
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Automating Knowledge Discovery Workflow
Composition Through Ontology-Based Planning

Monika Žáková, Petr Křemen, Filip Železný, and Nada Lavrač

Abstract—The problem addressed in this paper is the challenge
of automated construction of knowledge discovery workflows,
given the types of inputs and the required outputs of the knowl-
edge discovery process. Our methodology consists of two main
ingredients. The first one is defining a formal conceptualization of
knowledge types and data mining algorithms by means of knowl-
edge discovery ontology. The second one is workflow composition
formalized as a planning task using the ontology of domain and
task descriptions. Two versions of a forward chaining planning
algorithm were developed. The baseline version demonstrates
suitability of the knowledge discovery ontology for planning and
uses Planning Domain Definition Language (PDDL) descriptions
of algorithms; to this end, a procedure for converting data mining
algorithm descriptions into PDDL was developed. The second
directly queries the ontology using a reasoner. The proposed
approach was tested in two use cases, one from scientific discovery
in genomics and another from advanced engineering. The results
show the feasibility of automated workflow construction achieved
by tight integration of planning and ontological reasoning.

Note to Practitioners—The use of advanced knowledge engi-
neering techniques is becoming popular not only in bioinformatics,
but also in engineering. One of the main challenges is therefore
to efficiently extract relevant information from large amounts of
data from different sources. For example, in product engineering,
the focus of project SEVENPRO, efficient reuse of knowledge can
be significantly enhanced by discovering implicit knowledge in
past designs, which are described by product structures, CAD
designs and technical specifications. Fusion of relevant data re-
quires the interplay of diverse specialized algorithms. Therefore,
traditional data mining techniques are not straightforwardly
applicable. Rather, complex knowledge discovery workflows are
required. Knowledge about the algorithms and principles of their
applicability cannot be expected from the end user, e.g., a product
engineer. A formal capture of this knowledge is thus needed, to
serve as a basis for intelligent computational support of workflow
composition. Therefore we developed a knowledge discovery (KD)
ontology describing knowledge types and algorithms required for
complex knowledge discovery tasks.

A planning algorithm was implemented and employed to as-
semble workflows for the task specified by the user’s input-output

Manuscript received March 26, 2009; revised May 11, 2010; accepted June
28, 2010. Date of publication nulldate; date of current version nulldate. This
paper was recommended for publication by Associate Editor B. Turchiano and
Editor Y. Narahari upon evaluation of the reviewers’ comments. This work was
supported by Project No. 201/09/1665 of the Czech Science Foundation and
Project MSM6840770038 of the Czech Ministry of Education. The work of
N. Lavrač was supported by the Knowledge Technologies Project funded by
the Slovenian Research and Technology Agency.

M. Žáková, P. Křemen, and F. Železný are with the Department of
Cybernetics, Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague, Prague 6, Czech Republic (e-mail: {zakovm1@fel.cvut.cz;
kremep1@fel.cvut.cz; zelezny@fel.cvut.cz).

N. Lavrač is with the Institute Jožef Stefan, Ljubljana 1000, Slovenia (e-mail:
nada.lavrac@ijs.si).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2010.2070838

task requirements. Two versions of the planning algorithm were
developed. The first one uses standard PDDL descriptions of algo-
rithms, accessible to third party planning algorithms. A procedure
for converting algorithm descriptions into PDDL was developed.
The second directly queries the ontology using a reasoner. The
proposed approach was tested in two use cases, one from genomics
and another from product engineering. The results show the
feasibility of automated workflow construction achieved by tight
integration of planning and ontological reasoning. The generated
workflows can be executed on the SEVENPRO platform; however,
since they are annotated using the KD ontology, the planner can
be integrated into other workflow execution environments.

Index Terms—Data mining, knowledge management.

I. INTRODUCTION

I NTEGRATION of heterogeneous data sources and infer-
ring new knowledge from such combined information is

one of the key challenges in present-day life sciences. Consider,
e.g., bioinformatics where for virtually any biological entity (a
gene, for example) vast amounts of relevant background infor-
mation are available from public web resources. This informa-
tion comes in diverse formats and at diverse levels of abstrac-
tion. Continuing the genomic example, the publicly available
data sources range from DNA sequence information, homology
and interaction relations, Gene Ontology annotations,1 to infor-
mation on the involvement in biological pathways, expression
profiles in various situations etc. To merge only these exem-
plary sources of data, one already has to combine specialized
algorithms for processing sequences, relational data, ontology
information and graph data. It is thus no surprise that a princi-
pled fusion of such relevant data requires the interplay of diverse
specialized algorithms resulting in highly intricate workflows.

While the mutual relations of such algorithms and principles
of their applicability may be mastered by computer scientists,
their command cannot be expected from the end user, e.g., a life
scientist. A formal capture of this knowledge is thus needed,
e.g., in the form of ontologies of relevant services and knowl-
edge/data types, to serve as a basis for intelligent computational
support of scientific workflow composition.

The term knowledge discovery workflow allows a wide scope
of interpretations. For this work, we essentially define it as a pro-
gression of steps (inductive, deductive, format-conversion pro-
cedures etc.) involved in generalizing specific data (e.g., mea-
surements) into patterns, which, under appropriate interpreta-
tion, may represent novel knowledge about the problem domain
under investigation. Therefore, it can be viewed as a special
form of scientific workflows [1], covering the data preparation

1http://www.geneontology.org/

1545-5955/$26.00 © 2010 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

and modeling stages of the standard CRISP-DM data mining
methodology.2

This work was originally motivated by the complex knowl-
edge discovery workflow of interleaving inductive, deductive
and format-conversion procedures which had to be manually
constructed in our previous study in bioinformatics [2].

The primary objective of this study is to investigate whether
such complex workflows can be assembled automatically with
the use of a knowledge discovery ontology and a planning al-
gorithm accepting task descriptions automatically formed using
the vocabulary of the ontology. To achieve this objective, we
have developed and present a knowledge discovery ontology
capturing complex background knowledge and relational data
mining algorithms. We have developed a planner using stan-
dard PDDL descriptions of algorithms generated automatically
from the ontology as a base line approach to demonstrate that
the algorithm descriptions in the knowledge discovery ontology
are suitable for planning. We have also developed an innova-
tive planning algorithm, which obtains possible next steps by
directly querying the ontology using a reasoner.

We use the mentioned bioinformatics study as a use case
in this paper. To demonstrate the generality of the proposed
approach, we also test our methodology in the domain of
engineering,3 where knowledge discovery workflows exhibit
features similar to scientific workflows [3], namely, their com-
plexity and their inductive character.

