
Deep Node Ranking for Neuro-symbolic Structural
Node Embedding and Classification

Blaž Škrlj

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Jožef Stefan Int. Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia

Jan Kralj

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Cosylab d.o.o., Ljubljana, Slovenia

Janez Konc

National Institute of Chemistry, Ljubljana, Slovenia

Marko Robnik-Šikonja

Faculty of Computer and Information Science, Ljubljana, Slovenia

Nada Lavrač

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia

Abstract

Network node embedding is an active research subfield of complex network

analysis. This paper contributes a novel approach to learning network node

embeddings and direct node classification using a node ranking scheme coupled

with an autoencoder-based neural network architecture. The main advantages

of the proposed Deep Node Ranking (DNR) algorithm are competitive or better

classification performance, significantly higher learning speed and lower space

requirements when compared to state-of-the-art approaches on 15 real-life node

classification benchmarks. Furthermore, it enables exploration of the relation-

ship between symbolic and the derived sub-symbolic node representations, offer-

ing insights into the learned node space structure. To avoid the space complex-

1blaz.skrlj@ijs.si

Preprint submitted to Journal of LATEX Templates August 31, 2021

ar
X

iv
:1

90
2.

03
96

4v
6

 [
cs

.L
G

]
 3

0
A

ug
 2

02
1

ity bottleneck in a direct node classification setting, DNR computes stationary

distributions of personalized random walks from given nodes in mini-batches,

scaling seamlessly to larger networks. The scaling laws associated with DNR

were also investigated on 1488 synthetic Erdős-Rényi networks, demonstrating

its scalability to tens of millions of links.

Keywords: network node embedding, complex networks, deep learning

1. Introduction

Numerous real-world systems consisting of interconnected entities can be

represented as complex networks. Analysis of such networks provides insights

into the underlying patterns applicable in various practical scenarios, including

the discovery of drug targets, modelling of disease outbreaks, author profiling,

modelling of transportation and the study of social dynamics [1].

Modern machine learning approaches applied to complex networks offer in-

triguing opportunities for developing fast and accurate algorithms that can learn

based on the structural topology of a given network. Recently, approaches based

on network node embedding [2, 3, 4] became prevalent for many common tasks,

such as node classification, edge prediction and unsupervised node clustering

(community detection). Node embedding refers to the process of learning node

representations in a numeric vector format that captures the topological prop-

erties of network nodes [5]. Embeddings are useful, as vector representations

are suitable for conventional machine learning algorithms capable of addressing

the tasks from classification and regression to clustering.

In this work, we propose a new network node embedding and classification

algorithm named Deep Node Ranking (DNR), which combines efficient node

ranking with the non-linear approximation power of deep neural networks. The

developed framework uses deep neural networks to obtain node embeddings di-

rectly from stationary random walk distributions produced by random walkers

with a restart with respect to individual nodes of interest. Compared to existing

methods, DNR is, to our knowledge, one of the first neuro-symbolic node repre-

2

sentation learning algorithms, as it offers joint construction of low-dimensional

latent representations via symbolic (inspectable) node features.

Even though there already exist embedding approaches based on higher-

order random walks [2, 4] (i.e. random walkers with memory), the stationary

distribution of first-order random walkers has not yet been fully explored in

a deep learning setting. Widely used methods such as node2vec and struc2vec

perform well; however, they do not necessarily scale to larger networks and often

require extensive hyperparameter tuning for good performance. Further, these

methods mostly learn representations via rather shallow, single latent layer-

like optimization schemes, potentially missing the abstraction learning power

of deeper neural networks. Finally, in massive networks, not all nodes need to

be accounted for during representation learning – information relevant to repre-

senting a given node can depend on its relation to a small number of key nodes.

We demonstrate that the neuro-symbolic paradigm offers an elegant solution to

this problem via ranking-based pivoting (selection of symbolic features before

deep learning), scaling to networks comprised of tens of millions of links and tens

of thousands of nodes on commodity hardware. This paper also offers ablation

studies of DNR’s scalability on more than 1,400 synthetic networks of different

sizes – this type of analysis is seldom considered in related work.

We showcase the developed algorithm’s capabilities on the challenging prob-

lems of node classification and network visualization, highlighting its ability to

learn and accurately predict node labels at scale. Further, we compiled one of

the largest collections of node classification data sets and used it for empirical

evaluation of the methods. Key contributions of this paper are:

1. A fast network embedding algorithm named Deep Node Ranking (DNR)

based on global personalized node ranks. It performs competitively and

can be used for a multitude of downstream learning tasks, including node

classification, network visualization and similar. The proposed neuro-

symbolic algorithm is also faster than many state-of-the-art embedding

algorithms, and scales better.

3

2. To our knowledge, the proposed node embedding algorithms are for the

first time benchmarked against contemporary approaches on such scale (15

real data sets), as commonly the algorithms are tested only on a handful

of data sets.

3. We conducted an extensive empirical evaluation on 1488 synthetic net-

works to study the effects of node pivoting, for which we hypothesized

that it substantially improves scalability.

4. The proposed DNR performs better than the competition when the la-

belled data is scarce (small percentage of labelled nodes).

The remainder of this work is structured as follows. In Section 2, we shortly

review the related work on neuro-symbolic representation learning, network

node classification and network node ranking. Section 3 presents the proposed

network node embedding algorithm that combines deep neural networks with

network node ranking. In Section 4, we describe the experimental setting and

different non-synthetic complex networks from different domains used in the

evaluation, including the newly composed data sets. The experimental results

are presented in Section 5. In Section 6 we conclude the work and present plans

for further work.

2. Background and related work

This section presents deep and neuro-symbolic learning preliminaries that

describe how algorithms learn from complex networks and what is learned, fol-

lowed by an overview of node ranking algorithms relevant to this work.

2.1. Neuro-symbolic representation learning

We first discuss the branch of methods that exploits the insights from the

fields of deep learning and symbolic learning, which can be referred to as

neuro-symbolic representation learning. This paradigm of learning has been

actively studied for the past twenty years (see [6]); however, it resurged recently

with many works that demonstrated this paradigm’s utility when compared to

4

symbolic/sub-symbolic-only learning. The interest in neuro-symbolic learning,

for example, spiked recently [7] by the development of a neuro-symbolic sys-

tem that partially operates via symbolic and partially via a sub-symbolic space,

used to distil human-understandable concepts from images. The recent work

on closing the loop between recognition (neural) and reasoning (symbolic) [8]

introduced a grammar model as a symbolic prior to bridge neural perception

and symbolic reasoning, alongside a top-down, human-like induction procedure.

This work demonstrated that such a combined approach significantly outper-

forms the conventional reinforcement learning-based baselines. The Microsoft

research division (MSR) recently explored the interplay between visual recog-

nition and reasoning [9]. They introduced a framework to isolate and evaluate

the reasoning aspect of visual question answering separately from its perception,

followed by a calibration procedure that offers an exploration of the relation be-

tween reasoning and perception. Further, a neuro-symbolic approach to logical

deduction was proposed as Neural Logic Machines [10]. This architecture was

shown to have inductive logic learning capabilities, which was demonstrated on

simple tasks such as sorting. Finally, the two recent approaches from the field

of inductive logic programming (ILP) explored the interplay between the logical

input structures and how they perform when associated with neural network-

based learning. The Deep Relational Machines [11] were one of the first ap-

proaches to showcase the utility of combining the two paradigms. Further, the

recent work of Srinivasan et al. [12] explored how Deep Relational Machines can

be explained, emphasizing that being able to explain what a given association

system does is highly relevant in e.g., the field of biomedicine.

In the last years, links between sub-symbolic and logic programming were

also established. For example, the DeepProbLog system [13] demonstrates how

neural predicates could be useful for constructing expressive (and short) pro-

grams for complex tasks such as image-based enumeration. Furthermore, links

between statistical learning and the neuro-symbolic paradigm were also stud-

ied [14]. Finally, recent endeavours in this direction also introduce the notion

of stochasticity as a programming component [15].

5

Albeit being actively explored, the notion of neuro-symbolic representation

learning was, to our knowledge, not yet considered in the context of node rep-

resentation learning, which is the key focus of this work.

2.2. Network node classification

Complex networks, representing real-world phenomena such as financial mar-

kets, transportation, biological interactions or social dynamics [1, 16, 17] often

possess interesting properties such as scale invariance, non-trivial partitioning,

presence of hub nodes, weakly connected components, heavy-tailed node degree

distributions, occurrence of communities, significant motif pattern counts, etc.

[18, 19]. Learning from complex networks considers different aspects of complex

networks, e.g., network structure and node labels, which are used as inputs to

machine learning algorithms to address learning tasks such as link prediction,

node classification, etc.

In this paper we focus on node classification, i.e. the problem of classify-

ing nodes into two or more distinct classes. This task is considered as semi-

supervised learning, given that the whole network is used to obtain representa-

tions of individual nodes, from which the network classification model is learned.

Information propagation algorithms [20] propagate label information via nodes’

neighbors until all nodes are labeled. These algorithms learn in an end-to-end

manner, meaning that no intermediary representation of a network is first ob-

tained and subsequently used for training e.g., a classifier.

Another class of node classification algorithms learns node labels from node

embeddings, i.e. node representations in vector form [21]. Here, the whole net-

work is first transformed into an information-rich, compact low-dimensional rep-

resentation (a dense matrix). This representation serves as an input to plethora

of more general machine learning approaches that can be used for node classi-

fication.

We distinguish between two main branches of embedding-based learning al-

gorithms, discussed next: graph neural networks and random walk-based learn-

ers. Graph Neural Networks (GNNs), introduced in the recent years, attempt

6

to incorporate a given network’s adjacency structure as new neural network

layers. Amongst first such approaches were the Graph Convolutional Networks

(GCNs) [22], their generalization with the attention mechanism [23], and the

more recent isomorphism-based variants with provable properties [24]. Treat-

ing the adjacency structure as a neural network has also shown promising re-

sults [25]. The key characteristic of this branch of methods is their capability to

account for node features by multiplication of the normalized adjacency matrix

as part of a special layer during learning from features. On the other hand, if

node features are not available, which is the case with the majority of freely

available public data sets, more optimized methods focused on structure-based

learning are preferred. For example, the LINE algorithm [26] uses the network’s

eigendecomposition in order to learn a low dimensional network representation,

e.g., a representation of the network’s nodes in 128 dimensions instead of the di-

mension that matches the number of nodes. Approaches that use random walks

to sample the network include DeepWalk [5] and its generalization node2vec

[2]. It was recently proven that DeepWalk, node2vec, and LINE can be refor-

mulated as implicit matrix factorization [27]. Furthermore, approaches such as

struc2vec [4] demonstrated how more complex, multilayer structure can be com-

pressed into node representations for better performance. Despite many promis-

ing approaches developed, a recent extensive evaluation of network embedding

techniques [28] suggests that node2vec [2] remains one of the best embedding

approaches for the task of structural node classification.

