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together with new semantic subgroup discovery systems SDM-search for enriched gene sets (SEGS)
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1. INTRODUCTION

Knowledge discovery in databases (KDD) refers to the
interactive and iterative process of finding interesting patterns
and models in data [1]. The most common setting in knowledge
discovery is rather simple: given is the empirical data and
a data mining task to be solved, the data are pre-processed,
then a data mining algorithm is applied and the end result
is a predictive model or a set of descriptive patterns which
can be visualized, interpreted and deployed in problem-solving
tasks.

Data mining algorithms included in the contemporary data
mining platforms such as Weka [2], KNIME [3], Orange [4]
and RapidMiner [5] provide an extensive support for mining
empirical data stored in a single table format, usually referred
to as propositional data. These data mining platforms support
all the most common propositional data mining tasks, including
(but not limited to)

(i) classification and regression: predicting the value of
the target attribute from the values of other attributes;

(ii) clustering: grouping objects into groups of similar
objects;

(iii) association analysis: discovering correlations between
sets of items which are most often found together in a
set of transactions.

Data mining platforms like Weka provide their own implemen-
tations of the most popular and most commonly used data min-
ing algorithms such as the C4.5 decision tree induction algo-
rithm [6], the k-means clustering algorithm [7] and the Apriori
association rule learning algorithm [8].

The task addressed in this paper is subgroup discovery, a data
mining task at the intersection of classification and association
discovery. The task of subgroup discovery was defined by
Klösgen [9] and Wrobel [10] as follows: ‘Given a population
of individuals and a property of those individuals that we are
interested in, find population subgroups that are statistically
‘most interesting’, for example, are as large as possible and
have the most unusual statistical (distributional) characteristics
with respect to the property of interest’. Patterns discovered by
subgroup discovery methods (called subgroup descriptions) are
rules of the form Class ← Conditions, where the condition
part of the rule is a logical conjunction of features (items,
attribute values) or a conjunction of logical literals that are
characteristic for a selected class of individuals or data objects.
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It is well known from the literature on inductive logic
programming (ILP) [11, 12] and relational data mining
(RDM) [13] that the performance of data mining methods
can be significantly improved if additional relations among
the data objects are taken into account. In other words, the
knowledge discovery process can significantly benefit from the
domain (background) knowledge.A special form of background
knowledge, which has not been exploited in the original ILP
and RDM literature, is ontologies. Ontologies are consensually
developed domain models that formally define the semantic
descriptors and can act as a mean of providing additional
information to machine learning (data mining) algorithms by
attaching semantic descriptors to the data.

With the expansion of the semantic web and the availability
of numerous ontologies, the amount of semantic data (data
which include semantic information, e.g. ontologies and
annotated data collections) is rapidly growing. Such domain
knowledge is usually represented in a standard format that
encourages knowledge reuse. Two popular formats are the web
ontology language (OWL)1 for ontologies and the resource
description framework (RDF)2 triplets for other structured
data. This domain knowledge is usually consensual and built
collaboratively by domain experts (e.g. by using Protégé,3 a
popular GUI tool for building ontologies).

The RDF data model is simple, yet powerful.A representation
of the form subject–predicate–object ensures the flexibility
of the data structures, and enables the integration of
heterogeneous data sources. Data can be directly represented
in RDF or (semi-)automatically translated from propositional
representations to RDF as graph data. Consequently, more
and more data from public relational data bases are now
being translated into RDF as linked data.4 In this way, data
items from various databases can be easily linked and queried
over multiple data repositories through the use of semantic
descriptors provided by the supporting ontologies encoding the
domain models and knowledge.

In data mining experiments, there are usually abundant
empirical data available, but background knowledge is seldom
used, since it usually cannot be directly employed. The
data mining community is now faced with a new challenge
of exploiting this vast resource of domain knowledge of
semantically annotated data in the process of data mining and
knowledge discovery. This paper uses the term semantic data
mining to denote this new data mining challenge and approaches
in which semantic data are mined.

Data mining methods can indeed be significantly improved
by providing semantic descriptors to the data and by providing
additional relations among data objects. By using ontologies,
the induced hypotheses can be formed from terms that have been

1http://www.w3.org/OWL/.
2http://www.w3.org/RDF/.
3http://protege.stanford.edu/.
4See the Linked Data site http://linkeddata.org/.

agreed upon by the domain experts. Moreover, in hypothesis
construction, using higher level ontological concepts provides
the means for more effective generalizations that would not
have been possible by using only the terms used in instance
descriptions. Semantic data mining has a great potential utility
in many applications where ontologies are used as semantic
descriptors for the data, for example, in biomedicine, biology,
sociology, finance, where the number of available ontologies is
rapidly growing.5

The algorithms implemented in the contemporary data
mining platforms (e.g. Weka or Orange) currently focus on
propositional data and the platforms do not support the inclusion
of RDM and ILP algorithms which enable using background
knowledge in hypothesis construction. The first step in this
direction was done by incorporating the RSD algorithm [14] for
relational subgroup discovery into the Orange4WS open-source
data mining platform [15]. Orange4WS supports knowledge
discovery workflow construction from distributed data mining
services, enabling researchers and end-users to achieve the
repeatability of experiments and simple sharing of workflows
and system implementations. The work of this paper is a
step toward enriching these data mining platform with a new
functionality of semantic data mining, where domain ontologies
are used as an additional information source for data mining.

In this paper, we present three approaches to semantic data
mining. We first revisit a special purpose subgroup discovery
system for analyzing gene expression microarray data, named
SEGS (search for enriched gene sets) [16]. Next, we present
two new domain-independent systems for semantic subgroup
discovery, whose development was inspired by the success of
SEGS:

(1) SDM-SEGS,6 a domain-independent semantic sub-
group discovery system based on SEGS,

(2) SDM-Aleph, a domain-independent semantic sub-
group discovery system based on the ILP systemAleph.

These two systems implement numerous core components of
the novel semantic data mining paradigm explained in this paper
that builds on two previous papers [17, 18].

