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Abstract

Semantic data mining (SDM) is a form of relational data mining that uses annotated data
together with complex semantic background knowledge to learn rules that can be easily
interpreted. The drawback of SDM is a high computational complexity of existing SDM
algorithms, resulting in long run times even when applied to relatively small data sets.
This paper proposes an effective SDM approach, named NetSDM, which first transforms
the available semantic background knowledge into a network format, followed by network
analysis based node ranking and pruning to significantly reduce the size of the original
background knowledge. The experimental evaluation of the NetSDM methodology on acute
lymphoblastic leukemia and breast cancer data demonstrates that NetSDM achieves radical
time efficiency improvements and that learned rules are comparable or better than the rules
obtained by the original SDM algorithms.

Keywords: data mining, semantic data mining, ontologies, subgroup discovery, network
analysis

1. Introduction

In data mining applications, relevant information can be scattered across disparate resources
in heterogeneous data formats. Extraction of knowledge from large heterogeneous data is
technically challenging and time consuming, and presents a significant obstacle to wider
adoption of data mining in real-life applications. While most of the data mining algorithms
(Witten and Frank, 2005) work only with tabular data, relational data mining (RDM)
(Dzeroski and Lavra¢, 2001) and relational learning (De Raedt, 2008) algorithms can use
additional relational information about the analyzed data to build richer and more accurate
predictive models. One such form of additional information is domain knowledge (relational
background knowledge) about instances of a data set. As shown by Page et al. (2012) and
Peissig et al. (2014), relational data mining can significantly outperform classical machine
learning approaches.

Previous work on RDM has shown that the use of background knowledge is vital for
data analysis in many domains. However, the issue with using more complex data (i.e.,
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data along with relations and background knowledge) is that it can no longer be easily
represented in a tabular format (also referred to as a design matrix (Rendle, 2013)). Better
data representations are needed when instances under examination are interconnected to a
various (non-fixed) number of instances. Representing each connection from an instance as a
separate column would result in a different number of columns for each row. Alternatively, if
we encoded connections of an instance with a single column, columns would have to contain
composite data structures such as lists. In RDM, this problem is addressed by representing
data sets with multi-relational databases and by applying specialized relational data mining
algorithms for data analysis (Dzeroski and Lavra¢, 2001). Examples of such instances are
genes that are connected through mutual activation, or research papers connected through
citations.

An alternative way to describe a data set containing inter-connected instances is to
represent it as a network (Burt and Minor, 1983), a data structure containing nodes, in-
formation about the nodes, and connections between the nodes. In mathematical terms,
such a structure is described as a graph, where the nodes are referred to as vertices, and
the connections as edges. The field of network analysis deals with several types of net-
works. In social networks, nodes represent people and connections represent their social
links. Biological networks include gene regulatory networks, protein interaction networks,
drug interaction networks, etc. In information networks, directed connections encode in-
formation flow between the network nodes. While most researchers deal with homogeneous
information networks, where all nodes and edges are of the same node/edge type, Sun and
Han (2012) addressed the problem of heterogeneous information network analysis, where
nodes and edges belong to different node or edge types. For example, we may have a network
containing both the genes and the proteins they encode, which necessitates the use of two
node types to represent the data. Sun and Han (2012) introduced the concept of authority
ranking for heterogeneous information networks, where the impact of a node is transferred
along the edges to simultaneously rank nodes of different types, while class labels can also
be propagated through the network (Vanunu et al., 2010).

Network analysis can be considered as a form of relational learning, where instances
are linked by relations and connected in a complex graph. Special form of relational data
are ontologies (Guarino et al., 2009). The challenge of incorporating domain ontologies in
the data mining process has been addressed in the work on semantic data mining (SDM)
(Lavra¢ and Vavpeti¢, 2015). Semantic data mining can discover complex rules describing
subgroups of data instances that are connected to terms (annotations) of an ontology,
where the ontology is referred to as background knowledge used in the learning process. An
example SDM problem is to find subgroups of enriched genes in a biological experiment,
where background knowledge is the Gene Ontology (Ashburner et al., 2000).

Given that SDM algorithms are relatively slow, the size of the background knowledge
used by SDM approaches is usually several orders of magnitude lower than the problems
typically handled by network analysis approaches. Take for example SDM algorithm Hedwig
(Vavpetic et al., 2013), which is one of the semantic data mining algorithm used in this work.
Hedwig performs beam search to explore the space of all possible explanations to find the
best rules explaining the data. The search space it explores is very large and even using
an adequate heuristic to guide the search, the algorithm takes a long time to find relevant
patterns in real-life data annotated by ontological background knowledge. As illustration,
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take a SDM application where Hedwig was applied to a data set of 337 examples and
a background knowledge of 21,062 interconnected ontology terms (Vavpetic¢ et al., 2013),
which is small compared to typical network analysis applications that deal with much larger
data sets, possibly composed of e.g., hundred millions network nodes.

Despite large differences in the current sizes of data sets analyzed by SDM and network
analysis approaches, the two research fields are aligned in terms of the research question
of interest, which can be posed as follows: Which part of the network structure is the most
important for the analyst’s current query? The challenge addressed in this work is the
reduction of the search space of SDM algorithms, which can be achieved by using network
analysis approaches. To this end, we have developed an approach that is capable of utiliz-
ing network analysis algorithms Personalized PageRank (Page et al., 1999) and node2vec
(Grover and Leskovec, 2016) to improve the efficiency of SDM. We show that the proposed
approach, named NetSDM, can efficiently generate high quality rules by investigating only
a fraction of the entire search space imposed by the background knowledge considered.

The rest of the paper is structured as follows. Section 2 presents the related work, as
well as the technologies used; we first introduce the semantic data mining algorithms used,
Hedwig and Aleph (Srinivasan, 1999), and then present the two network analysis algorithms,
Personalized PageRank and node2vec. Section 3 presents the proposed NetSDM approach
that exploits network analysis to reduce the size of the background knowledge used by
SDM algorithms. Section 4 presents the experimental setup, and Section 5 presents the
experimental results. Section 6 concludes the paper and presents plans for further work.

2. Related work and background technologies

This section presents the related work in the fields of semantic data mining and network
analysis. It starts with the related work in the field of semantic data mining in Section
2.1, which presents also the two algorithms used in our experiments: Hedwig and Aleph. It
continues with the related work in the field of network analysis in Section 2.2, and includes
the two algorithms used in our experiments: Personalized PageRank and node2vec.

2.1. Semantic data mining

To find patterns in data annotated with ontologies, we rely on semantic data mining (SDM)
(Dou et al., 2015; Lavra¢ and Vavpeti¢, 2015). In SDM, the input is composed of a set of
class labeled instances and the background knowledge encoded in the form of ontologies,
and the goal is to find descriptions of target class instances as a set of rules of the form
TargetClass < Explanation, where the explanation is a logical conjunction of terms
from the ontology. Semantic data mining has its roots in symbolic rule learning, subgroup
discovery and enrichment analysis research, briefly explained below.

2.1.1. RULE LEARNING AND SUBGROUP DISCOVERY

One of the established techniques for data mining (Piatetsky-Shapiro, 1991) is symbolic
rule learning (Flirnkranz et al., 2012). While rule learning was initially focused on learning
predictive models in the form of classification rules, there is also a substantial research in de-
scriptive rule learning, including association rule learning (Agrawal and Srikant, 1994), that
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aims at finding interesting descriptive patterns in the unsupervised as well as in supervised
learning settings (Liu et al., 1998).

Building on classification and association rule learning, subgroup discovery techniques
aim at finding interesting patterns as sets of rules that best describe the target class (Klosgen,
1996; Wrobel, 1997). Typical output of subgroup discovery algorithms are rules where the
rule condition (Explanation) is a conjunction of features (attribute values) that charac-
terize the target class instances covered by the rule, and each rule describes a particular
interesting subgroup of target class instances.

2.1.2. USING ONTOLOGIES IN ENRICHMENT ANALYSIS

Enrichment analysis (EA) techniques are statistical methods used to identify putative ex-
planations for a set of entities based on over- or under-representation of their attribute
values, which can be referred to as differential expression. In life sciences, EA is widely
used with the Gene Ontology (GO) (Ashburner et al., 2000) to profile the biological role of
genes, such as differentially expressed cancer genes in microarray experiments (Tipney and
Hunter, 2010).

While standard EA provides explanations in terms of concepts from a single ontology,
researchers are increasingly combining several ontologies and data sets to uncover novel
associations. The ability to detect patterns in data sets that do not use only the GO can
yield valuable insights into diseases and their treatment. For instance, it was shown that
Werner’s syndrome, Cockayne syndrome, Burkitt’s lymphoma, and Rothmund-Thomson
syndrome are all associated with aging related genes (Puzianowska-Kuznicka and Kuznicki,
2005; Cox and Faragher, 2007). On the clinical side, EA can be used to learn adverse events
from Electronic Health Record (EHR) data such as increased comorbidities in rheumatoid
arthritis patients (LePendu et al., 2013), or to identify phenotypic signatures of neuropsychi-
atric disorders (Lyalina et al., 2013). An ontology-based EA approach was used to identify
genes linked to aging in worms (Callahan et al., 2015), aberrant pathways—the network
drivers in HIV infection identifying HIV inhibitors strongly associated with mood disorders
(Hoehndorf et al., 2012), or to learn a combination of molecular functions and chromosome
positions from lymphoma gene expression (Jiline et al., 2011).

2.1.3. USING ONTOLOGIES IN RULE LEARNING

An abundance of taxonomies and ontologies that are readily available can provide higher-
level descriptors and explanations of discovered subgroups. In the domain of systems biology
the Gene Ontology (Ashburner et al., 2000), KEGG orthology (Ogata et al., 1999) and
Entrez gene—gene interaction data (Maglott et al., 2005) are examples of structured domain
knowledge. In rule learning, the terms in the nodes of these ontologies can take the role
of additional high-level descriptors (generalizations of data instances) used in the induced
rules, while the hierarchical relations among the terms can be used to guide the search for
conjuncts of the induced rules.

The SEGS algorithm (Trajkovski et al., 2008a) was the first to combine enrichment
analysis and machine learning research in the construction of rules explaining gene expres-
sion data. SEGS constructs rules where the explanation is a logical conjunction of terms
from several ontologies, explaining sets of differentially expressed (target class) genes as
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combinations of Gene Ontology (GO) terms, KEGG orthology terms, and terms describing
gene—gene interactions obtained from the Entrez database.

The challenge of incorporating domain ontologies in data mining was addressed in SDM
research by several other authors. Zakova et al. (2006) used an engineering ontology of
Computer-Aided Design (CAD) elements and structures as a background knowledge to
extract frequent product design patterns in CAD repositories and to discover predictive
rules from CAD data. Using ontologies, the algorithm Fr—ONT for mining frequent concepts
was introduced by Lawrynowicz and Potoniec (2011).

Vavpeti¢ and Lavra¢ (2013) developed a SDM toolkit that includes two semantic data
mining systems: SDM-SEGS and SDM-Aleph. SDM-SEGS is an extension of the ear-
lier domain-specific algorithm SEGS (Trajkovski et al., 2008a), which supports semantic
subgroup discovery in gene expression data. SDM-SEGS extends and generalizes this ap-
proach by allowing the user to input a set of ontologies in the OWL ontology specification
language and an empirical data set annotated with domain ontology terms. SDM-SEGS
employs a predefined selection of ontologies to constrain and guide a top-down search of
the hierarchically structured hypothesis space. SDM-Aleph is an extension of the Inductive
Logic Programming system Aleph (Srinivasan, 1999), which does not have the limitations
of SDM-SEGS imposed by domain-specific properties of algorithm SEGS, and can accept
any number of ontologies as domain background knowledge, including different relations.

In summary, semantic subgroup discovery algorithms SDM-SEGS and SDM-Aleph are
either specialized for a specific domain (Trajkovski et al., 2008b) or adapted from systems
that do not take into account the hierarchical structure of background knowledge (Vavpetié
and Lavrag, 2013), respectively. Therefore in this work, we rather use the Hedwig algorithm
(Vavpetic et al., 2013) and the original Aleph algorithm (Srinivasan, 1999), which can both
accept any number of input ontologies, where Aleph can also use different types of relations.

2.1.4. HEDWIG Rule rank|Explanation
1|chromosome A cell cycle

To illustrate the rules induced by the Hedwig
subgroup discovery algorithm (Vavpetic¢ et al.,
2013), take as an example a task of analyzing
differential expression of genes in breast can-
cer patients, originally addressed by Sotiriou
et al. (2006). In this task, the TargetClass
. regulation of cell cycle process A spindle

Of the generated rules 18 the class Of genes that enzyme binding A regulation of cell cycle process A
are differentially expressed in breast cancer pa- — Z‘tTr;CE"Lg?’ ”/‘z”"_‘t“et’_“b’alre'bl"”:ded |°rga"e"e

. . Inding A mitotic cell cycle A nucleus
tients as compared to the general population.

cellular macromolecule metabolic process A intracellular
non-membrane-bounded organelle A cell cycle

N

cell division A nucleus A cell cycle
regulation of mitotic cell cycle A cytoskeletal part

regulation of mitotic cell cycle A microtubule cytoskeleton

regulation of G2/M transition of mitotic cell cycle
regulation of cell cycle process A chromosomal part

© N 0 (AW

The Hedwig algorithm generated ten rules
(subgroup descriptions), each describing a sub-
group of differentially expressed genes. In the
rules, the TargetClass is the set of differen-
tially expressed genes and the Explanation is
a conjunction of Gene Ontology terms and cov-
ers the set of genes annotated by the terms in
the conjunction. The resulting set of Explanations (rule conditions) is shown in Figure 1.

