the induced rule set. Coverage of a single ruleRi is defined as

Cov(Ri) = Cov(Class←Condi) = p(Condi) =
n(Condi)

N
.

The average coverage of a rule set is computed as

COV =
1
nR

nR

∑
i=1

Cov(Ri),

wherenR is the number of induced rules.

Support. For subgroup discovery it is interesting to compute the overall support (the target cover-
age) as the percentage of target examples (positives) covered by the rules, computed as the
true positive rate for the union of subgroups. Support of a rule is defined as the frequency of
correctly classified covered examples:

Sup(Ri) = Sup(Class←Condi) = p(Class.Condi) =
n(Class.Condi)

N
.

The overall support of a rule set is computed as

SUP=
1
N ∑

Classj

n(Classj ·
_

Classj←Condi

Condi),

where the examples covered by several rules are counted only once (hence the disjunction of
rule conditions of rules with the sameClassj value in the rule head).
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Size. Size is a measure of complexity (the syntactical complexity of induced rules). The rule set
size is computed as the number of rules in the induced rule set (including the default rule):

SIZE= nR.

In addition to rule set size used in this paper, complexity could be measured also by the
average number of rules/subgroups per class, and the average number of features per rule.

Significance. Average rule significance is computed in terms of the likelihood ratio of a rule, nor-
malized with the likelihood ratio of the significance threshold (99%); the average is computed
over all the rules. Significance (orevidence, in the terminology of Kl̈osgen, 1996) indicates
how significant is a finding, if measured by this statistical criterion. In the CN2algorithm
(Clark and Niblett, 1989), significance is measured in terms of the likelihood ratio statistic of
a rule as follows:

Sig(Ri) = Sig(Class←Condi) = 2·∑
j

n(Classj .Condi) · log
n(Classj .Condi)

n(Classj) · p(Condi)
(2)

where for each classClassj , n(Classj .Condi) denotes the number of instances ofClassj in the
set where the rule body holds true,n(Classj) is the number ofClassj instances, andp(Condi)

(i.e., rule coverage computed asn(Condi)
N ) plays the role of a normalizing factor. Note that

although for each generated subgroup description one class is selectedas the target class, the
significance criterion measures the distributional unusualness unbiased toany particular class
– as such, it measures the significance of rule condition only.

The average significance of a rule set is computed as:

SIG=
1
nR

nR

∑
i=1

Sig(Ri).

Unusualness.Average rule unusualness is computed as the averageWRAcccomputed over all the
rules:

WRACC=
1
nR

nR

∑
i=1

WRAcc(Ri).

As discussed in Section 4.1,WRAccis appropriate for measuring the unusualness of separate
subgroups, because it is proportional to the vertical distance from the diagonal in the ROC
space (see the underlying reasoning in Section 4.1).

As WRAccis proportional to the distance to the diagonal in ROC space,WRAccalso reflects rule
significance – the largerWRAcc, the more significant the rule, and vice versa. As bothWRAccand
rule significance measure the distributional unusualness of a subgroup,they are the most important
quality measures for subgroup discovery. However, while significanceonly measures distributional
unusualness,WRAcctakes also rule coverage into account, therefore we considerunusualness–
computed by the averageWRAcc– to be the most appropriate measure for subgroup quality evalu-
ation.

As pointed out in Section 4.1, the quantityTPr−FPr could be an alternative quality measure for
subgroups, with the additional advantage that we can use it to compare subgroups from populations
with different class distributions. However, in this paper we are only concerned with comparing sub-
groups from the same population, and we preferWRAccbecause of its ‘p-g’ (precision-generality)
interpretation, which is particularly suitable for subgroup discovery.
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5.2 Predictive Measures of Rule Set Classification Performance

Predictive measures evaluate a rule set, interpreting a set of subgroup descriptions as a predictive
model. Despite the fact that optimizing accuracy is not the intended goal of subgroup discovery
algorithms, these measures can be used in order to provide a comparison ofCN2-SDwith standard
classification rule learners.

Predictive accuracy. The percentage of correctly predicted instances. For a binary classification
problem, rule set accuracy is computed as follows:

ACC=
TP+TN

TP+TN+FP+FN
.

Note that ACC measures the accuracy of the whole rule set on both positiveand negative
examples, while rule accuracy (defined asAcc(Class←Cond) = p(Class|Cond)) measures
the accuracy of a single rule on positives only.

Area under ROC curve. The AUC-Method-2, described in Section 4.2, applicable to rule sets is
selected as the evaluation measure. It interprets a rule set as a probabilisticmodel, given all
the different probability thresholds as defined through the probabilistic classification of test
instances.

6. Experimental Evaluation

For subgroup discovery, expert evaluation of results is of ultimate interest. Nevertheless, before
applying the proposed approach to a particular problem of interest, we wanted to verify our claims
that the mechanisms implemented in theCN2-SDalgorithm are indeed appropriate for subgroup
discovery. For this purpose we tested it on selected UCI data sets. In this paper we use the same
data sets as in the work of Todorovski et al. (2000). We have appliedCN2-SDalso to a real life
problem of traffic accident analysis; these results were evaluated also by the expert.

6.1 The Experimental Setting

To test the applicability ofCN2-SDto the subgroup discovery task, we compare its performance
with the performance of the standard CN2 classification rule learning algorithm (referred to as
CN2-standard, and described in the work of Clark and Boswell, 1991) as well as with the CN2
algorithm usingWRAcc(CN2-WRAcc, described by Todorovski et al., 2000).

In this comparative study all the parameters of the CN2 algorithm are set to their default values
(beam-size = 5, significance-threshold = 99%). The results of theCN2-SDalgorithm are computed
using both multiplicative weights (withγ = 0.5, 0.7, 0.9)8 and additive weights.

We estimate the performance of the algorithms using stratified 10-fold cross-validation. The
obtained estimates are presented in terms of their average values and standard deviations.

Statistical significance of the difference in performance compared toCN2-standardis tested
using the paired t-test (exactly the same folds are used in all comparisons) with significance level of
95%: bold font and↑ to the right of a result in all the tables means that the algorithm is significantly
better thanCN2-standardwhile ↓ means it is significantly worse. The same paired t-test is used to
compare the different versions of our algorithm withCN2-standardover all the data sets.

8. Results obtained withγ = 0.7 are presented in the tables of Appendix A but not in the main part of the paper.
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Data set #Att. #D.att. #C.att. #Class #Ex. Maj. Class (%)

1 australian 14 8 6 2 690 56
2 breast-w 9 9 0 2 699 66
3 bridges-td 7 4 3 2 102 85
4 chess 36 36 0 2 3196 52
5 diabetes 8 0 8 2 768 65
6 echo 6 1 5 2 131 67
7 german 20 13 7 2 1000 70
8 heart 13 6 7 2 270 56
9 hepatitis 19 13 6 2 155 79

10 hypothyroid 25 18 7 2 3163 95
11 ionosphere 34 0 34 2 351 64
12 iris 4 0 4 3 150 33
13 mutagen 59 57 2 2 188 66
14 mutagen-f 57 57 0 2 188 66
15 tic-tac-toe 9 9 0 2 958 65
16 vote 16 16 0 2 435 61
17 balance 4 0 4 3 625 46
18 car 6 6 0 4 1728 70
19 glass 9 0 9 6 214 36
20 image 19 0 19 7 2310 14
21 soya 35 35 0 19 683 13
22 waveform 21 0 21 3 5000 34
23 wine 13 0 13 3 178 40

Table 3: Properties of the UCI data sets.

6.2 Experiments on UCI Data Sets

We experimentally evaluate our approach on 23 data sets from the UCI Repository of Machine
Learning Databases (Murphy and Aha, 1994). Table 3 gives an overview of the selected data sets in
terms of the number of attributes (total, discrete, continuous), the number of classes, the number of
examples, and the percentage of examples of the majority class. These data sets have been widely
used in other comparative studies (Todorovski et al., 2000). We have divided the data sets in two
groups (Table 3), those with two classes (binary data sets 1–16) and those with more then two
classes (multi-class data sets 17–23). This distinction is made as ROC analysis is applied only on
binary data sets.9

6.2.1 RESULTS OF THEUNORDEREDCN2-SD

Tables 4 and 5 present summary results of the UCI experiments, while details can be found in Ta-
bles 14–20 in Appendix A. For each performance measure, the summary table shows the average
value over all the data sets, the significance of the results compared toCN2-standard(p-value),
win/loss/draw in terms of the number of data sets in which the results are better/worse/equal com-
pared withCN2-standard, as well as the number of significant wins and losses.