Compared with [17], this paper presents several improve-
ments. The semantic subgroup discovery system g-SEGS (now
named SDM-SEGS) is described in much more detail (the
pseudo-code is provided as well), and we also present our new
system SDM-Aleph. Both systems are now publicly available
in a toolkit, named SDM-Toolkit, usable in the data mining plat-
form Orange4WS [15]. We provide reusable workflows for an
illustrative example and for two real-life use cases, showing
the potential of our toolkit for practical knowledge discovery
from microarray data. By comparing SEGS, SDM-SEGS and

5See http://bioportal.bioontology.org/.
6This system was named g-SEGS in our paper published in the Proceedings

of Discovery Science Conference 2011 [17], and is here renamed for the
elegance of unified systems naming.
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Semantic Subgroup Discovery Systems and Workflows 3

SDM-Aleph on two biomedical domains, we provide a thorough
quantitative and qualitative systems evaluation.

Like in the second paper upon which this paper is based [18],
we use Orange4WS, here upgraded with SDM-SEGS and SDM-
Aleph, which enables the use of ontologies in the data mining
process. The advantage of using Orange4WS over other data
mining toolkits like Weka, KNIME and RapidMiner is its
service orientation and the availability of numerous data mining
and data visualization algorithms enclosed in the original open
source Orange data mining platform [4].

The main novelties of this paper are a refined definition of the
task of semantic data mining, two new general purpose semantic
subgroup discovery systems SDM-SEGS and SDM-Aleph,
and a first semantic data mining toolkit, named SDM-Toolkit,
which has been made publicly available. Other contributions
of this paper are as follows. We have revisited a successful
domain-specific system SEGS in the context of semantic
data mining. The use of SDM-Toolkit tools for biomedical
workflow construction and their execution in the service-
oriented data mining environment Orange4WS is show-cased
on an illustrative example and two biomedical real-life problem
domains. We also provide a qualitative evaluation of the SDM-
SEGS and SDM-Aleph systems, supported by experimental
results and comparisons with SEGS. The contribution of this
paper is the insight that SEGS and SDM-SEGS are more
appropriate for data analysis in biological and biomedical
domains where rule specificity is desired, while SDM-Aleph
is a more general purpose system, resulting in more general
rules of higher precision.

Despite the fact that SDM-SEGS and SDM-Aleph are not
limited to applications in biology, two such real-life domains
were used in our experiments to assess the characteristics of the
systems in comparison with the baseline system SEGS whose
application is limited to biology (microarray data analysis).

The paper is organized as follows. In Section 2, we present
a refined definition of the task of semantic data mining,
together with three semantic subgroup discovery systems:
SEGS, SDM-SEGS and SDM-Aleph. Section 3 provides an
illustrative example of using these systems in the data mining
platform Orange4WS. Section 4 presents two biomedical
domains, acute lymphoblastic leukemia (ALL) and human
mesenchymal stem cells (hMSC), together with the developed
biomedical workflows and a detailed quantitative and qualitative
comparison of the three systems. Section 5 presents the related
work. The paper concludes with a discussion and directions for
further work.

2. SEMANTIC DATA MINING

In this section, we define the semantic data mining task, describe
an existing system SEGS, followed by the descriptions of two
new semantic subgroup discovery systems SDM-SEGS and
SDM-Aleph.

FIGURE 1. Schema of the semantic data mining task, with ontologies
and annotated data as inputs.

2.1. Semantic data mining task definition

The term semantic subgroup discovery was first introduced
in [19] and was later extended to semantic data mining in [17].
Semantic data mining can be defined as follows:

Given: a set of domain ontologies, and empirical data
annotated by domain ontology terms,

Find: a hypothesis (a predictive model or a set of descriptive
patterns), expressed by domain ontology terms, explaining
the given empirical data.

Liu [20] has proposed his own definition of semantic
data mining: ‘We propose to exploit the advances of the
semantic web technologies to formally represent domain
knowledge including structured collection of prior information,
inference rules, knowledge enriched datasets etc, and thus
develop frameworks for systematic incorporation of domain
knowledge in an intelligent data mining environment. We call
this technology the semantic data mining’. His definition is too
broad to be used for the needs of this paper. Consequently,
we propose a more refined definition of semantic data mining
below.

Given: domain knowledge in the form of ontologies, a set of
training examples (experimental data), and an example-
to-ontology mapping which associates each example with
appropriate ontological concepts.

Find: a hypothesis (a predictive model or a set of descriptive
patterns), expressed by domain ontology terms, explaining
the given empirical data.

In the following subsection, each of the systems is described
by instantiating this general framework. The task of semantic
data mining is illustrated in Fig. 1.

2.2. Existing SDM system SEGS

A domain-specific system that uses ontologies and other
hierarchies as background knowledge for data mining is SEGS,
which upgrades previous approaches to gene set enrichment
analysis [21, 22]. Compared with earlier work in gene set
enrichment7 [21, 22], the novelty of SEGS is that it does not only

7A gene set is enriched if the genes that are members of this gene set are
statistically significantly differentially expressed compared with the rest of the
genes.

The Computer Journal, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


4 A. Vavpetič and N. Lavrač

test existing gene sets (existing ontology terms) for differential
expression but it generates also new gene set descriptions as
conjunctions of ontological concepts that may represent novel
biological hypotheses.

SEGS can be described in terms of the SDM framework from
Section 2.1 as follows:

(1) domain knowledge is an internal representation of the
Gene Ontology8 (GO) and Kyoto Encyclopedia of
Genes and Genomes9 (KEGG);

(2) training data is a list of ranked genes;
(3) example-to-ontology mapping associates each gene

with a number of GO and KEGG concepts;
(4) additionally, a binary relation interacts is used, which

models gene–gene interactions.

The basic rule construction idea of SEGS is the same
as the one used in the new general purpose system SDM-
SEGS (described in the next section). The resulting rules
are statistically evaluated using three measures relevant for
biological domains: the Fisher’s exact test [23], PAGE [22] and
GSEA [21].

The drawback of SEGS in terms of semantic data mining is
that it is domain specific due to the fact that the ontologies and
interaction data used are fixed to the GO and KEGG, stored in
a native format. SDM-SEGS presented in the following section
does not have these limitations. Note that, on the other hand,
the domain specificity enables SEGS to be better tuned to the
specific task of analyzing microarray data.

2.3. SDM-SEGS

This section describes our new semantic subgroup discovery
system SDM-SEGS that can be used to discover subgroup
descriptions from ranked data as well as from general class-
labeled data with the use of input OWL ontologies. The
ontologies are exploited in a manner similar as in SEGS (i.e.
ontological concepts are used as terms that form rule conjuncts),
with the important difference that they can be (a) from any
domain and (b) in a standard OWL format. However, it uses at
most four input ontologies and the user can specify only one
additional relation between the examples, due to the limitations
imposed by the original SEGS algorithm.