Figure 1: An example output of the Hed-
wig semantic subgroup discovery
algorithm, where Explanations
represent subgroups of genes,
differentially expressed in pa-
tients with breast cancer.
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Take the first ranked rule, where the Explanation is a conjunction of biological concepts
chromosome A cell cycle, which covers all the genes that are covered by both ontology
terms. Take as another example the fourth best ranked rule, which explains that the
regulation of the mitotic cell cycle and cytoskeletal formation explain the breast cancer
based on gene expression.

The semantic subgroup discovery task addressed by Hedwig takes three types of inputs:
the training examples, the domain knowledge, and a mapping between the two.

e Data set, composed of training examples expressed as RDF (Resource Description
Framework) triples in the form subject-predicate-object, e.g., geneX—suppresses—geneY.
Data set S is split into a set of positive examples S, i.e. ‘interesting’ target class
instances (for example, genes enriched in a particular biological experiment), and a
set of negative examples S_ of non-target class instances (e.g., non-enriched genes).

e Domain knowledge, composed of domain ontologies in RDF form.

e Object-to-ontology mapping, which associates each RDF triple with an appropriate
ontological concept. We refer to these object-to-ontology mappings as annotations,
meaning that object z is annotated by ontology term o if the pair (x,0) appears in
the mapping.

For given inputs, the output of Hedwig is a set of descriptive patterns in the form of
rules, where rule conditions are conjunctions of domain ontology terms that explain a group
of target class instances. Ideally, Hedwig discovers explanations that best describe and cover
as many target class instances and as few non-target instances as possible.

The Hedwig algorithm uses beam search, where the beam contains the best N rules. It
starts with the default rule that covers all the training examples. In every search iteration,
each rule from the beam is specialized via one of the four operations: (i) replace the predicate
of a rule with a predicate that is a sub-class of the previous one, (ii) negate a predicate
of a rule, (iii) append a new unary predicate to the rule, or (iv) append a new binary
predicate, introducing a new existentially quantified variable, where the new variable has
to be ‘consumed’ by a literal that has to be added as a conjunction to this clause in the
next step of rule refinement.

Hedwig learns rules through a sequence of specialization steps. Each step either main-
tains or reduces the current number of covered examples. A rule will not be specialized
once its coverage is zero or falls below some predetermined threshold. When adding a
new conjunct, the algorithm checks if the specialized rule improves the probability of rule
consequent—to this end the redundancy coefficient is used (Hamé&lainen, 2010); if not, the
specialized rule is not added to the list of specializations. After the specialization step is
applied to each rule in the beam, a new set of best scoring IV rules is selected. If no im-
provement is made to the rule collection, the search terminates. In principle, the procedure
supports any rule scoring function. Numerous rule scoring functions for discrete targets are
available: x2, Precision, WRAcc (Lavraé et al., 2004), Leverage, and Lift. Note that Lift is
the default measure in Hedwig (see Section 2.1.6) that was used in our experiments.

In addition to an illustrative financial use case (Vavpeti¢ et al., 2013), Hedwig was
shown to perform well in breast cancer data analysis (Vavpetic et al., 2014), as well as in a
biological setting when analyzing DNA aberration data for various cancer types (Adhikari
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et al., 2016), where it was a part of three-step methodology, together with mixture models
and banded matrices using several ontologies obtained from various sources: hierarchical
structure of multiresolution data, chromosomal location of fragile sites, virus integration
sites, cancer genes, and amplification hotspots.

2.1.5. ALEPH

Aleph (A Learning Engine for Proposing Hypotheses) (Srinivasan, 1999) is a general pur-
pose system for Inductive Logic Programming (ILP) that was conceived as a workbench for
implementing and testing concepts and procedures from a variety of different ILP and rela-
tional learning systems and papers. The system can construct rules, trees, constraints and
features; invent abnormality predicates; perform classification, regression, clustering, and
association rule learning; allows for choosing between different search strategies (general-
to-specific or specific-to-general, i.e. top-down or bottom-up, bidirectional, etc.), search
algorithms (hill-climbing, exhaustive search, stochastic search, etc.) and evaluation func-
tions. It allows users to specify their own search procedure, proof strategy, and visualization
of hypotheses.

Similarly to Hedwig, Aleph accepts as input a set of positively and negatively labeled
training examples and a file describing the background knowledge, including a mapping
between the examples and the background knowledge. The training examples are expressed
as Prolog facts, and the background knowledge is in the form of Prolog facts and clauses.
In contrast to Hedwig that was used in our experiments for semantic subgroup discovery,
we used Aleph in its default operation mode to learn a classifier (a Theory) composed of as
a set of classification rules, which also explain the target class examples.

Aleph constructs rules in several steps. It first selects a positive example and builds
the most specific rule explaining the example following the steps described by Muggleton
(1995). Next, the algorithm searches for a more general rule, performed with a branch-
and-bound search strategy, searching first through generalizations of the rule containing
the fewest terms. Finally, the rule with the best score is added to the current theory, and
all the examples covered by this rule are removed (this step is sometimes called the ”cover
removal” step). This procedure is repeated until all the positive examples are covered.

Aleph was incorporated into the SDM-toolkit (Vavpeti¢ and Lavraé¢, 2013), which allows
Aleph (named SDM-Aleph) to use the same input data as Hedwig. However, a drawback
of using SDM-Aleph is that it can reason only over one type of background knowledge
relations, while the original Aleph algorithm can reason over any type of relations. In the
case of Gene Ontology, which was used as the background knowledge in our experiments,
this generality allows Aleph to encode both the is_a and is_part_of relations, which are the
most frequent relations in ontologies, as well as the relationships composed of these two
relations.

2.1.6. RULE QUALITY MEASURES

We use several measures to evaluate the quality of rules discovered by Hedwig and Aleph.
Take for example rule R with a condition that is true for 80 positive instances (True Pos-
itives, T P) and 20 negative instances (False Positives, F'P) from the set S of 100 positive
instances (Positives) and 100 negative instances (Negatives). Coverage(R) = TP + FP =
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100 is the total number of instances covered by the rule. Support of the rule is calculated
as follows: Support(R) = Tplig'F E - Cove‘rg‘ge(R = 0.5. Precision(R) = 0.8 is calculated as

#PFP, and Accuracy(R) = 0.8 is calculated as 1 |J§|TN , where T'N denotes the number of

True Negatives.

In our experiments we use the Lift metric to evaluate the performance of SDM algorithms
Hedwig and Aleph. Lift(R) is defined as the ratio between the precision of a rule and the
proportion of positive examples in the data set (i.e. the precision of the empty default
rule that classifies all examples as positive). In our example Lift(R) = % = 1.6, which is
calculated using the following formula:

Precision(R)
Lift(R) = ——————~= 1
ifo(R) = —— (1)
where PR = ‘PL;M is the ratio of positive instances in the data set. The range of values
Lift can take is from 0 to co and larger values indicate better rules.

2.2. Network analysis

Network analysis uses concepts from graph theory to investigate characteristics of networked
structures in terms of nodes (such as individual actors, people, or any other objects in the
network) and edges or links that connect them (relationships, interactions or ties between
the objects). This section focuses on the algorithms which we used or adapted to rank
nodes in information networks.

2.2.1. NODE RANKING: USING PERSONALIZED PAGERANK ALGORITHM

The objective of node ranking in information networks is to assess the relevance of a given
node either globally (with regard to the whole graph) or locally (relative to some other node
or group of nodes in the graph). A network node ranking algorithm assigns a score (or a
rank) to each node in the network, with the goal of ranking the nodes in terms of their
relevance.

A well known node ranking method is PageRank (Page et al., 1999), which was used
in the Google search engine. Other methods for node ranking include Weighted PageRank
method (Xing and Ghorbani, 2004), SimRank (Jeh and Widom, 2002), diffusion kernels
(Kondor and Lafferty, 2002), hubs and authorities (Kleinberg, 1999), and spreading acti-
vation (Crestani, 1997). More recent network node ranking methods include PL-ranking
(Zhang et al., 2016) and NCDawareRank (Nikolakopoulos and Garofalakis, 2013). Another
way to rank nodes in a network is to use network centrality measures, such as Freeman’s
network centrality (Freeman, 1979), betweenness centrality (Freeman, 1977), closeness cen-
trality (Bavelas, 1950), and Katz centrality (Katz, 1953).

In this paper, we are interested in network node ranking methods that can be ‘localized’,
i.e. which do not compute the global importance/score of a node, but rather the score
of a node in the context of a given subset of other nodes. An example of this type of
network node ranking approaches is the Personalized PageRank (P-PR) algorithm (Page
et al., 1999), sometimes referred to as random walk with restart (Tong et al., 2006). P-PR
calculates the node score locally to a given network node—it is hence especially interesting
for our work because it calculates the importance of network nodes relative to a given set of
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starting nodes, in our case, those representing the positive examples. In the context of data
set annotation with ontologies, this allows us to estimate the importance of background
knowledge terms in relation to the positive examples in the data set.

Personalized PageRank uses a random walk approach to calculate the significance of
nodes in an information network. Given a set of ‘starting’ nodes A, the Personalized PageR-
ank calculated for A (denoted P-PRj4) is defined as the stationary distribution of random
walker positions, where the walk starts in a randomly chosen member of A and then at each
step either selects one of the outgoing connections or teleports back to a randomly selected
member of A. Probability p of continuing the walk is a parameter of the Personalized
PageRank algorithm and is usually set to 0.85. In our context, the P-PR algorithm is used
to calculate the importance of network nodes with respect to a given set of starting nodes.

Remark 1 P-PR4 is a vector, and each value of the vector corresponds to some network
node w. If u is the i-th node of the network, notation P-PR4(u) is used (rather than P-PRy;)
to denote the i-th value of P-PR4.

2.2.2. NETWORK EMBEDDING: USING NODE2VEC ALGORITHM

Network embedding is a mechanism for converting networks into a tabular/matrix repre-
sentation format, where each network node is represented as a vector of some predefined
fixed length k, and a set of nodes is represented as a table with k& columns. The goal of
such a conversion is to preserve structural properties of a network, which is achieved by
preserving node similarity in both representations, i.e. node similarity is converted into
vector similarity.

Network nodes vectorization can be effectively performed by the node2vec algorithm
(Grover and Leskovec, 2016), which uses a random walk approach to calculate features
that express the similarities between node pairs. The node2vec algorithm takes as input a
network of n nodes, represented as a graph G = (V| E), where V is the set of nodes and F
is the set of edges in the network. For a user-defined number of columns k, the algorithm
returns a matrix f* € RIVI*# defined as follows:

/" = node2vec(G) = argmax Z —log(Z Z fn (2)

FERIVIXE oy neN (u)

where N(u) denotes the network neighborhood of node u (to be defined below).

Remark 2 FEach matriz [ is a collection of k-dimensional feature vectors, with the i-th row
of the matriz corresponding to the feature vector of the i-th node in the network. We write
f(u) to denote the row of matriz f corresponding to node u.

The goal of the node2vec algorithm is to construct feature vectors f(u) in such a way
that feature vectors of nodes that share a certain neighborhood will be similar. The inner
sum of the value, maximized in Equation 2, calculates the similarities between node u
and all nodes in its neighborhood: it is large if the feature vectors of nodes in the same
neighborhood are collinear, however it also increases if feature vectors of nodes have a large
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norm. Next, value Z, calculates the similarities between node w and all the nodes in the
network as follows:

Zu= Y 010

veV

Note that value of —log(Z,) decreases when the norms of feature vectors f(v) increase,
thereby penalizing collections of feature vectors with large norms.

Equation 2 has a probabilistic interpretation that models a process of randomly selecting
nodes from the network (Grover and Leskovec, 2016). In this process, probability P(n|u)
of node n following node w in the selection process is proportional to ef(™f(¥)  Assuming
that selecting a node is independent from selecting any other node, we can calculate the
probability of selecting all nodes from a given set N as P(N|u) = [],cny P(n|u), and
Equation 2 can then be rewritten as follows:

f* = node2vec(G) = argmax Z log (P(N(u)|f(u))) (3)
fERIVIxE ueV

Finally, let us explain neighborhood N (u) in Equations 2 and 3, calculated by simulating
a random walker traversing the network starting at node u. Unlike the PageRank random
walker, the transition probabilities for traversing from node nq to node no depend on node
ng that the walker visited before node n;, making the process of traversing the network a
second order random walk. The non-normalized transition probabilities are set using two
parameters, p and ¢, and are equal to:

if ny = nyg
P(ng|moved from node ng to ny in previous step) = if ng can be reached from n;

otherwise

Q= =S

The parameters of the expression are referred to as the return parameter p and the in-out
parameter q. A low value of the return parameter p means that the random walker is
more likely to backtrack its steps and the random walk will be closer to a breadth first
search. On the other hand, a low value of parameter g encourages the walker to move away
from the starting node and the random walk resembles a depth first search of the network.
To calculate the maximizing matrix f*, a set of random walks of limited size is simulated
starting from each node in the network to generate several samples of sets N (u).

The function maximizing Equation 2 is calculated using the stochastic gradient descent.
The matrix of feature vectors node2vec(G) in Equation 2 is estimated at each generated
sampling of neighborhoods N (u) for all nodes in the network to discover matrix f* that
maximizes the expression for the simulated neighborhood set.

3. NetSDM methodology: Combining SDM with network analysis

SDM algorithms perform well on relatively small real world data sets, but even for small
data sets the algorithms search through a very large space of possible patterns to find
the ‘best’ pattern. The more conjuncts we allow in rule conditions and the larger the
background knowledge, the larger the search space. This section presents the proposed

10
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Figure 2: Illustrative outline of the proposed NetSDM methodology.

NetSDM methodology that combines semantic data mining with network analysis to reduce
the search space of SDM algorithms. This section starts with an overview of the proposed
methodology in Section 3.1, illustrated by an example in Section 3.2. Section 3.3 provides
a detailed step-by-step description of the NetSDM methodology.

