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Abstract

Gene Ontology (GO) terms are often used to interpret the results of microarray experiments. The most common approach is to per-
form Fisher’s exact tests to find gene sets annotated by GO terms which are over-represented among the genes declared to be differen-
tially expressed in the analysis of microarray data. Another way is to apply Gene Set Enrichment Analysis (GSEA) that uses predefined
gene sets and ranks of genes to identify significant biological changes in microarray data sets. However, after correcting for multiple
hypotheses testing, few (or no) GO terms may meet the threshold for statistical significance, because the relevant biological differences
are small relative to the noise inherent to the microarray technology. In addition to the individual GO terms, we propose testing of gene
sets constructed as intersections of GO terms, Kyoto Encyclopedia of Genes and Genomes Orthology (KO) terms, and gene sets con-
structed by using gene—gene interaction data obtained from the ENTREZ database. Our method finds gene sets that are significantly
over-represented among differentially expressed genes which cannot be found by the standard enrichment testing methods applied on

individual GO and KO terms, thus improving the enrichment analysis of microarray data.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

High-throughput technologies such as DNA micro-
arrays and proteomics are revolutionizing biology and
medicine. Global gene expression profiling, using micro-
arrays, monitors changes in the expression of thousands
of genes simultaneously. The outcome of such studies is
usually a list of genes whose expression varies between dif-
ferent conditions and therefore may be of interest for fur-
ther analysis. Lately, databases of other information
about genes are used in order to provide additional infer-
ence. Two of the most used are Gene Ontology (GO) [1],
and Kyoto Encyclopedia of Genes and Genomes (KEGG)

12].
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Gene Ontology (GO) is a controlled vocabulary of stan-
dardized biological terms used to annotate gene products.
It comprises several thousand terms, divided in three
branches: Molecular Function, Biological Process and Cel-
lular Component. KEGG Orthology (KO) is a collection
of manually drawn pathway maps representing the knowl-
edge on the molecular interaction and reaction networks
for Metabolism, Genetic Information Processing, Environ-
mental Information Processing, Cellular Processes and
Human Diseases.

Tests for gene set enrichment compare lists of differen-
tially expressed (DE) genes and non-DE genes to find
which gene sets annotated by GO and KO terms are over-
or under-represented amongst the DE genes. Several
research groups have developed software to carry out Fish-
er’s exact tests to find which gene sets are over-represented
among the genes found to be differentially expressed, e.g.,
[4,5] and other works cited in [6]. The Fisher’s test for
term T essentially compares the proportion of DE genes
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annotated by term 7 with the proportion of non-DE genes
annotated by term 7. Since there is a test for each of several
thousands of GO nodes, and hundreds of KO nodes, multi-
ple hypothesis testing must be taken into account. This is
usually done by the Bonferroni correction or a more
sophisticated correction controlling the False Discovery
Rate (FDR). Benjamini and Hochberg’s method [7] gives
valid control of the FDR even when the different tests
are dependent.

Approaches based on Fisher’s exact testing have some
major limitations:

e After correcting for multiple hypothesis testing, in
selecting DE genes, no individual gene may meet the
threshold for statistical significance, because the relevant
biological differences are small relative to the inherent
microarray technology noise.

e The opposite situation, one may be left with a long list
of statistically significant genes without any common
biological function, so none of the gene sets annotated
by GO and KO terms is significantly enriched.

¢ Single gene analysis may miss important effects on path-
ways. Biological pathways often affect sets of genes act-
ing jointly. An increase of 20% in the expression of all
gene members of a biological pathway can alter the exe-
cution of that pathway, and its impact on other pro-
cesses, significantly more than a 10-fold increase in a
single gene [8].

e It is not rare that different research groups studying the
same biological system report lists of DE genes they
found to be statistically significant which have just a
small overlap [11].

e Since all genes annotated by a given GO term are also
annotated by all of its parents, closely related nodes
may be found separately significant [15].

e Specific GO terms have few genes annotated, so there is
often not enough statistical evidence to find these terms
as statistically significant. The more general the GO
term, the more genes are annotated by it, but the less
useful the term is as an indication of the function of
the differentially expressed genes [12].

The described problems have recently triggered the
development of numerous methods described below.

1.1. Related work

Several methods have been developed recently to over-
come the analytical challenges presented in the previous
section. For improving the sensitivity of enrichment detec-
tion, Gene Set Enrichment Analysis (GSEA) [9] and Para-
metric Analysis of Gene Set Enrichment (PAGE) [13] were
developed. GSEA calculates an enrichment score (ES) for a
given gene set using ranks of genes and infers the statistical
significance of ES against the ES-background distribution
calculated by permutating the labels of the original data
set. In the new version of GSEA, GSEA-P [10], there is

an option for importing gene sets from MSigDB (Molecu-
lar Signatures Database) and testing them for enrichment,
by that increasing the probability for finding enriched gene
sets.

In contrast, PAGE calculates a Z-score for a given gene
set from a parameter such as z-score value calculated on the
basis of two experimental groups and infers statistical sig-
nificance of the Z-score against the standard normal distri-
bution. These two methods are capable to find enriched
gene sets, not detectable by the standard Fisher’s exact test.

