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Abstract This paper presents a case study of the process of
insightful analysis of clinical data collected in regular hospi-
tal practice. The approach is applied to a database describing
patients suffering from brain ischaemia, either permanent as
brain stroke with positive computer tomography (CT) or re-
versible ischaemia with normal brain CT test. The goal of
the analysis is the extraction of useful knowledge that can
help in diagnosis, prevention and better understanding of
the vascular brain disease. This paper demonstrates the ap-
plicability of subgroup discovery for insightful data analysis
and describes the expert’s process of converting the induced
rules into useful medical knowledge. Detection of coexist-
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ing risk factors, selection of relevant discriminative points
for numerical descriptors, as well as the detection and de-
scription of characteristic patient subpopulations are impor-
tant results of the analysis. Graphical representation is ex-
tensively used to illustrate the detected dependencies in the
available clinical data.

1 Introduction

Data analysis in medical applications is characterized by
ambitious goals of extracting relevant, general and poten-
tially new relations from data collected in regular medical
practice, surveys or epidemiological studies. These are not
simple tasks because medical manifestations are results of
exceptionally complex processes in the human body and col-
lected data sets in the best cases contain information about a
restricted part of a population, typically using very indirect
descriptors to present the state of human health. An even
more serious problem is the patients’ follow-up in time and
the detection of time dependent characteristics. An impor-
tant reason for the lack of representatively general data is the
time complexity and high cost of their collection. Medical
ethical reasons and the fact that healthy people are not will-
ing to take part in medical data collection actions also hinder
the applicability of data analysis approaches in medicine. On
the other hand, a positive aspect is the availability of a very
large corpus of medical expert knowledge. Active involve-
ment of medical experts is extremely important for the ex-
traction of useful knowledge from medical data, as experts
can explicitly add valuable information missing in the data
and give meaningful interpretations of the results of analy-
ses. To make experts’ cooperation possible, results obtained
by data analysis methodology should be at every level, in-
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cluding rules and graphical representations, in a form that is
easily interpretable by humans.

Insightful data analysis is a process aimed at the detection
and presentation of relevant relations that exist in available
data sets [1]. Applications of quantitative statistical meth-
ods seldom lead to insightful results, leaving a large work-
load on human experts who have to provide appropriate in-
terpretations of results, with no guarantees that—due to a
huge search space of possible hypotheses—the most rele-
vant combinations will be tested at all [2]. The goal of intel-
ligent data analysis is to effectively detect the most relevant
dependencies in an explicit qualitative form and to enable
that quantitative analysis and human expert interpretation
can concentrate on a relatively small set of potentially rel-
evant hypotheses. This approach is specially well suited for
medical data analysis, as large amounts of available medical
expert knowledge allow for appropriate interpretation of de-
tected relations.

This work demonstrates that rules induced by the method-
ology of supervised subgroup discovery [3] can serve as an
appropriate basis for data analysis, if supplemented by a suf-
ficiently large intellectual effort of medical experts, willing
to convert machine-induced rules into adequate medical in-
terpretations. The novelty of the work is in the approach
which systematically generates subgroup descriptions of
different generality and then demonstrates how very general
rules can be used to describe global properties of the target
population, how very specific rules can be used to detect rel-
evant co-existing risk factors, how rules at a medium level
of generality and specificity can be useful to determine dis-
criminative points for numerical descriptors, and how they
can be used to detect and describe relevant subpopulations
of the target concept. In contrast to the complete automation
of the first part of the data analysis process which generates
rules describing subgroups of different generality, the sec-
ond part of the data analysis process strongly depends on
the expected goals of the data analysis process, existing do-
main knowledge, and the rules induced by the first part of
the process. The aim of this paper is to provide guidelines
for this process and to illustrate different options existing in
this part of the analysis. The analysis process, the experts’
reasoning process, and the achieved results are presented
for a typical clinical database collected in regular hospital
practice.

This paper is organized as follows. Section 2 presents
the available brain ischaemia dataset. The constraint-based
subgroup discovery methodology used for the induction of
subgroup descriptions is presented in Sect. 3. The central
part of the paper is Sect. 4 which presents the results of the
iterative application of the subgroup discovery methodol-
ogy, followed by medical specialists’ interpretation of gen-
erated rules, the statistical evaluation of detected relevant
sub-populations, the visualization of obtained results, and
a discussion concerning the reasoning process.
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Fig. 1 CT brain scans of a patient with brain stroke caused by the
occlusion of the left middle cerebral artery (MCA). The figure shows
changes in the brain in two cross sections one hour after brain stroke,
characterized by the loss of the bounds between the white and the grey
matter of the brain

Table 1 The first part of descriptors in the brain ischaemia domain
with abbreviations used in the induced rules. The last column provides
reference values representing the ranges typically accepted as normal
in the medical practice

Descriptor Abbreviation Characteristics

sex sex m,

age age continuous (years)
family anamnesis fthis positive, negative
present smoking smok yes, no

stress str yes, no

alcohol consumption alcoh yes, no

body mass index bmi continuous (kg m~?2)

ref. value 18.5-25
systolic blood pressure  sys continuous (mmHg)
normal value <139 mmHg
diastolic blood pressure  dya continuous (mmHg)

normal value <89 mmHg

uric acid ua continuous (umol L™1)
ref. value for men <412
ref. value for women <380

fibrinogen fibr continuous (g L)
ref. value 2.0-3.7

glucose gluc continuous (mmol L~1)
ref. value 3.6-5.8

total cholesterol chol continuous (mmol L)
ref. value 3.6-5.0

trygliceride tryg continuous (mmol L~1)

ref. value 0.9-1.7

2 Brain ischaemia data

The brain ischaemia database consists of records of patients
who were treated at the Intensive Care Unit of the Depart-
ment of Neurology, University Hospital Center “Zagreb”, in
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Table 2 The second part of - . .
descriptors in the brain Descriptor Abbreviation Characteristics
ischaemia domain
heart rate ecgfr continuous
ref. value 60-100 beats/min
platelets plat continuous
ref. value 150000-400000
protrombin time pt continuous
ref. value without th. 0.7-1.2
with anticoagulant th. 0.25-0.4
atrial fibrillation af yes, no
left ventricular hypertrophy ecghlv yes, no
fundus ocular fo discrete value 0—4
aspirin therapy asp yes, no
anticoagulant therapy acoag yes, no
antihypertensive therapy ahyp yes, no
antiarrhytmic therapy aarrh yes, no
statins (antihyperlipoproteinaemic t.) stat yes, no
hypoglycemic therapy hypo none, yesO (oral), yesI (insulin)

