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APRIORI-SD: ADAPTING ASSOCIATION RULE LEARNING
TO SUBGROUP DISCOVERY
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& This paper presents a subgroup discovery algorithm APRIORI-SD, developed by adapting
association rule learning to subgroup discovery. The paper contributes to subgroup discovery, to
a better understanding of the weighted covering algorithm, and the properties of the weighted rela-
tive accuracy heuristic by analyzing their performance in the ROC space. An experimental compari-
son with rule learners CN2, RIPPER, and APRIORI-C on UCI data sets demonstrates that
APRIORI-SD produces substantially smaller rulesets, where individual rules have higher coverage
and significance. APRIORI-SD is also compared to subgroup discovery algorithms CN2-SD and
SubgroupMiner. The comparisons performed on U.K. traffic accident data show that APRIORI-
SD is a competitive subgroup discovery algorithm.

Standard rule learning algorithms are designed to construct classification
and prediction rules (Michalski et al. 1986; Clark amd Niblett 1989; Cohen
1995). In addition to this area of machine learning, referred to as supervised
learning or predictive induction, developments in descriptive induction have
recently gained much attention, in particular association rule learning
(Agrawal et al. 1993), subgroup discovery (Wrobel 1997; 2001), and other
approaches to non-classificatory induction.

This paper considers the task of subgroup discovery defined as follows
(Wrobel 1997; 2001) given a population of individuals and a specific pro-
perty of the individuals that we are interested in, find population subgroups
that are statistically ‘‘most interesting,’’ e.g., are as large as possible and
have the most unusual statistical (distributional) characteristics with respect
to the property of interest.

The work reported in this paper was supported by the Slovenian Ministry of Education, Science
and Sport. We acknowledge also the support of the cInQ (Consortium on Discovering Knowledge with
Inductive Queries) project, funded by the European Commission under contract IST-2000-26469.
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7 While the goal of standard classification=prediction rule learning is to
generate models, one for each class, inducing class characteristics in terms
of properties occuring in the descriptions of training examples, in contrast,
subgroup discovery aims at discovering individual ‘‘patterns’’ of interest. In
this sense, subgroup discovery is a form of descriptive induction. However,
as in subgroup discovery, we restrict the form of patterns to individual rules
of the form X ! Y , and we limit the scope of investigation to patterns with
a certain property of interest, which is the goal of investigation (the target
class, Y) that appears in the rule consequent. In the selected rule formal-
ism, the antecedent (X) is a conjunction of features (attribute-value pairs)
selected from the features describing the training examples. Consequently,
subgroup discovery is also a form of supervised predictive induction, as
individual rules are induced from labeled training examples (labeled posi-
tive if the property of interest holds, and negative otherwise), and the pro-
cess of subgroup discovery is targeted to uncovering properties of a selected
target population of individuals with a given property of interest Y. In
summary, subgroup discovery is a task at the intersection of predictive
and descriptive induction.

Some of the questions on how to adapt standard classification rule
learning to subgroup discovery have already been addressed in the develop-
ment of the CN2-SD subgroup discovery algorithm (Lavrač et al. 2004), in
which the CN2 classification rule learner (Clark and Niblett 1989; Clark
and Boswell 1991) was adapted to subgroup discovery. In this paper we
adapt association rule learning to subgroup discovery, following some of
the guidelines from (Lavrač et al. 2004). This was achieved by first develop-
ing the APRIORI-C classification rule learner (Jovanoski and Lavrač 2001),
which was further enhanced by a novel post-processing mechanism using
example weighting incorporated into the covering algorithm and into
the modified weighted relative accuracy measure of rule quality, a probabil-
istic classification scheme, and the use of the ROC space (Provost and
Fawcett 2001) for the evaluation of discovered rules in terms of the area
under the ROC curve. The latter evaluation criterion is used also for ruleset
evaluation, in addition to the standard evaluation criteria: ruleset size,
coverage, and accuracy.

This paper presents the APRIORI-SD subgroup discovery algorithm, the
analysis of its ingredients in the ROC space (Provost and Fewcett 2001), its
experimental evaluation on selected data sets of the UCI Repository of
Machine Learning Databases (Murphy and Aha 1994), as well as its appli-
cation to the U.K. Traffic challenge data set. Experimental comparisons
with rule learners CN2 (Clark and Niblett 1989; Clark and Boswell 1991),
RIPPER (Cohen 1995), and APRIORI-C (Jovanoski and Lavrač 2001)
demonstrate that subgroup discovery algorithm APRIORI-SD produces
substantially smaller rulesets, where individual rules have higher coverage,
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7 significance, and unusualness. These factors are important for subgroup
discovery: smaller size enables better understanding, higher coverage
means larger subgroups, higher significance and unusualness mean that
rules describe subgroups whose class distribution is significantly different
from the entire population. This is achieved by virtually no loss in terms
of the area under the ROC curve and accuracy. Moreover, the application
of APRIORI-SD to the U.K. traffic accident data and the comparison with
two other state-of-the-art subgroup discovery algorithms, CN2-SD (Lavrač
et al. 2002) and SubgroupMiner (Klösgen and May 2002), show that
APRIORI-SD is a competitive subgroup discovery algorithm. The compari-
sons show that, in terms of performance measured in the ROC space,
APRIORI-SD outperforms CN2-SD slightly. APRIORI-SD and CN2-SD out-
perform SubgroupMiner in finding descriptions (subgroups) for minority
classes, while SubgroupMiner is better in finding subgroups describing
the majority class.

RELATED WORK IN SUBGROUP DISCOVERY

Some well-known systems in the field of subgroup discovery are
EXPLORA (Klösgen 1996; 1999), MIDOS (Wrobel 1997; 2001), and Sub-
groupMiner (Klösgen and May 2002). EXPLORA treats the learning task
as a single relation problem, i.e., all the data are assumed to be available
in one table (relation), while MIDOS and SubgroupMiner perform sub-
group discovery from multiple relational tables. The most important fea-
tures of these systems, related to this paper, concern the definition of the
learning task and the use of heuristics for subgroup discovery. Recent
approaches to subgroup discovery, SD (Gamberger and Lavrač 2002),
CN2-SD (Lavrač et al. 2004) and RSD [35], aim to overcome the problem
of inappropriate bias of the standard covering algorithm. They use a
weighted covering algorithm and modify search heuristics by example
weights. SD and CN2-SD are propositional, while RSD is a relational sub-
group discovery algorithm.

The related work described in this section focuses on the CN2-SD and
SubgroupMiner subgroup discovery algorithms, the state-of-the-art sub-
group discovery algorithms used in the experimental comparisons with
APRIORI-SD.

SubgroupMiner

SubgroupMiner (Klösgen and May 2002) is an advanced subgroup
mining system enabling the exploration of very large databases by efficient
database integration, multirelational hypotheses, visualization-based inter-
action options, and the discovery of causal subgroup structures. It is an

APRIORI-SD 545
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7 extension of older subgroup discovery systems EXPLORA (Klösgen 1996)
and MIDOS (Wrobel 1997).

SubgroupMiner discovers subgroups in the form of rules X ! Y , where
X is a conjunction of features (attribute-value pairs) and Y is the target
class. SubgroupMiner uses (interactive) beam search in the space of poss-
ible solutions. It uses a quality function to rank the rules during the beam
search. In addition, SubgroupMiner uses a special post-processing
approach to eliminate redundant subgroups.

Statistical significance of a subgroup is evaluated by a quality function,
which has to satisfy some basic monotonicity axioms, hold symmetry and
equivalence properties, and can be arranged in families to adjust to user
preferences (Klösgen 2002; 1999). Possible quality functions depend on
the type of the subgroup pattern. As a standard quality function Q ðRÞ used
to evaluate rule R of the form X ! Y , SubgroupMiner uses the classical
binomial test to verify if the target share in a subgroup is significantly dif-
ferent than in the entire population.

SubgroupMiner uses the same approach as EXPLORA (Klösgen 1996)
to eliminate redundant subgroups. This approach is called subgroup sup-
pression. The algorithm suppresses subgroups that are worse than, but
not too different from another subgroup. A subgroup that is dissimilar to
the other ones is retained, while better ones may be discarded because they
are very similar to others that are a little bit better. A subgroup is evaluated
as redundant relative to a subgroup with a higher significance when a con-
straint balancing overlap degree and significance difference is satisfied
(Gebhardt 1991). Let Ri be two rules of the form Xi ! Y . Suppression is
defined as follows: R1 suppresses R2 if:

Q ðR2Þ < AffinityðR2;R1Þ � Q ðR1Þ; where AffinityðR2;R1Þ ¼
nðX1 � X2Þ

nðX2Þ

� �a

In this definition, nðXiÞ stands for the number of examples covered by rule
Xi ! Y , and nðX1 � X2Þ for the number of examples covered by both rules.
Parameter a (with default value 1) can be used to control the number of
suppressions. The user can increase (or decrease) a to get fewer (or more)
resulting subgroups.

CN2-SD

Algorithm CN2-SD (Lavrač et al. 2004) adapts classical classification
rule learning algorithm CN2 (Clark and Niblett 1989; Clark and Boswell
1991) to subgroup discovery. CN2 uses the covering algorithm for ruleset con-
struction. In the covering algorithm only the first few induced rules may be
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7 of interest as subgroup descriptors with sufficient coverage, while subse-
quently induced rules are induced from biased example subsets, i.e., sub-
sets including only positive examples not covered by previously induced
rules. This bias constrains the population for subgroup discovery in a way
that is unnatural for the subgroup discovery process which is, in general,
aimed at discovering interesting properties of subgroups of the entire
population. In the weighted covering algorithm used in CN2-SD, positive exam-
ples covered by the induced rule are not deleted from the current training
set. Instead, their weights are modified so that the probability that an
example with a modified weight will be covered by subsequent rules is
decreased. Example weights are also taken into account in the weighted
relative accuracy heuristic used in as a search heuristic in CN2-SD rule
construction.

CLASSIFIATION RULE LEARNING ALGORITHM APRIORI-C

This section presents the APRIORI-C algorithm from which the
APRIORI-SD subgroup discovery algorithm was developed.

Association Rule Learning

Mining of association rules has received a lot of attention in recent
years. Compared to other machine learning techniques, its main advantage
is a low number of database passes done when searching the hypothesis
space, whereas its main disadvantage is the time complexity of association
rule learning. One of the best-known association rule learning algorithms
is APRIORI (Agrawal et al. 1993; Agrawal and Srikant 1994). This algorithm
was extensively studied, adapted to other areas of machine learning and
data mining, and successfully applied in many problem domains (Bayardo
et al. 1999; Megiddo and Srikant 1998; Ali et al. 1997; Mannila and
Toivonen 1996; Agrawal et al. 1998).