Grossmann et al. [14] take into account the hierarchical
structure of the GO by measuring the over-representation
of each term relative to its parent terms. Alexa et al. [15]
downweight the contribution of genes to the calculation
of over-representation of a term if the children of that term
have already been found significantly enriched. These two
methods do not improve the statistical power, as the num-
ber of genes in each hypothesis test will be smaller than in
the usual term-by-term tests, as double counting is penal-
ized. However, they do help to improve the interpretation,
since they produce just one (or at least not too many) sig-
nificant p-values for each significant region of the graph.
Levin et al. [12] use grouping of similar GO terms (which
are close in the GO graph) in order to increase the statisti-
cal power. The reason is that the lower terms in the GO
have few genes annotated by it, and can not be found sta-
tistically significantly enriched. Therefore, the authors of
[12] group several terms to increase the size of the gene sets
tested for enrichment. This approach is useful and can find
enriched gene sets not detectable by standard screening of
GO terms, but it is different form ours: we construct new
gene sets as intersection of gene sets defined by Molecular
Function, Biological Processes and Cellular Component
terms of GO and KO terms, whereas [12] create new gene
sets by making union of similar terms in GO. Concerning
the usage of KO term in enrichment analysis, the work of
Mao et al. [3] uses KO terms for automated annotation
of large sets of genes, including whole genomes, and auto-
mated identification of pathways. This is done by identify-
ing both the most frequent and the statistically significantly
enriched pathways.

1.2. The proposed SEGS approach

In this work, we propose a novel approach for searching
of enriched gene sets (SEGS) which proves to further
improve the gene set enrichment results and by that the
interpretation of gene expression data. Our approach is
based on the efficient generation of new biologically rele-
vant gene sets, that are tested for possible enrichment.
The new gene sets are generated as intersections of GO
and KO terms and gene sets defined with the help of
gene—gene interaction data. Testing the enrichment of these
gene sets with the standard methods (Fisher’s exact test,
GSEA and PAGE) shows that our method finds gene sets
constructed from GO and KO terms significantly over-rep-
resented amongst differentially expressed genes, while these
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GO and KO terms are not found to be enriched by Fisher’s
test, GSEA or PAGE, thus improving the enrichment anal-
ysis of microarray data.

The paper is organized as follows. Section 2 gives some
background information about the publicly available
resources of biological knowledge, followed by the meth-
ods for finding DE genes and methods for testing the gene
set enrichment: Fisher’s exact test, GSEA and PAGE. Sec-
tion 3 presents the main idea of our SEGS approach, and
the methodological steps taken in the construction of the
new gene sets. Section 4 presents the results of the experi-
ments and in Section 5 we draw the main conclusions
and plans for further work.

2. Background

In this section, we first provide background information
about the resources of biological knowledge, distributed
across several publicly available databases. Then we pres-
ent the most popular methods for finding the differentially
expressed genes and calculating the gene set enrichment.

2.1. Resources of biological knowledge

2.1.1. Gene Ontology

Gene Ontology (GO)' is a database of standardized bio-
logical terms used to annotate gene products. In total it
comprises about 23,000 terms,” divided in three branches:
Molecular Function, Biological Process and Cellular Com-
ponent. Each branch can be represented as a directed acy-
clic graph (DAG) relating terms (or nodes) of different
degrees of specificity, with directed links from less specific
to more specific terms. Each node in the graph can have
several parents (broader related terms) and children (more
specific related terms). See Fig. 1 presenting a small section
of the GO graph. Annotation of a gene by any node A
implies its automatic annotation by all ancestors of A
(the set of broader terms related to A by directed paths).
Genes can be annotated by several terms, however note
that many genes have not been annotated at all.

2.1.2. Kyoto Encyclopedia of Genes and Genomes Ortology

Kyoto Encyclopedia of Genes and Genomes (KEGG)
includes KEGG orthology (KO)s® that is a database of
manually drawn pathway maps representing the knowledge
on the molecular interaction and reaction networks. A met-
abolic pathway is a series of chemical reactions occurring
within a cell, catalyzed by enzymes (genes), resulting in
either the formation of a metabolic product to be used or
stored by the cell, or the initiation of another metabolic
pathway. That for each KEGG pathway (KO term) defines
a set of genes that can be considered for statistical enrich-
ment testing and by that detecting disrupted pathways. The

! http://www.geneontology.org
2 This number of terms was available in September 2007.
3 http://www.genome jp/kegg/pathway.html

KO is structured as a DAG hierarchy of four flat levels.
The top level consists of the following five categories:
Metabolism, Genetic Information Processing, Environ-
mental Information Processing, Cellular Processes and
Human Diseases. The second level divides the five func-
tional categories into finer sub-categories. The third level
corresponds directly to the KEGG pathways, and consists
of 272 terms.* See Fig. 2 for an example of a small section
of the KO hierarchy. Note that some of the KO terms
appear also as process terms in the GO.

2.1.3. ENTREZ

ENTREZ’ is a database that provides various informa-
tion about genes and their products, including gene anno-
tations with GO and KO terms (see Fig. 3) and gene-
gene interaction data. As the collection of interaction data
in a consistent, well-annotated format is essential for dis-
covering of gene functions and benchmarking of high
throughput interaction studies, a number of gene—gene
interaction databases were developed. The examples of
such a databases are BIND,® BioGRID,’ EcoCyc8 and
HPRD.” ENTREZ (among other functionality) is a repos-
itory of these interaction databases, to house and distribute
comprehensive collections of gene-gene interactions. The
number of all gene-gene interactions in ENTEZ is about
118,000."

2.2. Methods for finding differentially expressed genes

Selection of DE genes is the first step performed in the
functional interpretation of microarray data. DE genes
are the genes that are expressed differently (relative to the
reference) between the given classes of microarray data.
The most frequently used algorithms for the selection of
DE genes are presented below. Mathematical definitions
used by these methods are given in Fig. 4.