Zagreb, Croatia, in year 2003. In total, 300 patients are in-
cluded in the database: 209 with the computed tomography
(CT) confirmed diagnosis of brain attack (stroke), and 91
patients who entered the same hospital department with ad-
equate neurological symptoms and disorders, but were diag-
nosed (based on the outcomes of neurological tests and CT)
as patients with transition ischaemic brain attack (TIA, 33
patients), reversible ischaemic neurological deficit (RIND,
12 patients), and serious headache or cervical spine syn-
drome (46 patients). In this paper, the goal of data analy-
sis experiments is to discover regularities that characterize
brain stroke patients.

Patients are described with 26 different descriptors rep-
resenting anamnestic data, physical examination data, labo-
ratory test data, ECG data, and information about previous
medical therapies [4, 5]. Descriptors used in the rules in-
duced in the experiments presented in this work, including
abbreviations used in these rules, are listed in Tables 1 and 2.
All the patients in the control group have normal brain CT
in contrast with the positive CT test result for patients with
a confirmed brain attack. Figure 1 presents CT scans of a
patient with stroke caused by the occlusion of the left mid-
dle cerebral artery (MCA). Scans show loss of the bounds
between the white and the grey matter of the brain. Addi-
tionally, hypodensity of the brain tissue can be noticed due
to the occluded supply to basal ganglia.

It should be noted that the target class are the patients
with brain stroke and the control group does not consist of
healthy persons but of patients with suspected serious neu-
rological symptoms and disorders. In this sense, the avail-
able database is particularly appropriate for studying the
specific characteristics and subtle differences that distin-
guish patients with stroke. The detected relationships can be

accepted as the actual characteristics for these patients.
However, the computed evaluation measures—including
probability, specificity and sensitivity of induced rules—
only reflect characteristics specific to the available data, not
necessarily holding for the general population or other med-
ical institutions [6].

3 The methodology of insightful data analysis

The presented approach to insightful data analysis is based
on the application of supervised learning, intended at find-
ing descriptions of the target (positive) class cases (in this
domain brain stroke cases) in contrast to cases in the non-
target (negative or control) class (in this domain TIA, RIND
and problems with cervical spine or headache cases). This
means that examples of two classes have to be available for
the analysis. Sometimes the decision about what is the target
class is not simple and the complete data analysis process
can have a few task definitions with different choices of tar-
get and non-target classes. For example, in the same brain is-
chaemia domain the target class could be also patients with
stroke taking some therapy, and the non-target class being
stroke patients not taking the therapy. In this setting, the
process of data analysis is far from completely automatic.
Moreover, the process should be sometimes repeated for dif-
ferent subpopulations with specific properties, like sex or
age range, or with different subsets of descriptors. In this
work we demonstrate only the process performed for the
complete database with patients who experienced stroke se-
lected as the target class. The same approach may be re-
peated for differently defined problems, potentially leading
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to other relevant results. Selection and definition of subprob-
lems that have to be analysed completely depends on med-
ical expert suggestions.

Subgroup mining is a form of supervised inductive learn-
ing, resulting in induced patterns that describe subgroups of
the target class. As in all inductive rule learning tasks, the
language bias is determined by the syntactic restrictions of
the pattern language and the vocabulary of terms in the lan-
guage. In this paper the hypothesis language is restricted to
simple if-then rules of the form Class <— Cond (interpreted
as if Cond then Class), where Class is the target class and
Cond is a conjunction of features. Features are logical condi-
tions that have values true or false, depending on the values
of descriptors which describe the examples in the problem
domain.

The goal of rule induction is to extract rules with opti-
mal covering properties on the available example set. A rule
with ideal covering properties should be true for all target
class (positive) examples and false for all non-target class
(negative) examples. Target class examples covered by rule
R are called true positives TP(R) and their number denoted
by p = |TP(R)|, non-target class examples covered by the
rule are called false positives FP(R) and their number de-
noted by n = |FP(R)|, while all remaining non-target class
examples not covered by the rule are called true negatives
TN(R) and their number denoted by 7 = N — n. An ideal
rule would be characterized by p = |P| and n = 0, where
P is the set of positive examples, N the set of negative ex-
amples, and £ = P U N is the entire set of training exam-
ples. The quality of induced rules is measured by two values:
sensitivity which represents the proportion of positive cases
correctly classified by R as true positives, sens(R) = %, and
specificity, which represents the proportion of negative cases
correctly classified by R as true negatives, spec(R) = %

3.1 Subgroup mining

In this work, subgroup mining is performed by the SD al-
gorithm [7], an iterative beam search rule learner. The SD
algorithm heuristically searches for rules R maximizing the
q¢(R) heuristic, defined as g, (R) = ﬁ, where g is a gen-
eralization parameter. It was shown in [7] that if SD is used
in the expert-guided mode, varying of the value of gener-
alization parameter g will enable the expert to guide sub-
group discovery towards the most interesting rules which
have a significantly different distribution of covered posi-
tives and negatives, compared to the prior class distribution
in the training set.