3.1. Methodology outline

SDM algorithms use heuristic search when mining for patterns in the data to limit the
search to only the most promising parts of the search space. Constraining the search is
necessary, as traversing the entire search space—consisting of conjuncts of logical expres-
sions containing ontological expressions—is computationally unfeasible. However, heuristic
search can produce poor results in some cases. For example, when searching for patterns
with Hedwig using beam search, the beam may be too narrow, and consequently a branch
that would lead to a high quality solution could be discarded early on; in large search spaces
even wide beams can be quickly filled with terms that do not lead to good final solutions.
Similarly, the search algorithm in Aleph can miss important patterns if all their sub-patterns
exhibit low quality. In this paper we propose a new methodology, which aims to solve this
problem. The proposed NetSDM methodology, which is illustrated in Figure 2, consists of
the following four steps:

1. Convert a background knowledge ontology into a network format.
2. Estimate the importance of background knowledge terms using a scoring function.

3. Shrink the background knowledge, keeping only a proportion ¢ of the top ranking
terms.

4. Apply a semantic data mining algorithm on the original data set and the reduced
background knowledge.

11
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Input: SDM algorithm, network conversion method, scoring function, term
removal method, background knowledge ontology O, set of examples S
annotated with terms from O

Output: set of rules discovered by SDM algorithm

Parameters: shrinkage coefficient ¢ € [0, 1]

Convert ontology O into network format G, (see Section 3.3.1)
Calculate significance scores score(t), for all terms ¢t € T(O) (see Section 3.3.2)
for term t € 7(0O) do

if RelativeRank(t) > ¢ then

mark term t for removal.

end
end
form G, by removing marked terms from G, (see Section 3.3.3)
convert G, to O’
Run SDM algorithm on S using reduced background knowledge O’
11 return Rules discovered by SDM algorithm

© W N S ks W N

-
o

Algorithm 1: The NetSDM algorithm, implementing the proposed approach to
semantic data mining with network node ranking and ontology shrinking.

The NetSDM methodology improves the efficiency of SDM algorithms by using a shrink-
ing step in which we filter out background knowledge terms that are not likely to appear
in significant rules. The methodology is implemented in Algorithm 1. A scoring function
used in ontology shrinkage should (i) be able to evaluate the significance of terms based on
the data, and (ii) be efficiently computed.

The input for the scoring function is the data used in SDM algorithms, consisting of:

e Set of instances S consisting of target (S ) and non-target (S_) instances,

e Ontology O represented as a set of RDF triples (subject, predicate, object) (to simplify
the notation, for each term ¢ appearing as either a subject or object in a triple, we
will write ¢ € O to denote that ¢ is a term of the ontology O),

e Set of annotations A connecting instances in S = S;US_ with terms in O (annotations
are presented as triples (s, annotated-with,t), where s € S and ¢t € O denoting that
data instance s is annotated by an ontology term ¢.

The output of the scoring function is a vector which, for each term in the background
knowledge, contains a score estimating its significance. In other words, using 7(O) to
denote the set of all terms appearing (either as subjects or objects) in ontology O, the
scoring function is defined as:

scores 0.4 : T(0) — [0,00)

After defining a suitable scoring function score (in the subsequent subsections, we examine
two possibilities), we use the computed scores to shrink the background knowledge ontology

12
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Figure 3: Ilustration of using Algorithm 1 on example from Table 1.

O. Using a scoring function, a higher score of term ¢ € O means that term ¢ is more likely
to be used in rules describing the positive examples. For every term t € T(O), we use the
results of the scoring function to assign relative ranks to ontology terms defined as

_ Rank(t) [{t’ € T(O) : score(t') > score(t)}|
IT(O0)] IT(O0)]
which calculates the ratio of terms in the ontology that score higher than ¢, divided by the

number of all terms. For example, a value RelativeRank(t) = 0.05 means that only 5% of
all terms in the ontology score higher than ¢ using a given scoring function.

RelativeRank(t)

3.2. Illustrative example Table 1: An illustrative data set consisting
of 15 examples annotated by 8 pos-

As an illustrative example consider the data . .
sible annotations.

set described in Table 1. The data set con-
sists of 15 instances, 7 of which belong to Example Class Annotated by

the target class (positive examples, marked 1 ¥ AB
with + in Table 1). The instances are an- 9 - AB.C
notated by one or more terms in a hierar- 3 + B,C,D
chy (i.e., simple ontology) consisting of 8 base 4 + B,C,E
nodes and 7 higher-level terms, shown on 5 + B.C
the left-hand side of Figure 3. Using the 6 i CD.E
Personalized PageRank scoring function (de- 7 + D.E
scribed in Section 3.3.2), high scores are as- ] + D,EF
signed to the background knowledge terms 9 - E,F
that are strongly related to the positive ex- 10 i E.F
amples. The resulting scores are shown in the 11 - F.G
middle of Figure 3. We can see that the left- 12 ; F.G
hand side terms have higher scores compared 13 _ G
to the right-hand side terms as they annotate 14 + G.H
mostly the positive (target) examples. 15 + G.H

13
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In the next step, the algorithm prunes the lower-ranked terms, leaving only the best 8
background terms in the reduced hierarchy of ontology terms. As most of the top scoring
terms were in the left part of the hierarchy, the reduced hierarchy mostly contains these
terms. In the final step, we use a SDM algorithm—in this case we use Hedwig—to find
rules based on the instances from Table 1 and the reduced ontology. The best two rules
discovered by Hedwig, which cover most of the positive examples, are:

Positive ¢« LL (shown in green in Figure 3), covering 3 positive and 1 negative instance

.. 3
(Coverage = 4, Precision = 7).

Positive <« LR (shown in red in Figure 3), covering 5 positive and 2 negative instances
5

(Coverage = 7, Precision = 2).

If we run Hedwig using the original ontology for this data set, we get the same rules as

on the reduced background knowledge. However, as demonstrated by the experiments on

large real-life data sets in Section 5, removing unimportant parts of large ontologies benefits
both the execution time and the quality of discovered rules.

3.3. Detailed description of NetSDM

In this section, we describe four steps of the NetSDM methodology outlined in Algorithm
1. We first describe the conversion of a background knowledge ontology into an information
network, which we can then analyze using network analysis methods. Next, we describe two
methods for term importance estimation in information networks. The section concludes
with a discussion on the term deletion step of the algorithm in which low-scoring terms are
removed from the network.

3.3.1. CONVERSION OF BACKGROUND KNOWLEDGE ONTOLOGY INTO NETWORK FORMAT

The first step of the NetSDM methodology is conversion of the background knowledge
ontologies into a network. We present two methods, a direct method and a hypergraph
method of conversion.

Direct conversion. Input ontologies for the NetSDM methodology are collections of triples
that represent relations between background knowledge terms. As any information
network is also composed of a set of nodes and the connections between them, a natural
conversion from the background knowledge into an information network is to convert
each relation between two ontology terms into an edge between two corresponding
nodes in an information network. This gives rise to the first function converting the
input ontology into the information network, in which we view the ontology and the
data instances as parts of one network. In the conversion, we merge the data set and
the background knowledge into one network G. = (V,, E.) where

e V. = T(O) U Sy are vertices of the new network consisting of all background
knowledge terms 7 (0O) and all target class instances (positive examples) Sy ;

o E. = {(t1,t2)|3r : (t1,r,t2) € O} U{(s,1)|(s, annotated-with,t) € A} are edges
of the new network consisting of edges that represent background knowledge
relations, as well as all edges that represent the annotated-with relations between
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data instances and background knowledge terms (the meaning of O, S, S, S_ and
A is explained in Section 3.1).

Hypergraph conversion. Liu et al. (2013) proposed an alternative approach to convert-
ing an ontology into an information network format. They treat every relation in
a semantic representation of data as a triple, consisting of a subject, predicate and
object. They construct a network (which they call a hypergraph) in which every triple
of the original background knowledge (along with the background knowledge terms)
forms an additional node in the network with three connections: one connection with
the subject of the relation, one with the object of the relation, and one with the predi-
cate of the relation. In this conversion, each predicate that appears in the background
knowledge is an additional node in the resulting network. This conversion results in
a network G, = (V, E.) where:

e V. =T(O)USyU{n.jr e OUA}U{p|3s,o: (s,p,0) € O} U{annotated-with}
are vertices of the new network consisting of (i) all background knowledge terms,
(ii) all target class instances, (iii) one new node n, for each relation r either
between background knowledge terms or linking background knowledge terms to
data instances and (iv) one node for each predicate appearing in the ontology O,
as well as (v) one node representing the annotated-with predicate;

o £, = UT:(&})’O)EOuA{(s,n,«), (p,mr), (0,m,)} are edges of the new network, each
relation r inducing three connections to node n, that it induces (terms V, S, Sy, S_
and A are defined in Section 3.1).

While hypergraph conversion results in a slightly larger information network, less
information is lost in the conversion process than in the direct conversion process
presented above.

An important aspect of both conversion methods, presented above, is that they are
defined simply on a set of triples that represent relations between background knowledge
terms. This means that both methods can be used to transform an arbitrarily complex
ontology with any number of predicates.

3.3.2. TERM SIGNIFICANCE SCORE CALCULATION

After converting the background knowledge and the input data into a joined network,
we use either Personalized PageRank or node2vec based scoring function to evaluate the
significance of background knowledge terms. Term importance scoring function scoreg o 4
is constructed by taking into account the data set S and background knowledge terms 7 (O).

P-PR based score computation. The first scoring function is computed using the Per-
sonalized PageRank algorithm (Page et al., 1999). While the basic PageRank algo-
rithm evaluates the global importance of each node in a network (i.e. with respect
to all other nodes), the Personalized PageRank (described in Section 2.2.1) evaluates
the significance of nodes with respect to a given node (or a set of nodes). This fits
well with our demand that a scoring function must evaluate the significance of a term
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based on the actual data - in our case the importance of the nodes is not global but
calculated in the context of the given positive examples. We can therefore reasonably
expect that the highest scoring terms will not simply be the most prominent terms of
the background knowledge ontology but rather those terms which are the most rele-
vant to the input data set that a researcher is interested in. As each term ¢ € 7(O) is
a vertex in network G., we calculate the P-PR score of each term ¢ € 7(O) as follows:

scorep_pr(t) = P-PRg_ (1) (4)

where the P-PR vector is calculated on the network G. A simple algebraic calculation
(Gréar et al., 2013) shows that this value is equal to the average of all Personalized
PageRank scores of v where the starting set for the random walker is a node from S, :

P-PRg, () = |51+| > P-PRyy (1) (5)

weSL

Following the definition of the Personalized PageRank score, the value of scorep.pr
is the stationary distribution of a random walker that starts its walk in one of the
target data instances (elements of the set S;) and follows the connections (either
the is-annotated-by relation or a relation in the background knowledge). Another
interpretation of scorep_pr(t) is that it tells us how often we will reach node ¢ in
random walks, starting with positive (target class labeled) data instances. Note that
the Personalized PageRank algorithm is defined on directed networks, allowing us
to calculate the Personalized PageRank vectors of nodes by taking the direction of
connections into account. In our experiments, we also tested the performance of the
scoring function if network G, is viewed as an undirected network. To calculate the
PageRank vector on an undirected network, each edge between two nodes u and v
is interpreted as a pair of directed edges, one going from u to v and another from
v to u, allowing the random walker to traverse the original undirected edge in both
directions.

node2vec based score computation. The second estimator of background knowledge
terms significance is the node2vec algorithm (Grover and Leskovec, 2016). In our
experiments, we used the default settings of p = ¢ = 1 for the parameters of node2vec,
meaning that the generated random walks are balanced between the depth-first and
breadth-first search of the network. The maximum length of random walks was set to
15. The function node2vec (described in Section 2.2.2) calculates the feature matrix
f* = node2vec(G,), and each row of f* represents a feature vector f*(u) for node u
in G.. The resulting feature vectors of nodes can be used to compute the similarity
between any two nodes in the network. The approach uses the cosine similarity of the
two feature vectors u and v, computed as follows:

similarity o qeavec (U, V) = fr(u) - f*(v)

@I )]

In our approach, we form feature vectors for nodes representing both background
knowledge terms and data instances. We use these feature vectors to compute the
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similarity between the background knowledge terms and the positive data instances
(target class examples) using a formula inspired by Equation 5. With the Personalized
PageRank, we evaluate the score of each node as P-PRgs, (v) where S, is the set of
all target class instances. As the value P-PRy,,) () measures the similarity between
w and ¢, Equation 5 can also be used to construct a node2vec scoring function. We
replace the individual P-PR similarities in Equation 5 with the individual node2vec

similarities:
(w) - f*(t)
= > L = (6)
= O

SCOTenoderec ‘ R ‘

3.3.3. NETWORK NODE REMOVAL

In the third step of Algorithm 1, low-scored nodes are removed from the network. We
present and test two options for network node removal.

Naive node removal. The first (naive) option is to take every node that is marked for

removal and delete both the node and any connection leading to or from it. This
method is robust and can be applied to any background knowledge. However, when
background knowledge is heavily pruned, this method may cause the resulting network
to get decomposed into several disjoint connected components. If we convert the
background knowledge into a hypergraph, the hypergraph has to contain relation
nodes with ezactly three neighbors (the subject, predicate and object of the relation)
if we are to convert it back into a standard representation of background knowledge.
Thus, naively removing nodes from the hypergraph may result in a network that we
can no longer convert back to the standard background knowledge representation.

Advanced node removal. We tested an alternative approach that takes into account

that the relations, encoded by the network edges, are often transitive. For example,
in our work we use the is-a and is-part-of relations that are both transitive. Using
transitivity, we design an algorithm for advanced removal of low scoring nodes from
information networks, obtained by direct conversion of the background knowledge
(Algorithm 2). This advanced node removal step can be used for ontologies with any
number of relations. Just like the is-a relation in Algorithm 2, other transitive relation
are added back to the network in row three of the algorithm. As the background
knowledge is in direct correspondence with the information network obtained from it,
removing the node from the information network corresponds to removing a matching
term from the background knowledge. In this sense, Algorithm 2 can be used as
the term-removal step of Algorithm 1. Algorithm 2 can also be used to remove low
scoring nodes from hypergraphs constructed from the background knowledge if we first
convert hypergraphs into a simple network form resulting from the direct conversion
of background knowledge ontologies.