2.2.1. Fold change method

The simplest, non-statistical test method used for the
selection of DE genes is the fold change method. In this
method, the ratios between expression levels in two condi-
tions are evaluated. All genes with a ratio of expression
level higher than an arbitrary cut-off value are considered
to be differentially expressed. The fold change method in
its original form can be strongly biased by an inappropriate
normalization. This problem has been addressed by the
development of intensity-specific thresholds [16]. However,
as this simple method is not a statistical test, it has no asso-

4 This number of terms was available in KO in September 2007.

5 ftp://ftp.ncbi.nlm.nih.gov/gene/

¢ http://www.bind.ca

7 http://www.thebiogrid.org

8 http://www.ecocyc.org

° http://www.hprd.org

19 This number of interactions was available in ENTEZ in September
2007.
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Fig. 1. A part of GO providing the annotations concerning positive regulation of muscle cell differentiation.

ciated value indicating a level of confidence in the designa-
tion of genes as being differentially expressed.

2.2.2. Signal to noise ratio test

The signal to noise ratio (SNR) test identifies genes with
large difference in the mean level of expression between two
groups and at the same time have small variation of expres-
sion within each group. This test does not assume the
equality of standard deviations (variances). The SNR com-
bined with different feature selection methods has been the
method of choice in most classification studies performed
at the Whitehead Institute, MIT [20-22], as well as by sev-
eral other groups.

2.2.3. Student’s t test

The Student’s ¢ test is one of the simplest statistics-based
methods used in microarray analysis, both for estimating
the accuracy of results from replicated experiments and
for the selection of DE genes. The ¢ test for independent
samples (Student’s ¢ test) allows for the determination of
an expression pattern that has a maximal difference in the
mean levels of expression between two groups of indepen-
dent samples with a minimal variation of expression within
each group. Therefore, the ¢ test has been used frequently
for the selection of DE genes in microarray experiments

[17-19]. The difference in gene expression between sample
types is expressed as the p value which evaluates the prob-
ability that random sampling would result in the observed
difference. As the Student’s ¢ test determines the signifi-
cance of the difference between the means of two indepen-
dent samples, it is a good choice when: (i) the two samples
are independently and randomly drawn from the source
population(s); (ii) the measurements for both samples have
an equal interval; and (iii) the source population(s) can be
reasonably assumed to have a normal distribution.

2.3. Methods for evaluating gene set enrichment

Here, we present three methods for evaluating gene set
enrichment. The first one, Fisher’s exact test, is a threshold
based procedure. It accept two lists of genes: differentially
expressed and all other genes. The next two are from the
family of threshold-free procedures. They accept only one
list of genes, ranked by some criterion (e.g., the ¢ score
value of the genes).

2.3.1. Fisher’s exact test

When using Fisher’s exact test, the score for a gene set
annotated by GO term S is the degree of independence
between the two properties:

doi:10.1016/j.jbi.2007.12.001
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Fig. 2. A part of KO providing the annotations concerning metabolism.

A = gene is in the list of DE genes M N-M
B = gene is annotated by GO term S =\ k—i
= 1 —
g i=0 N

Testing the independence of these two properties corre-
sponds to the Fisher’s exact test [6], and is computed by the k
following procedure:

2.3.2. Gene Set Enrichment Analysis (GSEA)

GSEA [9] considers experiments with gene expression
profiles from samples belonging to two classes. First, genes
are ranked based on their z-score values. Given a prede-
fined set of genes S (e.g., genes involved in some biological
process) the goal of GSEA is to determine whether the
members of S are randomly distributed throughout the
ranked gene list (L) or primarily found at the top of the list.

There are two major steps of the GSEA method:

(1) Let N be the number of genes on a microarray.
(2) Sis a GO term.

(a) M genes € S.

(b) N — M genes ¢ S.

(3) Let k£ be the number of DE genes.
(4) The probability of having exactly x, out of k DE
genes, annotated by S is computed as follows:

(M> <N M) (1) Calculation of the enrichment score. The enrichment
P(X =x|N,M,k) = x k—x score (ES) reflects the degree to which a set S is over-
<N ) represented at the top of the ranked list L. The score

k is calculated by walking down the list L, increasing a

running-sum statistic when encountering a gene in S

(5) The Fisher’s score determines the probability of hav- and decreasing it when a gene is not in S. The magni-
ing at least x genes, out of kK DE genes, annotated by tude of the increment depends on the size of S,
S: | S |=M, and the total number of genes N. The

Please cite this article in press as: Trajkovski I et al., SEGS: Search for enriched gene sets in microarray data, J Biomed Inform (2008),
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Fig. 3. A part of data providing the annotation of gene LDHA lactate dehydrogenase with KO and GO terms, contained in the ENTREZ database.
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Fig. 4. Mathematical definitions of the selected statistical methods used
for the selection of DE genes. I and U are two sets of microarray data that
define two separate classes, I and U, respectively. X; is the expression of
gene 7 in sample j, u(i) is the mean of the expression of gene i in class C,
ac(i) is the standard deviation of the expression of gene i in class C.

enrichment score is the maximum deviation from zero
encountered in a random walk (see Fig. 5). If

L=1g,,8,---,gy]is aranked list of genes, according
to their ¢-score, enrichment score ES is calculated as:
ES(S) = max | Hit(S,7) — Miss(S, i) | (1)
where
1 1
Hi N 1 . N R
it(S, ) Z A Miss(S, i) Z N3
gj€s gj€s
1</<i 1</<i

(2) Estimation of the significance level of ES. The statis-
tical significance of the ES is computed by using an
empirical phenotype-based permutation test proce-
dure that preserves the complex correlation structure

Enriched Gene Set - Un-enriched Gene Set
w ol
g i
E . Max 8
0 Enrichment @ Ma)f
t Score ES < Enrichment
E £ Score ES
s S
; & Bt

Gene Llist Order Index Gene Llst Order Index

Fig. 5. The ‘spectral line’s show the positions of genes members of a gene
set S on the ranked gene list. This figure is borrowed from the
supplementary material of [9].

of the gene expression data. Specifically, one per-
mutes the phenotype labels and recomputes the ES
of the gene set for the permuted data, which generates
a null distribution for the ES. The empirical, p-value
of the observed ES is then calculated relative to this
null distribution.