This paper builds upon the state-of-the-art of rather remote
fields. First, to conceptualize the knowledge discovery domain,
we follow up on the presently emerging research attempting
to establish a unifying theory of data mining[4], [5]. We built
upon the definitions of core knowledge discovery concepts
presented in [5] in designing the core parts of the ontology,
namely the concepts of knowledge, representation language,
pattern, dataset, evaluation, and further more specialized con-
cepts. Using this vocabulary, specific classes of algorithms can
be annotated as to their functionality. For example, inductive
algorithms (given a particular pattern evaluation function) will
produce patterns out of datasets, format conversion algorithms
will produce datasets out of datasets, etc. The ontology implic-
itly delimits the variability of possible workflows for a given
task. For example, if the user desires to mine patterns in the
language of propositional formulas, any algorithm may be
employed that is annotated as to produce patterns in or in any
language subsumed by (e.g., propositional conjunctions).
Second, in the technical aspects of our methodology, we ad-
here to proven standards from the fields of the semantic web
(namely, the OWL [6] framework for ontology modeling) and
planning [the Planning Domain Definition Language (PDDL)
[7] standard for planning problem description].

Note that currently there is a significant gap between the two
foundations of our work mentioned above. Unified data mining
conceptualizations including learning from structured data with
background knowledge, such as those presented in [4] and [5]
do not possess an actionable technical grounding. This is de-

2http://www.crisp-dm.org
3Specifically within the project SEVENPRO, Semantic Virtual Engineering

Environment for Product Design, IST-027473 (2006–2008), Sixth Framework
Program of the European Commission.

spite certain promising proposals, e.g., in the frame of inductive
databases [8], which have yet to find their way to implemen-
tation and practice. Inversely, most of the previously proposed
data mining platforms such as [9] deal only with “proposi-
tional” data mining requiring all data in the flat representation
of attribute-value tuples. Propositional (or “attribute-value”)
data mining is a traditional framework which generally does
not match the demands of mining tasks in domains exhibiting
rich knowledge representations such as description or relational
logic [10]. Here lies the secondary contribution of our paper.
Our methodology bridges the gap by providing a working
prototype of an actionable data mining conceptualization in-
cluding learning from structured and relational data, enabling
automated assembly of knowledge discovery workflows.

This paper is structured as follows. Section II provides an ex-
tensive overview of related work. In Section III, a formal con-
ceptualization of the knowledge discovery domain is proposed
for a segment of data types, data processing types, and data
mining algorithms used in this study. Section IV proposes an ap-
proach to automated knowledge discovery workflow construc-
tion through ontology-based planning, evaluated on two case
studies in Section V.

II. RELATED WORK

Intelligent management of data analysis workflows has at-
tracted a lot of development in recent years. Such development
builds upon technologies provided by several information
science fields, the two most notable of them being the se-
mantic web and grid computing. The former provides the
building blocks through which workflows can be annotated,
facilitates automatic service discovery, efficient management
of workflows or even their automated composition. The latter
technology allows to execute workflows in a distributed com-
puting environment while optimizing factors such as total
runtime, security, etc. Both technologies actively overlap, such
that, e.g., annotations extend also to physical constituents of the
computing environment enabling an intelligent translation of
an abstract (resource independent) workflow to a concrete one,
where tasks are mapped onto particular computing resources.

Our work is mainly concerned with automatic composition of
data mining and knowledge discovery workflows by planning.
We currently focus on generating abstract workflows rather than
providing a workflow editing environment focused on the in-
tegration of computational resources and middleware and effi-
cient execution, such as Triana [11], the system for scientific
workflows developed in Kepler4, WCT developed within the
K-WF grid5 and the tools developed within the DiscoveryNet
project[12] and project ADMIRE [13].

Similarly to the FAEHIM [14] project, we concentrate on the
subdomain of scientific knowledge discovery connected to data
mining. In contrast to our approach, the toolkit developed within
FAEHIM allows only for manual composition of workflows and
does not use any formally defined conceptualization of the do-
main. The Taverna [15] environment for workflow development

4http://kepler-project.org
5http://www.kwfgrid.eu/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ŽÁKOVÁ et al.: AUTOMATING KNOWLEDGE DISCOVERY WORKFLOW COMPOSITION THROUGH ONTOLOGY-BASED PLANNING 3

and execution was developed within the myGrid6 project. It uses
an ontology focused on operations specific to bioinformatics
tasks. The workflows are not represented in an ontology lan-
guage and the workflow design is user-driven.

To the best of our knowledge, there is so far no previous work
providing an actionable ontology for data mining including data
mining from structured data with complex background knowl-
edge. There have been efforts to provide a systematic descrip-
tion of data and processes for the classical data mining tasks,
e.g., in projects MiningMart [16], DataMiningGrid [9] and sys-
tems CAMLET [17], CITRUS [18], and NExT [19]. There have
been some other efforts to formalize concepts for knowledge
discovery on the Grid [20], [21]. However, these ontologies also
cover only propositional data mining.

DataMiningGrid focuses on producing a set of generic tools
and services for deploying data mining applications on stan-
dards compliant grid service infrastructures. MiningMart fo-
cuses on guiding the user to choose the appropriate prepro-
cessing steps in propositional data mining. Both systems con-
tain a metamodel for representing and structuring information
about data and algorithms, however, none of the metamodels
is expressed in an ontology language. Also, the systems do not
provide means for automatic workflow creation. The systems
CITRUS and CAMLET make a limited use of planning for
process decomposition starting from a manually defined struc-
ture. CITRUS uses an object oriented schema to model relation-
ships between the algorithms, while CAMLET uses an ontology
of algorithms and data structures.

The most systematic effort to construct a general knowledge
discovery ontology is described in [19]. The ontology used by
the NExT system is built on OWL-S [22] and provides a rel-
atively detailed structure of the propositional data mining al-
gorithms. It focuses on classical data mining processes, con-
sisting of three subsequent steps: preprocessing, model induc-
tion and postprocessing. In contrast to NExT, we address rela-
tional data mining workflows with possibly multiple interleaved
occurrences of steps pertaining to the three categories. Further-
more, the workflows generated by the NExT system are linear,
whereas our workflows are directed acyclic graphs.

The development of a unified theory (conceptualization)
of data mining was recently identified as the first of ten most
challenging problems for data mining research [4]. While we
do not claim completeness or universal applicability of the
ontology developed in this work, in its design we did try to
follow the state-of-the-art works attempting to establish such a
unified theory including [5] and [23]. In parallel to our work,
the OntoDM [24] ontology is being developed on the basis
of [5]. A principled top-down approach was adopted to the
development of OntoDM aiming at its maximum generality
and describing even inner working of the algorithms. Given the
complexity of the domain subject to modeling, the ontology
is currently not sufficiently specific for purposes of workflow
construction [25]. Also, unlike our ontology, OntoDM is not
compatible with OWL-S.

Previous work exists on the conceptualization of planning
[26], [27]. The sources, however, do not provide details on work-

6http://www.mygrid.org.uk/

flow description. Therefore, a workflows subontology is devel-
oped within our work.

