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A B S T R A C T

Quality of life of patients with Parkinson's disease degrades significantly with disease progression. This paper
presents a step towards personalized management of Parkinson's disease patients, based on discovering groups of
similar patients. Similarity is based on patients’ medical conditions and changes in the prescribed therapy when
the medical conditions change. We present two novel approaches. The first algorithm discovers symptoms’
impact on Parkinson's disease progression. Experiments on the Parkinson Progression Markers Initiative (PPMI)
data reveal a subset of symptoms influencing disease progression which are already established in Parkinson's
disease literature, as well as symptoms that are considered only recently as possible indicators of disease pro-
gression by clinicians. The second novelty is a methodology for detecting patterns of medications dosage changes
based on the patient status. The methodology combines multitask learning using predictive clustering trees and
short time series analysis to better understand when a change in medications is required. The experiments on
PPMI data demonstrate that, using the proposed methodology, we can identify some clinically confirmed pa-
tients’ symptoms suggesting medications change. In terms of predictive performance, our multitask predictive
clustering tree approach is mostly comparable to the random forest multitask model, but has the advantage of
model interpretability.

1. Introduction

Data mining algorithms have been successfully used to learn pre-
dictive models and to discover insightful patterns in the data. Predictive
and descriptive data mining approaches have been successfully used
also in medical data analysis. The use of data mining methods may
improve diagnostics, disease treatment and detection of causes of dis-
eases. In personalized healthcare [16], data mining can be used to
improve drug recommendations and medical decision support, leading
to reduced costs of medical treatment. The discovered patterns can
provide the clinicians with new insights regarding the status of the
treated patients and can support decisions regarding therapy re-
commendations.

Parkinson's disease is the second most common neurodegenerative
disease (after Alzheimer's disease) that affects many people worldwide.
Due to the death of nigral neurons, patients experience both motor and

non-motor symptoms, affecting their quality of life. The reasons for the
cell death are still poorly understood, and there is currently no cure for
Parkinson's disease. Physicians try to manage patients’ symptoms by
introducing medications therapies, using antiparkinson medications.
Physicians need to carefully prescribe medications therapies since the
prolonged intake—in particular of higher dosages of antiparkinson
medications—can have significant side-effects.

Changes of the status of Parkinson's disease patients through time is
a result of the natural progression of the disease and the medications
that the patients are prescribed in order to keep their status stable as
long as possible. Physicians follow the guidelines for therapy pre-
scription and the response of patients to medications is usually recorded
in clinical studies using simple statistical methods. For example, in our
previous work [43], we describe the disease progression of a patient
who starts with a good status and recieves only one type of anti-
parkinson medications (MAO-B inhibitors). As the disease progressed
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and the patients’ motor symptoms worsened, the clinician started the
treatment with another type of medications (dopamine agonists) and
was successful in keeping the motor symptoms as tremor, bradykinesia,
and rigidity stable for about two years. As the effectiveness of these
medications wore off, the clinician was forced into introducing the third
group of medications (levodopa).

To the best of our knowledge, data mining techniques have not yet
been used for analyzing clinicians’ decisions of changing drug pre-
scription as a reaction to the change of patients’ symptoms when using
antiparkinson medications through prolonged periods of time. A pos-
sible reason for little data mining research in the field of Parkinson's
disease progression may be the unavailability of a monotone measure/
test that determines the stages of Parkinson's disease, as the currently
used Hoehn and Yahr scale [15] determines the stages of Parkinson's
disease through a subjective evaluation of clinicians and response of
patients to the prescribed medications. This paper uses multitask
learning with predictive clustering trees [4] on short time series da-
ta—describing the patients’ status at multiple time points—in order to
determine the symptoms that trigger the physicians’ decisions to modify
the medications therapy. We consider trigger symptoms to be the
symptoms that a patient cannot tolerate and the physician is pressed to
change the medications therapy in order to control them. The proposed
methodology addresses the task of determining subgroups of patients
with similar symptoms and therapy. As each patient usually receives
drugs from several different groups of medications, predicting their
changes with multitask learning can lead to improved control over drug
interactions.

This work significantly extends the conference paper [42] by ex-
tending the experiments, results, and their medical interpretation. We
introduce a novel algorithm for determining the symptoms that have
the highest influence on the change of the patients’ status, which ex-
tends the methodology used to determine the status of Parkinson's
disease patients based on an extensive set of symptoms [43,44]. We
present a solution to the problem of feature ranking with the aim of
finding the most influential symptoms affecting the changed status of
patients, which may help the clinicians to focus on a small set of the
most important symptoms, whose medications treatment would lead to
a more stable status of the patient. Our research provides references to
the already known findings in Parkinson's disease literature, as well as
references to findings about possible influential symptoms that have
only recently started being discussed in the Parkinson's disease medical
community as early indicators of Parkinson's disease progression. We
significantly extend the experiments with PCT models, analyze different
sets of attributes, and discuss reasons for particular medications dosage
change patterns from the medical perspective. The consulting clinician
takes into account trigger symptoms from the trees as well as the pa-
tients’ overall status concerning their motor and non-motor symptoms.

This paper is structured into six sections. After presenting the
background and related work in Section 2, Section 3 describes the
Parkinson's Progression Markers Initiative (PPMI) symptoms data set
[24], together with the data describing the medications used for
symptoms control, available from the so-called PPMI concomitant
medications log data set. Section 4 outlines our methodology. In Section
4.1 we present a new algorithm for determining the most influential
symptoms. Section 4.2 proposes a methodology for analyzing Parkin-
son's disease symptoms by learning predictive clustering trees from
short data sequences. Results are presented in Section 5. Section 5.1
presents the most influential symptoms, while Section 5.2 describes the
results of applying the proposed methodology to the detection of
changes in symptoms-based clustering of patients, connected to the
changes in medications therapies and finding patterns of symptoms
which trigger therapy modifications. In Section 5.3 we explore the in-
fluence of the above-mentioned symptoms on clinicians’ decisions re-
garding the modification of dosages of prescribed medications. Finally,
Section 6 presents the conclusions and plans for further work.

2. Background and related work

Our work is related to several subareas of data analysis. We first
present approaches to Parkinson's disease data analysis in Section 2.1
and Parkinson's disease progression in Section 2.2. In Parkinson's dis-
ease management, several groups of medications are used together. We
apply multitarget modeling with predictive clustering trees to capture
their joint effects and discuss related work from this area in Section 2.3.
We are interested in the importance of symptoms affecting the overall
status of the disease, which is a problem addressed in feature ranking/
evaluation research. We compare and contrast the algorithm we pro-
pose with existing approaches in Section 2.4.

2.1. Parkinson's disease data analysis

Data mining research in the field of Parkinson's disease include
classification of Parkinson's disease patients, detection of Parkinson's
disease symptoms (computational assessment from e.g., wearable sen-
sors), and detection of subtypes of Parkinson's disease patients, as dis-
cussed below.