3.3.4. APPLYING SDM ALGORITHMS

SDM algorithms Hedwig and Aleph (described in Sections 2.1.4 and 2.1.5, respectively)
were used in the last step of the NetSDM methodology to discover rules explaining the
target class instances.
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Input: Information network G, (obtained by direct conversion of background
knowledge into information network format with directed edges) and node
n € G, (a term of the original background knowledge) we wish to remove
Output: New background knowledge that does not contain node n

for b € G. : (b,n) is an edge in G, do
for a € G. : (n,a) is an edge in G. do

Add edge (b,a) into G,

Remove edge (n,a) from G,

Remove edge (b,n) from G,
end
Remove node n from G,
Return G,

Algorithm 2: The algorithm for removing a node from a network, obtained

through direct conversion of the background knowledge into the information net-
work format.

1
2
3
4
5 end
6
7
8
9

Applying Hedwig. Hedwig—which was previously successfully used in a real-life appli-
cation for explaining biological data (Vavpetic et al., 2014)—can use only one relation
type in the background knowledge, i.e. the is-a relation in the case of the Gene On-
tology. Hedwig uses this relation and its transitivity property (if A is-a B and B is-a
C, then A is-a C) to construct rules.

Applying Aleph. In contrast to Hedwig, the input to Aleph can contain several relations
as well as interactions between them. Therefore applying Aleph enabled us to use
both the is-a and is-part-of relations in the Gene Ontology. Aleph is capable of using
not only these two relations and their transitivity, but also the interaction between
the two relations in the form of two facts: (i) if A is-a B and B is-part-of C, then A
is-part-of C and (ii) if A is-part-of B and B is-a C, then A is-part-of C.

Since Aleph can use several relations for constructing rules, the background knowledge
network used in Aleph experiments contained the edges representing is-a relations as well
as the edges representing is-part-of relations.

4. Experimental settings

This section presents the settings of the experiments with two semantic data mining algo-
rithms (Hedwig and Aleph) and two search space reduction mechanisms (based on Person-
alized PageRank and node2vec). We first describe the data sets, followed by the outline of
the three experimental setups.

4.1. Data sets

In the main experiments, presented in this paper, we used two data sets: the acute lym-
phoblastic leukemia (ALL) and the breast cancer data set.

18



NETSDM: SEMANTIC DATA MINING WITH NETWORK ANALYSIS

ALL (acute lymphoblastic leukemia) data. The ALL data set, introduced by Chiaretti
et al. (2004), is a typical dataset for medical research. In data preprocessing we fol-
lowed the steps used by Podpecan et al. (2011) to obtain a set of 1,000 enriched genes
(forming the target set of instances) from a set of 10,000 genes, annotated by concepts
from the Gene Ontology (Ashburner et al., 2000), which was used as the background
knowledge in our experiments. In total, the data set contained 167,339 annotations
(connections between genes and Gene Ontology terms). In previous work on ana-
lyzing the ALL data set, the performance of the SegMine methodology (Podpecan
et al., 2011) was compared to the performance of the DAVID algorithm (Huang et al.,
2008). In this work, we use the same data set to assess if network node ranking and
reduction can decrease the run time and improve the performance of the tested SDM
algorithms.

Breast cancer data. The breast cancer data set, introduced by Sotiriou et al. (2006),
contains gene expression data on patients suffering from breast cancer. In previous
work, Vavpetic et al. (2014) first clustered the genes into several subsets and then used
a semantic subgroup discovery algorithm to interpret the most important subset (as
determined by domain experts). In this work, we constructed rules for the same subset
of genes as by Vavpeti¢ et al. (2014) and did not use the input of domain experts.
The set contains 990 genes out of a total of 12,019 genes. In our experiments, we
used SDM algorithms to describe the 990 interesting genes. The data instances are
connected to the Gene Ontology terms by 195,124 annotations.

To test whether the results of NetSDM on the Gene-Ontology-annotated data sets de-
scribed above can be generalized to other data sets, we ran the NetSDM algorithm also on a
set of smaller data sets, annotated by hierarchical background knowledge, which were used
in conjunction with the Hedwig algorithm in our previous work (Adhikari et al., 2016). The
results of these experiments are shown in Appendix A of this paper.

4.2. Experimental setups

We constructed three experimental setups to test the NetSDM methodology. In all setups,
both Hedwig and Aleph are used in their standard modes (subgroup discovery and clas-
sification rule learning, respectively) to return the set of rules explaining the target class
examples. Hedwig returns a rule set containing all the rules in the search beam at the end
of search (meaning that the size of the returned rule set matches the size of the beam).
Aleph returns a rule set consisting of rules with a sufficient coverage and low enough noise
(i.e. rules covering at least 10 positive examples and at most 100 negative examples). In the
first setup, the entire set of rules was analyzed. In the second setup, we used the NetSDM
methodology with the direct method of ontology conversion and the naive version of node
removal. Given their different operation modes (Hedwig was used for learning individual
patterns and Aleph was used for predictive theory construction), we always analyzed only
the top rule discovered by Hedwig, and the top 3 rules of the theory discovered by Aleph.
We also list the metrics for the entire theory discovered by Aleph. This allows clearer com-
parison and is sufficient to demonstrate how shrinking the background knowledge affects
the quality of discovered rules. In the third setup, we use the advanced (transitivity based)
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node removal approach (described in Section 3.3.3). We compare the quality of the result-
ing rules by measuring the Lift values of each rule (defined in Equation 1 in Section 2.1.4).
Details of each experimental setup are given below.

First experimental setup. We ran the two SDM algorithms on the entire data set to
determine the baseline performance and examine the returned rules. Using Hedwig, we
ran the algorithm with all combinations of depth (1 or 10), beam width (1 or 10) and
support (0.1 or 0.01). For Aleph, we ran the algorithm using the settings recommended
by the algorithm author—minimum number of positive examples covered by a rule
was set to 10, and maximum number of negative examples covered by a rule was set
to 100. These settings resulted in rules comparable to those discovered by Hedwig.

In both cases, our goal was to determine whether the terms used by the SDM algo-
rithms are correlated with the scores of the terms returned by the network analysis
algorithms, i.e., calculated by P-PR (Equation 4) or node2vec (Equation 6). We
evaluated this relation by observing the ranks of terms used by both algorithms to
construct the rules. For each term ¢ appearing in the constructed rules, we computed
the relative rank of the term ¢ (as defined in Section 3.1). If the correlation between
SDM algorithm’s use of terms and returned scores is strong, the relative rank calcu-
lated for a term t and used by the algorithm will be low. Low percentages ensure that
we can retain only a small percentage of the highest ranked scores.

Second experimental setup. In the second set of experiments, we exploited the corre-
lations discovered in the first experimental setup. We used the scores of background
knowledge terms to prune the background knowledge. Specifically, we ran the NetSDM
algorithm by setting the shrinkage coefficient values of ¢ to values between 0.005 and
1, thereby running the SDM algorithms on the gene ontology (GO) background knowl-
edge containing only a subset of as little as 0.5% of the terms with the highest scores.
We calculated the P-PR values of GO terms in two ways: (i) we viewed is-a relations
as directed edges pointing from a more specific GO term to a more general term, and
(ii) we viewed the relations as undirected edges. When running the experiments with
Hedwig, we set the beam size, depth and minimum coverage parameters to the values
that returned the best rules on each data set in the first set of experiments. For
example, the results of the first experimental setup showed that the rules obtained
by setting the beam size or rule depth to one are too general to be of any biological
interest; we therefore decided to set both values to 10. In the case of rule depth, this
value allows Hedwig to construct arbitrarily long rules (given that in our data sets
Hedwig returned no rules of length greater than five). Setting the beam size to 10
allows Hedwig to discover important rules (as shown in the first set of experiments) in
a reasonable amount of time; note that the run time of Hedwig increases drastically
with increased beam size, and at size 10 the algorithm takes several hours to com-
plete. Running the experiments with the Aleph algorithm, we again used the setting
recommended by the algorithm author.

Third experimental setup. In the first two sets of experiments, we used the direct
method for converting background knowledge into an information network and the
naive method for deleting low scoring nodes. In the third set of experiments, we
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Table 2: The best rules discovered by the Hedwig algorithm on the ALL data set. The
conjuncts (Gene Ontology terms) of each top ranking rule are separated by a
horizontal line in the table with the 4 right-most columns denoting the settings
used to discover the rule, and the Lift value of the entire rule. The second (third)
column can be understood as the percentage of GO terms with the Personalized
PageRank (node2vec) score higher than the corresponding term.

RelativeRank RelativeRank

Term (P-PR)[%) (Node2vec)[%] Beam  Depth  Support Lift
GO:0003674 | 0.297 46.383 1 1 0.01 1.000
GO:0003674 | 0.297 46.383 1 10 0.01 1.000
G0:0003674 | 0.297 46.383 1 1 0.1 1.000
GO:0003674 | 0.297 46.383 1 10 0.1 1.000
G0:0050851 | 4.467 2.066 10 1 0.01 2.687
G0:0002376 | 0.603 62.137

G0:0002429 | 2.506 13.985

G0:0005886 | 0.076 0.876 10 10 0.01 3.420
G0:0005488 | 0.050 16.979

G0:0002376 | 0.603 62.137 10 1 0.1 1.292
G0:0002376 | 0.603 62.137

GO:0005488 | 0.050 16.979 10 10 0.1 1.414
G0:0048518 | 1.056 93.724

G0:0003674 | 0.0046 46.38 1 10 0.01 1

tested the advanced versions of both steps: hypergraph conversion and advanced
node deletion, respectively. As the node2vec function proved inferior to the Person-
alized PageRank scoring function in the second set of experiments, we ran the third
round of experiments only using the P-PR scoring function. The results of this third
set of experiments can then be compared to the results of the second set.

5. Experimental results

We present the results of algorithms Hedwig and Aleph using two scoring functions, two
network conversion methods and two node deletion methods on the two data sets. We
analyze the results obtained from the three experimental setups.

5.1. First setup: Scores of terms used in SDM algorithms

We begin by presenting the results of the first experimental setup where we analyze the
scores and the ranks of terms appearing in rules constructed by Hedwig and Aleph, respec-
tively.

5.1.1. UsiNG HEDWIG

Tables 2 and 3 present the best ranked rules discovered by Hedwig using different parameter
settings in the first experimental setup using Personalized PageRank and node2vec node
relevance scores for the ALL and breast cancer data sets, respectively. The results show
for all the terms used by Hedwig that the relative ranks calculated by the P-PR scoring
function are remarkably high. In all the cases, the terms used to construct rules are in top
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Table 3: The best rules discovered by the Hedwig algorithm on the breast cancer data set.
The meaning of columns is the same as explained in the caption of Table 2.

Term Ef_lg?{‘ge[; ]ank %\%ﬁgil::;[l% ] Beam  Depth  Support Lift
G0:0043230 | 11.350 31.000 1 1 0.01 1.400
G0:0043230 | 11.350 31.000 1 10 0.01 1.400
G0:0043230 | 11.350 31.000 1 1 0.1 1.400
G0:0043230 | 11.350 31.000 1 10 0.1 1.400
GO:0000785 | 0.821 24.693 10 1 0.01 1.868
G0O:0003674 | 0.202 36.568

G0:0044427 | 0.409 20.538

G0:0000278 | 0.091 0.665 10 10 0.01 3.743
G0:0022402 | 0.312 59.868

G0:0043228 | 9.062 25.750 10 1 0.1 1.439
GO:0071840 | 29.454 58.599

G0:0044428 | 0.051 13.580 10 10 0.1 1.556
GO:0003674 | 0.202 36.568

percentiles of all term scores, giving credence to our hypothesis that high scoring terms are
usually used in rules. On the other hand, use of the node2vec based scoring function was
much less successful in this experiment.

This phenomenon is clearly shown in the top two charts of Figure 4 showing all the
terms used by Hedwig and their ranks. Even taking into account all (not only the best)
rules, we see that predominantly the used terms come from the top 5 percent of all the
terms as scored by the Personalized PageRank scoring function. On the other hand, this
phenomenon does not occur with the node2vec scoring function, as the results in Table 2
and Table 3 show for the ALL and breast cancer data sets. The rules used by Hedwig score
quite low according to the node2vec function, however as seen in the bottom two charts
of Figure 4, the node2vec score of the used terms is still above average, and it is possible
that the node2vec scores are useful. We consider the node2vec scores to contain sufficient
information to warrant testing both scores in the second experimental setup.

The rules discovered in the first experimental setup are biologically relevant, except when
the search beam for the Hedwig algorithm was set to 1. In this case the only significant rule
discovered contained in its condition a single gene ontology term GO:0003674 that denotes
molecular function. This is a very general term that offers little insight and shows that a
larger search beam is necessary in order for Hedwig to make significant discoveries. The
most interesting results are uncovered when the beam size is set to 10 and the support is
set to 0.01. When the depth is set to 1, the most important term GO:0050851 (antigen
receptor-mediated signaling pathway) relates to the immune system related cell type. When
searching with a depth of 10, we discovered a conjunct of four terms: immune system
process (GO:0002376), immune response-activating cell surface receptor signaling pathway,
(GO:0002429), plasma membrane (GO:0005886) and binding (G0O:0005488). This conjunct
provides additional insights about the action (binding), effect (immune response signaling
pathway), and location (plasma membrane).
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Figure 4: The ranks of the terms used by Hedwig to construct rules on the ALL (left)
and breast cancer (right) data sets. The blue line shows the score for each of
the terms in the background knowledge—the scores on the top two charts were
calculated with Personalized PageRank and the scores on the bottom two charts
were produced with node2vec. The terms in each chart are sorted by descending
score. Each red cross highlights one of the terms used by Hedwig. The blue area
on the left denotes the top 5 percent of all nodes (i.e. nodes with a relative rank
of 0.05 or lower). Note the logarithmic scale of both axes.