The SD algorithm can be best described in a constraint-
based data mining framework, in which a formal definition
of subgroup discovery involves a set of constraints that the
induced subgroup descriptions have to satisfy. In the SD

subgroup discovery algorithm the following constraints are
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used to formalize the SD constraint-based subgroup discov-
ery task: language constraints (described in Sect. 3.2) and
evaluation/optimization constraints (described in Sect. 3.3).
A brief sketch of the SD rule learning algorithm is given in
Sect. 3.4, while the DMS mechanism which ensures rule set
diversity is presented in Sect. 3.5.

3.2 Language constraints

Features For discrete (categorical) attributes, features have
the form Attribute = value or Attribute # value, for contin-
uous (numerical) attributes they have the form Attribute >
value or Attribute < value. Note that features can have val-
ues which are tfrue and false only, that every feature has its
logical complement (for feature f7 being A1 = vy its logical
complement E is A1 # vy, for Ay > v, its logical comple-
ment is Ay < vp), and that features are different from binary
valued attributes because for every attribute at least two dif-
ferent features are constructed.

Let values v;y (x =1,...,k;,) denote the k;, differ-
ent values of attribute A; that appear in the positive exam-
ples and w;y (y =1,...,k;y) the k;;, different values of A;
appearing in the negative examples. A set of features F,
formed in the SD data preprocessing phase, is constructed
as follows:

e For discrete attributes A;, features of the form A; = v
and A; # w;y are generated.

e For continuous attributes A;, similar to [8], features of the
form A; < (vix +w;y)/2 are generated for all neighboring
value pairs (vjy, w;y), and features A; > (v;y +wjy)/2 for
all neighboring pairs (wjy, vix).

e For integer valued attributes A;, features are generated
as if A; were both discrete and continuous, resulting in
features of four different forms: A; < (v +w;y)/2, A; >
(Vix +wiy)/2, Aj = vix, and A; # w;y.

Rules Individual subgroup descriptions have the form of
rules Class <— Cond, where Class is the property of interest
(the target class), and Cond is a conjunction of features.

Rule length To simplify rule interpretation and increase
rule actionability, subgroup discovery is aimed at finding
short rules. This is formalized by a language constraint that
every induced rule R has to satisfy: rule length (i.e., the
number of features in Cond) has to be below a user-defined
threshold: length(R) < MaxRuleLength. This is achieved
by restricting the main repeat loop of the SD algorithm to
MaxRuleLength iterations.

3.3 Evaluation/optimization constraints

Support To ensure that induced subgroups are sufficiently
large, each induced rule R must have high support, i.e.,
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sup(R) > MinSup, where MinSup is a user-defined thresh-
old, and sup(R) is the relative frequency of correctly cov-
ered examples of the target class in example set E:

P

sup(R) = m

Rule quality This constraints aims to ensure that the in-
duced subgroups are highly significant (ensuring that the
distribution of target class examples covered by the sub-
group description will be statistically significantly differ-
ent from their distribution in the original training set). This
could be achieved in a straight-forward way by imposing a
significance constraint on rules, e.g., by requiring that rule
significance is above a user-defined threshold. Instead, in the
SD subgroup discovery algorithm the following rule quality
measure assuring rule significance, implemented as a heuris-
tic in the rule construction process, is used:

p
n+g

q4(R) = ey
High quality rules will cover relatively many target class ex-
amples and few non-target class examples. The number of
tolerated non-target class cases, relative to the number of
covered target class cases, is determined by parameter g. For
low g (g < 1), induced rules will have high specificity (i.e.,
high proportion of correctly classified negative cases 2, or
equivalently, low false alarm rate) since covering of every
single non-target class example is made relatively very ‘ex-
pensive’. Typically, such rules will cover also a relatively
small number of positive examples. On the other hand, by
selecting a high g value, more general rules will be induced,
covering many examples among which there can be also rel-
atively many non-target class examples.

Rule relevancy Besides absolute relevancy, which is en-
sured by previously described constraint and which means
that each rule should be true for many positive examples and
false for many negative examples, each rule should be also
relatively relevant. This is tested in the central part of the
SD algorithm. This constraint means that rule R is accept-
able only if there is no other rule R’ in the beam such that
TP(R) C TP(R’) and at the same time TN(R) € TN(R'). By
applying this constraint, copies of the same rule that differ
only in the order of features can be detected and eliminated
from the beam. But even more importantly, this constraint
ensures that only best features and their best combinations
will enter the rule construction process, which is important
for overfitting prevention [9].

3.4 The SD algorithm

The input to SD consists of a training set of examples
E =P UN and a set of features F constructed from

the given example set (as outlined in Sect. 3.2). Para-
meters of the SD algorithm are g—generalization pa-
rameter, MinSup—minimal support for rule acceptance,
BeamWidth—maximal number of rules in beam search of
best rules, and MaxRuleLength—maximal rule complex-
ity.! The output of the SD algorithm is a set of rules with
good covering properties on the given example set, which
is ensured by using rule quality heuristic g, (R) outlined in
Sect. 3.3.

To construct subgroup describing rules for given Class,
SD starts with rules with empty antecedents (if part) and the
selected target class Class as a consequent (then part). Con-
sider the algorithm outlined in Table 3. Note that the empty
antecedent of such a rule is satisfied by all examples in the
training set, and not only those of selected Class. SD then
progressively refines the antecedent by conjunctively adding
features to the current rule condition. Consider a partially
built rule. Rule conclusion Class is fixed and there are some
(possibly none) conditions in the rule antecedent. The SD al-
gorithm now considers which feature to add to the rule con-
dition. For example, if values 4.0, 1.0, and 2.0 for attribute
A appear in the training set, according to the language con-
straints used for feature construction, outlined in Sect. 3.2,
conditions A < 1.5, A > 15, A <3.0, and A > 3.0 are
among the candidates to be added to the rule antecedent.