An association rule has the form X ! Y , where X and Y are itemsets,
which are subsets of I, the set of all items in the domain of investigation,
consisting of a set of transactions. In the standard machine learning termin-
ology, transactions correspond to training examples (records in a data-
base), an item is a binary feature, and itemsets are conjunctions of
features. In association rule learning, a binary feature Ai ¼ vij is generated
for each value vij of a discrete attribute Ai. For numeric attributes, items are
formed by attribute discretization. In classification rules, the right-hand
side (Y) of a rule is single feature denoting the target class, and the left-
hand side (X) is a conjunction of features. Throughout this paper, items
and features will be used as synonyms.

APRIORI-SD 547
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7 The quality of an association rule is defined by its confidence and support.
Confidence of a rule is the conditional probability of Y given X : pðY jX Þ.1
Support of a rule is an estimate of the probability of itemset X [ Y :
pðX � Y Þ. Confidence and support are computed by relative frequency esti-
mates of probability as follows:

Conf ðX ! Y Þ ¼ pðY jX Þ ¼ pðX � Y Þ
pðX Þ �

nðX � Y Þ
nðX Þ

SupðX ! Y Þ ¼ pðX � Y Þ � nðX � Y Þ
N

;

ð1Þ

where nðX Þ is the number of transactions that include itemset (feature) X ,
nðX � Y Þ the number of transactions that include itemset X [ Y (conjunc-
tion of features X ^ Y ), and N is the number of all the transactions (all
the records in the data set).

APRIORI-C

This section presents the APRIORI-C algorithm (Jovanoski and Lavrač
2001), which adapts the APRIORI algorithm to classification purposes. The
idea of using association rules for classification has been previously
addressed in Liu et al. (1998). The main advantage of APRIORI-C over
its predecessors is lower memory consumption, decreased time complexity,
and improved understandability of results. The parts of APRIORI-C that are
essential for the reader to understand the derived APRIORI-SD algorithm
are outlined next.

In APRIORI-C, the association rule learning algorithm APRIORI was
adapted to classification purposes by implementing the following steps:

1. Discretize continuous attributes.
2. Binarize all (discrete) attributes.
3. Perform data pre-processing through feature subset selection.
4. Run the optimized APRIORI algorithm by taking in consideration only

rules whose right-hand sides consist of a single item, representing the
target class value.

5. Post-process the set of induced rules by rule ordering and best rule sub-
set selection.

6. Use these rules to classify unclassified examples.

These steps of the APRIORI-C algorithm, as well as the approaches to
feature subset selection, are described in detail in Jovanoski and Lavrač
(2001). Here we describe the last three steps, the APRIORI-C optimizations

548 B. Kav�ssek and N. Lavrač
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7 (step 4), rule post-processing (step 5), and the classification of examples
(step 6). Steps 5 and 6 are the main steps we changed to obtain
APRIORI-SD.

Optimizations of the APRIORI-C Algorithm

To better adapt to classification purposes, APRIORI-C includes the fol-
lowing optimizations:

. Classification rule generation. Rules with a single target item at the right-
hand side can be created during the search. To do so, the algorithm
needs to save only the supported itemsets of sizes k and k þ 1. This results
in decreased memory consumption (improved by factor 10). Notice,
however, that this does not improve the algorithm’s time complexity.

. Prune irrelevant rules. Classification rule generation can be suppressed if
one of the existing generalizations of the rule has support and confi-
dence above the given minSup and minConf thresholds. To prevent rule
generation, the algorithm simply excludes the corresponding itemset
from the set of supported itemsets of size k þ 1. Time and space com-
plexity reduction are considerable (improved by factor 10 or more).

. Prune irrelevant items. If an item cannot be found in any of the itemsets
containing the target item, then it is impossible to create a rule contain-
ing this item. Hence, APRIORI-C prunes the search by discarding all
itemsets containing this item.

Post-processing by Rule Subset Selection

By setting low values of parameters minSup and minConf, the algorithm
often induces a large number of rules, which may hinder the understand-
ability of the induced ruleset. Moreover, problems of rule redundancy,
incapability of classifying examples and poor accuracy in domains with
unbalanced class distribution may also occur. A way to avoid these problems
is to select from the set of induced rules a subset of best rules, and add a
default rule to the resulting ruleset. APRIORI-C selects the best rules as
follows:

. Use B best rules. The algorithm first selects the best rule (the rule having
the highest support), eliminates all the examples covered by this rule,
sorts the remaining rules according to support, and repeats the pro-
cedure until B best rules are selected or there are no more rules to select,
or there are no uncovered training examples left. The algorithm then
stops and returns the classifier in the form of an if-then-else rule list.

APRIORI-SD 549
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7 . Use B best rules for each class. The algorithm behaves in a similar way as
in the ‘‘use B best rules’’ case, but selects B best rules for each class (if that
many rules exist for each class). By this approach, rules induced for the
minority class(es) will also be included into the classifier.

When tested with several values of parameter B: 1, 2, 5, 10, 15, and 20, it
was shown in Jovanoski and Lavrač (2001) that ‘‘use B best rules’’ and ‘‘use
B best rules for each class’’ do not differ significantly in terms of accuracy,
except when there are significant differences in class distributions; in this
case, ‘‘use B best rules for each class’’ is superior. Next, both algorithms
increase their accuracy significantly when using a default rule, assigning
the majority class to the examples that have not been covered by the best
B rules; this increase gets smaller with increased value of parameter B,
but still remains noticeable. Finally, in terms of accuracy and understand-
ability, when the value of parameter B reaches 10, ruleset accuracy is com-
parable to the accuracy of the original ruleset.

Another rule post-processing procedure, ‘‘use example weighting to sel-
ect B best rules,’’ was implemented in APRIORI-C, similar to ‘‘use B best
rules.’’ The difference is that covered examples are not eliminated, but
instead their weights are decreased; covered examples are eliminated when
their weights fall below a given threshold. Due to some implementational
deficiencies, this procedure did not perform well in the experiments of
APRIORI-C. Improvements and details of the improved weighting scheme
are given later when describing APRIORI-SD.

Classification Schemes

To classify an example with all the rules found by the algorithm,
APRIORI-C first sorts the rules according to the support criterion, finds
in the list of rules the first rule that covers the example, and classifies the
example into the class of the right-hand side of this rule. If no rule covers
the example, the example is marked as unclassified.

This initial scheme has been improved by adding a default rule to the
set of induced rules, which assigns the majority class to the examples that
have not been covered by the induced ruleset.

APRIORI-SD

The main modifications of the APRIORI-C algorithm, making it appro-
priate for subgroup discovery, involve the implementation of an example
weighting scheme in rule post-processing, a modified rule quality function
incorporating example weights into the weighted relative accuracy heuristic,
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D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

10
:4

4 
5 

N
ov

em
be

r 2
00

7 

a probabilistic classification scheme, and the use of the ROC space for
improving the evaluation of discovered rules.

Table 1 presents the pseudo-code of the APRIORI-SD algorithm. The
input arguments of the algorithm are: Examples, Classes, minSup, minConf
and k Examples are the set of training examples, Classes are the values of
the class attribute, parameter k determines the threshold for covered
example elimination in rule post-processing ensuring the convergence of
the algorithm, and parameters minSup and minConf denote the APRIORI
minimal support and confidence parameters, constraining rule search
(Agrawal et al. 1993; Agrawal and Srikant 1994; Jovanoski and Lavrač
2001). The default values of the parameters in APRIORI-SD are min-
Sup ¼ 0.03, minConf ¼ 0.8 and k ¼ 5.

APRIORI-SD generates the initial set of rules by means of function
APRIORI-C. This function uses the APRIORI-C (Jovanoski and Lavrač
2001) algorithm—without feature subset selection in data pre-processing
and without rule post-processing—to find all rules with the class attribute
at the right-hand side, satisfying the minSup and minConf constraints. This
ruleset is ordered according to the weighted relative accuracy quality function
from best to worst. The best rule is selected, covered examples are re-
weighted, and the procedure repeats these steps until one of the stopping
criteria is satisfied: Either all examples have been covered more than k
times, or there are no more rules in the ruleset.

Probabilistic Classification Scheme

In classification rule learning, induced rulesets are treated as ‘‘ordered’’
or ‘‘unordered.’’ Ordered rules are interpreted as an if-then-else decision list
(Rivest 1987) in a straightforward manner: When classifying a new
example, the rules are sequentially tried and the first rule that covers the
example is used for prediction. APRIORI-C uses this interpretation of rules
for example classification.

TABLE 1 The Pseudo-Code of APRIORI-SD

algorithm APRIORI � SD ðExamples; Classes; minSup; minConf ; kÞ
Ruleset ¼ APRIORI � CðExamples; Classes; minSup; minConf Þ set all example weights of Examples to 1
Majority ¼ the majority class in Examples
Resultset ¼ fg
repeat

BestRule ¼ rule with the highest weighted relative accuracy value in Ruleset (computed using Equation 4)
Resultset ¼ Resultset [ BestRule
Ruleset ¼ Ruleset n BestRule decrease the weights of examples covered by BestRule (using the example
weighting scheme) remove from Examples the examples covered more than k-times

until Examples ¼ fg or Ruleset ¼ fg
return Resultset ¼ Resultset [ ‘‘true ! Majority’’

APRIORI-SD 551



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

10
:4

4 
5 

N
ov

em
be

r 2
00

7 In the case of unordered rulesets, the class distribution of covered
training examples is attached to each rule. Rules of the form:

X ! Y ½ClassDistribution�

are induced, where numbers nðX � YjÞ in the ClassDistribution list denote,
for each class Yj , the number of training examples of class Yj covered by
the rule. When the ruleset is used as a model for classifying a new example,
all rules are tried and those covering the example are collected. If a clash
occurs (several rules with different class Yj predictions cover the example),
a voting mechanism is used to obtain the final prediction: the class distribu-
tions attached to the rules are summed to determine the most frequent
class. If no rule fires, a default rule is invoked which predicts the majority
class of uncovered training examples.

This voting mechanism is illustrated by an example, taken from a
description of the voting mechanism of the CN2 rule learner. Suppose that
the task is to classify an animal that is two-legged, feathered, large, non-
flying, and has a beak, and the classification is based on a ruleset composed
of three rules with the ½bird; elephant� class distribution assigned to each
rule. Take the following ruleset (for simplicity, the ruleset does not include
the default rule):

legs ¼ 2 ^ feathers ¼ yes! class ¼ bird ½13; 0�
beak ¼ yes! class ¼ bird ½20; 0�
size ¼ large ^ flies ¼ no! class ¼ elephant ½2; 10�

All rules fire for the animal to be classified, resulting in a ½35; 10� class dis-
tribution. As a result, the animal is classified into majority class bird.