Several previous works have explored planning in the context
of workflows. Notably, in the Wings component of the Pegasus
project [28] a planner employing semantic reasoning is used to
construct a concrete workflow from a given abstract workflow
based on concrete input data [29]. In our research we tackle a
related yet different goal; given an ontology and a task descrip-
tion, we use a planner to construct an abstract workflow. Also,
in Pegasus, an algorithm integrating planning with reasoning is
used to validate abstract workflows and to suggest next steps
to the user, while we are proposing whole abstract workflows,
which do not require the user to be familiar with each part of
the knowledge discovery process. A similar aim was followed
by [30], however, this work is focused only on automatic for-
mation of linear sequences of tasks.

Also relevant is tackling the problem of web service compo-
sition in the framework of planning. [31] uses BPEL4WS7 for
task formulation and workflow representation. Since the adap-
tation of BPEL4WS to scientific workflows is still not standard-
ized [32], we have decided not to use BPEL4WS in our work.

The relevant work of [33] relies on computing a causal link
matrix for all available services. Informally, this matrix cap-
tures semantic input/output compatibility among pairs of ser-
vices. Services can be then viewed as nodes in a graph with the
link matrix defining the edge labels. Finding a suitable sequence
of services can then be elegantly reduced to finding a path in this
graph. In our framework, however, we work with a more gen-
eral, nonlinear notion of a plan, where the inputs of an algorithm
(action) combine the outputs of multiple other algorithms. Thus,
pairwise semantic compatibility does not carry sufficient infor-
mation to construct a plan in our framework and we have to rely
on general planning strategies.

Similarly to our approach, [34]–[36] translate an OWL de-
scription to a planning formalism based on PDDL. While work
presented in [35] and [36] use classical STRIPS [37] planning,
in [34], Hierarchical Task Network (HTN) planning [38] is em-
ployed, which relies on an explicitly defined task decomposi-
tion hierarchy. HTN is not applicable in our framework not con-
strained to tree-based task decomposition.

The approach presented in [36] and [35] uses a reasoner in the
pre-processing phase; we make a step beyond by investigating
the possibility of integrating a reasoning engine directly with the
planner. As another difference, our procedure for converting the
task descriptions to PDDL does not rely on OWL-S, therefore,
we do not require the involved algorithms to be implemented as
web services.

Planning directly in description logics is addressed in [39].
Currently, the algorithm can only deal with DL-Lite descriptions
with reasonable efficiency.

III. KNOWLEDGE DISCOVERY ONTOLOGY

Central to our approach is a formal conceptualization of the
knowledge discovery domain provided by the Knowledge Dis-
covery Ontology (KD ontology, for short). The ontology defines
relationships among the ingredients of knowledge discovery

7http://www.ibm.com/developerworks/library/specification/ws-bpel/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. Part of the top level structure of the knowledge type part of the ontology
with subclass relations shown through arrows.

scenarios, both declarative (various knowledge representations)
and algorithmic. The primary purpose of the ontology is to
enable the workflow planner to reason about which algorithms
can be used to produce intermediary or final results required by
a specified data mining task.

A framework for data mining proposed in [5] identifies three
basic concepts of data mining: “data,” “patterns and models,”
and “data mining task.” Following this view, our three core
concepts are: knowledge, capturing the declarative elements
in knowledge discovery, algorithms, which serve to transform
knowledge into (another form of) knowledge, and knowledge
discovery task, which we have extended to involve workflows.

The ontology is implemented in the description logic variant
of the semantic web language OWL-DL [6]. Our primary rea-
sons for this choice were OWL’s sufficient expressiveness, mod-
ularity, availability of ontology authoring tools and optimized
reasoners. It currently contains around 150 concepts and is avail-
able online.8

A. Knowledge

Any declarative ingredient of the knowledge discovery
process such as datasets, constraints, background knowledge,
rules, etc., are instances of the class. Fig. 1 shows
an illustrative part of the class hierarchy of knowledge types.

In data mining, many knowledge types can be regarded as sets
of more elementary pieces of knowledge [5]. For example, first-
order logic theories consist of formulas. Similarly, the common
notion of a dataset corresponds either to a set of attribute-value
tuples or to a set of relational structures, each of which describes
an individual object. This structure is accounted for through the
predicate , so, e.g., a first-order theory a
set of first-order formulas.

Moreover, some knowledge types may be categorized ac-
cording to the expressivity of the language in which they are
encoded. For this purpose, we have designed a hierarchy of
language expressivity, of which Fig. 2 shows a fraction. The

8http://krizik.felk.cvut.cz/ontologies/2008/kd.owl

Fig. 2. A part of the expressivity hierarchy in the Protege ontology editor. Ex-
pressivity is defined as an essential part of ��������	�
����� class.

hierarchy is an acyclic directed graph, however, for better
readability only tree structure is shown in Fig. 2.

We further distinguish certain knowledge types which play
special roles in knowledge discovery. A basic concept is that of a
dataset. The Dataset class is defined as , which con-
tains . The property can be also
applied to datasets to distinguish between propositional datasets
and relational datasets.

All the other types of knowledge such as pattern
sets, models and constraints are clustered in the class

. It contains the essential con-
cept of a generalization, which is a knowledge class with the
special property that it defines a mapping from one or more
knowledge classes to another knowledge class. Intuitively, this
class serves to hold the results of inductive mining algorithms;
such results generally can be viewed in a unified fashion as
mappings [5]. Of course, the generalization’s mapping, i.e.,
its semantics, is ultimately assigned to it by an algorithm
used to interpret it. The class contains two
subclasses, which can be distinguished by the property of
decomposability and by the type of algorithms used to produce
it. is a result of a predictive algorithm and it cannot be
decomposed into independent parts. , on the other
hand, can be decomposed into independent parts and is usually
produced by a descriptive algorithm, such as an association
rules learner.

Algorithms

The notion of an algorithm involves all executable routines
that can be used in a knowledge discovery process, like induc-
tive algorithms and knowledge format transformations. Any al-
gorithm turns a knowledge instance into another knowledge in-
stance. For example, inductive algorithms will typically pro-
duce a or instance out of a Dataset instance.
Of importance are also auxiliary representation changers, trans-
forming datasets to other datasets. These may be simple format
converters (e.g., only changing the separator character in a tex-
tual data file), or more complex transformations characterized
by information loss. This may be incurred either due to a con-
version into a language class with lower expressiveness (e.g., for
“propositionalization” [40] algorithms) or even without expres-
siveness change (e.g., for principal component representation of
real vectors).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ŽÁKOVÁ et al.: AUTOMATING KNOWLEDGE DISCOVERY WORKFLOW COMPOSITION THROUGH ONTOLOGY-BASED PLANNING 5

The class is a base class for all algorithms, like
JRip (an algorithm for decision rules induction implemented in
Weka [41]), in the example below. The hierarchy contains also
fully defined classes, like or

for fine-grained categorization
of data mining algorithms according to their functionality.

Each algorithm configuration is defined by its input and
output knowledge specifications and by its parameters. In order
to maintain the compatibility with OWL-S, the
class is defined as a specialization of the OWL-S class
and an algorithm configuration is an instance of its subclass

. Both the input knowledge and the parame-
ters are instances of and defined using
the property. The output knowledge specifications are
instances of and defined using the

property. The parameter instances are then mapped to
the appropriate subclasses using the
property.