2.3. Network node ranking

Node ranking algorithms assess the relevance of a node in a network either

globally (relative to the whole network) or locally (relative to a sub-network) by

assigning a score (i.e. rank) to each node in the network. In this work we only

consider node ranking algorithms that compute a local relevance score of a node

based on its direct neighborhood. The key such node ranking algorithm is the

Personalized PageRank (P-PR) algorithm [29], sometimes referred to as random

walk with restart [30]. Personalized PageRank uses random walks to calculate

7

the relevance of nodes in a network. It obtains the stationary distribution of a

random walk that starts at a given node. The P-PR-based approaches were used

successfully to study cellular networks, social phenomena [31], and many other

real-world networks [32]. Efficient implementation of P-PR algorithms remains

an active research field, for example, the recent bidirectional variation of the

P-PR was introduced to speed up the node ranking process [33]. The obtained

stationary distribution of a random walk can be used directly for network-based

learning tasks, as demonstrated in HINMINE methodology [34].

2.4. Combining node ranking and node representation learning

Exploring the ideas of augmenting learning with ranking was in the recent

years explored in the context of graph neural networks. For example, ranking

was used to prioritize propagation [35] and to scale graph neural networks [36].

A similar idea was exploited by [37], where a more efficient propagation scheme

was proposed by using node ranking. The proposed Deep Node Ranking algo-

rithm is novel with respect to these works, as it exploits both the fast, parallel

personalized node rank computation and the representation learning power of

deep neural networks.

3. Deep Node Ranking

This section presents the Deep Node Ranking (DNR) algorithm for neuro-

symbolic structural network node embedding and end-to-end node classification

(overview shown in Figure 1). The name of the algorithm, Deep Node Ranking,

reflects the two main ideas considered: network node ranking step (symbolic)

and the subsequent deep neural network learning step (neural/sub-symbolic).

In the first step of DNR, personalized node ranks are computed for each node,

resulting in Personalized PageRank with shrinking (P-PRS) vectors. These

vectors are symbolic, as each dimension corresponds to a given node. In the

second step, the P-PRS vectors are considered by a deep neural network con-

sisting of at least a single dense embedding layer of size equal to the predefined

8

embedding dimension. This embedding is sub-symbolic, as one can no longer

interpret the meaning of individual (latent) dimensions. The third, output step,

consists either of an output layer with the number of its neurons equal to the

number of target classes (top) enabling direct classification of nodes or embed-

dings (bottom), which correspond to the embedding layer from Step 2. The

obtained embeddings can be used for downstream machine learning tasks, such

as classification, network visualization, and comparison.

Symbolic Neural{ {

Figure 1: Deep Node Ranking algorithm. The symbolic part of the algorithm computes

personalized PageRank vectors (E), which are subsequently compressed with a neural network

(NN) into either a lower dimensional representation (En), or used for end-to-end classification

(T). Note that the intermediary symbolic P-PRS based representation remains interpretable

(features are nodes).

The DNR algorithm, which takes as input a partially labeled complex net-

work, consists of three steps outlined below.

1. Network node ranking results in learned node representations, obtained

by using the Personalized PageRank with Shrinking (P-PRS) algorithm.

This step results in a matrix of P-PRS vectors of dimension |N |.

2. Representation distillation. A neural network architecture compresses the

prepared personalized PageRank vectors into compact representations (of

dimension d).

3. Output phase. The output of the network can be either node classification,

that is, direct learning of node labels or a collection of low-dimensional

9

node representations.

3.1. Node ranking with the Personalized PageRank with Shrinking algorithm

We first build and upgrade the representation learning idea, introduced in

previous work [34], where node representations are obtained via personalized

node ranking. The following description represents a substantial theoretical

extension of the original idea, which was further parallelized for the first time

in this work. Furthermore, this work introduces node pivoting, which sub-

stantially speeds up the personalized ranking time. We consider a version of

the Personalized PageRank [38] algorithm to which we refer to as Personalized

PageRank with Shrinking (P-PRS) (algorithm 1). This variant of the widely

known PPR algorithm produces node representations (or P-PRS vectors) by

simulating random walks for each node of the input network. Compared to

the network adjacency matrix, P-PRS vectors contain traversal information for

each node, reflecting its ranking based on a node’s position with respect to a

given network’s topology.

10

Algorithm 1: P-PRS: Personalized PageRank with Shrinking
Data: A complex network’s adjacency matrix A, with nodes N and edges E, starting

node u ∈ N

Parameters : damping factor δ, spread step σ, spread percent τ (default 50%),

stopping criterion ε

Result: P-PRSu vector describing stationary distribution of random walker visits with

respect to u ∈ N

1 A ← toRightStochasticMatrix(A); . Transpose and normalize rows of A

2 core vector ← [0, . . . , 0]; . Initialize zero vector of size |N|

3 core vector[u] ← 1; rank vector ← core vector; v ← core vector;

4 steps ← 0; . Shrinking part

5 nz ← 1; . Number of non-zero P-PRS values

6 while nz < |N | · τ ∧ steps < σ do

7 steps← steps + 1;

8 v = v + A · v; . Update transition vector

9 nzn ← nonZero(v); . Identify non-zero values

10 if nzn = nz then

11 shrink ← True;

12 end while;

13 end

14 nz ← nzn;

15 end

16 if shrink then

17 toReduce ← {i; v[i] 6= 0}; . Indices of non-zero entries in vector v

18 core rank ← core rank[toReduce]; rank vector ← rank vector[toReduce];

19 A ← A[toReduce, toReduce]; . Shrink a sparse adjacency matrix

20 end

21 diff ← ∞;

22 steps ← 0; . Node ranking - power iteration

23 while diff > ε ∧ steps < max steps do

24 steps← steps + 1;

25 new rank ← A · rank vector; rank sum ←
∑

i rank vector[i];

26 if rank sum < 1 then

27 new rank ← new rank + start rank · (1− rank sum);

28 end

29 new rank ← δ · new rank + (1− δ) · start rank;

30 diff ← ‖rank vec− new rank‖; . Norm computation

31 rank vec ← new rank;

32 end

33 if shrink then

34 P-PRSu ← [0, . . . , 0]; . Zero vector of dimension |N|

35 P-PRSu[toReduce] ← rank vec;

36 else

37 P-PRSu ← rank vec

38 return P-PRSu;

11

The P-PRS algorithm consists of two main parts:

1. In the first part named the shrinking step (lines 5–20 of Algorithm 1),

in each iteration, the walker spreads from nodes with non-zero PageRank

values to their neighbors.

2. In the second part of the algorithm, named the P-PRS computation step

(lines 23–38 of Algorithm 1), P-PRS vectors corresponding to individual

network nodes are computed using the power iteration method (Eq. 1).

Shrinking step. In the shrinking step we take into account the following:

• If no path exists between node u (the starting node) and node i, the

P-PRS value assigned to node i will be zero.

• The P-PRS values for nodes reachable from u will be equal to P-PRS

values calculated for a reduced network Gu, obtained from the original

network by only accounting for the subset of nodes reachable from u and

connections between them (lines 6–15 in Algorithm 1).

If the network is strongly connected, Gu will be equal to the original network,

yielding no change in performance compared to the original P-PRS algorithm.

However, if the resulting network Gu is smaller, the calculation of P-PRS values

will be faster as they are calculated on Gu instead of on the whole network. In

our implementation, we first estimate if network Gu contains less than 50%

(i.e. spread percentage) of nodes of the whole network (lines 6–14 in Algorithm

1). This is achieved by expanding all possible paths from node i and checking

the number of visited nodes in each step. If the number of visited nodes stops

increasing after a maximum of 15 steps, we know we have found a network

Gu, and we count its nodes. If the number of nodes is still increasing, we

abort the calculation of Gu. We limit the maximum number of steps because

each step of computing Gu is computationally comparable to one step of the

power iteration used in the PageRank algorithm [38] which converges in about

50 steps. Therefore we can considerably reduce the computational load if we

12

limit the number of steps in the search for Gu. Next, in lines 16–20, the P-

PRS algorithm shrinks the personalized rank vectors based on non-zero values

obtained as the result of the shrinking step.

P-PRS computation step. In the second part of the algorithm (lines 23–

38), node ranks are computed using the power iteration (Eq. 1), whose output

consists of P-PRS vectors. An example stationary distribution is shown in

Figure 2 for the Cora network.

Origin node

Figure 2: Stationary distribution, visualized (Cora). The origin node is the large yellow node

pointed from. The upper right part of the network contains nodes that a simulated walker

(from the origin node) likely ends up at (green-colored nodes).

For each node u ∈ V , a feature vector γu (with components γu(i), 1 ≤ i ≤

|N |) is computed by calculating the stationary distribution of a random walk,

starting at node u. The stationary distribution is approximated using power

iteration, where the i-th component γu(i)(k) of approximation γ
(k)
u is computed

in the k + 1-st iteration as follows:

γu(i)(k+1) = α ·
∑
j→i

γu(j)(k)

doutj

+ (1− α) · vu(i); k = 1, 2, . . . (1)

The number of iterations k is increased until the visit distribution converges to

13

the final stationary distribution vector (P-PRS value for node i). In the above

equation, α is the damping factor that corresponds to the probability that a

random walk follows a randomly chosen outgoing edge from the current node

rather than restarting its walk. The summation index j runs over all nodes of

the network that have an outgoing connection towards i, (denoted as j → i

in the sum), and doutj is the out-degree of node dj . Term vu(i) is the restart

distribution that corresponds to a vector of probabilities for a walker’s return

to the starting node u, i.e. vu(u) = 1 and vu(i) = 0 for i 6= u. This vector

guarantees that the walker will jump back to the starting node u in case of

restart.2

In a single iteration (k → k + 1), all stationary distribution vector compo-

nents γu(i), 1 ≤ i ≤ |N |, are updated which result in the P-PRS vector γ
(k+1)
u .

Increasing k thus leads to the γ
(k)
u eventually converging to the PageRank γu of

a random walk starting from node u (see Algorithm 1). Eq. 1 is optimized by

using the power iteration, which is especially suitable for large sparse matrices,

since it does not rely on spatially expensive matrix factorization in order to

obtain the eigenvalue estimates.3

The P-PRS algorithm simulates a first-order random walk in which no past

information is incorporated in the final stationary distribution. The time com-

plexity of the described P-PRS algorithm with shrinking for k iterations is

O(|N |(|E|+ |N |) · k) for the whole network, and O((|E|+ |N |) · k) for a single

node.

3.2. Additional shrinking by rank-based pivoting

We next present an additional step of shrinking explored as part of this

work that offers scaling to very large networks. Recall (Algorithm 1) that the

PageRank iteration, if the network is reduced, operates on the smaller adjacency

2If the binary vector was composed exclusively of ones, the iteration would compute the

global PageRank vector, and Eq. 1 would reduce to the standard PageRank iteration.
3The power iteration (Eq. 1) converges exponentially, that is, the error is proportional to

αk, where α is the damping factor and k is the iteration number.