While the set of features (attribute values for discrete at-
tributes and intervals for continuous attributes) of the rule
have been predetermined, the actual condition to be included
in a partially built rule depends on the number of true posi-
tive and false positive examples covered by the refined rule
and the heuristic estimate of rule quality g4 (R) = %.
3.5 Diversity of generated subgroups

If the SD algorithm is used in the expert-guided mode, vary-
ing of the value of generalization parameter g enables the
expert to guide subgroup discovery towards the most inter-
esting rules which have a significantly different distribution
of covered positives and negatives, compared to the prior
class distribution in the training set. However, in the exper-
iments described in Sect. 4—in order to get a good insight
into the available data—subgroups with best g, (R) values
were systematically generated for different values of gener-
alization parameter g, g = {5, 10, 20, 50, 100}. For each g,
three (MaxRules = 3) different subgroup descriptions were
induced. These rules have not been selected simply accord-
ing to three best g,(R) values because such an approach
would typically lead to similar—and because of that not very
informative—subgroup descriptions. With the intention to

n the experiments described in Sect. 4, values of these parameters

were set as follows: g = 5-100, MinSup = %, BeamWidth = 20,
and MaxRuleLength = 4.
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Table 3 Heuristic beam search
rule construction algorithm SD

SD_algorithm(E, F, g, MinSup, BeamWidth, MaxRuleLength)

Input: set of examples E = P U N, set of features F'

Parameters: g, MinSup, BeamWidth, MaxRuleLength

for each Rule in Beam and NewBeam do

initialize Rule condition cond(Rule) < {}

initialize Rule quality g4 (Rule) <

end for

|P|
IN|+g

while there are improvements in Beam and length(Rule) < MaxRuleLength do

for each Rule € Beam do

for each Feature € F do

NewRule < cond(Rule) A Feature

qg(Rule) < ﬁ

if sup(Rule) > MinSup and q¢ (Rule) is larger than the quality of any

rule in NewBeam and Rule is relevant do

replace the worst rule in NewBeam with Rule

end for
end for
Beam < NewBeam

end while

Output: SD_Rules (all rules from Beam)

Table 4 Iterative subgroup
construction algorithm based on
the weighted covering approach.
Counts c(e) for positive
examples are increased for the
examples covered in previous
iterations

repeat MaxRules times

for each ¢ € P do initialize c(e) < 1

DMS_algorithm(E, F, g, MinSup, BeamWidth, MaxRuleLength, MaxRules)

Input: set of examples E = P U N, set of features F'
Parameters: g, MinSup, BeamWidth, MaxRuleLength, MaxRules
initialize DMS_Rules < {} (empty set)

SD_Rules < SD_algorithm(E, F, g, MinSup, BeamWidth, MaxRuleLength)
. 1 1
using qé(R) =i ZTP(R) ©
select one R from SD_Rules with best q{,i,(R) value

for each ¢ € TP(R) covered by rule R do

cle) < c(e) +1
end for
add R into DMS_Rules
end repeat
Output: DMS_Rules

ensure diversity of induced rules, the DMS algorithm with
the implemented weighted covering approach was used [7,
10].2

The core of the DMS algorithm is presented in Table 4.
The DMS algorithm calls iteratively the SD algorithm. In
each iteration it selects a single best rule from the beam,
and includes it into the output rule set (the number of rules

2The name DMS comes from Data Mining Server, a public service
available athttp: //dms.irb.hr, in which a public version of this
algorithm is made available.
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in output rule set RuleSet is determined by the MaxRules
parameter).

The classical covering algorithm, most frequently used in
rule learning, works as follows: the learner constructs a rule
that correctly classifies some examples, removes the positive
examples covered by the rule from the training set and re-
peats the process until no more examples remain. In contrast
to this approach, DMS uses the weights of positive examples
with the intention to ensure the diversity of rules induced
in different iterations. After selecting a rule, the weights of
positive examples covered by the rule are decreased. To do
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so, the number of rules covering each positive example are
counted. All counts c(e) are initially set to 1. The weights
are computed as w(e) = %, and in each iteration of the al-
gorithm the example counts are recomputed, leading to de-
creased example weights. For that purpose, the DMS algo-
rithm uses—instead of the unweighted g, (R) measure de-
fined in (1)—the weighted rule quality measure defined as

ZTP(R) w(e)

/7
R) =
q,(R) Ntz

(@)
Although this approach can not guarantee the statistical in-
dependence of generated rules, it practically ensures good
diversity of induced rules. This can be verified also from the
results presented in the following section.

4 The process and results of insightful data analysis

Having determined the analysis task, defined by the selec-
tion of target and non-target class examples, the analysis
process continues by systematically inducing rules at dif-
ferent generalization levels. By applying the methodology
presented in Sect. 3 to brain ischaemia patient data, 15 rules
presented in Table 5 were induced. For each of the five se-
lected generalization levels there are three rules. By select-
ing a low generalization parameter value (g-value), the sub-
group discovery algorithm tends to construct very specific
rules with relatively low sensitivity. With the increase of the
g-value the sensitivity of rules typically improves at the cost
of decreased specificity. The sensitivity and the specificity
values for each rule are given in columns 3 and 4, respec-
tively. The last column indicates the overlap between the
current rule and one/two rules induced previously for the
same g-value. The overlap value is defined as the number of
positive cases that are covered both by the current rule and
the previously generated rule(s) divided by the number of
positive cases covered by either the current rule or the previ-
ously generated rule(s), whichever is smaller. Low overlap
values mean relative independence of rules.