2.3.3. Parametric Analysis of Gene set Enrichment (PAGE)

According to the Central Limit Theorem in statistics
[23], the distribution of the average of randomly sampled
n observations tends to follow the normal distribution as
the sampling size n becomes larger, even when the parent
distribution from which the average is calculated is not

doi:10.1016/j.jbi.2007.12.001
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normal. In other words, when the mean and variance of the
parent distribution (whether it is normally distributed or
not) are u and ¢?, the average of n observations from the
parent distribution will follow a normal distribution of
mean p and variance f—: when the sampling size » is large
enough.

In PAGE [13], the parent distribution is a distribution of
any numerical values (also termed parameters here) that
describe differential expression of genes among samples in
a microarray data set. In most cases, the distribution of a
parameter, i.e., -score values of the genes, is not normally
distributed. However, as the Central Limit Theorem states,
when we sample 7 observations from the parent distribu-
tion of a parameter, the average of the sampled observa-
tions tends to follow the normal distribution as our
sampling size n becomes larger. Here, we define sampled
observations as parameter values for the genes within pre-
defined gene sets, groups of genes having similar functions,
genes in the same biological pathway, and so on. If we
define a gene set of sufficiently large size, i.e., 30, we can
use the normal distribution to test the statistical signifi-
cance of that gene set.

The following procedure is used for p value calculation
of a gene set S:

(1) From input data containing ¢-score values for each
gene, mean of all f-score values (u) and standard
deviation of all t-score values (o) are calculated (this
is a common step for the calculation of p values of all

genes).
(2) The mean of #-scores (ug) of gene members of S is
calculated.
(3) If M is the size of S then the Z-score is calculated as
— ) M

Gene set p value is computed from the Z-score, using
numerical methods.

3. SEGS: Construction of new gene sets

Methods that test for enrichment of GO terms'' have
been proposed by [4,5,24,25]. A comparative study of com-
monly used tools for analyzing GO term enrichment was
presented by [6]. Papers [14,15] present two novel algo-
rithms that improve GO term scoring using the underlying
GO graph topology. None of the papers includes the gene-
gene interaction data, and none of them presents a method
for the construction of novel gene sets; they only calculate
the enrichment of an a-priory given list of gene sets.

We propose a method that additionally to the testing of
the enrichment of individual GO and KO terms, tests the

" In the rest of the paper, GO or KO term enrichment is used, meaning
the enrichment (i.e. differential expression) of a set of genes, annotated by
the given GO or KO term.

enrichment of newly defined gene sets constructed by the
combination of GO terms, KO terms and gene sets defined
by taking into account the gene—gene interaction data from
ENTREZ.

3.1. Properties of GO and KO terms

First, let us state some properties of gene annotations by
GO and KO terms:

e one gene can be annotated by several terms,

e if a gene is annotated by a term T then it is annotated by
all the ancestors of T, and

e a term may have thousands of genes annotated by it.

From this we can conclude that:

e cach GO and KO term defines a gene set,
e one gene can be a member of several gene sets, and
e some gene sets are subsets of other gene sets.

Second, let Func (or Proc, Comp, respectively) denote
the set of gene sets that are defined by the GO terms that
are subterms of the term Molecular Function (or Biological
Process, Cellular Component, respectively), and let Path
denote the set of gene sets defined by the KO terms.

3.2. Basic operations for gene set construction using GO, KO
and ENTREZ

Our method relies on two ideas for the construction of
new gene sets: inclusion of gene-gene interactions, and
construction by the intersection of gene sets.

3.2.1. Gene—gene interactions

There are cases when some abrupted processes are not
detectable by the enrichment score. One of the reasons
can be that gene members of that process have a slight
increase/decrease in their expression, but this increase/
decrease can have a much larger effect on the genes that
interact with them. Therefore, we propose to construct a
gene set whose members interact with members of another
gene set (see Fig. 6). The gene—gene interaction data can be

int (S) S

Fig. 6. Construction of a new gene set, int (S), from existing gene set S.
All g; € int (S) are interacting with some g; € S. Gene sets S and inf (S) do
not need to intersect.

doi:10.1016/j.61.2007.12.001
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int (comp(‘cell surfice’)) proc(leukocite migration’)

Fig. 7. Construction of a new gene set, consisting of the members of the
“leukocyte migration” process which interact with genes on the cell
surface.

found in the ENTREZ database. Gene set construction is
formally described as follows:

if S € Func (or Proc,Comp,Path, respectively) then
int(S) = {g, | g, interacts with g, € S} is added to Func
(or Proc, Comp, Path).

3.2.2. Intersection of gene sets

There are cases where some gene sets are not signifi-
cantly enriched, but their intersection is significantly
enriched. For example, it can happen that a gene set
defined by molecular function F is not enriched because a
lot of genes in different parts of the cell execute it, and
one can not expect that all of them will be over/underex-
pressed, but if genes with that function in a specific part
of the cell (C,,,) are abnormally active, then this can be
elegantly described by defining the following gene set:

S :func(F) ﬂ Comp(cpart) = SF nSCpart'

Gene set construction due to gene sets intersection is for-
mally described as follows:

if S| € Func, S, € Proc, S3 € Comp and S, € Path,then
Spew = S1S2(S3[)S4 is a newly defined gene set.