Furthermore, each named algorithm is linked to its implemen-
tation using the property, which is
aimed at automatically running the generated workflows within
a knowledge-discovery engine in a uniform way. To run the al-
gorithm, an instance of is created con-
taining actual values of the algorithm parameters, which are
passed to the algorithm implementation.

As an example we present the definition of the JRip algo-
rithm in the description logic notation using the extended ABox
syntax [42]

The JRip algorithm is defined as an algorithm that has two
parameters: one stipulating whether to use pruning and one de-
termining the minimum number of examples covered by each
single rule. It can be applied to a single relation classified dataset
in the CSV or ARFF format and produces a result in the form
of predictive rules (i.e., patterns defining a mapping to a distin-
guished set of classes).

B. Workflows Subontology

In order to formalize the problem description and for storing
the created workflows in a knowledge-based representation, we
have created a small ontology for workflows, which extends the
KD ontology. The workflows subontology has two central no-
tions: and .

Each is defined by its init and
goal specifications. As an example we present the definition of
the problem of generating predictive rules from relational data
(RRules) in the description logic notation

RRules problem is defined as problem of generating rela-
tional predictive rules from a relational classified dataset and
an ontology in OWL-DL as background knowledge, both ex-
pressed in the RDFXML format. Currently the ontology de-
scribes a few problem types, which were developed for our
use cases and which should serve as a template for the user to
specify problem types relevant for his/her KD tasks.

An abstract workflow is represented by the class,
which is a subclass of the class in the KD ontology.
This allows encapsulating the often repeated workflows and
construct hierarchical workflows.

The abstract workflow is represented as a set of
specified using property. An action is defined by the

, specifying the algorithm configuration used by
this action, and by specifying the step within the
plan in which the action should be carried out. The dependen-
cies between actions are represented using the
property. The property can express both control and data flow
dependency. The formal representation of abstract workflows is
used for workflow instantiation and execution within the knowl-
edge discovery engine and also for storing and reuse of the gen-
erated workflows.

IV. AUTOMATIC WORKFLOWS CONSTRUCTION

In this paper we focus on automatic construction of abstract
workflows. Each generated abstract workflow is stored as an
instance of the class and can be instantiated with a
specific algorithm configuration either manually or using a pre-
defined default configuration. We treat the automatic workflow
construction as a classical planning task, in which algorithms
represent operators and their required input and output knowl-
edge types represent preconditions and effects.

Both the information about the available algorithms and
knowledge types as well as the specification of the knowledge
discovery task is encoded through an ontology. At the same
time, we want to be compatible with established planning
standards. For these reasons, we have decided to explore two
approaches to solving the planning task. The first, baseline
approach consists of generating a description of the domain
and the problem description in the PDDL language [7] using
elements of the KD ontology and implementing a planning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. A skeleton of the procedure for converting descriptions of algorithms
from the KD ontology into PDDL.

algorithm, which uses PDDL descriptions. The second, less
orthodox approach, implements a planning algorithm capable
of directly querying the KD ontology using a reasoner. The
Pellet [43] reasoner is used.

A. Generating Domain and Problem Descriptions in PDDL

We use PDDL 2.0 with type hierarchy and domain axioms.
Planning algorithms require two main inputs. The first one is
the description of the domain specifying the available types of
objects and actions. The second one is the problem description
specifying the initial state, goal state and the available objects.
We have implemented a procedure for generating the domain
description from the KD ontology.

The domain description is generated by converting Named
into PDDL actions, with specifying the

preconditions and specifying the effects. Both inputs
and outputs are restricted to conjunctions of OWL classes. We
consider only those inputs that are specified by instances of
classes disjoint with , which is used
to represent algorithm configuration parameters, e.g., minimum
support of a rule. Since PDDL can handle only named types
and their hierarchies, it is necessary to preprocess classes de-
fined using owl:Restriction.

A skeleton of the conversion procedure is in Fig. 3. Both the
list of instances of and the list of input and
output specifications are obtained by a SPARQL-DL query.

Procedure transformIO converts an i/o specification defined
by an instance of into a class equivalent
to its range, which consists of an intersection of the
subclasses and restrictions defined in the KD ontology. The
equivalent class is obtained by a SPARQL-DL query. For

subclasses representing algorithm
parameters the procedure returns null.

The procedure convertIO2pddl converts an i/o specification
defined by a named class or an owl:intersectionOf class into
PDDL predicates. The operands of the owl:intersectionOf
class specified by named classes and universal restrictions on
properties and are converted
into named classes. The named classes are added to the
list and their hierarchy is later inferred by an OWL reasoner.
The named class is converted to a unary predicate
and also added to action parameters. Operands specified by re-
strictions on other properties are converted using the procedure
rest2preds to binary predicates with the first argument being
the previously defined named class and the second argument is
given by the restriction value. All the generated predicates and
parameters are then added to action preconditions or effects
using addIO.

As an example the definition of the action representing the
JRip algorithm described in Section III is presented in PDDL
below

The information about the output of the JRip algorithm is ex-
pressed using the named class . Therefore
the effects of the action using the JRip algorithm are represented
using the unary predicate applied on the named
class .

Finally, procedure createDomainPDDL takes the list of ac-
tions and hierarchy of PDDL types and fits them into a domain
file template in PDDL.

Problem description in PDDL is generated in a very similar
way, except we are dealing with objects instead of variables.
The objects appearing in and conditions are gener-
ated from an individual of type in
the KD ontology, which represents a particular problem, e.g.,
producing a set of predictive rules from a dataset stored in a re-
lational database.

B. Planning Algorithm

We have implemented a planning algorithm based on the
Fast-Forward (FF) planning system [44] to generate abstract

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ŽÁKOVÁ et al.: AUTOMATING KNOWLEDGE DISCOVERY WORKFLOW COMPOSITION THROUGH ONTOLOGY-BASED PLANNING 7

workflows automatically. The FF planning system uses a mod-
ified version of a hill climbing algorithm called enforced hill
climbing to perform forward state space search. The heuristics
used by the enforced hill-climbing algorithm is defined as
the number of operators in the plan constructed using relaxed
GRAPHPLAN [45].

If the enforced hill-climbing algorithm fails, the problem is
solved using a complete search algorithm. In [44] the search
space is pruned using two heuristics: a helpful actions heuristic,
which considers only actions that add at least one goal at the
first time step, and added goal deletion heuristics, which exploits
goal ordering.

We have implemented the basic architecture of the FF plan-
ning system consisting of the enforced hill climbing algorithm
and the relaxed GRAPHPLAN. Since the planning problem in
workflow construction contains no goal ordering, no mecha-
nisms for exploiting goal ordering are implemented. Our imple-
mentation is also capable of handling PDDL only with STRIPS
[37] expressivity and using types.

In order to produce several relevant workflows in a reasonable
time frame, the algorithm is run repeatedly, randomly permuting
the order in which immediate neighbors of one state are added
to the open-set during the breadth-first search.