Due to the overlap of Parkinson's disease symptoms with other
diseases, only 75% of clinical diagnoses of Parkinson's disease are
confirmed to be idiopathic Parkinson disease at autopsy [17]. Classifi-
cation techniques offer decision support to specialists by increasing the
accuracy and reliability of diagnosis and reducing possible errors. Gil
and Johnson [13] use Artificial Neural Networks (ANN) and Support
Vector Machines (SVM) to distinguish Parkinson's disease patients from
healthy subjects. Ramani and Sivagami [29] compare the effectiveness
of different data mining algorithms in the diagnosis of Parkinson's
disease patients, where the data set consists of 31 people, 23 of which
are Parkinson's disease patients.

Tremor is a symptom strongly associated with Parkinson's disease.
Several approaches to computational assessment of tremor have been
proposed. Methods such as time series analysis [41], spectral analysis
[33], and non-linear analysis [33] have addressed tremor detection and
quantification. Many recent works are based on body fixed sensors
(BFS) for long-term monitoring of patients [26].

Parkinson's disease is a heterogeneous neurodegenerative condition
with different clinical phenotypes, genetics, pathology, brain imaging
characteristics and disease duration [11]. This variability indicates the
existence of disease subtypes. Using k-means clustering, Ma et al. [23]
identify four groups of Parkinson's disease patients which is consistent
with the conclusions from [22,31]. This division of Parkinson's patients
into homogeneous subgroups was done on symptoms data recorded
only once for each patient. It does not take into account the progression
of the disease and changes in the patients’ status due to the medications
treatment. Our analysis uses a different data set (see Section 3) which
allows us to take these issues into account.

Classification and clustering models usually focus on diagnosing
new patients. None of the listed methods follow the progression of the
disease, and to the best of our knowledge, no data mining research in
the field of Parkinson's disease analyzed the development of the disease
in combination with the medications that the patients receive.
Identification of groups of patients based on how they react to a certain
therapy can be helpful in the assignment of personalized therapies and
more adequate patient treatment. To this end, we propose a metho-
dology for determining trigger symptoms, which influence the physi-
cian's decision about therapy modification. In addition, our metho-
dology aims to uncover the side-effects of the modified therapy.

2.2. Parkinson's disease progression

There are no specific medical tests to determine the progression of
Parkinson's disease for an individual patient. Currently, the clinicians
commonly use the Hoehn and Yahr scale system [15] to describe the
progression of Parkinson's disease symptoms. This evaluation can be
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seen as the clinicians’ aggregate evaluation of the patient's motor status.
Patient's status changes through time and even though the status of the
patient is going to get worse during their treatment, there are periods
where carefully prescribed medications therapies can cause an im-
provement of the patient's overall status. This improvement can be
reflected in both the patient's motor and non-motor symptoms.

In our earlier work [43,44], we first used unsupervised learning (k-
means clustering) to divide Parkinson's disease patients from the PPMI
study into three groups with similar severity of their motor and non-
motor symptoms. We then applied supervised classification rule learning
techniques to obtain descriptions for each of the obtained groups. The
results suggested that these groups can be described with the ag-
gregated severity of their motor symptoms. In addition, the rules also
contained the information about the status of their non-motor symp-
toms.

The three groups of patients were ordered according to the sum of
evaluation values for their motor symptoms from MDS-UPDRS Part III
(NP3SUM). The first cluster (cluster 0) consisted of patients whose
motor symptoms were considered as normal, and the sum of MDS-
UPDRS Part III was below 22. The second cluster (cluster 1) contained
patients whose motor symptoms were slightly worse, and the sum of
MDS-UPDRS Part III was between 22 and 42. In the third cluster (cluster
2) there were the patients whose sum of evaluation symptoms values
from MDS-UPDRS Part III were higher than 42. Note that based on the
sum of motor symptoms, the status of patients from cluster 2 is worse
than the status of patients from cluster 0 and cluster 1.

The patients’ symptoms are recorded regularly (on their visit to the
clinicians) and based on these symptoms, at each visit, the patients are
assigned to a cluster. Assignments to clusters may change during dif-
ferent visits to the clinicians. Following these assignments to clusters
through their recorded visits to the clinicians gives an overview of the
changes in the overall status and how the disease progresses through
time.

The separation of patients into three groups provides information
about the patients’ status based on their aggregate score for the motor
symptoms. Unfortunately, it does not provide any information about
the symptoms that are particularly bothersome for the patients, and
whose change would have the strongest impact on the assignment of
patients into a given cluster.

The identification of symptoms that strongly influence the change of
the patient's overall status (the patient's assignment to one of the
clusters), can help clinicians to focus their attention to a smaller set of
symptoms when deciding possible treatment modifications1 of the pa-
tients. Using the real world data, our aim is to reveal the symptoms that
are the most susceptible to improvement or decline when the overall
status of the patient changes. When deciding on the modification of
patient's treatment, the clinicians may consider these symptoms in
order to keep the patient's status stable as long as possible. We present
the algorithm for identification of the most impactful symbols in Sec-
tion 4.1.

2.3. Multitask learning

In multitask learning (MTL), multiple related tasks are learned si-
multaneously on a shared attribute space. Compared to single-task
learning, MTL can improve model generalization and prevent over-
fitting [6]. This is achieved by transfer of intermediate knowledge be-
tween jointly learned tasks, e.g., constructed relevant paths in tree-
based models or important joint subconcepts in neural networks. In this
way, the learning does not focus on a single task (thus preventing
overfitting) and what is learned for one task can help other tasks (thus
improving generalization).

Caruana et al. [7] use knowledge from the future to rank patients
according to their risk to die from pneumonia. The shared attribute
space consists of patients’ symptoms at the time they are admitted to
the hospital. The multiple tasks which are learned by the model are a
set of hospital tests performed to determine whether the patients are of
a risk of dying of pneumonia. Zhou et al. [51] use multitask learning to
model Alzheimer's disease progression. They use two clinical/cognitive
measures, Mini Mental State Examination (MMSE) and Alzheimer's
Disease Assessment Scale cognitive subscale (ADAS-Cog) as multiple
evaluations to determine the progression of the disease. Zhang et al.
[50] propose a multitask model for prediction of multiple regression
and classification variables in Alzheimer's disease, which takes ad-
vantage of the multi-modal nature of patient's symptoms. Similarly to
Parkinson's disease patients, Alzheimer's patients can be described by
symptoms collected from multiple sources. All of these approaches use
quantitative data “from the future” (values of tests taken in the future)
to determine how the disease progresses. The authors take historical
data and use multitask learning to predict the two years in the future
results of two tests (the MMSE and the ADAS-Cog questionnaire). Using
the baseline MRI, FDG-PET, and CSF data they estimate the disease
progression by predicting these two values and predicting the conver-
sion of patients with a mild cognitive disorder (MCI) to patients with
Alzheimer's disease (AD). Unfortunately, there are no tests to appro-
priately measure the progression of Parkinson's disease. None of the
above-mentioned methods look at the medications patients are re-
ceiving to decelerate the disease progression.