An example of this type of construction is presented in
Fig. 7.

The newly defined gene sets are interpreted very intui-
tively. For example, gene set S defined as the intersection
of “functional” term 4 and “process” term B

S = func(A), proc(B) = S, ﬂSB

is interpreted as: genes that are part of process B and have
function A4.

The number of potentially newly defined gene sets is
huge. It is currently'? estimated at:

| Func | x | Proc | x | Comp | x | Path |~ 47 x 10"

If for each of these sets we compute its enrichment score,
which in case of GSEA takes linear time in the number of
genes (=~ 2 x 10*), then we need ~ 10'® numeric operations.
If we want to statistically validate discovered enriched gene
sets, usually with 1000 permutation tests, we get ~ 10!

2 In September 2007, | Func |= 7513, | Proc |= 12,549, | Comp |= 1846
and | Path |= 272.

| o || kess || EnTREZ |

Fisher
Microarray Ranking of Construction Enriched
Data genes 1 of gene sets GSEA gene sets
[
PAGE

Fig. 8. Data flow of the proposed SEGS method for the generation of
enriched gene sets.

operations, that is well above the average performance of
today’s PCs. Therefore, we need to efficiently search the
gene set space for potentially enriched gene sets, as pro-
posed below.

3.3. Pruning the search space for enriched gene sets

The first idea for improvement is that we are not inter-
ested in generating all possible gene sets, but only those
that are potentially enriched. This can be achieved by gen-
erating gene sets that have some predefined minimum num-
ber of genes at the top of the ranked list, i.e. according to
the genes z-scores, for example, 3 in the first 100, or 10 in
the first 300 genes of the list. That is a weak constraint con-
cerning the biological interpretation of the results, because
we are not really interested in gene sets that do not have
some minimum number of genes at the top of the list,
but it is a hard constraint concerning the pruning of the
search space of all gene sets. By having this constraint we
can use the GO and KO topology to efficiently generate
all gene sets that satisfy the constraint.

As the GO is a directed acyclic graph, with the root of
the graph being the most general term, this means that if
one term (gene set) does not satisfy our constraint, than
all its descendants will also not satisfy it, because they
cover a subset of the genes covered by the given term. In
this way we can significantly prune the search space of
potentially enriched gene sets. Therefore, we first construct
gene sets from the top nodes of the GO and KO, and if we
fail to satisfy the given constraint we do not refine the last
added term.

The pseudo code, presented in Appendix A, implements
the basic idea for efficient construction of potentially
enriched gene sets.

The proposed method has the data flow model shown in
Fig. 8.

4. Experiments

Note that this paper does not address the problem of dis-
criminating between the classes. Instead, for the given target
class we aim at finding relevant enriched gene sets that can
capture the underlying biology characteristic for the class.

4.1. Brief description of datasets

We applied the proposed SEGS methodology to three
classification problems: leukemia [20], diffuse large B-cell
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lymphoma (DLBCL) [26] and prostate tumor [27]. All of
them are binary classification problems. The leukemia data
includes 48 acute lymphoblastic leukemia (ALL) samples
and 25 acute myeloid leukemia (AML) samples, each with
7074 gene expression values. The DLBCL data set includes
7070 gene expression profiles for 77 patients, 58 with
DLBCL and 19 with follicular lymphoma (FL). The pros-
tate tumor data set includes 12,533 genes measured for 52
prostate tumor and 50 normal tissue samples. The data for
these three data sets were produced from Affymetrix gene
chips and are available at http://www.genome.wi.mit.edu/
cancer/.

4.2. Experimental results

To illustrate the straightforward interpretability of the
enriched gene sets found by our approach, we provide

the most enriched gene sets for all classes in the three men-
tioned classification problems (see Tables 1-3). Because we
use three statistical tests, which give three different rank-
ings for the enrichment of the gene sets, we calculated the
aggregate rank for each gene set by summing its ranks from
the separate rankings.

Concerning the number of generated gene sets, for the
leukemia data set we generated 210,762 (ALL) and
127,187 (AML) gene sets, for DLBCL data set we gener-
ated 158,152 (DLBCL) and 78,048 (FL) gene sets, and
for the prostate data set we generated 28,027 (tumor) and
62,567 (normal) gene sets, that satisfied the constraint to
have at least three genes in the first 100, or 10 in the first
300 most differentially expressed genes. We also set an
additional constraint needed for the PAGE algorithm,
the size of the generated gene sets, which was chosen to

be larger than 30.

Table 1

Five most enriched gene sets (according to the aggregate ranking) found in the leukemia dataset by using GO, KO and ENTREZ

Gene set Set Gene set Set

size size

Enriched in ALL Enriched in AML

func(‘DNA binding’), int(comp(‘nucleoplasm’)), 41 int(comp(‘lysosome’)), int(proc(‘response to ext. stimulus’)), 37
int(proc(‘histone modification’)) int(path(‘Immune System’))

int(func(‘transcrip. repressor activ.’)), comp(‘nucleus’), 50 int(comp(‘membrane part’)), proc(‘inflammatory response’), 38
int(proc(‘histone modification’)), int(path(‘Long-term int(path(‘Human Diseases’))
potentiation’))

int(func(‘acetyltransferase activity’)), int(comp(‘nucleus’)), 45 int(func(‘peptidase activity’)), int(comp(‘integral to pl. membrane’)), 31
int(proc(‘ubiquitin cycle’)), int(path(‘Signal Transduction’)) proc(‘defense response’)

int(func(‘nucleotidyltransferase activ.’)), comp(‘nucleus’), 84 int(func(‘metal ion binding’)), int(comp(‘integral to membrane’)), 39
int(proc(‘DNA repair’)), int(path(‘Cell cycle’)) proc(‘inflammatory response’)

int(func(‘zinc ion binding’)), comp(‘intracellular organelle 64 int(func(‘endopept. inhibitor act.’)), int(comp(‘integral to pl. 43
part’), int(proc(‘protein complex assembly’)), int(path(*“Wnt membrane’)), int(proc(‘response to pest.path.par.’)), int(path(‘Cell
signaling pathway’)) adhesion molecules’))