14

matrix indexed via the set of nodes toReduce. This step, as offered in the

Algorithm 1, prunes out the nodes unreachable via traversal from the current

node. This step preserves the computed vectors’ properties, however, it does

not guarantee asymptotically faster computation and is largely dependent on

a given network’s structure. For DNR to scale to very large networks, a more

lossy selection scheme can be adopted. Recall the toReduce, the set of nodes

that define the final set of iterations that yield a given node’s P-PRS-based

representation. The idea discussed next defines the set toReduce upfront; the

size of this set is parametrized with an integer value p (number of pivot nodes).

Members of this set are obtained as follows. We hypothesize that two main

types of pivot nodes need to be preserved in toReduce; namely, the nodes local

to the node of interest, but also global nodes (via their relation to the node

of interest). To address both concerns, we first define a given target node u’s

neighbors as Ne(u). Next, we define with argSortDes(PR(G)) the set of initial

nodes, sorted by their PageRank values in descending order. Note that this

step takes only O(|N | log |N | + |E|) steps, and as such, scales to very large

networks. The final set of toReduce is constructed by first including all nodes

from the neighborhood, followed by the global nodes which are not already in

the neighborhood until the set is of cardinality p. We can formally define the

set of toReduceu pivot nodes as the first p nodes of the ordered union of the

neighborhood and the top-ranked nodes, i.e.

Tu = {a ∈ Ne(u), b ∈ argSortDes(PR(G)) \Ne(u)}

toReduceu = {Tu1 , Tu2 , . . . , Tup }.

Here, Tu is the ordered union set (combined ordered sets), and Tui the i-th

element of that set (obtained with respect to node u). This heuristic selection

of pivot nodes implies local neighborhood for low values of p, and mixed neigh-

borhood for larger p values. The computed (symbolic) node representations are

used as inputs to the subsequent step of (neural) representation compression.

The advantage of the deep neural network architecture discussed in the fol-

lowing section is that it can learn incrementally, from small batches of calculated

15

P-PRS vectors. In contrast, the previously developed HINMINE approach [34]

requires that all P-PRS vectors are calculated prior to learning, which is due

to HINMINE using the k-nearest neighbors and support vector machine classi-

fiers. This incurs substantial space requirements as the P-PRS vectors for the

entire network require O(|N |2) space. The DNR algorithm presented here uses

a deep neural network instead, which can take as small input batches of P-PRS

vectors. Therefore, only a small percentage of vectors need to be computed be-

fore the second step of the algorithm(neural network training) can begin. This

results in improved space and time complexities of the learning process.

3.3. Node representation learning

In this section we address the second step of Deep Node Ranking algorithm

(outlined in Figure 1) – the incremental compression of batches of personal-

ized PageRank vectors via neural network learning. We next discuss the key

formalisms used to describe the two types of learning implemented as part of

DNR. We can formalize the key idea underlying DNR as the following mapping

DNR : R|N |×|N |︸ ︷︷ ︸
Adjacency matrix

P-PRS−−−−→ [0, 1]|N |×|N |︸ ︷︷ ︸
P-PRS vectors

NNf−−−→ R|N |×d︸ ︷︷ ︸
Node embeddings

,

where d represents a latent dimension, N the set of nodes and DNR the mapping

approximated by the proposed approach. Note how the second space consists

of visit probabilities with respect to individual nodes. We will next focus on the

two mapping methods displayed in the scheme above; P-PRS and NNf .

The first mapping (P-PRS) takes as input the network adjacency matrix

and, if executed for each node, outputs the same dimensional matrix which

contains richer, walk convergence-based information describing individual nodes

(instead of only their neighbors). The initial adjacency can be stored as a sparse

data structure, requiring only O(|E|) space. However, the probability matrix

is commonly dense (with the exception of nodes in different components, for

example), O(|N |2) space can already pose a problem to the method’s utility. To

address this concern, we can consider batches of nodes (b) from the first mapping

16

onwards, potentially at no point requiring the full dense O(|N |2) matrix. The

first mapping adheres to this implementation due to the fact that with respect

to individual nodes, P-PRS vectors can be obtained independently. We denote

with P-PRSb a produced batch of such vectors. The union of all such batches

(forming the set B) can be used to construct the whole probability matrix, i.e.

[0, 1]|N |×|N | =

∣∣∣∣
b∈B

P-PRSb(A), (2)

where A represents the adjacency matrix and |b the concatenation alongside

the first axis. Here, we assume the batches preserve the order of input nodes.

The same property holds for transforming the b× |N |-dimensional vectors into

b × d dimensional ones with a trained neural network NNb
f . Similarly to the

E.q. 2, the final matrix can be written as

R|N |×d =

∣∣∣∣
b∈B

NNb
f (P-PRSb(A)).

The two equations above assume projection-ready mapping methods (NNf

and P-PRS). The probability vector computation P-PRS indeed requires no

additional training. However, this is not the case for the neural network NN.

Note that we denoted with NNf only the forward pass up to the hidden layer

with d outputs – the embedding. To describe the whole process, the missing

point remains the neural network training. Denoted with NN, we represent a

single epoch (forward and backward pass) of training the neural network (for

all nodes). If we denote with ω the number of epochs required to train either an

autoencoder-like, or an end-to-end architecture (d is in this case the number of

classes), DNR requires O(ω · (NN+ |N |(|E|+ |N |)) operations. Furthermore, if

the whole probability matrix fits into memory, the second product is decoupled,

making the full probability matrix computed only once, resulting in complex-

ity O(ω ·NN + |N |(|E| + |N |)). The initial complexity which re-computes the

rank vectors for each batch (b) has, compared to the pre-computed rank matrix

version lower space complexity, i.e. O(b·|N |) << O(|N |2). This analysis demon-

strates that for larger networks, additional computation needs to be performed

in order to maintain the DNR’s space complexity. Finally, the node pivoting

17

scheme similarly reduces the space complexity of the rank matrix computation

from O(|N |2) to O(|N | · p) (p is the number of pivot nodes). Similarly, the time

complexity reduces linearly (|N | → p) for the ranking step. Hence, the pivoting

scheme was hypothesized to improve both space and time-related performances

substantially. Having discussed the coupled and the de-coupled (memoization)

variants of DNR, it is apparent that the low space version will take much longer

to compute compared to the memory-intensive version. To fine-tune this to a

given hardware setting, DNR is able to estimate the approximate RAM utiliza-

tion by assuming 32-bit floating point precision and takes as hyperparameter

an integer number denoting the upper RAM bound. Should this bound be ex-

ceeded, the memory-efficient version is considered, and the faster one otherwise.

In this work, we set this bound to 16GB.

3.4. DNRNet: A neural network architecture

In the previous section, a description of the core feature construction process

based on personalized node ranking was described alongside its time and space

complexities. We next discuss in more detail the considered neural network

architecture and the training regime, which is also a contribution of this work.

We are interested in compressing the P-PRS-based representation (Equa-

tion 2) we henceforth refer to as P . The goal of the designed neural network is to

compress this representation from dimension |N | to d, in unsupervised manner.

To achieve this compression, we implemented an autoencoder-like architecture

18

with a forward pass defined as follows (note the indexing).

li = Dropout(ELU(Wd
T · P + bi))

h1 = ELU(Wd1
T · li + bh1)

. . . Initial embedding order

hk = ELU(Wdk
T · hk−1 + bhk)

r1 = ELU(Wdk
T · li + br1)

. . . Reversed embedding order

rk = ELU(Wd1
T · rk−1 + brk)

lo = Wo
T (

1

2
· rk ⊕ hk).

The first part of the architecture projects and activates the input probabilities

(P) to a lower dimension (d). The ELU activation is defined as

ELU(x) =

x;x > 0

α · (ex − 1);x ≤ 0

.

The parameter α was set to 1 throughout this work. The inner part of the

architecture consists of multiple same-dimensional (d) layers, which refine the

representation. The final layer projects the refined representation back to the

initial dimension (|N |). The key component is the regularization (dropout)

prior to the embedding layers, as it notably improved the architecture’s stability

during design. The loss function used is the Smooth L1 Loss defined as:

Ln =


1
2 · (xn − yn)2/β; |xn − yn| < β

|xn − yn| − 1
2 · β; otherwise

Here, xn represents the prediction, yn the actual value and β a parameter (set

to 1.0 in this work). The loss is averaged on the batch level. The key novelty

of the proposed neural network-based compression is not the architecture but

the way forward passes are conducted. We impose an additional constraint on

19

the intermediary representations by implementing the forward pass so that it

includes multiplication in both ways across the hidden layers (note the shared

parameters – there is no weight duplication). This means that each forward pass

incorporates a scenario where the first hidden layer is first, but also last in the

forward pass (inverted latent space); with this, we enforce reverse consistency,

as all intermediary representations are used to obtain the final embedding. This

is possible due to the symmetric nature of the activation-dense layers – inverting

the order during the forward pass amplifies the effect of different hidden layers

with the same type of output. The ⊕ denotes the Hadamard summation (ele-

mentwise). Note that such inverse projections during the same forward pass are

possible because the dimensionalities of the intermediary representations are all

the same (d). A schematic overview of this idea is shown in Figure 3.

Input

Forward pass:
both directions across

 the latent space

Input

Aggregation

Color: order

Figure 3: The forward pass with the inclusion of reversed latent spaces.

Lastly, we discuss how the final representations (node embeddings) are ob-

tained. Recall that h1, . . . , hk represent the outputs of the intermediary em-

bedding layers. The final node representations (E) are obtained by performing

Hadamard summation across these intermediary representations and dividing

with the number of hidden outputs, i.e.,

E = k−1 ·
⊕
i

hi.

Schematic overview of this process is shown in Figure 4. The main reason

20

such multi-space aggregation is conducted is that the information used for re-

constructing the origin rank space is likely distributed across all hidden layers,

implying that by considering, e.g., only the last layer, valuable parts of the final

representation could be lost. This idea was inspired by how representations are

obtained from contextual language models [39].

Intermediary

representations

Final representation

Symbolic representation

Figure 4: DNRNet’s representation construction process. The final representation (E) is

obtained as an aggregate of all relevant intermediary layers.

4. Data sets and experimental setting

This section first describes the data sets used, the experimental setting and

the DNR implementations tested together with their hyperparameters, followed

by a description of the compared baseline approaches.

4.1. Data sets

We evaluated the proposed approach on 15 real-world complex networks,

three of them introduced in this work, which is one of the largest collections

of complex networks for the task of node classification. The Homo Sapiens

(proteome) [40], POS tags [41] and Blogspot data sets [42] are used in the same

form as in [2].