As inductions with different generalization parameters
are independent, there is a possibility that the same rule (e.g.,
ahyp = yes) is induced with different generalization para-
meter values. The order of rules in each group is the order
selected by the DMS algorithm and is determined by the qg,
rule quality value that takes into the account the covering
relations between the current rule and other rules previously
selected for the same g-value.

The interpretation of induced rules starts by independent
interpretations of each individual rule. There is no prior pref-
erence of either more specific or more sensitive rules. But
typically more sensitive rules covering many cases tend to be

T T T T T T
100 [ . . ) . b
patients with antihypertensive therapy
80 - B
o\" 60 -
40 \ —
20 probability of stroke for patients without B
antihypertensive therapy
0 1 1 1 1 1 1
60 70 80 90 100 110 120 130

diastolic blood pressure (mmHg)

Fig. 2 Probability of brain stroke, estimated by the proportion of pa-
tients with brain attack (stroke) relative to the total number of patients
in the hospital department, shown in dependence of diastolic blood
pressure values, presented separately for patients with and without an-
tihypertensive therapy

shorter. This fact can be verified also from Table 5: very sen-
sitive subgroup descriptions are described by a small num-
ber of conditions and because of that they are easier to be
analysed by the domain experts.

4.1 Analysis of sensitive rules

Highly sensitive rules, like those induced with parameter
g = 100 describe general characteristics of the target class.
In the given domain we can observe that brain stroke is
characteristic for middle aged or elderly population (age >
52.00), that people with stroke typically have normal or
increased diastolic blood pressure (dya > 75.00), and that
they have already detected hypertension problems and take
some therapy (anti-hypertension therapy ahyp = yes). We
also see that the selected boundary values are relatively low
(52 years for the age and 75 mmHg for the diastolic pres-
sure) which is due to the fact that the rules should satisfy
a large number of cases. This is the reason why the rules
are not applicable as decision rules but they provide useful
descriptive information about the target class.

Expert interpretation of each individual rule is essential
for the generation of useful knowledge. For example, the
interpretation of rules like (age > 52.00) or (dya > 75.00)
is straightforward. In contrast, the interpretation of the rule
(ahyp = yes) could lead to the conclusion that antihyperten-
sive therapy itself is dangerous for the incidence of stroke.
A much more appropriate interpretation is that hypertension
is dangerous, therefore people with detected hypertension
problems, characterized by the fact that they already take
antihypertensive therapy, have a greater probability of hav-
ing a stroke. Indirectly, this rule also means that we have
little chance to recognize the danger of high blood pressure,
as suggested by rule g100b from Table 5, directly from their
measured values. The reason is that many seriously ill pa-
tients have these values artificially low due to a previously
prescribed therapy.

@ Springer
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Table 5 Rules induced for

g-values 5, 10, 20, 50, and 100, Ref. Rule Sens. Spec. Overlap

together with their sensitivity

and specificity values measured generalization parameter g =5

on the. available dgta set as well g5a (fibr > 4.55) and (str = no) 25% 100% _

y ;Egd"rfl‘f;lé‘)’ v ltt}f:epsr:rvnl;’“ly a5b (fibr > 4.45) and (age > 64.00) 41% 100% 94%

g-value group g5¢ (af = yes) and (ahyp = yes) 28% 95% 36%
generalization parameter g = 10
gl0a (fibr > 4.45) and (age > 64.00) 41% 100% -
gl10b (af = yes) and (ahyp = yes) 28% 95% 34%
g10c (str = no) and (alcoh = yes) 28% 95% 67%
generalization parameter g = 20
g20a (fibr > 4.55) 46% 97% -
220b (ahyp = yes) and (fibr > 3.35) 65% 73% 71%
220c (sys > 153.00) and (age > 57.00) and (asp = no) 45% 88% 80%
generalization parameter g = 50
g50a (ahyp = yes) 74% 54% -
g50b (fibr > 3.35) and (age > 58.00) 79% 63% 76%
250c (age > 52.00) and (asp = no) 64% 63% 96%
generalization parameter g = 100
g100a (age > 52.00) 96% 20% -
g100b (dya > 75.00) 98% 8% 98%
g100c (ahyp = yes) 74% 54% 100%

This is a good example of expert reasoning stimulated
by an induced rule. In this situation we may try to answer
the question how the probability of stroke with respect to
the transitory ischaemia cases changes with the increasing
diastolic blood pressure. From the induced rule we have
learned that we should compare only patients without anti-
hypertension therapy. The result is presented in Fig. 2. It can
be noticed that the probability of stroke grows significantly
with the increase of diastolic blood pressure. The same de-
pendency can be drawn also for the patients with the ther-
apy. The differences between the two curves are significant
and from them a few potentially relevant conclusions can be
made. The first is that antihypertensive therapy helps in re-
ducing the risk of stroke: this can be concluded from the fact
that the probability of stroke is decreasing with the decrease
of diastolic blood pressure also for the patients with the ther-
apy. But it is also true that for diastolic blood pressure up to
100 mmHg the probability of stroke is significantly higher
for patients with recognized hypertension problems than for
other patients. The interpretation is that also in cases when
successful treatment of hypertension is possible, the risk of
stroke still remains relatively high and it is higher than for
patients without hypertension problems.

As a conclusion of this reasoning it can be said that med-
ical interpretations follow from a relatively simple visualiza-
tion of existing statistical properties of the collected data. In
this respect the methodology of data visualization and med-
ical reasoning following from it, can not be characterized as
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novel. The significance of the approach is in the fact that
the selection of properties that will be analysed (diastolic
blood pressure) and conditions of the analysis (antihyper-
tensive therapy present or absent) are suggested by medical
reasoning based on induced subgroups. Obviously the same
set of rules may stimulate other types of analyses, like the
probability of stroke with respect to age with different lev-
els of blood pressure as a parameter. What will be actually
analysed and how the analysis will be performed depends on
medical experts’ preferences.