9. This is a simplification (as multi-class AUC could also be computed as the average of AUCs computed by comparing
all pairs of classes (Hand and Till, 2001)) that still provides sufficient evidence to support the claims of this paper.
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Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD Detailed
Measure Sets standard WRAcc (γ = 0.5) (γ = 0.9) (add.) Results

Coverage (COV) 23 0.131± 0.14 0.311± 0.17 0.403± 0.23 0.450± 0.260.486± 0.30 Table 14
• significance –p value 0.000 0.000 0.000 0.000
• win/loss/draw 22/1/0 22/1/0 23/0/0 22/1/0
• sig.win/sig.loss 21/1 22/0 22/0 21/1
Support (SUP) 23 0.84± 0.03 0.85± 0.03 0.90± 0.06 0.92± 0.06 0.91± 0.06 Table 15
• significance –p value 0.637 0.000 0.000 0.001
• win/loss/draw 13/10/0 18/5/0 20/3/0 16/7/0
• sig.win/sig.loss 5/4 13/1 18/0 13/1
Size (SIZE) 23 18.18± 21.77 6.15± 4.49 6.25± 4.42 6.49± 4.57 6.35± 4.58 Table 16
• significance –p value 0.006 0.007 0.007 0.007
• win/loss/draw 22/1/0 22/1/0 20/3/0 23/0/0
• sig.win/sig.loss 22/0 21/0 19/2 18/0
Significance (SIG) 23 2.11± 0.46 8.97± 4.66 15.57± 6.05 16.92± 8.9018.47± 9.00 Table 17
• significance –p value 0.000 0.000 0.000 0.000
• win/loss/draw 22/1/0 23/0/0 22/1/0 23/0/0
• sig.win/sig.loss 21/0 23/0 21/0 23/0
Unusualness (WRACC) 23 0.017± 0.02 0.056± 0.05 0.079± 0.06 0.088± 0.060.092± 0.07 Table 18
• significance –p value 0.001 0.000 0.000 0.000
• win/loss/draw 20/1/2 22/1/0 22/1/0 22/1/0
• sig.win/sig.loss 19/1 21/1 21/1 21/1

Table 4: Summary of the experimental results on the UCI data sets (descriptive evaluation mea-
sures) for different variants of the unordered algorithm using 10-fold stratified cross-
validation. The best results are shown in boldface.

The analysis shows that if multiplicative weights are used, most results improvewith the in-
creased value of theγ parameter. As in most cases the bestCN2-SDvariants areCN2-SDwith
γ = 0.9 and with additive weights, and as using additive weighs is the simpler method, the additive
weights setting is recommended as default for experimental use.

The summary of results in terms of descriptive measures of interestingness isas follows.

• In terms of the average coverage per ruleCN2-SDproduces rules with significantly higher
coverage (the higher the coverage the better the rule) than bothCN2-WRAccandCN2-standard.
The coverage is increased by increasing theγ parameter and the best results are achieved by
γ = 0.9 and by additive weights.

• CN2-SDinduces rule sets with significantly larger overall support thanCN2-standardmean-
ing that it covers a higher percentage of target examples (positives) thus leaving a smaller
number of examples unclassified.10

• CN2-WRAccandCN2-SDinduce rule sets that are significantly smaller thanCN2-standard
(smaller rule sets are better), while rule sets ofCN2-WRAccandCN2-SDare comparable, de-
spite the fact thatCN2-SDuses weights to ‘recycle’ examples and thus produces overlapping
rules.

10. CN2 handles the unclassified examples by classifying them using the default rule – the rule predicting the majority
class.
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Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD Detailed
Measure Sets standard WRAcc (γ = 0.5) (γ = 0.9) (add.) Results

Accuracy (ACC) 23 81.61± 11.66 78.12± 16.28 80.92± 16.04 81.07± 15.78 79.36± 16.24 Table 19
• significance –p value 0.150 0.771 0.818 0.344
• win/loss/draw 10/12/1 17/6/0 19/4/0 15/8/0
• sig.win/sig.loss 3/5 9/4 10/4 7/4
AUC-Method-2 (AUC) 16 82.16± 16.81 84.37± 9.87 86.75± 8.95 86.39± 10.32 86.33± 8.60 Table 20
• significance –p value 0.563 0.175 0.236 0.236
• win/loss/draw 6/9/1 10/6/0 9/7/0 10/6/0
• sig.win/sig.loss 5/5 6/2 7/4 6/3

Table 5: Summary of the experimental results on the UCI data sets (predictiveevaluation measures)
for different variants of the unordered algorithm using 10-fold stratified cross-validation.
The best results are shown in boldface.

• CN2-SDinduces significantly better rules in terms of rule significance (rules with higher
significance are better) computed by the average likelihood ratio: while the ratios achieved
by CN2-standardare already significant at the 99% level, this is further pushed up byCN2-SD
with maximum values achieved by additive weights. An interesting question, to beverified
in further experiments, is whether the weighted versions of the CN2 algorithmimprove the
significance of the induced subgroups also in the case when CN2 rules are induced without
applying the significance test.

• In terms of rule unusualness which is of ultimate interest to the subgroup discovery task,
CN2-SDproduces rules with significantly higher average weighted relative accuracy than
CN2-standard. Like in the case of average coverage per rule the unusualness is increased
by increasing theγ parameter and the best results are achieved byγ = 0.9 and by additive
weights. Note that the unusualness of a rule, computed by itsWRAcc, is a combination of
rule accuracy, coverage and prior probability of the target class.

In terms of predictive measures of classification performance results canbe summarized as
follows.

• CN2-SD improves the accuracy in comparison withCN2-WRAccand performs compara-
ble to CN2-standard(the difference is insignificant). Notice however that while optimiz-
ing predictive accuracy is the ultimate goal of CN2, forCN2-SDthe goal is to optimize the
coverage/relative-accuracy tradeoff.

• In the computation of area under ROC curve (AUC-Method-2) due to the restriction of this
method to binary class data sets, only 16 binary data sets are used in the comparisons. Notice
that CN2-SDimproves the area under ROC curve compared toCN2-WRAccand compared
to CN2-standard, but the differences are not significant. The area under ROC curve however
seems not to be affected by the parameterγ or by the weighting approach ofCN2-SD.

AUC performance is also illustrated by means of the results on the Australian UCI data set in
Figures 2 and 3 of Section 4.2. The solid lines in these graphs indicate ROC curves obtained by
CN2-standardwhile the dotted lines represent ROC curves forCN2-SDwith additive weights.
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6.2.2 RESULTS OF THEORDEREDCN2-SD

For completeness, the results for different versions of the ordered algorithm are summarized in
Tables 6 and 7, without giving the results for individual data sets in Appendix A. In our view, the
unorderedCN2-SDalgorithm is more appropriate for subgroup discovery than the ordered variant,
as it induces a set of rules for each target class in turn.

Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD
Measure Sets standard WRAcc (γ = 0.5) (γ = 0.9) (add.)

Coverage (COV) 23 0.174± 0.18 0.351± 0.18 0.439± 0.25 0.420± 0.230.527± 0.32
• significance –p value 0.000 0.000 0.000 0.000
• win/loss/draw 21/2/0 23/0/0 23/0/0 22/1/0
• sig.win/sig.loss 20/1 22/0 22/0 22/1
Support (SUP) 23 0.85± 0.03 0.85± 0.03 0.87± 0.05 0.91± 0.05 0.90± 0.06
• significance –p value 0.694 0.026 0.000 0.000
• win/loss/draw 12/11/0 14/9/0 18/5/0 19/4/0
• sig.win/sig.loss 4/4 11/2 16/1 14/0
Size (SIZE) 23 17.87± 28.10 4.13± 2.73 4.30± 2.58 4.61± 2.64 4.27± 2.79
• significance –p value 0.025 0.026 0.030 0.025
• win/loss/draw 21/1/1 21/2/0 20/3/0 21/2/0
• sig.win/sig.loss 21/0 20/1 19/1 20/0
Significance (SIG) 23 1.87± 0.47 8.86± 4.81 12.70± 7.11 14.80± 8.3118.11± 9.84
• significance –p value 0.000 0.000 0.000 0.000
• win/loss/draw 22/1/0 22/1/0 23/0/0 22/1/0
• sig.win/sig.loss 22/0 22/0 22/0 21/0
Unusualness (WRACC) 23 0.024± 0.02 0.060± 0.05 0.080± 0.06 0.082± 0.060.100± 0.07
• significance –p value 0.001 0.000 0.000 0.000
• win/loss/draw 18/5/0 21/2/0 21/2/0 22/1/0
• sig.win/sig.loss 17/2 20/1 20/2 21/1

Table 6: Summary of the experimental results on the UCI data sets (descriptive evaluation mea-
sures) for different variants of the ordered algorithm using 10-fold stratified cross-
validation. The best results are shown in boldface.

6.3 Experiments in Traffic Accident Data Analysis

We have evaluated theCN2-SDalgorithm also on a traffic accident data set. This is a large real-
world database (1.5 GB) containing 21 years of police traffic accident reports (1979–1999). The
analysis of this database is not straightforward because of the volume of the data, the amounts of
noise and missing data, and the fact that there is no clearly defined data miningtarget. As described
below, some preprocessing was needed before running the subgroupdiscovery experiments. Results
of experiments were shown to the domain expert whose comments are included.