Below we describe the main parts of SDM-SEGS: the
input data, the hypothesis language, the rule construction
algorithm, the rule selection and evaluation principles and its
implementation.

2.3.1. Input
Apart from various parameters (e.g. for controlling the
minimum support criterion, the maximum rule length, etc.), the
main inputs are

8http://www.geneontology.org/.
9http://www.genome.jp/kegg/.

(1) domain knowledge in the legacy SEGS format or in the
form of OWL ontologies;10

(2) training data which is a list of class-labeled or ranked
examples;

(3) example-to-ontology mapping which associates each
example with a number of concepts from the ontologies
and

(4) binary relation interacts, which is a list of pairs of
identifiers of examples which interact in some way.

In the case of class-labeled data, the user specifies the target
class and in the case of ranked examples, the user specifies
a threshold value, which splits the examples into two classes
(positive and negative) according to their rank. In both cases,
we can treat the problem as a two-class problem.

The example-to-ontology mapping is used to associate each
input example with the ontological concepts that the example
is annotated with.

2.3.2. Hypothesis language
The hypothesis language is a set of rules of the form
class(X) ← Conditions, where Conditions is a logical
conjunction of terms that represent ontological concepts.

As an illustration, a possible rule can have the following form

class(X) ← doctor(X) ∧ germany(X).

Both doctor and germany are terms that represent ontological
concepts doctor and germany. If the input examples are
people, this rule describes a subgroup of people who are doctors
and live in Germany.

2.3.3. Rule construction
A set of rules that satisfy the size constraints (minimum support
and maximum number of rule terms) is constructed using a top-
down bounded exhaustive search algorithm shown in Fig. 2,
which enumerates all the possible rules by taking one term from
each ontology. The rule construction procedure starts with a
default rule class(X) ←, which covers all the examples. Next,
the algorithm tries to conjunctively add the top concept of the
first ontology and if the new rule satisfies all the size constraints,
it adds it to the rule set and recursively tries to add the top concept
of the next ontology. In the next step, all the child concepts
of the current term/concept are tried by recursively calling the
procedure. Due to the properties of the subClassOf relation
between concepts in the ontologies, the algorithm can employ
an efficient pruning strategy. If the currently evaluated rule does
not satisfy the size constraints, the algorithm can prune all the
rules that would have been generated if this rule were further
specialized.

Further gains can be achieved by skipping concepts that the
user deems to be too general to be useful. These concepts can

10Unlike SDM-Aleph described in Section 2.4, SDM-SEGS exploits only
the concept and subClassOf relations.
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FIGURE 2. Rule construction procedure of SDM-SEGS.

be specified either by listing them directly or by specifying the
level in the subClassOf hierarchy up to which the concepts are
too general.

Additionally, the user can specify another relation between
the input examples: the interacts relation. Two examples are
in this relation, if they interact in some way (if the examples
are people, we can say, for example, that two people are in
the interacts relation if they are married). For each concept,
which the algorithm tries to conjunctively add to the rule, it
also tries to add its interacting counterpart. For example, if the
current rule is class(X) ← c1(X) and the algorithm tries to
add the term/concept c2(X), then it also tries to append the
terms interacts(X, Y ) ∧ c2(Y ). For example, the antecedent
of the rule

class(X) ← c1(X) ∧ interacts(X, Y ) ∧ c2(Y )

FIGURE 3. Rule selection procedure of SDM-SEGS.

can be interpreted as: all the examples which are annotated by
concept c1 and interact with examples annotated by concept c2.

If we return to our example, where interacts could be
interpreted as two people being married, then another example
could be

class(X) ← interacts(X, Y ) ∧ doctor(Y ),

which describes all the persons which are married to a doctor.

2.3.4. Rule selection
As the number of generated rules can be large, uninteresting
and overlapping rules have to be filtered out. In SDM-
SEGS, rule selection is performed during rule post-processing
using a weighted covering algorithm that selects the best
rules according to the wWRAcc (weighted relative accuracy
with example weights) heuristic [24]. The weighted covering
algorithm uses example weights as means for considering
different parts of the example space when selecting the best
rules. The weighted covering algorithm used for rule selection
is presented in Fig. 3, followed by the formula for computing
the wWRAcc heuristic.

The wWRAcc heuristic is based on WRAcc, the heuristic
known from CN2-SD subgroup discovery [24], which trades-off
rule coverage and precision. The WRAcc heuristic is defined as

WRAcc(C ← Cnd) = n(Cnd)

N
·
(

n(Cnd ∧ C)

n(Cnd)
− n(C)

N

)
,

where N is the number of all examples, n(C) is the number
of examples of class C, n(Cnd) is the number of all covered
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6 A. Vavpetič and N. Lavrač

examples and n(Cnd∧C) is the number of all correctly covered
examples of class C.

The wWRAcc heuristic (defined below) adapts WRAcc to
take example weights into account. It is defined as

wWRAcc(C ← Cnd) = n′(Cnd)

N ′ ·
(

n′(Cnd ∧ C)

n′(Cnd)
− n′(C)

N ′

)
,

where N ′ denotes the sum of weights of all examples, n′(C) is
the sum of weights of examples of class C, n′(Cnd) is the sum
of weights of all covered examples and n′(Cnd ∧ C) is the sum
of weights of all correctly covered examples of class C.

Rule selection proceeds as follows. It starts with a set of
generated rules, a set of examples with weights equal to 1 and
parameter k, which denotes how many times an example can
be covered before being removed from the example set. In each
iteration, we select the rule with the highest wWRAcc value,
add it to the final rule set and remove it from the set of generated
rules. Then the counter m is increased to m + 1 and weights of
examples covered by this rule decreased to 1/(m + 1), where
example weight 1/m means that the example has already been
covered by m < k rules. These steps are repeated until the
algorithm runs out of examples or rules or if no rule has a score
above zero. Once the learning process is finished and the rules
have been generated and filtered, they are evaluated using the
original WRAcc measure.

2.3.5. Implementation
SDM-SEGS is written in C (the rule construction and selection
parts) and Python (the user interface and web-service related
code). It is implemented as a web service with an easy-to-
use user interface in the Orange4WS service-oriented data
mining platform, which upgrades the freely available Orange
data mining environment. Orange4WS offers a large collection
of data mining and machine learning algorithms and powerful
visualization components. Additional components can be easily
added by implementing them in Python or C/C++ or by directly
importing an existing web service. All these components
(widgets) can then be combined into workflows to solve a
desired task.