We use multitask learning with the aim to simultaneously predicting
the values of several target attributes (medications in our case). We use
a supervised learning method called predictive clustering trees (PCTs)
[3,4]. This method adapts the basic top-down induction of decision
trees with clustering and allows for multitask learning. The PCT
learning algorithm used is implemented in the CLUS data mining fra-
mework [4]. We obtain multitask decision trees, simultaneously pre-
dicting three target variables: change of levodopa dosage, change of
dopamine agonists dosage, and change of MAO-B inhibitors dosage,
referring to three most important medication groups used in Parkinson's
disease patient management. The PCT-based approach is described in
Section 4.2, and evaluated in Sections 5.2 and 5.3.

2.4. Feature evaluation

Feature subset selection can improve the accuracy, efficiency, ap-
plicability, and comprehensibility of a learning process and its resulting
model [2]. For this reason, many feature subset selection approaches
have been proposed. In general, three types of feature selection
methods exist: wrapper, filter, and embedded methods. Wrapper
methods use the performance of a given learning algorithm as the cri-
terion to include/exclude attributes. Embedded methods use feature
selection as an integral part of their learning process. Filter methods
introduce some external criterion independent of the predictor. They
evaluate features according to that criterion, which allows for ranking
of features and selection of a suitable subset. This is fit for our purpose.

Our approach to determining the importance of symptoms for the
overall disease progression is strongly related to the well-known Relief
family of algorithms [19,34,32]. These algorithms evaluate attributes
based on their ability to distinguish between similar instances with
different class values. Contrary to the majority of feature evaluation
heuristics (e.g., information gain, gini index, etc.) that assume condi-
tional independence of attributes w.r.t. the target variable, the Relief
approaches do not make this assumption and are suitable for problems
that involve feature interaction. The Relief algorithms randomly select
an instance and find the nearest instance from the same class and
nearest instances from different classes. When comparing feature values
of near instances the algorithm rewards features that separate instances
with different class values and punishes features that separate instances
with the same class value. The whole process is repeated for large

1 A treatment modification is any change in the overall LEDD (levodopa equivalent
daily dosage) (change of frequency intake, change of medications group etc.).
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enough sample. The approach we propose also uses similar instances
but uses cluster membership as a criterion for similarity instead of a
distance in the feature space. When updating the importance of features
our approach assesses joint transitions from one cluster to another or
from better patient status to a worse one, while Relief algorithms use
similarities in target variable.

Some recent feature selection approaches try to explore the inter-
connection between the features by exploring the similarity graph of
features [30,38]. Other approaches pose feature selection as an opti-
mization problem, for example, Sun et al. [40] use optimization in
combination with a game theory based method. Our approach also uses
a graph of transitions between clusters to assess similarity of patients,
but we work in an unsupervised scenario and use time order of patients’
visits as links between nodes. Details are explained in Sections 4.1 and
4.2.

3. Parkinson's disease data set

In this paper we use the PPMI data collection [24] gathered in the
observational clinical study to verify progression markers in Parkinson's
disease. In Section 3.1 we present the PPMI symptoms data sets and in
Section 3.2 we present the medications data used in the experiments. As
there are altogether 114 attributes in the described data sets, in their
everyday practice, physicians focus on a subset of chosen symptoms to
follow the development of the disease and decide when to intervene
with medication modifications. The symptoms which are in the focus of
physician's attention are discussed in Section 3.3.

3.1. PPMI symptoms data sets

The medical condition and the quality of life of a patient suffering
from Parkinson's disease is determined using the Movement Disorder
Society (MDS)-sponsored revision of the Unified Parkinson's Disease
Rating Scale (MDS-UPDRS) [14]. This is a four-part questionnaire
consisting of 65 questions concerning the development of the disease
symptoms. Part I consists of questions about the “non-motor experi-
ences of daily living”. These questions address complex behaviors, such
as hallucinations, depression, apathy, etc., and patient's experiences of
daily living, such as sleeping problems, daytime sleepiness, urinary
problems, etc. Part II expresses “motor experiences of daily living”. This
part of the questionnaire examines whether the patient experiences
speech problems, the need for assistance with the daily routines such as
eating or dressing, etc. Part III is referred to as the “motor examina-
tion”, while Part IV concerns “motor complications”, which are mostly
developed when the main antiparkinson drug levodopa is used for a
longer time period. Questions from the MDS-UPDRS represent symp-
toms characteristic for Parkinson's disease, while their answers indicate
the symptom's severity that a patient is experiencing. Each answer is
given on a five-point Likert scale, where 0=normal (patient's condi-
tion is normal, the symptom is not present), and 4= severe (symptom

is present and severely affects the independent functioning of the pa-
tient).

Cognitive state of a patient is determined using the Montreal
Cognitive Assessment (MoCA) [8] questionnaire consisting of 11
questions (maximum 30 points), assessing different cognitive domains.
In addition to the MoCA data, physicians also use the Questionnaire for
Impulsive-Compulsive Disorders (QUIP) [48] to address four major and
three minor impulsive-compulsive disorders.

Scales for Outcomes in Parkinson's disease—Autonomic (SCOPA-
AUT) is a specific scale to assess autonomic dysfunction in Parkinson's
disease patients [45]. Physical Activity Scale for the Elderly (PASE)
[46] is a questionnaire which is a practical and widely used approach
for physical activity assessment in epidemiologic investigations. Cog-
nitive Categorization (COGCAT) is a questionnaire filled in by clinicians
evaluating the cognitive state and possible cognitive decline of patients.
The above data sets are periodically updated to allow the clinicians to
monitor patients’ disease development through time. Answers to the
questions from each questionnaire form the vectors of attribute values.

Table 1 presents a summary of the symptoms data sets used in our
research.2 It lists the number of considered questions from each ques-
tionnaire, the range of attribute values, and the nature of the attribute
values. Answers to the questions from questionnaires presented in
Table 1 represent the combined set of symptoms used in our research to
determine the status of Parkinson's disease patients. The total number
of symptoms from the mentioned questionnaires is 114.

Answers to the considered questions are ordered values and, with
the exception of MoCA and PASE questions, larger values suggest
higher symptom severity and decreased quality of life for Parkinson's
disease patients.

3.2. PPMI concomitant medications log

The PPMI data collection offers information about all of the con-
comitant medications that the patients used during their involvement in
the study. We concentrate on whether a patient receives a therapy with
antiparkinson medications and which combination of antiparkinson
medications she/he received between two consecutive time points
when the MDS-UPDRS and MoCA tests were administered. The three
main families of drugs used for treating motor symptoms are levodopa,
dopamine agonists, and MAO-B inhibitors [25].

