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Abstract

This paper investigates how to adapt standard classificatie learning approaches to subgroup
discovery. The goal of subgroup discovery is to find rulescdbmg subsets of the population
that are sufficiently large and statistically unusual. Thpgy presents a subgroup discovery algo-
rithm, CN2-SD developed by modifying parts of the CN2 classification tekrner: its covering
algorithm, search heuristic, probabilistic classificataf instances, and evaluation measures. Ex-
perimental evaluation d€N2-SDon 23 UCI data sets shows substantial reduction of the number
of induced rules, increased rule coverage and rule signifaas well as slight improvements

in terms of the area under ROC curve, when compared with th2 &bbrithm. Application of
CN2-SDto a large traffic accident data set confirms these findings.
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1. Introduction

Rule learning is most frequently used in the context of classification ruleifep(Michalski et al.,

1986, Clark and Niblett, 1989, Cohen, 1995) and association rule leahgrgwal et al., 1996).
While classification rule learning is an approachptedictive induction(or supervised learning),
aimed at constructing a set of rules to be used for classification andflictiwa, association rule
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learning is a form ofiescriptive inductiorfnon-classificatory induction or unsupervised learning),
aimed at the discovery of individual rules which define interesting pattersta.

Descriptive induction has recently gained much attention of the rule learegggrch commu-
nity. Besides mining of association rules (e.g., the APRIORI association rauleitg algorithm
(Agrawal et al., 1996)), other approaches have been developdddimg clausal discovery as in
the CLAUDIEN system (Raedt and Dehaspe, 1997, Raedt et al., 280d)database dependency
discovery (Flach and Savnik, 1999).

1.1 Subgroup Discovery: A Task at the Intersection of Predictiveand Descriptive Induction

This paper shows how classification rule learning can be adapsedboup discovena task at the
intersection of predictive and descriptive induction, that has first firerulated by Kbsgen (1996)
and Wrobel (1997, 2001), and addressed by rule learning algorittéRE GRA (KIdsgen, 1996)
and MIDOS (Wrobel, 1997, 2001). In the work ofddgen (1996) and Wrobel (1997, 2001), the
problem of subgroup discovery has been defined as follows: Gipapalation of individuals and
a property of those individuals we are interested in, find population subgrthat are statistically
‘most interesting’, e.g., are as large as possible and have the most Listasistical (distributional)
characteristics with respect to the property of interest.

In subgroup discovery, rules have the fo@tass< Cond where the property of interest for
subgroup discovery is class valdéassthat appears in the rule consequent, and the rule antecedent
Condis a conjunction of features (attribute-value pairs) selected from therésatiescribing the
training instances. As rules are induced from labeled training instandesgthpositive if the
property of interest holds, and negative otherwise), the procesggfeup discovery is targeted at
uncovering properties of a selectedgetpopulation of individuals with the given property of inter-
est. In this sense, subgroup discovery is a form of supervised lgarndmwever, in many respects
subgroup discovery is a form of descriptive induction as the task is tovanéndividual interesting
patternsin data. The standard assumptions made by classification rule learning atgo(ekpe-
cially the ones that take the covering approach), such as ‘inducedstubesd be as accurate as
possible’ or ‘induced rules should be as distinct as possible, coveiffiegetht parts of the popula-
tion’, need to be relaxed. In our approach, the first assumption, implechentdassification rule
learners by heuristic which aim at optimizing predictive accuracy, is rdlaygmplementing new
heuristics for subgroup discovery which aim at finding ‘best’ subgsan terms of rule coverage
and distributional unusualness. The relaxation of the second assumptiblee the discovery of
overlapping subgroups, describing some population segments in a multiplioigys. Induced
subgroup descriptions may be redundant, if viewed from a classifispgetive, but very valuable
in terms of their descriptive power, uncovering genuine propertieshfaulations from different
viewpoints.

Let us emphasize the difference between subgroup discovery (ak atttee intersection of
predictive and descriptive induction) and classification rule learning fasm of predictive induc-
tion). The goal of standard rule learning is to generate models, onedbrctass, consisting of rule
sets describing class characteristics in terms of properties occurring des$iaeiptions of training
examples. In contrast, subgroup discovery aims at discovering individles or ‘patterns’ of in-
terest, which must be represented in explicit symbolic form and which mustdte/ely simple in
order to be recognized as actionable by potential users. Moreovaasticlassification rule learn-
ing algorithms cannot appropriately address the task of subgroup discas they use the covering
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algorithm for rule set construction which - as will be seen in this paper -eninthe applicability of
classification rule induction approaches in subgroup discovery.

Subgroup discovery is usually seen as different from classificatioit, @addresses different
goals (discovery of interesting population subgroups instead of maximitasgification accuracy
of the induced rule set). This is manifested also by the fact that in subdiscpvery one can often
tolerate many more false positives (negative examples incorrectly classifipdsitives) than in a
classification task. However, both tasks, subgroup discovery ansifidagon rule learning, can
be unified under the umbrella of cost-sensitive classification. This is beagioben deciding which
classifiers are optimal in a given context it does not matter whether wéizeefadse negatives as is
the case in classification, or reward true positives as in subgroup digcov

1.2 Overview of theCN2-SD Approach to Subgroup Discovery

This paper investigates how to adapt standard classification rule leangaghes to subgroup
discovery. The proposed modifications of classification rule learnersingorinciple, be used
to modify any rule learner using the covering algorithm for rule set cocistru In this paper,
we illustrate the approach by modifying the well-known CN2 rule learning &lgar(Clark and
Niblett, 1989, Clark and Boswell, 1991). Alternatively, we could have medifRL (Lee et al.,
1998), RIPPER (Cohen, 1995), SLIPPER (Cohen and Singer,) 1998&her more sophisticated
classification rule learners. The reason for modifying CN2 is that othee smphisticated learners
include advanced techniques that make them more effective in classifitadks) improving their
classification accuracy. Improved classification accuracy is, howewegf ultimate interest for
subgroup discovery, whose main goal is to find interesting populationrcubsg,

We have implemented the new subgroup discovery algo@hg-SDby modifying CN2 (Clark
and Niblett, 1989, Clark and Boswell, 1991). The proposed approadbrms subgroup discovery
through the following modifications of CN2: (a) replacing the accuracgtasarch heuristic with
a new weighted relative accuracy heuristic that trades off generalityaezutacy of the rule, (b)
incorporating example weights into the covering algorithm, (c) incorporatiagiple weights into
the weighted relative accuracy search heuristic, and (d) using ghshiatrlassification based on
the class distribution of covered examples by individual rules, both in feafaunordered rule sets
and ordered decision lists. In addition, we have extended the ROC arfedysmwork to subgroup
discovery and propose a set of measures appropriate for evaluatiggality of induced subgroups.

This paper presents ti@N2-SDsubgroup discovery algorithm, together with its experimental
evaluation on 23 data sets of the UCI Repository of Machine Learning Bsg¢ab(Murphy and
Aha, 1994), as well as its application to a real world problem of traffiédeet analysis. The ex-
perimental comparison with CN2 demonstrates that the subgroup discdgerigtan CN2-SDpro-
duces substantially smaller rule sets, where individual rules have higherage and significance.
These three factors are important for subgroup discovery: smallezisdes better understanding,
higher coverage means larger support, and higher significance meansdéis describe discovered
subgroups that have significantly different distributional charactesistimmpared to the entire pop-
ulation. The appropriateness for subgroup discovery is confirmedoglstight improvements in
terms of the area under ROC curve, without decreasing predictiveaaycu

The paper is organized as follows. Section 2 introduces the backgofuhid work which in-
cludes the description of the CN2 rule learning algorithm, the weighted rekdiugracy heuristic,
and probabilistic classification of new examples. Section 3 presents theogpldjscovery algo-
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rithm CN2-SDby describing the necessary modifications of CN2. In Section 4 we disabgsoup
discovery from the perspective of ROC analysis. Section 5 preseatsya of metrics used in the
experimental evaluation &N2-SD Section 6 presents the results of experiments on selected UCI
data sets as well as an applicatiorGN2-SDon a real-life traffic accident data set. Related work is
discussed in Section 7. Section 8 concludes by summarizing the main contrsbatidiproposing
directions for further work.

2. Background

This section presents the background of our work: the classical C2nduction algorithm,
including the covering algorithm for rule set construction, the standar@ ristic, weighted
relative accuracy heuristic, and the probabilistic classification technisgein CN2.

2.1 The CN2 Rule Induction Algorithm

CN2 is an algorithm for inducing propositional classification rules (Claxk Miblett, 1989, Clark
and Boswell, 1991). Induced rules have the foirh Condt hen Class, whereCondis a conjunc-
tion of features (pairs of attributes and their values) @mabksis the class value. In this paper we
use the notatio€lass— Cond

CN2 consists of two main procedures: the bottom-level search procttairperforms beam
search in order to find a single rule, and the top-level control proedtiat repeatedly executes the
bottom-level search to induce a rule set. The bottom-level performs beasiisasing classifica-
tion accuracy of the rule as a heuristic function. The accuracy of eopitignal classification rule
of the formClass<— Condis equal to the conditional probability of claStass given that condition
Condis satisfied:

) _ p(Classcong
AcqClass« Cond) = p(ClasgCond) = p(Cond)

Usually, this probability is estimated by relative frequerﬂ%?csfﬁ—g)m.z Different probability esti-
mates, like the Laplace (Clark and Boswell, 1991) orrthestimate (Cestnik, 1990,4@roski et al.,
1993), can be used in CN2 for estimating the above probability. The sth@id2 algorithm used
in this work uses the Laplace estimate, which is compute’lﬁ%{%jﬂ“, wherek is the number
of classes (for a two-class problekn= 2).

CN2 can also apply a significance test to an induced rule. A rule is condittebe significant,
if it expresses a regularity unlikely to have occurred by chance. Taigsificance, CN2 uses the
likelihood ratio statistic (Clark and Niblett, 1989) that measures the differbat@een the class
probability distribution in the set of training examples covered by the rule andl#ss probability
distribution in the set of all training examples (see Equation 2 in Section 5)effp@ical evaluation
in the work of Clark and Boswell (1991) shows that applying the signitieatest reduces the
number of induced rules at a cost of slightly decreased predictiveamcu

1. CN2 constructs rules in a general-to-specific fashion, specializitygtbe rules in the beam (the best rules) by
iteratively adding features to conditic®ond This procedure stops when no specialized rule can be added to the
beam, because none of the specializations is more accurate than tha theebeam.

2. Here we use the following notatiom(Cond) stands for the number of instances covered by @lkss«<— Cond,
n(Clasg stands for the number of examples of cl&ass andn(ClassCond) stands for the number of correctly
classified examples (true positives). We pse .) for the corresponding probabilities.
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Two different top-level control procedures can be used in CN2.fiffignduces an ordered list
of rules and the second an unordered set of rules. Both proceatinlessdefault rule (providing for
majority class assignment) as the final rule in the induced rule set. When igdarciordered list of
rules, the search procedure looks for the most accurate rule in thentaat of training examples.
The rule predicts the most frequent class in the set of covered exaniplesder to prevent CN2
finding the same rule again, all the covered examples are removed befeveiteration is started
at the top-level. The control procedure invokes a new search, untiieabxamples are covered or
no significant rule can be found. In the unordered case, the comtobgure is iterated, inducing
rules for each class in turn. For each induced rule, only covered deafglonging to that class are
removed, instead of removing all covered examples, like in the ordered The negative training
examples (i.e., examples that belong to other classes) remain.

2.2 The Weighted Relative Accuracy Heuristic

Weighted relative accuracy (Lawrat al., 1999, Todorovski et al., 2000) is a variant of rule accuracy
that can be applied both in the descriptive and predictive induction framkewvothis paper this
heuristic is applied for subgroup discovery. Weighted relative acgueaceformulation of one

of the heuristics used in EXPLORA (&$gen, 1996) and MIDOS (Wrobel, 1997), is defined as
follows:

WRAc¢Class— Cond) = p(Cond) - (p(ClasgCond) — p(Class). (1)

Like most other heuristics used in subgroup discovery systems, weighédste accuracy consists
of two components, providing a tradeoff between merality(or the relative size of a subgroup
p(Cond)) and distributional unusualnessretative accuracy(the difference between rule accuracy
p(ClasgCond) and default accuracp(Clasg). This difference can also be seen as the accuracy
gain relative to the fixed rul€lass« true, which predicts that all instances belongitass a rule
is interesting only if it improves upon this ‘default’ accuracy. Another atpérelative accuracy
is that it measures the difference between true positives and the exprecqubsitives (expected
under the assumption of independence of the left and right hand-saleuté), i.e., the utility of
connecting rule bod€ondwith a given rule hea@lass However, it is easy to obtain high relative
accuracy with highly specific rules, i.e., rules with low generglif¢€ond). To this end, generality
is used as a ‘weight’, so that weighted relative accuracy trades offrgkty of the rule p(Cond),
i.e., rule coverage) and relative accurapyGlassCond) — p(Class).