Such an implementation enables the repeatability of
experiments and simplifies the sharing of workflows and
implementations. We provide an illustrative example workflow
using SDM-SEGS in Section 3.2 and a real-life biomedical
workflow in Section 4.2.

2.4. SDM-Aleph

In this section, we present our new semantic subgroup discovery
system SDM-Aleph, based on the ILP system Aleph.11 SDM-
Aleph was designed to be used in a similar way as SDM-
SEGS. SDM-Aleph can discover subgroup descriptions for
class labeled or ranked data with the use of input OWL

11http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/.

ontologies as domain knowledge, where the ontological
concepts are used as rule conjuncts. Unlike SDM-SEGS which
only takes four ontologies as input and only one additional
interacts relationship, in SDM-Aleph any number of ontologies
and additional relations between the input examples can be
specified, which is due to the powerful underlying first-order
logic formalism of the ILP system Aleph.

In the following paragraphs, we describe the input to our
system, its hypothesis language, the used rule construction and
selection techniques and its implementation details.

2.4.1. Input
The required inputs to the system are similar to the ones in
SDM-SEGS, but less constrained:

(1) domain knowledge in the legacy SEGS format or in
the form of OWL ontologies (where the concept and
subClassOf relations are used, as well as other binary
relations between ontology terms, which hold for all
members of the ontology concepts12);

(2) training data which is a list of class-labeled or ranked
examples;

(3) example-to-ontology mapping which associates each
example with a number of concepts from the ontologies
and

(4) optionally, additional binary relations between input
examples, specified extensionally as pairs of example
identifiers.

2.4.2. Hypothesis language
The hypothesis language is also similar to the one of SDM-
SEGS. The hypothesis language is again a set of rules of
the form class(X) ← Conditions, where Conditions is a
logical conjunction of unary and binary predicates. The unary
predicates represent ontological concepts, while the binary
predicates represent binary relations between some of the input
examples. The user can add any number of additional binary
relations to the hypothesis language, but by doing so the
hypothesis search space will significantly increase. Note that
with SDM-Aleph, the user can specify not only the interacts

relation, but an arbitrary number of relations between the
examples.

2.4.3. Rule construction and selection
The basic rule construction method follows the original Aleph
implementation. Through specific settings, we have tailored the
search procedure to the context of semantic subgroup discovery.

The main four steps are the following, summarized based on
the Aleph manual:13

(1) Select example. Select one of the examples.

12Binary relations which hold for all members of two ontology concepts
can be added to the background knowledge intensionally as a Prolog binary
predicate definition.

13http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/.
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(2) Build the most specific clause. Construct the most
specific clause that logically entails the selected
seed example, and is within the provided language
constraints (the maximum rule length)—this clause
is usually called a bottom clause. More details
regarding the construction of a bottom clause can be
found in [25].

(3) Search. Find a clause more general than the bottom
clause. This step enumerates the acceptable clauses
within the given constraints (minimum support) by
using a best-first strategy using a heuristic function
selected by the user.

(4) Remove redundant. The clause with the best score
found in the previous step is added to the final rule
set (a model).

As mentioned before, Aleph provides settings which can
affect each of the four steps through various parameters. In
order to get a model satisfactory to our task at hand, we limit
the maximum rule length and the minimum support of a rule
to the user’s preference, we handle noise by allowing imperfect
rules to avoid model over-fitting and for the search step we use
heuristic search guided by the WRAcc heuristic. Regarding the
remove redundant step, we use the induce_cover mode,
where the procedure removes examples covered by the best
clause only from the set of possible seeds for constructing
bottom clauses. The consequence of this is that the resulting
rules may overlap in terms of covered examples, which is
common in subgroup discovery.

2.4.4. Implementation
SDM-Aleph is written in Prolog (the original Aleph code) and
in Python (the user interface, web-service related code and the
SDM-related code). It is implemented as a web service with
an easy-to-use user interface in Orange4WS. SDM-Aleph can
be used in workflows interchangeably with SDM-SEGS. The
benefits of such an implementation are, of course, identical as
in the case of SDM-SEGS.

SDM-Aleph involves multiple layers of processing. First,
the inputs (ontologies, examples and the example-to-ontology
mapping) need to be converted to a proper Horn clause form.
Here, we present the main ideas.

Each ontological concept c, with child concepts c1,
c2,..,cm, is encoded as a unary predicate c/1:

c(X) :- c1(X) ; c2(X) ; ... ; cm(X).14

Each child concept is defined in the same way. To encode
the whole ontology, we need to start this procedure at the root
concept. All these predicates are allowed to be used in the rule
body and are tabled for faster execution.

Each example is encoded as an atom defined for the concepts
with which it is annotated. If the kth example is annotated by

14Note that in Prolog :- denotes reverse implication and ; denotes
disjunction.

concepts c1,c2,...,cm (this is defined by the example-to-
ontology mapping), we encode it as a set of ground facts:

instance(ik). c1(ik). c2(ik). ... cm(ik).

Any binary relation r between input examples is modeled
by adding the r/2 predicate to the hypothesis language and
defining it extensionally.

3. SDM WORKFLOWS IN ORANGE4WS

In this section, we present an illustrative problem domain
and demonstrate typical usage of the developed semantic data
mining tool in the Orange4WS platform. We also provide a link
to this publicly available SDM-Toolkit.

3.1. Illustrative example

As a proof-of-concept semantic data mining example [17],
consider a bank which has the following data about its
customers: place of living, employment, bank services used,
which includes the account type, possible credits and insurance
policies and so on. The bank also categorized the clients as
‘big spenders’ or not and wants to find patterns describing
big spenders. Table 1 presents the training data. Suppose we
also have three ontologies: an ontology of banking services, an
ontology of locations and an ontology of occupations, shown in
Fig. 4.

We wish to use these ontologies as domain knowledge in the
process of subgroup discovery in the given dataset. In order
to do so, we need a mapping between the input examples and
concepts in the domain ontologies. In this illustrative use case,
each value from the dataset corresponds to one concept from
the ontologies, e.g. if we have an example with attribute value
occupation=‘Doctor’, then we annotate this example
with ontological concept Doctor. Using this information,
the learning algorithm can further generalize the data using
more general ontological concepts. For instance, because the
previously mentioned person is a Doctor, then according to
the occupation ontology he also works in the Health sector.