APRIORI-SD uses a different probabilistic classification scheme than
the described CN2 voting scheme. To illustrate the APRIORI-SD probabil-
istic classification scheme, take again the same animal (which is two-legged,
feathered, large, non-flying, and has a beak) and its classification based on
three probabilistic rules, with a probability distribution assigned to each
rule:

legs ¼ 2 ^ feathers ¼ yes! class ¼ bird ½1; 0�
beak ¼ yes! class ¼ bird ½1; 0�
size ¼ large ^ flies ¼ no! class ¼ elephant ½0:17; 0:83�

In APRIORI-SD, the animal is classified as a bird by averaging the probabil-
ities, resulting in the final probability distribution pðclass ¼ birdÞ �
1þ1þ0:17

3 ¼ 0:72 and pðclass ¼ elefantÞ � 0þ0þ0:83
3¼0:28 . In this probabilistic

552 B. Kav�ssek and N. Lavrač
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7 classification scheme, subgroups covering a small number of examples are
less heavily penalized than in the CN2 voting scheme.

Example Weighting Scheme

The APRIORI-SD weighting scheme treats the examples in a way that
covered positive examples are not deleted when the currently ‘‘best’’ rule
is selected in the post-processing step of the algorithm. Instead, each time
a rule is selected, the algorithm stores with each example a count i of
how many times (with how many rules) the example has been covered
so far.

Weights of positive examples covered by the selected rule decrease
according to the formula wðej ; iÞ ¼ 1

iþ1. In the first iteration all target class
examples are assigned the same weight wðej ; 0Þ ¼ 1, while in the following
iterations the contributions of examples are inverse proportional to their
coverage by previously selected rules. In this way the examples already cov-
ered by one or more selected rules decrease their weights while rules cover-
ing many yet uncovered target class examples whose weights have not been
decreased will have a greater chance to be covered in the following itera-
tions. Covered examples are completely eliminated when their weights fall
below a given threshold (e.g., when an example has been covered more
than k times).

Weighted Relative Accuracy

Weighted relative accuracy (WRAcc) is used in subgroup discovery to
evaluate the quality of induced rules. We use WRAcc instead of support
when selecting the ‘‘best’’ rules in post-processing.

We use the following notation. Let nðX Þ be the number of examples
covered by rule X ! Y , nðY Þ the number of examples of class Y , and
nðX � Y Þ the number of correctly classified examples (true positives). We
use pðX Þ, pðX � Y Þ, etc., for the corresponding probabilities. Rule accuracy,
or rule confidence in the terminology of association rule learning, is
defined as AccðX ! Y Þ ¼ Conf ðX ! Y Þ ¼ pðY jX Þ ¼ pðX �Y Þ

pðX Þ . Weighted rela-
tive accuracy (Lavrač et al. 1999; Todorovski et al. 2000) is defined as
follows.

WRAccðX ! Y Þ ¼ pðX Þ � ðpðY jX Þ � pðY ÞÞ ð2Þ

Weighted relative accuracy consists of two components: generality pðX Þ,
and relative accuracy pðY jX Þ � pðY Þ. The second term, relative accuracy, is
the accuracy gain of rule X ! Y relative to the fixed rule true ! Y , which
predicts all instances to be of class Y; rule X ! Y is only interesting if it

APRIORI-SD 553
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7 improves upon this ‘‘default’’ accuracy. Another way of viewing relative
accuracy is that it measures the utility of connecting rule body X with a
given rule head Y. As it is easy to obtain high relative accuracy with highly
specific rules, i.e., rules with low generality pðX Þ, generality pðX Þ is used as a
‘‘weight,’’ so that weighted relative accuracy trades off generality of the rule
(pðX Þ, i.e., rule coverage) and relative accuracy (pðY jX Þ � pðY Þ). All the
probabilities in Equation 2 are estimated by relative frequencies, e.g.,
pðX Þ � nðX Þ

N , where N is the number of all instances.

WRAcc with Example Weights
The rule quality measure WRAcc used in APRIORI-SD has been further

modified to enable handling example weights, which provide the means to
consider different parts of the example space when selecting the best rules.

The modified WRAcc measure is defined as follows:

wWRAccðX ! Y Þ � n0ðX Þ
N 0
� n0ðX � Y Þ

n0ðX Þ �
n0ðY Þ

N 0

� �
; ð3Þ

where N 0 is the sum of the weights of all examples, n0ðX Þ is the sum of the
weights of all covered examples, and n0ðX � Y Þ is the sum of the weights of
all correctly covered examples.

Improved WRAcc with Example Weights
The third term in the definition of wWRAcc in Equation 3, n0ðY Þ

N 0 , repre-
sents the portion of weighted positive examples in the population of
weighted examples: When example weights change, the value of this term
changes too.

If this term is replaced by the corresponding term from the original
definition of WRAcc in Equation 2, nðY Þ

N , an improved wWRAcc 0 definition
is obtained:

wWRAcc 0ðX ! Y Þ ¼ n0ðX Þ
N 0

n0ðX � Y Þ
n0ðX Þ �

nðY Þ
N

� �
ð4Þ

By this term replacement wWRAcc 0 is forced to reflect the improvement
of the rule’s (weighted) accuracy with respect to the accuracy of the default
rule (true ! Y ) in the original population.

The analysis of different WRAcc variants, in terms of their behavior in
the ROC space, outlined next, indicates that wWRAcc0 of Equation 4 is pre-
ferred, compared to WRAcc and wWRAcc. Consequently, wWRAcc0 is the
default heuristic used in best rule subset selection post-processing pro-
cedure of APRIORI-SD.
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ROC Analysis for Subgroup Discovery

This section introduces the confusion matrix and the ROC (receiver
operating characteristics) space (Provost and Fewcett 2001) used for rule
and ruleset evaluation.

Take a rule=ruleset acting as a classifier of examples. The confusion matrix
shown in Table 2 defines the notions of TP (number of true positives), FP
(number of false positives), TN (number of true negatives), and FN (number
of false negatives), where ‘‘actual positive’’ (negative) are the examples in the
training set that are (actually) positive (negative), and ‘‘predicted positive’’
(negative) are the examples that rule X ! Y predicts as positive (negative).

The ROC space (Provost and Fawcett 2001) is a two-dimensional space that
shows classifier (rule=ruleset) performance in terms of its false positive rate (also
called ‘‘false alarm’’), FPr ¼ FP

TNþFP ¼ FP
Neg plotted on the X -axis, and true positive

rate (also called ‘‘sensitivity’’) TPr ¼ TP
TPþFN ¼ TP

Pos plotted on the Y -axis. Apply-

ing the same notation as used to define confidence and support in Equations 1,

FPr and TPr can be expressed as: FPr ¼ nðX �Y Þ
Neg , TPr¼nðX �Y Þ

Pos . Take, for instance,

subgroups discovered by subgroup discovery algorithms, shown in Figure 1,
where each subgroup is represented by a ðFPr ;TPr Þ point in the ROC space.

The ROC space is appropriate for measuring the success of subgroup
discovery, since subgroups whose TPr=FPr tradeoff is close to the main diag-
onal (line connecting the points ð0; 0Þ and ð1; 1Þ in the ROC space) can be
discarded as insignificant. The reason is that the rules with TPr=FPr on the
main diagonal have the same distribution of covered positives and nega-
tives (TPr ¼ FPr) as the distribution in the entire data set.

ROC ANALYSIS OF WRAcc VARIANTS

This section shows the effects of different example weighting schemes
on the WRAcc quality function, analyzed in the ROC (receiver operating
characteristics) space.

Analysis of WRAcc

Following the guidelines from Flach (2003)and Fürnkranz and Flach
(2003), we use the isometrics in the ROC space to represent the WRAcc

TABLE 2 Confusion Matrix

Predicted positive Predicted negative

actual positive (Pos) TP FN
actual negative (Neg) FP TN

APRIORI-SD 555
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quality function defined by Equation 2. An ROC isometric is a line in the
ROC space connecting points with equal value of the selected quality func-
tion. In the case of the WRAcc function, the ROC isometrics are parallel to
the main diagonal in the ROC space.

The definition of WRAcc (Equation 2) can be rewritten in terms of TPr
and FPr as WRAcc (X ! Y Þ ¼ pðY Þ � ð1� pðY ÞÞ � ðTPr � FPr Þ (Lavrač et al.
2004), hence an iso-WRAcc-line is defined by

TPr ¼ WRAccðX ! Y Þ
pðY Þ � ð1� pðY ÞÞ þ FPr :

For a fixed class distribution, pðY Þ � ð1� pðY ÞÞ is constant. For fixed values
of WRAcc, WRAcc iso-lines have the form TPr ¼ FPr þ a, which indicates
that WRAcc(X ! Y ) is proportional to the vertical distance a of rule
X ! Y to the ROC diagonal.

In Figure 2 the main diagonal (line connecting the points ð0; 0Þ and
ð1; 1Þ in the ROC space) is denoted with a thicker line. Points lying on this
diagonal, with TPr ¼ FPr , represent subgroups with the same distribution
of positive and negative examples as in the entire data set. Points on the
ROC diagonal have a WRAcc value equal to 0, points above the diagonal
have a positive value of WRAcc, and points below the diagnonal have a nega-
tive value. The further away a point is from the main diagonal towards the

FIGURE 1 Subgroups, induced by three subgroup discovery algorithms, APRIORI-SD, CN2-SD, and
SubgroupMiner, shown as ðFPr ;TPrÞ points in the ROC space.
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point ð1; 1Þ in the ROC space, the larger is the value of the WRAcc function
in that point (we do not take into account points with negative WRAcc as
these points would represent subgroups with the proportion of positives
that is smaller than the preoportion of positives in the entire data set).

Using WRAcc as its rule quality function, APRIORI-SD tries to select sub-
groups that are as far as possible from the main diagonal in the ROC space
and at the same time as close as possible to the point ð1; 1Þ. Point ð1; 1Þ in
the ROC space is sometimes referred to as the ‘‘ROC heaven’’ because it
represents a subgroup covering all the positives and none of the negatives.
It is also the point in which WRAcc reaches its maximum value.

Analysis of wWRAcc

By adding example weights to the WRAcc function, we obtain the modi-
fied wWRAcc function defined by Equation 3. All three terms of wWRAcc:
n0ðX Þ

N 0 , n0ðX �Y Þ
n0ðX Þ , and n0ðY Þ

N 0 include example weights both in the numerator and
denominator of the fraction. In this way, when example weights are
decreased, both the values of the numerator and denominator decrease,
keeping the value of wWRAcc ‘‘balanced.’’