6.3.1 THE TRAFFIC ACCIDENT DATA SET

The traffic accident database contains data about traffic accidents andthe vehicles and casualties
involved. The data is organized in three linked tables: the ACCIDENT table, the VEHICLE table
and the CASUALTY table. The ACCIDENT table consists of the records of all accidents that
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Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD
Measure Sets standard WRAcc (γ = 0.5) (γ = 0.9) (add.)

Accuracy (ACC) 23 83.00± 10.30 78.34± 16.52 79.50± 16.68 81.10± 16.53 80.79± 16.61
• significance –p value 0.155 0.286 0.556 0.494
• win/loss/draw 8/15/0 14/9/0 15/8/0 15/8/0
• sig.win/sig.loss 3/6 15/4 8/4 7/3
AUC-Method-2 (AUC) 16 81.89± 10.07 82.28± 10.11 84.37± 9.19 84.70± 8.53 83.79± 9.64
• significance –p value 0.721 0.026 0.005 0.049
• win/loss/draw 9/6/1 10/6/0 12/4/0 10/6/0
• sig.win/sig.loss 6/5 6/3 8/4 6/4

Table 7: Summary of the experimental results on the UCI data sets (predictiveevaluation measures)
for different variants of the ordered algorithm using 10-fold stratified cross-validation. The
best results are shown in boldface.

happened over the given period of time (1979–1999), the VEHICLE tablecontains data about the
vehicles involved in those accidents, and the CASUALTY table contains data about the casualties
involved in the accidents. Consider the following example: “Two vehicles crashed in a traffic
accident and three people were seriously injured in the crash”. In terms of the traffic data set this
is recorded as one record in the ACCIDENT table, two records in the VEHICLE table and three
records in the CASUALTY table. The three tables are described in more detail below.

• The ACCIDENT table contains one record for each accident. The 30 attributes describing an
accident can be divided in three groups: date and time of the accident, description of the road
where the accident has occurred, and conditions under which the accident has occurred (such
as weather conditions, light and junction details). In the ACCIDENT table there are more
than 5 million records.

• The VEHICLE table contains one record for each vehicle involved in an accident from the
ACCIDENT table. There can be one or many vehicles involved in a single accident. The
VEHICLE table attributes describe the type of the vehicle, maneuver and direction of the
vehicle (from and to), vehicle location on the road, junction location at impact,sex and age of
the driver, alcohol test results, damage resulting from the accident, andthe object that vehicle
hit on and off carriageway. There are 24 attributes in the VEHICLE table which contains
almost 9 million records.

• The CASUALTY table contains records about casualties for each of the vehicles in the VEHI-
CLE table. There can be one or more casualties per vehicle. The CASUALTY table contains
16 attributes describing sex and age of casualty, type of casualty (e.g., pedestrian, cyclist, car
occupant etc.), severity of casualty, if casualty type is pedestrian, whatwere his/her charac-
teristics (location, movement, direction). This table contains almost 7 million records.

6.3.2 DATA PREPROCESSING

The large volume of data in the traffic data set makes it practically impossible to run any data
mining algorithm on the whole set. Therefore we have taken samples of the dataset and performed
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Number of Percentage of Class distribution (%)
PFC Examples Sampled Accidents fatal / serious / slight

1 2555 0.3 1.76 / 24.85 / 73.39
2 2523 1.9 2.53 / 30.87 / 66.60
3 2501 4.8 0.56 / 12.35 / 87.09
4 2499 1.9 2.16 / 27.21 / 70.63
5 2522 9.2 1.90 / 23.39 / 74.71
6 2548 2.0 1.41 / 13.69 / 84.90
7 2788 1.4 0.97 / 16.25 / 82.78

Table 8: Properties of the traffic data set.

the experiments on these samples. We focused on the ACCIDENT table and examined only the
accidents that happened in 7 districts (called Police Force Codes, or PFCs) across the UK.11 The
7 PFCs were chosen by the domain expert and represent typical PFCs from clusters of PFCs with
the same accident dynamics, analyzed by Ljubič et al. (2002). In this way we obtained 7 data sets
(one for each PFC) with some hundred thousands of examples each. We further sampled this data
to obtain approximately 2500 examples per data set. The sample percentages are listed in Table 8
together with the other characteristics of these 7 sampled data sets.

Among the 26 attributes describing each of the 7 data sets we chose the attribute‘accident
severity’ to be the class attribute. The task that we have addressed was therefore to find subgroups
of accidents of a certain severity (‘slight’, ‘serious’ or ‘fatal’) and characterize them in terms of
attributes describing the accident, such as: ‘road class’, ‘speed limit’, ‘light condition’, etc.

6.3.3 RESULTS OFEXPERIMENTS

We want to investigate if by runningCN2-SDon the data sets, described in Table 8, we are able to
get some rules that are typical and different for distinct PFCs.

We used the same methodology to perform the experiments as in the case of the UCI data sets of
Section 6.2. The only difference is that here we do not perform the areaunder ROC curve analysis,
because the data sets are not two-class. The results presented in Tables9–13 show the same advan-
tages ofCN2-SDoverCN2-WRAccandCN2-standardas shown by the results of experiments on the
UCI data sets.12 In particular,CN2-SDproduces substantially smaller rule sets, where individual
rules have higher coverage and significance.

It should be noticed that these data sets have a very unbalanced class distribution (most accidents
are ‘slight’ and only few are ‘fatal’, see Table 8). In terms of rule set accuracy, all algorithms
achieved roughly default performance which is obtained by always predicting the majority class.
Since classification was not the main interest of this experiment, we omit the results.

11. For the sake of anonymity, the code numbers 1 through 7 do not correspond to the PFCs 1 through 7 used for Police
Force Codes in the actual traffic accident database.

12. Like in the UCI case, only the results of the unordered versions of thealgorithm are presented here, although the
experiments were done with both unordered and ordered variants of thealgorithms.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

COV± sd COV± sd COV± sd COV± sd COV± sd COV± sd

1 0.056± 0.010.108↑ ± 0.000.111↑ ± 0.030.111↑ ± 0.030.123↑ ± 0.030.110↑ ± 0.03
2 0.050± 0.100.113↑ ± 0.040.127↑ ± 0.050.127↑ ± 0.040.129↑ ± 0.050.151↑ ± 0.04
3 0.140± 0.03 0.118± 0.03 0.126± 0.02 0.119± 0.02 0.118± 0.01 0.154± 0.02
4 0.052± 0.010.105↑ ± 0.030.105↑ ± 0.040.120↑ ± 0.040.122↑ ± 0.040.116↑ ± 0.04
5 0.075± 0.080.108↑ ± 0.040.115↑ ± 0.060.121↑ ± 0.050.110↑ ± 0.050.127↑ ± 0.04
6 0.078± 0.060.118↑ ± 0.030.134↑ ± 0.050.122↑ ± 0.060.124↑ ± 0.060.120↑ ± 0.05
7 0.116± 0.08 0.110± 0.11 0.118± 0.14 0.124± 0.13 0.122± 0.130.143↑ ± 0.12
Average 0.081± 0.03 0.111± 0.01 0.120± 0.01 0.121± 0.00 0.121± 0.01 0.132± 0.02
• significance –p value 0.047 0.021 0.023 0.029 0.003
• win/loss/draw 5/2/0 6/1/0 6/1/0 6/1/0 7/0/0
• sig.win/sig.loss 5/0 5/0 5/0 5/0 6/0

Table 9: Experimental results on the traffic accident data sets. Average coverage per rule with
standard deviation (COV± sd) for different variants of the unordered algorithm.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

SUP± sd SUP± sd SUP± sd SUP± sd SUP± sd SUP± sd

1 0.86± 0.03 0.89± 0.02 0.83± 0.060.93↑ ± 0.040.96↑ ± 0.020.95↑ ± 0.03
2 0.84± 0.02 0.85± 0.09 0.85± 0.020.92↑ ± 0.040.93↑ ± 0.00 0.84± 0.08
3 0.81± 0.06 0.82± 0.040.93↑ ± 0.020.90↑ ± 0.050.97↑ ± 0.01 0.85± 0.06
4 0.80± 0.040.87↑ ± 0.05 0.82± 0.05 0.83± 0.000.91↑ ± 0.03 0.81± 0.10
5 0.87± 0.08 0.85± 0.03 0.80↓ ± 0.03 0.83± 0.060.94↑ ± 0.02 0.83± 0.08
6 0.84± 0.060.88↑ ± 0.07 0.81± 0.090.91↑ ± 0.060.88↑ ± 0.070.98↑ ± 0.01
7 0.81± 0.08 0.83± 0.050.90↑ ± 0.01 0.81± 0.010.95↑ ± 0.020.99↑ ± 0.00
Average 0.83± 0.03 0.85± 0.02 0.85± 0.05 0.88± 0.05 0.93± 0.03 0.89± 0.08
• significance –p value 0.056 0.548 0.053 0.001 0.092
• win/loss/draw 6/1/0 4/3/0 6/1/0 7/0/0 6/1/0
• sig.win/sig.loss 2/0 2/1 4/0 7/0 3/0

Table 10: Experimental results on the traffic accident data sets. Overall support of rule sets with
standard deviation (SUP± sd) for different variants of the unordered algorithm.