The medications therapy for Parkinson's disease patients is highly
personalized. Patients take different medications with personalized
plans of intake. In order to be able to compare different therapies,
dosages of Parkinson's disease medications are translated into a
common Levodopa Equivalent Daily Dosage (LEDD).

Table 1
Characteristics of the questionnaire data used in the analysis.

Questionnaire Number of questions Answers value range Ordered values Higher value indicates higher symptom severity

MDS-UPDRS Part I 6 0–4 Yes Yes
MDS-UPDRS Part Ip 7 0–4 Yes Yes
MDS-UPDRS Part II 13 0–4 Yes Yes
MDS-UPDRS Part III 35 0–4 Yes Yes
MDS-UPDRS Part IV 6 0–4 Yes Yes
MoCA 11 0–1 Yes No
PASE 7 1–2 Yes No
SCOPA-AUT 21 0–3 Yes Yes
COGCAT 4 0–1 Yes Yes
QUIP 4 0–1 Yes Yes

Total 114

2 We do not have permission to share the data. Access to data can be obtained on the
PPMI website: http://www.ppmi-info.org/access-data-specimens/download-data/.
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3.3. Experimental symptoms data selected by clinicians

In their everyday practice, physicians use a vector of chosen
symptoms to follow the development of the disease and decide when to
intervene with medication modifications. They focus their attention on
both motor and non-motor aspects of patients’ quality of life. Physicians
evaluate the motor aspect of patient's quality of life using the following
symptoms: bradykinesia, tremor, gait, dyskinesia, and ON/OFF fluctua-
tions. The non-motor aspect of patient's quality of life is determined
using daytime sleepiness, impulsivity, depression, hallucinations, and cog-
nitive disorder. In addition to motor and non-motor symptoms, physicians
also consider epidemiological symptoms which include age, employ-
ment, living alone, and disease duration. According to the collaborating
clinicians, physicians are inclined to change the therapy of younger
patients (younger than 653), who are still active, who live alone, and for
the patients diagnosed with Parkinson's disease for a shorter time (less
than 8 years). For these patients, physicians will try more changes to
the therapy in order to find the most suitable therapy, rather than
therapy prolongation with increased medications dosage strategy which
is applied to older Parkinson's disease patients.

In modifying the patient's medications based on the numerical
evaluation of symptoms, the physicians decide whether the symptom is
problematic and needs their immediate attention or not. Table 2 presents
the motor and non-motor symptoms influencing the physicians’ decisions
for medications modifications, the data sets they are part of, and the
intervals of values that are considered normal or problematic for Par-
kinson's disease patients. For example, the value of tremor is defined as
the mean value of all questions concerning tremor from MDS-UPDRS
Part II and Part III. Intervals of normal and problematic values are de-
termined by the clinical expert. For all UPDRS items, value 0 is normal,
value 1 is slight or minor, value 2 is mild, 3 is moderate and 4 is severe.
Thus, in most cases and given the progressive nature of Parkinson's
disease, values 0 and 1 of symptoms are not problematic and are baring
for the patients, but become annoying and hampering when they pro-
gress in the range 2–4: this leads to distinguishing between values
normal and problematic [14]. The selection of these 10 motor and non-
motor symptoms, and age as an epidemiological symptom, constituted the
subset of attributes considered in the experiments presented in Section
5.2. The reason for excluding employment, living alone, and cognitive
disorder, which could be important epidemiological attributes, is that the
PPMI data collection does not have data about patients’ employment
and living arrangements. We omitted the cognitive disorder attribute due
to its values in the database, which were either normal or missing4.

For each patient in the data set, the motor and non-motor symptoms

data were obtained and updated periodically (on each patient's visit to
the clinician's), providing the clinicians with the opportunity to follow
the development of the disease. The data set contains 897 instances,
containing information about 368 PPMI patients. Most of the con-
sidered patients have records about two or three visits to the clinician.
The maximum number of visits is 4.

4. Methodology

In this section, we present two methodologies: a methodology for
patients’ symptoms impact on the Parkinson's disease progression and a
methodology for detecting medications dosage change patterns as a
result of the patient's symptoms. Section 4.1 outlines an algorithm for
determining which symptoms have the strongest impact on the patients’
overall status. The patients’ overall status is determined by the severity
of a large set of symptoms (see Section 3.1). This methodology is closely
related to our previous research on Parkinson's disease progression,
shortly summarized in Section 2.2 as well as the work done on feature
evaluation (Section 2.4). Results from this methodology, i.e. a list of
symptoms that our algorithm finds to have the strongest impact on the
change of patients’ overall status are presented in Section 5.1.

Section 4.2 presents our methodology for detecting medications
dosage change patterns as a result of the patient's symptoms. This
methodology serves two aims: detecting patterns of medications dosage
changes based on the patient's overall status as well as identifying
clinically confirmed symptoms suggesting medications change. Our
methodology is related to the work done on multitask learning (Section
2.3). Results from the evaluation of the methodology on the set of
symptoms data selected by clinicians are presented in Section 5.2.

4.1. Symptoms’ impact on Parkinson's disease progression

This section outlines a pseudo code of the algorithm which esti-
mates the impact of symptoms on the change of patients’ overall sta-
tus—their change of clusters. The most important symptoms found by
this algorithm are presented in Section 5.1.

The getAttrChangeProbabilities function, presented in Algorithm 1, is
a supervised approach that estimates the probabilities that feature
(symptom) values changed when the patients’ overall status also
changed (i.e. when the patients have crossed clusters) or stayed the
same (the patients have not changed clusters between two consecutive
visits).

Algorithm 1. Assessment of feature impact on cluster changes.
As the input Algorithm 1 takes F, patients’ symptoms data described

in Section 3.1, the index data set I, and the assigned cluster labels c. The
patients’ symptoms data F contains the information about the patients’
symptoms values at different visits to the clinicians. It is a matrix of
dimension n (number of instances) times |A| (number of considered
symptoms). The features data set F contains the information on 114
motor and non-motor symptoms of Parkinson's disease patients. F rows

Table 2
Description of motor (upper part) and non-motor (lower part) symptoms used by Parkinson's disease physicians in everyday practice to estimate patient's quality of
live. The values intervals (normal and problematic) are defined by the clinician.