In the work of Klbsgen (1996), these quantities are referred tp(generality),p (rule accuracy
or precision) andpg (default rule accuracy) and different tradeoffs between rule rgéibe and
precision in the so-calleg-g (precision-generality) space are proposed. In addition to function
9(p— po), which is equivalent to our weighted relative accuracy heuristic, othdetffs that reduce
the influence of generality are proposed, e.@(p — po) or \/9/(1—9)(p— po). Here, we favor
the weighted relative accuracy heuristic, because it has an intuitive rietatipn in ROC space,
discussed in Section 4.

2.3 Probabilistic Classification

The induced rules can be ordered or unordered. Ordered rulestarpreted as a decision list
(Rivest, 1987) in a straightforward manner: when classifying a nemplg the rules are sequen-
tially tried and the first rule that covers the example is used for prediction.
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if legs=2 & feathers =yesthen class = bird [13,0]
if beak=yes then class = bird [20,0]
if size=large & flies=no then class=elephant [2,10]

Table 1: A rule set consisting of two rules for class ‘bird’ and one rutefass ‘elephant’.

In the case of unordered rule sets, the distribution of covered traineng@es among classes
is attached to each rule. Rules of the form:

i f Condt hen Class[ClassDistributior

are induced, where numbers in tGéassDistributionlist denote, for each individual class, how
many training examples of this class are covered by the rule. When clags#yiiew example,
all rules are tried and those covering the example are collected. If a atasinso(several rules
with different class predictions cover the example), a voting mechanisnedstosobtain the final
prediction: the class distributions attached to the rules are summed to determinestherobable
class. If no rule fires, the default rule is invoked to predict the majoritysatdidraining instances
not covered by the other rules in the list.

Probabilistic classification is illustrated on a sample classification task, takenGtark and
Boswell (1991). Suppose we need to classify an animal which is a twedgdgathered, large,
non-flying and has a bedk,and the classification is based on a rule set, listed in Table 1 formed
of three probabilistic rules with the [bird, elephant] class distribution asdigmesach rule (for
simplicity, the rule set does not include the default rule). All rules fire ferahimal to be classified,
resulting in a [35,10] class distribution. As a result, the animal is classifiedad.a

3. TheCN2-SD Subgroup Discovery Algorithm

The main modifications of the CN2 algorithm, making it appropriate for subgi@mgovery, involve
the implementation of the weighted covering algorithm, incorporation of examptghtganto the
weighted relative accuracy heuristic, probabilistic classification also indke of the ‘ordered’
induction algorithm, and the area under ROC curve rule set evaluation sé@ttion describes the
CN2 modifications, while ROC analysis and a novel interpretation of the weigblative accuracy
heuristic in ROC space are given in Section 4.

3.1 Weighted Covering Algorithm

If used for subgroup discovery, one of the problems of standardiealmers, such as CN2 and
RIPPER, is the use of the covering algorithm for rule set constructioa.nTdin deficiency of the
covering algorithm is that only the first few induced rules may be of intaiestibgroup descriptions
with sufficient coverage and significance. In the subsequent iteratifotie covering algorithm,
rules are induced from biased example subsets, i.e., subsets includingositlye examples that
are not covered by previously induced rules, which inappropriatebebithe subgroup discovery
process.

3. The animal being classified is a weka.
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As a remedy to this problem we propose the use of a weighted coveringtlalggGGamberger
and Lavr&, 2002), in which the subsequently induced rules (i.e., rules induced Iatdrestages)
also represent interesting and sufficiently large subgroups of thegimpu The weighted covering
algorithm modifies the classical covering algorithm in such a way that coymrsitive examples
are not deleted from the current training set. Instead, in each run obtleeging loop, the algorithm
stores with each example a count indicating how often (with how many rulegxdm@ple has
been covered so far. Weights derived from these example countspgpearan the computation of
WRACcc Initial weights of all positive examples equal 1w(e;j,0) = 1. The initial example weight
w(e;j,0) = 1 means that the example has not been covered by any rule, meaning ‘pbeas this
example, since it has not been covered before’, while lower weightswO< 1 mean ‘do not try
too hard on this example’. Consequently, the examples already covemstkly more constructed
rules decrease their weights while the uncovered target class exampies wlights have not been
decreased will have a greater chance to be covered in the following itesatidhe algorithm.

For a weighted covering algorithm to be used, we have to specify the waigstheme, i.e.,
how the weight of each example decreases with the increasing numbaresingprules. We have
implemented two weighting schemes described below.

3.1.1 MULTIPLICATIVE WEIGHTS

In the first scheme, weights decrease multiplicatively. For a given parafhetg < 1, weights of
covered positive examples decrease as follaws;, i) =y, wherew(ej, i) is the weight of example
ej being covered by rules. Note that the weighted covering algorithm wjth: 1 would result in
finding the same rule over and over again, whereas withO the algorithm would perform the
same as the standard CN2 covering algorithm.

3.1.2 ADDITIVE WEIGHTS

In the second scheme, weights of covered positive examples deciasdiag to the formula
w(ej,i) = .%1 In the first iteration all target class examples contribute the same wefgh0) = 1,
while in the following iterations the contributions of examples are inverselygstimmal to their
coverage by previously induced rules.

3.2 Modified WRAcc Heuristic with Example Weights

The modification of CN2 reported in the work of Todorovski et al. (208f@cted only the heuristic
function: weighted relative accuracy was used as a search heuristeadof the accuracy heuristic
of the original CN2, while everything else remained the same. In this worlhehéstic function
is further modified to handle example weights, which provide the means to eowkfférent parts
of the example space in each iteration of the weighted covering algorithm.

In the WRAcccomputation (Equation 1) all probabilities are computed by relative fregegnc
An example weight measures how important it is to cover this example in the neatidte The
modifiedWRAcameasure is then defined as follows:

n(Cond)  n'(ClassCond) n/(Clasg
v n(Cond N )

WRAc¢Class«+— Cond) =
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if legs=2 & feathers =yesthen class = bird [1, O]
if beak=yes then class = bird [1, 0]
if size=large & flies=no then class =elephant [0.17,0.83]

Table 2: The rule set of Table 1 as treateddiy2-SD

In this equationN’ is the sum of the weights of all examples(Cond) is the sum of the weights
of all covered examples, and(ClassCond) is the sum of the weights of all correctly covered
examples.

To add a rule to the generated rule set, the rule with the maxifRéAccmeasure is chosen
out of those rules in the search space, which are not yet presentrinl¢hget produced so far (all
rules in the final rule set are thus distinct, without duplicates).

3.3 Probabilistic Classification

Each CN2 rule returns a class distribution in terms of the number of exampleedoas distributed
over classes. The CN2 algorithm uses class distribution in classifying@umsstances only in the
case of unordered rule sets, where rules are induced separatefcfoclass. In the case of ordered
decision lists, the first rule that fires provides the classification. In our neddifN2-SDalgorithm,
also in the ordered case all applicable rules are taken into account, prebedilistic classification
is used in both classifiers. This means that the terminology ‘ordered’ aoddared’, which in CN2
distinguished between decision list and rule set induction, has a differeaning in our setting:
the ‘unordered’ algorithm refers to learning classes one by one, wigifettered’ algorithm refers
to finding best rule conditions and assigning the majority class in the rule head.

Note thatCN2-SDdoes not use the same probabilistic classification scheme as CN2. Unlike
CN2, where the rule class distribution is computed in terms of the numbers wipée® covered,
CN2-SDtreats the class distribution in terms of probabilities (computed by the relatigaeney
estimate). Table 2 presents the three rules of Table 1 with the class distribypicessed with
probabilities. A two-legged, feathered, large, non-flying animal with & lieagain classified as a
bird but now the probabilities are averaged (instead of summing the nunflexaples), resulting
in the final probability distribution [0.72,0.28]. By using this voting scheme thgsaups covering
a small number of examples are not so heavily penalized (as is the case JmG&l2classifying a
new example.

3.4 CN2-SD Implementation

Two variants ofCN2-SDhave been implemented. TRN2-SDsubgroup discovery algorithm used
in the experiments in this paper is implemented in C and runs on a number of UNf¥rpia. Its
predecessor, used in the experiments reported by Eatral. (2002), is implemented in Java and
incorporated in the WEKA data mining environment (Witten and Frank, 1988¢. C implemen-
tation is more efficient and less restrictive than the Java implementation, which igliimiténary
class problems and to discrete attributes.
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TPr (in %)

FPr (in %)

Figure 1: The ROC space withPr on theX axis and-Pr on theY axis. The solid line connecting
seven optimal subgroups (marked #y is the ROC convex hull.B1 andB2 denote
suboptimal subgroups (marked by x). The dotted line — the diagonal ctinggoints
(0,0) and (100,100) — indicates positions of insignificant rules with zéative accuracy.

4. ROC Analysis for Subgroup Discovery

In this section we describe how ROC (Receiver Operating Characterstadysis (Provost and
Fawcett, 2001) can be used to understand subgroup discovery aisdatize and evaluate discov-
ered subgroups.

A point in ROC spaceshows classifier performance in terms of false alarifialse positive rate
FPr = 5 (plotted on theX-axis), and sensitivity ofrue positive rate TPE o= (plotted
on theY-axis). In terms of the expressions introduced in Sections 2.1 and B.@rue positives),
FP (false positives),TN (true negatives) an&N (false negatives) can be expressed a& =
n(ClassCond), FP = n(ClassCond), TN = n(ClassCond) andFN = n(ClassCond), whereClass

andCondstand for-Classand—Cond, respectively.

The ROC space is appropriate for measuring the success of subgsoapety, since rules/sub-
groups whosd Pr/FPr tradeoff is close to the diagonal can be discarded as insignificant. Con-
versely, significant rules/subgroups are those sufficiently distamttine diagonal. Significant rules
define the points in ROC space from which a convex hull can be congdruthe best rules define
the ROC convex hull. Figure 1 shows seven rules on the convex hull énhérke), while two rules
B1 andB2 below the convex hull (marked by x) are of lower quality.
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4.1 The Interpretation of Weighted Relative Accuracy in ROC Space

Weighted relative accuracy is appropriate for measuring the quality ofeessnbgroup, because it
is proportional to the distance from the diagonal in ROC sfatesee that this holds, note first that
rule accuracy(ClasgCond) is proportional to the angle between tkeaxis and the line connecting
the origin with the point depicting the rule in terms of i®r/F Pr tradeoff in ROC space. So, for
instance, theX-axis has always rule accuracy 0 (these are purely negative syigjraheY -axis
has always rule accuracy 1 (purely positive subgroups), and themihrepresents subgroups with
rule accuracyp(Class, the prior probability of the positive class. Consequently, all point on the
diagonal represent insignificant subgroups.

Relative accuracyp(ClasgCond) — p(Class, re-normalizes this such that all points on the
diagonal have relative accuracy 0, all points onYhaxis have relative accuracy-1p(Class =
p(Classg (the prior probability of the negative class), and all points onXhaxis have relative
accuracy—p(Clasg. Notice that all points on the diagonal also haWRAcc= 0. In terms of
subgroup discovery, the diagonal represents all subgroups witlathe trget distribution as the
whole population; only the generality of these ‘average’ subgroupgdses when moving from
left to right along the diagonal. This interpretation is slightly different in dfeesdearning, where
the diagonal represents random classifiers that can be constructedtvetty training.