An important fact here is that an algorithm can, using
this domain knowledge, construct subgroup descriptions from
concepts which are more general and do not appear in
the data itself. A possible pattern in this domain could
be, e.g. big_spender(X) ← germany(X), describing all
examples/people living in Germany, although in the data table
we only have the information only on specific German cities.

Figure 5 presents a subset of subgroup descriptions
discovered on the banking domain.

3.2. Workflow construction in Orange4WS

In this section, we demonstrate how the user can solve the
simple banking problem using visual programming in the
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8 A. Vavpetič and N. Lavrač

TABLE 1. Table of bank customers described by different attributes and class ‘big spender’.

id Occupation Location Account Loan Deposit Inv. fund Insur. Big spender

1 Doctor Milan Classic No No TechShare Family Yes
2 Doctor Krakow Gold Car ShortTerm No No Yes
3 Military Munich Gold No No No Regular Yes
4 Doctor Catanzaro Classic Car LongTerm TechShare Senior Yes
5 Energy Poznan Gold Apart. LongTerm No No Yes
...

...
...

...
...

...
...

...
...

26 Police Tarnow Gold Apart. No No No No
27 Nurse Radom Classic No No No Senior No
28 Education Catanzaro Classic Apart. No No No No
29 Transport Warsaw Gold Car ShortTerm TechShare Regular No
30 Police Cosenza Classic Car No No No No

FIGURE 4. The ontologies of banking services, locations and occupations. Concepts with omitted sub-concepts are drawn with a dashed line.

SDM-Toolkit implemented in the service-oriented data mining
platform Orange4WS. One of the most important features
of Orange, also inherited by Orange4WS (which upgrades
Orange to offer the support for SOAP15 and RESTful16 web
services, which can be used as workflow components), is
an easy-to-use interactive workflow construction environment.

15http://www.w3.org/TR/soap/.
16A RESTful web service is a simple web service implemented using HTTP

and the principles of REST [26].

It enables graphical construction of workflows by allowing
workflow elements called widgets to be positioned in a desired
order, connected with lines representing the flow of data,
adjusted by setting their parameters and finally executed. The
environment includes a large collection of widgets with various
functionalities: data mining and machine learning algorithms,
pre-processing and visualization components and others.

The two new semantic subgroup discovery systems presented
in this paper have been integrated into Orange4WS forming the
SDM-Toolkit which can thus be used to compose workflows for
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Semantic Subgroup Discovery Systems and Workflows 9

FIGURE 5. Three example subgroup descriptions discovered in the
banking domain. Each subgroup description represents a set of big
spenders.

FIGURE 6. A workflow in the SDM-Toolkit for solving the banking
problem.

solving various tasks. Figure 6 represents a simple workflow in
the SDM-Toolkit. Suppose the user wishes to find some patterns
(in the case of SEGS, SDM-SEGS and SDM-Aleph, these are
subgroup descriptions) from the given dataset of banking clients
and three domain ontologies. First, using the widget denoted as
Dataset, the user loads the dataset, which can be in various
formats (ARFF, CSV, etc.). Next, the user loads the OWL files
of the ontologies she wishes to use or simply specifies the URL
if the ontology is available on-line. This step can be done using
three widgets for reading files into strings. Lastly, using the
same type of widget, the user loads the mapping file, which is
just a mapping from example identifiers to a list of URIs of
ontological concepts. In Fig. 6, the widgets for reading files
were renamed appropriately (e.g. Location Ontology) for
clarity.

The user then connects the output signals of the widgets
with the input signals of the widget of the system she wishes
to use, in this case we use SDM-SEGS. By double-clicking
on the SDM-SEGS widget, the user can fine-tune the desired
parameters (e.g. minimum support, maximum rule length, k

parameter of WRAcc etc.). The SDM-SEGS output signal can
then be connected to the rule browser widget, where the user can
scroll through the discovered subgroup descriptions, as shown
in Fig. 7.

By swapping the SDM-SEGS widget with SDM-Aleph, the
user can solve the task using the SDM-Aleph system instead,
whereas SEGS cannot be used for this task because of its domain
specificity.

FIGURE 7. Viewing the subgroup descriptions found for the banking
problem in the SDM-Toolkit. Each line in a cell in the description
column represents one conjunct of the Conditions of a given rule.

3.3. Public availability of the SDM-Toolkit

SDM-Toolkit is open-source software licensed under GPL and
is publicly available for download at http://kt.ijs.si/software/
SDM/. The toolkit contains SDM-SEGS, SDM-Aleph and
a widget for browsing rules. SEGS is available for
use as a web application at http://kt.ijs.si/software/SEGS/
or together with the SegMine workflow [18], which is
available for download at http://segmine.ijs.si. Additionally,
a video of constructing an example SDM workflow in
Orange4WS (as described in Section 3.2) is available at
http://kt.ijs.si/software/SDM/demo.wmv.

4. BIOMEDICAL USE CASES AND EXPERIMENTAL
COMPARISON OF SDM ALGORITHMS

In this section, our new systems SDM-SEGS and SDM-Aleph
are evaluated and compared with SEGS. Despite the fact that
SDM-SEGS and SDM-Aleph are not limited to applications in
biology, two such real-life domains are used in our experiments
to assess the characteristics of the systems in comparison with
the baseline system SEGS whose application is limited to
biology (microarray data analysis). This section presents the
two domains, the developed reusable workflows implemented
in the SDM-Toolkit and a qualitative comparison—supported
by experimental results—of SEGS, SDM-SEGS and SDM-
Aleph. For the experimental comparison of the systems, we have
evaluated the results (rule sets discovered by the three systems)
using four main measures for evaluating sets of descriptive rules
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proposed by Lavrač et al. [24]: the average rule coverage as a
measure of generality of the rule set, overall support, average
significance of the rule set and average interestingness of the
rule set.

4.1. Biomedical use cases

In order to demonstrate the use of the three presented semantic
data mining systems for solving real-world problems, we tested
the approaches on two publicly available biomedical microarray
datasets:

(1) ALL [27] and
(2) hMSC [28]

which we used in our previous research [18]. Both datasets
encode gene expression data for two classes. The challenge is
to produce descriptions of sets of genes differentially expressed
in the given dataset.

The first dataset is a well-known dataset from a clinical trial
in ALL, which is a typical dataset for medical research, with
several samples available for each class (95 arrays for B-type
cells and 33 arrays for T-type cells), where each sample consists
of gene expression values for 9001 genes.