Following the reasoning from the beginning of Section IV,
we have implemented the above principles into two versions of
the planning algorithm. The first, PDDLPlanner, assumes that
all available actions are described through a standard PDDL file
created in a preprocessing stage using the KD ontology. The KD
ontology is not used during the actual planning.

The second version, PelletPlanner, obtains neighboring states
during enforced hill-climbing by matching preconditions of
available algorithms with currently satisfied conditions. Here,
each such matching is conducted in the planning time via
posing an appropriate SPARQL-DL [46] query towards the KD
ontology. The query templates have been created manually to
look for most specific matches. The reasoner is used mainly to
infer implicit hierarchies of knowledge types.

C. Workflow Storage and Execution

The workflow management and execution functionality is en-
capsulated in the RDM Manager (shown in Fig. 4), which forms
a part of the SEVENPRO software infrastructure [47]. The cen-
tral component of the RDM Manager is the RDM Engine re-
sponsible for designing, storing, retrieving and executing work-
flows. For this sake, the RDM Engine has access to the KD
ontology, and can launch the planner, the ontology based con-
structor of PDDL files (Onto2PDDL box in the figure) as well
as all the various algorithms appearing in workflows. The RDM
Engine is equipped with a web service interface allowing a stan-
dardized access. A graphical user interface (RDM GUI) has
been developed enabling specification of the knowledge dis-
covery task and passing on the specification to the RDM Engine
web services. The Semantic Repository box also shown in Fig. 4
is a central storage point of the SEVENPRO software platform.
The RDM Manager Tools stores all results of knowledge dis-
covery processes, including the constructed workflows into the
Semantic Repository for later retrieval by itself or by other soft-
ware components of the SEVENPRO platform. Conversely, the

Fig. 4. An overview of the RDM Manager architecture.

Fig. 5. Sequence diagram showing a typical scenario for PDDLPlanner.

Semantic Repository also holds all data onto which knowledge
discovery workflows are applied.

The general workflow maintenance scenario is shown in
Fig. 5. The user formulates a knowledge discovery task using
the RDM GUI, which formalizes the task specification into a
SPARQL query, passed to the RDM Engine. The RDM Engine

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

queries the Semantic Repository for an existing workflow (pos-
sibly a single algorithm) solving the task. If such a workflow
is found, it is presented to the user who can set or update its
parameters. Otherwise, the RDM Engine calls the Planner. If
the PDDLPlanner is used, the Onto2PDDL component is called
first to produce the suitable PDDL file.

A plan generated by the Planner is a directed acyclic graph
with nodes representing instances, which do not
contain any values of algorithm parameters specified by simple
datatypes (e.g., – the minimal number examples cov-
ered by one rule). Therefore, in the next stage, it is necessary
to convert the plan actions into a sequence of instances of

.
A SPARQL-DL query is used to search for the instances of

used by the actions in the plan. In the
current version of our system, the user has three options: to
use default configurations for all the algorithms, to choose from
among previously used configurations or to set all parameters
manually.

When all the actions of the plan have been instantiated, they
are combined into an abstract workflow represented by an in-
stance of the class, which is stored in the Semantic
Repository. Since the current version of the RDM Engine does
not provide any means for parallelization, the actions of the
workflow are converted to a sequence. The RDM Engine then
generates a query for execution of each algorithm configuration
in the sequence.

The data are then retrieved from the Semantic Repository
using a SPARQL query. Then, for each algorithm in the se-
quence, the RDM Engine extracts the algorithm’s class from
its . Knowing the class, it then launches
the algorithm’s wrapper passing the retrieved the data and pa-
rameters to it. When the algorithm terminates, the RDM En-
gine passes its results to the wrapper of the next algorithm in
the sequence.

The algorithms currently available in the RDM Engine
include specialized algorithms for relational learning through
propositionalization [48] and subsequent propositional search
described in [49], a collection of algorithms from Weka data
mining platform [41] including the JRip rule learner, the J48
decision tree induction algorithm and Apriori algorithm. In
addition, algorithms for data preprocessing and format con-
versions are also available within the RDM Engine. New
algorithms can be easily added to the RDM Engine by devel-
oping a wrapper for the particular algorithm and possibly also
an API for accessing the results in case the particular result
type is not yet included in the RDM Engine.

V. EVALUATION

As explained in Section II, our system solves a task not
tackled by existing algorithms. Empirical tests should thus pri-
marily serve as a proof of concept, showing that the approach
scales, with acceptable computational demands, to reasonably
large real-life problem instances. We have conducted work-
flow construction experiments in two domains: genomics and
product engineering. The workflows pertaining to both of the
use cases are required to merge data with nontrivial relational

structure, including ontology background knowledge.9 Again,
this setting precludes the application of previous workflow
construction systems, limiting the scope for comparative evalu-
ation. However, we do run comparative experiments to evaluate
the effects of employing either of the two earlier described
planning strategies.

Also, to trace the dependence of runtime on the size of the
KD ontology and the number of available algorithms annotated
using the ontology, we perform experiments with two versions
of the KD ontology and with growing set of algorithms for the
first version. The second version of the KD ontology is a strict
extension of our original KD ontology with added classes re-
quired for annotating algorithms from the Orange [50] system.

A. Use Cases

1) Genomics: In analyzing gene expression data, we are
dealing with the following sources of information: gene ex-
pression microarray data sets, Gene Ontology (GO) [51] and
gene annotations. Annotations of genes using GO terms can be
extracted from a public database.

Task: The task was to apply relational machine learning
algorithms to produce a set of descriptive rules for groups
of genes differentially expressed in specific conditions, more
specifically for the acute lymphoblastic leukemia and acute
myeloid leukemia. The data sources available were a gene ex-
pression microarray data set, GO and gene annotations from the
Entrez database10. The operators are algorithms for preparing
inputs for the relational data mining (RDM) described in [2]
and components of the framework for RDM with taxonomic
background knowledge described in [49].

2) Engineering: Product engineering deals with very spe-
cific knowledge types such as CAD, documentation, ERP/data-
base, etc. The SEVENPRO project addressed the problem of
the effective reuse of heterogeneous knowledge and past de-
signs by providing a unified view of the available knowledge
through commonly agreed ontologies. Engineering designs cap-
turing implicit expert knowledge have relational nature, spec-
ifying various numbers of primitive objects and relations be-
tween them. In the SEVENPRO environment data are encoded
in a subset of the RDFS formalism.

Task: One of the tasks solved within the SEVENPRO
project was to generate descriptive and predictive rules from
annotations of CAD drawings of different products. We were
particularly interested in descriptive rules characterizing a
particular class. The classification task was carried out as well
in order to verify that we can distinguish between the product
classes based on the provided information. The input data con-
sisted of a list of identifiers of CAD drawings, CAD ontology
and the annotations of individual CAD drawings.

B. Results

Experiments were carried out on a 1.8 GHz Intel Centrino PC
with 1 GB memory. We used each planner for the two tasks de-
scribed above and we used two versions of the KD ontology.