Symptom Data set Question number Normal values interval Problematic values interval

bradykinesia MDS-UPDRS Part III 3.14 0–1 2–4
tremor MDS-UPDRS Part II and III mean value 0 1–4
gait MDS-UPDRS Part III 3.10 0–1 2–4
dyskinesia MDS-UPDRS Part IV 4.3 0–1 2–4

ON/OFF fluctuations MDS-UPDRS Part IV 4.5 0 1–4
daytime sleepiness MDS-UPDRS Part I 1.8 0–1 2–4
impulsivity QUIP SUM 0–1 ≥2
depression MDS-UPDRS Part I 1.3 0–1 2–4
hallucinations MDS-UPDRS Part I 1.2 0–1 2–4
cognitive disorder MoCA SUM 26–30 <26

3 Retirement age for men (https://en.wikipedia.org/wiki/Retirement_age).
4 We explored the option of handling ‘structurally missing’ data, where the cognitive

disorder attribute was kept in the final analysis. Across all attributes a new attribute value
missing was introduced. The generated model had a lower classification accuracy than the
model presented in Section 5.2.
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represent the instances (patient pi on visit vij), and the columns present
patients’ symptoms. The index data set I holds the instance indexes
represented as a combination of patients and their visits. Vector c holds
the information about the cluster to which a patient in a certain visit
has been assigned to (i.e. cij marks the cluster patient pi was assigned to

on visit vij, see Section 2.2).
The output of the algorithm is two matrices, attrChangeProbability

and attrSameProbability, of dimension K× K×|A| (K is the number of
clusters), which hold the probabilities that an attribute will change
value or stay the same for a certain cluster crossing, respectively.

Fig. 1. Outline of the methodology for determining medications change patterns in PPMI data using predictive clustering trees.
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The algorithm first initializes its working spaces and storage ma-
trixes (lines 2–6). For each patient and for each two consecutive visits,
the algorithm compares the assigned cluster labels for each instance
(for each combination of p v c( , , )i ij ij and + +p v c( , , )i ij 1 ij 1 ) in lines 8–24.
For each cluster change combination, the algorithm also takes note of
what happens to the symptoms’ values—whether they changed or
stayed the same (lines 15–21). The recorded changes of symptoms and
clusters are normalized with the total number of cluster crossing (lines
25–37) and the resulting probabilities are returned (line 38).

As a result of Algorithm 1, we get probabilities which reflect the
impact of the attributes on cluster changes. This can serve in inference
on the disease progression but also to select only the most influential
attributes and thereby decrease the dimensionality of attribute space.
We discuss the use of Algorithm 1 in Section 5.1.

4.2. Medications dosage change patterns

Our goal is to support physicians in their decisions regarding the
patients’ therapies. The physicians have several groups of medications
at their disposal with which they try to preserve the good quality of
patient's life. They use and switch between different groups of drugs
and their dosages to treat different symptoms (e.g., levodopa is used for
motor symptoms), and also to prevent overuse of any specific drug in
order to reduce side-effects and undesired drug interactions. Our mul-
titask learning approach based on Predictive Clustering Trees (PCTs)
[4] (introduced in Section 2.3) allows for modeling of all medication
groups simultaneously. By simultaneously predicting several target
variables, the model allows physicians to observe the interactions be-
tween different groups of medications, which is not possible with uni-
variate models. As training data, we use time-stamped symptoms and
medications data. Fig. 1 outlines the proposed five-step methodology,
which uses symptoms data collected over time (i.e. over several pa-
tient's visits) and respective changes in medications therapies. Our goal
is to identify symptoms scenarios for which the physicians need to
consider modifications of therapies.

The input to the methodology are PPMI data sets of patient symp-
toms (described in Section 3.1) and the PPMI medications log data set
(described in Section 3.2). The output of the methodology are patterns
of patients’ symptoms for which particular changes of medications were
administered by the clinicians.

In step A we construct a time-stamped symptoms data set consisting
of the symptoms (attributes) described in Section 3.1. This data set
consists of patient-visit pairs p v( , )i ij describing the patients and their
visits to the clinician.

In step B we construct a data set of medications changes which are
represented with (pi, mij, mij+1) tuples, where mij and mij+1 are medi-
cation therapies of patient pi in two consecutive visits, vij and +vij 1.
A patient receives a therapy which is any combination of levodopa,
dopamine agonists, and MAO-B inhibitors. For each of the three med-
ications groups, we determine whether its dosage in the time of visit

+vij 1 has changed (increased or decreased) or remained unchanged with
respect to the dosage at visit vij. The output of step B is a data set of
medications changes, presented as tuples (Lij, Dij, Mij), indicating whe-
ther between visits vij and +vij 1 a change of dosage in levodopa (L),
dopamine agonist (D), or MAO-B inhibitors (M) took place.

In step C we concatenate the data sets obtained in steps A and B into
a merged data set of symptoms and medications data. We use patient-
visit pairs p v( , )i ij describing patient's symptoms at visit vij and the

changes of medications in the same visit with respect to the next visit
+vij 1. These data consist of a set of attributes describing the condition of

the patient, and three attributes (levodopa, dopamine agonists, and
MAO-B) indicating the changes in their dosage, respectively. The set of
symptoms describing the condition of the patient can be preselected by
clinicians, automatically selected, or a combination of both approaches.
The merged data set is used in step D to determine medications change
patterns. The three medications groups are used as multitask variables
(multiple classes) in the predictive clustering trees learning approach.
We want to determine which symptoms influence decisions of physi-
cians to modify the therapies that patients receive. The discovered
therapy modifications patterns are analyzed by the physician in step E.

Models produced by the PCT approach serve three aims: de-
termining patterns of medications dosage changes, identification of
Parkinson's disease symptoms suggesting medications dosage changes,
and discovering groups of similar patients. These aims depend on the
interpretation of the PCTs. Patterns of medications dosage changes are
found in the leaves of the tree. Branches from the root of the tree to its
leaves identify the symptoms influencing a particular pattern of medi-
cations dosage change, while patients experiencing these symptoms and
medications dosage changes construct groups of patients that are si-
milar based on both their symptoms and their medications therapy
modifications.

We test the proposed methodology in two experimental settings,
using two different symptoms data sets described in more detail below.
In the first experimental setting, (Section 5.2) we use symptoms which
were selected by our consulting clinician. In the second experimental
setting (Section 5.3), we test the proposed methodology for determi-
nation of the symptoms’ impact (see Section 4.1) and form a merged
data set with symptoms selected by the clinician and the most influ-
ential symptoms according to Algorithm 1. We analyze symptom pat-
terns for which the physicians modified the patients’ therapies. We use
the changes of the three medications groups as the target classification
variables. Changes in dosage (increase or decrease) are marked with the
class label yes, while unchanged drug dosages are marked with the class
label no.

5. Evaluation

We split the evaluation of the proposed methodology into three
parts. In Section 5.1 we use Algorithm 1 to find the most influential
symptoms. In Section 5.2 we analyze the medications dosage change
patterns detected from symptoms selected by clinicians (see Section
3.3). The most influential symptoms from Section 5.1 together with the
symptoms selected by clinicians form a new data set and are analyzed
in Section 5.3.