Table 2

Five most enriched gene sets (according to the aggregate ranking) found in the DLBCL dataset by using GO, KO and ENTREZ

Gene set Set Gene set Set

size size

Enriched in DLBCL Enriched in FL

int(func(‘transf.phosph.cont.groups’)), int(comp(‘nuclear 33 comp(‘integral to membrane’), proc(‘humoral immune response’) 47
part’)), proc(‘biopolymer metabolism’)

int(func(‘transf.phosph.cont.groups’)), comp(‘nucleus’), 46 comp(‘plasma membrane’), path(‘Hematopoietic cell lineage’) 40
proc(‘DNA metabolism’), int(path(‘Cell cycle’))

int(func(‘DNA binding’)), int(comp(‘nucleus’)), proc(‘DNA 35 func(‘transmembrane receptor act.’), int(comp(‘membrane’)), 83
replication’), int(path(‘Cancers’)) int(proc(‘immune response’)), int(path(‘Immune System’))

int(func(‘DNA binding’)), int(comp(‘nucleus’)), 50 func(‘transmembrane receptor act.’), comp(‘integral to membrane’), 100
proc(‘biopolymer metabolism’), int(path(‘Pancreatic int(proc(‘immune response’)), int(path(‘Env. Inf. Processing’))
cancer’))

int(func(‘transcrip. factor act.”)), int(comp(‘nucleus’)), 64 proc(‘humoral immune response’), int(path(‘Sign. Molec. & 48

proc(‘biopolymer metabolism’), int(path(‘Cell Growth and
Death’))

Inter.”))
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Table 3

Five most enriched gene sets (according to the aggregate ranking) found in the prostate dataset by using GO, KO and ENTREZ

Gene set Set Gene set Set

size size

Enriched in prostate cancer Enriched in normal

func(‘struct. constituent of ribosome’),comp(‘intracellular 52 int(func(‘receptor binding’)), comp(‘integral to membrane’) int(proc(‘+ 143
organelle part’), proc(‘protein biosynthesis’), regul. of cell prolif.’)), int(path(‘Human Diseases’))
path(‘Ribosome’)

func(‘RNA binding’), comp(‘ribosome’), proc(‘protein 45 int(func(‘protein kinase act.’)),int(comp(‘integral to membrane’)), 162
biosynthesis’) int(proc(‘Ras protein sig. transd.’)), int(path(‘Fc eps. RI sig. path.’))

func(‘RNA binding’), comp(‘cytoplasmic part’), 51 int(func(‘protein kinase act.’)), int(comp(‘integral to membrane’)), 172
path(‘Genetic Information Processing’) int(proc(‘Ras protein sig. transd.’)), int(path(‘Focal adhesion’))

func(‘struct. constituent of ribosome’), comp(‘cytost. 62 int(func(‘receptor binding’)), int(comp(‘cytosol’)), int(proc(‘+ regul. of 178
ribosome (s. Eukaryota)’), proc(‘protein biosynthesis’) cell prolif.’)), int(path(‘Colorectal cancer’))

func(‘RNA binding’), comp(‘intracellular organelle part’) 120 int(func(‘protein kinase activity’)), int(comp(‘integral to membrane’)), 170

int(proc(‘Ras protein sig. transd.’)), int(path(‘Nat.kill.cell.medi.cyt.”))

4.3. Statistical validation

The following procedure was used to calculate the sig-
nificance of the observed enrichment of a gene set by com-
paring it with the set of maximal enrichment scores
computed from the same datasets but with randomly
assigned phenotypes (class labels):

(1) Randomly assign the original phenotype (class) labels
to samples, reorder genes according to their #-score
values, and re-compute the enrichment scores.

(2) Repeat step 1 for 1000 permutations, and create a his-
togram of the corresponding best enrichment scores
for all three tests.

(3) Estimate the p-value for the calculated enrichment
score value of the gene set S using the histogram com-
puted at step 2. If there was not a case where random
labeling of the examples gives a better enrichment
score, then p-value <0.001.

We use class labeled permutation because it preserves
gene—gene correlations and, thus, provides a more biologi-
cally reasonable assessment of the significance than the one
obtained by randomly permuting the genes.

After the calculation of the gene sets enrichment, we
remove gene sets that have too general descriptions. For
example, if gene set S| is more enriched then gene set S5,
and S; has a more specific description than S, then S, is
eliminated. Note that S, = Ty (T12()T13()T14 is more
specific than S, = T2 (T22( )\ T23 () T4 if T4 is a subterm
of Ty for j=1...4.

Table 4 provides the results of the empirical comparison
of SEGS with single GO and KO term analysis for the
ALL class of the leukemia dataset. Extensive results for
all three datasets are given in the supplementary material.'®
We can see that on all tests the best constructed gene sets
are found to be more enriched than the most enriched gene

13 http://kt.ijs.si/igor-trajkovski/SEGS/supplement.html

sets defined by taking into account only single GO and KO
terms.

Concerning the joint coverage of the five most enriched
gene sets, for the ALL class of the first problem, we found
that their union consists of 179 genes. The sum of the car-
dinalities of these five sets is 284. This means that we did
not find five different descriptions of the same gene set,
but these descriptions cover quite different sets of genes.
Similar results were obtained for all the classes of the other
two datasets.