More generally WRAccisometrics lie on straight lines parallel to the diagonal (Flach, 2003,
Furnkranz and Flach, 2003). Consequently, a point on thelllPie= F Pr +a, whereais the vertical
distance of the line to the diagonal, HaRAcc= a.p(Clasgp(Class. Thus, given a fixed class
distribution, WRAccis proportional to the vertical distaneeto the diagonal. In fact, the quantity
TPr— FPr would be an alternative quality measure for subgroups, with the additionahtage
that it allows for comparison of subgroups from populations with diffectass distributions.

4.2 Methods for Constructing ROC Curves and AUC Evaluation
Subgroups obtained by CN2-SD can be evaluated in ROC space in tweediffeays.

4.2.1 AUC-METHOD-1

The first method treats each rule as a separate subgroup which is plott@Cirsfpaice in terms
of its true and false positive rate¥ Pr and FPr). We then generate the convex hull of this set
of points, selecting the subgroups which perform optimally under a panticamege of operating
characteristics. The area under this ROC convex W) indicates the combined quality of the
optimal subgroups, in the sense that it does evaluate whether a partidudgosp has anything to
add in the context of all the other subgroups. However, this method aadake account of any
overlap between subgroups, and subgroups not on the convexdsihaply ignored.

Figure 2 presents two ROC curves, showing the performance of CNEBRdSDalgorithms
on the Australian UCI data set.

4.2.2 AUC-METHOD-2

The second method employs the combined probabilistic classifications of ghlosyds, as indi-
cated below. If we always choose the most likely predicted class, thisgmonds to setting a fixed
threshold 0.5 on the positive probability (the probability of the target clédhe positive probabil-

4. Some of the reasoning supporting this claim is further discussed in the/taparagraphs of Section 5.1.
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Figure 2: Example ROC curves (AUC-Method-1) on the Australian UCI datathe solid curve
for the standard CN2 classification rule learner, and the dotted cur@Na¢«SD

ity is larger than this threshold we predict positive, else negative. The®®@ can be constructed
by varying this threshold from 1 (all predictions negative, correspanid (0,0) in ROC space) to 0
(all predictions positive, corresponding to (1,1) in ROC space). Thigit®inn+ 1 points in ROC
space, where is the total number of classified examples (test instances). Equivalentlgame
order all the classified examples by decreasing predicted probabilityirgf pesitive, and tracing
the ROC curve by starting in (0,0), stepping up when the example is actuallyvpasitil stepping
to the right when it is negative, until we reach (131FEach point on this curve corresponds to a
classifier defined by a possible probability threshold, as opposed toMerted-1, where a point
on the ROC curve corresponds to one of the optimal subgroups. ThedB@€ depicts a set of
classifiers, whereas the area under this ROC curve indicates the combialéy of all subgroups
(i.e., the quality of the entire rule set). This method can be used with a testisetross-validation,
but the resulting curve is not necessarily confex.

Figure 3 presents two ROC curves, showing the performance of the BNZMN2-SDalgo-
rithms on the Australian UCI data set. It is apparent from this figure that €&adly overfitting
on this data set, because almost all of its ROC curve is below the diagonalisHasause CN2
has learned many overly specific rules, which bias the predicted probabilitirese overly specific
rules are visible in Figure 2 as points close to the origin.

5. In the case of ties, we make the appropriate number of steps up ang ighhat once, drawing a diagonal line
segment.

6. A description of this method applied to decision tree induction can be foutite paper by Ferri-Rairez et al.
(2002).
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Figure 3: Example ROC curves (AUC-Method-2) on the Australian UCI datathe solid curve
for the standard CN2 classification rule learner, and the dotted cur@N2rSD

4.2.3 OMPARISON OF THETWO AUC METHODS

Which of the two methods is more appropriate for subgroup discovery is fggedebate. The
second method seems more appropriate if the discovered subgroupeadedto be applied also
in the predictive setting, as a rule set (a model) used for classificatiordvdsitage is also that it is
easier to apply cross-validation. In the experimental evaluation in Sectienus&AUC-Method-2
in the comparison of the predictive performance of rule learners.

An argument in favor of using AUC-Method-1 for subgroup evaluatiobased on the obser-
vation that AUC-Method-1 suggests to eliminate, from the induced set @frsup descriptions,
those rules which are not on the ROC convex hull. This seems appropsates ‘best’ subgroups
according to thaVRAccevaluation measure, are subgroups most distant from the ROC diagonal.
However, disjoint subgroups, either on or close to the convex hull,|dmmt be eliminated, as (due
to disjoint coverage and possibly different symbolic descriptions) they mjasesent interesting
subgroups, regardless of the fact that there is another ‘betterf@aubgn the ROC convex hull,
with a similarT Pr/FPr tradeoff.

Notice that the area under ROC curve (AUC-Method-1) cannot be asedpredictive qual-
ity measure when comparing different subgroup miners, because indbéske into account the
overlapping structure of subgroups. An argument against the usesafidfasure is here elaborated
through a simple exampleConsider for instance two subgroup mining results, of say 3 subgroups
in each resulting rule set. The first result set consists of three disjdigraups of equal size that
together cover all the examples of the sele@@éassvalue and have a 100% accuracy. Thus these
three subgroups are a perfect classifier for @assvalue. In ROC space the three subgroups
collapse at the point (0,1/3). The second result set consists of thnaksedpgroups (having a max-

7. We are grateful to the anonymous reviewer who provided this illustrattample.
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imum overlap: with different descriptions, but equal extensions), alto av100% accuracy and
covering one third of the class examples. Clearly the first result is betiiethd representation of
the results in ROC space (and the area under ROC curve) is the saméfoabes.

5. Subgroup Evaluation Measures

In this section we distinguish betweg@medictive and descriptiveevaluation measures, which is
in-line with the distinction of predictive induction and descriptive induction mad8ection 1.
Descriptive measures are used to evaluate the quality of individual mitkgidual patterns). These
quality measures are the most appropriate for subgroup discoverg t@skhof subgroup discovery
is to induce individual patterns of interest. Predictive measures areiuseldlition to descriptive
measures just to show that tN2-SDsubgroup discovery mechanisms perform well also in the
predictive induction setting, where the goal is to induce a classifier.

5.1 Descriptive Measures of Rule Interestingness

Descriptive measures of rule interestingness evaluate each indivichgrosip and are thus appro-
priate for evaluating the success of subgroup discovery. The pedppgality measures compute
the average over the induced set of subgroup descriptions, whitlesrtae comparison between
different algorithms.

Coverage. The average coverage measures the percentage of examples aovexeslage by one
rule of the induced rule set. Coverage of a single Rilis defined as

n(Cond)

CouR) =CovClass— Cond) = p(Cond) = N

The average coverage of a rule set is computed as
1 xR
COV=—Y CovR),
7 2. CoMR)

whereng is the number of induced rules.

Support. For subgroup discovery it is interesting to compute the overall suppertdtiyet cover-
age) as the percentage of target examples (positives) covered hyldbeaomputed as the
true positive rate for the union of subgroups. Support of a rule is eldfas the frequency of
correctly classified covered examples:

n(ClassCond)

SugR) = SugClass+— Cond) = p(ClassCond) = — N

The overall support of a rule set is computed as

1
SUP=§ Z n(Class- \/ Cond),
Clasg Clasg+Cond

where the examples covered by several rules are counted only amae(the disjunction of
rule conditions of rules with the san®ass value in the rule head).
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Size. Size is a measure of complexity (the syntactical complexity of induced rulés.rdle set
size is computed as the number of rules in the induced rule set (includingfthétdale):

SIZE=ng.

In addition to rule set size used in this paper, complexity could be measudalhe
average number of rules/subgroups per class, and the averagerrairfdzgures per rule.

Significance. Average rule significance is computed in terms of the likelihood ratio of a role, n
malized with the likelihood ratio of the significance threshold (99%); the aedsagpmputed
over all the rules. Significance (ewvidencein the terminology of Kbsgen, 1996) indicates
how significant is a finding, if measured by this statistical criterion. In the @Narithm
(Clark and Niblett, 1989), significance is measured in terms of the likelihdagtatistic of
arule as follows:

n(Class.Cond)

(Class) - p(Cond)

where for each classlassg, n(Clasg.Cond) denotes the number of instancedésg in the
set where the rule body holds trugClass) is the number o€lasg instances, ang(Cond)

(i.e., rule coverage computed 5@%‘”) plays the role of a normalizing factor. Note that
although for each generated subgroup description one class is seled¢tedtarget class, the
significance criterion measures the distributional unusualness unbiaaey particular class
— as such, it measures the significance of rule condition only.

Sig(R)) = Sig(Class— Cond) = 2- z n(Clasg.Cond) - log - 2
]

The average significance of a rule set is computed as:
1M
SIG=— Y SigR).
- i; aR)

Unusualness.Average rule unusualness is computed as the avétég@cocomputed over all the
rules:

1R
WRACC= — ZLWRACQRi).
=} i

As discussed in Section 4 \lNRAcds appropriate for measuring the unusualness of separate
subgroups, because it is proportional to the vertical distance fromigigemhl in the ROC
space (see the underlying reasoning in Section 4.1).

As WRAcds proportional to the distance to the diagonal in ROC spatiRAcalso reflects rule
significance — the largaVRAc¢ the more significant the rule, and vice versa. As BMRAccand
rule significance measure the distributional unusualness of a subghheymre the most important
guality measures for subgroup discovery. However, while significanbemeasures distributional
unusualnessWRAcctakes also rule coverage into account, therefore we consitgsualness-
computed by the averag® RAcc- to be the most appropriate measure for subgroup quality evalu-
ation.

As pointed out in Section 4.1, the quanfity’r— F Pr could be an alternative quality measure for
subgroups, with the additional advantage that we can use it to comp@mapb from populations
with different class distributions. However, in this paper we are only eored with comparing sub-
groups from the same population, and we pr&f#RAccbecause of itsp-g’ (precision-generality)
interpretation, which is particularly suitable for subgroup discovery.
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5.2 Predictive Measures of Rule Set Classification Performance

Predictive measures evaluate a rule set, interpreting a set of subggsapptions as a predictive
model. Despite the fact that optimizing accuracy is not the intended goabgf@up discovery
algorithms, these measures can be used in order to provide a compariGN2-&Dwith standard
classification rule learners.

Predictive accuracy. The percentage of correctly predicted instances. For a binary clasisific
problem, rule set accuracy is computed as follows:

TP+TN
TP+TN+FP+FN
Note that ACC measures the accuracy of the whole rule set on both pasiiiveegative

examples, while rule accuracy (definedAsy{Class«— Cond) = p(ClasgCond)) measures
the accuracy of a single rule on positives only.

ACC=

Area under ROC curve. The AUC-Method-2, described in Section 4.2, applicable to rule sets is
selected as the evaluation measure. It interprets a rule set as a probahiigét; given all
the different probability thresholds as defined through the probabilistssifieation of test
instances.

6. Experimental Evaluation

For subgroup discovery, expert evaluation of results is of ultimate inteMsvertheless, before
applying the proposed approach to a particular problem of interest, wiedvto verify our claims
that the mechanisms implemented in DM2-SDalgorithm are indeed appropriate for subgroup
discovery. For this purpose we tested it on selected UCI data sets. Irajies we use the same
data sets as in the work of Todorovski et al. (2000). We have ap@lid2lSDalso to a real life
problem of traffic accident analysis; these results were evaluatedyatbe kexpert.

6.1 The Experimental Setting

To test the applicability o€N2-SDto the subgroup discovery task, we compare its performance
with the performance of the standard CN2 classification rule learning algofiteferred to as
CN2-standard and described in the work of Clark and Boswell, 1991) as well as with thi2 C
algorithm usingvVRAcq CN2-WRAccdescribed by Todorovski et al., 2000).

In this comparative study all the parameters of the CN2 algorithm are sefitaléfi@ult values
(beam-size = 5, significance-threshold = 99%). The results a2 SDalgorithm are computed
using both multiplicative weights (with= 0.5, 0.7, 0.9} and additive weights.

We estimate the performance of the algorithms using stratified 10-fold catislstion. The
obtained estimates are presented in terms of their average values anddsthaviions.

Statistical significance of the difference in performance comparddN®-standards tested
using the paired t-test (exactly the same folds are used in all comparisitinsjgnificance level of
95%: bold font and to the right of a result in all the tables means that the algorithm is significantly
better tharCN2-standardvhile | means it is significantly worse. The same paired t-test is used to
compare the different versions of our algorithm w@N2-standardver all the data sets.