We can illustrate the effect of example weighting by analyzing the
wWRAcc function after the selection of the first best rule. Equation 5 shows

FIGURE 2 ROC isometrics for the WRAcc quality function.
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7 the right-hand side of Equation 3: The wWRAcc value after the weights of
examples covered by the first rule have been decreased from 1 to 1

2
(assuming an unrealistic scenario that no negative examples have been
covered by the best rule2):

nðX Þ
2

N � nðX Þ
2

�
nðX �Y Þ

2
nðX Þ

2

�
nðY Þ�nðX �Y Þ

2

N � nðX Þ
2

 !
: ð5Þ

Equation 5 shows that the number of examples covered by the rule
(nðX Þ) affects the angle of iso-WRAcc lines: The more examples covered,
the lower the angle, and vice versa. Due to factor n0ðY Þ

N 0 , which keeps wWRAcc
balanced when example weights decrease, the ROC isometrics for wWRAcc
look very much like those for WRAcc (see Figure 2).

Analysis of wWRAcc0

In order to push wWRAcc out of balance and change its ROC isometrics
independently of rule coverage, consider the third term in the definition of
wWRAcc (Equation 3) n0ðY Þ

N 0 . When example weights change, the value of this
term changes too, keeping the equation balanced. Replacing this term by
nðY Þ

N , which occurs in the original WRAcc definition, the new wWRAcc 0 defi-
nition in Equation 4 is obtained, reflecting the accuracy improvement of
the subgroup with respect to the default rule (true ! Y ) on the original
population. The wWRAcc 0 measure is unbalanced with respect to example
weights, meaning that its ROC isometrics change when the example
weights change (independently of rule coverage), as shown in Figure 3.

Figure 3 shows how ROC isometric lines change from solid to dashed to
dotted when the weights of (positive3) examples decrease.

Thick lines in the figure denote ROC isometrics for value 0 of the
wWRAcc 0 function. Solid lines show the behavior of wWRAcc 0 with weights
of all examples equal 1. Dashed lines show wWRAcc 0 for the extreme case
where all positive examples have weight wðej ; 1Þ ¼ 1

2. Dotted lines represent
the same quality function in the case of all positive examples having weight
wðej ; 2Þ ¼ 1

3. For the sake of clarity of the figure, only the iso-lines for posi-
tive wWRAcc0 values, and only three iso-lines with example weights 1, 1

2 and 1
3

are shown.

Illustration of Example Weighting

We illustrate the effect of weighting by explaining step-by-step the dis-
covery of subgroups by APRIORI-SD on the example of predicting Class 0
in the problem of U.K. traffic accident data analysis, described in detail
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later. We explain the selection of the first three subgroups. The procedure
used in APRIORI-SD, illustrated in Figure 4 (which equals Figure 1 with
subgroups induced by CN2-SD and SubgroupMiner removed, keeping just
APRIORI-SD subgroups), goes as follows:

. Initially all the examples have weight wðej ; 0Þ ¼ 1. APRIORI-SD selects
the ‘‘best’’ subgroup, i.e., the subgroup with the maximal value of
wWRAcc0. In Figure 4 this subgroup is represented by the triangle in point
(0.65,0.92). The wWRAcc0 value of the subgroup is 0.062 (the maximum
value of wWRAcc0 being 0.23). The solid line going through the subgroup
is the iso-line for wWRAcc0 ¼ 0:062. The thick solid line represents the iso-
line for wWRAcc0¼ 0. The weights of all positive examples covered by the
subgroup are now decreased to wðej ; 1Þ ¼ 1

2.
. The value of wWRAcc0 is recomputed, taking into account the new

weights. Again the ‘‘best’’ subgroup is selected. In the figure this newly
selected subgroup is shown as a triangle in point (0.35,0.77). The
wWRAcc 0 value of the subgroup is 0.02 (the maximum value for wWRAcc0;
now being 0.13). The meaning of the lines is the same as before, only

this time the lines are dashed (large dash). The weights of all positive
examples covered by the newly selected subgroup are reduced (from 1
to 1

2 and from 1
2 to 1

3).

FIGURE 3 ROC isometrics showing the effects of example weighting on the wWRAcc 0 quality function
used in APRIORI-SD.
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. The value of wWRAcc0 is again recomputed, taking into account the new
weights and again the ‘‘best’’ subgroup is selected. In the figure the new
subgroup is shown as a triangle in point (0.20,0.73). The wWRAcc0 value
of the new subgroup is 0:007 (the maximum value for wWRAcc0 being
0.07). Dashed lines (small dash) are used to show the iso-lines. The
weights of all positive examples covered by the new subgroup are again
reduced (from 1 to 1

2, from 1
2 to 1

3 and from 1
3 to 1

4) and the algorithm is
run iteratively until all the subgroups are discovered.

ROC Analysis of Alternative Example Weighting Schemes

The wWRAcc 0 quality function gives way to defining alternative weight-
ing schemes. In this section, two alternative weighting schemes for
APRIORI-SD are presented and analyzed in the ROC space.

wWRAcc 0 by Weighting Just the Covered Positive Examples
The weighting scheme described in this section is very similar to the

one used by the original APRIORI-SD algorithm, with the difference that
in this new scheme only the covered positive examples are re-weighted.
The original APRIORI-SD’s weighting scheme re-weights all the covered
examples. The behavior of this new weighting scheme in conjunction with

FIGURE 4 The effect of example weighting used in APRIORI-SD.
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7 the wWRAcc 0 quality function is shown in Figure 3. APRIORI-SD’s weighting
scheme would behave very similarly to the new scheme if used in conjunc-
tion with the wWRAcc 0 function with the difference that the increase of
angle of the ROC isometrics with the decrease of example weights would
be less drastic than in the case of the new weighting scheme.

As seen in Figure 3, APRIORI-SD with this weighting scheme would
tend to discover more accurate subgroups—ROC isometrics tend to
become more and more vertical with the decrease of example weights thus
pushing rule selection to an area that contains subgroups with few negative
examples.

wWRAcc 0 by Weighting Just the Covered Negative Examples
The behavior of the weighting scheme described here is shown in

Figure 5. The figure shows that by decreasing the weights only of the cov-
ered negative examples, the angle of ROC isometrics decreases with the
decrease of example weights, behaving just the opposite in comparison
with the previous weighting schemes.

It is dangerous to use this weighting scheme, as clearly shown in
Figure 5. By decreasing the weights of covered negative examples, the lower
angle of the ROC isometrics allows the algorithm to find subgroups lying
under the main diagonal in the ROC space.

To cope with this problem we have to correct the wWRAcc 0 function in
such a way that subgroups with a positive value of the new quality function
will always lie above the main diagonal. To achieve this, we push the ROC
isometrics (dashed lines in Figure 5 above the main diagonal by subtracting

FIGURE 5 ROC isometrics: the effects of weighting just the negative examples on the wWRAcc0 quality
function.
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the value of wWRAcc0 of the default rule (true ! Y ) from the wWRAcc 0 value
of the subgroup. The corrected wWRAcc 0 can be expressed as follows:

wWRAcc 0ðX ! Y Þ � wWRAcc 0ðtrue ! Y Þ ð6Þ

Its behavior is shown in Figure 6. As shown by this figure, APRIORI-SD
with this weighting scheme will tend to discover larger subgroups: ROC
isometrics tend to become more and more horizontal with the decrease
of example weights thus pushing rule selection to an area that contains
subgroups which cover a large number of examples.

EXPERIMENTAL EVALUATION

This section provides results of the experimental evaluation of
APRIORI-SD aimed at verifying our claims that the mechanisms implemen-
ted in the APRIORI-SD algorithm are indeed appropriate for subgroup
discovery.

Evaluation Measures

The evaluation measures used in the experimental evaluations are
presented next.

. Coverage. The average coverage measures the percentage of examples
covered on average by one rule of the induced ruleset. Coverage of a

FIGURE 6 ROC isometrics: the corrected weighting of negatives and its effect on the wWRAcc 0 quality
function.
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7 single rule, Ri , is defined as

CovðRiÞ ¼ CovðXi ! Y Þ ¼ pðXiÞ �
nðXiÞ

N
: ð7Þ

The average coverage of a ruleset is computed as

COV ¼ 1

nB

XnB

i¼1

CovðRiÞ; ð8Þ

where nB is the number of induced rules.
. Support. For subgroup discovery it is interesting to compute the overall

support (the target coverage) as the percentage of target examples (posi-
tives) covered by the rules, computed as the true positive rate for the
union of subgroups. Support of a rule is defined as the frequency of cor-
rectly classified covered examples:

SupðRiÞ ¼ SupðClass  CondiÞ ¼ pðClass:CondiÞ ¼
nðClass:CondiÞ

N
ð9Þ

The overall support of a rule set is computed as

SUP ¼ 1

N

X
Classj

nðClassj �
_

Classj Condi

CondiÞ; ð10Þ

where the examples covered by several rules are counted only once
(hence the disjunction of rule conditions of rules with the same Classj

value in the rule head).
. Size. Size is a measure of complexity (the syntactical complexity of

induced rules). The ruleset size is computed as the number of rules in
the induced ruleset (including the default rule):

SIZE ¼ nB : ð11Þ

Size nB of the induced ruleset equals B þ 1 (B best rules plus one default
rule). In addition to ruleset size used in this paper, complexity could be
measured also by the average number of rules=subgroups per class, and
the average number of features per rule.

. Significance. Average rule significance is computed in terms of the like-
lihood ratio of a rule; the average is computed over all the rules. Signifi-
cance (or evidence, in the terminology of Klösgen [1996] indicates how
significant is a finding, if measured by this statistical criterion. In the
CN2 algorithm (Clark and Niblett 1989), significance is measured in
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7 terms of the likelihood ratio statistic of a rule as follows:

Sig ðRiÞ ¼ Sig ðXi ! Y Þ ¼ 2 �
X

j

nðXi � YjÞ � log
nðYj � XiÞ
nðYjÞ nðXiÞ

N

; ð12Þ

where for each class value Yj , nðXi � YjÞ denotes the number of examples
with class value Yj in the set where the rule body Xi holds true, and nðYjÞ
is the number of examples with class value Yj in the data set. Note that
although for each generated subgroup description one class value is
selected as the target class value, the significance criterion measures
the distributional unusualness unbiased to any particular class value. As
such, it measures the significance of rule condition only. The average
significance of a ruleset is computed as:

SIG ¼ 1

nB

XnB

i¼1

Sig ðRiÞ: ð13Þ

. Unusualness. Average rule unusualness is computed as the average
WRAcc computed over all the rules:

WRACC ¼ 1

nB

XnB

i¼1

WRAccðRiÞ: ð14Þ

As discussed previously, WRAcc is appropriate for measuring the unusual-
ness of separate subgroups, because it is proportional to the vertical dis-
tance from the diagonal in the ROC space (see the underlying reasoning
presented previously.