The Homo sapiens data set represents a subset of the human proteome,

i.e. a set of interacting proteins. The sub-network consists of all proteins for

21

which biological states are known [43]. The goal is to predict protein func-

tion annotations. The POS data set represents part-of-speech tags obtained

from Wikipedia—a co-occurrence network of words appearing in the first mil-

lion bytes of the Wikipedia dump [41]. Thus, different POS tags are predicted.

The Blogspot data set represents a social network of bloggers (Blogspot web-

site) [42]. The labels represent bloggers’ interests inferred through the metadata

provided by the bloggers. The CiteSeer citation network consists of scientific

publications classified into one of the six classes (categories) [44]. The Cora

citation network consists of scientific publications classified into one of seven

classes (categories) [44]. The E-commerce network is a heterogeneous network

connecting buyers with different products. As DNR and the compared base-

line algorithms operate on homogeneous networks, the E-commerce network

was transformed to a homogeneous network prior to learning using a term fre-

quency weighting scheme [34]. The created edges represent mutual purchases of

two persons, i.e. two customers are connected if they purchased an item from

the same item category. We refer the interested reader to [34] for a detailed

description of the data set and its transformation to a homogeneous network.

The two-class values being predicted correspond to the buyers’ gender. The

film, squirrel,chameleon, wisconsin, texas and cornell data sets are based on a

recent study about geometric deep learning [45]. Given that some of the data

sets have features, and the purpose of this paper is structure-only learning, in-

stead of neglecting the feature spaces, we converted them into weights between

nodes as follows. If the cardinality of the feature spaces of a given node was

the same for all nodes, we computed the weights as inverse Euclidean distances

with one added to the denominator (similarities). If the features were sets, we

computed the weights as cardinalities of the intersection sets between pairs of

nodes.

One of the contributions of this work is also three novel node classification

data sets, which we constructed as follows. Two data sets are related to Bitcoin

trades [46]. The two networks correspond to transactions within two different

platforms, namely Bitcoin OTC and Bitcoin Alpha. Each edge in this network

22

represents a transaction along with an integer score denoting trust in the range

[−10, 10] (zero-valued entries are not possible). We reformulate this as a classi-

fication problem by collecting the trust values associated with individual nodes

and considering them as target classes. The resulting integer values can thus

belong to one of the 20 possible classes. Note that more than a single class is

possible for an individual node, as we did not attempt to aggregate trust scores

for individual nodes.

The ions data set is based on the recently introduced protein-ion binding site

similarity network [47]. The network was constructed by structural alignment

using the ProBiS family of algorithms [48, 49, 50] where all known protein-ion

binding sites were considered. The obtained network was pruned for structural

redundancy as described in [47]. Each node corresponds to one of 12 possible

ions, and each weighted connection corresponds to the ion-binding site similarity

between the two considered binding sites. Overall, this is to date one of the

largest collections of structure-only node classification benchmark data sets.

The considered data sets are summarized in Table 1. In the table, CC de-

notes the number of connected components. The clustering coefficient measures

how nodes in a graph tend to cluster together and is computed as the ratio

between the number of closed triplets and the number of all triplets. The net-

work density is computed as the number of actual connections divided by all

possible connections. The mean degree corresponds to the average number of

connections of a node. Links to data sets, along with other material presented

in this paper, are discussed in Section 7.

Furthermore, to test the DNR’s scalability, we created 1488 Erdős-Rényi

networks in node range from 2,500 to 35,000 in the increments of 1,000 with

different seeds and the probability parameter set to 0.05 (sparser networks).

4.2. Experimental setting

In this section, we describe the experimental setting used to evaluate the

proposed method against the existing baselines.

There are two main evaluation aspects relevant to this paper; investigating

23

Table 1: Networks used in this study and their basic statistics.

Name #Classes #Nodes #Edges Mean deg CC CCoef Density

cornell 4 183 280 3.06 1 0.17 0.0168

texas 4 183 295 3.22 1 0.20 0.0177

wisconsin 4 251 466 3.71 1 0.21 0.0149

ions 12 1969 16092 16.35 326 0.53 0.0083

chameleon 4 2277 31421 27.60 1 0.48 0.0121

cora 7 2708 5278 3.90 78 0.24 0.0014

citeseer 6 3327 4676 2.81 438 0.14 0.0008

Bitcoin alpha 20 3783 14124 7.47 5 0.18 0.0020

Homo sapiens 50 3890 38739 19.92 35 0.15 0.0051

POS 40 4777 92517 38.73 1 0.54 0.0081

squirrel 4 5201 198493 76.33 1 0.42 0.0147

Bitcoin 20 5881 21492 7.31 4 0.18 0.0012

film 4 7600 14056 3.70 1975 0.04 0.0005

Blogspot 39 10312 333983 64.78 1 0.46 0.0063

ecommerce tf 2 29999 178608 11.91 8304 0.48 0.0004

the quantitative performance of embeddings on a given downstream task and

computation time. To assess the classification performance, we use the same

evaluation scheme as in related work on node classification [26, 2, 5, 51]. Here, as

all methods for node embedding construction are unsupervised, an embedding

is first constructed and used as input to a logistic regression-based classification

scheme suitable for multiclass and multilabel classification tasks.

We repeated the classification experiments five times and averaged the re-

sults to obtain stable performance estimates with corresponding variabilities.

The performance of trained classifiers was evaluated by using micro and macro

F1 scores, as these two measures are used in the majority of related node clas-

sification studies [26, 2, 5, 51].

Due to many classifier comparisons, we utilize the Friedman test with Ne-

menyi post hoc correction to compute the statistical significance of the differ-

ences. The results are visualized as critical difference diagrams, where average

24

ranks of individual algorithms according to scores across all data set splits are

presented [52]. The selected algorithms are also compared via Bayesian hierar-

chical t-test [53] with a prior value of ρ = 0.8 and rope region value set to 2%.

All experiment repetitions were used for posterior sampling.

All experiments were conducted on a machine with 64GB RAM, 6 core

Intel(R) Core(TM) i7-6800K CPU @ 3.40GH with a Nvidia 1080 GTX GPU.

As the maximum amount of RAM available for all approaches was 64GB, the

run is marked as unsuccessful, should this amount be exceeded. Further, we gave

each algorithm at most five hours for learning the embeddings and subsequent

classification. We selected these constraints as the networks used are of medium

size, and if a given method cannot work on these networks, it will not scale

to larger networks; e.g., social networks with millions of nodes and tens of

millions, or even billions of edges without substantial adaptation of the method.

The unsuccessful runs were replaced with a random embedding. Node ranking

was implemented by using sparse matrices from the SciPy module [54] and the

PyTorch library [55].

4.3. DNR implementations

We implemented the following variants of DNR, each emphasizing a different

aspect of the algorithm.

The DNR represents a default DNR implementation with no node pivoting,

two hidden layers, trained for at most 100 epochs with the stopping criterion

of five epochs. The learning rate was set to 0.01 and adaptively decreased

throughout the training. The upper memory bound was set to 16GB, meaning

that networks that would require more space would be computed incrementally,

on the fly, reducing the space but increasing the computation time. The latent

dimension was for this and all other embedding-based methods set to 128 (as

also seen in related work). The DNR4 architecture includes four hidden layers

instead of two, and DNR8 eight hidden layers. The DNRPH is a DNR variant

with the pivoting node number set to |N |/2. The DNRPQ to |N | · 0.75 and

DNRPM to
√
|N |. All pivot number estimates were rounded to the nearest

25

integer. Finally, we implemented the symbolic-only learner we refer to as DNR-

symbolic, which outputs the Es ∈ |N |2 matrix of personalized rank vectors

(symbolic part of full DNR).

The P-PRS algorithm parameters (constant throughout all experiments)

were set as follows. ε, the error bound, which specifies the end of an itera-

tion, was set to 10−6. Max steps, the number of maximum steps allowed during

one iteration was set to 100,000 steps. Damping factor; the probability that a

random walker continues at a given step was set to 0.5. Spread step, the number

of iteration steps allowed for the shrinking part was set to 10. Spread percent,

the maximum percentage of the network to be explored during shrinking was

set to 50%.

4.4. The baseline approaches

We tested the proposed approach against different baselines outlined below.

The baselines were selected as they are currently considered as either very weak

(random) or strong (node2vec, struc2vec). All approaches apart from label

propagation are node embedding algorithms. For label propagation, the same

data splits were used for classification evaluation as for the logistic regression

when considering embedding-based learning.

• node2vec [2]. This algorithm maximizes the likelihood of preserving net-

work neighborhoods of nodes. This is achieved via biased random walk

sampling. This algorithm is considered a strong baseline for structure-only

learning.

• struc2vec [4]. This algorithm uses a hierarchy-like structure to measure

node similarity at different scales and constructs a multilayer graph to

encode structural similarities and generate structural context for nodes.

It remains one of the key approaches capable of including information on

structural similarity.

• Label Propagation (LP) [56]. Label propagation is a well-known al-

gorithm for node classification. It operates by incrementally sending in-

26

formation from the neighboring nodes to the unlabeled nodes, eventually

reaching an equilibrium and yielding the final set of predictions for the

masked part of the network.

• GraphWave [57] is a method that represents each node’s local network

neighborhood via a low-dimensional embedding by leveraging spectral

graph wavelet diffusion patterns. This is one of the more scalable methods

considered in this work.4

• Graph Neural Networks (GAT and GCN) [23]. We trained the mod-

els with the stopping criterion of 100 epochs for up to 1000 epochs. Due

to unstable performance, we report the best performance (epoch scoring

best). Further, as GATs were not initially implemented for multilabel clas-

sification, we extended them, so they minimize binary cross-entropy and

output a sigmoid-activated space with the same dimension as the number

of targets (the multiclass version does not work for such problems). As

this branch of models operates with additional features assigned to nodes,

and the considered benchmark data sets do not possess such features, we

used the identity matrix of the adjacency matrix as the feature space,

thus expecting sub-optimal performance. This Algorithm was shown to

outperform other variants of graph neural networks such as the GCNs [22]

which were also considered under the same training regime.

• Random baseline which is a random float matrix ∈ [0, 1]|N |×d. The

PyTorch-Geometric library was used for the two baselines [58]

For all baselines, suggested default hyperparameter settings were used (either

taken from papers or from the codebases). Similarly, default configurations

of DNR variants were used to ensure fair comparisons (no additional hyper-

parameter optimization was conducted across data sets). Thus, we evaluated

4Python 3 implementation used: https://github.com/benedekrozemberczki/

GraphWaveMachine

27

https://github.com/benedekrozemberczki/GraphWaveMachine
https://github.com/benedekrozemberczki/GraphWaveMachine

out-of-the-box performance – additional hyperparameter tunning could signifi-

cantly increase the training time and render some of the methods inapplicable

even at the mid-scale networks considered in this work.

5. Results

In this section, we present the empirical results and discuss their qualitative

as well as quantitative aspects. We first present the results for the node classifi-

cation task, followed by a qualitative evaluation of the proposed DNR algorithm

for the task of node visualization.