5.1. The most influential symptoms

When patients change clusters between two consecutive visits, this
change can be considered as positive or negative. A positive cluster
change occurs when between two consecutive visits a patient has
crossed from a cluster with higher index (e.g., cluster 2) to a cluster with
lower index (e.g., cluster 1). Given the cluster descriptions from [44],
this change indicates that the overall status of the patient concerning
her/his motor symptoms has improved (indicated with lower MDS-
UPDRS values). Contrarily, when in two consecutive visits a patient
moves from a cluster with lower index (e.g., cluster 1) to a cluster with

Fig. 2. A flowchart presenting the
input, output, and method used for
determining the most influential
symptoms. Details about the input data
can be found in Table 1 and [43,44].
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higher index (e.g., cluster 2) her/his overall status has worsen (as in-
dicated by the sum of the motor symptom).

We ran the Algorithm 1 twice, the first time using numerical scores
of symptoms (values 0–4 for MDS-UPDRS symptoms), and the second

time using discretized values of the symptoms (normal and problematic).
A flowchart presenting the input, output, and method used in this ex-
perimental setting is presented in Fig. 2. For each run, the algorithm
returned the probabilities of symptom changes and symptoms staying

Table 3
List of most influential symptoms according to Algorithm 1. The symptoms are ordered according to their average rank of positive and negative impact.

PPMI attribute Attribute description PPMI data set Attribute importance for cluster change

NP3BRADY Bradykinesia MDS-UPDRS Part III 0.314
NP3TTAPL Toe tapping (left) MDS-UPDRS Part III 0.297
NP3RTCON Constancy of rest MDS-UPDRS Part III 0.291
NP3FACXP Facial expression MDS-UPDRS Part III 0.282
NP3FTAPL Finger tapping (left) MDS-UPDRS Part III 0.273
NP3FTAPR Finger tapping (right) MDS-UPDRS Part III 0.255
NP3PRSPL Hand pronation/supination (left) MDS-UPDRS Part III 0.244
NP3TTAPR Toe tapping (right) MDS-UPDRS Part III 0.239
NP3PRSPR Hand pronation/supination (right) MDS-UPDRS Part III 0.203
NP1SLPN Sleep problems (night) MDS-UPDRS Part Ip 0.155
NP1SLPD Daytime sleepiness MDS-UPDRS Part Ip 0.147
NP2HWRT Handwriting MDS-UPDRS Part II 0.144
NP1FATG Fatigue MDS-UPDRS Part Ip 0.138
NP1URIN Urinary problems MDS-UPDRS Part Ip 0.134
NP1PAIN Pain and other sensations MDS-UPDRS Part Ip 0.117
MCATOT MoCA total score (cognition) MoCA 0.097

Fig. 3. Symptoms whose values improved most frequently when the overall status of patients improved. The acronyms are explained in Table 3.

Fig. 4. Symptoms whose values worsen most frequently when the overall status of patients degraded. The acronyms are explained in Table 3.
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unchanged. Ranking the symptoms by the decreased probability of
symptom changes and intersecting the top 255 features we get a list of
symptoms that have the strongest impact on cluster changes. These are
symptoms that have most frequently changed values, and whose change
of values brought significant improvement (from problematic to normal)
or decline (from normal to problematic).

Table 3 presents the intersection of lists obtained by two runs of the
algorithm, for symptoms whose values have changed most frequently
when a cluster change has occurred. The symptoms are presented with
their code names from the PPMI data collection and with their de-
scriptions. The results are ordered according to the decreased prob-
ability of cluster changes (weighted positive and negative changes).

We can note that the upper part of Table 3 is populated with the
motor symptoms from MDSUPDRS Part III. This is not surprising since
as we mentioned above, the obtained clusters were ordered in ac-
cordance with the aggregate score of their motor symptoms from MDS-
UPDRS Part III. In addition to the influential motor symptoms, the al-
gorithm finds also a subset of influential non-motor symptoms whose
values vary as the overall status of the patient's changes.

In practice, positive and negative changes are not treated equally and
may not be caused by the same symptoms. Clinicians try to avoid ne-
gative changes and actively promote positive changes. We first report
symptoms indicating positive changes, followed by the symptoms in-
dicating negative changes.

Fig. 3 presents the symptoms whose values improve most frequently
when the patients make a positive cluster change (their overall status
between two consecutive visits improves). The results suggest that in
over 37% of cases when the patient's status improves, also the value of
their constancy of rest improves (NP3RTCON). The second most fre-
quently improved symptom is bradykinesia (NP3BRADY), followed by
the finger tapping in the left hand (NP3FTAPL).

Fig. 4 presents the results for the symptoms whose values degrade
most frequently when the patients make a negative cluster change and
their overall status between two consecutive visits worsens. The results
suggest that in over 30% of cases when the patients’ status worsens,
they experience problems with toe taping, facial expression, and bra-
dykinesia.

Rigidity is a relevant and bothersome symptom for patients that was
not detected by Algorithm 1. A reason for this omission may be the fact
that rigidity is reported through five questions from MDS-UPDRS Part
III (both hands, both legs, and neck). Patients can experience rigidity
problems on different parts of the body and each of this parts may not
be statistically strong enough to be ranked high by Algorithm 1. A way
to alleviate this problem would be to combine answers from multiple
questions concerning the same underlying symptom before running
Algorithm 1. We plan such detailed analysis for our further work as well
as a selection of two separate lists of symptoms which improve or de-
cline most frequently. This could lead to distinguishing the symptoms
for which change of medications dosage is the most effective, as well as
those who are most inclined to worsening as the disease progresses.

Similarly to our approach to determining the importance of

Fig. 5. A flowchart presenting the
input, output, and method used for
determining medications dosage
change patterns detected from symp-
toms selected by clinicians. Details
about the used symptoms data can be
found in Table 2.

Fig. 6. Pruned predictive clustering tree modeling dosage changes for three groups of medications. Medication dosage changes are modeled by patients’ symptoms.

5 The number of top-ranked features was set experimentally so that the length of the
intersection list is sufficiently informative and manageable for clinicians.
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symptoms for the overall disease progression, the feature evaluation
algorithms Relief and ReliefF [19,34] also compare feature values of
similar instances from the same class and similar values from a different
class. Relief and ReliefF reward the features that separate instances
with different class values and punish the features that separate the
instances with the same class value. If applied to our problem, these
algorithms cannot take into account temporal progress of patients, i.e.
they cannot track individual patients on their consecutive visits to the
clinician. In effect, they show which attributes influence the initial
assignment of patients into clusters, but reveal no information about
attributes which are the most influential for changes of patients’ overall
status (i.e., for crossing of clusters). We note that the assignment to
clusters was done based on the patients’ overall status represented with
sums of attributes values from the respective questionnaires presented
in Section 3.1. Nevertheless, we evaluated the symptoms using the
ReliefF algorithm [34,35]. Out of the best 16 symptoms as evaluated by
the ReliefF algorithm, 9 were selected into the top 16 most most in-
fluential symptoms (see Table 3) by Algorithm 1 (MCATOT, NP1SLPD,
NP1URIN, NP3RTCON, NP1SLPN, NP1FATG, NP3PRSPL, NP3TTAPR,
NP3TTAPL). Symptoms—such as bradykinesia—that are strong in-
dicators of the disease progression were evaluated as insignificant by
the ReliefF algorithm. For this reason, the results of ReliefF for
symptom evaluation are not included.