8. Results obtained with= 0.7 are presented in the tables of Appendix A but not in the main pareqfaher.
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Data set #Att. #D.att. #C.att. #Class #EX. Maj. Class (%)

1 australian 14 8 6 2 690 56
2 breast-w 9 9 0 2 699 66
3 bridges-td 7 4 3 2 102 85
4 chess 36 36 0 2 3196 52
5 diabetes 8 0 8 2 768 65
6 echo 6 1 5 2 131 67
7 german 20 13 7 2 1000 70
8 heart 13 6 7 2 270 56
9 hepatitis 19 13 6 2 155 79
10 hypothyroid 25 18 7 2 3163 95
11 ionosphere 34 0 34 2 351 64
12 iris 4 0 4 3 150 33
13 mutagen 59 57 2 2 188 66
14 mutagen-f 57 57 0 2 188 66
15 tic-tac-toe 9 9 0 2 958 65
16 vote 16 16 0 2 435 61
17 balance 4 0 4 3 625 46
18 car 6 6 0 4 1728 70
19 glass 9 0 9 6 214 36
20 image 19 0 19 7 2310 14
21 soya 35 35 19 683 13
22 waveform 21 0 21 3 5000 34
23 wine 13 0 13 3 178 40

Table 3: Properties of the UCI data sets.

6.2 Experiments on UCI Data Sets

We experimentally evaluate our approach on 23 data sets from the UCEiRepof Machine
Learning Databases (Murphy and Aha, 1994). Table 3 gives anieveof the selected data sets in
terms of the number of attributes (total, discrete, continuous), the numblersses, the number of
examples, and the percentage of examples of the majority class. Thesetddtave been widely
used in other comparative studies (Todorovski et al., 2000). We heigked the data sets in two
groups (Table 3), those with two classes (binary data sets 1-16) aral witbsmore then two
classes (multi-class data sets 17-23). This distinction is made as ROC analygiad anly on
binary data set$.

6.2.1 RESULTS OF THEUNORDEREDCNZ2-SD

Tables 4 and 5 present summary results of the UCI experiments, while detaileedound in Ta-
bles 14-20 in Appendix A. For each performance measure, the summéashadws the average
value over all the data sets, the significance of the results compar@ei2estandard(p-value),
win/loss/draw in terms of the number of data sets in which the results are betss/agual com-
pared withCN2-standardas well as the number of significant wins and losses.

9. This is a simplification (as multi-class AUC could also be computed as thage/ef AUCs computed by comparing
all pairs of classes (Hand and Till, 2001)) that still provides sufficigittence to support the claims of this paper.
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Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD Detailed
Measure Sets standard WRAcc (y=0.5 (y=0.9 (add.) Results
Coverage (COV) 23 0.131+ 0.14 0.311+ 0.17 0.403+t 0.23 0.450+ 0.260.486+ 0.30 Table 14
e significance —p value 0.000 0.000 0.000 0.000

e win/loss/draw 22/1/0 22/1/0 23/0/0 22/1/0

e sig.win/sig.loss 21/1 22/0 22/0 2111

Support (SUP) 23  0.84+0.03 0.85+0.03 0.90+ 0.06 0.92+4+0.06 0.91+ 0.06 Table 15
e significance —p value 0.637 0.000 0.000 0.001

e win/loss/draw 13/10/0 18/5/0 20/3/0 16/7/0

e sig.win/sig.loss 5/4 13/1 18/0 13/1

Size (SIZE) 23 18.18+21.77 6.15+4.49 6.25+4.42 6.49+ 4.57 6.35+ 4.58 Table 16
e significance o value 0.006 0.007 0.007 0.007

e win/loss/draw 22/1/0 22/1/0 20/3/0 23/0/0

e sig.win/sig.loss 22/0 21/0 19/2 18/0
Significance (SIG) 23 2114+ 0.46 8.97+ 4.66 15.57+ 6.05 16.92+ 8.9018.47+ 9.00 Table 17
e significance -p value 0.000 0.000 0.000 0.000

e win/loss/draw 22/1/0 23/0/0 22/1/0 23/0/0

e sig.win/sig.loss 21/0 23/0 21/0 23/0
Unusualness (WRACC) 23  0.017+ 0.02 0.056+ 0.05 0.079+ 0.06 0.088+ 0.060.092+ 0.07 Table 18
e significance —p value 0.001 0.000 0.000 0.000

o win/loss/draw 20/1/2 22/1/0 22/1/0 22/1/0

e sig.win/sig.loss 19/1 21/1 21/1 2111

Table 4: Summary of the experimental results on the UCI data sets (desceptiluation mea-
sures) for different variants of the unordered algorithm using 1@-ratified cross-
validation. The best results are shown in boldface.

The analysis shows that if multiplicative weights are used, most results impritivehe in-
creased value of thg parameter. As in most cases the bédt2-SDvariants areCN2-SDwith
y = 0.9 and with additive weights, and as using additive weighs is the simpler mettoalttitive
weights setting is recommended as default for experimental use.

The summary of results in terms of descriptive measures of interestingreesfolows.

e In terms of the average coverage per rGl2-SDproduces rules with significantly higher
coverage (the higher the coverage the better the rule) thardd2HWVRAc@andCN2-standard
The coverage is increased by increasingytiparameter and the best results are achieved by
y = 0.9 and by additive weights.

e CN2-SDinduces rule sets with significantly larger overall support t6&2-standardnean-
ing that it covers a higher percentage of target examples (positives)ahuing a smaller
number of examples unclassifi€d.

e CN2-WRAc@andCN2-SDinduce rule sets that are significantly smaller ti@¥2-standard
(smaller rule sets are better), while rule set€bdl2-WRAc@andCN2-SDare comparable, de-
spite the fact thaCN2-SDuses weights to ‘recycle’ examples and thus produces overlapping
rules.

10. CN2 handles the unclassified examples by classifying them usingfendtdele — the rule predicting the majority
class.
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Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD  Detailed
Measure Sets standard WRAcc (y=0.5 (y=0.9 (add.) Results
Accuracy (ACC) 23 81.61+ 11.66 78.12+ 16.28 80.92t 16.04 81.07A 15.78 79.36+ 16.24 Table 19
e significance —p value 0.150 0.771 0.818 0.344

e win/loss/draw 10/12/1 17/6/0 19/4/0 15/8/0

e sig.win/sig.loss 3/5 9/4 10/4 714
AUC-Method-2 (AUC) 16 82.16+ 16.81 84.37% 9.87 86.75+ 8.95 86.39+ 10.32 86.33t 8.60 Table 20
e significance —p value 0.563 0.175 0.236 0.236

e win/loss/draw 6/9/1 10/6/0 9/7/0 10/6/0

e sig.win/sig.loss 5/5 6/2 714 6/3

Table 5: Summary of the experimental results on the UCI data sets (prediesteation measures)
for different variants of the unordered algorithm using 10-fold stratifieoss-validation.
The best results are shown in boldface.

e CN2-SDinduces significantly better rules in terms of rule significance (rules with highe
significance are better) computed by the average likelihood ratio: while tios echieved
by CN2-standardare already significant at the 99% level, this is further pushed @N®-SD
with maximum values achieved by additive weights. An interesting question, verifeed
in further experiments, is whether the weighted versions of the CN2 algonitiprove the
significance of the induced subgroups also in the case when CN2 relésdaiced without
applying the significance test.

¢ In terms of rule unusualness which is of ultimate interest to the subgroupveisctask,
CN2-SDproduces rules with significantly higher average weighted relative acguhan
CN2-standard Like in the case of average coverage per rule the unusualness iasedre
by increasing they parameter and the best results are achievey$y0.9 and by additive
weights. Note that the unusualness of a rule, computed BYR#\cc¢ is a combination of
rule accuracy, coverage and prior probability of the target class.

In terms of predictive measures of classification performance resultbemummarized as
follows.

e CN2-SDimproves the accuracy in comparison wiiN2-WRAccand performs compara-
ble to CN2-standard(the difference is insignificant). Notice however that while optimiz-
ing predictive accuracy is the ultimate goal of CN2, @X2-SDthe goal is to optimize the
coverage/relative-accuracy tradeoff.

¢ In the computation of area under ROC curve (AUC-Method-2) due to thtecton of this
method to binary class data sets, only 16 binary data sets are used in theisongpad\otice
that CN2-SDimproves the area under ROC curve compare@M&2-WRAc@and compared
to CN2-standargbut the differences are not significant. The area under ROC cowever
seems not to be affected by the paramegitar by the weighting approach €N2-SD

AUC performance is also illustrated by means of the results on the Australidn&l& set in
Figures 2 and 3 of Section 4.2. The solid lines in these graphs indicate R@€sabtained by
CN2-standardvhile the dotted lines represent ROC curves@di2-SDwith additive weights.
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6.2.2 RESULTS OF THEORDEREDCN2-SD

For completeness, the results for different versions of the orderedlithly are summarized in
Tables 6 and 7, without giving the results for individual data sets in Agige. In our view, the
unorderedCN2-SDalgorithm is more appropriate for subgroup discovery than the ordemaht,
as it induces a set of rules for each target class in turn.

Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD
Measure Sets standard WRAcc (y=0.5) (y=0.9 (add.)
Coverage (COV) 23 0.174+0.18 0.351+ 0.18 0.439%+ 0.25 0.420+ 0.230.527+ 0.32
e significance - value 0.000 0.000 0.000 0.000
e win/loss/draw 21/2/0 23/0/0 23/0/0 22/1/0
e sig.win/sig.loss 20/1 22/0 22/0 22/1
Support (SUP) 23  0.85+0.03 0.85+0.03 0.87+0.05 0.91+ 0.05 0.90+ 0.06
e significance -p value 0.694 0.026 0.000 0.000
e win/loss/draw 12/11/0 14/9/0 18/5/0 19/4/0
e sig.win/sig.loss 4/4 11/2 16/1 14/0
Size (SIZE) 23 17.87+28.10 4.13+2.73 4.30+ 2.58 4.61+2.64 4.27+2.79
e significance —p value 0.025 0.026 0.030 0.025
e win/loss/draw 21/11 21/2/0 20/3/0 21/2/0
e sig.win/sig.loss 21/0 20/1 19/1 20/0
Significance (SIG) 23  1.87+0.47 8.86+4.81 12.70+ 7.11 14.80+ 8.3118.11+ 9.84
e significance —p value 0.000 0.000 0.000 0.000
e win/loss/draw 22/1/0 22/1/0 23/0/0 22/1/0
e sig.win/sig.loss 22/0 22/0 22/0 21/0
Unusualness (WRACC) 23  0.024+ 0.02 0.060+ 0.05 0.080+ 0.06 0.082+ 0.060.100+ 0.07
e significance —p value 0.001 0.000 0.000 0.000
e win/loss/draw 18/5/0 21/2/0 21/2/0 22/1/0
e sig.win/sig.loss 17/2 20/1 20/2 2111

Table 6: Summary of the experimental results on the UCI data sets (desceptiluation mea-
sures) for different variants of the ordered algorithm using 10-fatdtified cross-
validation. The best results are shown in boldface.