9Ontologies acting as knowledge entering the workflows should not be con-
fused with the KD ontology guiding the construction of the workflows.

10Maintained by US National Center for Biotechnology Information, ftp://
ftp.ncbi.nlm.nih.gov/gene/.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ŽÁKOVÁ et al.: AUTOMATING KNOWLEDGE DISCOVERY WORKFLOW COMPOSITION THROUGH ONTOLOGY-BASED PLANNING 9

Fig. 6. Abstract workflow generated for obtaining descriptive rules for groups of differentially expressed genes for AML versus ALL. Rectangles represent algo-
rithms and parallelograms represent data passed between them. Properties are abbreviated as follows: E: hasExpressivity, C: contains, and F: hasFormat.

TABLE I
PLANNER PERFORMANCE RESULTS, WITH RESPECT TO THE DOMAIN AND

ONTOLOGY USED AND THE NUMBER OF ALGORITHMS AVAILABLE. THE TIME

FOR PREPROCESSING (PREP.) AND PLANNING (PLAN) IS SHOWN IN SECONDS

The first version contains classes necessary for annotation of
algorithms available in the RDM Manager tool (KD-RDM),
whereas the second version (KD-Orange) contains also classes
necessary for annotations of algorithms available in the Orange
data mining platform. KD-RDM contains 187 classes, 38 ob-
ject properties, and 114 individuals. KD-Orange contains 284
classes, 51 object properties, and 191 individuals. The ontology
KD-RDM was used to annotate 18 algorithms, which are part
of the RDM Engine. The ontology KD-Orange was used to an-
notate also algorithms available in Orange [50], in total 43 al-
gorithms.

Other algorithm annotations for KD-RDM were created ar-
tificially. For PDDLPlanner, the preprocessing stage includes
conversion into PDDL. The results are summarized in Table I.
None of the Orange algorithms were employed in the produced
workflows, they only served to make the search task harder.

The results primarily show that successful workflows (exem-
plified below) can be automatically achieved in small absolute
run times. Further, we observe rather small sensitivity of the
run times to the size of the KD ontology (more specifically, the
number of algorithms it contains).

Interestingly, the results also show the superiority of the in-
novative PelletPlanner strategy of “online querying for actions”
over the baseline PDDLPlanner strategy in case of formulating
new and diverse tasks, which is a typical scenario in both in-
vestigated domains. The single factor contributing to this su-
periority is the preprocessing time, smaller for PelletPlanner.
This is mainly because ontology classification, the most time
consuming operation within preprocessing, has to be performed

twice by the reasoner when converting to PDDL. On the other
hand, in preprocessing for PelletPlanner, this operation is per-
formed only once. The described headstart of PelletPlanner is
then reduced in the actual planning phase but still remains sig-
nificant due to the relatively small proportion of planning time
within the combined run time. In case of a set of planning tasks
using the same domain description, the PDDLPlanner is how-
ever a better choice, since in this case the preprocessing phase
can be run only once for the whole set of tasks.

An example of an abstract workflow generated for the ge-
nomics task described in Section V-A1 is shown in Fig. 6. The
generated workflow utilizes algorithms developed by several
different researchers and some of the tasks (e.g., discrimina-
tive gene set extraction) are independent of the rest. Using an
automatically generated and semantically described workflow
makes it far easier to conduct a series of experiments focusing
influence of variations in one particular step of the process on
the result of the whole data mining process without having to
understand some other steps.

An example of an abstract workflow generated for the en-
gineering task described in Section V-A2 is shown in Fig. 7.
The same workflow had been produced manually within the
SEVENPRO project and it was successfully rediscovered by the
planner and executed using the RDM Manager tool developed
within the SEVENPRO project.

VI. CONCLUSION AND FUTURE WORK

The primary objective of this study was to investigate
whether complex scientific and engineering knowledge dis-
covery workflows, such as those we had to develop manually
in previous studies [2], [3], can be proposed automatically.
We have developed a methodology for automatic composition
of abstract workflows, which are proposed to the user and
can be instantiated interactively. Our methodology focuses on
workflows for complex knowledge discovery tasks dealing with
structured data and background knowledge, while the previous
studies deal only with classical propositional data mining tasks
or are specialized for one domain only.

Our methodology consists of two main ingredients. The
first on is a formal conceptualization of knowledge types and
algorithms implemented in the KD ontology following up on
state-of-the-art developments of a unified data mining theory,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 7. Abstract workflow generated for obtaining predictive and descriptive rules from annotations of CAD design drawings.

which can describe complex background knowledge and rela-
tional data mining algorithms. The ontology is expressed in a
standard semantic language OWL, therefore, it can be queried
using reasoners such as Pellet. Moreover it is compatible with
the OWL-S standard. Only one of the other currently available
data mining ontologies deals with relational algorithms and
complex knowledge types [24] and it is a heavy-weight on-
tology aimed at capturing even inner working of the algorithm
and therefore currently not suitable for planning. Using the
ontology for planning and reuse of workflows grounds the
efforts in constructing a unified data mining conceptualization
and provides competency questions for its further development.

The developed KD ontology was used to annotate algorithms
for relational data mining available within the RDM Manager
tool and algorithms available in the Orange data mining plat-
form. We have proposed a subontology for representing data
mining workflows in such a way that they can be considered as
algorithms and thus allow encapsulating often repeated work-
flows and constructing hierarchical workflows.

Second, a planning algorithm was implemented and em-
ployed to assemble workflows for the task specified by the
user’s input-output task requirements. We have developed
two versions of the algorithm. PDDLPlanner is the baseline
solution, which demonstrates the suitability of KD ontology for
planning. It uses planning task descriptions in PDDL extracted
from the KD ontology and the given user’s input-output task
requirements. An innovative PelletPlanner is based on directly
querying the ontology. We are not aware of any work com-
paring these two approaches experimentally.

The most time consuming part of the process is ontology
classification by the reasoner, however this needs to be per-
formed only once for each session for PelletPlanner and even
less often for PDDLPlanner. With increasing complexity of
the ontology and the number of annotated algorithms, the
PDDLPlanner scales better, however, the PelletPlanner also
performs well enough for this application.

We have successfully applied the methodology for con-
structing workflows in two domains (science and engineering).
The workflows generated by our algorithm were complex, but
reasonable in that there was no apparent way of simplifying
them while maintaining the desired functionality.

A formal capture of the knowledge discovery task by means
of a KD ontology can be used to improve repeatability of experi-

ments and to enable reasoning on the results to facilitate reuse of
workflows and results. Manual annotation of algorithms, which
require extending the core ontology with new knowledge classes
can be time consuming and requires expertise in semantic mod-
eling. However, more often algorithms working with already de-
fined knowledge classes are added.