. Predictive accuracy. It is important to note the percentage of correctly
predicted instances. For a binary classification problem, ruleset accuracy
is computed as follows:

ACC ¼ TP þ TN

N
: ð15Þ

Note that ACC measures the accuracy of the whole ruleset on both posi-
tive and negative examples, while rule accuracy or rule confidence
(defined as AccðX ! Y Þ ¼ Conf ðX ! Y Þ ¼ ðTP=TP þ FPÞ) measures
the accuracy of a single rule on positives only.

. Area under ROC curve. The method for computing the area under ROC
curve (AUC) interprets a ruleset as a probabilistic model, given all the dif-
ferent probability thresholds as defined through the probabilistic classi-
fication of test instances. AUC can thus be computed by employing
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7 combined probabilistic classifications of all rules=subgroups (Lavrač
et al. 2004), as indicated next. If we always choose the most likely
predicted class, this corresponds to setting a fixed threshold 0.5 on the
positive probability: If the positive probability is larger than this thresh-
old, we predict positive, if not, negative. The ROC curve can be con-
structed by varying this threshold from 1 (all predictions negative,
corresponding to (0,0) in the ROC space) to 0 (all predictions positive,
corresponding to (1,1) in the ROC space). This results in M þ 1 points in
the ROC space, where M is the total number of examples to be classified.
Equivalently, we can order all the test examples by decreasing the pre-
dicted probability of being positive, and tracing the ROC curve by start-
ing in (0,0), stepping up when the tested example is actually positive, and
stepping to the right when it is negative, until we reach (1,1). In the case
of ties, we make the appropriate number of steps up and to the right at
once, drawing a diagonal line segment. Each point on this curve corre-
sponds to a classifier defined by a possible probability threshold. The
ROC curve depicts a set of classifiers, whereas the area under this ROC
curve indicates the combined quality of all rules=subgroups (i.e., the
quality of the entire ruleset). This method can be used with a test set
or in cross-validation, but the resulting curve is not necessarily convex.
For details on this method, see (Lavrač et al. 2004). A description of this
method applied to decision tree induction can be found in Ferri-Ramirez
et al. (2002).

Evaluation on Selected UCI Data Sets

We experimentally evaluated our approach on 23 data sets from the
UCI Repository of Machine Learning Databases (Murphy and Aha 1994).
In Table 3, the selected data sets are summarized in terms of the number
of attributes (discrete and continuous), number of classes, number of
examples, percentage of examples in the majority class, and the maximal
value of the WRAcc function. All continuous attributes were discretized with
a discretization method described in (Witten and Frank 1999) using the
WEKA tool Kononenko (1995).

The comparison of APRIORI-SD with three classification rule learners
APRIORI-C, RIPPER, and CN2 was performed using the evaluation measures
described previously. The area under the ROC curve evaluation was computed
only on two-class problems (first 16 data sets in Table 3). The method we used
for evaluation was 10-fold stratified cross validation. The parameters used to
run the algorithms APRIORI-SD and APRIORI-C were: minConf ¼ 0:8 and
minSup ¼ 0:03, and k ¼ 54. We used the version of RIPPER implemented in
WEKA (Witten and Frank 1999) with default parameters; Boswell’s implemen-
tation of CN2 was used (Clark and Boswell 1991).
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Table 4 presents summary results of the comparisons on UCI data sets, while
details can be found in the appendix. For each performance measure, the
summary table shows the average value over all the data sets, the significance
of the results compared to APRIORI-SD (p-value), and the WIN=LOSS=DRAW
in terms of the number of domains in which the results are better/worse/equal
compared to APRIORI-SD. The analysis shows the following:

. In terms of the average coverage per rule, APRIORI-SD produces rules
with significantly higher coverage (higher the coverage better the rule)
than both APRIORI-C, RIPPER, and CN2.

. APRIORI-SD induces rulesets with lower support than RIPPER and CN2,
covering a smaller portion of the target concept, thus leaving more exam-
ples unclassified. APRIORI-SD then classifies these examples with the
default rule. This fact is also the cause for poorer performance of
APRIORI-SD in terms of classification accuracy.

. APRIORI-SD induces rulesets that are significantly smaller than those
induced by APRIORI-C, RIPPER, and CN2 (smaller rulesets are more
understandable and thus better).

. APRIORI-SD induces significantly better rules in terms of significance
measured by the average v2 likelihood ratio (rules with higher signifi-
cance are better) than APRIORI-C, RIPPER, and CN2.

TABLE 3 Date Set Characteristics

Domena #Attrib. #Discr. #Cont. #Class. #Ex. Maj. Class (%) Max. WRAcc

1 australian 14 8 6 2 690 56 0.246
2 breast-w 9 9 0 2 699 66 0.224
3 bridges-td 7 4 3 2 102 85 0.128
4 chess 36 36 0 2 3196 52 0.250
5 diabetes 8 0 8 2 768 65 0.228
6 echo 6 1 5 2 131 67 0.221
7 german 20 13 7 2 1000 70 0.210
8 heart 13 6 7 2 270 56 0.246
9 hepatitis 19 13 6 2 155 79 0.166

10 hypothyroid 25 18 7 2 3163 95 0.048
11 ionosphere 34 0 34 2 351 64 0.230
12 iris 4 0 4 2 150 66 0.221
13 mutagen 59 57 2 2 188 66 0.224
14 mutagen-f 57 57 0 2 188 66 0.224
15 tic-tac-toe 9 9 0 2 958 65 0.228
16 vote 16 16 0 2 435 61 0.238
17 balance 4 0 4 3 625 46 0.248
18 car 6 6 0 4 1728 70 0.210
19 glass 9 0 9 6 214 36 0.230
20 image 19 0 19 7 2310 14 0.120
21 soya 35 35 0 19 683 13 0.113
22 waveform 21 0 21 3 5000 34 0.224
23 wine 13 0 13 3 178 40 0.240
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. APRIORI-SD induces rulesets with higher unusualness than APRIORI-C,
RIPPER, and CN2. Since unusualness (WRAcc) is considered the most
important measure for estimating the quality of discovered subgroups,
we can claim that APRIORI-SD discovers ‘‘the best’’ subgroups.

. In terms of predictive accuracy APRIORI-SD is insignificantly worse than
RIPPER and CN2, while being significantly worse than APRIORI-C.

. As the comparisons in terms of the area under the ROC curve (AUC) are
restricted to binary class data sets, only the 16 binary data sets were used
in this comparison. Notice that while being better than APRIORI-C and
RIPPER, APRIORI-SD is comparable to CN2.

Evaluation on a Real-Life Data Set

In order to compare APRIORI-SD with two other state-of-the-art sub-
group discovery algorithms, CN2-SD (Lavrač et al. 2002) and SubgroupMiner

TABLE 4 Comparison of APRIORI-SD with Different Rule Learning Algorithms. The Best Results are
in Bold

Performance
measure

Data
sets APRIORI-SD APRIORI-C RIPPER CN2

Detailed
results

COV 23 0.534�0.26 0.363�0.19 0.190�0.19 0.131 �0.14 Table 7
� significance (p value) 0.000 0.000 0.000
� win=loss=draw 1=22=0 1=22=0 1=22=0
� sig.win=sig.loss 1=17 1=21 1=21
SUP 23 0.83�0.13 0.81�0.12 0.84 � 0.07 0.85 �0.03 Table 8
� significance (p value) 0.022 0.771 0.616
� win=loss=draw 7=16=0 13=10=0 11=12=0
� sig.win=sig.loss 1=7 9=9 9=9
SIZE 23 3.58 � 1.96 5.61 � 2.84 16.12 � 27.47 18.18 � 21.77 Table 9
� significance (p value) 0.000 0.035 0.003
� win=loss=draw 2=21=0 3=20=0 1=22=0
� sig.win=sig.loss 2=19 2=19 1=21
SIG 23 12.37 � 7.26 2.60 � 0.55 2.36 � 0.55 2.11 � 0.46 Table 10
� significance (p value) 0.000 0.000 0.000
� win=loss=draw 1=22=0 1=22=0 1=22=0
� sig.win=sig.loss 0=22 1=21 0=22
WRACC 23 0.047 � 0.03 0.042 � 0.03 0.021 � 0.02 0.017 � 0.02 Table 11
� significance (p value) 0.000 0.001 0.000
� win=loss=draw 0=22=1 4=19=0 3=20=0
� sig.win=sig.loss 0=11 3=18 3=19
ACC 23 79.98�16.67 81.02� 16.50 83.46 � 10.24 81.61 � 11.66 Table 12
� significance (p value) 0.039 0.282 0.489
� win=loss=draw 13=10=0 10=13=0 8=15=0
� sig.win=sig.loss 7=0 8=7 6=10
AUC 16 82.80� 8.70 80.92 � 9.95 80.11 � 10.23 82.16 � 16.81 Table 13
� significance (p value) 0.190 0.027 0.871
� win=loss=draw 6=10=0 4=12=0 11=5=0
� sig.win=sig.loss 4=6 4=7 9=6
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7 (Klösgen and May 2002), we applied these algorithms to a real-life prob-
lem—the U.K. traffic challenge data set. This data set is a sample of a lar-
ger and more complete relational data set—the UK traffic data set briefly
described next. The results of the comparison are presented in the form of
ROC plots.

The U.K. Traffic Accident Data Set
The U.K. traffic data set includes the records of all the accidents that

happened on the roads of Great Britain between years 1979 and 1999. It
is a relational data set consisting of three related sets of data: the ACCI-
DENT data, the VEHICLE data and the CASUALTY data. The ACCIDENT
data consists of the records of all accidents that happened in the given time
period; VEHICLE data includes data about all the vehicles involved in these
accidents; and CASUALTY data includes the data about all the casualties
involved in the accidents. Consider the following example: Two vehicles
crashed in a traffic accident and three people were seriously injured in
the crash. In terms of the TRAFFIC data set, this is recorded as one record
in the ACCIDENT set, two records in the VEHICLE set, and three records
in the CASUALTY set. Every separate set is described by approximately 20
attributes and consists of more than 5 million records.

The U.K. Traffic Challenge
The task of the challenge was to produce classification models (in our

case, subgroup descriptions) to predict skidding and overturning for acci-
dents from the U.K. traffic data set (Mladenić and Lavrač 2003). As the
class attribute Skidding and Overturning appears in the VEHICLE data table,
the data tables ACCIDENT and VEHICLE were merged in order to make
this a simple non-relational problem. Furthermore, a sample of 5940
records from this merged data table was selected for learning and another
sample of 1585 records was selected for testing. The class attribute Skidding
and Overturning has six possible values. The meaning of these values and
the distribution of the class values in the training and test sets are shown
in Table 5.