6.3 Experiments in Traffic Accident Data Analysis

We have evaluated theéN2-SDalgorithm also on a traffic accident data set. This is a large real-
world database (1.5 GB) containing 21 years of police traffic accidgmtrie (1979-1999). The
analysis of this database is not straightforward because of the volume déth, the amounts of
noise and missing data, and the fact that there is no clearly defined data taigjely As described
below, some preprocessing was needed before running the sulslisoapery experiments. Results
of experiments were shown to the domain expert whose comments are included

6.3.1 THE TRAFFIC ACCIDENT DATA SET

The traffic accident database contains data about traffic accidenthenéhicles and casualties
involved. The data is organized in three linked tables: the ACCIDENT tabd¢eyYHEHICLE table
and the CASUALTY table. The ACCIDENT table consists of the recordsllofdecidents that
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Performance Data CN2 CN2 CN2-SD CN2-SD CN2-SD
Measure Sets standard WRAcc (y=0.5) (y=0.9 (add.)
Accuracy (ACC) 23 83.00+ 10.30 78.34t 16.52 79.50+ 16.68 81.10+ 16.53 80.79t 16.61

e significance —p value 0.155 0.286 0.556 0.494
e win/loss/draw 8/15/0 14/9/0 15/8/0 15/8/0
e sig.win/sig.loss 3/6 15/4 8/4 713
AUC-Method-2 (AUC) 16 81.89+ 10.07 82.28+ 10.11 84.3A 9.19 84.70+ 8.53 83.79+ 9.64

e significance —p value 0.721 0.026 0.005 0.049

e win/loss/draw 9/6/1 10/6/0 12/4/0 10/6/0

e sig.win/sig.loss 6/5 6/3 8/4 6/4

Table 7: Summary of the experimental results on the UCI data sets (prediestation measures)
for different variants of the ordered algorithm using 10-fold stratifiegs-validation. The
best results are shown in boldface.

happened over the given period of time (1979-1999), the VEHICLE w@iiéains data about the
vehicles involved in those accidents, and the CASUALTY table contains thaiat she casualties
involved in the accidents. Consider the following example: “Two vehicleshedhdsn a traffic
accident and three people were seriously injured in the crash”. In tefrthe traffic data set this
is recorded as one record in the ACCIDENT table, two records in the ZEBItable and three
records in the CASUALTY table. The three tables are described in mor# oiel@w.

e The ACCIDENT table contains one record for each accident. The 30wtsllescribing an
accident can be divided in three groups: date and time of the accideatipdies of the road
where the accident has occurred, and conditions under which theeatbigs occurred (such
as weather conditions, light and junction details). In the ACCIDENT tablesthes more
than 5 million records.

e The VEHICLE table contains one record for each vehicle involved in aidant from the
ACCIDENT table. There can be one or many vehicles involved in a singleletc The
VEHICLE table attributes describe the type of the vehicle, maneuver anctidimeof the
vehicle (from and to), vehicle location on the road, junction location at impegtand age of
the driver, alcohol test results, damage resulting from the accidentharmdbject that vehicle
hit on and off carriageway. There are 24 attributes in the VEHICLE talbielwcontains
almost 9 million records.

e The CASUALTY table contains records about casualties for each ofghieles in the VEHI-
CLE table. There can be one or more casualties per vehicle. The CASUgdble contains
16 attributes describing sex and age of casualty, type of casualty (elgstpan, cyclist, car
occupant etc.), severity of casualty, if casualty type is pedestrian, wdrat his/her charac-
teristics (location, movement, direction). This table contains almost 7 million record

6.3.2 DATA PREPROCESSING

The large volume of data in the traffic data set makes it practically impossiblentany data
mining algorithm on the whole set. Therefore we have taken samples of theedatad performed
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Number of Percentage of Class distribution (%)
PFC Examples Sampled Accidents fatal / serious / slight

1 2555 0.3 1.76/24.85/73.39
2 2523 1.9 2.53/30.87/66.60
3 2501 4.8 0.56/12.35/87.09
4 2499 1.9 2.16/27.21/70.63
5 2522 9.2 1.90/23.39/74.71
6 2548 2.0 1.41/13.69/84.90
7 2788 14 0.97/16.25/82.78

Table 8: Properties of the traffic data set.

the experiments on these samples. We focused on the ACCIDENT table amihed only the
accidents that happened in 7 districts (called Police Force Codes, o) B&©@ss the UK! The

7 PFCs were chosen by the domain expert and represent typical RifCsliisters of PFCs with
the same accident dynamics, analyzed by Lgudtial. (2002). In this way we obtained 7 data sets
(one for each PFC) with some hundred thousands of examples eachurthér sampled this data
to obtain approximately 2500 examples per data set. The sample percentatisted in Table 8
together with the other characteristics of these 7 sampled data sets.

Among the 26 attributes describing each of the 7 data sets we chose the atadmident
severity’ to be the class attribute. The task that we have addressed wefsthéeo find subgroups
of accidents of a certain severity (‘slight’, ‘serious’ or ‘fatal’) andacficterize them in terms of
attributes describing the accident, such as: ‘road class’, ‘speed limitit tigndition’, etc.

6.3.3 RESULTS OFEXPERIMENTS

We want to investigate if by runningN2-SDon the data sets, described in Table 8, we are able to
get some rules that are typical and different for distinct PFCs.

We used the same methodology to perform the experiments as in the case 6 ihatésets of
Section 6.2. The only difference is that here we do not perform theuarger ROC curve analysis,
because the data sets are not two-class. The results presented irdFdBlehow the same advan-
tages ofCN2-SDoverCN2-WRAc@andCN2-standardas shown by the results of experiments on the
UCI data sets? In particular, CN2-SDproduces substantially smaller rule sets, where individual
rules have higher coverage and significance.

It should be noticed that these data sets have a very unbalanced didisstiie (most accidents
are ‘slight’ and only few are ‘fatal’, see Table 8). In terms of rule satuaacy, all algorithms
achieved roughly default performance which is obtained by alwaydiqineg the majority class.
Since classification was not the main interest of this experiment, we omit tHesresu

11. For the sake of anonymity, the code numbers 1 through 7 do mespand to the PFCs 1 through 7 used for Police
Force Codes in the actual traffic accident database.

12. Like in the UCI case, only the results of the unordered versions ddlgwithm are presented here, although the
experiments were done with both unordered and ordered variants alfjiréthms.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
COV+sd COV+sd COV+ sd COvV+sd COV+ sd COV+sd

1 0.056+ 0.010.108 4+ 0.000.111 + 0.030.111 + 0.030.123 4+ 0.030.1107 + 0.03
2 0.050+ 0.100.113 4+ 0.040.127) + 0.050.127] + 0.040.129 + 0.050.151 + 0.04
3 0.140+ 0.03 0.118+0.03 0.126+ 0.02 0.119%+-0.02 0.118+ 0.01 0.154+ 0.02
4 0.052+ 0.010.105 4+ 0.030.105 4+ 0.040.120; 4 0.040.122) + 0.040.116) 4 0.04
5 0.075+ 0.080.108 4+ 0.040.115 4+ 0.060.121 4+ 0.050.110; 4+ 0.050.127] 4+ 0.04
6 0.078+ 0.060.118 4+ 0.030.134) + 0.050.122 4+ 0.060.124} 4+ 0.060.120; & 0.05
7 0.116+ 0.08 0.110+ 0.11 0.118+ 0.14 0.124+0.13 0.122+ 0.130.143 4+ 0.12
Average 0.081+ 0.03 0.111+0.01 0.120+ 0.01 0.121+ 0.00 0.121+ 0.01 0.132+ 0.02
e significance -p value 0.047 0.021 0.023 0.029 0.003
e win/loss/draw 5/2/0 6/1/0 6/1/0 6/1/0 7/0/0
e sig.win/sig.loss 5/0 5/0 5/0 5/0 6/0

Table 9: Experimental results on the traffic accident data sets. Avemggage per rule with
standard deviationGOV + sd) for different variants of the unordered algorithm.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard  WRAcc (y=0.5 (y=0.7) (y=0.9 (add.)
SUP+sd SUP+sd SUP+sd SUPtsd SUP+sd SUP+sd

1 0.864+0.03 0.89+ 0.02 0.83+ 0.060.93 4 0.040.96] £+ 0.020.95 + 0.03
2 0.84+ 0.02 0.85+0.09 0.85+0.020.92] 4+-0.040.93] + 0.00 0.84+ 0.08
3 0.81+ 0.06 0.82+ 0.040.93 +0.020.907 +0.050.977 + 0.01 0.85+ 0.06
4 0.804+0.040.87] =£0.05 0.82+ 0.05 0.83+0.000.911 £0.03 0.81+ 0.10
5 0.8740.08 0.85+ 0.03 0.8Q £+ 0.03 0.83+0.060.947 4+-0.02 0.83+ 0.08
6 0.84+ 0.060.88 + 0.07 0.81+ 0.090.917 + 0.060.88] +0.070.98] + 0.01
7 0.81+0.08 0.83+0.050.907 +0.01 0.81+ 0.010.95 + 0.020.99 & 0.00
Average 0.83+0.03 0.85+0.02 0.85+0.05 0.88+ 0.05 0.93+ 0.03 0.89+ 0.08
e significance —p value 0.056 0.548 0.053 0.001 0.092
e win/loss/draw 6/1/0 4/3/0 6/1/0 7/0/0 6/1/0
e sig.win/sig.loss 2/0 2/1 4/0 7/0 3/0

Table 10: Experimental results on the traffic accident data sets. Ovepgbg of rule sets with
standard deviatiorSUP =+ sd) for different variants of the unordered algorithm.

6.3.4 B/ALUATION BY THE DOMAIN EXPERT

We have further examined the rules induced by@iN2-SDalgorithm (using additive weights). We
focused on rules with high coverage and rules that cover a high pageeof the predicted class as
these are the rules that are likely to reflect some regularity in the data.

One of the most interesting results concerned the following. One might ett@dhe num-
ber of people injured would increase with the severity of the accident (tipetdotal number of
occupants in the vehicles). Furthermore, common sense would dictate tmaintiher of vehicles
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard  WRAcc (y=0.5 (y=0.7) (y=0.9 (add.)
SIZE+sd SIZEtsd SIZEtsd SIZEXsd SIZEtfsd SIZEtsd

1 16.7+ 0.609.3] + 0.9910.0f + 0.5110.6] + 0.4610.6] + 0.73 9.5 4+ 0.25
2 18.74+ 1.289.2) + 0.3310.0 + 0.2010.3] +0.2110.3] + 0.5611.1] 4 0.23
3 7.0+£0.30 8.6+0.95 9.2+0.1910.2 +0.14 9.5+0.35 9.8] +0.19
4 18.0+ 1.399.97 + 0.5910.4) + 0.3111.2) + 0.6411.2] 4+ 0.2410.3] &+ 0.56
5 12.8+1.449.61 £0.1910.171 + 0.51 11.2+-0.84 11.6+£0.96 9.71 +0.21
6 12.5+0.318.5/ +0.35 9.3 +0.51 8.7 +£0.91 9.47 +0.60 8.5 +0.39
7 8.6+1.41 9.3+041 9.9+0.9010.8 +0.7311.1 +0.13 10.4+ 0.59
Average 13.474+ 4.579.20+ 0.50 9.84+ 0.44 10.42+ 0.86 10.53+ 0.84 9.90+ 0.80
e significance -p value 0.040 0.066 0.123 0.127 0.075
e win/loss/draw 5/2/0 5/2/0 5/2/0 5/2/0 5/2/0
e sig.win/sig.loss 5/0 5/0 4/2 4/1 5/1

Table 11: Experimental results on the traffic accident data sets. Sizededa$ats with standard
deviation SIZE+ sd) for different variants of the unordered algorithm.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard  WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
SIG+sd SIGtsd SIG+sd SIG+ sd SIG+ sd SIG+ sd

1 1.9+ 0.827.00 +0.31 8.7) +£0.41 9.71 £ 0.59 9.47 +0.30 9.6 + 0.45
2 1.9+ 0.346.21 £ 0.25 9.97 +0.26 9.8 +0.20 9.5 +0.81 9.87 +0.36
3 1.3+ 0.276.6] +0.61 8.4] +0.52 9.2} +0.5411.5/ + 0.75 9.37 +0.17
4 1.6+ 0.107.6] +0.14 8.5/ +0.7911.0 + 0.84 9.47 +0.8011.17 + 0.24
5 1.6+ 0.756.07 +0.2310.6] +0.70 9.6] +0.7612.5/ + 0.43 9.11 +0.74
6 1.5+ 0.878.5/ +0.41 8.3 +0.54 9.8 +0.24 9.9 +0.5112.5/ + 0.35
7 1.7+ 0.496.8) +0.75 8.7 +0.20 9.97 +0.63 9.2] +0.73 9.77 + 0.40
Average 1.64+0.20 6.95+ 0.86 9.01+ 0.89 9.85+ 0.5610.20+ 1.28 10.16+ 1.21
e significance -p value 0.000 0.000 0.000 0.000 0.000
e win/loss/draw 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0
e sig.win/sig.loss 710 710 7/0 710 710

Table 12: Experimental results on the traffic accident data sets. Aveigigcance per rule with
standard deviationSIG + sd) for different variants of the unordered algorithm.