5.1.2. UsING ALEPH

Tables 4 and 5 show the terms, used in the 10 best rules discovered by the Aleph algorithm
that describe the ALL and breast cancer data sets, respectively, and the P-PR and node2vec
scores of the terms in the rules. The scores were calculated taking both is-a and is-part-of
relations into account.

The results again show that the Personalized PageRank scoring function ranks all the
terms used by Aleph remarkably high. Moreover, similar to the experiments with Hedwig,
the node2vec scoring function is much less successful in this experiment. The high Person-
alized PageRank ranking of terms appearing in rules discovered by the Aleph algorithm is
also seen in Figure 5.

Similar to the results using the Hedwig algorithm, the discovered rules contain terms
predominantly from the top 5 percent of all terms as scored by the Personalized PageRank
scoring function. A high value of the node2vec scoring function is again a weaker predictor
of whether a rule will be useful or not. Nevertheless, as seen in the bottom two charts
of Figures 4 and 5, the node2vec score of the used terms is still above average, and it is
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possible that the node2vec scores are useful. We consider the node2vec scores to contain
sufficient information to warrant testing both scores in the second experimental setup.

5.2. Second setup: Shrinking the background knowledge ontology

This section presents the result of the second set of experiments with the NetSDM method-
ology. We present the results of shrinking the background knowledge for Hedwig and Aleph.

5.2.1. ONTOLOGY SHRINKING FOR HEDWIG

The results of the first experimental setup show that the scores, calculated using the network
analysis techniques, are relevant to determine whether background knowledge nodes will be
used by SDM algorithms in the construction of rules describing the target instances. Here
we present the results of using the computed scores to shrink the background knowledge
used by Hedwig. We first present the results of both scoring functions on the ALL data set
and then on the breast cancer data set. We set the beam and depth parameters of Hedwig
to 10, and the minimum coverage parameter to 0.01; these are the settings that produced
the best results for both data sets in the first experimental setup with Hedwig with no
shrinking of the background knowledge (see Tables 2 and 3).

For Personalized PageRank-based network shrinkage we also test if taking into account
edge directions makes a difference. Table 6 (undirected edges) and Table 7 (directed edges)
show the results of semantic rule discovery using the P-PR function on the ALL data set.
Both tables show a similar phenomenon: by decreasing the size of the background knowledge
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Figure 5: The ranks of the terms used by Aleph to construct rules on the ALL (left) and
breast cancer (right) data sets. The chart interpretation is the same as explained
in the caption of Figure 4. Note again the logarithmic scale of both axes.
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Table 4: The 10 best rules discovered by the Aleph algorithm on the ALL data set. The
meaning of the second and third column is the same as in Table 2. The scores
were calculated by taking the is-a and is-part-of relations into account.

RelativeRank RelativeRank

Term (P-PR)[%] % (Node2vec)[%)] Coverage TP  Accuracy
GO:0016462 | 0.444 66.115

G0:0031224 | 0.092 11.634 65 13 0.884
GO:0050839 | 2.161 12.756

G0:0031982 | 0.397 5.980 69 15 0884
GO:0098609 | 0.855 99.684

G0:0016021 | 0.094 11.982 76 16 0.883
G0:0002703 | 4.948 97.078 86 21 0883
GO:0030155 | 0.886 99.031

GO:0005634 | 0.056 6.891 92 21 0.882
G0:0031224 | 0.092 11.634

GO:0055114 | 0.184 99.827 98 24 0.882
GO:0050851 | 0.792 86.346

G0:0005488 | 0.009 94.384 139 44 0882
GO:0044255 | 0.283 97.785

GO:1901615 | 1.030 99.553 17 33 0.882
GO:0006796 | 0.188 98.970 )

GO:0051129 | 3.045 97.949 83 15 0.882
GO:0007165 | 0.058 99.764

G0:0045321 | 0.622 92.021 117 32 0.882
GO:0044425 | 0.074 25.869

Table 5: The 10 best rules discovered by the Aleph algorithm on the breast cancer data set.
The meaning of the columns is the same as in Table 4.

Tem | R (Noaeweniry | Covrse TP Aceumacy
e e ®  u osu
Gomniza0 | 043 o017 s u oo
COm000226 | 1243 80543 ™o w0 oo
Com0iz087 | 0960 0674 6 11 oon
Gomoinas | 2028 o o 2 osu
Gom0s07o0 | 0227 00,147 03 2 oo
GO:0008509 | 3.826 74.934

G0:0044699 | 0.047 99.996 76 12 0910
G0:0005488 | 0.009 92.797

Gom0s000 | 01426 09,760 1 09w
GOw0043169 | 0108 5307 s 13 0010
Comooindz | 0615 76,037 o7 19 010

the rules discovered by the Hedwig algorithm either stay the same or change to rules with
a higher lift value. When searching for longer rules, reducing the size of the network by
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Table 6: Results of NetSDM using direct network conversion with undirected edges, Per-
sonalized PageRank scoring function, naive node removal and the Hedwig SDM

algorithm on the ALL data set.

Shrinkage
coefficient [%)]

GO-term Lift Coverage TP

GO:0002376  immune system process
5 GO:0002694  regulation of leukocyte activation 3.235 111 40
GO:0034110  regulation of homotypic cell-cell adhesion
GO:0002376  immune system process

10 GO:0002694  regulation of leukocyte activation 4.090 90 41
GO:0044459  plasma membrane part
GO:0003824  catalytic activity

20 GO:0044283  small molecule biosynthetic process 4.257 116 55
GO:0044444  cytoplasmic part

GO:0002376  immune system process

GO:0002429 immune response-activating cell surface recep-
50 tor signaling pathway 3.420 105 40
GO:0005886  plasma membrane

GO:0005488  binding

GO:0002376  immune system process

GO:0002429 immune response-activating cell surface recep-
100 tor signaling pathway 3.420 105 40
GO:0005886  plasma membrane
GO:0005488  binding

50% still allows us to discover the same high quality conjunct of the terms GO:0002376,
G0:0002429, GO:0005886 and GO:0005488 as before.

Comparing Table 6 and Table 7 we see that there is a slight difference in the resulting
rules if we take the direction of the relations in the background knowledge into account.
Better Lift values and more consistent results are obtained when we choose to ignore the
direction of the relations. Taking edge directions into account, for example, leads to a
discovery of a very low quality rule with Lift value of only 2.219 when the background
knowledge is at 20% of its original size. When we do not ignore the direction of the
relations, the score of each node is only allowed to propagate to the ‘parent’ nodes in the
background knowledge, i.e. high scores will be given to those GO terms whose child terms
(specializations) have a high score. On the other hand, when ignoring the direction, we
allow nodes to pass their high scores also to sibling nodes, allowing Hedwig in the final step
of our NetSDM methodology (outlined in Algorithm 1) to choose the correct specialization
of the parent node. More experiments are needed to analyze this phenomenon.

Table 8 and Table 9 show the results of the experiments using the node2vec function on
the ALL data set. The results show that node2vec based ontology shrinkage did not achieve
the same performance as the shrinkage using the Personalized PageRank function. The
results in both tables show that lower shrinkage coefficients consistently decrease the quality
of the rules discovered by Hedwig, meaning that shrinking of the background knowledge
with the node2vec scoring function removes several informative terms and connections.
Without these terms Hedwig could not extract the relevant information from the data,
causing decreased performance.

Another interesting phenomenon in the node2vec results is that as the background
knowledge decreases in size, the resulting rules become shorter, with the lowest values
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Table 7: Results of NetSDM using direct network conversion with directed edges, Person-
alized PageRank scoring function, naive node removal and the Hedwig SDM algo-

rithm on the ALL data set.

Shrinkage
coefficient [%)]

GO-term Lift Coverage TP

GO:0003824  catalytic activity
GO:0044283  small molecule biosynthetic process

5 GO0:0044444  cytoplasmic part 374l 132 55
G0:0044238  primary metabolic process
GO:0003824  catalytic activity

10 GO0:0044283  small molecule biosynthetic process 3769 131 55

G0:0044444  cytoplasmic part

G0:0044238  primary metabolic process

GO:0045936  negative regulation of phosphate metabolic pro-
cess

20 GO:0003824  catalytic activity 221989 22

GO:0009892 negative regulation of metabolic process

GO:0002376  immune system process

GO0:0002429 immune response-activating cell surface recep-

50 tor signaling pathway 3.420 105 40

GO:0005886  plasma membrane

GO:0005488  binding

GO:0002376  immune system process

GO:0002429 immune response-activating cell surface recep-

100 tor signaling pathway 3.420 105 40

GO:0005886  plasma membrane

GO:0005488  binding

Table 8: Results of NetSDM using direct network conversion with wundirected edges,
node2vec scoring function, naive node removal and the Hedwig SDM algorithm
on the ALL data set.

Shrinkage

coefficient [%)] GO-term Lift Coverage TP
5 GO:0050852 T cell receptor signaling pathway 2.586 125 36
10 GO:0050852 T cell receptor signaling pathway 2.586 125 36
20 GO:0050852 T cell receptor signaling pathway 2.586 125 36
50 GO:0050863  regulation of T cell activation 3.076 108 37

GO:0002376 immune system process

GO:0002429 immune response-activating cell surface recep-
100 tor signaling pathway 3.420 105 40
GO:0005886  plasma membrane
GO:0005488  binding

returning a single GO term as the only important node. This may be a consequence of
so many terms pruned that the remaining terms describe non-intersecting sets of enriched
genes (or sets with a very small intersection). In this case, term G0:0044281 covers the
largest number of instances and is therefore selected as the best term. Upon selecting this
term, Hedwig is not able to improve the rule by adding further conjuncts, as adding any
other term to the conjunction drastically decreases the coverage of the resulting rule.
Tables 11 and 10 show the results of the Personalized PageRank scoring function used
in reducing the background knowledge for the breast cancer data set. As in the ALL data
set, we see that decreasing the background knowledge size does not drastically decrease the
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Table 9: Results of NetSDM using direct network conversion with directed edges, node2vec
scoring function, naive node removal and the Hedwig SDM algorithm on the ALL

data set.
Shrinkage .
coefficient [%)] GO-term Lift Coverage TP
5 GO:0050852 T cell receptor signaling pathway 2.586 125 36
10 GO:0050852 T cell receptor signaling pathway 2.586 125 36
20 GO:0050852 T cell receptor signaling pathway 2.586 125 36

GO:0007507  heart development

G0:0032502  developmental process

GO:0002376 immune system process

GO0:0002429 immune response-activating cell surface recep-
100 tor signaling pathway 3.420 105 40
GO:0005886  plasma membrane
GO:0005488  binding

50 2.124 93 22

Table 10: Results of NetSDM using direct network conversion with undirected edges, Per-
sonalized PageRank scoring function, naive node removal and the Hedwig SDM
algorithm on the breast cancer data set.

Shrinkage

coefficient [%)] GO-term Lift Coverage TP

GO:0071840  cellular component organization or biogenesis
GO:0000278  mitotic cell cycle

5 GO:0005515  protein binding 4.114 121 41
G0:0044260  cellular macromolecule metabolic process
GO0:0022402  cell cycle process

GO0:0043232  intracellular non-membrane-bounded organelle
10 GO:0000278  mitotic cell cycle 3.055 151 38
GO:0005515  protein binding

GO:0071840  cellular component organization or biogenesis
GO:0007049  cell cycle

20 GO:0003824  catalytic activity 3781 122 38
GO:0005515  protein binding
GO:0003824  catalytic activity
GO:0000278  mitotic cell cycle . o
50 GO:0022402  cell cycle process 3469 126 36
GO:0005515  protein binding
GO:0003674  molecular function
100 G0:0044427  chromosomal part 3743 120 37

GO:0000278  mitotic cell cycle
GO0:0022402  cell cycle process

quality of rules discovered by Hedwig. In fact, the rules discovered from only 20% of the
original background knowledge achieve almost the same Lift score as the rules produced
from the entire data set. Further shrinking the data set allows Hedwig to discover an even
better rule. Comparing the two tables we see—even more clearly than in the ALL data set—
that ignoring the direction of edges resulted in better overall performance of the algorithm.
Especially for small background knowledge sizes, NetSDM finds rules with substantially
lower Lift values using scores calculated on directed edges compared to those calculated by
ignoring the edge direction.
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Table 11: Results of NetSDM using direct network conversion with directed edges, Per-
sonalized PageRank scoring function, naive node removal and the Hedwig SDM
algorithm on the breast cancer data set.

Shrinkage

coefficient [%)] GO-term Lift Coverage TP

GO:0003824  catalytic activity
5 GO:0007049  cell cycle 3.035 136 34
G0:0044446  intracellular organelle part
GO:0044421  extracellular region part
GO:0003824  catalytic activity

10 GO:0070062  extracellular vesicular exosome 2587 122 26
GO:0044707  single-multicellular organism process
GO:0003674  molecular function
G0:0044427  chromosomal part

20 @0:0000278  mitotic cell cycle 3.743 120 37
GO:0022402  cell cycle process
GO:0003674  molecular function
GO:0044427  chromosomal part

50 GO:0000278  mitotic cell cycle 3743 120 37
GO:0022402  cell cycle process
GO:0003674  molecular function

100 GO0:0044427  chromosomal part 3743 120 37

GO:0000278  mitotic cell cycle
G0O:0022402  cell cycle process

Table 12: Results of NetSDM using direct network conversion with wundirected edges,
node2vec scoring function, naive node removal and the Hedwig SDM algorithm
on the breast cancer data set.