4.4. Biomedical significance of the discovered enriched gene
sets

The goal of this study is to provide a better understand-
ing of the biology of malignancies through the use of the
background knowledge encoded in GO, KO and
ENTREZ. To do so, we have examined biological func-
tions of genes using the entire pathway changes which
are more likely (than the changes in the expression of indi-
vidual genes) to represent meaningful alterations of cellular
metabolism in cancers. In its overall design this study fills
in the gap of knowledge represented by the common reduc-
tionist approach to the interpretation of microarray data
whereby increased or decreased expression of a single gene,
rather than behavior of a functionally linked group of
genes (a pathway), is used as a readout. In this way, discov-
ered enriched gene sets (described in Tables 1-3) for ALL
vs. AML, DLBCL vs. follicular lymphoma, and prostate
cancer vs. normal tissue, expand our understanding of pre-
dictors of clinical behavior of these cancers. Expert inter-
pretation of several found enriched gene sets for each of
the three problems is given below.

4.4.1. ALL vs. AML

Acute leukemias strike 3-4 people per 100,000 every
year. Two major classes of acute leukemias exist: acute
lymphoblastic leukemia (ALL) and acute myelogenous leu-
kemia (AML). The peak incidence of ALL is in childhood
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Table 4

Comparison of the most enriched gene sets constructed using GO, KO and ENTREZ compared to the most enriched gene sets defined by singe GO and

KO terms, for the ALL class in the leukemia data set

Gene set Set Fisher

size p-value (adj p-value)

GSEA
ES score (adj p-value)

PAGE
Z-score(adj p-value)

Aggregate
rank (ranks)

Enriched gene sets in ALL (the same as in Table 1)

func(‘DNA binding’), 41 4.18 x 10718(0.001) 0.33(0.001) 8.92(0.001) 52+2+1)
int(comp(‘nucleoplasm’)),int(proc(‘histone
modification’))
int(func(‘transcrip. repressor activ.’)), 50 4.96 x 1071°(0.001) 0.31(0.001) 7.37(0.001) 9(1+3+5)
comp(‘nucleus’), int(proc(‘histone
modification’)), int(path(‘Long-term
potentiation’))
int(func(‘acetyltransferase activity’)), 45 138 x 10717(0.001) 0.21(0.005) 5.110.015) 16(3+6+7)
int(comp(‘nucleus’)), int(proc(‘ubiquitin
cycle’)), int(path(‘Signal Transduction’))
int(func(‘nucleotidyltransf. activ.’)), 84  1.16 x 107'%(0.004) 0.25 (0.002) 5.90(0.002) 17(6 +5+6)
comp(‘nucleus’), int(proc(‘DNA repair’)),
int(path(‘Cell cycle’))
int(func(‘zinc ion binding’)), comp(‘intracellular 64 570 x 107'%(0.002) 0.28(0.001) 5.05(0.021) 19(5+4+10)
organelle part’), int(proc(‘protein complex
assembly’)), int(path(“Wnt signaling pathway’))
Enriched gene sets in ALL (using single GO and KO terms analysis)
proc(‘DNA metabolic process’) 314 9.14 x 1077(0.031) 0.14(0.018) 4.47(0.003) 8(3+4+1)
comp(‘nucleus’) 1461 3.51 x 1072(0.012) 0.13(0.020) 3.29(0.045) 11(1+5+5)
comp(‘chromosome’) 139 5.28 x 1077(0.025) 0.19(0.004) .11(0.061) 152+ 1412)
path(‘pyrimidine metabolism’) 48 9.21 x 107%(0.072) 0.15(0.010) 4.13(0.009) 16(11+3+2)
func(‘DNA binding’) 810 1.15 x 1075(0.048) 0.10(0.071) 3.89(0.011) 18(7+8+3)
proc(‘nucleobase, nucleoside, nucleotide & nucleic 1321 431 x 107(0.050) 0.08(0.125) 3.65(0.022) 23(9+10+4)
acid met. proc.’)
path(‘nucleotide metabolism’) 101 1.02 x 10’6(0.040) 0.07(0.144) 3.19(0.053) 28(5+ 13 +10)

(and children account for one quarter of all acute leukemia
cases) and it is rare in older adults. In contrast, the median
age of AML patients is 60 years and its incidence increases
gradually with age. Therefore, as ALL and AML are dis-
tinct in clinical presentation, we expected that there would
be correlative differences in their biology, as evidenced by
microarray expression data.

In fact, the results of our analysis show that functionally
linked groups of genes involved in DNA binding (a process
whereby transcription factors exert their positive or nega-
tive effects on the first phase of protein expression, i.e.,
transcription of DNA sequence into RNA) and in histone
modification (a process whereby transcription machinery is
either allowed or prohibited from the access to DNA in the
first place) are prominent in ALL cellular pathways, with
41 genes and 50 genes in the first and second ALL gene
sets, respectively [31,32].

This is in agreement with the current understanding of
the role of transcriptional activators and repressors in
ALL, as is the role of ubiquitin (the third ALL gene set
with 45 genes) and DNA repair in this condition (the
fourth ALL gene set with 84 genes). Ubiquitin cascade is
the major cellular mechanism for recycling proteins, thus
regulating their activity and permanence (half-life) in the

cell. DNA repair is a key regulator of survival of the cell,
normal or malignant, as the unrepaired DNA typically pre-
cludes cellular division and proliferation. Lastly, the fifth
ALL gene set (64 genes) identifies the evolutionarily con-
served Wnt-signaling pathway as active in ALL [33]. This
is relevant, since Wnt-dependent cellular processes have
been shown to be critical for solid organ malignancies,
and as therapeutics are already in development for applica-
tion in solid neoplasms, most notably heaptocellular and
colon carcinomas [34,35], it is plausible that they would
have a role in chemotherapy for ALL as well.