involved would also increase with accident severity. Contrary to theseceaqons we found rules
of the following two kinds:

¢ Rules that cover more than the average proportion of ‘fatal’ or ‘seregdents when just
one vehicle is involved in the accident. Examples of such rules are:
IF nv < 1.500 THEN sev = "1" [15 280 1024] %3
IF nv < 1.500 THEN sev = "2" [22 252 890]

13. The rules in the example are given in @E2-SDoutput format wherav stands for ‘number of vehiclesic is the
‘number of casualties’ antlil", " 2", and" 3" denote the class values ‘fatal’, ‘serious’ and ‘slight’ respectively.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
WRACC+ sd WRACCt sd WRACCE sd WRACCE sd WRACCE sd WRACCE sd

1 0.013+ 0.020.025 + 0.050.025' + 0.100.026; + 0.020.028 + 0.030.025 + 0.09
2 0.009+ 0.070.018 + 0.050.021 + 0.000.021 + 0.040.021 + 0.020.025 + 0.04
3 0.052+ 0.01 0.043+ 0.00 0.046+ 0.07 0.043+0.03 0.043+0.05 0.056+ 0.02
4 0.010+ 0.090.021 + 0.060.021 4+ 0.050.024) + 0.090.024) 4+ 0.000.023 + 0.07
5 0.019+ 0.040.026; + 0.060.027] 4+ 0.070.029 + 0.080.027] 4+ 0.010.030; + 0.07
6 0.027+ 0.030.041 4+ 0.060.047) 4+ 0.050.042' + 0.050.043 4+ 0.070.042 + 0.07
7 0.038+ 0.03 0.035+ 0.01 0.038&+ 0.04 0.040+ 0.00 0.039+ 0.08 0.046+ 0.04
Average 0.024+ 0.02 0.030+ 0.01 0.032+0.01 0.032+0.01 0.032+ 0.01 0.035+ 0.01
e significance -p value 0.096 0.042 0.041 0.048 0.000
e win/loss/draw 5/2/0 5/2/0 6/1/0 6/1/0 7/0/0
e sig.win/sig.loss 5/0 5/0 5/0 5/0 5/0

Table 13: Experimental results on the traffic accident data sets. Unessaifirule sets with stan-
dard deviation\WWRACC+ sd) for different variants of the unordered algorithm.

¢ Rules that cover more than the average proportion of ‘slight’ accidenés vithio or more
vehicles are involved and there are few casualties. An example of sudhia:r
IF nv > 1.500 AND nc < 2.500 THEN sev = "3" [8 140 1190]

Having shown the induced results to the domain expert, he pointed out theifajlaspects of
data collection for the data in the ACCIDENT taBfe.

e The severity code in the ACCIDENT table relates to the most severe injury guthase
reported for that accident. Therefore a multiple vehicle accident with 1 dath 20 slight
injuries would be classified as fatal as one fatality occurred, while eadvidodl casualty
injury severity is coded in the CASUALTY table.

e Some (slight) injuries may be unreported at the accident scene: if the poficemmgpiled/revised
the report after the event, new casualty/injury details can be reportedi€gjphat came to
light after the event or reported for reasons relating to injury/insuratams). However,
these changes are not reflected in the ACCIDENT table.

The findings revealed by the rules were surprising to the domain expeémead further investi-
gation. The analysis shows that examining the ACCIDENT table is not suffiaied that further
examination of the VEHICLE and CASUALTY tables is needed in further work

7. Related Work

Other systems have addressed the task of subgroup discovery, tHentwes being EXPLORA
(Klésgen, 1996) and MIDOS (Wrobel, 1997, 2001). EXPLORA treats theieg task as a sin-
gle relation problem, i.e., all the data are assumed to be available in one taltierflelahereas

14. We have also shown ti&EN2-standarcandCN2-WRAceesults to the expert but he did not consider any of the rules
to be interesting.
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MIDOS extends this task to multi-relational databases. Other approachlesittemulti-relational
databases using propositionalisation and aggregate functions canriokiroiine work of Knobbe
et al. (2001, 2002).

Another approach to finding symbolic descriptions of groups of instaiscggnbolic cluster-
ing, which has been popular for many years (Michalski, 1980, Gowd&éatay, 1992). Moreover,
learning of concept hierarchies also aims at discovering groups ohaesawhich can be induced
in a supervised or unsupervised manner: decision tree induction algonitérftsm supervised
symbolic learning of concept hierarchies (Langley, 1996, Raedt dmckeel, 1997), whereas hi-
erarchical clustering algorithms (Sokal and Sneath, 1963, Gord@&2) Ede unsupervised and do
not result in symbolic descriptions. Note that in decision tree learning, the wiéch can be
formed from paths leading from the root node to class labels in the leauessemtdiscriminant
descriptions formed from properties that best discriminate between the classes.lessfoumed
from decision tree paths form discriminant descriptions, they are inpgpte for solving subgroup
discovery tasks which aim at describing subgroups by their charaitgrieperties.

Instance weights play an important role in boosting (Freund and Shap®6) &and alternating
decision trees (Schapire and Singer, 1998). Instance weights haweubed also in variants of
the covering algorithm implemented in rule learning approaches such a®BRIPCohen and
Singer, 1999), RL (Lee et al., 1998) and DAIRY (Hsu et al., 1998). aiiant of the weighted
covering algorithm has been used in the subgroup discovery algorithfarS0le subset selection
(Gamberger and Lavéa2002).

A variety of rule evaluation measures and heuristics have been studisdidgroup discovery
(Klosgen, 1996, Wrobel, 1997, 2001), aimed at balancing the size ofup greferred to as fac-
tor g) with its distributional unusualness (referred to as fagorThe properties of functions that
combine these two factors have been extensively studied (the so-qaliesidace’ Kbsgen, 1996).
An alternative measurg = FPTFF;ar was proposed in the SD algorithm for expert-guided subgroup
discovery (Gamberger and Laé;a2002), aimed at minimizing the number of false positiFés
and maximizing true positives P, balanced by generalization paramepar. Besides such ‘ob-
jective’ measures of interestingness, some ‘subjective’ measure aéstitegness of a discovered
pattern can be taken into account, such as actionability (‘a pattern is intgréddtie user can do
something with it to his or her advantage’) and unexpectedness (‘a patiataresting to the user
if it is surprising to the user’) (Silberschatz and Tuzhilin, 1995).

Note that some approaches to association rule induction can also be useigoup discovery.
For instance, the APRIORI-C algorithm (Jovanoski and L&yve901), which applies association
rule induction to classification rule induction, outputs classification rules witttegueed support
and confidence with respect to a target class. If a rule satisfies alser-@effhed significance
threshold, an induced APRIORI-C rule can be viewed as an indepefatemk’ of knowledge
about the target class (selected property of interest for subgroegveiy), which can be viewed as
a subgroup description with guaranteed significance, support affideoce. This observation led
to the development of a novel subgroup discovery algorithm APRIGR(Kav5ek et al., 2003).

It should be noticed that in the terminology ‘patient vs. greedy’ of FriedarahFisher (1999),
WRACccis a ‘patient’ rule quality measure, favoring more general subgroupsthizee found by
using ‘greedy’ quality measures. As shown by our experiments in Tedkret al. (2000)\WRAcc
heuristic improves rule coverage compared to the standard CN2 heurisigcodservation is con-
firmed also in the experimental evaluation in Section 6 of this paper. Furtider®e confirming
this claim is provided by Kaek et al. (2003), providing experimental comparison of resuliNg-
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SDand our novel subgroup discovery algorithm APRIORI-SD with rulerlees CN2, RIPPER and
APRIORI-C.

8. Conclusions and Further Work

We have presented a novel approach to adapting standard classificégidearning to subgroup
discovery. To this end we have appropriately adapted the coveringthlgothe search heuristic,
the probabilistic classification and the area under the ROC curve (AU@rpemnce measure.
We have also proposed a set of metrics appropriate for evaluating thgy @fianduced subgroup
descriptions.

The experimental results on 23 UCI data sets demonstrat€MizatSDproduces substantially
smaller rule sets, where individual rules have higher coverage anificigice. These three factors
are important for subgroup discovery: smaller size enables betterstadding, higher coverage
means larger support, and higher significance means that rules degisdbeered subgroups that
are significantly different from the entire population. We have evaluatedebults ofCN2-SDalso
in terms of AUC and shown a small (insignificant) increase in terms of the ader ROC curve.

We have appliedN2-SDalso to a real-life problem of traffic accident analysis. The exper-
imental results confirm the findings in the UCI data sets. The most interestuliggsare due
to interpretation by the domain expert. What was confirmed in this case stuglthatathe result
of a data mining process depends not only on the appropriateness @leoted method and the
data that is at hand but also on how the data has been collected. In tleeacaftient experiments
examining the ACCIDENT table was not sufficient, and further examinatiaheoW EHICLE and
CASUALTY tables is needed. This will be performed using the RSD relatismadroup discovery
algorithm (Lavr& et al., 2003), a recent upgrade of tb2-SDalgorithm which enables relational
subgroup discovery.

In further work we plan to compare the results with the MIDOS subgroupdéesy algorithm.
We plan to investigate the behavior©@N2-SDin terms of AUC in multi-class problems (Hand and
Till, 2001). An interesting question, to be verified in further experiments histher the weighted
versions of the CN2 algorithm improve the significance of the induced supgralso in the case
when CN2 rules are induced without applying the significance test.

An important aspect of subgroup discovery performance, which iecieg in our study, is the
degree of overlap of the induced subgroups. The challenge of dilnefuresearch is to propose
extensions of the weighted relative accuracy heuristic and ROC spalaton metrics that will
take into account the overlap of subgroups.

We are now moving the focus of our research in subgroup discovem freuristic search
toward exhaustive search of the space of patterns. An attempt of thisskitedcribed by Kasek
et al. (2003) where the well known APRIORI association rule learner agapted to the task of
subgroup discovery.
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Appendix A. Tables with Detailed Results for Different Variants of the Unordered
Algorithm in UCI Data Sets

The tables in this appendix show detailed results of the performance ofediffeariants of the
unordered algorithm. The comparisons are made on 23 UCI data sets list@olén3T The results
shown in Tables 14-18 of Appendix A are summarized in the paper in Tableddthe results of
Tables 19-20 in Table 5.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
COV+sd COV+sd COV+ sd COV+sd COV+ sd COV+sd

1 0.071+ 0.010.416 4+ 0.000.473 4+ 0.030.492 4 0.030.480 4 0.030.424; + 0.03
2 0.079+ 0.100.150" 4 0.040.208' + 0.050.174) 4+ 0.040.218 + 0.050.260; 4 0.04
3 0.625+ 0.03 0.322 +0.03 0.612+ 0.02 0.6170.02 0.721+ 0.01 0.33Q + 0.02
4 0.048+ 0.010.496) 4+ 0.030.504) + 0.040.513 4 0.040.504) + 0.040.507) & 0.04
5 0.057+ 0.080.275) 4 0.040.296) + 0.060.344) 4+ 0.050.299 + 0.050.381 + 0.04
6 0.312+ 0.060.576) 4 0.030.936) 4 0.051.039 4 0.061.006 4+ 0.061.295 + 0.05
7 0.053+ 0.080.092 +0.110.141 4+ 0.140.153 + 0.130.138 4+ 0.130.151) 4+ 0.12
8 0.107+ 0.090.240 4+ 0.070.419 + 0.090.376) 4+ 0.120.366) 4+ 0.110.435 + 0.09
9 0.207+ 0.040.430 4 0.060.637) 4 0.040.829 + 0.040.826 4+ 0.040.686) 4 0.03
10 0.093+ 0.000.495 + 0.000.509 + 0.000.509 + 0.000.516 + 0.000.513 + 0.00
11 0.099+ 0.050.168 + 0.080.229 + 0.050.234] + 0.040.246 + 0.040.354] + 0.06
12 0.3784+0.01 0.386+ 0.010.619 4+ 0.00 0.444+ 0.000.768 + 0.000.668 + 0.01
13 0.160+ 0.110.408 + 0.090.639 + 0.150.467 + 0.160.424; + 0.180.621 + 0.17
14 0.142+ 0.010.356) + 0.070.461 + 0.020.668 + 0.030.569 + 0.030.720 + 0.03
15 0.030+ 0.010.113 + 0.070.129 + 0.020.146] + 0.030.182 + 0.030.117 + 0.03
16 0.129+ 0.010.6507 + 0.070.703 + 0.020.711 + 0.030.674; + 0.030.831) + 0.03
17 0.021+ 0.000.2186 +0.000.225 4+ 0.000.270 4+ 0.000.307 + 0.000.324] 4+ 0.00
18 0.022+ 0.050.146) + 0.080.155 + 0.050.157 + 0.040.166] + 0.040.200 + 0.06
19 0.066+ 0.010.331 + 0.010.357) + 0.000.628 + 0.000.616 + 0.000.759 + 0.01
20 0.039+0.110.139 + 0.090.151) +0.150.159 + 0.160.149 + 0.180.169 + 0.17
21 0.040+ 0.010.076 + 0.070.115 +0.020.177 + 0.030.172 + 0.030.2186] + 0.03
22 0.004+ 0.010.185 + 0.070.194; + 0.020.185 + 0.030.188 + 0.030.191} + 0.03
23 0.231+0.010.477 + 0.070.552' + 0.020.715 + 0.030.818 + 0.031.022 + 0.03
Average 0.13% 0.14 0.311+0.17 0.403+ 0.23 0.435+ 0.25 0.450+ 0.26 0.486+ 0.30
e significance —p value 0.000 0.000 0.000 0.000 0.000
e win/loss/draw 22/1/0 22/1/0 22/1/0 23/0/0 22/1/0
e sig.win/sig.loss 21/1 22/0 21/0 22/0 22/1

Table 14: Relative average coverage per rule with standard devi&tiovi £ sd) for different vari-
ants of the unordered algorithm using 10-fold stratified cross-validation.