With weak constraints using of rich ontological represen-
tation could easily lead to a combinatorial explosion during
planning. On the other hand, the ontological representation
and using the reasoner during automatic workflow construction
enables us to work on different levels of abstraction. Even a
hierarchy on algorithms can be exploited in planning. Also,
user constraints can be expressed at different abstraction levels.
Moreover, automatic workflow construction is expected to
facilitate use of complex data mining algorithms by domain
experts, e.g., from life sciences and engineering, and also reuse
of complex third party algorithms.

In the ongoing work, we are developing and implementing
an approach for integrating the PelletPlanner into the Orange
data mining toolkit to increase reusability of the methodology.
We are also developing an adjusted version of the PelletPlanner
exploiting also hierarchy on algorithms and are planning to ex-
periment with planning and goals at different abstraction levels.

In future work, we plan to extend the ontology by descriptions
of available computational resources (such as in a GRID envi-
ronment). This will enable us to produce workflows optimized
for execution in a given computing environment as a step to-
wards future automated generation of workflows of data mining
services available on the web. We also want to extend modeling
of constraints on the algorithms and workflows and to align the
ontology to a top-level ontology. Furthermore, we want to in-
troduce more complex heuristics for evaluating the workflows
and metrics for workflow similarity and focus on planners more
tightly integrating the planner with a reasoner.

REFERENCES

[1] Workflows for e-Science, Scientific Workflows for Grids, I. Taylor, E.
Deelman, D. Gannon, and M. Shields, Eds.. New York: Springer,
2007.

[2] I. Trajkovski, F. Železný, N. Lavrač, and J. Tolar, “Learning relational
descriptions of differentially expressed gene groups,” IEEE Trans. Syst.
Man, Cybern. C, vol. 38, no. 1, pp. 16–25, Jan. 2008.

[3] M. Žáková, F. Železný, J. A. Garcia-Sedano, C. Massia-Tissot, N.
Lavrač, P. Křemen, and J. Molina, “Relational data mining applied
to virtual engineering of product designs,” in Proc. 16th Int. Conf.
Inductive Logic Programming, 2006, pp. 439–453.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ŽÁKOVÁ et al.: AUTOMATING KNOWLEDGE DISCOVERY WORKFLOW COMPOSITION THROUGH ONTOLOGY-BASED PLANNING 11

[4] Q. Yang and X. Wu, “10 challenging problems in data mining research,”
Intl. J. Inf. Tech. Decision Making, vol. 5, no. 4, pp. 597–604, 2006.

[5] S. Džeroski, “Towards a general framework for data mining,” in Proc.
5th Int. Workshop, Knowledge Discovery in Inductive Databases,
KDID’06, 2007, vol. 4747, LNCS, pp. 259–300.

[6] P. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL web ontology
language semantics and abstract syntax,” W3C recommendation, 2004.
[Online]. Available: http://www.w3.org/TR/owl-semantics/

[7] D. Smith and D. Weld, “Temporal planning with mutual exclusion rea-
soning,” in Proc. 1999 Int. Joint Conf. Artif. Intell. (IJCAI-1999), 1999,
pp. 326–333.

[8] L. DeRaedt, “A perspective on inductive databases,” SIKDD Explo-
rations, vol. 4, no. 2, pp. 69–77, 2002.

[9] V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J. Kin-
dermann, and W. Dubitzky, “Grid-enabling data mining applications
with DataMiningGrid: An architectural perspective,” Future Genera-
tion Comput. Syst., vol. 24, no. 4, pp. 259–279, 2008.

[10] Relational Data Mining, S. Džeroski and N. Lavrač, Eds. New York:
Springer, 2001.

[11] I. Taylor, M. Shields, I. Wang, and A. Harrison, “The Triana workflow
environment: Architecture and applications,” in Workflows for e-Sci-
ence, I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds. New
York: Springer, 2007, pp. 320–339.

[12] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo,
“The Discovery Net system for high throughput bioinformatics,” Bioin-
formatics, vol. 19, pp. 225–231, 2003.

[13] N. L. Khac, M. T. Kechadi, and J. Carthy, “Admire framework: Dis-
tributed data mining on data grid platforms,” in Procs. 1st Int. Conf.
Softw. Data Technol., 2006, vol. 2, pp. 67–72.

[14] A. Ali, O. Rana, and I. Taylor, “Web services composition for dis-
tributed data mining,” in Proc. 2005 IEEE Int. Conf. Parallel Pro-
cessing Workshops, ICPPW’05, 2005, pp. 11–18.

[15] D. DeRoure, C. Goble, and R. Stevens, “The design and realisation of
the myExperiment virtual research environment for social sharing of
workflows,” Future Gen. Comput. Syst., vol. 25, pp. 561–567, 2008.

[16] K. Morik and M. Scholz, “The MiningMart approach to knowledge
discovery in databases,” in Proc. Int. Conf. Machine Learning, 2004,
pp. 47–65.

[17] A. Suyama, N. Negishi, and T. Yamagchi, “Composing inductive appli-
cations using ontologies for machine learning,” in Proc. 1st Int. Conf.
Discovery Sci., 1998, pp. 429–431.

[18] R. Wirth, C. Shearer, U. Grimmer, T. P. Reinartz, J. Schloesser, C.
Breitner, R. Engels, and G. Lindner, “Towards process-oriented tool
support for knowledge discovery in databases,” in Proc. 1st Eur. Symp.
Principles of Data Mining and Knowledge Discovery, 1997, vol. 1263,
pp. 243–253.

[19] A. Bernstein and M. Deanzer, “The NExT system: Towards true dy-
namic adaptions of semantic web service compositions (system de-
scription),” in Proc. 4th Eur. Semantic Web Conf. (ESWC’07)), 2007,
vol. 4519, LNCS, pp. 739–748.

[20] A. Congiusta, D. Talia, and P. Trunfio, “Distributed data mining ser-
vices leveraging WSRF,” Future Gen. Comput. Syst., vol. 23, no. 1, pp.
34–41, 2007.

[21] Y. Li and Z. Lu, “Ontology-based universal knowledge grid: Enabling
knowledge discovery and integration on the grid,” in Proc. 2004 IEEE
Int. Conf. Services Comput. (SCC’04), 2004, pp. 557–560.

[22] “OWL-S: Semantic Markup for Web Services”, W3C Member Sub-
mission, , 2004. [Online]. Available: http://www.w3.org/Submission/
2004/SUBM-OWL-S-20041122/

[23] H. Mannila, “Aspects of data mining,” in Proc. MLnet Familiarization
Workshop on Statistics, Machine Learning and Knowledge Discovery
in Databases, 1995, pp. 1–6.

[24] P. Panov, S. Džeroski, and L. N. Soldatova, “OntoDM: An ontology of
data mining,” in Proc. IEEE ICDM Workshops, 2008, pp. 752–760.

[25] P. Panov and S. Džeroski, Personal Communication, 2009.
[26] D. Rajpathak and E. Motta, “An ontological formalization of the

planning task,” in Proc. Int. Conf. Formal Ontologies in Inform. Syst.
(FOIS’04), 2004, pp. 305–316.