Terms identified as relevant in AML include those of
immune and inflammatory response, cell adhesion and
metal ion binding processes. This perhaps gives extra
weights to a recently identified, yet not completely under-
stood, property of AML to be more susceptible to eradica-
tion by immune means than ALL [36]. In fact, the success
of hematopoietic stem cell transplantation for AML maybe
in a large part a result of graft vs. leukemia effect, i.e.,
immune mediated [37].

4.4.2. DLBCL vs. follicular lymphoma
Follicular and diffuse large B-cell lymphomas are two
common classes of lymphoma, malignancy that typically
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involves lymph nodes, spleen, but can originate at other
sites, such as gastrointestinal tract, liver, throat, bone,
and brain. As expected, immune response pathways (for
follicular lymphoma), and DNA binding and replication
(key processes in transcriptional regulation of cell division
and proliferation in diffuse large B-cell lymphoma) domi-
nate the expression patterns [29,30].

4.4.3. Prostate cancer vs. normal tissue

Prostate cancer is the most common, non-dermatologic
male cancer. It represents 33% of cancers and is the third
leading cause of cancer deaths in men [28]. Thus, the
impact on public health is dramatic and any insights with
a potential of translation into viable preventive or thera-
peutic interventions are urgently needed. In this work,
the pathways active in gene transcription (upregulated in
any rapidly dividing cells, e.g., malignant cell) have been
identified: gene sets 1, 2 and 3 in prostate cancer (with
52, 45 and 51 genes, respectively in Table 3).

In addition, the investigations of normal cells of pros-
tate point, as expected in normal glandular tissue of pros-
tate, discovered groups of genes involved in cell adhesion,
Ras oncogene signal transduction, protein regulation
(phosphorylation by kinases), including surface membrane
receptors (gene sets 1-5 on normal prostate tissue in Table
3).

5. Conclusion and further work

This paper addresses the problem of finding enriched
functional groups of genes based on gene expression data.
The proposed SEGS method allows integration of GO and
KO gene annotations as well as the gene—gene interaction
data from ENTREZ into the construction of new interest-
ing relevant gene sets. The experimental results show that
the introduced method improves the statistical significance
and the functional interpretation of gene expression data,
and we base our conclusion on the following facts:

e Enrichment scores of the newly constructed sets are bet-
ter then the enrichment scores of any single GO and KO
term.

e Newly constructed enriched gene sets can be described
by non-enriched GO and KO terms, which means that
we are extracting additional biological knowledge that
can not be found by single term enrichment analysis.

e This method is a generalization of traditional methods.
If we turn-off gene—gene interactions and intersections
of GO and KO terms, we get the classical single term
enrichment analysis.

This paper provides strongly suggesting evidence that
the proposed SEGS method indeed finds biologically rele-
vant terms not found by single term analysis (see the exam-
ples of terms commented by the medical expert in Section
4.4). The expert interpretation of the results of this study
shows that meaningful analysis of gene products acting

jointly in biologically relevant ways is possible and that this
and future studies can provide support for transferring of
this new technology to clinic. An extensive study about
the relevance of the found terms (percentage of false posi-
tives) is planed in the future. Next, further work will also
aims at using discovered enriched gene sets as features
for classification of microarray data. We believe that some
of these features will turn out to be statistically significant
markers of specific diseases.

We believe that the impact of the proposed method will
be even greater given the expected increase in both the
quality and quantity of gene annotations and gene-gene
interaction data in the near future.
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Appendix A. SEGS procedures for generating gene sets

The pseudo code presented below is the part of the
SEGS algorithm. These procedures are generating all gene
sets that contain predefined minimal number of genes (e.g.,
3) located at the top (e.g., first 100) of the provided input
gene list.

01 topTerm = [‘molecular_function’,
‘biological process’,

02 ‘cellular_component’, ‘kegg pathway’]
03

04 function GENERATE-GENE-SETS(GeneList)
05 input: GenelList

06 output: gene_sets

07

08 gene_sets=/[]

09 BUILD-CLAUSE(O, [], GeneList[1:100], top-
Term[O], gene_sets)

10 return gene_sets

11

12 procedure BUILD-CLAUSE (depth, clause,
genes, term, gene_sets)

13 input: depth, clause, gene_set, term

14 output: gene_sets

15

16 new_genes=INTERSECTION
TERM_TO_GENES[term])

17 IF LENGTH(new_genes)>3 THEN # minimal
support ?

18 ADD(clause, term)

19 ADD(gene_sets, clause)

(genes,
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20 IF depth<4 THEN # add more terms
21 BUILD-CLAUSE(depth+1,
new_genes,

22 topTermdepth+1], gene_sets)

23 REMOVE(clause, term)

24 FOR EACH child IN CHILDREN(term)DO #
refine

clause,

25 BUILD-CLAUSE(depth, clause, new__
genes,
26 child, gene_sets)

The main function of the algorithm is the recursive func-
tion BUILD-CLAUSE. It tries to add a new term to the
given input clause (conjunction of terms). If the new clause
cover enough top genes (line 17) then it is added to the
resulting list of clauses that describe the new gene sets.
After the term is added the procedure recursively call itself
in order to add more terms in the clause (line 21) or to
refine the added term (line 25). The provided code will gen-
erate all gene sets that have at least three genes in the top
100 genes of the GENELIST.
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