6.3.4 EVALUATION BY THE DOMAIN EXPERT

We have further examined the rules induced by theCN2-SDalgorithm (using additive weights). We
focused on rules with high coverage and rules that cover a high percentage of the predicted class as
these are the rules that are likely to reflect some regularity in the data.

One of the most interesting results concerned the following. One might expect that the num-
ber of people injured would increase with the severity of the accident (up tothe total number of
occupants in the vehicles). Furthermore, common sense would dictate that thenumber of vehicles
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

SIZE± sd SIZE± sd SIZE± sd SIZE± sd SIZE± sd SIZE± sd

1 16.7± 0.609.3↑ ± 0.9910.0↑ ± 0.5110.6↑ ± 0.4610.6↑ ± 0.73 9.5↑ ± 0.25
2 18.7± 1.289.2↑ ± 0.3310.0↑ ± 0.2010.3↑ ± 0.2110.3↑ ± 0.5611.1↑ ± 0.23
3 7.0± 0.30 8.6± 0.95 9.2± 0.19 10.2↓ ± 0.14 9.5± 0.35 9.8↓ ± 0.19
4 18.0± 1.399.9↑ ± 0.5910.4↑ ± 0.3111.2↑ ± 0.6411.2↑ ± 0.2410.3↑ ± 0.56
5 12.8± 1.449.6↑ ± 0.1910.1↑ ± 0.51 11.2± 0.84 11.6± 0.96 9.7↑ ± 0.21
6 12.5± 0.318.5↑ ± 0.35 9.3↑ ± 0.51 8.7↑ ± 0.91 9.4↑ ± 0.60 8.5↑ ± 0.39
7 8.6± 1.41 9.3± 0.41 9.9± 0.90 10.8↓ ± 0.73 11.1↓ ± 0.13 10.4± 0.59
Average 13.47± 4.579.20± 0.50 9.84± 0.44 10.42± 0.86 10.53± 0.84 9.90± 0.80
• significance –p value 0.040 0.066 0.123 0.127 0.075
• win/loss/draw 5/2/0 5/2/0 5/2/0 5/2/0 5/2/0
• sig.win/sig.loss 5/0 5/0 4/2 4/1 5/1

Table 11: Experimental results on the traffic accident data sets. Sizes of rule sets with standard
deviation (SIZE± sd) for different variants of the unordered algorithm.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

SIG± sd SIG± sd SIG± sd SIG± sd SIG± sd SIG± sd

1 1.9± 0.827.0↑ ± 0.31 8.7↑ ± 0.41 9.7↑ ± 0.59 9.4↑ ± 0.30 9.6↑ ± 0.45
2 1.9± 0.346.2↑ ± 0.25 9.9↑ ± 0.26 9.8↑ ± 0.20 9.5↑ ± 0.81 9.8↑ ± 0.36
3 1.3± 0.276.6↑ ± 0.61 8.4↑ ± 0.52 9.2↑ ± 0.5411.5↑ ± 0.75 9.3↑ ± 0.17
4 1.6± 0.107.6↑ ± 0.14 8.5↑ ± 0.7911.0↑ ± 0.84 9.4↑ ± 0.8011.1↑ ± 0.24
5 1.6± 0.756.0↑ ± 0.2310.6↑ ± 0.70 9.6↑ ± 0.7612.5↑ ± 0.43 9.1↑ ± 0.74
6 1.5± 0.878.5↑ ± 0.41 8.3↑ ± 0.54 9.8↑ ± 0.24 9.9↑ ± 0.5112.5↑ ± 0.35
7 1.7± 0.496.8↑ ± 0.75 8.7↑ ± 0.20 9.9↑ ± 0.63 9.2↑ ± 0.73 9.7↑ ± 0.40
Average 1.64± 0.20 6.95± 0.86 9.01± 0.89 9.85± 0.5610.20± 1.28 10.16± 1.21
• significance –p value 0.000 0.000 0.000 0.000 0.000
• win/loss/draw 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0
• sig.win/sig.loss 7/0 7/0 7/0 7/0 7/0

Table 12: Experimental results on the traffic accident data sets. Averagesignificance per rule with
standard deviation (SIG± sd) for different variants of the unordered algorithm.

involved would also increase with accident severity. Contrary to these expectations we found rules
of the following two kinds:

• Rules that cover more than the average proportion of ‘fatal’ or ‘serious’ accidents when just
one vehicle is involved in the accident. Examples of such rules are:
IF nv < 1.500 THEN sev = "1" [15 280 1024]13

IF nv < 1.500 THEN sev = "2" [22 252 890]

13. The rules in the example are given in theCN2-SDoutput format wherenv stands for ‘number of vehicles’,nc is the
‘number of casualties’ and"1", "2", and"3" denote the class values ‘fatal’, ‘serious’ and ‘slight’ respectively.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

WRACC± sd WRACC± sd WRACC± sd WRACC± sd WRACC± sd WRACC± sd

1 0.013± 0.020.025↑ ± 0.050.025↑ ± 0.100.026↑ ± 0.020.028↑ ± 0.030.025↑ ± 0.09
2 0.009± 0.070.018↑ ± 0.050.021↑ ± 0.000.021↑ ± 0.040.021↑ ± 0.020.025↑ ± 0.04
3 0.052± 0.01 0.043± 0.00 0.046± 0.07 0.043± 0.03 0.043± 0.05 0.056± 0.02
4 0.010± 0.090.021↑ ± 0.060.021↑ ± 0.050.024↑ ± 0.090.024↑ ± 0.000.023↑ ± 0.07
5 0.019± 0.040.026↑ ± 0.060.027↑ ± 0.070.029↑ ± 0.080.027↑ ± 0.010.030↑ ± 0.07
6 0.027± 0.030.041↑ ± 0.060.047↑ ± 0.050.042↑ ± 0.050.043↑ ± 0.070.042↑ ± 0.07
7 0.038± 0.03 0.035± 0.01 0.038± 0.04 0.040± 0.00 0.039± 0.08 0.046± 0.04
Average 0.024± 0.02 0.030± 0.01 0.032± 0.01 0.032± 0.01 0.032± 0.01 0.035± 0.01
• significance –p value 0.096 0.042 0.041 0.048 0.000
• win/loss/draw 5/2/0 5/2/0 6/1/0 6/1/0 7/0/0
• sig.win/sig.loss 5/0 5/0 5/0 5/0 5/0

Table 13: Experimental results on the traffic accident data sets. Unusualness of rule sets with stan-
dard deviation (WRACC± sd) for different variants of the unordered algorithm.

• Rules that cover more than the average proportion of ‘slight’ accidents when two or more
vehicles are involved and there are few casualties. An example of such a rule is:
IF nv > 1.500 AND nc < 2.500 THEN sev = "3" [8 140 1190]

Having shown the induced results to the domain expert, he pointed out the following aspects of
data collection for the data in the ACCIDENT table.14

• The severity code in the ACCIDENT table relates to the most severe injury among those
reported for that accident. Therefore a multiple vehicle accident with 1 fatal and 20 slight
injuries would be classified as fatal as one fatality occurred, while each individual casualty
injury severity is coded in the CASUALTY table.

• Some (slight) injuries may be unreported at the accident scene: if the policeman compiled/revised
the report after the event, new casualty/injury details can be reported (injuries that came to
light after the event or reported for reasons relating to injury/insuranceclaims). However,
these changes are not reflected in the ACCIDENT table.

The findings revealed by the rules were surprising to the domain expert and need further investi-
gation. The analysis shows that examining the ACCIDENT table is not sufficient and that further
examination of the VEHICLE and CASUALTY tables is needed in further work.

7. Related Work

Other systems have addressed the task of subgroup discovery, the best known being EXPLORA
(Kl ösgen, 1996) and MIDOS (Wrobel, 1997, 2001). EXPLORA treats the learning task as a sin-
gle relation problem, i.e., all the data are assumed to be available in one table (relation), whereas

14. We have also shown theCN2-standardandCN2-WRAccresults to the expert but he did not consider any of the rules
to be interesting.
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MIDOS extends this task to multi-relational databases. Other approaches deal with multi-relational
databases using propositionalisation and aggregate functions can be found in the work of Knobbe
et al. (2001, 2002).

Another approach to finding symbolic descriptions of groups of instancesis symbolic cluster-
ing, which has been popular for many years (Michalski, 1980, Gowda and Diday, 1992). Moreover,
learning of concept hierarchies also aims at discovering groups of instances, which can be induced
in a supervised or unsupervised manner: decision tree induction algorithmsperform supervised
symbolic learning of concept hierarchies (Langley, 1996, Raedt and Blockeel, 1997), whereas hi-
erarchical clustering algorithms (Sokal and Sneath, 1963, Gordon, 1982) are unsupervised and do
not result in symbolic descriptions. Note that in decision tree learning, the rules which can be
formed from paths leading from the root node to class labels in the leaves representdiscriminant
descriptions, formed from properties that best discriminate between the classes. As rules formed
from decision tree paths form discriminant descriptions, they are inappropriate for solving subgroup
discovery tasks which aim at describing subgroups by their characteristic properties.