Shrinkage .

coefficient [%] GO-term Lift Coverage TP

5 G0:0000082  G1/S transition of mitotic cell cycle 2.589 136 29

10 G0:0000082  G1/S transition of mitotic cell cycle 2.589 136 29

20 G0:0000082  G1/S transition of mitotic cell cycle 2.589 136 29
GO:1903047  mitotic cell cycle process

50 GO:0005515  protein binding 2916 204 49
GO:0003674  molecular function
GO:0044427  chromosomal part . .

100 G0:0000278  mitotic cell cycle 3.743 120 37
GO:0022402  cell cycle process

The results of NetSDM using the node2vec scoring funciton on the breast cancer data
set, shown in Tables 12 and 13 are comparable to those on the ALL data set. The Hedwig
algorithm does not discover important rules to explain the positive examples with the pruned
background knowledge. As on the ALL data set, too many important nodes were pruned.
Again we observe the phenomenon that as the background knowledge is shrunk, the length
of the rules decreases to 1.

While the increased rule quality shows that using the Personalized PageRank as a filter
before applying the Hedwig algorithm can improve the performance of the algorithm, the
results are also significant considering the fact that with small background knowledge sizes
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Table 13: Results of NetSDM using direct network conversion with directed edges, node2vec
scoring function, naive node removal and the Hedwig SDM algorithm on the
breast cancer data set.

Shrinkage .
coefficient [%] GO-term Lift Coverage TP

5 G0:0000082  G1/S transition of mitotic cell cycle 2.589 136 29
GO:0044699  single-organism process

10 ©0:0000278  mitotic cell cycle 3541 120 35

20 G0:0000082  G1/S transition of mitotic cell cycle 2.589 136 29

50 G0:0000082  G1/S transition of mitotic cell cycle 2.589 136 29
GO:0003674  molecular function

100 GO0:0044427  chromosomal part 3743 120 37

GO:0000278  mitotic cell cycle
GO:0022402  cell cycle process

the search space of Hedwig (and thus the computational complexity of the algorithm) is
much smaller.

Figure 6 shows the relationship between the time taken by the Hedwig semantic rule
learning algorithm (together with network preprocessing) to discover the relevant rules and
the network shrinkage coefficient c, i.e. the relative size of the background knowledge left for
Hedwig to analyze. As the network preprocessing steps were completed in seconds, the times
reported in Figure 6 correspond almost entirely to the work of the Hedwig algorithm. The
fact that shrinking takes orders of magnitude less time than rule discovery is a prerequisite
for the SDM algorithms to be useful in real-life applications. We timed the algorithm
on the ALL data set using different settings for the beam, depth and support on 8 core
2.60 GHz Intel Xeon(R)E5-2697 v3 machine with 64GB of RAM. The graph clearly shows
that smaller background knowledge ontologies result in much shorter run times (note the
logarithmic scale). This confirms our hypothesis that shrinking the background knowledge
decreases the time it takes Hedwig to search the space of possible hypotheses. We can
conclude that using the NetSDM background knowledge shrinking approach is beneficial
both for increasing the quality of the rules and for speeding up the Hedwig algorithm.

5.2.2. ONTOLOGY SHRINKING FOR ALEPH

This section examines the results of the second set of experiments with the Aleph algorithm
used in the final step of the NetSDM methodology. Due to low quality of results achieved
using node2vec in the first set of experiments with Aleph and Hedwig (presented in Section
5.1) as well as in the second set of experiments with Hedwig, we only tested Personalized
PageRank based background knowledge shrinkage with the Aleph algorithm. Furthermore,
due to low effect of taking directions of edges into account in the experiments with Hedwig,
we only used the undirected network to calculate the scores for the terms in the background
knowledge.

Table 14 shows the results of the Aleph algorithm on the ALL data set in the second set
of experiments. The results of the algorithm on the breast cancer data set are shown in Table
24 of Appendix B. The results show that unlike with the Hedwig algorithm, using the Aleph
algorithm on very heavily pruned data set does not result in the discovery of high quality
rules. When the background knowledge is very small, the quality of the discovered rules, as
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Table 14: Results of NetSDM on the ALL data set using the P-PR scoring function, direct
network conversion and the naive node removal, and using Aleph to learn a rule
set (a theory, where only top 3 best rules are shown).

Sélcr;(l:ignct (%] Rule Coverage TP Accuracy Lift
Theory 6,504 772 0.306 1.024
GO0O:0005813
GO:0043167 92 19 0.880 1.807
0.5 G0O:0005829
g
GO:0055114 229 45 0.870 1.719
G0O:0044281
GO:0005829 216 39 0.870 1.580
G0:0044260
Theory 4,867 634 0.473 1.140
G0O:0000287
L GO:0005575 118 26 0.878 1.928
GO:0009897
G0:0031224 126 27 0.877 1.875
GO:0055114
GO:0005829 229 45 0.870 1.719
Theory 4,180 601 0.544 1.258
G0O:0002250
GO:0005488 129 33 0.878 2.238
2 GO:0005515
G0:0030027 100 24 0.880 2.100
GO:0005886
GO:0001775 238 53 0.871 1.949
GO:0009987
Theory 1,333 500 0.526 1.210
GO:0005515 ) ; o
5 GO:0050851 132 39 0.880 2.585
G0O:0030027
GO:0009987 103 25 0.880 2.124
G0:0046649
GO:0071944 141 34 0.877 2.110
Theory 3,977 583 0.563 1.283
G0:0002253
GO0:0071944 180 52 0.877 2.528
4 G0:0008150
G0O:0030027
GO:0009987 103 25 0.880 2.124
GO0O:0005634
GO0:0048731 144 33 0.877 2.005
GO:0065007
Theory 4,136 589 0.546 1.246
G0:0002253
5 GO:0071944 183 54 0.877 2.582
G0O:0030027
GO:0009987 103 25 0.880 2.124
GO0O:0071944
GO:0005768 151 32 0.876 1.854
Theory 3,789 597 0.588 1.379
GO0O:0005515
GO0:0050851 128 37 0.880 2.529
10 G0O:0065007
G0O:0009987
GO:0006066 171 45 0.876 2.303
G0:0044763
G0O:0008289 65 16 0.882 2.154
G0O:0009653
Theory 3,214 548 0.643 1.492
GO:0050851
20 GO:0071944 82 36 0.885 3.841
G0O:0080135
G0:0044249 138 35 0.878 2.219
G0O:0030027
GO:0009987 100 24 0.880 2.100
Theory 2,797 529 0.686 1.655
G0O:0008610
0 GO0:0044283 127 41 0.881 2.825
GO:0050851
GO:0005488 139 44 0.880 2.770
G0O:0080135
G0:0044249 138 35 0.878 2.219
Theory 2,765 528 0.690 1.671
G0O:0008610
100 G0O:0044283 127 41 0.881 2.825
G0O:0002684
GO:0098552 82 23 0.882 2.454
GO:0050852
GO:0005515 111 31 0.880 2.444
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Figure 6: The times (in seconds) on logarithmic scale taken by Hedwig to discover rules on
the ALL data set with different settings for beam, depth and support at varying
sizes of the background knowledge set (different percentages of terms remaining
in the background knowledge) in the second experimental setup. The times are
plotted using a logarithmic scale on the y axis, and two linear trendlines (dashed)
are drawn for comparison.

well as of the set of all rules, drops significantly. The benefits of network shrinkage for Aleph
are visible when the background knowledge is pruned to 20% of its original size. At this
background knowledge size, while the time taken to discover the rules was comparable to
the time taken on the original background knowledge, the quality of the top two discovered
rules is actually higher. Similar results were obtained using the Aleph algorithm on the
breast cancer data set, shown in table 24 in Appendix B.

5.3. Third setup: Advanced network conversion and node deletion

This section presents the results of the final set of experiments using the advanced network
conversion and node removal on both data sets using both learning algorithms.

5.3.1. ADVANCED NETWORK CONVERSION FOR HEDWIG

The results of the third set of experiments show somewhat different results from those
achieved in the second experimental setup. Table 15 shows the results of both network
conversion methods on the ALL data set, while Table 16 shows the results of the methods
on the breast cancer data set. Unlike in the second set of experiments, the results of this
setup show that the quality of rules, and also the discovered rules, remain the same when
we reduce the size of background knowledge to one tenth of its original size. When further
reducing the network size we see that the direct method of network conversion outperforms
the advanced hypergraph based construction; while the hypergraph version of background
knowledge conversion returns significantly worse results at 1% of its original size (in the
breast cancer data set), the direct version still finds the same rule we find using the original
background knowledge. When shrinking the network even further, the quality of the best
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Table 15: Results of NetSDM on the ALL data set using the P-PR scoring function with
advanced node removal, using Hedwig. We only list the smallest background
knowledge size at which a network conversion method (direct or hypergraph)
discovers the same rules as with no pruning, and one size below that.

Conversion | Shrinkage

method coefficient [%)] GO-term Lift Coverage TP

GO0:0002376  immune system process

GO:0002429 immune response-activating cell

None 1 surface receptor signaling pathway 3.420 105 40

GO:0005886  plasma membrane

GO:0005488  binding

GO0O:0002376  immune system process

GO0:0002429 immune response-activating cell

Direct 0.05 surface receptor signaling pathway 3.420 105 40

GO:0005886  plasma membrane

GO:0005488  binding

GO:0016020 membrane

GO:0050851 antigen receptor-mediated signal-
ing pathway

GO0:0005488  binding

GO:0002376  immune system process

GO:0002429 immune response-activating cell

Hypergraph| 0.2 surface receptor signaling pathway 3.420 105 40

GO:0005886  plasma membrane

GO:0005488  binding

GO0:0002376  immune system process

GO:0002694  regulation of leukocyte activation

Direct 0.01 3.413 89 34

Hypergraph| 0.1 GO:0005886  plasma membrane 3.395 100 38
GO:0034110  regulation of homotypic cell-cell ad-
hesion

discovered rule decreases, but the decrease in quality occurs at a smaller size for the direct
network conversion.

Figure 7 shows the run times of Hedwig on the pruned networks in the third set of
experiments. The graph shows that unlike with the naive network reduction methods in
the second set of experiments, the time required to discover rules decreases linearly as we
lower the shrinkage coefficient. When reducing the background knowledge network to 1%
of its original size, the algorithm was able to discover the rules in two minutes, compared
to over 11 hours on the unpruned network.

The result of this set of experiments can be compared with the results of the second set
of experiments to draw two conclusions. First, the nalve version of network node removal
causes Hedwig to discover rules of a slightly higher quality, but the results of shrinking the
background knowledge are unpredictable both in terms of the quality of the rules discovered
(which for some background knowledge sizes falls below the base value obtained on the un-
pruned network). Second, the times taken to discover the rules do not decrease significantly
until we decrease the size of the background knowledge to 20% of its original size. On the
other hand, the advanced version of node removal allows the algorithm to discover the same
results as on the unpruned network even for very heavily pruned background knowledge
sets. The results remain consistent, and the times taken to discover the rules decrease
much more predictably with this node deletion method.
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Table 16: Results of NetSDM on the breast cancer data set using the P-PR scoring function
with advanced node removal, using Hedwig.

Conversion | Shrinkage .

method coefficient [%) GO-term Lift Coverage TP
GO:0003674  molecular function
G0:0044427  chromosomal part

None 1 GO:0000278  mitotic cell cycle 3743 120 37
GO:0022402  cell cycle process
GO:0003674  molecular function

. GO:0044427  chromosomal part

Direct 0.01 GO:0000278  mitotic cell cycle 3743 120 37

GO0:0022402  cell cycle process
. G0O:0022402  cell cycle process

Direct 0.005 GO:0005654  nucleoplasm 2.942 120 30
GO:0003674  molecular function
GO:0044427  chromosomal part

Hypergraph| 0.1 GO:0000278  mitotic cell cycle 3743 120 37
GO:0022402  cell cycle process
GO:0022411  cellular component disassembly
GO:0005515  protein binding

Hypergraph| 0.05 G0:0044422  mitotic cell cycle 3743 120 37
GO:0032991 macromolecular complex

50000

10000

2000

—a— ALL, Naive conversion
—— ALL, Hypergraph conversion

Time [seconds]

Breast cancer, naive conversion
Breast cancer, hypergraph conversion

----- Linear

% of terms

Figure 7: The times (in seconds) on logarithmic scale taken by Hedwig in the third ex-
perimental setup to discover rules with different conversion methods at varying
sizes of the background knowledge (different percentages of terms remaining in
the background knowledge). The times are plotted using a logarithmic scale on
the y axis, and a linear trendline (dashed) is drawn for comparison.

5.3.2. ADVANCED NETWORK CONVERSION FOR ALEPH

Table 17 shows the results of the Aleph algorithm on the background knowledge pruned us-
ing advanced node reduction and direct network conversion, while Table 18 shows the results
of background knowledge reduction using hypergraph network conversion. The results for
all possible shrinkage coefficients are shown in Tables 22 and 23 in Appendix B. The results
are comparable to the results obtained using the Hedwig algorithm: when the background
knowledge is pruned to 10% (for the direct conversion) and 50% (for the hypergraph con-
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version) of its original size, Aleph discovers the same best three rules. Furthermore, while
shrinking the background knowledge further to only 3% of its original size, the quality of
the discovered rules (measured by their Accuracy and Lift value) remains very close to the
quality of the rules discovered on the entire background knowledge. The drop in quality
is slightly smaller when using the hypergraph network conversion. Interestingly, for both
network conversion methods, on a heavily pruned background knowledge (1% and 2% of its
original size for the direct network conversion and for the hypergraph network conversion,
respectively), the algorithms are able to discover rules of a higher quality than those on the
original background knowledge. Similar results were obtained on the breast cancer data set
and are shown in Appendix B in Tables 25 and 26.

Table 17: Results of NetSDM on the ALL data set using the P-PR scoring function, direct
network conversion and advanced node removal. For each percentage of terms
remaining in the reduced ontology, we show only the top 3 rules discovered by
Aleph, and the properties of the entire set of rules (Theory).