[27] P. Mika, D. Oberle, A. Gangemi, and M. Sabou, “Foundations for
service ontologies: Aligning OWL-S to DOLCE,” in Proc. World
Wide Web Conference (WWW2004), Semantic Web Track, 2004, pp.
563–572.

[28] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, S. Koranda, A. Lazzarini,
G. Mehta, M. A. Papa, and K. Vahi, “Pegasus and the pulsar search:
From metadata to execution on the grid,” in Parallel Processing and
Applied Mathematics, 2004, pp. 821–830.

[29] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim, “Wings for Pe-
gasus: Creating large-scale scientific applications using semantic rep-
resentations of computational workflows,” in Proc. 19th Annu. Conf.
Innovative Appl. Artif. Intell., 2007, pp. 1767–1774.

[30] A. Min Tjoa, P. Brezany, and I. Janciak, “Ontology-based construc-
tion of grid data mining workflows,” in Data Mining with Ontologies:
Implementations, Findings and Frameworks. Hershey: IGI Global,
2007.

[31] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso, “Plan-
ning and monitoring web service composition,” in Proc. AIMSA 2004,
2004, pp. 106–115.

[32] A. Slominski, “Adapting BPEL to scientific workflows,” in Workflows
for e-Science, I. Taylor, E. Deelman, D. Gannon, and M. Shields,
Eds. New York: Springer, 2007, pp. 208–226.

[33] F. Lécué, A. Delteil, and A. Léger, “Applying abduction in semantic
web service composition,” in Proc. IEEE Int. Conf. Web Services
(ICWS 2007), 2007, pp. 94–101.

[34] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN planning for
web service composition using SHOP2,” J. Web Semantics, vol. 1, no.
4, pp. 377–396, 2004.

[35] M. Klusch, A. Gerber, and M. Schmidt, “Semantic web service com-
position planning with OWLS-XPLAN,” in Proc. 1st Intl. AAAI Fall
Symp. Agents and the Semantic Web, 2005, pp. 55–62.

[36] Z. Liu, A. Ranganathan, and A. Riabov, “A planning approach for mes-
sage-oriented semantic web service composition,” in Proc. Nat. Conf.
AI, 2007, vol. 5, no. 2, pp. 1389–1394.

[37] R. Fikes and N. Nilsson, “STRIPS: A new approach to the applica-
tion of theorem proving to problem solving,” Artif. Intell., vol. 2, pp.
189–208, 1971.

[38] E. D. Sacerdoti, “Planning in a hierarchy of abstraction spaces,” Artif.
Intell., vol. 5, no. 2, pp. 115–135, 1974.

[39] J. Hoffmann, “Towards efficient belief update for planning-based web
service composition,” in Proc. ECAI 2008, 2008, pp. 558–562.

[40] Železný and N. Lavrač, “Propositionalization-based relational sub-
group discovery with RSD,” Machine Learning, vol. 62, no. 1-2, pp.
33–63, 2006.

[41] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. San Francisco, CA: Morgan Kaufmann, 2005.

[42] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. E. Patel-
Schneider, The Description Logic Handbook, Theory, Implementation
and Applications. Cambridge, MA: Cambridge Univ. Press, 2003.

[43] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical OWL-DL reasoner,” J. Web Semantics, vol. 5, no. 2, pp.
51–53, 2007.

[44] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-
tion through heuristic search,” J. Artif. Intell. Res., vol. 14, pp. 253–302,
2001.

[45] A. Blum and M. Furst, “Fast planning through planning graph anal-
ysis,” Artif. Intell., vol. 90, pp. 281–300, 1997.

[46] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL query for
OWL-DL,” in Proc. OWLED 2007 Workshop on OWL: Experi-
ences and Directions, 2007. [Online]. Available: http://sunsite.infor-
matik.rwth-aachen.de/Publications/CEUR-WS/Vol-258/paper14.pdf

[47] M. Strauchmann, T. Haase, E. Jamin, H. Cherfi, M. Renteria, and C.
Masia-Tissot, “Coaction of semantic technology and virtual reality in
an integrated engineering environment,” in KCAP Workshop on Knowl-
edge Management and Sem. Web for Engineering Design, 2007, pp.
39–47.

[48] M.-A. Krogel, S. Rawles, P. A. Flach, N. Lavrač, and S. Wrobel,
“Comparative evaluation of approaches to propositionalization,” in
Proc. 13th Int. Conf. Inductive Logic Programming, ILP, 2003, vol.
2835, LNAI, pp. 197–214.

[49] M. Žáková and F. Železný, “Exploiting term, predicate, and feature
taxonomies in propositionalization and propositional rule learning,” in
Proc. 18th Eur. Conf. Machine Learning, ECML, 2007, pp. 798–805.

[50] J. Demsar, B. Zupan, and G. Leban, “Orange: From experimental ma-
chine learning to interactive data mining,” White Paper, 2004. [Online].
Available: www.ailab.si/orange

[51] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A.
Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese,
J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock, “Gene
ontology: Tool for the unification of biology,” Nature Genetics, vol. 25,
pp. 25–29, 2000.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Monika Žáková is currently working towards the
Ph.D. degree at the Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical
University in Prague, Czech Republic.

She is a member of the Intelligent Data Analysis
Research Group at the Gerstner Laboratory, Czech
Technical University in Prague. Her main research
interest is relational machine learning, in particular
learning with complex background knowledge, and
semiautomatic creation of semantic annotations and
knowledge discovery workflows.

Petr Křemen is currently working towards the Ph.D.
degree at the Department of Cybernetics, Faculty of
Electrical Engineering of the Czech Technical Uni-
versity in Prague, Czech Republic.

He is a member of the Knowledge-Based Systems
Group. His research interests include semantic web
technologies, in particular error explanation in on-
tologies, ontology development, query answering in
semantic web and OWL language.

Filip Železný received the Ph.D. degree in artificial
intelligence and biocybernetics from the Czech
Technical University in Prague, Czech Republic, and
carried out postdoctoral training at the University of
Wisconsin, Madison.

He is Head of the Intelligent Data Analysis Re-
search Group at the Department of Cybernetics, Fac-
ulty of Electrical Engineering, Czech Technical Uni-
versity in Prague. He was a Visiting Professor at the
State University of New York, Binghamton. His main
research interest is relational machine learning and its

applications in bioinformatics.

Nada Lavrač is Head of the Department of Knowl-
edge Technologies, Jožef Stefan Institute, Ljubljana,
Slovenia. She was the scientific coordinator of the
European Scientific Network in Inductive Logic Pro-
gramming (ILPNET, 1993–1996) and co-coordinator
of the 5FP EU project Data Mining and Decision Sup-
port for Business Competitiveness: A European Vir-
tual Enterprise (SolEuNet, 2000–2003). She is author
and editor of several books and conference proceed-
ings, including Inductive Logic Programming: Tech-
niques and Applications (Kluwer, 1997) and Rela-

tional Data Mining (Springer, 2002). Her main research interests are in machine
learning, relational data mining, knowledge management, and applications in
medicine and bioinformatics.