Instance weights play an important role in boosting (Freund and Shapire, 1996) and alternating
decision trees (Schapire and Singer, 1998). Instance weights have been used also in variants of
the covering algorithm implemented in rule learning approaches such as SLIPPER (Cohen and
Singer, 1999), RL (Lee et al., 1998) and DAIRY (Hsu et al., 1998). A variant of the weighted
covering algorithm has been used in the subgroup discovery algorithm SDfor rule subset selection
(Gamberger and Lavrač, 2002).

A variety of rule evaluation measures and heuristics have been studied forsubgroup discovery
(Kl ösgen, 1996, Wrobel, 1997, 2001), aimed at balancing the size of a group (referred to as fac-
tor g) with its distributional unusualness (referred to as factorp). The properties of functions that
combine these two factors have been extensively studied (the so-called ‘p-g-space’ Kl̈osgen, 1996).
An alternative measureq = TP

FP+par was proposed in the SD algorithm for expert-guided subgroup
discovery (Gamberger and Lavrač, 2002), aimed at minimizing the number of false positivesFP,
and maximizing true positivesTP, balanced by generalization parameterpar. Besides such ‘ob-
jective’ measures of interestingness, some ‘subjective’ measure of interestingness of a discovered
pattern can be taken into account, such as actionability (‘a pattern is interesting if the user can do
something with it to his or her advantage’) and unexpectedness (‘a patternis interesting to the user
if it is surprising to the user’) (Silberschatz and Tuzhilin, 1995).

Note that some approaches to association rule induction can also be used for subgroup discovery.
For instance, the APRIORI-C algorithm (Jovanoski and Lavrač, 2001), which applies association
rule induction to classification rule induction, outputs classification rules with guaranteed support
and confidence with respect to a target class. If a rule satisfies also a user-defined significance
threshold, an induced APRIORI-C rule can be viewed as an independent ‘chunk’ of knowledge
about the target class (selected property of interest for subgroup discovery), which can be viewed as
a subgroup description with guaranteed significance, support and confidence. This observation led
to the development of a novel subgroup discovery algorithm APRIORI-SD (Kavšek et al., 2003).

It should be noticed that in the terminology ‘patient vs. greedy’ of Friedmanand Fisher (1999),
WRAccis a ‘patient’ rule quality measure, favoring more general subgroups thanthose found by
using ‘greedy’ quality measures. As shown by our experiments in Todorovski et al. (2000),WRAcc
heuristic improves rule coverage compared to the standard CN2 heuristic. This observation is con-
firmed also in the experimental evaluation in Section 6 of this paper. Further evidence confirming
this claim is provided by Kav̌sek et al. (2003), providing experimental comparison of results ofCN2-
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SDand our novel subgroup discovery algorithm APRIORI-SD with rule learners CN2, RIPPER and
APRIORI-C.

8. Conclusions and Further Work

We have presented a novel approach to adapting standard classificationrule learning to subgroup
discovery. To this end we have appropriately adapted the covering algorithm, the search heuristic,
the probabilistic classification and the area under the ROC curve (AUC) performance measure.
We have also proposed a set of metrics appropriate for evaluating the quality of induced subgroup
descriptions.

The experimental results on 23 UCI data sets demonstrate thatCN2-SDproduces substantially
smaller rule sets, where individual rules have higher coverage and significance. These three factors
are important for subgroup discovery: smaller size enables better understanding, higher coverage
means larger support, and higher significance means that rules describediscovered subgroups that
are significantly different from the entire population. We have evaluated the results ofCN2-SDalso
in terms of AUC and shown a small (insignificant) increase in terms of the area under ROC curve.

We have appliedCN2-SDalso to a real-life problem of traffic accident analysis. The exper-
imental results confirm the findings in the UCI data sets. The most interesting findings are due
to interpretation by the domain expert. What was confirmed in this case study was that the result
of a data mining process depends not only on the appropriateness of the selected method and the
data that is at hand but also on how the data has been collected. In the traffic accident experiments
examining the ACCIDENT table was not sufficient, and further examination ofthe VEHICLE and
CASUALTY tables is needed. This will be performed using the RSD relationalsubgroup discovery
algorithm (Lavrǎc et al., 2003), a recent upgrade of theCN2-SDalgorithm which enables relational
subgroup discovery.

In further work we plan to compare the results with the MIDOS subgroup discovery algorithm.
We plan to investigate the behavior ofCN2-SDin terms of AUC in multi-class problems (Hand and
Till, 2001). An interesting question, to be verified in further experiments, is whether the weighted
versions of the CN2 algorithm improve the significance of the induced subgroups also in the case
when CN2 rules are induced without applying the significance test.

An important aspect of subgroup discovery performance, which is neglected in our study, is the
degree of overlap of the induced subgroups. The challenge of our further research is to propose
extensions of the weighted relative accuracy heuristic and ROC space evaluation metrics that will
take into account the overlap of subgroups.

We are now moving the focus of our research in subgroup discovery from heuristic search
toward exhaustive search of the space of patterns. An attempt of this kindis described by Kav̌sek
et al. (2003) where the well known APRIORI association rule learner was adapted to the task of
subgroup discovery.
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Appendix A. Tables with Detailed Results for Different Variants of the Unordered
Algorithm in UCI Data Sets

The tables in this appendix show detailed results of the performance of different variants of the
unordered algorithm. The comparisons are made on 23 UCI data sets listed in Table 3. The results
shown in Tables 14–18 of Appendix A are summarized in the paper in Table 4,and the results of
Tables 19–20 in Table 5.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

COV± sd COV± sd COV± sd COV± sd COV± sd COV± sd

1 0.071± 0.010.416↑ ± 0.000.473↑ ± 0.030.492↑ ± 0.030.480↑ ± 0.030.424↑ ± 0.03
2 0.079± 0.100.150↑ ± 0.040.208↑ ± 0.050.174↑ ± 0.040.218↑ ± 0.050.260↑ ± 0.04
3 0.625± 0.03 0.322↓ ± 0.03 0.612± 0.02 0.617± 0.02 0.721± 0.01 0.330↓ ± 0.02
4 0.048± 0.010.496↑ ± 0.030.504↑ ± 0.040.513↑ ± 0.040.504↑ ± 0.040.507↑ ± 0.04
5 0.057± 0.080.275↑ ± 0.040.296↑ ± 0.060.344↑ ± 0.050.299↑ ± 0.050.381↑ ± 0.04
6 0.312± 0.060.576↑ ± 0.030.936↑ ± 0.051.039↑ ± 0.061.006↑ ± 0.061.295↑ ± 0.05
7 0.053± 0.080.092↑ ± 0.110.141↑ ± 0.140.153↑ ± 0.130.138↑ ± 0.130.151↑ ± 0.12
8 0.107± 0.090.240↑ ± 0.070.419↑ ± 0.090.376↑ ± 0.120.366↑ ± 0.110.435↑ ± 0.09
9 0.207± 0.040.430↑ ± 0.060.637↑ ± 0.040.829↑ ± 0.040.826↑ ± 0.040.686↑ ± 0.03
10 0.093± 0.000.495↑ ± 0.000.509↑ ± 0.000.509↑ ± 0.000.516↑ ± 0.000.513↑ ± 0.00
11 0.099± 0.050.168↑ ± 0.080.229↑ ± 0.050.234↑ ± 0.040.246↑ ± 0.040.354↑ ± 0.06
12 0.378± 0.01 0.386± 0.010.619↑ ± 0.00 0.444± 0.000.768↑ ± 0.000.668↑ ± 0.01
13 0.160± 0.110.408↑ ± 0.090.639↑ ± 0.150.467↑ ± 0.160.424↑ ± 0.180.621↑ ± 0.17
14 0.142± 0.010.356↑ ± 0.070.461↑ ± 0.020.668↑ ± 0.030.569↑ ± 0.030.720↑ ± 0.03
15 0.030± 0.010.113↑ ± 0.070.129↑ ± 0.020.146↑ ± 0.030.182↑ ± 0.030.117↑ ± 0.03
16 0.129± 0.010.650↑ ± 0.070.703↑ ± 0.020.711↑ ± 0.030.674↑ ± 0.030.831↑ ± 0.03
17 0.021± 0.000.216↑ ± 0.000.225↑ ± 0.000.270↑ ± 0.000.307↑ ± 0.000.324↑ ± 0.00
18 0.022± 0.050.146↑ ± 0.080.155↑ ± 0.050.157↑ ± 0.040.166↑ ± 0.040.200↑ ± 0.06
19 0.066± 0.010.331↑ ± 0.010.357↑ ± 0.000.628↑ ± 0.000.616↑ ± 0.000.759↑ ± 0.01
20 0.039± 0.110.139↑ ± 0.090.151↑ ± 0.150.159↑ ± 0.160.149↑ ± 0.180.169↑ ± 0.17
21 0.040± 0.010.076↑ ± 0.070.115↑ ± 0.020.177↑ ± 0.030.172↑ ± 0.030.216↑ ± 0.03
22 0.004± 0.010.185↑ ± 0.070.194↑ ± 0.020.185↑ ± 0.030.188↑ ± 0.030.191↑ ± 0.03
23 0.231± 0.010.477↑ ± 0.070.552↑ ± 0.020.715↑ ± 0.030.818↑ ± 0.031.022↑ ± 0.03
Average 0.131± 0.14 0.311± 0.17 0.403± 0.23 0.435± 0.25 0.450± 0.26 0.486± 0.30
• significance –p value 0.000 0.000 0.000 0.000 0.000
• win/loss/draw 22/1/0 22/1/0 22/1/0 23/0/0 22/1/0
• sig.win/sig.loss 21/1 22/0 21/0 22/0 22/1