S(}:;%l;iii %] Rule Coverage TP  Accuracy Lift
Theory 2,561 489  0.704 1.671
0.5 G0:0005783, GO:0005789, GO:0009058 | 63 19 0.883 2.639
G0:0044459, GO:0002376, GO:0007275 | 137 38 0.879 2.427
G0:0006950, GO:0015630 79 19 0.881 2.104
Theory 2,673 515  0.697 1.686
1 G0:0050851, GO:0071944 82 36 0.885 3.841
G0:0006066, GO:0044238, GO:0003824 | 122 40 0.881 2.869
G0:0001775, GO:0006793 121 35 0.880 2.531
Theory 2,760 529  0.690 1.677
10 G0:0008610, GO:0044283 127 41 0.881 2.825
G0:0045321, GO:0005886 117 35 0.880 2.618
G0:0002250, GO:0005623 119 33 0.880 2.426
Theory 2,568 510 0.708 1.738
100 G0:0008610, GO:0044283 127 41 0.881 2.825
G0:0045321, GO:0005886 116 34 0.880 2.565
G0:0010008, GO:0032991 97 28 0.881 2.526

The run times of Aleph are shown in Figure 8. Compared to Hedwig, shrinking the
background knowledge to a relatively small set does not have the same drastic effect on
the run time. For example, shrinking the background knowledge to 10% of its original size
for the direct network construction, which allows us to discover the same rules as with
no ontology shrinkage, only decreases the run time by 14%, compared to the 90% time
decrease for the Hedwig algorithm. Using the hypergraph network construction, a slightly
larger speed-up was achieved in our experiments, however this is counter-balanced by the
fact that for hypergraph network construction, the shrinkage coefficient must be set to a
higher value in order to obtain the same rules.

The most promising finding of this series of experiments is that for very heavily pruned
background knowledge (1% and 2% of the original size), Aleph (using the hypergraph con-
version method) is capable of discovering high quality rules explaining the data. The times
taken to discover the rules at this background knowledge size are halved when compared to
times on the original background knowledge, and the resulting rules are of a higher quality
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Table 18: Results of NetSDM on the ALL data set using the P-PR scoring function, hyper-
graph network conversion and advanced node removal. For each percentage of
terms remaining in the reduced ontology, we show only the top 3 rules discovered
by Aleph, and the properties of the entire set of rules (Theory).

(S::Zg;;iiet %] Rule Coverage TP  Accuracy Lift
Theory 2,577 492  0.703 1.671
0.5 GO:1901362, GO:0044255, GO:0044281 | 84 26 0.882 2.708
GO:0005874, GO:0005515, GO:0044707 | 48 14 0.883 2.552
G0:0007166, GO:0050776, GO:0016021 | 138 40 0.879 2.536
Theory 2,534 516  0.713 1.782
9 G0O:0050870, GO:0005886 87 35 0.884 3.520
G0:0007166, GO:0050778, GO:0044459 | 141 48 0.881 2.979
G0O:0007017, GO:0006950 48 15 0.884 2.734
Theory 2,648 527 0.703 1.741
50 G0:0002376, GO:0044459, GO:0050865 | 140 48 0.881 3.000
G0:0002429 138 47 0.881 2.980
GO0:0071944
GO:0006066, GO:0003824, GO:0044238 | 118 38 0.881 2.818
Theory 2,616 521  0.705 1.743
100 G0:0002376, GO:0044459, GO:0050865 | 140 48 0.881 3.000
G0:0002429, GO:0071944 138 47 0.881 2.980
GO:0006066, GO:0003824, GO:0044238 | 112 38 0.882 2.969
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Figure 8: The times (in seconds) taken by the Aleph algorithm for different sizes of the
background knowledge to discover rules in the third round of experiments on the
ALL data set. Note the logarithmic scale of the y axis of the graph. A linear
trendline (dashed) is drawn for comparison.

than even the best rule discovered without ontology shrinking. The main drawback of this
result at this point is the fact that the ideal background knowledge size at which this occurs
is different for different shrinkage methods, meaning that for a new data set we have to
tune the background knowledge size.
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6. Conclusions and further work

This paper presents an efficient approach to semantic data mining that uses network anal-
ysis for shrinking of background knowledge to significantly reduce the search space and
make semantic data mining practically applicable. We tested several variants of combining
network analysis with semantic data mining. The result is a four-step NetSDM framework
for data analysis: background knowledge conversion, network node importance calculation,
network shrinkage, and semantic data mining. We tested NetSDM using two rule learning
algorithms: Hedwig and Aleph. In all the setups Hedwig and Aleph were used in their
standard modes of operation: Hedwig was used for subgroup discovery and Aleph was used
for classification rule learning. Nevertheless, as output, both algorithms return a set of rules
explaining the target class examples.

The results of using Hedwig as the semantic data mining algorithm for rule learning in
the final step of the NetSDM methodology show that using a direct network conversion, the
Personalized PageRank function to estimate term importance, and an advanced version of
network shrinkage (using transitivity of underlying relations) provides the most consistent
results. Using this setup, the entire algorithm was able to discover the same rules as the
original Hedwig algorithm, being faster by a factor of almost 100. If we replace the advanced
node removal function with the naive version, the time savings are less predictable, but the
algorithm discovers different rules than if run on the unpruned data set. Consequently,
when applying Hedwig the advanced node removal strategy is recommended. The results
of comparing NetSDM by taking/not taking network edge directions into account were less
conclusive and require further experiments for detailed analyisis.

Using Aleph as the SDM algorithm also yielded interesting results. Using any of the three
shrinking methods, our results show that on largely reduced background knowledge, Aleph
is capable of discovering high quality rules explaining the data set. Rule discovery in this
case is faster by a factor of 2 which is a significant improvement. Using larger background
knowledge, NetSDM is still capable of shrinking the background knowledge and (with direct
network conversion and the Personalized PageRank scoring function) achieve a noticeable
(15%) speed-up in the run time of the Aleph algorithm.

In summary, the purpose of this work is to examine the effect of using network anal-
ysis inspired network shrinkage on semantic data mining algorithms in the context of the
proposed NetSDM methodology. Due to the different modes of operation of algorithms Hed-
wig and Aleph (performing subgroup discovery and classification rule learning, respectively),
comparing their results does not provide additional insights regarding their operation. Nev-
ertheless, comparing Aleph and Hedwig, our results show that the Hedwig algorithm is very
consistent in that Hedwig can discover the same rules, but in a much shorter time, when
applying NetSDM to reduce the background knowledge. In contrast, the speed-up—while
still noticeable—was much less pronounced when using NetSDM with Aleph. The quality
of the discovered rules also decreased more quickly with Aleph used as the final algorithm
of NetSDM.

In future work, we plan a more comprehensive examination of how the performance
of NetSDM compares to enrichment analysis based methods like SEGS (Trajkovski et al.,
2008b) and SegMine (Podpecan et al., 2011). We plan further experiments with different
methods for network reduction. For example, other network ranking methods or even other
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network analysis methods, such as community detection, could be used to identify the most
relevant parts of the background knowledge. The existing two methods, PageRank and
node2vec, contain parameters (especially parameters p and ¢ of node2vec) which may affect
the resulting scoring function.

Additionally, a non-deterministic approach to background knowledge shrinking could
be used instead of the hard shrinkage coefficient used in the current experiments. With
a non-deterministic approach, the scores of background knowledge terms may represent
(non-scaled) probabilities of sampling a given node. Such an approach has the benefit
of not eliminating any background knowledge term outright. However, the probabilistic
nature of the sampling would require multiple runs of the entire algorithm, including the
SDM rule learner, causing additional computations that would negate the improvements in
performance achieved by network shrinking. Alternatively, we could more tightly integrate
network analysis scores and the SDM algorithms. Instead of using the relevance scores
to prune the ontology and feed the pruned ontology to SDM algorithms, we could use
the scores, calculated by the network analysis algorithms, to guide the search in SDM
algorithms. The main drawback of this approach would be the lack of modularity: while
it is now relatively simple to replace one SDM algorithm in NetSDM with another (for
example, replacing Hedwig with Aleph), this would no longer be possible if the scores were
an integral part of a SDM algorithm.

We plan applications of the NetSDM methodology to larger data sets. Our experiments
so far have been limited to hierarchies (experiments described in Appendix A) and the Gene
Ontology, which is a big ontology but relatively simple in structure and logic relationships (in
the experiments, we used only two relationships out of five relationships available in GO).
Without our shrinking approach, Hedwig required several hours to discover interesting
rules using this ontology, and therefore using larger ontologies was not feasible without
dramatically reducing the parameters guiding the search. However, using the NetSDM,
the algorithm can now be applied to a much wider range of background knowledge sets,
including more complex ontologies and large knowledge graphs, such as the BioMine graph
(Eronen and Toivonen, 2012) of biological entities and connections between them, as well
as the Bio2RDF knowledge graph (Callahan et al., 2013), two knowledge graphs we intend
to examine in our further work.
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Appendix A

The Hedwig algorithm was previously used on several publicly available data sets (Adhikari
et al., 2016). To show generality of the proposed NetSDM approach, we tested the perfor-
mance of the NetSDM algorithm on the same data sets. The results, shown in Tables 19, 21,
and 20, show similar trends as for the biological data sets which comprise the main part of
this paper. The use of NetSDM can drastically decrease the running time of the algorithm
with little to no decrease in the quality of the discovered rules. The speed-ups, achieved on
the reported data sets, are around the factor of 5, which is less than for the Gene Ontology
background knowledge. This lower, though still very promising speed-up can be explained
by the fact that (1) the background knowledge in this case is smaller, meaning that less
pruning can take place, (2) because of smaller background knowledge, a larger portion of
Hedwig’s running time consists of pre-processing and post-processing of the data, the tasks
that are not affected by background knowledge pruning.

Table 19: Results of NetSDM on the Cities data set using the P-PR scoring function, regular
network conversion, and advanced node removal.

Sc})leril:frili(iiii (%] Time taken [s] | Rule Coverage TP  Precision Lift
City, Municipality, Capital 50 44 0.880 3.054
3 2.50 City, Municipality, Center 58 51 0.879 3.052
City, Center 56 49 0.875 3.037
PopulatedPlace, City, Place, Center 49 49 1 3.47
4 3.85 Underspecified, City, Place, Center 48 48 1 3.47
PopulatedPlace, City, Place, Capital | 42 42 1 3.47
PopulatedPlace, City, Place, Center 49 49 1 3.47
100 17 Underspecified, City, Place, Center 48 48 1 3.47
PopulatedPlace, City, Place, Capital | 42 42 1 3.47

Table 20: Results of NetSDM on the NY Daily data set using the P-PR scoring function,
regular network conversion, and advanced node removal.

f:;%l(l;aeii %] ;1;112 i 8 Rule Coverage TP  Precision Lift
Place, LivingPeople,Location 95 95 1 7.196
5 57.44 Agent, District,CausalAgent,Place,Person 92 92 0.879 7.196
Place, LivingPeople,Region 92 92 0.879 7.196
Agent, Location,CausalAgent,Place,Person 102 102 1 7.196
10 84.95 Agebnt Location,CausalAgent,PopulatedPlace | 100 100 1 7.196
Agent, Region, CausalAgent, Place,Person 97 97 1 7.196
Agent, Location,CausalAgent,Place,Person 102 102 1 7.196
100 297.99 Agebnt Location,CausalAgent,PopulatedPlace | 100 100 1 7.196
Agent, Region, CausalAgent, Place,Person 97 97 1 7.196
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Table 21: Results of NetSDM on the Tweets data set using the P-PR scoring function,
regular network conversion and advanced node removal.

f(})l(:fl-gi{ii:ii %] Time taken [s] | Rule Coverage TP  Precision Lift
Athlete, Agent 139 112 0.806 4.268
0.5 13 Person, Athlete 147 117 0.796 4.215
CausalAgent, Athlete | 149 117 0.785 4.159
Athlete, Agent 139 112 0.806 4.268
10 24 Athlete, Contestant 141 113 0.801 4.245
Athlete, Person 147 117 0.796 4.215
Athlete, Agent 139 112 0.806 4.268
100 113 Athlete, Contestant 141 113 0.801 4.245
Athlete, Person 147 117 0.796 4.215
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Appendix B

Table 22: Results of NetSDM on the ALL data set using the Personalized PageRank scor-
ing function, direct network conversion, and advanced node removal. For each
percentage of background knowledge terms left in the ontology, we list only the

top 3 rules discovered and also report on the properties of the entire set of rules
(Theory) discovered by Aleph.