The second dataset is known from the analysis of senescence
in hMSC. The dataset consists of gene expression profiles from
late senescent passages of MSC from three independent donors,
together with MSC of early passages. Each sample consists of
gene expression values for 20 326 genes.

4.2. Reusable biological workflows in the SDM-Toolkit

Due to the simplicity of the Orange user interface, it is
straightforward to devise a workflow for knowledge discovery
on the datasets of Section 4.1, and due to the service-oriented
functionalities of Orange4WS, the discovery process can be
executed in a distributed fashion.

Figure 8 shows an example workflow for solving the
described task which performs the pre-processing of raw
microarray data, followed by the SDM-SEGS system for
discovering the underlying symbolic patterns.

FIGURE 8. A workflow in the SDM-Toolkit for knowledge discovery
from microarray data.

FIGURE 9. Selected examples of individual subgroup descriptions
discovered by SEGS, SDM-SEGS and SDM-Aleph on the ALL
domain, respectively. The predicate names represent ontological
concepts and describe a particular set of genes. Each subgroup
description represents a set of differentially expressed genes.

The pre-processing steps of knowledge discovery from
microarray data, as shown in [18], include raw data pre-
processing (normalization, missing values removal, merging,
etc.), gene ranking (e.g. using the ReliefF [29] algorithm)
and filtering out uninteresting genes (by employing the log FC
measure).

These steps are implemented by the following workflow
widgets: Microarray Parser, Gene ranker and
Cutoff, respectively.

When constructing the workflow, the user can choose any
of the systems described in this paper by selecting their
corresponding widgets—and in a similar fashion as described
in Section 3.2—obtain symbolic descriptions of highly ranked
gene sets. Figure 9 presents three example rules discovered by
executing the workflow by three systems, SEGS, SDM-SEGS
and SDM-Aleph, respectively.

Finally, the user can choose to display the resulting rule set
or save the results to an XML file for the possible future re-use.

4.3. Experimental setting

First, we pre-processed the datasets by following the
SegMine [18] methodology. Genes were first ranked using
the ReliefF [29] algorithm and then filtered using the
logarithm of expression fold change (log FC). All genes g with
| log FC(g)| < 0.3 were removed from the set, resulting in 8952
genes in theALL domain and 11 389 genes in the hMSC domain.

The ranked genes were annotated by GO and KEGG concepts
by using the Entrez database to map between gene identifiers
and the ontological concepts. Following the approach proposed
in [30], the top 300 genes were used as the positive class and
from the remaining examples we have randomly selected 300
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Semantic Subgroup Discovery Systems and Workflows 11

genes, which were labeled as negative. This selection was done
to achieve results comparable between the systems. In practice,
one would use full datasets when using SEGS or SDM-SEGS,
which have no scalability issues, while according to [30] one
should better use a balanced dataset if using ILP methods (like
SDM-Aleph) for gene-enrichment analysis. This is in fact due
to scalability issues of ILP methods, since in gene-enrichment
analysis we have an order of 20 000 ontological concepts. We
do not expect such issues if using smaller ontologies.

Both experiments were repeated 20 times where all the
three systems were applied on the same two sets (splits) of
positive/negative examples. Finally, we have selected the top
20 rules produced by each algorithm, calculated the selected
measures and statistically validated the results.

As suggested in [24], we used the following measures:

(1) the average rule coverage (COV) measures the average
portion of covered examples n(Cndi )/N over a given
rule set;

(2) the overall support (SUP) is the portion of positive
examples covered by the rules, calculated as the true
positive rate for the union of subgroups;

(3) the significance measure expresses how much more
probable is a given pattern (rule) compared with the
expected pattern (default rule), using the likelihood
ratio statistic; the average significance (SIG) is
calculated over a given rule set;

(4) lastly, the average interestingness (WRACC) is defined
as the average WRAcc of a rule set.

We applied the Friedman test [31] using significance level
α = 0.05 and the corresponding Nemenyi post-hoc test [32]
for each measure separately. This approach is proposed as an
alternative to the t-test, which proves to be inappropriate for
such a comparison [33].

The Friedman test ranks the algorithms for each split of
examples, the best performing algorithm getting the rank of 1,
the second best rank 2, etc. In the case of ties, average ranks are
assigned. The Friedman test then compares the average ranks of
the algorithms. The null-hypothesis states that all the algorithms
are equivalent and so their ranks should be equal. If the null-
hypothesis is rejected, we can proceed with a post-hoc test,
in our case the Nemenyi test. The Nemenyi test is used when
we want to compare multiple algorithms to each other. The
performance of the algorithms is significantly different if the
average ranks differ by at least the critical distance (CD).

The visualization of the results, using diagrams is also
proposed in [33]. Since the diagrams summarize the results in
a compact way, we omit the extensive tables of scores (which
were needed for the statistical validation) to avoid clutter and
provide tabular results for one quality measure only in Table 2
for illustrative purposes. Table 2 presents a table of achieved
scores produced by each algorithm, in this case for the average
rule coverage measure.

TABLE 2. Average rule coverage scores for each algorithm for 20
different splits of positive/negative examples.

Split SEGS SDM-SEGS SDM-Aleph

0 0.036 0.097 0.113
1 0.037 0.056 0.104
2 0.036 0.104 0.123
3 0.037 0.106 0.101
4 0.037 0.081 0.105
5 0.041 0.093 0.099
6 0.038 0.095 0.115
7 0.043 0.086 0.114
8 0.036 0.098 0.113
9 0.041 0.061 0.104

10 0.041 0.083 0.123
11 0.037 0.102 0.124
12 0.039 0.084 0.099
13 0.036 0.099 0.106
14 0.038 0.144 0.115
15 0.036 0.111 0.110
16 0.036 0.085 0.104
17 0.037 0.088 0.114
18 0.037 0.087 0.113
19 0.039 0.111 0.109

FIGURE 10. Example CD diagram for comparing the algorithms on
the hMSC domain for the average support measure, α = 0.05.

We produced such tables for each measure, for each of the
two domains. These tables were then further analyzed using
the Friedman test, which computes the average ranks together
with a P -value. If the P -value is lower than our significance
level α = 0.05, we can reject the null-hypothesis that all the
algorithms are equivalent. Then we proceed with the Nemenyi
post-hoc test to calculate the CD for the significance level
α = 0.05, to determine if the difference in the performance
between each pair of algorithms is significant. This test can be
visualized compactly with a diagram as shown in Fig. 10.