Table 14: Relative average coverage per rule with standard deviation (COV± sd) for different vari-
ants of the unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

SUP± sd SUP± sd SUP± sd SUP± sd SUP± sd SUP± sd

1 0.81± 0.090.89↑ ± 0.020.87↑ ± 0.000.97↑ ± 0.010.84↑ ± 0.000.89↑ ± 0.04
2 0.88± 0.01 0.90± 0.02 0.89± 0.09 0.84± 0.040.93↑ ± 0.02 0.86± 0.05
3 0.87± 0.05 0.87± 0.09 0.84± 0.050.93↑ ± 0.02 0.84± 0.070.95↑ ± 0.01
4 0.87± 0.06 0.81↓ ± 0.09 0.90± 0.02 0.81↓ ± 0.040.97↑ ± 0.000.93↑ ± 0.02
5 0.80± 0.01 0.82± 0.030.92↑ ± 0.06 0.85± 0.010.95↑ ± 0.010.87↑ ± 0.05
6 0.90± 0.03 0.81↓ ± 0.010.95↑ ± 0.01 0.85± 0.030.98↑ ± 0.00 0.82↓ ± 0.02
7 0.89± 0.03 0.88± 0.03 0.90± 0.02 0.81↓ ± 0.070.97↑ ± 0.010.96↑ ± 0.01
8 0.84± 0.03 0.87± 0.040.94↑ ± 0.01 0.83± 0.03 0.89± 0.090.98↑ ± 0.00
9 0.87± 0.10 0.81↓ ± 0.02 0.85± 0.100.94↑ ± 0.00 0.90± 0.020.99↑ ± 0.00
10 0.84± 0.01 0.83± 0.08 0.82± 0.071.00↑ ± 0.000.90↑ ± 0.020.95↑ ± 0.02
11 0.83± 0.03 0.85± 0.070.96↑ ± 0.010.95↑ ± 0.010.89↑ ± 0.090.98↑ ± 0.01
12 0.82± 0.040.89↑ ± 0.00 0.83± 0.100.91↑ ± 0.010.88↑ ± 0.030.95↑ ± 0.01
13 0.87± 0.10 0.90± 0.06 0.81↓ ± 0.02 0.80↓ ± 0.09 0.85± 0.04 0.85± 0.03
14 0.84± 0.05 0.85± 0.07 0.83± 0.060.89↑ ± 0.060.93↑ ± 0.02 0.86± 0.05
15 0.83± 0.04 0.80± 0.070.96↑ ± 0.01 0.86± 0.09 0.80± 0.08 0.81± 0.00
16 0.85± 0.07 0.82± 0.021.00↑ ± 0.00 0.84± 0.060.96↑ ± 0.01 0.85± 0.10
17 0.86± 0.080.90↑ ± 0.03 0.86± 0.07 0.82± 0.061.00↑ ± 0.00 0.85± 0.06
18 0.81± 0.060.85↑ ± 0.070.96↑ ± 0.010.89↑ ± 0.050.95↑ ± 0.010.97↑ ± 0.00
19 0.83± 0.01 0.85± 0.050.92↑ ± 0.040.95↑ ± 0.010.90↑ ± 0.02 0.84± 0.05
20 0.90± 0.06 0.82↓ ± 0.070.99↑ ± 0.00 0.90± 0.030.99↑ ± 0.00 0.90± 0.04
21 0.81± 0.05 0.80± 0.040.87↑ ± 0.080.90↑ ± 0.040.93↑ ± 0.02 0.82± 0.06
22 0.81± 0.020.89↑ ± 0.060.94↑ ± 0.020.96↑ ± 0.011.00↑ ± 0.000.96↑ ± 0.01
23 0.82± 0.05 0.82± 0.040.94↑ ± 0.030.87↑ ± 0.070.99↑ ± 0.000.99↑ ± 0.00
Average 0.84± 0.03 0.85± 0.03 0.90± 0.06 0.89± 0.06 0.92± 0.06 0.91± 0.06
• significance –p value 0.637 0.000 0.017 0.000 0.001
• win/loss/draw 13/10/0 18/5/0 14/9/0 20/3/0 16/7/0
• sig.win/sig.loss 5/4 13/1 11/3 18/0 13/1

Table 15: Overall rule set support with standard deviation (SUP± sd) for different variants of the
unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

SIZE± sd SIZE± sd SIZE± sd SIZE± sd SIZE± sd SIZE± sd

1 12.4± 1.95 2.0↑ ± 0.75 2.7↑ ± 0.02 2.6↑ ± 0.87 2.2↑ ± 0.85 3.5↑ ± 0.79
2 12.6± 1.04 8.8↑ ± 0.95 7.9↑ ± 0.50 8.5↑ ± 1.75 9.0↑ ± 0.24 9.2↑ ± 1.24
3 1.8± 0.10 2.0± 0.41 2.0± 0.70 2.7↓ ± 0.44 1.9± 0.27 1.8± 0.29
4 14.6± 1.81 7.9↑ ± 1.78 8.1↑ ± 1.02 7.9↑ ± 0.97 8.5↑ ± 0.47 8.5↑ ± 0.41
5 12.8± 1.56 5.2↑ ± 0.79 6.0↑ ± 0.68 5.6↑ ± 1.35 5.4↑ ± 0.30 4.6↑ ± 0.86
6 3.7± 1.37 2.5↑ ± 0.79 3.1± 0.72 3.8± 1.61 4.7↓ ± 1.22 3.4± 0.02
7 15.1± 1.89 7.8↑ ± 1.49 8.4↑ ± 1.32 8.7↑ ± 0.46 9.1↑ ± 1.26 8.8↑ ± 1.13
8 6.4± 1.53 3.0↑ ± 1.20 2.9↑ ± 0.98 2.7↑ ± 0.67 2.7↑ ± 0.90 1.8↑ ± 0.38
9 3.0± 0.29 2.1↑ ± 0.50 1.7↑ ± 0.93 2.7± 0.53 3.6↓ ± 1.83 2.7± 0.00
10 10.1± 1.02 3.9↑ ± 0.31 3.9↑ ± 0.85 3.4↑ ± 1.10 3.3↑ ± 1.90 2.5↑ ± 0.54
11 7.6± 1.01 3.0↑ ± 1.78 3.9↑ ± 1.84 4.0↑ ± 0.18 3.6↑ ± 0.87 4.2↑ ± 0.41
12 3.8± 1.24 3.0↑ ± 1.24 3.2↑ ± 0.42 3.4↑ ± 0.39 2.9↑ ± 0.05 3.6± 0.69
13 4.7± 1.30 3.1↑ ± 1.15 3.4↑ ± 0.54 3.9↑ ± 0.98 4.6± 1.19 4.5± 0.71
14 5.2± 0.90 2.7↑ ± 0.91 2.1↑ ± 0.95 1.9↑ ± 0.10 1.7↑ ± 1.73 2.1↑ ± 0.78
15 21.2± 3.4810.5↑ ± 1.8511.2↑ ± 1.1210.3↑ ± 1.99 9.6↑ ± 1.3210.2↑ ± 1.30
16 7.1± 1.59 2.0↑ ± 0.81 2.4↑ ± 0.56 2.4↑ ± 0.75 2.9↑ ± 0.56 1.8↑ ± 0.45
17 28.7± 3.89 9.9↑ ± 1.22 9.4↑ ± 1.61 8.9↑ ± 1.80 9.5↑ ± 1.03 8.3↑ ± 1.17
18 83.8± 5.3710.9↑ ± 2.3711.3↑ ± 2.7811.8↑ ± 1.4511.7↑ ± 1.6712.8↑ ± 1.74
19 12.9± 1.68 7.7↑ ± 1.00 8.6↑ ± 1.21 9.1↑ ± 1.85 8.4↑ ± 1.0910.1↑ ± 1.83
20 32.8± 2.64 8.7↑ ± 1.82 8.9↑ ± 1.48 9.8↑ ± 1.0110.5↑ ± 1.37 9.2↑ ± 1.49
21 35.1± 3.5419.6↑ ± 1.8019.3↑ ± 2.9119.7↑ ± 2.9919.8↑ ± 2.5819.2↑ ± 2.90
22 77.3± 4.0712.2↑ ± 1.7911.4↑ ± 2.8712.4↑ ± 2.2912.4↑ ± 2.0911.7↑ ± 2.81
23 5.5± 1.26 3.0↑ ± 0.36 2.1↑ ± 0.70 2.1↑ ± 0.57 1.2↑ ± 0.73 1.4↑ ± 0.90
Average 18.18± 21.77 6.15± 4.49 6.25± 4.42 6.45± 4.48 6.49± 4.57 6.35± 4.58
• significance –p value 0.006 0.007 0.007 0.007 0.007
• win/loss/draw 22/1/0 22/1/0 21/2/0 20/3/0 23/0/0
• sig.win/sig.loss 22/0 21/0 20/1 19/2 18/0