179



LAVRAC ET AL.

CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard  WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
SUP+sd SUPtsd SUPt+sd SUPtsd SUPtsd SUP+sd

1 0.81+ 0.090.89) + 0.020.87) £+ 0.000.977 + 0.010.84] + 0.000.89 + 0.04
2 0.88+ 0.01 0.90+ 0.02 0.89+ 0.09 0.84+ 0.040.93] +£0.02 0.86+ 0.05
3 0.87+0.05 0.87+0.09 0.84+ 0.050.937 +0.02 0.84+ 0.070.95! + 0.01
4 0.87+0.06 0.8] + 0.09 0.90+ 0.02 0.81 + 0.040.97) &+ 0.000.93 + 0.02
5 0.80+ 0.01 0.82+ 0.030.92] + 0.06 0.85+ 0.010.95 + 0.010.87] + 0.05
6 0.90+ 0.03 0.81 + 0.010.95] + 0.01 0.85+ 0.030.98) + 0.00 0.82 + 0.02
7 0.89+ 0.03 0.88+ 0.03 0.90+ 0.02 0.81 + 0.070.97) £+ 0.010.967 + 0.01
8 0.84+ 0.03 0.87+ 0.040.941 + 0.01 0.83+ 0.03 0.89+ 0.090.98; + 0.00
9 0.874+0.10 0.81 +0.02 0.85+ 0.100.94! + 0.00 0.90+ 0.020.99 + 0.00
10 0.84+ 0.01 0.83+0.08 0.82+ 0.071.00f + 0.000.907 + 0.020.95] &+ 0.02
11 0.834+ 0.03 0.85+ 0.070.96] + 0.010.95! + 0.010.89 + 0.090.98] + 0.01
12 0.82+ 0.040.897 + 0.00 0.83+ 0.100.917 + 0.010.88} + 0.030.95] + 0.01
13 0.87+0.10 0.90+ 0.06 0.81 + 0.02 0.8Q +£0.09 0.85+ 0.04 0.85+ 0.03
14 0.844+ 0.05 0.85+ 0.07 0.83+ 0.060.89" + 0.060.93] + 0.02 0.86+ 0.05
15 0.83+ 0.04 0.80+ 0.070.96] + 0.01 0.86+ 0.09 0.80+ 0.08 0.81+ 0.00
16 0.85+ 0.07 0.82+ 0.021.007 + 0.00 0.84+ 0.060.967 + 0.01 0.85+ 0.10
17 0.86+ 0.080.907 + 0.03 0.86+ 0.07 0.82+ 0.061.007 + 0.00 0.85+ 0.06
18 0.81+ 0.060.85 + 0.070.96] + 0.010.89 + 0.050.95! + 0.010.97] £+ 0.00
19 0.83+0.01 0.85+ 0.050.92] 4+ 0.040.95! + 0.010.90f + 0.02 0.84+ 0.05
20 0.90+ 0.06 0.82 + 0.070.99) + 0.00 0.90+ 0.030.997 + 0.00 0.90+ 0.04
21 0.81+ 0.05 0.80+ 0.040.87) + 0.080.90f + 0.040.931 +0.02 0.82+ 0.06
22 0.814+ 0.020.89 4+ 0.060.941 + 0.020.967 + 0.011.007 + 0.000.96] + 0.01
23 0.82+ 0.05 0.82+ 0.040.94) + 0.030.87] + 0.070.997 + 0.000.99 + 0.00
Average 0.84+- 0.03 0.85+ 0.03 0.90+ 0.06 0.89+ 0.06 0.92+ 0.06 0.91+ 0.06
e significance —p value 0.637 0.000 0.017 0.000 0.001
e win/loss/draw 13/10/0 18/5/0 14/9/0 20/3/0 16/7/0
e sig.win/sig.loss 5/4 13/1 11/3 18/0 13/1

Table 15: Overall rule set support with standard deviatldR + sd) for different variants of the
unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-sD CN2-SD
# standard WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
SIZE+sd SIZEtsd SIZE:Lsd SIZEtsd SIZEtsd SIZEt sd

1 12.4+1.95 2.0 £0.75 2.7/ £ 0.02 2.6 £0.87 2.2 £ 0.85 3.5/ £ 0.79
2 12.6+1.04 8.8/ +0.95 7.9 +0.50 8.5/ +1.75 9.0 £ 0.24 9.21 +1.24
3 18+0.10 2.0+041 2.0+0.70 2.7/ £0.44 1.9+0.27 1.8+0.29
4 146+£1.81 791 £1.78 8.11 +£1.02 7.9 £0.97 8.5 £0.47 85 +0.41
5 12.8+1.56 5.2 £0.79 6.0 £ 0.68 5.6 £1.35 5.4] £ 0.30 4.6 +0.86
6 3.7+1.37 25/ +£0.79 3.1+0.72 3.8+1.61 47| £1.22 3.4+0.02
7 15.1+1.89 7.8] £1.49 84 +1.32 8.7/ £0.46 9.1 £1.26 8.8 +1.13
8 6.4+ 1.53 3.0/ £1.20 2.9 +£0.98 2.7 +0.67 2.7 +0.90 1.8} +0.38
9 3.0+0.29 2.11 £0.50 1.71 £0.93 2.7+0.53 3.6] +1.83 2.7+ 0.00
10 10.1+1.02 3.97 £0.31 3.91 £0.85 3.4 +£1.10 3.3/ £1.90 2.5 £ 0.54
11 7.6+ 1.01 3.00 +1.78 3.91 +1.84 4.0/ £0.18 3.6] +0.87 4.2 £ 0.41
12 3.8+£1.24 3.00 £1.24 3.2/ £0.42 3.4/ £0.39 2.9) £0.05 3.6+ 0.69
13 47+1.30 3171 +£1.15 3.4 +054 3.9 +£098 4.6+1.19 45+0.71
14 524090 2.7 +£0.91 2.11+0.95 1.91 +£0.10 1.71 +£1.73 2.11 +0.78
15 21.2+ 3.4810.5) +1.8511.2) £1.1210.3) £ 1.99 9.6] + 1.3210.2] +1.30
16 7.1+£159 2.0 £0.81 2.4 +0.56 2.4) £0.75 2.9) £ 0.56 1.8] +0.45
17 28.7+3.89 9.97 +1.22 9.4 £1.61 8.97 +1.80 9.5/ +1.03 8.3 +1.17
18 83.8£5.3710.9) £ 2.3711.3) £ 2.7811.8) £1.4511.7] £ 1.6712.8] + 1.74
19 129+ 1.68 7.77 £1.00 8.6] £1.21 9.17 +£1.85 8.4] +1.0910.11 + 1.83
20 32.8+£2.64 8.7] £1.82 89 +1.48 9.8/ £1.0110.5 +£1.37 9.21 +1.49
21 35.1+ 3.5419.6] £ 1.8019.31 +£2.9119.7] £ 2.9919.8 + 2.5819.2 + 2.90
22 77.3+4.0712.2) +£1.7911.47 +£2.8712.4] +£2.2912.4] +2.0911.77 +2.81
23 5.5+1.26 3.0 £0.36 2.11 £ 0.70 2.1 £0.57 1.2 £0.73 1.47 +0.90
Average 18.18t 21.77 6.15+ 4.49 6.25+4.42 6.45+4.48 6.49+4.57 6.35+4.58
e significance —p value 0.006 0.007 0.007 0.007 0.007
o win/loss/draw 22/1/0 22/1/0 21/2/0 20/3/0 23/0/0
e sig.win/sig.loss 22/0 21/0 20/1 19/2 18/0

Table 16: Average rule set sizes with standard deviat®idE + sd) for different variants of the
unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard  WRAcc (y=0.5) (y=0.7) (y=0.9 (add.)
SIGtsd SIGtsd SIG+ sd SIG sd SIG+ sd SIG+ sd

1 2.0+ 0.05 7.8 £1.4914.6] + 1.0524.0) + 1.0115.6] + 1.54 4.6 +0.52
2 2.7+ 0.1013.31 +1.6927.11 +3.37 2.1+ 0.0220.5] 4+ 2.4526.6] + 3.43
3 2.14+0.01 7.8) £0.6413.3] +1.39 2.5+ 0.0121.2) +2.5522.9) +2.43
4 244 0.06 9.17 £0.5814.11 + 1.7216.9) &+ 1.2822.5] + 2.4930.2} + 3.98
5 2.0+ 0.0115.8 +1.0714.9 £1.9511.01 +1.4315.2) +1.85 2.1+ 0.01
6 1.9+ 0.0310.07 £ 1.6311.07 + 1.1230.5] &+ 2.1230.1] + 2.2723.1} + 2.97
7 2.0+ 0.02 2.7£0.8319.8] +1.2117.7) £ 1.6311.17 +£ 1.0316.3] + 1.49
8 1.9+ 0.09 4.6 +0.5923.21 +1.82 5.3] +0.36 4.0 4+ 0.0330.6] 4+ 2.96
9 2.7+ 0.03 9.71 £0.8612.3} + 1.00 9.3] + 0.65 8.5 +0.8925.07 + 2.60
10 1.4+ 0.04 3.6/ £0.74 5.87 +£0.4828.3] +2.2724.9) £ 2.2713.5/ +£ 1.84
11 2.0+ 0.04 1.8+0.0716.77 +1.4223.9] +2.4130.9] +2.1814.9] + 1.52
12 1.9+0.03 7.1 £0.0717.00 £1.61 1.3+0.0917.6] &+ 1.45 4.07 + 0.00
13 2.1+ 0.0015.17 +1.8019.4) +£1.7721.97 £ 2.3821.4] +2.39 9.7 £ 0.61
14 2.5+ 0.0814.97 +1.9318.0 +1.5713.9 £1.28 3.0+ 0.0918.1] +1.73
15 25+ 0.05 4.21 £ 0.4217.5) +£1.79 5.77 £ 0.4621.9 + 2.8326.5) 4 2.22
16 2.6+ 0.0411.77 +£1.90 9.6 +£0.5622.7] £ 2.59 2.3+ 0.08 6.07 &+ 0.00
17 2.7+ 0.03 4.8) +£0.5311.7) +1.6721.8] + 2.5515.07 + 1.8224.3] &+ 2.26
18 1.5+ 0.0014.17 +£1.11 6.07 £ 0.9326.8] +2.5312.6] + 1.3519.3] + 1.09
19 1.0+ 0.07 2.47 £0.0122.0f +1.2017.0f +1.7816.4] + 1.74 9.17 + 0.02
20 1.5+ 0.0016.07 +2.5224.3) + 1.5211.4) + 1.2529.9) + 3.2521.7] + 2.88
21 2.4+ 0.02 6.8] £0.8815.6) +1.9812.97 + 1.47 8.2 + 0.0630.6] + 2.39
22 2.6+ 0.04 9.71 £ 1.56 3.47 £0.0914.2] £1.20 7.17 £0.4720.2] £2.71
23 2.0+ 0.0713.5) + 1.5720.7) +1.93 2.77 £0.0229.4) + 3.5125.7) +2.48
Average 2.140.46 8.97+ 4.66 15.57+ 6.05 14.95+ 9.02 16.92+ 8.9018.47+ 9.00
e significance —p value 0.000 0.000 0.000 0.000 0.000
e win/loss/draw 22/1/0 23/0/0 21/2/0 22/1/0  23/0/0
e sig.win/sig.loss 21/0 23/0 20/0 21/0 22/0