4.2 Analysis of specific rules

As noticed earlier, very sensitive rules are appropriate for
extracting general properties of the target class. In con-
trast, very specific rules induced by generalization parame-
ter values 5 or 10 are good as reliable classification rules
for the target class. For example, rule g5c (af = yes) and
(ahyp = yes) well reflects the existing expert knowledge that
hypertension and atrial fibrillation are important risk factors
for brain stroke. The rule is actually significant as it empha-
sizes the importance of the combination of these two risk
factors, which is not a generally known fact. The relevance
of the detected association is illustrated in Fig. 3. It shows
that the probability of stroke is at least 85% in the age range
55-80 years for persons with both risk factors measured on
the available hospital population. We can not estimate this
probability on the general population but we can assume
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Fig. 3 Probability of brain stroke, estimated by the proportion of
stroke patients, shown in dependence of patients’ age presented for
all patients in the available hospital population (thick line), probability
of stroke for persons with hypertension problems, with atrial fibrilla-
tion problems, and with both hypertension and atrial fibrillation prob-
lems (thin solid lines). The percentage of patients with both risk factors
is about 20-25% of the given hospital population (dashed line). The
curves are drawn only for the range with sufficiently large numbers of
patients in the database

that it is even larger. The observation might be important for
prevention purposes in general medical practice, especially
because both factors can be easily detected.

Other two rules induced for the g-value equal 5 contain
conditions based on the fibrinogen values of about 4.5 or
more (reference values for negative fibrinogen finding are in
the range 2.0-3.7 gL ~!). The rules without doubt demon-
strate the importance of high fibrinogen values for brain
stroke patients. In the first rule the second necessary con-
dition is the absence of stress, while in the second rule the
second condition is age over 64 years. The interpretation of
the second rule is relatively easy, leading to the conclusion
that fibrinogen above 4.5 is itself very dangerous, which is
confirmed also by rule g20a, being especially dangerous for
elderly people. The interpretation of rule (fibr > 4.55) and
(stres = no) is not so easy because it includes contradictory
elements ‘high fibrinogen value’ and ‘no stress’, knowing
the fact that stress increases fibrinogen values and increases
the risk of stroke. The first part of the interpretation is that
‘no stress’ is characteristic of elderly people and this con-
clusion is confirmed by the high overlap value of rules g5a
and g5b (see the last column for the g5b rule). The second
part of the interpretation is that high fibrinogen values can
be the result of stress and such fibrinogen is not as danger-
ous for stroke as fibrinogen resulting from other changes in
the organism such as coagulation problems.

It can be concluded that the analysis of coexisting fac-
tors in subgroup descriptions may lead to very interesting
insights. Two different situations are possible. Rules like
g5b and g5c belong to the first situation in which detected
conditions present known risk factors (like high fibrinogen
value and diagnosed hypertension). In such situations the
rules indicate the relevance of coexisting factors. In other

cases when there is a surprising condition, like no stress
in the g5a subgroup description of brain ischaemia, the in-
terpretation should necessarily be based on the existing ex-
pert knowledge. The rule does not suggest the conclusion
that "no stress’ is dangerous; instead, the conclusion is that
increased fibrinogen is dangerous, specially when it is de-
tected for patients that are not under stress. If there is a pa-
tient with increased fibrinogen value and the patient is un-
der stress, it is possible to understand the reason for the in-
creased fibrinogen value. In these circumstances the doctor
will suggest the patient to avoid stressful situations. On the
other hand, the situation when the patient has increased fib-
rinogen value without being exposed to stress is very dif-
ferent. In this case the fibrinogen value is increased without
a known reason and, according to rule g5a, this may be a
dangerous condition.

Very similar situation has been reported also in [3]
when—in a coronary heart disease domain—two rules con-
nected increased total cholesterol values with body mass
index below 30. Again we had the situation that high body
mass index and increased total cholesterol are known risk
factor for the disease. The appropriate interpretation is that
increased total cholesterol values are dangerous, specially
if detected for patients without significant overweight prob-
lems.

Rules with ‘surprising’ conditions are interesting because
they may open different hypotheses, sometimes stimulating
further research that is out of the scope of this paper. In the
case of brain stroke we can speculate that actually various
subtypes of fibrinogen exist: one as a result of stress which is
not very dangerous for stroke and the other subtype which is
more dangerous but with unknown causes. The other possi-
ble speculation may be that increased fibrinogen is not dan-
gerous by itself, but is dangerous because of some other un-
known, typically co-occurring phenomenon that is difficult
to detect or measure. And stress is the exception in the sense
that it results in increased fibrinogen values but without so
dangerous co-occurring phenomena.

4.3 Analysis of moderately sensitive and specific rules

From the rules induced with generalization parameter values
10-50 it can be noticed that conditions on age and fibrinogen
values repeat often, confirming already made conclusions
about their importance. Generally, rules obtained in the mid-
dle range of parameter g may be analysed in the same way as
very sensitive or very specific rules. Potentially interesting
subgroup descriptions are (ahyp = yes) and (fibr > 3.35),
or another rule (age > 52.00) and (asp = no). The later rule
stimulated the analysis presented in Fig. 4 which provides an
excellent motivation for patients to accept prevention based
on aspirin therapy. From the figure it can be easily noticed
that the inductive learning approach correctly recognized the
importance of the therapy for persons older than 52 years.