Shrinkage Shrinkage

coefficient | Rule Coverage TP Accuracy Lift coefficient | Rule Coverage TP Accuracy Lift

[%] [%]

Theory 7561 189 0704 1671 Theory 7852 543 0.683  1.666
GO:0005783 G0:0002684
G0:0005789 | 63 19 0.883  2.639 G0:0016021 | 137 43 0.880  2.746
05 G0:0009058 5 G0:0044459
: G0:0044459 C0:0045321
G0:0002376 | 137 38 0.879  2.427 Go:0005886 | 17 35 0.880  2.618
G0:0007275 G0:0002250 -
GO:0006950 | o 5 ossi 210 Go:0005623 | '1° 33 0.880  2.426
G0:0015630 : : Theory 7760 529 0.600  1.677
Theory 7673 515 0.607  1.686 CO:0008610 | 1, . ossi 2s2s
GO:005085T | o, T 0:0044283
G0:0071944 : : CO:0045321 | ;- 55 0850 2018

1 GO:0006066 G0:0005886 : :
G0:0044238 | 122 40 0.881  2.869 G0:0002250 -

G0:0003824 Go:0005623 | '1° 33 0.880  2.426
GO:0001775 |- 55 0880 2531 Theory 2620 532 0705 1.743
G0:0006793 CO:0008610 | 1, o ossi 2s28
Theory 2814 5470688 1701 0:0044283 : :
G0:0002250 - G0:0045321 )

, Gooomaas | 1o 33 0.880  2.426 Cososel | 35  0.880  2.618
G0:0045321 — G0:0010008 -
GOzt | 10 28 0.880  2.333 SO0 | o7 28 0.881  2.526
CO:1901360 | 152 53 0879 2310 Theory 2576 510 0.707  1.732
G0:0008610 CO:0008610 | ;,- 0 ossi 2s28
Theory 2879 540 0681 1660 ., G0:0044283 : :
GO:0016021 G0:0045321 y X
G0:0002684 | 137 43 0.880  2.746 Go:0005886 | ‘16 34 0.880  2.565

3 G0:0044459 G0:0010008 -
GO:0045321 | 1,- 5 o880 2018 G0:0032001 | %7 28 0.881  2.526
G0:0044459 : : Theory 2568 510 0.708  1.738
G0:0002250 G0:0008610
Gootazod | 1o 33 0.880  2.426 . oo | 127 41 0881  2.825
Theory 2816 547 0.688  1.700 00045321 y )
GO:0016021 G0o:0005886 | ‘16 34 0.880  2.565
G0:0002684 | 137 43 0.880  2.746 G0:0010008

4 G0:0044459 G0:0032901 | 27 28 0.881  2.526
G0:0045321 :

Goooaosal | 35 0.880  2.618
G0:0002250
Coo00ao0 | 19 33 0.880  2.426
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Table 23: Results of NetSDM on the ALL data set using the Personalized PageRank scoring
function, hypergraph network conversion, and advanced node removal. For each
percentage of background knowledge terms left in the ontology, we list only the
top 3 rules discovered and also report on the properties of the entire set of rules
(Theory) discovered by Aleph.

Shrinkage % of terms Rule Cov Pos Acc Lift
coefficient | Rule Coverage TP Accuracy Lift Theory 2,522 512 0.714 1.776
(%] G0:0016021
Theory 2,577 192 0703 1.671 GO0:0002684 | 137 43  0.880  2.746
GO0:1901362 5 GO:0005886
G0:0044255 | 84 26 0.882  2.708 GO:0006066
G0:0044281 GO:0003824 | 129 40 0880 2713
05 GO0:0005874 GO:0001775
GO:0005515 | 48 14 0883 2552 GO:0010899 | 132 35 0.879 2.320
G0:0044707 Theory 2642 538 0.706___1.782
GO0:0007166 GO:0050865
G0:0050776 | 138 40 0879  2.536 G0:0002376 | 144 49  0.880  2.977
G0:0016021 10 GO:0005886
Theory 2,627 5150702 1715 GO:0006066
GO:1901362 G0:0003824 | 121 40  0.881 2.893
GO0:0044255 | 84 26 0.882 2.708 G0:0044238
G0:0044281 GO:0051606 | " T
1 GO:0007166 G0O:0006950 6 0-88 663
GO:0050776 | 138 40 0.879 2.536 Theory 2,675 527 0.700  1.724
G0:0016021 G0:0044459
GO:0032403 GO0:0002684 | 139 47  0.881  2.959
GO0:0005886 | 114 30 0.880 2.303 20 G0:0050865
G0:0032991 G0:0006066
Thoory 5531 6 0713 1783 G0:0003824 | 120 39 0.881  2.844
GO:0050870 G0:0044238
GO:0005886 87 35 0.884 3.520 GOf0051606 106 14 0854 5.663
2 GO:0007166 G0O:0006950
GO:0050778 | 141 48 0.881  2.979 "Theory 2,648 527 0.703  1.741
G0:0044459 G0:0002376
GO000701 G0:0044459 | 140 48  0.881  3.000
GO:0006950 48 15 0.884 2.734 50 GOf0050865
Theory 2,728 539 0.696 _ 1.729 GO:0002429 150 47 o881 2.980
: : G0:0071944
GO:0007166 he M LR LE
§O:0050778 | 141 48 0881 2,979 G0:0003824 | 118 38 0.881 2.818
3 G0:0044459
GO-0050553 G0:0044238
10050 140 46 0.880  2.875 Theory 2,616 521 0.705__ 1.743
G0:0016020
GO:0006066 G0:0002376
; 129 40 0.880  2.713 G0:0044459 | 140 48 0.881  3.000
G0:0003824 Godany
Theory 2,548 5130711 1.762_ 100 it
GO0:0016021 GOiomons | 138 a7 0881 2980
G0:0002684 | 137 43 0.880  2.746 O 0EIns
4 RS L GO:0003824 | 112 38  0.882  2.969
: :00442:
GO 000589e | 129 40  0.880  2.713 G0:0044238
GO:0001775 | 1,
Cooonag | 132 35  0.879  2.320
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Table 24: Results of NetSDM on the breast cancer data set using the Personalized PageR-
ank scoring function, direct network conversion, and naive node removal. For
each percentage of background knowledge terms left in the ontology, we list only
the top 3 rules discovered and also report on the properties of the entire set of
rules (Theory) discovered by Aleph.

Shrinkage Shrinkage
coefficient | Rule Coverage TP Accuracy Lift coefficient | Rule Coverage TP Accuracy Lift
[%] (%]
Theory 6,439 659 0.463 1.177 Theory 5,137 611 0.569 1.368
GO:0070062 G0O:1903047
GO:0005576 | 84 19 0909 2602 Go:0000166 | 12° 31 0907 2765
0.5 G0O:0005634 GO:0005730
TO:0005794 | 7o 30 o001 2.000 Go:oos1179 | ™ 22 0909 2.693
G0O:0044428 i i G0O:0050896 169 34 0.904 2.315
GO:0005743 109 18 0.907 1.900 G0O:0000785 i )
G0O:1901363 i i Theory 4,629 588 0.610 1.461
Theory 5,196 575 0.558 1.273 G0O:0006890
GO:0051301 217 41 0.901 2174 10 G0O:0043229 60 15 0.910 2.876
GO:0050794 i i G0O:1903047 129 31 0.907 2.765
1 GO:0005525 110 20 0.907 2.092 G0O:0000166 i )
G0O:0044421 i i G0O:0032993 88 21 0.909 2.746
G0O:0046983 Theory 3,475 528 0.701 1.748
GO:0035639 118 21 0.906 2.048 G0O:0000910
G0O:0044424 20 G0O:0043226 50 12 0-911 2.761
Theory 3,902 522 0.662 1.539 GO:0005654
G0O:0000082 29 21 0.909 2.715 G0O:0008283 158 37 0.906 2.694
GO:0005515 ) ) G0O:0032984 ]7 19 0.909 2513
2 G0O:0008283 185 37 0.903 2.301 G0O:0043232 i :
G0O:0006139 i ) Theory 3,006 526 0.742 2.013
G0O:0008201 G0O:0051301
G0O:0044763 70 14 0.909 2.301 50 G0:0032268 85 26 0.910 3.519
G0O:0050896 G0O:0005730
Theory 5,078 603 0.573 1.366 G0O:0051179 94 22 0909 2.693
GO:1901363 GO0O:1903561
GO:0032446 142 35 0.907 2.836 GO:0048468 95 22 0.909 2.664
3 GO:0005634 Theory 2,637 484 0.767 2.112
GO:0005794 117 25 0.907 2.458 G0O:0032993
G0:0044446 100 G0:0000987 | ° 21 0910 3179
G0O:0003723 . GO:0015931
GO:0031967 101 21 0.908 2.392 GO:0031967 43 11 0.911 2.943
Theory 4,605 582 0.611 1.454 GO:1903047
G0O:0005634 G0O:0035639 120 30 0.908 2.876
GO:0005794 117 25 0.907 2.458
4 G0O:0044446
GO:0012501
G0:0043232 125 26 0.907 2.393
G0:0044430 e -
GO:0000278 195 40 0.903 2.360
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Table 25: Results of NetSDM on the breast cancer data set using the Personalized PageR-
ank scoring function, direct network conversion, and advanced node removal. For
each percentage of background knowledge terms left in the ontology, we list only
the top 3 rules discovered and also report on the properties of the entire set of
rules (Theory) discovered by Aleph.

Shrinkage Shrinkage
coefficient | Rule Coverage TP Accuracy Lift coefficient | Rule Coverage TP Accuracy Lift
[%] (%]
Theory 2,455 422 0.772 1.978 Theory 2,765 492 0.757 2.047
GO:0000166 GO:0005829
o5 G0:0000278 129 31 0.907 2.765 5 G0O:0009308 34 11 0.912 3.722
: GO:0005730 GO:0015630
GO:0051179 94 22 0.909 2.693 GO:0007059 70 21 0.911 3.452
GO:0051174 G0O:0044770
GO:0007049 68 15 0.910 2.538 G0:0031981 126 34 0.908 3.105
Theory 2,724 474 0.757 2.002 Theory 2,838 501 0.752 2.031
G0:1903047 GO:0005829
L G0:0035639 120 30 0.908 2.876 G0:0009308 34 11 0.912 3.722
GO:0005730 10 GO:0043232
GO:0051179 94 22 0.909 2.693 G0:1903047 75 21 0.910 3.221
GO:0070647 GO:0051276
G0:0033554 | 1€ 25 0907 2.480 TO:0024770 | 1,0 31 o005 3108
Theory 2,761 484 0.756 2.017 G0:0031981 . )
GO:0005829 Theory 2,715 482 0.759 2.043
2 G0:0044106 31 10 0.912 3.711 GO:0005829 34 11 0.912 3.799
G0:1903047 136 a1 0.908 3.468 20 G0O:0009308 : )
G0O:0051276 ) : GO:0015630 70 21 0.911 3.4592
G0:0044770 126 34 0.908 3.105 GO:0007059 : )
G0:0031981 i : G0O:0044770 126 34 0.908 3.105
Theory 2,749 497 0.759 2.080 G0:0031981 . )
G0:0009308 Theory 2,880 510 0.750 2.037
3 G0O:0005829 34 1 0.912 3.722 GO:0005829 34 11 0.912 3.799
G0:1903047 = G0O:0009308 : )
. 136 41 0.908 3.468 50 -
G0O:0051276 G0O:1903047 136 41 0.908 3.468
G0:0044770 126 34 0.908 3.105 GO:0051276 : )
G0:0031981 i i G0O:0044770 126 34 0.908 3.105
Theory 2,758 498 0.758 2.077 G0O:0031981 : )
GO:0005829 Theory 2,755 498 0.759 2.080
4 G0O:0009308 34 1 0.912 3.722 GO:0005829 34 11 0.912 3.799
G0O:1903047 5 G0O:0009308 : )
. 136 41 0.908 3.468 100 -
G0O:0051276 GO:0051276 136 a1 0.908 3.468
G0O:0044770 5 P G0O:0000278 : )
. 126 34 0.908 3.105
G0:0031981 G0O:0044770 126 34 0.908 3.105
G0:0031981 : )
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Table 26: Results of NesSDM on the breast cancer data set using the Personalized PageR-
ank scoring function, hypergraph network conversion, and advanced node re-
moval. For each percentage of background knowledge terms left in the ontology,
we list only the top 3 rules discovered and also report on the properties of the
entire set of rules (Theory) discovered by Aleph.

Shrinkage Shrinkage
coefficient | Rule Coverage TP Accuracy Lift coefficient | Rule Coverage TP Accuracy Lift
[%] (%]
Theory 2,392 430 0.779 2.068 Theory 2,920 499 0.744 1.966
G0:0008283 G0:1903047
G0:1901360 32 10 0.912 3.595 5 GO:0051276 136 41 0.908 3.468
= GO:0005829 GO:0005730
° G0:1903047 100 28 0.909 3.221 G0O:0032879 81 20 0.909 2.841
GO0:0051301 G0O:0044237
G0O:0031410 GO:0051726 86 18 0.909 2.408
GO0:0015031 43 12 0.911 3.211 Theory 2,885 497 0.747 1.982
G0O:0005789 G0:1903047
Theory 2,431 439 0.777 2.078 G0O:0051276 136 41 0.908 3.468
GO:0005794 10 GO:0080090
GO:0005634 85 22 0.909 2.978 GO:0051726 84 21 0.909 2.876
1 G0:0044422 G0:0005488
GO:0006260 G0O:0022411 115 28 0.908 2.801
G0:0032991 82 21 0.910 2.946 G0O:0043232
GO:0005654 Theory 2,694 470 0.759 2.007
GO:0003674 96 24 0.909 2.876 G0O:1903047
G0:1902589 20 Gqo:0051276 | 36 41 0908 3.468
Theory 2,721 492 0.761 2.080 GO:0005730
G0O:0008283 39 10 0.912 3.595 GO:0051179 94 22 0.909 2.693
G0O:0006725 ) : G0O:0043226 82 19 0.909 2.666
2 GO:0051276 136 41 0.908 3.468 GO:0051726 : )
G0O:0000278 i : Theory 2,912 503 0.746 1.987
G0O:0032993 G0O:1903047
GO:0009987 | 73 21 0910 3310 Ggo:0051276 | 136 41 0908 3.468
G0O:0005634 G0O:0000280
Theory 2,791 491 0.754 2.024 G0O:0043170 8 22 0.910 3.245
G0O:1903047 G0O:0043226
4 G0:0051276 136 41 0.908 3.468 GO:0051726 82 19 0.909 2.666
GO:0010604 36 21 0.909 2.809 Theory 2,927 505 0.745 1.985
GO:0051726 G0O:1903047
- 136 41 0.908 3.468
GO:0016567 114 26 0.908 2.624 GO:0051276
G0:1901363 ! ) 100 GO:0003677
Theory 2,928 505 0.745 1.984 GO:0070647 89 21 0.909 2.715
G0O:1903047 136 41 0.908 3.468 G0O:0044424
4 GO:0051276 GO:0043226 i
- - X 82 19 0.909 2.666
G0O:0031323 ]7 21 0.909 2777 G0O:0051726
GO:0051726 | )
GO:0016567
G0:1901363 114 26 0.908 2.624
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