Table 16: Average rule set sizes with standard deviation (SIZE± sd) for different variants of the
unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

SIG± sd SIG± sd SIG± sd SIG± sd SIG± sd SIG± sd

1 2.0± 0.05 7.8↑ ± 1.4914.6↑ ± 1.0524.0↑ ± 1.0115.6↑ ± 1.54 4.6↑ ± 0.52
2 2.7± 0.1013.3↑ ± 1.6927.1↑ ± 3.37 2.1± 0.0220.5↑ ± 2.4526.6↑ ± 3.43
3 2.1± 0.01 7.8↑ ± 0.6413.3↑ ± 1.39 2.5± 0.0121.2↑ ± 2.5522.9↑ ± 2.43
4 2.4± 0.06 9.1↑ ± 0.5814.1↑ ± 1.7216.9↑ ± 1.2822.5↑ ± 2.4930.2↑ ± 3.98
5 2.0± 0.0115.8↑ ± 1.0714.9↑ ± 1.9511.0↑ ± 1.4315.2↑ ± 1.85 2.1± 0.01
6 1.9± 0.0310.0↑ ± 1.6311.0↑ ± 1.1230.5↑ ± 2.1230.1↑ ± 2.2723.1↑ ± 2.97
7 2.0± 0.02 2.7± 0.8319.8↑ ± 1.2117.7↑ ± 1.6311.1↑ ± 1.0316.3↑ ± 1.49
8 1.9± 0.09 4.6↑ ± 0.5923.2↑ ± 1.82 5.3↑ ± 0.36 4.0↑ ± 0.0330.6↑ ± 2.96
9 2.7± 0.03 9.7↑ ± 0.8612.3↑ ± 1.00 9.3↑ ± 0.65 8.5↑ ± 0.8925.0↑ ± 2.60
10 1.4± 0.04 3.6↑ ± 0.74 5.8↑ ± 0.4828.3↑ ± 2.2724.9↑ ± 2.2713.5↑ ± 1.84
11 2.0± 0.04 1.8± 0.0716.7↑ ± 1.4223.9↑ ± 2.4130.9↑ ± 2.1814.9↑ ± 1.52
12 1.9± 0.03 7.1↑ ± 0.0717.0↑ ± 1.61 1.3± 0.0917.6↑ ± 1.45 4.0↑ ± 0.00
13 2.1± 0.0015.1↑ ± 1.8019.4↑ ± 1.7721.9↑ ± 2.3821.4↑ ± 2.39 9.7↑ ± 0.61
14 2.5± 0.0814.9↑ ± 1.9318.0↑ ± 1.5713.9↑ ± 1.28 3.0± 0.0918.1↑ ± 1.73
15 2.5± 0.05 4.2↑ ± 0.4217.5↑ ± 1.79 5.7↑ ± 0.4621.9↑ ± 2.8326.5↑ ± 2.22
16 2.6± 0.0411.7↑ ± 1.90 9.6↑ ± 0.5622.7↑ ± 2.59 2.3± 0.08 6.0↑ ± 0.00
17 2.7± 0.03 4.8↑ ± 0.5311.7↑ ± 1.6721.8↑ ± 2.5515.0↑ ± 1.8224.3↑ ± 2.26
18 1.5± 0.0014.1↑ ± 1.11 6.0↑ ± 0.9326.8↑ ± 2.5312.6↑ ± 1.3519.3↑ ± 1.09
19 1.0± 0.07 2.4↑ ± 0.0122.0↑ ± 1.2017.0↑ ± 1.7816.4↑ ± 1.74 9.1↑ ± 0.02
20 1.5± 0.0016.0↑ ± 2.5224.3↑ ± 1.5211.4↑ ± 1.2529.9↑ ± 3.2521.7↑ ± 2.88
21 2.4± 0.02 6.8↑ ± 0.8815.6↑ ± 1.9812.9↑ ± 1.47 8.2↑ ± 0.0630.6↑ ± 2.39
22 2.6± 0.04 9.7↑ ± 1.56 3.4↑ ± 0.0914.2↑ ± 1.20 7.1↑ ± 0.4720.2↑ ± 2.71
23 2.0± 0.0713.5↑ ± 1.5720.7↑ ± 1.93 2.7↑ ± 0.0229.4↑ ± 3.5125.7↑ ± 2.48
Average 2.11± 0.46 8.97± 4.66 15.57± 6.05 14.95± 9.02 16.92± 8.9018.47± 9.00
• significance –p value 0.000 0.000 0.000 0.000 0.000
• win/loss/draw 22/1/0 23/0/0 21/2/0 22/1/0 23/0/0
• sig.win/sig.loss 21/0 23/0 20/0 21/0 22/0

Table 17: Average rule significance with standard deviation (SIG± sd) for different variants of the
unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

WRACC± sd WRACC± sd WRACC± sd WRACC± sd WRACC± sd WRACC± sd

1 0.022± 0.09 0.148↑ ± 0.03 0.186↑ ± 0.09 0.185↑ ± 0.04 0.181↑ ± 0.07 0.162↑ ± 0.01
2 0.034± 0.04 0.063↑ ± 0.04 0.095↑ ± 0.02 0.079↑ ± 0.01 0.093↑ ± 0.07 0.111↑ ± 0.04
3 -0.016± 0.08 -0.012± 0.01 -0.005± 0.03 -0.006± 0.09 -0.001± 0.02 -0.012± 0.01
4 0.020± 0.04 0.210↑ ± 0.02 0.228↑ ± 0.02 0.233↑ ± 0.04 0.224↑ ± 0.03 0.224↑ ± 0.10
5 0.013± 0.06 0.065↑ ± 0.06 0.085↑ ± 0.07 0.099↑ ± 0.04 0.086↑ ± 0.07 0.092↑ ± 0.03
6 0.058± 0.07 0.099↑ ± 0.10 0.174↑ ± 0.05 0.208↑ ± 0.00 0.213↑ ± 0.01 0.243↑ ± 0.10
7 0.012± 0.02 0.020↑ ± 0.01 0.034↑ ± 0.00 0.040↑ ± 0.05 0.034↑ ± 0.08 0.034↑ ± 0.08
8 0.026± 0.04 0.065↑ ± 0.04 0.124↑ ± 0.02 0.104↑ ± 0.06 0.104↑ ± 0.09 0.122↑ ± 0.03
9 0.004± 0.07 0.018↑ ± 0.04 0.057↑ ± 0.10 0.073↑ ± 0.09 0.066↑ ± 0.04 0.049↑ ± 0.02
10 0.013± 0.04 0.067↑ ± 0.02 0.076↑ ± 0.01 0.073↑ ± 0.09 0.076↑ ± 0.04 0.072↑ ± 0.07
11 0.041± 0.02 0.065↑ ± 0.03 0.099↑ ± 0.04 0.095↑ ± 0.05 0.104↑ ± 0.10 0.145↑ ± 0.00
12 0.024± 0.04 0.024± 0.05 0.062↑ ± 0.02 0.042↑ ± 0.02 0.052↑ ± 0.03 0.045↑ ± 0.06
13 0.024± 0.03 0.056↑ ± 0.03 0.114↑ ± 0.10 0.085↑ ± 0.04 0.065↑ ± 0.07 0.092↑ ± 0.03
14 0.009± 0.10 0.038↑ ± 0.10 0.053↑ ± 0.03 0.082↑ ± 0.10 0.082↑ ± 0.02 0.085↑ ± 0.08
15 0.015± 0.07 0.030↑ ± 0.07 0.036↑ ± 0.09 0.041↑ ± 0.03 0.055↑ ± 0.08 0.032↑ ± 0.06
16 0.017± 0.00 0.095↑ ± 0.10 0.117↑ ± 0.04 0.129↑ ± 0.04 0.127↑ ± 0.06 0.138↑ ± 0.02
17 0.005± 0.03 0.048↑ ± 0.07 0.051↑ ± 0.02 0.073↑ ± 0.08 0.083↑ ± 0.02 0.073↑ ± 0.09
18 0.009± 0.06 0.030↑ ± 0.00 0.037↑ ± 0.01 0.032↑ ± 0.00 0.034↑ ± 0.07 0.045↑ ± 0.03
19 0.007± 0.07 0.060↑ ± 0.00 0.081↑ ± 0.08 0.133↑ ± 0.05 0.132↑ ± 0.03 0.147↑ ± 0.04
20 0.004± 0.01 -0.045↓ ± 0.10 -0.042↓ ± 0.04 -0.048↓ ± 0.02 -0.042↓ ± 0.03 -0.051↓ ± 0.06
21 0.015± 0.08 0.015± 0.03 0.024↑ ± 0.04 0.039↑ ± 0.08 0.042↑ ± 0.06 0.045↑ ± 0.05
22 0.001± 0.03 0.045↑ ± 0.06 0.054↑ ± 0.05 0.054↑ ± 0.09 0.054↑ ± 0.05 0.049↑ ± 0.05
23 0.033± 0.01 0.076↑ ± 0.05 0.089↑ ± 0.03 0.144↑ ± 0.05 0.149↑ ± 0.06 0.167↑ ± 0.01
Average 0.017± 0.02 0.056± 0.05 0.079± 0.06 0.086± 0.07 0.088± 0.06 0.092± 0.07
• significance –p value 0.001 0.000 0.000 0.000 0.000
• win/loss/draw 20/1/2 22/1/0 22/1/0 22/1/0 22/1/0
• sig.win/sig.loss 19/1 21/1 21/1 21/1 21/1