TABLE 5 The Meaning and the Distribution of Classes in the U.K. Traffic Challenge Data

Class Meaning of class values Train Test

0 No skidding, jack-knifing or overturning 64.26 64.67
1 Skidded 22.07 22.46
2 Skidded and overturned 7.27 6.88
3 Jack-knifed 0.20 0.06
4 Jack-knifed and overturned 0.19 0.44
5 Overturned 6.01 5.49
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7 Experimental Results
We compared subgroup discovery algorithms APRIORI-SD, CN2-SD,

and SubgroupMiner by applying them to the U.K. traffic challenge training
data to construct subgroups and then test these subgroups on the test data.
The results are plotted in the ROC space. Because of the fact that only
binary class problems can be plotted in the ROC space, we had to transform
the original problem of predicting a class with six values to six binary pro-
blems, predicting each class in turn as positive and the remaining classes as
negative. All three subgroup discovery algorithms were run with the follow-
ing parameters (APRIORI-SD with minConf ¼ 0, minSup ¼ 0:01, and k ¼ 5;
CN2-SD using the additive weighting scheme, 99% significance threshold
and beam size 5; SubgroupMiner with beam size 10, max. length of rules
6, and suppression factor a ¼ 1).

We discarded the problems of predicting Class 3 and Class 4 (see Table
5 for the meaning of class codes) because they contained too few test exam-
ples (see the distribution in Table 5), and we discarded the ROC plot for
the problem of predicting Class 2 because it is very similar to the ROC plot
for predicting Class 1.

The results of the comparisons on the remaining three problems of
predicting Class 0, Class 1, and Class 5 are shown (plotted in the ROC
space) in Figures 7, 8, and 9, respectively. We can describe these problems
as the problems of predicting the majority class (Class 0), the minority class
(Class 5), and the class that is neither majority nor minority (Class 1).

FIGURE 7 The ROC plot for the problem of predicting Class 0.
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7 

FIGURE 8 The ROC plot for the problem of predicting Class 1.

FIGURE 9 The ROC plot for the problem of predicting Class 5.
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7 The following can be observed by analyzing the results in Figures 7, 8,
and 9:

1. Both APRIORI-SD and CN2-SD discovered smaller and more accurate
subgroups (points nearer to the point ð0; 0Þ in all the three figures) than
SubgroupMiner.

2. SubgroupMiner discovered larger but less accurate subgroups. This is
especially true for the problem of predicting the majority class (Class 0
in Figure 7).

3. If the ROC convex hull, connecting the best performing subgroups (sub-
groups with the best TPr=FPr tradeoff), we could observe that Subgroup-
Miner discovered several of subgroups that do not lie on the ROC
convex hull and are thus sub-optimal.

4. Both APRIORI-SD and CN2-SD discovered better subgroups (the dis-
tance from the ROC diagonal is larger) when dealing with the problem
of predicting a minority class (see Figures 8 and 9).

5. APRIORI-SD is ‘‘better’’ than CN2-SD in terms of the average WRAcc (the
subgroups discovered by APRIORI-SD are on average further away from
the main diagonal in the ROC space than those discovered by CN2-SD).

Interpretation of the Results
This section explains each of the five findings of the previous section,

starting with the last one.
The fifth finding—APRIORI-SD being better than CN2-SD in terms of

the average WRAcc—can be explained by the fact that CN2-SD is bound to
miss some ‘‘good’’ subgroups by using heuristic search, while APRIORI-SD
using exhaustive search takes into consideration all ‘‘potentially good’’ sub-
groups.

The fourth finding—both APRIORI-SD and CN2-SD discovered better
subgroups when dealing with the problem of predicting a minority
class—can be attributed to the WRAcc heuristic used in APRIORI-SD (in
rule post-processing) and CN2-SD (used in heuristic beam search of rules).
This result experimentally confirms the appropriateness of the WRAcc heu-
ristic for subgroup discovery, which aims at finding subgroups maximizing
the distance from the ROC diagonal (Lavrač et al. 2004).

The third finding—SubgroupMiner discovered a lot of subgroups that
do not lie on the ROC convex hull—can also be attributed to the fact that
the algorithms use different heuristics when searching the space of possible
rules=subgroups.

To explain the first two findings, we use ROC isometrics described in
Flach (2003) and Fürnkranz and Flach (2003). With the help of ROC iso-
metrics we can investigate the behavior of quality functions used in
APRIORI-SD, CN2-SD, and SubgroupMiner. APRIORI-SD and CN2-SD

APRIORI-SD 571
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7 use the same quality function to find subgroups wWRAcc0 with example
weights described in Equation 4. The behavior of this quality function is
shown in Figure 3 in the form of ROC isometrics, where each line repre-
sents some value of the quality function (see Flach [2003] and Fürukranz
and Flach [2003] for a detailed description of ROC isometrics).

We have analyzed the effects of example weighting through the analysis
of Figure 3. We have observed that, in general, while still remaining paral-
lel, the angle of ROC isometrics for wWRAcc 0 increases with the decrease of
the weights of (positive) examples. Here we compare the APRIORI-SD
wWRAcc0 isometrics of 3 with the behavior of SubgroupMiner’s quality func-
tion shown in Figure 10.

We can now proceed explaining the first two findings from the results
by looking at Figures 3 and 10. Figure 3 shows that the WRAcc quality func-
tion with example weights used by APRIORI-SD and CN2-SD ‘‘tries harder’’
to discover more accurate subgroups, i.e., lowering the weights on positive
examples makes the lines in the figure more vertical. Since there are no
large subgroups that are at the same time highly accurate, the effect of
weighting in our case results in finding small, highly accurate subgroups
(explanation of the first finding). The second finding can be explained

FIGURE 10 ROC isometrics of the quality function used in SubgroupMiner.
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7 by looking at Figure 10. We can see that SubgroupMiner’s quality functions
tend to discover small and accurate subgroups and at the same time large
and inaccurate ones (note the bending of iso-lines towards the points (0,0)
and (1,1)). The latter fact explains the second finding from the results.
Why did SubgroupMiner not discover small and accurate subgroups (in
such a number as APRIORI-SD and CN2-SD did) can be attributed again
to the heuristics used by the algorithms in searching the space of poten-
tially ‘‘good’’ subgroups.

Evaluating WRAcc Variants on the U.K. Traffic Challenge Data
This section uses the U.K. traffic challenge data to evaluate the per-

formance of different WRAcc variants proposed in this paper.
We applied APRIORI-SD with the following parameters (minConf ¼ 0,

minSup ¼ 0:0001, k ¼ 5) and additional constraints (minWRAcc ¼ 0,
maximal no: of terms in a subgroup ¼ 10) on the training set of 5940 exam-
ples. The algorithm was run 18 times (six times to discover subgroups for
each of the class values—one was always set as positive and the other five
as negative; three times for each of the weighting schemes).

The following performance measures were used in the comparisons.
SIZE: the number of discovered subgroups on the training set; ACC: the
accuracy of a ruleset on the test set (of 1585 examples); and COV: the aver-
age coverage of a subgroup.

The results are shown in Table 6 and confirm the theoretical findings
from earlier. We can see from this table that when using wWRAcc 0 with
weighting just the positive examples, the algorithm finds subgroups that
are on the average smaller and more accurate. On the other hand, by using

TABLE 6 The Results of Applying APRIORI-SD with Different Weighting Schemes on the U.K. Traffic
Challenge Data

Performance measures

ACC COV SIZE

Class & þ � & þ � & þ �

0 0.875 0.901 0.823 0.231 0.213 0.402 112 91 19
1 0.449 0.502 0.397 0.101 0.076 0.183 83 74 12
2 0.101 0.124 0.090 0.050 0.041 0.101 20 15 6
3 0.023 0.023 — 0.005 0.005 — 3 3 0
4 0.035 0.040 0.028 0.011 0.007 0.019 6 5 2
5 0.203 0.251 0.183 0.088 0.076 0.205 31 25 8

&: the wWRAcc weighting scheme used in APRIORI-SD.
þ: the wWRAcc’ by weighting just positive examples.
�: the wWRAcc’ by weighting just negative examples.
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7 (corrected) wWRAcc 0 and weighting just the negative examples, on the aver-
age larger and less accurate subgroups are discovered by the algorithm.

Another thing that can be seen from Table 6 is that by using APRIORI-
SD’s original weighting scheme, more subgroups are discovered then when
one of the two alternative weighting schemes is used.

CONCLUSIONS

Following the ideas presented in Lavrač (2004), we have adapted the
APRIORI-C algorithm to subgroup discovery, resulting in the APRIORI-SD
subgroup discovery algorithm. Experimental results on 23 UCI data sets
demonstrate that APRIORI-SD produces smaller rulesets, where individual
rules have higher coverage, significance, and unusualness compared to rule
learners APRIORI-C, RIPPER, and CN2. These factors are important for sub-
group discovery: Smaller size enables better understanding, higher coverage
means larger subgroups, and higher significance and unusualness mean that
rules describe subgroups whose class distribution is significantly different
from the entire population. This is achieved by virtually no loss in terms of
the area under the ROC curve and accuracy.

We have evaluated the results of APRIORI-SD also in terms of classi-
fication accuracy and AUC and, have shown a small increase in terms of
the area under the ROC curve compared to APRIORI-C and RIPPER. On
the other hand, an insignificant increase in AUC compared to CN2 could
be attributed to the use of non-discretized attributes in CN2. APRIORI-SD
was insignificantly worse in terms of predictive accuracy than RIPPER and
CN2, while being significantly worse than APRIORI-C. Notice however, that
subgroup discovery is not intended at maximizing accuracy.

By comparing the APRIORI-SD with two subgroup discovery algo-
rithms, CN2-SD and SubgroupMiner, on real-life U.K. traffic challenge
data, we have shown that APRIORI-SD acts very similarly to CN2-SD and
is more suitable for predicting the minority classes, while SubgroupMiner
found larger and more accurate subgroups when dealing with the majority
classes. On the other hand, SubgroupMiner tends to produce larger sub-
groups. In conclusion, APRIORI-SD was slightly better than CN2-SD in
the real-life U.K. traffic challenge problem, using the ROC space as an
evaluation tool. While compared to SubgroupMiner, neither of the two
algorithms was absolutely better than the other one. They can provide us
with different insights of the data. It is then the task of an expert to have
a final word on which of the algorithms produces better subgroups in
relation to her needs.