Table 17: Average rule significance with standard deviat®lG( sd) for different variants of the
unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (y=0.5 (y=0.7) (y=0.9 (add.)
WRACCt sd WRACCt sd WRACCt sd WRACCtsd WRACCtsd WRACCE sd

1 0.022+ 0.09 0.148 + 0.03 0.186/ + 0.09 0.185 + 0.04 0.181 + 0.07 0.162 + 0.01
2 0.034+ 0.04 0.063 +0.04 0.095 + 0.02 0.079 + 0.01 0.093 + 0.07 0.111 + 0.04
3 -0.016+ 0.08 -0.012+ 0.01 -0.005t 0.03 -0.006+ 0.09 -0.001+ 0.02 -0.012+ 0.01
4 0.020+ 0.04 0.2107 + 0.02 0.228 + 0.02 0.233 + 0.04 0.224 + 0.03 0.224 + 0.10
5 0.013+ 0.06 0.065 + 0.06 0.085 + 0.07 0.099 + 0.04 0.086 + 0.07 0.092 + 0.03
6 0.058+ 0.07 0.099 + 0.10 0.174 + 0.05 0.208 + 0.00 0.213 + 0.01 0.243 + 0.10
7 0.012+ 0.02 0.0207 + 0.01 0.034; + 0.00 0.0407 + 0.05 0.034; + 0.08 0.034; + 0.08
8 0.026+ 0.04 0.065 +0.04 0.124f + 0.02 0.104 + 0.06 0.104 + 0.09 0.122 + 0.03
9 0.004+ 0.07 0.018 + 0.04 0.057 + 0.10 0.073 + 0.09 0.066 + 0.04 0.049 + 0.02
10 0.013+ 0.04 0.0677 + 0.02 0.076] + 0.01 0.073 + 0.09 0.076] + 0.04 0.072 + 0.07
11 0.041+ 0.02 0.065 + 0.03 0.099 + 0.04 0.095 + 0.05 0.104 + 0.10 0.145 + 0.00
12 0.024+ 0.04 0.024+ 0.05 0.062 + 0.02 0.042 + 0.02 0.052 + 0.03 0.045 + 0.06
13 0.024+ 0.03 0.056] + 0.03 0.114 + 0.10 0.085 + 0.04 0.065 + 0.07 0.092 + 0.03
14 0.009+ 0.10 0.038 + 0.10 0.053 + 0.03 0.082 + 0.10 0.082 + 0.02 0.085 + 0.08
15 0.015+ 0.07 0.030r + 0.07 0.036] + 0.09 0.0417 + 0.03 0.055 + 0.08 0.032 + 0.06
16 0.017+ 0.00 0.095 + 0.10 0.1177 £ 0.04 0.129 + 0.04 0.127] + 0.06 0.138 + 0.02
17 0.005+ 0.03 0.048 + 0.07 0.0517 + 0.02 0.073 + 0.08 0.083 + 0.02 0.073 + 0.09
18 0.009+ 0.06 0.0307 + 0.00 0.0377 £ 0.01 0.032 + 0.00 0.034 + 0.07 0.045 + 0.03
19 0.007+ 0.07 0.060" + 0.00 0.081 + 0.08 0.133 + 0.05 0.132 4+ 0.03 0.147 + 0.04
20 0.004+ 0.01 -0.045 + 0.10 -0.042 + 0.04 -0.048 + 0.02 -0.042 + 0.03 -0.051 + 0.06
21 0.015+ 0.08 0.015t 0.03 0.024 + 0.04 0.039 + 0.08 0.042 + 0.06 0.045 + 0.05
22 0.001+ 0.03 0.045 + 0.06 0.054] + 0.05 0.0547 + 0.09 0.054 + 0.05 0.049 + 0.05
23 0.033+ 0.01 0.076; + 0.05 0.089 + 0.03 0.144 + 0.05 0.149 + 0.06 0.1677 + 0.01
Average 0.01A 0.02 0.056t0.05 0.079t0.06 0.086+0.07 0.088t0.06 0.092+ 0.07
e significance -p value 0.001 0.000 0.000 0.000 0.000
e win/loss/draw 20/1/2 22/1/0 22/1/0 22/1/0 22/1/0
e sig.win/sig.loss 19/1 21/1 21/1 211 2111

Table 18: Average rule unusualness with standard deviaMiRACC= sd) for different variants
of the unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRAcc (y=0.5 (y=0.7) (y=0.9 (add.)
ACC+sd ACC+ sd ACC+ sd ACC+ sd ACC+ sd ACC+ sd

1 81.62+ 3.5585.53 + 0.1489.27] + 8.0487.61 + 8.7187.81 + 6.5488.35 + 8.60

2 92.28+ 1.07 92.13+5.95 95.80+ 1.21 95.56+ 3.15 92.53+ 1.52 92.60+ 2.28

3 82.45+ 3.89 81.36+ 1.30 84.13+8.88 84.07+6.11 84.81+ 1.06 81.46+ 2.24

4 94,18+ 3.71 94.34:2.25 97.19+0.35 97.374 0.42 96.54t 1.77 96.08+ 1.22

5 72.77+9.33 73.81+ 0.9178.66 + 8.6578.80) + 0.0478.81) + 5.55 74.12+ 9.97

6 68.71+ 1.79 67.12- 6.55 68.62+ 0.96 70.08+ 6.2871.20) +9.94 68.75+ 5.32

7 72.40+7.60 71.40+7.57 73.73:£0.7275.82 +8.07 74.67£5.85 72.40+ 7.36

8 74.10+ 4.15 77.06+ 7.0679.64) + 6.98 77.53+4.7778.48 + 3.1678.03 + 2.70

9 80.74+ 7.59 83.26+ 0.8387.87) +2.2987.75 + 0.3686.97) + 6.8886.14 + 1.99
10 98.58+ 0.60 98.54+ 0.11 99.86+ 0.03 99.37+ 0.06 99.77 0.02 99.10+ 0.40
11 91.44+ 6.62 88.87 + 7.26 93.25+ 2.89 90.53+ 1.44 92.41+4.96 91.10+ 3.76
12 91.33+ 2.04 91.33+ 7.0295.08' +2.08 94.40+ 0.94 91.77+6.33 91.75+ 2.28
13 80.87+ 1.32 79.74+ 1.74 83.81+6.5984.23 +£7.59 81.41+0.76 80.86+ 7.26
14 72.28+ 2.81 76.60f 3.1077.59 + 2.8478.35 +5.1180.40 + 3.3177.74 + 1.69
15 98.01+ 0.60 76.4Q + 3.75 77.59 + 1.81 77.94 + 0.63 80.26 + 7.99 77.38 + 4.97
16 94.24+ 0.39 95.63+ 1.8397.67) &+ 1.6299.09" + 0.1499.85 + 0.0497.62 + 1.05
17 74.71+ 8.62 72.49+0.48 72.55+9.8577.08 +8.89 76.90+ 0.86 72.51+ 5.30
18 89.82+ 5.33 70.33 + 7.94 74.21 £ 5.66 70.37 £ 7.81 70.56 + 7.49 72.48 + 1.62
19 60.60+ 1.8368.13 + 3.7672.70f + 8.0571.12) + 5.4071.46/ + 7.6269.32 + 0.08
20 58.88+ 5.70 17.84 + 2.33 22.47 +1.06 19.84 + 1.48 21.98 + 1.86 19.49 + 1.18
21 88.73+ 3.01 69.68 +4.14 70.71 +£9.94 72.29 + 8.70 74.23 + 1.22 71.04 + 7.45
22 69.18+ 8.9274.26/ + 1.3277.71) +9.3179.11) + 1.2678.56] + 9.6075.70 &+ 7.67
23 89.16+ 1.33 90.90+ 1.18 91.08+ 5.2395.12 + 1.0193.26] + 0.67 91.32+ 2.97
Average 81.61+ 11.66 78.12+ 16.28 80.92+ 16.04 81.02t+ 16.44 81.07 15.78 79.36+ 16.24

e significance —p value 0.150 0.771 0.812 0.818 0.344
e win/loss/draw 10/12/1 17/6/0 18/5/0 19/4/0 15/8/0
e sig.win/sig.loss 3/5 9/4 11/4 10/4 714

Table 19: Average rule set accuracy with standard devia#@(+ sd) for different variants of
the unordered algorithm using 10-fold stratified cross-validation.
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CN2 CN2 CN2-SD CN2-SD CN2-SD CN2-SD
# standard WRACcc (y=0.5) (y=0.7) (y=0.9 (add.)
AUC + sd AUC+ sd AUC+ sd AUC+ sd AUC+ sd AUC+ sd

1 33.39+ 5.6186.12 + 0.0583.31 4 2.0184.27) - 9.4484.47) + 6.0585.12 4+ 5.16
2 90.74+ 3.57 89.52+ 7.2694.37) - 2.2996.28 + 1.4797.33 +- 0.9894.52 + 1.67
3 84.51+ 0.15 80.11 +9.84 82.58+ 5.60 80.98 + 8.12 78.38 + 7.44 83.03+ 1.88
4 96.22+ 2.55 93.5%-2.26 97.19+-0.76 92.37 & 2.33 96.544+ 1.90 92.87 + 2.66
5 71.334+ 7.8680.75 - 0.5180.52 4+ 1.8280.56] & 8.1780.76) 4+ 5.0280.06 + 3.49
6 70.53+ 5.99 64.42 +3.29 68.09+ 7.34 68.63+ 2.44 64.02 +8.71 70.61* 2.46
7 71.99+5.76 74.00+7.19 73.99+ 7.63 73.92-6.0175.29 +7.70 72.73-3.84
8 74.17+5.35 73.98+0.9083.82 +9.7684.69 + 0.6387.02' + 9.8085.62 + 1.84
9 78.81+ 4.6485.65) + 0.3384.82) +2.7882.80 +5.19 78.66+ 6.1281.29 + 0.23
10 96.224+2.3198.59 + 0.10 97.13+ 0.78 96.54+ 0.1399.65 + 0.04 97.42+ 0.24
11 94.464 1.52 90.86 + 0.32 93.174-2.68 93.99+ 2.83 94.30+ 2.10 93.87+ 1.07
12 99.17+ 0.23 99.17+ 0.16 99.96+ 0.01 99.38+ 0.15 99.92+ 0.03 99.46+ 0.06
13 83.204- 8.68 78.38 +2.33 82.114-1.04 84.74+ 4.51 80.12 +4.12 83.06+ 6.97
14 75.064 6.1379.41 +£5.1281.62 4+ 7.6179.97 + 1.2980.12 4+ 5.3478.51) + 1.15
15 97.90+ 0.36 78.90 + 6.95 91.88 + 2.73 91.28 + 2.63 90.87 + 2.01 89.15 + 4.32
16 96.88+ 1.67 96.41+ 1.63 93.44 +2.97 95.35+ 0.18 94.82+ 1.06 93.95 + 2.06
Average 82.16-16.81 84.379.87 86.75+ 8.95 86.61+ 8.81 86.3%H-10.32 86.33t 8.60
e significance —p value 0.563 0.175 0.198 0.236 0.236
o win/loss/draw 6/9/1 10/6/0 10/6/0 9/7/0 10/6/0
e sig.win/sig.loss 5/5 6/2 6/3 714 6/3

Table 20: Area under the ROC curve (AUC-Method-2) with standardatien (AUC + sd) for
different variants of the unordered algorithm using 10-fold stratifiedvalidation.
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