5.1. Classification performance

We first present the results of classification experiments. In Figure 5 the

reader can observe the critical difference plots of micro and macro F1 scores

aggregated across all data sets. It can be observed that similar algorithms dom-

inate with respect to both scores; node2vec, DNR, DNR-symbolic and label

propagation are amongst the best-performing ones. The differences between

the best performers are insignificant, as demonstrated via statistical analy-

sis (CD diagrams) [52]. Next, GraphWave and DNRPM underperform w.r.t.

macro F1 (Figure 6). This observation could be due to multiple factors, ranging

from GraphWave’s hyperparameter sensitivity, poor performance on small net-

works (too much information is lost) or similar. Amongst the best performing

algorithms are either the default DNR variant with two hidden layers, DNR-

symbolic or node2vec. The DNR variant implementing a deeper neural network

(DNR8) performed worse than the more shallow versions, indicating overfitting

(highly likely especially for smaller networks). The DNRPM variant, which uses

a substantially reduced version of the adjacency matrix for rank computation,

performed better than random when considering micro F1. However, it was

overall amongst the worst performing variants of DNR. The DNRPQ variant

performed better, indicating that node pruning can have a substantial impact

on the final representation – too low values of p indicate detrimental effects on

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DNR-symbolic

DNR

node2vec

DNR4

DNR8

GCN

LP

Random

struc2vec

DNRPH

DNRPM

GraphWave

DNRPQ

GAT

DNR-e2e

(a) Critical differences – micro F1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

node2vec

DNR

DNR-symbolic

LP

DNRPQ

GCN

DNR4

DNRPM

GraphWave

Random

DNR8

GAT

DNRPH

DNR-e2e

struc2vec

(b) Critical differences – macro F1.

Figure 5: Overview of classification performance – critical difference diagrams.

the final performance. The end-to-end variant of DNR performed competitively

w.r.t. micro F1; however, it performed worse when considering macro F1. This

result indicates over-fitting, but also the method’s potential sensitivity to the

classification of nodes in smaller networks (see the appendix materials for de-

tailed scores on smaller networks). Note that the proposed end-to-end DNR

out-performed the two GNN baselines. Current results indicate that structure-

only learning is harder for GCN and GAT-based models – either due to higher

possibility of overfitting or due to space complexity which arises if consider-

29

G
C

N

R
an

do
m

D
N

R
PM

st
ru

c2
ve

c

D
N

R
PH

G
ra

ph
W

av
e

D
N

R
PQ LP

D
N

R
-e

2e

D
N

R
8

D
N

R
4

D
N

R

no
de

2v
ec

G
AT

D
N

R
-s

ym
bo

lic

Algorithm

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
M

ic
ro

 F
1

(a) Box plots – micro F1.

D
N

R
PM

G
ra

ph
W

av
e

R
an

do
m

D
N

R
PH

G
C

N

st
ru

c2
ve

c

D
N

R
8

D
N

R
PQ

D
N

R
-e

2e

D
N

R
4 LP

G
AT

D
N

R
-s

ym
bo

lic

D
N

R

no
de

2v
ec

Algorithm

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

M
ac

ro
 F

1

(b) Box plots – macro F1.

Figure 6: Micro and macro F1 performance distributions for considered algorithms.

ing the the attention-based architecture. The results indicate that the neural

network in neuro-symbolic DNR variants, as expected, acts as a compression

layer, losing some of the expressive power of the origin rank space at the cost

of being more efficient space-wise. Bayesian comparison of default DNR with

node2vec and struc2vec confirms the results obtained via frequentist analysis

and is shown in Figure 7. The numbers denote the posterior probability esti-

mates (higher is better). Note the insignificant difference between DNR and

node2vec (most of the density is in the rope region), but the significant differ-

ence (as also confirmed via frequentist analysis) between DNR and struc2vec.

Overall, the Bayesian analysis confirms the findings supported by the classical

analysis.

5.2. Execution time analysis

Overview of the execution times is shown in Figure 8. We present overall

execution times followed by the per-dataset execution times.

30

p(DNR (0.0))

p(ROPE)

p(node2vec (0.13))

(a) DNR and node2vec.

p(DNR (0.99))

p(ROPE)

p(struc2vec (0.0))

(b) DNR and struc2vec.

Figure 7: Bayesian comparison of selected algorithm pairs.

LP
R

an
do

m
D

N
R

PM
D

N
R

-s
ym

bo
lic

G
C

N
D

N
R

-e
2e

D
N

R
4

D
N

R
8

D
N

R
D

N
R

PH
G

ra
ph

W
av

e
D

N
R

PQ G
AT

no
de

2v
ec

st
ru

c2
ve

c

Algorithm

100

101

102

103

104

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

)

(a) Execution time.

co
rn

el
l

w
is

co
ns

in
te

xa
s

co
ra

ci
te

se
er

B
itc

oi
nA

lp
ha

ch
am

el
eo

n
B

itc
oi

n
H

om
oS

ap
ie

ns
io

ns
PO

S
sq

ui
rr

el
fil

m
B

lo
gs

po
t

ec
om

m
er

ce
TF

Data set

101

102

103

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(s

)

(b) Time per data set.

Figure 8: Execution time analysis. The proposed DNR algorithm performs substantially faster

than struc2vec and node2vec.

It can be observed that the fastest DNR variants perform up to two orders

of magnitude faster than, e.g., struc2vec and node2vec. Given that, e.g., DNR

offers very similar performance, this result serves as a strong case for using

DNR-based embeddings, especially on larger networks. Further, note that the

execution time includes both embedding construction and classification, render-

ing the random baseline slower than label propagation (logistic regression is the

bottleneck in this case).

31

5.3. Number of pivot nodes and scalability

We finally present the results on synthetic Erdős-Rényi networks, where the

effect of the number of pivot nodes on the execution time was studied. The

main result is shown in Figure 9. The result indicates that the number of

pivot nodes can reduce the execution time by more than an order of magnitude

– with no pivoting nodes, DNR’s execution time increases observably faster.

More detailed results displaying the dependence with the node and link numbers

are shown in subfigures 9a and 9b. The complexity, if considering pivoting,

remains linear with respect to the number of nodes (constant d = p instead

of d = |N | in the symbolic step of DNR). Without pivoting, the complexity

increases substantially, which is problematic for larger networks. Consistent

5000 10000 15000 20000 25000 30000

|N|

0

200

400

600

800

1000

1200

1400

tim
e

(s
)

pivot
16
32
64
128
256
512
1024
None

(a) Time w.r.t. |N |.

0.0 0.5 1.0 1.5 2.0 2.5

|E| 1e7

0

250

500

750

1000

1250

1500

1750

tim
e

(s
)

pivot
16
32
64
128
256
512
1024
None

(b) Time w.r.t. |E|.

Figure 9: Execution time with respect to the number of pivot nodes. Smaller number of pivot

nodes induces substantially faster execution times.

improvement with respect to the number of pivot nodes was observed – the lower

the pivot number, the faster the overall process. This observation confirms our

theoretical analysis which indicated that substantial improvements could be

observed, especially for larger networks. The results indicate that for larger

networks comprised of tens of millions of edges, the pivoting-based solutions

could offer more than an order of magnitude faster embedding construction. For

completion, tabular results summarised in this section are available as Appendix

A.

32

5.4. Performance in a low-data regime

One of the main limitations of many existing node classification algorithms is

their performance when only a small portion of a given network is labelled. We

next present the DNR’s behaviour when considering only 10% of the labelled

data in Figure 10. The experiment indicates that two of the DNR variants

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DNR-symbolic

DNR

node2vec

DNR4

DNR8

LP

DNR-e2e

Random

struc2vec

GAT

DNRPH

DNRPM

DNRPQ

GCN

GraphWave

Figure 10: Micro F1 performance when the labelled data is scarce (10%)

perform well when only a relatively few labelled data are available. This result

potentially indicates the link between using a symbolic (global) rank space in-

stead of using the more local, sampled walks, indicating that neuro-symbolic

node representation learning has exciting potential for low-resource learning.

Note that for larger data sets, this amount of labelled nodes can already be

at the limit of what can be learned on a given commodity hardware setup,

rendering DNR relevant for larger data sets.

5.5. Network visualization

We next demonstrate how DNR’s results can be compressed to two dimen-

sions with UMAP [59] to visualize a given network. By considering ten nearest

neighbors with the minimum distance parameter set to 0.5, we obtained the

visualization (colored by node labels) as shown in Figure 11.

The visualization shows distinct clustering patterns which to some extent

also correspond to the label space (colors). Note that this representation was

33

(a) DNR. (b) DNR (8 hidden). (c) Random embedding.

Figure 11: Embedding visualization with overlaid labels (Cora). The random embedding is

added as a reference of a non-structure-preserving projection visualization.

obtained in unsupervised manner, hence some variability with respect to label-

position assignment is expected. A prominent use for this type of visualizations

is when inspection of potentially interesting, structurally similar units is inves-

tigated via overlay of additional information. This visualization was, alongside

the embedding to 2D, computed in a matter of seconds.

5.6. Comparing symbolic and subsymbolic representations

The proposed DNR’s neuro-symbolic capabilities render it open for explo-

ration of all intermediary representations and the relations between them. For

the Cora network, we first computed node representations with DNR-symbolic

(d = |N |) and DNR (d = 128) and investigated the distances between repre-

sentations of individual nodes. For each node representation, we computed the

cosine distance and normalized all values in the matrix by subtracting the min-

imum and dividing with the difference between the maximum and minimum to

ensure a more fair comparison with respect to the distance bias for individual

representations. The result is shown in Figure 12. We observe the following.

The symbolic representation comparison matrix (a) mostly consists of entries

indicating very high distances between a given embedding pair (intense red color

=⇒ higher distance). This observation indicates that representations in high

dimensional spaces (in this case d = |N |) are far apart. The exceptions (similar

nodes) are in the upper left part (blue). On the contrary, many more nodes

are closer if we consider the more compact node representations obtained via

34

(a) DNR-symbolic (d = |N |). (b) DNR (d = 128). (c) abs(DNR-symbolic− DNR).

Figure 12: Representation space comparison. Each cell in (a) and (b) represents cosine dis-

tance between a given embedding pair. Cells in (c) represent the absolute difference values.

The rows and columns correspond to the same nodes for all three sub-figures. Red represents

high values and blue low ones.

the DNR algorithm (b). This result indicates that the neural network com-

presses the space (as expected), yielding fewer node representations that are

distant from the others (red strips in the matrix). The final representation (c)

represents the difference between the representations – blue color in this case

represents similar representations. The reader can observe that distant node

representations obtained by DNR are relatively close to the ones obtained by

DNR-symbolic (blue horizontal and vertical strips). The red squares in the

upper left part, however, indicate node similarities that were not amplified by

DNR-symbolic, but with DNR. This type of ablation is possible only for neuro-

symbolic representation learners, and is to our knowledge one of the first of its

kind for the considered task.