Because we have three algorithms, we first draw the average
ranks on the [1, 3] interval. Then we execute the test as follows.
If the distance between algorithm A and B is greater than the
CD, then we can say that the performance of the better-ranked
algorithm is significantly better. Otherwise, if the difference
is less than CD, we draw a line between the two algorithms,
denoting that we do not have enough evidence to say that one
performs significantly better (or worse). Figure 10 is interpreted
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12 A. Vavpetič and N. Lavrač

TABLE 3. A qualitative comparison of SEGS, SDM-SEGS and SDM-Aleph.

Property SEGS SDM-SEGS SDM-Aleph Evidence

Domain Biology Any Any
Ontologies 4 4 Unlimited
Relations 1 1 Unlimited
Rule generality (COV) Low Medium High See Figs 11 and 16
Overall support (SUP) Low Medium High See Figs 12 and 17
Rule significance (SIG) High Medium Low See Figs 13 and 18
Cov./prec. trade-off (WRACC) Low High Medium See Figs 14 and 15

as: SDM-Aleph and SDM-SEGS perform significantly better
than SEGS, but there is insufficient evidence to claim that SDM-
Aleph performs significantly better than SDM-SEGS.

4.4. Qualitative comparison of SDM-Toolkit subgroup
discovery systems

This section provides a qualitative comparison, supported by
experimental results, of SEGS, SDM-SEGS and SDM-Aleph,
by summarizing the systems’ properties and discussing which
are the most suitable applications of each system.

Table 3 presents the properties of the presented systems and of
the resulting rule sets of each system. The user can be interested
in finding rule sets with particular characteristics or has some
specific constraints regarding the data to use, depending on the
target application of a given system. The user might also wish
to use a particular number of ontologies or relations. On the one
hand, the user can be interested in more general rules with high
support and coverage, as is typical in pattern mining, or on the
other hand in specific rules with high significance, as is the case
in many biological domains.

With this in mind, we have compared the systems in terms of
the following dimensions:

(1) the supported domains;
(2) the number of supported ontologies;
(3) the number of supported relations;
(4) the generality of the resulting rules measured by the

average rule coverage (COV);
(5) the overall support of the rule set (SUP);
(6) the average significance of the rule set (SIG) and
(7) the average interestingness of the rule set measured as

a trade-off between coverage and precision gain, which
is a typical heuristic in subgroup discovery (WRAcc).

The qualitative assessment is supported by the results of
experiments in the two biomedical domains.

As mentioned, the SEGS system is domain specific and is
limited to four biological ontologies, three sub-parts of the
GO and KEGG and supports only one relation between the
examples, but provides several biological measures to evaluate

FIGURE 11. CDs between the algorithms on the ALL domain for
measure COV, α = 0.05.

FIGURE 12. CDs between the algorithms on the ALL domain for
measure SUP, α = 0.05.

FIGURE 13. CDs between the algorithms on the ALL domain for
measure SIG, α = 0.05.

the results (mentioned already in Section 2.2). Because of
this, the resulting rules tend to be very specific, with high
significance, as shown in Figs 11–13.

SDM-SEGS generalizes SEGS so that it is domain
independent, enables to import any OWL ontology and uses
wWRAcc to select the rules and WRAcc to evaluate the rules,
which is a more general purpose evaluation measure. Due to
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FIGURE 14. CDs between the algorithms on the ALL domain for
measure WRACC, α = 0.05.

FIGURE 15. CDs between the algorithms on the hMSC domain for
measure WRACC, α = 0.05.

FIGURE 16. CDs between the algorithms on the hMSC domain for
measure COV, α = 0.05.

this fact, the experimental results show that SDM-SEGS ranks
best according to the WRAcc measure (as shown in Figs 14 and
15).

SDM-Aleph has the fewest constraints regarding the input
data and also produces the most general rules, with the highest
overall support. This is the result of the used rule construction
technique, which tends to cover all positive examples.

Figures 11 and 16 show that both SDM-Aleph and SDM-
SEGS produce rules with statistically significantly higher
coverage, whereas Figs 12 and 17 show that SDM-Aleph and
SDM-SEGS cover a significantly higher portion of positive
examples than SEGS. Figures 13 and 18 show that the
significance of rules of SEGS and SDM-SEGS is on average
significantly higher than that of SDM-Aleph. As for the
coverage/precision gain trade-off, we can see from Fig. 14,
that both SDM-SEGS and SDM-Aleph do significantly better
in terms of the WRAcc measure on the ALL domain, whereas
on the hMSC domain SDM-SEGS performs significantly better
than SEGS. Both SEGS and SDM-SEGS perform significantly
better than SDM-Aleph. This indicates that in the case of SDM-
Aleph, the WRAcc performance depends on the domain.

In summary, if the user needs a general purpose tool for
discovering patterns with high support and coverage, the choice

FIGURE 17. CDs between the algorithms on the hMSC domain for
measure SUP, α = 0.05.

FIGURE 18. CDs between the algorithms on the hMSC domain for
measure SIG, α = 0.05.

of SDM-Aleph is suggested, otherwise if the user is interested in
specific rules, with high significance, she should better choose
SDM-SEGS or SEGS in the case of biological domains.

4.5. Runtime comparison of SDM-Toolkit subgroup
discovery systems

A few notes on runtime of the three systems are also in
place. The runtime was measured on a 64-bit Ubuntu machine
with 8 GB of RAM and an Intel i7 processor with 8 cores.
On the ALL domain, SDM-Aleph needs on average ∼270 s,
whereas SDM-SEGS and SEGS need around 5 and 16 s to
complete, respectively. On the hMSC domain, the results are
similar, where SDM-Aleph needs around 220 s to complete
the execution, while SDM-SEGS and SEGS around 3.5 and
6.5 s, respectively. Figure 19 shows that these differences are
all statistically significant.

The time differences are due to the fact that SDM-
Aleph’s hypothesis language is much more expressive, thus
the hypothesis search space grows accordingly, as one can add
any number of additional relations and this must be (and is)
reflected in Aleph’s rule construction algorithm. On the other
hand, SDM-SEGS and SEGS exploit the constraints imposed
on the hypothesis language (limited number of ontologies and
only one relation), resulting in much more time-efficient rule
construction.