5.1.1. Medical interpretation of the results
According to the consulting clinician, in general, the computed

symptom importance is in accordance with the medical literature on
Parkinson's disease [10,1]. Below we present some further interesting
findings.

Cognitive decline, as depicted by the MoCA total score, and bra-
dykinesia are very important factors when considering changing pa-
tients’ medications [10,1]. Braykinesia is a score combining toe tapping
[18,14] (for lower limbs bradykinesia assessment), hand pronation/
supination, and finger tapping (for upper limbs bradykinesia assess-
ment) [21]. As confirmed by the expert, the constancy of rest tremor
and pain are symptoms which are important for some patients who find

these symptoms particularly bothersome and demand an intervention
with medications. Dyskinesia and fluctuations are important symptoms
not ranked at the top of the list according to our Algorithm 1. The
reason is that the PPMI database includes many newly diagnosed and
early-stage patients, for who these symptoms do not change values
often.

The importance of handwriting is an interesting finding of the study
and confirms recent studies [9] suggesting that handwriting could be a
useful marker for disease diagnosis [36] and progression [27]. Our
further analysis of patients with problematic handwriting revealed that
these patients experience more problems with their motor symptoms
(reflected by the sum of symptoms from MDS-UPDRS Part III), and also
suffer from bradykinesia, pain, and rigidity with higher severity than
patients who do not have problems with handwriting. Results of our
analysis also suggest that patient's handwriting sensitively reflects im-
provements and worsening of patients’ motor symptoms.

5.2. Medications dosage change patterns detected from symptoms selected
by clinicians

For this set of evaluations, we use the data set composed of symp-
toms selected by clinicians (see Section 3.3). A flowchart with the input,
output, and method used in this experimental setting is presented in
Fig. 5. A pruned predictive clustering tree (PCT) model of medications
changes based on the patient's status is shown in Fig. 6. The PCT models
the dosage changes of all three antiparkinson medication groups si-
multaneously, allowing for the detection of drug interactions based on
the patient's status. Notice that in PCT construction, the user can decide
how to prune the tree. In our experiments, we used the default pruning
method, called C4.5 [39,28].

The leaves of the predictive clustering tree hold information about
the recorded therapy modifications. The components of the lists pre-
sented in each tree leaf predict dosage changes of levodopa, dopamine
agonists, and MAO-B inhibitors, respectively. The list of numbers in the
leaves represents the total number of instances that are described by the
symptoms from the root to the leaf. The number of instances for which

Table 4
Comparison of the classification accuracy obtained by the default model, the pruned multitask model, the pruned single-task models, and the random forest models.

Medications group Default model Multitask PCT model Single-task PCT model Random forest ensembles

Levodopa 0.637 0.685 0.686 0.695
Dopamine agonists 0.501 0.642 0.642 0.622
MAO-B 0.518 0.602 0.586 0.601

Table 5
Description of the motor (upper part) and non-motor (lower part) symptoms which are reported as the most influential by Algorithm 1. Toe tapping, finger tapping,
and hand pronation/supination were generated as the maximum value of the basic symptom on the patient's left and right side. The values intervals (normal and
problematic) were defined by the clinician. The three symptoms marked with bold typeface were independently selected by clinicians as the most important.

Symptom Data set Question number Normal values interval Problematic values interval

bradykinesia MDS-UPDRS Part III 3.14 0–1 2–4
toe tapping MDS-UPDRS Part III max(3.7a, 3.7b) 0–1 2–4
constancy of rest MDS-UPDRS Part III 3.18 0–1 2–4
facial expression MDS-UPDRS Part III 3.2 0–1 2–4
finger tapping MDS-UPDRS Part III max(3.4a, 3.4b) 0–1 2–4
hand pronation/supination MDS-UPDRS Part III max(3.6a, 3.6b) 0–1 2–4

sleep problems MDS-UPDRS Part Ip 1.7 0–1 2–4
daytime sleepiness MDS-UPDRS Part I 1.8 0–1 2–4
handwriting MDS-UPDRS Part II 2.7 0–1 2–4
fatigue MDS-UPDRS Part Ip 1.13 0–1 2–4
urinary problems MDS-UPDRS Part Ip 1.10 0–1 2–4
pain and other sensations MDS-UPDRS Part Ip 1.9 0–1 2–4
cognitive disorder MoCA SUM 26–30 <26
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the proposed medications dosage change has actually happened are
written in the square brackets. For example, the list [yes, yes, yes]
presented in the first leaf on the left (Path 1), indicates that the dosages
of levodopa, dopamine agonists, and MAO-B changed. The total number
of covered instances is 20. Out of these 20 patients, for 17 the dosage of
levodopa changed, for 12 the dosage of dopamine agonists changed and
for 12 the dosage of MAO-B inhibitors changed.

The attributes of instances (patient-visit pairs) influencing this
change are presented along the path from the tree root to the respective
leaf. In this example, these are the patients who are younger than 65,
have problems with ON/OFF fluctuations, and have problems with their
impulsivity. The leaf [yes, no, no] on the right (Path 2) suggests that
physicians only considered changes in levodopa. These dosage changes
can be justified by the patients’ symptoms, i.e. patients have problems
with ON/OFF fluctuations and no problems with their impulsivity.
Moreover, in younger patients without ON/OFF fluctuation problems
but with other problematic symptoms: impulsivity, bradykinesia and
daytime sleepiness, the physicians also change only levodopa dosages
(Path 4 in Fig. 6). This might reflect the current clinical practice—many
patients want treatment of their motor symptoms first, which usually
improve based on increased levodopa dosages.

Path 4 in Fig. 6 shows that for younger patients with problematic
impulsivity and without problems with ON/OFF fluctuations and bra-
dykinesia, physicians change the dosages of all three medication
groups. These results are in accordance with the literature on Parkin-
son's disease [47] and were confirmed by the clinical expert.