6. Discussion and conclusions

In this work, we presented Deep Node Ranking, a methodology for scalable

neuro-symbolic node embedding and direct end-to-end classification based on a

given network’s structure. In extensive empirical evaluation, we demonstrated

DNR’s competitive performance and superior scalability on multiple real-life

and synthetic benchmark problems.

35

The proposed methodology offers one of the first neuro-symbolic node rep-

resentation learners – the initial node features that are interpretable are com-

pressed with a novel neural network architecture (DNRNet). Albeit the re-

sulting representations are latent and non-interpretable to a human, the input

to obtaining such a representation can be manipulated in a symbolic manner

(e.g., effects of node removal), offering a simple-to-use testbed for investigating

the effects of different structural interventions on a given network. Extensive

empirical evaluation indicates that symbolic features are highly competitive.

However, they could be impractical to compute, rendering the proposed neuro-

symbolic variant of DNR highly useful for many contemporary network-based

learning tasks. Furthermore, DNRNet performs well in low-data regimes, which

was an interesting finding – we expected that the symbolic-only variant would

dominate in such settings.

We demonstrated that neuro-symbolic approaches could scale better than

purely subsymbolic ones (e.g., node2vec or struc2vec), indicating that not all

interpretability is necessarily sacrificed for good performance. We demonstrated

that out-of-the-box DNR implementation performs competitively and in terms

of micro F1 better than state-of-the-art, and further, it offers at least an order

of magnitude speedup. By introducing the concept of node pivoting, we demon-

strate that DNR can scale to very large networks with tens of millions of links

– a scale where other considered methods do not operate well without special-

ized hardware. We confirmed the findings related to algorithms’ performance

with frequentist and Bayesian analysis. As Bayesian analysis was previously not

conducted in such evaluation settings, we believe further work which will inves-

tigate the suitability (and scalability) of this branch of tests for network-related

tasks is an interesting research direction.

In terms of further work related to the proposed algorithm, we see the fol-

lowing main directions. First, the effects of studying different pivoting schemes

could offer better trade-offs between efficiency and performance. Next, by con-

sidering GPU-based implementations of the power iteration considered for com-

puting the stationary random walk distributions, we believe additional speedups

36

could be observed. Neuro-symbolic node ranking offers the direct study of the

effects of perturbing specific, e.g., nodes and observing the properties of the

resulting low-dimensional representations. Such structural interventions poten-

tially offer a more native explanation mechanism compared to post-hoc approxi-

mation schemes considered in contemporary machine learning. Finally, we plan

to explore the scalability of DNR across multiple machines by sharing the in-

put network and performing the rankings only locally. Such implementation

could scale to much larger networks than considered by current state-of-the-art

approaches.

Finally, this work demonstrates that deeper neural networks are suitable

models for structure-only learning, albeit, as shown, in a neuro-symbolic setting.

Current results indicate that deeper neural networks are possible and potentially

offer superior performance (unless overfitting takes place). A promising direc-

tion that would offer additional improvements is also the automatic development

of neural network architectures via neuroevolution.

7. Availability

The DNR and the datasets allowed to be shared w.r.t. their licenses will be

freely accessible at https://github.com/SkBlaz/DNR.

Acknowledgments

The work of the first author was funded by the Slovenian Research Agency

through a young researcher grant (BŠ). The work of other authors was sup-

ported by the Slovenian Research Agency (ARRS) core research programs P2-

0103 and P6-0411, and research projects J7-7303, L7-8269, and N2-0078 (fi-

nanced under the ERC Complementary Scheme). The work was also supported

by European Union’s Horizon 2020 research and innovation programme under

grant agreement No 825153, project EMBEDDIA (Cross-Lingual Embeddings

for Less-Represented Languages in European News Media).

37

https://github.com/SkBlaz/DNR

References

[1] A. R. Benson, D. F. Gleich, J. Leskovec, Higher-order organization of com-

plex networks, Science 353 (6295) (2016) 163–166.

[2] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in:

B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, R. Ras-

togi (Eds.), Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, San Francisco, CA, USA,

August 13-17, 2016, ACM, 2016, pp. 855–864. doi:10.1145/2939672.

2939754.

URL https://doi.org/10.1145/2939672.2939754

[3] M. Žitnik, J. Leskovec, Predicting multicellular function through multi-

layer tissue networks, Bioinformatics 33 (14) (2017) i190–i198.

[4] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, ¡i¿struc2vec¡/i¿: Learning

node representations from structural identity, in: Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’17, Association for Computing Machinery, New York, NY,

USA, 2017, p. 385–394. doi:10.1145/3097983.3098061.

URL https://doi.org/10.1145/3097983.3098061

[5] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: online learning of social repre-

sentations, in: S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, R. Ghani

(Eds.), The 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 -

27, 2014, ACM, 2014, pp. 701–710. doi:10.1145/2623330.2623732.

URL https://doi.org/10.1145/2623330.2623732

[6] A. d’Avila Garcez, L. C. Lamb, Neurosymbolic ai: The 3rd wave (2020).

arXiv:2012.05876.

[7] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, J. Wu, The neuro-symbolic

concept learner: Interpreting scenes, words, and sentences from natural

38

https://doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3097983.3098061
https://doi.org/10.1145/3097983.3098061
http://dx.doi.org/10.1145/3097983.3098061
https://doi.org/10.1145/3097983.3098061
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/2012.05876
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm

supervision, in: 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

URL https://openreview.net/forum?id=rJgMlhRctm

[8] Q. Li, S. Huang, Y. Hong, Y. Chen, Y. N. Wu, S. Zhu, Closed loop neural-

symbolic learning via integrating neural perception, grammar parsing, and

symbolic reasoning, in: Proceedings of the 37th International Conference

on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, Vol. 119

of Proceedings of Machine Learning Research, PMLR, 2020, pp. 5884–5894.

URL http://proceedings.mlr.press/v119/li20f.html

[9] S. Amizadeh, H. Palangi, A. Polozov, Y. Huang, K. Koishida, Neuro-

symbolic visual reasoning: Disentangling ”visual” from ”reasoning”, in:

Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event, Vol. 119 of Proceedings of

Machine Learning Research, PMLR, 2020, pp. 279–290.

URL http://proceedings.mlr.press/v119/amizadeh20a.html

[10] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, D. Zhou, Neural logic machines,

in: 7th International Conference on Learning Representations, ICLR 2019,

New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

URL https://openreview.net/forum?id=B1xY-hRctX

[11] H. Lodhi, Deep relational machines, in: Proceedings, Part II, of the 20th

International Conference on Neural Information Processing - Volume 8227,

ICONIP 2013, Springer-Verlag, Berlin, Heidelberg, 2013, p. 212–219.

[12] A. Srinivasan, L. Vig, M. Bain, Logical explanations for deep relational ma-

chines using relevance information, Journal of Machine Learning Research

20 (130) (2019) 1–47.

[13] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, L. D. Raedt,

Deepproblog: Neural probabilistic logic programming, in: S. Bengio,

H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett

39

https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
http://proceedings.mlr.press/v119/li20f.html
http://proceedings.mlr.press/v119/li20f.html
http://proceedings.mlr.press/v119/li20f.html
http://proceedings.mlr.press/v119/li20f.html
http://proceedings.mlr.press/v119/amizadeh20a.html
http://proceedings.mlr.press/v119/amizadeh20a.html
http://proceedings.mlr.press/v119/amizadeh20a.html
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html

(Eds.), Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems 2018, NeurIPS

2018, December 3-8, 2018, Montréal, Canada, 2018, pp. 3753–3763.

URL https://proceedings.neurips.cc/paper/2018/hash/

dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html

[14] L. D. Raedt, S. Dumancic, R. Manhaeve, G. Marra, From statistical re-

lational to neuro-symbolic artificial intelligence, in: C. Bessiere (Ed.),

Proceedings of the Twenty-Ninth International Joint Conference on Ar-

tificial Intelligence, IJCAI 2020, ijcai.org, 2020, pp. 4943–4950. doi:

10.24963/ijcai.2020/688.

URL https://doi.org/10.24963/ijcai.2020/688

[15] T. Winters, G. Marra, R. Manhaeve, L. D. Raedt, Deepstochlog: Neural

stochastic logic programming (2021). arXiv:2106.12574.

[16] C. Nowzari, V. M. Preciado, G. J. Pappas, Analysis and control of epi-

demics: A survey of spreading processes on complex networks, IEEE Con-

trol Systems 36 (1) (2016) 26–46.

[17] D.-H. Le, A novel method for identifying disease associated protein com-

plexes based on functional similarity protein complex networks, Algorithms

for Molecular Biology 10 (1) (2015) 14.

[18] L. d. F. Costa, F. A. Rodrigues, G. Travieso, P. R. Villas Boas, Charac-

terization of complex networks: A survey of measurements, Advances in

Physics 56 (1) (2007) 167–242.

[19] R. Van Der Hofstad, Random graphs and complex networks (2016).

[20] X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with

label propagation, Tech. rep. (2002).

[21] P. Cui, X. Wang, J. Pei, W. Zhu, A survey on network embedding, IEEE

Transactions on Knowledge and Data Engineering.

40

https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://doi.org/10.24963/ijcai.2020/688
https://doi.org/10.24963/ijcai.2020/688
http://dx.doi.org/10.24963/ijcai.2020/688
http://dx.doi.org/10.24963/ijcai.2020/688
https://doi.org/10.24963/ijcai.2020/688
http://arxiv.org/abs/2106.12574

[22] T. N. Kipf, M. Welling, Semi-supervised classification with graph convo-

lutional networks, in: 5th International Conference on Learning Represen-

tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings, OpenReview.net, 2017.

URL https://openreview.net/forum?id=SJU4ayYgl

[23] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio,

Graph attention networks, in: 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,

2018, Conference Track Proceedings, OpenReview.net, 2018.

URL https://openreview.net/forum?id=rJXMpikCZ

[24] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural

networks?, in: 7th International Conference on Learning Representations,

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

URL https://openreview.net/forum?id=ryGs6iA5Km

[25] W. L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning

on large graphs, in: I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,

R. Fergus, S. V. N. Vishwanathan, R. Garnett (Eds.), Advances in

Neural Information Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9, 2017, Long Beach,

CA, USA, 2017, pp. 1024–1034.

URL https://proceedings.neurips.cc/paper/2017/hash/

5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[26] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, LINE: large-scale

information network embedding, in: A. Gangemi, S. Leonardi, A. Panconesi

(Eds.), Proceedings of the 24th International Conference on World Wide

Web, WWW 2015, Florence, Italy, May 18-22, 2015, ACM, 2015, pp. 1067–

1077. doi:10.1145/2736277.2741093.