Table 18: Average rule unusualness with standard deviation (WRACC± sd) for different variants
of the unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

ACC± sd ACC± sd ACC± sd ACC± sd ACC± sd ACC± sd

1 81.62± 3.5585.53↑ ± 0.1489.27↑ ± 8.0487.61↑ ± 8.7187.81↑ ± 6.5488.35↑ ± 8.60
2 92.28± 1.07 92.13± 5.95 95.80± 1.21 95.56± 3.15 92.53± 1.52 92.60± 2.28
3 82.45± 3.89 81.36± 1.30 84.13± 8.88 84.07± 6.11 84.81± 1.06 81.46± 2.24
4 94.18± 3.71 94.34± 2.25 97.19± 0.35 97.37± 0.42 96.54± 1.77 96.08± 1.22
5 72.77± 9.33 73.81± 0.9178.66↑ ± 8.6578.80↑ ± 0.0478.81↑ ± 5.55 74.12± 9.97
6 68.71± 1.79 67.12± 6.55 68.62± 0.96 70.08± 6.2871.20↑ ± 9.94 68.75± 5.32
7 72.40± 7.60 71.40± 7.57 73.73± 0.7275.82↑ ± 8.07 74.67± 5.85 72.40± 7.36
8 74.10± 4.15 77.06± 7.0679.64↑ ± 6.98 77.53± 4.7778.48↑ ± 3.1678.03↑ ± 2.70
9 80.74± 7.59 83.26± 0.8387.87↑ ± 2.2987.75↑ ± 0.3686.97↑ ± 6.8886.14↑ ± 1.99
10 98.58± 0.60 98.54± 0.11 99.86± 0.03 99.37± 0.06 99.77± 0.02 99.10± 0.40
11 91.44± 6.62 88.87↓ ± 7.26 93.25± 2.89 90.53± 1.44 92.41± 4.96 91.10± 3.76
12 91.33± 2.04 91.33± 7.0295.08↑ ± 2.08 94.40± 0.94 91.77± 6.33 91.75± 2.28
13 80.87± 1.32 79.74± 1.74 83.81± 6.5984.23↑ ± 7.59 81.41± 0.76 80.86± 7.26
14 72.28± 2.81 76.60± 3.1077.59↑ ± 2.8478.35↑ ± 5.1180.40↑ ± 3.3177.74↑ ± 1.69
15 98.01± 0.60 76.40↓ ± 3.75 77.59↓ ± 1.81 77.94↓ ± 0.63 80.26↓ ± 7.99 77.38↓ ± 4.97
16 94.24± 0.39 95.63± 1.8397.67↑ ± 1.6299.09↑ ± 0.1499.85↑ ± 0.0497.62↑ ± 1.05
17 74.71± 8.62 72.49± 0.48 72.55± 9.8577.08↑ ± 8.89 76.90± 0.86 72.51± 5.30
18 89.82± 5.33 70.33↓ ± 7.94 74.21↓ ± 5.66 70.37↓ ± 7.81 70.56↓ ± 7.49 72.48↓ ± 1.62
19 60.60± 1.8368.13↑ ± 3.7672.70↑ ± 8.0571.12↑ ± 5.4071.46↑ ± 7.6269.32↑ ± 0.08
20 58.88± 5.70 17.84↓ ± 2.33 22.47↓ ± 1.06 19.84↓ ± 1.48 21.98↓ ± 1.86 19.49↓ ± 1.18
21 88.73± 3.01 69.68↓ ± 4.14 70.71↓ ± 9.94 72.29↓ ± 8.70 74.23↓ ± 1.22 71.04↓ ± 7.45
22 69.18± 8.9274.26↑ ± 1.3277.71↑ ± 9.3179.11↑ ± 1.2678.56↑ ± 9.6075.70↑ ± 7.67
23 89.16± 1.33 90.90± 1.18 91.08± 5.2395.12↑ ± 1.0193.26↑ ± 0.67 91.32± 2.97
Average 81.61± 11.66 78.12± 16.28 80.92± 16.04 81.02± 16.44 81.07± 15.78 79.36± 16.24
• significance –p value 0.150 0.771 0.812 0.818 0.344
• win/loss/draw 10/12/1 17/6/0 18/5/0 19/4/0 15/8/0
• sig.win/sig.loss 3/5 9/4 11/4 10/4 7/4

Table 19: Average rule set accuracy with standard deviation (ACC± sd) for different variants of
the unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (γ = 0.5) (γ = 0.7) (γ = 0.9) (add.)

AUC± sd AUC± sd AUC± sd AUC± sd AUC± sd AUC± sd

1 33.39± 5.6186.12↑ ± 0.0583.31↑ ± 2.0184.27↑ ± 9.4484.47↑ ± 6.0585.12↑ ± 5.16
2 90.74± 3.57 89.52± 7.2694.37↑ ± 2.2996.28↑ ± 1.4797.33↑ ± 0.9894.52↑ ± 1.67
3 84.51± 0.15 80.11↓ ± 9.84 82.58± 5.60 80.98↓ ± 8.12 78.38↓ ± 7.44 83.03± 1.88
4 96.22± 2.55 93.59± 2.26 97.19± 0.76 92.37↓ ± 2.33 96.54± 1.90 92.87↓ ± 2.66
5 71.33± 7.8680.75↑ ± 0.5180.52↑ ± 1.8280.56↑ ± 8.1780.76↑ ± 5.0280.06↑ ± 3.49
6 70.53± 5.99 64.42↓ ± 3.29 68.09± 7.34 68.63± 2.44 64.02↓ ± 8.71 70.61± 2.46
7 71.99± 5.76 74.00± 7.19 73.99± 7.63 73.92± 6.0175.29↑ ± 7.70 72.73± 3.84
8 74.17± 5.35 73.98± 0.9083.82↑ ± 9.7684.69↑ ± 0.6387.02↑ ± 9.8085.62↑ ± 1.84
9 78.81± 4.6485.65↑ ± 0.3384.82↑ ± 2.7882.80↑ ± 5.19 78.66± 6.1281.29↑ ± 0.23
10 96.22± 2.3198.59↑ ± 0.10 97.13± 0.78 96.54± 0.1399.65↑ ± 0.04 97.42± 0.24
11 94.46± 1.52 90.86↓ ± 0.32 93.17± 2.68 93.99± 2.83 94.30± 2.10 93.87± 1.07
12 99.17± 0.23 99.17± 0.16 99.96± 0.01 99.38± 0.15 99.92± 0.03 99.46± 0.06
13 83.20± 8.68 78.38↓ ± 2.33 82.11± 1.04 84.74± 4.51 80.12↓ ± 4.12 83.06± 6.97
14 75.06± 6.1379.41↑ ± 5.1281.62↑ ± 7.6179.97↑ ± 1.2980.12↑ ± 5.3478.51↑ ± 1.15
15 97.90± 0.36 78.90↓ ± 6.95 91.88↓ ± 2.73 91.28↓ ± 2.63 90.87↓ ± 2.01 89.15↓ ± 4.32
16 96.88± 1.67 96.41± 1.63 93.44↓ ± 2.97 95.35± 0.18 94.82± 1.06 93.95↓ ± 2.06
Average 82.16± 16.81 84.37± 9.87 86.75± 8.95 86.61± 8.81 86.39± 10.32 86.33± 8.60
• significance –p value 0.563 0.175 0.198 0.236 0.236
• win/loss/draw 6/9/1 10/6/0 10/6/0 9/7/0 10/6/0
• sig.win/sig.loss 5/5 6/2 6/3 7/4 6/3

Table 20: Area under the ROC curve (AUC-Method-2) with standard deviation (AUC ± sd) for
different variants of the unordered algorithm using 10-fold stratified cross-validation.
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Viktor Jovanoski and Nada Lavrač. Classification rule learning with apriori-c. InProgress in
Artificial Intelligence: Proceedings of the Tenth Portuguese Conferenceon Artificial Intelligence,
pages 44–51, Springer, 2001.
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LAVRA Č ET AL.
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