In addition, following the ideas presented in Flach (2003) and Fürukranz
and Flach (2003), we used ROC analysis to study the behavior of various
example weighting schemes. We have presented the arguments for modift-
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7 ing WRacc to wWRAcc0. In addition, we have provided a theoretical analysis of
new weighting schemes pointing out that while the first scheme (wWRAcc 0 by
weighting just the covered positive examples) is more focused, guiding rule
selection towards smaller and highly accurate subgroups, the second one
(wWRAcc 0 by weighting just the covered negative examples) guides rule selec-
tion toward more general subgroups, which are larger and less accurate.

An important aspect of subgroup discovery performance, which was
neglected in our study, is the degree of overlap of the induced subgroups.
The challenge of our further research is to propose extensions of the
weighted relative accuracy heuristic and the ROC space evaluation metrics
that will take into account the overlap of subgroups.
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Jovanoski, V. and N. Lavrač. 2001. Classification rule learning with APRIORI-C. In Progress in Artificial

Intelligence: Proceedings of the 10th Portuguese Conference on Artificial Intelligence, pages 44–51, Springer.
Klösgen, W. 1996. EXPLORA: A multipattern and multistrategy discovery assistant. In Advance in Knowl-

edge Discovery and Data Mining, 249–271. Cambridge, MIT Press.
Klösgen, W. 1999. Applications and research problems of subgroup mining. XI International

Symposium on Foundations of Intelligent Systems table of contents (ISMIS’99). Lecture Notes in
Computer Science 1609, Springer–Verlag 1999, Warsaw, Poland, 1–15.

Klösgen, W. 2002. Handbook of Data Mining and Knowledge Discovery, chapter Subgroup Discovery,
213–242. New York: Oxford University Press.

APRIORI-SD 575



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

10
:4

4 
5 

N
ov

em
be

r 2
00

7 Klösgen, W. and M. May. 2002. Spatial subgroup mining integrated in an object-relational spatial data-
base. In Proceedings of the 6th European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 275–286. Helsinki, Finland: Springer.

Kononenko, I. 1995. On biases in estimating multi-valued attributes. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence, pages 1034–1040. Montreal, Canada: Morgan
Kaufmann.
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ENDNOTES

1. Confidence pðY jX Þ in association rule learning is called rule accuracy in classification rule learning,
and precision in information retrieval.

2. Empirically, this assumption does not seriously affect the angle of the iso-WRAcc lines.
3. We show that by decreasing the weights of negative examples, the picture changes. However, by

decreasing the weights of all covered examples, we mostly decrease the weights of positives, because
the algorithm is trying hard to cover as many positives and at the same time as few negatives as possible.

4. We also ran APRIORI-SD with minConf ¼ 0 and minSup ¼ 0:01 in order to exhaustively search the
space of rules, but the results were almost equal to the ones presented in this paper.
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7 APPENDIX: DETAILED RESULTS OF EXPERIMENTS
ON UCI DATA SETS

TABLE 7 Average Coverage (COV) of Rules with Standard Deviations

APRIORI-SD APRIORI-C RIPPER CN2
# COV� sd COV� sd COV� sd COV� sd

1 0.550� 0.06 0.430# � 0.04 0.090# � 0.01 0.071# � 0.01
2 0.300� 0.03 0.190# � 0.02 0.100# � 0.01 0.079# � 0.10
3 0.540� 0.05 0.600" � 0.06 0.800" � 0.08 0.625" � 0.03
4 0.530� 0.05 0.500� 0.05 0.050� 0.00 0.048� 0.01
5 0.300� 0.03 0.280� 0.03 0.090# � 0.01 0.057# � 0.08
6 1.000� 0.00 0.710# � 0.07 0.390# � 0.04 0.312# � 0.06
7 0.300� 0.03 0.110# � 0.01 0.070# � 0.01 0.053# � 0.08
8 0.670� 0.07 0.280# � 0.03 0.160# � 0.02 0.107# � 0.09
9 0.850� 0.08 0.520# � 0.05 0.400# � 0.04 0.207# � 0.04

10 0.520� 0.05 0.500� 0.05 0.100# � 0.01 0.093# � 0.00
11 0.240� 0.02 0.220� 0.02 0.160# � 0.02 0.099# � 0.05
12 0.840� 0.08 0.520# � 0.05 0.520# � 0.05 0.378# � 0.01
13 0.910� 0.09 0.480# � 0.05 0.280# � 0.03 0.160# � 0.11
14 0.880� 0.09 0.470# � 0.05 0.230# � 0.02 0.142# � 0.01
15 0.290� 0.03 0.130# � 0.01 0.040# � 0.00 0.030# � 0.01
16 0.710� 0.07 0.680� 0.07 0.190# � 0.02 0.129# � 0.01
17 0.380� 0.04 0.230# � 0.02 0.040# � 0.00 0.021# � 0.00
18 0.260� 0.03 0.160# � 0.02 0.030# � 0.00 0.022# � 0.05
19 0.840� 0.08 0.370# � 0.04 0.150# � 0.02 0.066# � 0.01
20 0.240� 0.03 0.140# � 0.01 0.040# � 0.00 0.039# � 0.11
21 0.280� 0.03 0.100# � 0.01 0.060# � 0.01 0.040# � 0.01
22 0.240� 0.03 0.190# � 0.02 0.010# � 0.00 0.004# � 0.01
23 0.620� 0.06 0.550# � 0.06 0.380# � 0.04 0.231# � 0.01
Avg 0.534� 0.26 0.363� 0.19 0.190� 0.19 0.131� 0.14
. p 0.000 0.000 0.000
. w=l=d 1=22=0 1=22=0 1=22=0
. s.w=s.l 1=17 1=21 1=21
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7 TABLE 8 Overall Support (SUP) of Rulesets with Standard Deviations

APRIORI-SD APRIORI-C RIPPER CN2
# SUP� sd SUP� sd SUP� sd SUP� sd

1 0.79� 0.07 0.75� 0.07 0.86" � 0.10 0.81� 0.09
2 0.64� 0.03 0.63� 0.03 0.76" � 0.01 0.88" � 0.01
3 0.82� 0.08 0.85� 0.08 0.81� 0.06 0.87" � 0.05
4 0.78� 0.09 0.75� 0.08 0.86" � 0.06 0.87" � 0.06
5 0.69� 0.05 0.65� 0.06 0.90" � 0.01 0.80" � 0.01
6 0.98� 0.15 0.97� 0.15 0.81# � 0.03 0.90# � 0.03
7 0.77� 0.06 0.76� 0.07 0.98" � 0.02 0.89" � 0.03
8 0.67� 0.08 0.63# � 0.07 0.76" � 0.04 0.84" � 0.03
9 0.85� 0.08 0.86� 0.09 0.70# � 0.10 0.87� 0.10

10 0.52� 0.08 0.56� 0.08 0.94" � 0.01 0.84" � 0.01
11 0.68� 0.04 0.65# � 0.05 0.87" � 0.03 0.83" � 0.03
12 0.84� 0.09 0.82� 0.10 0.89� 0.03 0.82� 0.04
13 0.91� 0.12 0.87# � 0.12 0.91� 0.11 0.87# � 0.10
14 0.88� 0.10 0.85� 0.09 0.79# � 0.04 0.84� 0.05
15 0.84� 0.08 0.85� 0.09 0.88� 0.05 0.83� 0.04
16 0.71� 0.08 0.73� 0.08 0.86" � 0.07 0.85" � 0.07
17 1.00� 0.00 0.85# � 0.00 0.81# � 0.09 0.86# � 0.08
18 0.94� 0.02 0.89# � 0.02 0.76# � 0.05 0.81# � 0.06
19 0.91� 0.03 0.96" � 0.03 0.92� 0.01 0.83# � 0.01
20 0.98� 0.01 0.98� 0.00 0.83# � 0.06 0.90# � 0.06
21 0.95� 0.02 0.92� 0.02 0.83# � 0.05 0.81# � 0.05
22 1.00� 0.00 0.90# � 0.00 0.82# � 0.01 0.81# � 0.02
23 0.97� 0.01 0.94# � 0.02 0.79# � 0.04 0.82# � 0.05
Avg 0.83� 0.13 0.81� 0.12 0.84� 0.07 0.85� 0.03
. p 0.022 0.771 0.616
. w=l=d 7=16=0 13=10=0 11=12=0
. s.w/s.l 1=7 9=9 9=9

578 B. Kav�ssek and N. Lavrač
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7 TABLE 9 Size (SIZE) of Rulesets (In Terms of the Number of Rules) with Standard Deviations

APRIORI-SD APRIORI-C RIPPER CN2
# SIZE� sd SIZE� sd SIZE� sd SIZE� sd

1 3.5� 0.15 2:6 " � 0.51 11.6# � 1.01 12.4# � 1.95
2 4.2� 0.43 8.0# � 0.26 10.7# � 0.12 12.6# � 1.04
3 2.4� 0.51 2.7� 0.04 1:4 " � 0.15 1:8 " � 0.10
4 1.4� 0.20 3.2# � 0.38 17.5# � 0.83 14.6# � 1.81
5 4.4� 0.30 3:9 " � 0.35 10.2# � 0.32 12.8# � 1.56
6 1.0� 0.00 3.5# � 0.00 2.9# � 0.12 3.7# � 1.37
7 6.2� 0.05 9.7# � 0.83 11.5# � 1.13 15.1# � 1.89
8 1.4� 0.14 4.4# � 0.10 5.2# � 0.04 6.4# � 1.53
9 2.8� 0.72 4.4# � 0.28 2.5� 0.69 3.0� 0.29

10 1.4� 0.71 3.0# � 0.08 9.3# � 0.14 10.1# � 1.02
11 3.5� 0.63 5.8# � 0.13 6.6# � 0.02 7.6# � 1.01
12 2.1� 0.49 2.5� 0.61 1:8 " � 0.75 3.8# � 1.24
13 2.8� 0.14 4.1# � 0.07 3.3# � 0.16 4.7# � 1.30
14 2.3� 0.27 4.0# � 0.23 2.4� 0.05 5.2# � 0.90
15 7.1� 0.22 10.3# � 1.00 25.9# � 1.94 21.2# � 3.48
16 2.0� 0.44 4.2# � 0.41 5.7# � 0.55 7.1# � 1.59
17 4.2� 0.18 6.2# � 0.55 24.0# � 1.60 28.7# � 3.89
18 5.8� 0.56 6.8# � 0.17 34.5# � 3.01 83.8# � 5.37
19 2.8� 0.09 5.3# � 0.45 5.9# � 0.17 12.9# � 1.68
20 5.3� 0.20 9.7# � 0.94 21.7# � 1.34 32.8# � 2.64
21 8.2� 0.24 12.9# � 1.12 17.2# � 1.17 35.1# � 3.54
22 5.1� 0.15 7.3# � 0.20 135.3# � 12.73 77.3# � 4.07
23 2.4� 0.21 4.5# � 0.36 3.4# � 0.20 5.5# � 1.26
Avg 3:58� 1.96 5.61� 2.84 16.12� 27.47 18.18� 21.77
. p 0.000 0.035 0.003
. w=l=d 2=21=0 3=20=0 1=22=0
. s.w=s.l 2=19 2=19 1=21
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7 TABLE 10 Average Likelihood Ratio (SIG) of Rules with Standard Deviations