URL https://doi.org/10.1145/2736277.2741093

[27] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding

41

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706

as matrix factorization: Unifying deepwalk, line, pte, and node2vec, in:

Y. Chang, C. Zhai, Y. Liu, Y. Maarek (Eds.), Proceedings of the Eleventh

ACM International Conference on Web Search and Data Mining, WSDM

2018, Marina Del Rey, CA, USA, February 5-9, 2018, ACM, 2018, pp. 459–

467. doi:10.1145/3159652.3159706.

URL https://doi.org/10.1145/3159652.3159706

[28] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and per-

formance: A survey, arXiv preprint arXiv:1705.02801.

[29] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation rank-

ing: Bringing order to the web., Tech. rep., Stanford InfoLab (1999).

[30] H. Tong, C. Faloutsos, J.-Y. Pan, Fast random walk with restart and its

applications, in: Proceedings of the Sixth International Conference on Data

Mining, Washington, DC, USA, 2006, pp. 613–622.

[31] A. Halu, R. J. Mondragón, P. Panzarasa, G. Bianconi, Multiplex pagerank,

PloS one 8 (10) (2013) e78293.

[32] X. Yu, T. G. Lilburn, H. Cai, J. Gu, T. Korkmaz, Y. Wang, Pagerank

influence analysis of protein-protein association networks in the malaria

parasite plasmodium falciparum, International Journal of Computational

Biology and Drug Design 10 (2) (2017) 137–156.

[33] P. Lofgren, S. Banerjee, A. Goel, Personalized pagerank estimation and

search: A bidirectional approach, in: P. N. Bennett, V. Josifovski,

J. Neville, F. Radlinski (Eds.), Proceedings of the Ninth ACM International

Conference on Web Search and Data Mining, San Francisco, CA, USA,

February 22-25, 2016, ACM, 2016, pp. 163–172. doi:10.1145/2835776.

2835823.

URL https://doi.org/10.1145/2835776.2835823

[34] J. Kralj, M. Robnik-Šikonja, N. Lavrač, HINMINE: heterogeneous infor-

42

https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706
http://dx.doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/2835776.2835823
https://doi.org/10.1145/2835776.2835823
http://dx.doi.org/10.1145/2835776.2835823
http://dx.doi.org/10.1145/2835776.2835823
https://doi.org/10.1145/2835776.2835823

mation network mining with information retrieval heuristics, Journal of

Intelligent Information Systems (2017) 1–33.

[35] J. Klicpera, A. Bojchevski, S. Günnemann, Predict then propagate: Graph

neural networks meet personalized pagerank, in: 7th International Con-

ference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019, OpenReview.net, 2019.

URL https://openreview.net/forum?id=H1gL-2A9Ym

[36] A. Bojchevski, J. Klicpera, B. Perozzi, M. Blais, A. Kapoor, M. Lukasik,

S. Günnemann, Is pagerank all you need for scalable graph neural net-

works?, in: ACM KDD, MLG Workshop, 2019.

[37] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, S. Jegelka, Represen-

tation learning on graphs with jumping knowledge networks, in: J. G. Dy,

A. Krause (Eds.), Proceedings of the 35th International Conference on Ma-

chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July

10-15, 2018, Vol. 80 of Proceedings of Machine Learning Research, PMLR,

2018, pp. 5449–5458.

URL http://proceedings.mlr.press/v80/xu18c.html

[38] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation rank-

ing: Bringing order to the web., Tech. rep., Stanford InfoLab (1999).

[39] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using

siamese bert-networks, in: Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing, Association for Computational

Linguistics, 2019.

URL https://arxiv.org/abs/1908.10084

[40] C. Stark, B.-J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher,

R. Oughtred, M. S. Livstone, J. Nixon, K. Van Auken, X. Wang, X. Shi,

et al., The biogrid interaction database: 2011 update, Nucleic acids research

39 (suppl 1) (2010) D698–D704.

43

https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
http://proceedings.mlr.press/v80/xu18c.html
http://proceedings.mlr.press/v80/xu18c.html
http://proceedings.mlr.press/v80/xu18c.html
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

[41] M. Mahoney, Large text compression benchmark, URL: http://www.

mattmahoney. net/text/text. html.

[42] R. Zafarani, H. Liu, Social computing data repository at ASU, http://

socialcomputing.asu.edu (2009).

[43] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Ty-

ers, BioGRID: A general repository for interaction datasets, Nucleic Acids

Research 34 (suppl 1) (2006) D535–D539.

[44] Q. Lu, L. Getoor, Link-based classification, in: T. Fawcett, N. Mishra

(Eds.), Machine Learning, Proceedings of the Twentieth International Con-

ference (ICML 2003), August 21-24, 2003, Washington, DC, USA, AAAI

Press, 2003, pp. 496–503.

URL http://www.aaai.org/Library/ICML/2003/icml03-066.php

[45] H. Pei, B. Wei, K. C. Chang, Y. Lei, B. Yang, Geom-gcn: Geometric

graph convolutional networks, in: 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,

OpenReview.net, 2020.

URL https://openreview.net/forum?id=S1e2agrFvS

[46] S. Kumar, F. Spezzano, V. Subrahmanian, C. Faloutsos, Edge weight pre-

diction in weighted signed networks, in: Data Mining (ICDM), 2016 IEEE

16th International Conference on, IEEE, 2016, pp. 221–230.

[47] B. Škrlj, T. Kunej, J. Konc, Insights from ion binding site network analysis

into evolution and functions of proteins, Molecular Informatics.

[48] J. Konc, D. Janežič, Probis-ligands: a web server for prediction of ligands

by examination of protein binding sites, Nucleic Acids Research 42 (W1)

(2014) W215–W220.

[49] J. Konc, M. Depolli, R. Trobec, K. Rozman, D. Janežič, Parallel-ProBiS:

Fast parallel algorithm for local structural comparison of protein struc-

44

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu
http://www.aaai.org/Library/ICML/2003/icml03-066.php
http://www.aaai.org/Library/ICML/2003/icml03-066.php
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS

tures and binding sites, Journal of Computational Chemistry 33 (27) (2012)

2199–2203.

[50] J. Konc, B. Skrlj, N. Erzen, T. Kunej, D. Janezic, Genprobis: web server

for mapping of sequence variants to protein binding sites, Nucleic Acids

Research 45 (W1) (2017) W253–W259.

[51] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang, Network embedding

as matrix factorization: Unifying deepwalk, line, pte, and node2vec, in:

Y. Chang, C. Zhai, Y. Liu, Y. Maarek (Eds.), Proceedings of the Eleventh

ACM International Conference on Web Search and Data Mining, WSDM

2018, Marina Del Rey, CA, USA, February 5-9, 2018, ACM, 2018, pp. 459–

467. doi:10.1145/3159652.3159706.

URL https://doi.org/10.1145/3159652.3159706

[52] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine learning research 7 (Jan) (2006) 1–30.

[53] A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a

tutorial for comparing multiple classifiers through bayesian analysis, The

Journal of Machine Learning Research 18 (1) (2017) 2653–2688.

[54] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.

van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.

Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.

Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,

E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-

dregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg,

A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods,

C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson,

D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva,

F. Lenders, F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold, G. E. Allen,

G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber,

45

https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706
http://dx.doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/3159652.3159706

J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Mi-

randa Cardoso, J. Reimer, J. Harrington, J. L. C. Rodŕıguez, J. Nunez-

Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer,

M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. She-

banov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feld-

bauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More,

T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones,

T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko,

Y. Vázquez-Baeza, S. 1.0 Contributors, Scipy 1.0: fundamental algorithms

for scientific computing in python, Nature Methods 17 (3) (2020) 261–272.

doi:10.1038/s41592-019-0686-2.

URL https://doi.org/10.1038/s41592-019-0686-2

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-

performance deep learning library, in: H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.), Advances

in Neural Information Processing Systems 32: Annual Conference on

Neural Information Processing Systems 2019, NeurIPS 2019, December

8-14, 2019, Vancouver, BC, Canada, 2019, pp. 8024–8035.

URL https://proceedings.neurips.cc/paper/2019/hash/

bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[56] X. Zhu, Z. Ghahramani, Learning from labeled and unlabeled data with

label propagation.

[57] C. Donnat, M. Zitnik, D. Hallac, J. Leskovec, Learning structural node

embeddings via diffusion wavelets, in: Y. Guo, F. Farooq (Eds.), Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018,

46

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1145/3219819.3220025

ACM, 2018, pp. 1320–1329. doi:10.1145/3219819.3220025.

URL https://doi.org/10.1145/3219819.3220025

[58] M. Fey, J. E. Lenssen, Fast graph representation learning with PyTorch

Geometric, in: ICLR Workshop on Representation Learning on Graphs

and Manifolds, 2019.

[59] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation

and projection for dimension reduction, arXiv preprint arXiv:1802.03426.

Appendix A. Tabular results with deviations

In this section, we present the performance results for micro and macro

F1 scores. The first table represents the micro F1 scores, followed by a table

showing macro F1 scores. The runs marked with NaN reached the time-out

point (did not finish).

47

http://dx.doi.org/10.1145/3219819.3220025
https://doi.org/10.1145/3219819.3220025

Table A.2: Micro F1.

dataset Bitcoin BitcoinAlpha Blogspot HomoSapiens POS chameleon citeseer cora cornell ecommerceTF film ions squirrel texas wisconsin

setting

DNR 0.71 (0.01) 0.71 (0.01) 0.2 (0.01) 0.2 (0.01) 0.45 (0.02) 0.56 (0.04) 0.55 (0.02) 0.78 (0.02) 0.52 (0.06) 0.83 (0.0) 0.34 (0.01) 0.64 (0.03) 0.41 (0.03) 0.59 (0.07) 0.53 (0.03)

DNR-e2e 0.69 (0.01) 0.7 (0.01) 0.09 (0.01) 0.07 (0.01) 0.41 (0.01) 0.45 (0.04) 0.57 (0.03) 0.77 (0.04) 0.49 (0.12) 0.83 (0.01) 0.35 (0.02) 0.66 (0.03) 0.39 (0.02) 0.61 (0.06) 0.49 (0.08)

DNR-symbolic 0.72 (0.01) 0.71 (0.01) 0.28 (0.04) 0.22 (0.03) 0.45 (0.02) 0.59 (0.04) 0.62 (0.04) 0.8 (0.04) 0.54 (0.04) 0.83 (0.01) 0.36 (0.01) 0.67 (0.04) 0.5 (0.05) 0.58 (0.07) 0.49 (0.04)

DNR4 0.71 (0.01) 0.71 (0.01) 0.15 (0.02) 0.15 (0.02) 0.4 (0.0) 0.52 (0.03) 0.55 (0.01) 0.74 (0.02) 0.48 (0.05) 0.83 (0.01) 0.37 (0.01) 0.63 (0.04) 0.42 (0.02) 0.58 (0.05) 0.51 (0.03)