@ Springer
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Fig. 4 The probability of brain stroke, estimated by the proportion
of stroke patients, shown in dependence of patient age presented for
patients taking aspirin as the prevention therapy, and the probability of
stroke for patients without this therapy. The percentage of patients with
the aspirin therapy is presented by a dashed line

In addition, the moderately sensitive and specific rules
are relevant also for the selection of appropriate boundary
values for numeric descriptors included into rule conditions.
Examples are age over 57 or 58 years, fibrinogen over 3.3,
and systolic blood pressure over 153. These values, if sig-
nificantly different from generally accepted reference val-
ues, can initialize research in the direction of possibly ac-
cepting them as new decision points in medical decision
making practice. Even more importantly, notice that differ-
ent boundary points can be suggested in combinations with
different conditions. This is in contradiction with existing
medical practice which tends to define unique reference val-
ues irrespective of the disease that has to be described and
irrespective of other patient characteristics. In the case of
fibrinogen, reference values above 3.7 are treated as positive
while rules induced for brain stroke domain suggest 4.55 as
a stand alone decision point, 4.45 in combination with age
over 64 years, and 3.35 in combination with hypertension or
age over 58 years for very sensitive detection of stroke.

Boundary values for numerical descriptors suggested
by decision points in conditions included into subgroup
descriptions present an important part of insightful data
analysis. It must be noted that suggested decision points
are the result of unbiased search for optimal decision func-
tions, incorporated in the used machine learning process. In
this respect these values represent a result that is difficult
to achieve by classical statistical approaches. Their impor-
tance is in the fact that the detected values nicely integrate
the properties of several collected cases into values that can
be easily compared to generally acceptable reference values
or results obtained on other databases. In this way, major
discrepancies may indicate diagnostic, methodological, or
organizational problems in the organizations where data has
been collected.
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4.4 Analysis of rule groups

Besides the possibility to analyse each rule separately, com-
binations of co-occurring rules can trigger other interpreta-
tions. In this respect it is useful to look at the overlap values
of rules. A good example is a group of three rules induced
for g-value 10. These rules have low overlap values, mean-
ing that they describe relatively diverse subpopulations of
the target class. Their analysis enables global understanding
of the hospital population in the Intensive Care Unit of the
Neurology Department. Results of the analysis are presented
in Fig. 5.

The figure graphically and numerically illustrates the im-
portance of each population subgroup and its overlap with
other subgroups. The textual description is also important,
reflecting the results of basic statistical analysis (mean val-
ues of age and fibrinogen, as well as sex distribution) for
the subpopulation described by the rule, followed by the
so-called supporting factors [7]. The supporting factors are
those descriptor values that are characteristic for the sub-
group population in contrast to the cases in the negative
class. These factors are important as they can help to confirm
that a patient is a member of a subpopulation, also providing
a better description of a typical member of a subgroup. The
results show that the induced subgroups describe three rela-
tively different types of stroke among elderly people (mean
age between 70 and 75 years).

The largest subgroup can be called elderly patients; it
is characterized by extremely high fibrinogen values (mean
value 5.5) and increased glucose values (mean value 8.4). In
most cases these are women (about 70%) that do not smoke,
do not suffer from stress, and do not have problems with
lipoproteins. Very different is the subpopulation that can be
called patients with serious cardiovascular problems char-
acterized with diagnosed hypertension and atrial fibrillation.
It is a mixed male-female population. Its main characteris-
tic is that they typically receive many different therapies but
still they have increased—but inside reference—heart rate
frequency (about 90) and uric acid (about 360). In between
these two populations—in terms of age—is a subpopulation
that can be called do-not-care patients characterized by al-
cohol consumption and no stress. It is a mixed male-female
population characterized by the increased glucose values of
laboratory tests, which one would not expect to find among
the stroke patients because of their negative family history.
Their do-not-care attitude is visible also from not taking as-
pirin as the prevention therapy.

Rule group analysis is an important part of insightful
data analysis. Induction of subgroups is followed by sta-
tistical analysis resulting in supporting factors for detected
subgroups [7]. Both descriptions of subgroups and their sup-
porting factors are inputs for non-trivial medical expert rea-
soning. The problem is that this process can not be formal-
ized because it strongly depends on human experience. In
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Fig. 5 Comparative study of
three important subgroups of
stroke patients detected by rules
induced with generalization
parameter g = 10. The large
circle presents the stroke
patients, negative cases are
outside the large circle. Small
circles present three detected
subgroups. One of them
includes only positive cases
while the other two include also
a small portion of negative
cases. The numbers present the
percentages of patients that
satisfy the conditions of one,
two, or all three rules. In total,
68% of positive cases are
included in at least one
subgroup. The definitions of
patient groups (in bold-face
letters) are followed by a list of
most relevant properties that
characterize the patient group
(the supporting factors). The list
ends with the concept name
given to the group by the expert
(in bold-face letters)

¥

mean age 72 years
mean fibr. 4.7

both men and women
no family history

no aspirin

increased glucose 8.0
'do-not-care patients'

successful cases the process results in expert understanding
of basic properties of detected subpopulations and the recog-
nition of their agreement with previous medical experience.
The final point of this reasoning process is when experts are
able to give names to the detected subpopulations and when
these names start to be used as concepts that describe ex-
isting medical practice or as novel knowledge that can be
communicated to other people.

5 Related work

This section outlines related subgroup discovery approaches
and applications.