APRIORI-SD APRIORI-C RIPPER CN2
# SIZE� sd SIZE� sd SIZE� sd SIZE� sd

1 8.4� 0.04 2.3# � 0.03 2.8# � 0.18 2.0# � 0.05
2 14.2� 0.02 3.1# � 0.14 1.5# � 0.55 2.7# � 0.10
3 8.2� 0.02 2.8# � 0.05 3.3# � 0.12 2.1# � 0.01
4 9.8� 0.15 2.9# � 0.06 1.8# � 0.05 2.4# � 0.06
5 16.4� 0.06 2.5# � 0.07 2.3# � 0.19 2.0# � 0.01
6 10.4� 0.03 2.4# � 0.04 1.8# � 0.75 1.9# � 0.03
7 11.0� 0.05 2.5# � 0.02 2.6# � 0.02 2.0# � 0.02
8 5.2� 0.06 2.7# � 0.03 1.9# � 0.08 1.9# � 0.09
9 10.5� 0.12 2.8# � 0.06 2.8# � 0.60 2.7# � 0.03

10 4.2� 0.04 1.8# � 0.08 2.3# � 0.65 1.4# � 0.04
11 1.9� 0.02 2.1� 0.03 1.8� 0.04 2.0� 0.04
12 7.5� 0.03 2.9# � 0.06 2.4# � 0.04 1.9# � 0.03
13 15.3� 0.05 2.3# � 0.18 2.5# � 0.64 2.1# � 0.00
14 15.3� 0.03 3.4# � 0.02 2.1# � 0.13 2.5# � 0.08
15 15.2� 0.17 3.2# � 0.04 3.3# � 0.48 2.5# � 0.05
16 12.0� 0.03 3.3# � 0.06 1.5# � 0.02 2.6# � 0.04
17 5.6� 0.06 3.0# � 0.04 3.1# � 0.06 2.7# � 0.03
18 25.0� 0.07 2.3# � 0.05 2.1# � 0.33 1.5# � 0.00
19 2.5� 0.08 1.2# � 0.06 3:0 " � 0.60 1.0# � 0.07
20 29.5� 0.19 2.2# � 0.12 2.7# � 0.66 1.5# � 0.00
21 16.8� 0.05 2.6# � 0.04 1.5# � 0.33 2.4# � 0.02
22 26.4� 0.18 3.5# � 0.07 2.8# � 0.07 2.6# � 0.04
23 13.5� 0.04 2.1# � 0.02 2.5# � 0.05 2.0# � 0.07
Avg 12:37� 7.26 2.60� 0.55 2.36� 0.55 2.11� 0.46
. p 0.000 0.000 0.000
. w=l=d 1=22=0 1=22=0 1=22=0
. s.w=s.l 0=22 1=21 0/22
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7 TABLE 11 Average Unusualness (WRACC) of Rules with Standard Deviations

APRIORI-SD APRIORI-C RIPPER CN2
# WRACC� sd WRACC� sd WRACC� sd WRACC� sd

1 0.045� 0.08 0.039# � 0.10 0.030# � 0.09 0.022# � 0.09
2 0.038� 0.03 0.037� 0.03 0.036� 0.04 0.034# � 0.04
3 0.023� 0.08 0.013# � 0.09 � 0.014# � 0.09 � 0.016# � 0.08
4 0.043� 0.05 0.040� 0.03 0.021# � 0.04 0.020# � 0.04
5 0.043� 0.06 0.038# � 0.06 0.021# � 0.06 0.013# � 0.06
6 0.040� 0.07 0.031# � 0.08 0.062" � 0.08 0.058" � 0.07
7 0.036� 0.02 0.036� 0.02 0.019# � 0.02 0.012# � 0.02
8 0.048� 0.05 0.041� 0.05 0.029# � 0.05 0.026# � 0.04
9 0.030� 0.09 0.025# � 0.07 0.012# � 0.08 0.004# � 0.07

10 0.008� 0.03 0.006� 0.04 0.017" � 0.04 0.013" � 0.04
11 0.043� 0.03 0.041� 0.02 0.043� 0.03 0.041� 0.02
12 0.039� 0.04 0.032# � 0.04 0.027# � 0.03 0.024# � 0.04
13 0.044� 0.03 0.040� 0.03 0.034# � 0.03 0.024# � 0.03
14 0.044� 0.10 0.040� 0.10 0.009# � 0.10 0.009# � 0.10
15 0.045� 0.08 0.040� 0.08 0.017# � 0.08 0.015# � 0.07
16 0.046� 0.01 0.041# � 0.01 0.023# � 0.01 0.017# � 0.00
17 0.085� 0.01 0.081� 0.02 0.014# � 0.02 0.005# � 0.03
18 0.043� 0.06 0.038# � 0.07 0.018# � 0.07 0.009# � 0.06
19 0.122� 0.07 0.113# � 0.08 0.015# � 0.07 0.007# � 0.07
20 � 0.022� 0.01 � 0.023� 0.01 � 0.008" � 0.01 0.004" � 0.01
21 0.045� 0.07 0.035# � 0.08 0.020# � 0.07 0.015# � 0.08
22 0.052� 0.02 0.046# � 0.03 0.008# � 0.02 0.001# � 0.03
23 0.139� 0.00 0.137� 0.00 0.038# � 0.00 0.033# � 0.01
Avg 0.047� 0.03 0.042� 0.03 0.021� 0.02 0.017� 0.02
. p 0.000 0.001 0.000
. w=l=d 0=22=1 4=19=0 3=20=0
. s.w=s.l 0=11 3=18 3=19
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7 TABLE 12 Accuracy (ACC) of rulesets with standard deviations

APRIORI-SD APRIORI-C RIPPER CN2
# ACC�sd ACC�sd ACC�sd ACC�sd

1 87.26� 7.80 89.99� 8.29 82.03# � 7.40 81.62# � 3.55
2 97.48� 8.90 95.85� 9.36 94.76# � 8.60 92.28# � 1.07
3 86.02� 7.97 87.17� 8.08 86.17� 7.80 82.45# � 3.89
4 96.16� 8.62 94.52� 9.13 98.90" � 8.95 94.18� 3.71
5 75.00� 7.41 74.95� 7.32 71.29# � 6.53 72.77# � 9.33
6 67.90� 5.84 71.66" � 6.51 67.85� 6.31 68.71� 1.79
7 69.52� 5.98 71.19� 6.22 72.52" � 6.62 72.40" � 7.60
8 79.83� 7.08 79.57� 7.22 69.88# � 6.02 74.10# � 4.15
9 82.30� 7.46 82.44� 7.73 81.36� 7.82 80.74� 7.59

10 99.91� 9.11 99.20� 9.82 99.16� 8.99 98.58� 0.60
11 88.97� 8.70 92.44" � 8.71 86.34� 8.50 91.44" � 6.62
12 95.19� 9.33 95.59� 8.65 96.01� 9.60 91.33# � 2.04
13 79.40� 7.30 81.72" � 7.69 76.51# � 6.79 80.87� 1.32
14 79.17� 7.01 81.08" � 7.89 74.21# � 7.05 72.28# � 2.81
15 75.21� 7.21 80.15" � 7.23 85.79" � 8.44 98.01" � 0.60
16 96.47� 8.79 94.63� 9.07 93.47# � 9.04 94.24� 0.39
17 75.13� 7.21 77.93� 6.86 79.48" � 7.87 74.71� 8.62
18 85.21� 7.11 84.47� 7.64 92.73" � 8.50 89.82" � 5.33
19 66.49� 6.23 66.09� 6.05 64.84� 5.70 60.60# � 1.83
20 19.98� 1.89 18.25� 1.37 86.42" � 7.92 58.88" � 5.70
21 68.21� 6.54 71.89" � 7.17 89.39" � 7.96 88.73" � 3.01
22 75.58� 6.32 81.01" � 7.47 78.85" � 6.90 69.18# � 8.92
23 93.23� 9.18 91.64� 8.29 91.51� 8.51 89.16# � 1.33
Avg 79.98� 16.67 81.02� 16.50 83.46� 10.24 81.61� 11.66
� p 0.039 0.282 0.489
� w=l=d 13=10=0 10=13=0 8=15=0
� s.w=s.l 7=0 8=7 6=10
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7 TABLE 13 Area Under the ROC curve (AUC) of Rulesets with Standard Deviations

APRIORI-SD APRIORI-C RIPPER CN2
# AUC� sd AUC� sd AUC� sd AUC� sd

1 84.14� 2.00 82.11# � 2.01 83.22� 7.80 33.39# � 5.61
2 88.99� 3.05 91.50" � 3.11 90.07" � 8.02 90.74" � 3.57
3 81.15� 2.03 85.96" � 2.03 84.14" � 7.59 84.51" � 0.15
4 90.79� 3.02 90.97� 3.00 88.94# � 7.91 96.22" � 2.55
5 76.94� 4.06 76.25� 4.09 76.34� 7.41 71.33# � 7.86
6 66.48� 1.05 67.18� 1.08 63.27# � 5.69 70.53" � 5.99
7 74.25� 4.25 70.98# � 4.08 66.95# � 6.66 71.99# � 5.76
8 85.13� 2.07 75.47# � 2.09 72.70# � 6.84 74.17# � 5.35
9 84.08� 3.06 78.86# � 3.03 79.58# � 7.82 78.81# � 4.64

10 93.16� 4.00 97.29" � 4.00 96.36" � 9.48 96.22" � 2.31
11 90.09� 2.08 75.58# � 2.04 88.52� 8.28 94.46" � 1.52
12 90.82� 2.00 89.83� 2.01 90.20� 8.99 99.17" � 0.23
13 78.84� 3.10 77.50� 3.12 75.31" � 7.25 83.20# � 8.68
14 72.32� 3.08 77.98" � 3.00 74.30� 6.98 75.06" � 6.13
15 71.69� 3.68 62.90# � 4.02 63.42# � 6.29 97.90" � 0.36
16 96.00� 1.06 94.38� 1.05 88.42# � 8.43 96.88� 1.67
Avg 82.80� 8.70 80.92� 9.95 80.11� 10.23 82.16� 16.81
. p 0.190 0.027 0.871
. w=l=d 6=10=0 4=12=0 11=5=0
. s.w=s.l 4=6 4=7 9/6
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