DNR8 0.7 (0.01) 0.71 (0.0) 0.14 (0.02) 0.12 (0.01) 0.4 (0.0) 0.5 (0.02) 0.54 (0.02) 0.71 (0.03) 0.53 (0.02) 0.82 (0.01) 0.37 (0.01) 0.58 (0.05) 0.41 (0.01) 0.55 (0.04) 0.52 (0.05)

DNRPH 0.68 (0.01) 0.68 (0.01) 0.15 (0.01) 0.08 (0.01) 0.4 (0.01) 0.34 (0.01) 0.26 (0.01) 0.41 (0.01) 0.54 (0.03) 0.8 (0.0) 0.34 (0.01) 0.48 (0.01) 0.39 (0.01) 0.53 (0.03) 0.5 (0.03)

DNRPM 0.69 (0.0) 0.7 (0.0) 0.1 (0.0) 0.06 (0.01) 0.4 (0.01) 0.37 (0.01) 0.2 (0.01) 0.31 (0.0) 0.52 (0.02) 0.78 (0.0) 0.37 (0.01) 0.43 (0.01) 0.41 (0.01) 0.53 (0.02) 0.51 (0.07)

DNRPQ 0.69 (0.01) 0.69 (0.01) 0.2 (0.01) 0.11 (0.01) 0.41 (0.01) 0.42 (0.02) 0.4 (0.02) 0.6 (0.02) 0.51 (0.03) 0.83 (0.01) 0.34 (0.02) 0.58 (0.03) 0.37 (0.01) 0.54 (0.03) 0.44 (0.06)

GAT 0.54 (0.0) 0.55 (0.02) NaN 0.0 (0.0) 0.35 (0.12) 0.6 (0.04) 0.66 (0.07) 0.82 (0.03) 0.58 (0.05) NaN 0.37 (0.0) 0.51 (0.01) NaN 0.65 (0.05) 0.53 (0.03)

GCN 0.58 (0.02) 0.57 (0.01) 0.11 (0.01) 0.03 (0.01) 0.05 (0.05) 0.61 (0.04) 0.69 (0.05) 0.83 (0.03) 0.56 (0.04) 0.82 (0.0) 0.37 (0.01) 0.19 (0.12) 0.44 (0.01) 0.63 (0.06) 0.51 (0.02)

GraphWave 0.69 (0.0) 0.7 (0.0) 0.1 (0.0) 0.07 (0.01) 0.4 (0.01) 0.37 (0.02) 0.37 (0.01) 0.42 (0.02) 0.5 (0.03) 0.78 (0.0) 0.37 (0.01) 0.53 (0.03) 0.41 (0.01) 0.54 (0.04) 0.47 (0.04)

LP 0.7 (0.0) 0.71 (0.01) 0.22 (0.02) 0.06 (0.0) 0.07 (0.0) 0.4 (0.02) 0.64 (0.06) 0.82 (0.04) 0.54 (0.05) 0.72 (0.02) 0.35 (0.01) 0.69 (0.06) 0.41 (0.01) 0.56 (0.02) 0.42 (0.06)

Random 0.65 (0.02) 0.66 (0.03) 0.07 (0.01) 0.06 (0.0) 0.37 (0.03) 0.3 (0.03) 0.18 (0.0) 0.21 (0.02) 0.47 (0.06) 0.78 (0.01) 0.33 (0.02) 0.36 (0.02) 0.34 (0.04) 0.5 (0.05) 0.42 (0.03)

node2vec 0.69 (0.01) 0.69 (0.02) 0.36 (0.03) 0.21 (0.02) 0.52 (0.02) 0.58 (0.02) 0.58 (0.02) 0.83 (0.03) 0.51 (0.04) 0.83 (0.01) 0.34 (0.02) 0.65 (0.03) 0.43 (0.03) 0.57 (0.05) 0.51 (0.02)

struc2vec 0.67 (0.02) 0.68 (0.01) 0.08 (0.01) 0.08 (0.0) 0.38 (0.02) 0.54 (0.03) 0.27 (0.01) 0.3 (0.02) 0.45 (0.04) 0.78 (0.01) 0.34 (0.01) 0.46 (0.02) 0.41 (0.02) 0.56 (0.04) 0.53 (0.1)

Table A.3: Macro F1.

dataset Bitcoin BitcoinAlpha Blogspot HomoSapiens POS chameleon citeseer cora cornell ecommerceTF film ions squirrel texas wisconsin

setting

DNR 0.32 (0.02) 0.3 (0.01) 0.06 (0.01) 0.16 (0.02) 0.06 (0.01) 0.54 (0.04) 0.5 (0.01) 0.77 (0.02) 0.25 (0.04) 0.67 (0.01) 0.2 (0.01) 0.25 (0.05) 0.3 (0.02) 0.28 (0.06) 0.39 (0.05)

DNR-e2e 0.27 (0.01) 0.27 (0.01) 0.01 (0.0) 0.03 (0.01) 0.04 (0.0) 0.39 (0.07) 0.5 (0.03) 0.74 (0.06) 0.22 (0.04) 0.66 (0.02) 0.17 (0.02) 0.2 (0.02) 0.18 (0.03) 0.31 (0.04) 0.32 (0.04)

DNR-symbolic 0.31 (0.02) 0.29 (0.01) 0.11 (0.03) 0.16 (0.04) 0.06 (0.01) 0.57 (0.04) 0.56 (0.04) 0.79 (0.05) 0.21 (0.05) 0.67 (0.04) 0.19 (0.02) 0.22 (0.05) 0.39 (0.08) 0.23 (0.06) 0.27 (0.04)

DNR4 0.31 (0.02) 0.28 (0.01) 0.03 (0.01) 0.09 (0.02) 0.04 (0.0) 0.48 (0.03) 0.48 (0.01) 0.72 (0.03) 0.19 (0.02) 0.65 (0.01) 0.15 (0.01) 0.2 (0.03) 0.25 (0.03) 0.26 (0.05) 0.34 (0.04)

DNR8 0.3 (0.02) 0.28 (0.01) 0.03 (0.01) 0.06 (0.01) 0.04 (0.0) 0.46 (0.02) 0.47 (0.02) 0.68 (0.05) 0.19 (0.03) 0.63 (0.01) 0.14 (0.0) 0.17 (0.02) 0.2 (0.03) 0.22 (0.04) 0.26 (0.03)

DNRPH 0.29 (0.01) 0.27 (0.01) 0.06 (0.01) 0.05 (0.01) 0.04 (0.0) 0.22 (0.01) 0.21 (0.01) 0.33 (0.02) 0.26 (0.03) 0.53 (0.01) 0.2 (0.01) 0.14 (0.02) 0.24 (0.01) 0.26 (0.04) 0.33 (0.03)

DNRPM 0.27 (0.01) 0.26 (0.01) 0.01 (0.0) 0.02 (0.0) 0.03 (0.0) 0.14 (0.0) 0.06 (0.0) 0.07 (0.0) 0.17 (0.0) 0.44 (0.0) 0.14 (0.0) 0.06 (0.0) 0.15 (0.0) 0.18 (0.02) 0.17 (0.01)

DNRPQ 0.3 (0.01) 0.28 (0.01) 0.08 (0.01) 0.09 (0.01) 0.05 (0.0) 0.37 (0.02) 0.36 (0.02) 0.58 (0.02) 0.24 (0.03) 0.66 (0.01) 0.21 (0.01) 0.22 (0.05) 0.25 (0.0) 0.28 (0.05) 0.35 (0.08)

GAT 0.04 (0.0) 0.05 (0.01) NaN 0.0 (0.0) 0.01 (0.0) 0.59 (0.04) 0.62 (0.07) 0.81 (0.04) 0.35 (0.16) NaN 0.15 (0.01) 0.08 (0.02) NaN 0.36 (0.08) 0.36 (0.05)

GCN 0.08 (0.01) 0.08 (0.01) 0.01 (0.0) 0.01 (0.0) 0.02 (0.01) 0.6 (0.04) 0.64 (0.05) 0.82 (0.03) 0.32 (0.13) 0.64 (0.0) 0.15 (0.01) 0.08 (0.03) 0.34 (0.01) 0.35 (0.07) 0.38 (0.05)

GraphWave 0.27 (0.01) 0.26 (0.01) 0.0 (0.0) 0.03 (0.0) 0.04 (0.0) 0.21 (0.03) 0.25 (0.01) 0.21 (0.01) 0.21 (0.02) 0.44 (0.0) 0.14 (0.0) 0.14 (0.01) 0.14 (0.0) 0.18 (0.02) 0.22 (0.03)

LP 0.28 (0.01) 0.29 (0.01) 0.1 (0.02) 0.06 (0.0) 0.06 (0.0) 0.33 (0.03) 0.61 (0.06) 0.81 (0.04) 0.24 (0.05) 0.67 (0.02) 0.2 (0.01) 0.32 (0.04) 0.24 (0.02) 0.26 (0.02) 0.28 (0.09)

Random 0.27 (0.01) 0.26 (0.01) 0.02 (0.0) 0.05 (0.01) 0.04 (0.0) 0.25 (0.02) 0.15 (0.0) 0.13 (0.01) 0.21 (0.03) 0.44 (0.0) 0.22 (0.01) 0.08 (0.0) 0.22 (0.01) 0.23 (0.05) 0.23 (0.02)

node2vec 0.33 (0.01) 0.3 (0.01) 0.23 (0.03) 0.18 (0.02) 0.11 (0.01) 0.57 (0.02) 0.54 (0.02) 0.82 (0.03) 0.23 (0.03) 0.67 (0.0) 0.21 (0.01) 0.32 (0.05) 0.36 (0.03) 0.27 (0.04) 0.37 (0.06)

struc2vec 0.29 (0.01) 0.28 (0.01) 0.03 (0.0) 0.06 (0.01) 0.06 (0.0) 0.52 (0.03) 0.24 (0.01) 0.17 (0.01) 0.21 (0.04) 0.45 (0.0) 0.21 (0.02) 0.13 (0.01) 0.34 (0.01) 0.28 (0.07) 0.3 (0.03)

48

	1 Introduction
	2 Background and related work
	2.1 Neuro-symbolic representation learning
	2.2 Network node classification
	2.3 Network node ranking
	2.4 Combining node ranking and node representation learning

	3 Deep Node Ranking
	3.1 Node ranking with the Personalized PageRank with Shrinking algorithm
	3.2 Additional shrinking by rank-based pivoting
	3.3 Node representation learning
	3.4 DNRNet: A neural network architecture

	4 Data sets and experimental setting
	4.1 Data sets
	4.2 Experimental setting
	4.3 DNR implementations
	4.4 The baseline approaches

	5 Results
	5.1 Classification performance
	5.2 Execution time analysis
	5.3 Number of pivot nodes and scalability
	5.4 Performance in a low-data regime
	5.5 Network visualization
	5.6 Comparing symbolic and subsymbolic representations

	6 Discussion and conclusions
	7 Availability
	Appendix A Tabular results with deviations