5.1 Subgroup discovery approaches

Related subgroup discovery systems include EXPLORA
[11], CN2-SD [12], MIDOS [13, 14], SubgroupMiner [15]
and RSD [16]. EXPLORA and CN2-SD treat the learning
task as a single relation problem, i.e., all the data are as-
sumed to be available in one table (relation), while MIDOS,
SubgroupMiner and RSD perform subgroup discovery from
multiple relational tables. Like the SD algorithm, the CN2-
SD and RSD algorithm also use a weighted covering al-
gorithm and modify the computation of the search heuris-
tic by example weights. The subgroup discovery compo-
nent of RSD shares common basic principles with CN2-SD:
the fundamental search strategy and the heuristic function

alcoh=yes and stres=no

no stroke

af=yes and ahyp=yes
mean age 70 years
mean fibr. 4.4

both men and women
increased acid uric 360
increased heart freq. 90
all therapies present

v
fibr>4.5 and age>64

mean age 75 years
mean fibr. 5.5
mostly women

no smoking e L
no stress pa}leuts with
no statins therapy Senops
increased glucose 8.4 cardiovascular
problems’

‘elderly patients'

employed therein (the weighted relative accuracy heuristic
function is just slightly modified). The distinguishing fea-
ture of RSD compared to MIDOS and SubgroupMiner is
that the latter two systems assume as input the tabular repre-
sentation of training data and background relations. On the
other hand, RSD input data has the form of ground Prolog
facts and background knowledge either in the form of facts
or intentional rules, including functions and recursive predi-
cate definitions. Exception rule learning [17] also deals with
finding interesting population subgroups.

A variety of rule evaluation measures and heuristics have
been studied for subgroup discovery [11, 13, 14], with the
aim of balancing the size of a group (referred to as factor g)
with its distributional unusualness (referred to as factor p).
The properties of functions that combine these two factors
have been extensively studied in the so-called ‘p-g-space’
[11]. An alternative measure g, = ﬁ, used by the SD al-
gorithm in the experiments described in this paper, aims at
minimizing the number of false positives n, and maximizing
true positives p, balanced by generalization parameter g.

In the design of the SD algorithm, special attention was
devoted to the problem of overfitting prevention. The topic,
including the experiments with randomly generated data,
has been extensively discussed in [9].

5.2 Subgroup discovery applications

An overview of exploratory data mining techniques and their
applications in medical and health datasets is presented in
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[18]. In [19] Pazzani and co-authors concentrate on rule
learning as the starting point for medical expert reasoning,
pointing out that monotonicity constraints in machine learn-
ing may help to induce rules that can be accepted as both ac-
curate and meaningful by medical experts. The possibility of
discovering functional interactions and co-influences among
variables from topological properties of Bayesian networks
has been presented in [20]. Decision tree learning algorithms
[21] and rule learning algorithms [22] have also been exten-
sively applied in very different intelligent data analysis ap-
plications in medical domains. It can be noticed that all these
approaches enable the induction of classifiers that can be
the source of insights concerning the relevant dependencies
in the available data. In contrast with standard classification
rule and decision tree learning, the major advantage of the
subgroup discovery approach presented in this work is that
the variations of the generalization parameter value enable
an effective construction of rules with very different cover-
ing properties. Additionally, the application of the weighted
covering algorithm, especially in combination with the pos-
sibility to use example weights different from 1, enables the
control of overlap of the induced subgroups. The major ad-
vantage of the subgroup discovery approach is that the rules
present the relevant relations in an explicit form. Although
we stress the relevance of the existing expert knowledge for
the proposed process of insightful analysis, it must be recog-
nized that implicit or explicit incorporation of expert knowl-
edge is required prior to any multifactorial data analysis, as
well as for experiment organization and result interpretation
when machine learning algorithms are used [23].

The subgroup discovery methodology has already been
successfully applied to different medical and non-medical
domains. In [3] its application to risk group modeling for
the coronary heart disease has been presented. The work
suggested an active mining framework, in which medical
experts decide on the parameters used in the subgroup in-
duction process, in contrast to this work which is based
on a systematic evaluation of subgroup descriptions of dif-
ferent generality. The application of the subgroup discov-
ery approach for the induction of comprehensible models
from gene expression datasets [24] is also interesting. Typi-
cal gene expression domains namely include between 10 and
20 thousands of variables and the successful construction of
short and simple rules with satisfactory prediction quality
demonstrated the robustness and scalability of the subgroup
discovery algorithm.

6 Discussion and conclusions
This work demonstrates that rules induced by the subgroup
discovery methodology can be an appropriate starting point

for data analysis leading to insightful descriptions general-
izing the available data. The extensive presentation of the
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medical expert reasoning which is based on induced sub-
group descriptions for the brain ischaemia domain is the
central part of the work. The presentation intends to illus-
trate the intellectual effort necessary to convert the induced
rules into reasonable medical knowledge and has the inten-
tion to set up the guidelines for this creative process. The
effort to systemize the reasoning process according to the
sensitivity level of induced rules is the main novelty of this
work.

It must be noted that the presented approach does not
cover all possible aspects of insightful data analysis. Ap-
plication of other supervised and non-supervised machine
learning approaches may enable the detection of other types
of useful information about the available data, like explicit
noise detection, relative distance among cases, construction
of prototype cases for specified classes, detection of relative
importance of descriptors, and so on. The identification of an
appropriate set of tools that should be used in the data analy-
sis process and the suggestions how their results should be
interpreted, is one of the long term goals in the field of in-
telligent data analysis. It can be expected that the approach
based on supervised learning of subgroup descriptions will
be a part of the final solution.

According to the experience collected on a few, mainly
medical domains, it can be said that the principal advantage
of the subgroup discovery methodology is in the possibil-
ity to search over a range of different descriptions, in terms
of their specificity, diversity of rules, and diversity of used
descriptors. Another, equally important advantage of the in-
duced rules is their form, which is easily understandable and
interpretable by domain experts. This property is achieved
by systematic use of constraints that are applied in the rule
construction process. The constraints deserve special atten-
tion not only because they ensure the interpretability of the
results but also because they ensure that the induced sub-
group descriptions reflect the most relevant actual depen-
dencies between descriptor values and classes of examples.
The final result of insightful analysis strongly depends on
this quality of subgroup descriptions and a lot of effort has
been invested in the selection of the most appropriate set of
constraints.
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