5. RELATED WORK

This section presents the related work, starting with
the work which—like our approach—deals with using
taxonomies/ontologies as domain knowledge in learning. As

The Computer Journal, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


14 A. Vavpetič and N. Lavrač

FIGURE 19. CD diagrams for runtime on both domains, α = 0.05.

in [34], we divide this work into two main categories.
The first category, addressed in Section 5.1, considers
taxonomies/ontologies in a standard (relational) learning
setting. Together with [16, 34–38], our work fits well into this
first category. The second category, outlined in Section 5.2,
goes out of the scope of the traditional relational setting, by
introducing learning mechanisms into description logics (DLs),
hybrid languages integrating Horn logic and DL and learning in
a more expressive formalism. This category includes [39–44].
Finally, Section 5.3 covers also some other related work, where
other means of using ontologies in the knowledge discovery
process are discussed.

5.1. Strongly related work

The most relevant related work is SEGS [16], which has already
been thoroughly discussed throughout this paper.

Using taxonomies of predicates to speed up propositional-
ization, as well as the subsequent step of rule learning using a
feature generality taxonomy, is proposed in [34]. The main dif-
ferences in comparison to our work are that the task they were
dealing with is classification and not subgroup discovery and
their approach to this was through an intermediate proposition-
alization step.

In [35], background knowledge is in the standard inheritance
network notation and the KBRL17 algorithm performs a general-
to-specific heuristic search for a set of conjunctive rules that
satisfy user-defined rule evaluation criteria. Expressiveness of
this system is most similar to that of SDM-Aleph and the
main difference is in the formalism in which the domain
knowledge is encoded. Since there is only a brief description
of the algorithm and due to the fact that an implementation
is not available, it is difficult to make an experimental
comparison.

17KBRL is based on the RL learning program of [45].

In [36], the use of taxonomies (the leaves of the taxonomy
correspond to attributes of the input data) on paleontological
data is studied. The problem was to predict the age of a fossil site
on the basis of the taxa that have been found in it; the challenge
was to consider taxa at a suitable level of aggregation. Motivated
by this application, they studied the problem of selecting an anti-
chain from a taxonomy that improves the prediction accuracy.
In contrast to our work, they are interested in classification and
do not consider additional relations between the examples.

In [37], an engineering ontology of computer-aided design
(CAD) elements and structures is used as background
knowledge to extract frequent product design patterns in
CAD repositories and discovering predictive rules from CAD
data.

Using a data mining ontology for meta-learning has been
proposed in [38]. In meta-learning, the task is to use data mining
techniques to improve base-level learning. The data mining
ontology is used to (1) incorporate specialized knowledge of
algorithms, data and workflows and to (2) structure the search
space when searching for frequent patterns.

5.2. Weakly related work

The most commonly used DL format for semantic web is OWL-
DL. OWL-DL allows to define properties of relations which
link entities defined in an ontology as transitive, symmetric,
functional and to assign cardinality to relations. Properties of
relations form an important part of the domain knowledge
model, therefore modifications of existing relational algorithms
or even new algorithms are required in order to effectively
exploit this knowledge.

Kietz [39] was one of the first to make a step in this direction
by extending the standard learning bias used in ILP with DL
(CARIN-ALN ).

More recently, Lehmann and Haase [40] defined a refinement
operator in the EL DL; opposed to our work they consider
only the construction of consistent and complete hypotheses
using an ideal refinement operator. Furthermore, in contrast
with their work, this paper discusses mostly subgroup discovery.
In addition, the hypothesis language in their approach are
expressions in EL, while we use Horn clauses as the hypothesis
language.

In [41], they introduce an algorithm named Fr-ONT for
frequent concept mining expressed in EL++ DL. In contrast to
our work, the task they are solving is frequent concept mining
and the hypothesis language they are using is EL++ DL.

Combining web mining and the semantic web was proposed
in [42]. The initial work in that direction includes [43, 44],
where the authors propose an approach to mining the semantic
web by using a hybrid language AL-log, which allows a
unified treatment of structural and relational features of data
by combining ALC and Datalog. In their proposal, this
framework was developed for mining multi-level association
rules and not subgroup discovery.
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5.3. Other work

In [46], ontology-enhanced association mining is discussed
and four stages of the (4ft-Miner-based) KDD process are
identified that are likely to benefit from ontology application:
data understanding, task design, result interpretation and result
dissemination over the semantic web.

The work of Brisson and Collard [47] first focuses on pre-
processing steps of business and data understanding in order
to build an ontology-driven information system, and then the
knowledge base is used for the post-processing step of model
interpretation. In [20], Liu proposes a learning-based semantic
search algorithm to suggest appropriate semantic web terms and
ontologies for the given data.

An ontology-driven approach to knowledge discovery in
biomedicine is described in [48], where efforts to bridge
knowledge discovery in biomedicine and ontology learning for
successful data mining in large databases are presented.

6. CONCLUSIONS

This paper addresses semantic data mining, a new data mining
paradigm in which ontologies are exploited in the process of
data mining and knowledge discovery.

We present the SDM-Toolkit that enables the user to exploit
ontologies in the process of data mining and knowledge
discovery. Our toolkit is implemented in the service-oriented
data mining platform OrangeWS and is made publicly available
for download.

The set of tools presented in this paper includes three
semantic subgroup discovery systems: SEGS, a successful
domain-specific system for analyzing microarray data and two
new general-purpose systems SDM-SEGS and SDM-Aleph.We
demonstrate how to use our tools on a simple example and on
two advanced real-world biomedical case studies. We provide a
qualitative comparison of the developed systems, based on their
extensive experimental evaluation, while a thorough biological
interpretation of the resulting rules is beyond the scope of this
paper.

In this work, we have exploited only a limited amount of
power offered by RDF/OWL technologies. In further work, we
plan to investigate how to further exploit these technologies for
data mining. One can imagine having additional information
about the characteristics of the data attributes themselves, for
instance, information about the uncertainty of an attribute, how
does a certain attribute relate to some other attribute or how to
use an attribute (e.g. for automatically using temporal or spatial
information).

In further work, we plan to develop a fast system for mining an
arbitrary number of relations and ontologies, which will exploit
as much as possible the vast range of functionalities offered
by the OWL family of languages. In addition, our plan is to
investigate the possibility of applying the presented methods to
mining-linked open data or, if the existing algorithms prove not

to be sufficiently effective in this challenging new setting, to
propose new semantic data mining algorithms.

An important part of our further work will also be adding
additional algorithms into SDM-Toolkit for solving other data
mining tasks (e.g. decision tree learning using ontological
background knowledge), as well as presenting a general
mechanism for transforming a data mining algorithm into a
semantic data mining algorithm.
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