The results reveal that if the patient experiences ON/OFF fluctua-
tions problems (left subtree in Fig. 6), physicians will react with the
change of dosage of levodopa medications [12]. If the patients experi-
ence non-motor symptoms (e.g., impulsivity, depression), physicians
will react by modifying the dosages of dopamine agonists [37]. This is
in accordance with the literature on Parkinson's disease and was con-
firmed by the expert. Increased dosages of dopamine agonists can
produce non-motor related side-effects. Physicians will react by low-
ering the dosage of dopamine agonists (consequently increasing the
dosage of levodopa). This was revealed in our post analysis, where we
followed the actual changes of levodopa and dopamine agonists. In this
post analysis the target variables (levodopa and dopamine agonists) had
three values: increase, decrease, and unchange. The PCT model was built
on the symptoms data presented in Section 3.3 in combination with the
newly generated target features.

While prediction is not the ultimate goal of the developed

methodology, reasonably high classification accuracy on a separate
data set can increase clinicians’ trust in using the model. Table 4 pre-
sents the classification accuracy of four models: (i) the default model
(predicting the most probable value for each target), (ii) the multitask
PCT classification model, iii) the single-task decision tree models con-
structed separately for each medications group, and (iv) the multitask
random forest model [5,20]. The results are obtained using 10-fold
cross-validation. The results show that random forests generate models
that have slightly better classification accuracy for levodopa. However,
the PCT models yield better classification accuracy for dopamine ago-
nists. Multitask PCT model and random forests return comparable
classification accuracy for MAO-B. The advantage of using the multitask
tree approach is the ability to observe the interactions between the
targets.

We employed the Wilcoxon [49] paired test to examine whether
there are statistical differences between the performance of the multi-
task approach and the single-task approach, and the multitask approach
and random forest. Results showed that there are no statistical differ-
ences at the level of significance α=0.05 for any pair of the above
pairs. We used the same folds across all approaches.

5.2.1. Impact of symptoms history
We analyzed the temporal aspect of the proposed approach. Our

data set offers certain time-related information (1–4 observations are
available for each patient in the data set, one for each visit). So far we
only analyzed the changes in symptoms and dosage between two con-
secutive visits. According to our consulted clinicians, the current state
of the patient is all that matters to the clinician when considering their
therapy, so this makes sense. However, the question remains if taking
into account more than one historical event can improve models.

To adequately answer this comment, we conducted a separate set of
experiments. We looked further back into patients’ history to see how
their medications have changed, based on symptoms from more distant
visits. Comparison of 10-fold cross validation classification accuracy on
models with different spans of look-back showed that the classification
accuracy of models decreases as we include references to more distant
visits. The highest accuracy is achieved when we consider only the
actual state of the patients (these results are presented in this section).

5.3. Medications dosage change patterns detected from extended symptoms
data

The PCT model from Section 5.2 was generated on a set of symp-
toms selected based on the expert's choice. In this Section, we explore
the model for dosage change of antiparkinson medications if in addition
to the symptoms that are pre-selected by the clinicians we include also
the most influential attributes from Table 3. We present the description
of the newly introduced symptoms, the predictive clustering tree model
generated on this extended data set, short interpretation of the tree, the
classification accuracy of the models, and a short discussion on the
differences between the original model (Section 5.2) and the revised
model (Section 5.3.2).

5.3.1. Extended data set
As already mentioned, when monitoring the patient's status and

deciding about the modification of their medications therapy, clinicians
think in terms whether the symptom's severity is normal for a
Parkinson's disease patient or it is problematic and a change of dosage of

Table 6
Extended symptoms data set consisting of symptoms handpicked by the expert
and the most influential symptoms ranked by Algorithm 1. Details about the
symptoms can be found in Tables 2 and 5.

Motor symptoms Non-motor symptoms Epidemiological symptoms

bradykinesia daytime sleepiness age
tremor impulsivity disease duration
gait depression
dyskinesia hallucinations
ON/OFF fluctuations sleep problems
toe tapping handwriting
constancy of rest fatigue
facial expression urinary problems
finger tapping pain and other sensations
hand pronation/supination

Fig. 7. A flowchart presenting the
input, output, and method used for
determining patterns of medications
dosage change from the extended
symptoms data. The extended symp-
toms data set is presented in Table 6.
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antiparkinson medications is needed. Table 5 presents the most influ-
ential motor and non-motor symptoms according to Algorithm 1 and the
intervals for their quantization into normal and problematic symptoms
values. Six of the symptoms from Table 3 were merged into three new
(revised) symptoms. These six symptoms were pairs of three underlying
symptoms, each concerning a different side of the body (left or right),
and were therefore paired into three new symptoms. The three new
symptoms are: toe tapping, finger tapping, and hand pronation/supi-
nation. The values of the newly constructed symptoms are obtained as
the maximum of the two basic symptoms values (left and right).

The extended symptoms data set used in the experiments below is
presented in Table 6. These symptoms are motor, non-motor, and epi-
demiological, consisting of the symptoms that were pre-selected by our
consulting expert (see Section 3.3) and the most influential symptoms
returned by Algorithm 1 (Table 5). We decided to omit the cognitive
disorder attribute due to the fact that its only values present in the
database were normal and missing. The reason for this is that in this
analysis we only consider patients with included medications data.

Note that out of the 16 symptoms that were top-ranked by
Algorithm 1, our consulting clinician reported 3 as the symptoms they
consider when deciding about the change of Parkinson's disease pa-
tient's therapy. These symptoms are cognition, daytime sleepiness, and
bradykinesia (marked in bold in Table 5).

5.3.2. Revised results and discussion
The extended symptoms data set was used as an input to our

methodology for determining medications dosage change patterns in
PPMI data using predictive clustering trees (presented in Section 4.2). A
flowchart outlining the input, output, and method used in this experi-
mental setting is presented in Fig. 7. The obtained model for symptoms
scenarios that caused clinicians reaction with medications dosage
change is presented in Fig. 8.

The revised model for dosage changes is slightly different from the
original model presented in Fig. 6. The roots of the trees are the same,
i.e. the clinician's decision about modifying the patient's medications
treatment is mostly influenced by the age of the patient. For younger
patients, the decision is influenced also by their on/off fluctuations and
impulsivity. The right-hand side of the subtree concerning younger
patients is different. In this subtree, the symptoms that influence the
dosage change of antiparkinson medications are the newly introduced
symptoms: pain and other sensations, hand pronation/supination, and
handwriting. Path 1 and Path 2 are the same in both models. Path 4 in
both models reveals medications change pattern [yes, no, no], in-
dicating that based on the symptoms patterns (the paths from the root
to the leaf of the tree) the clinicians consider changing the dosage of
levodopa, and leave the dosages of dopamine agonists and MAO-B in-
hibitors unchanged. Paths 3.1 and 3.2 suggest that the clinician should
consider updating the dosages of all antiparkinson medications which is
similar to Path 3 of Fig. 6.

For each of the medications groups, Table 7 presents the classifi-
cation accuracy of the default model, revised multitask PCT model,
revised single-task PCT models, and random forest multitask model.
Results are obtained using 10-fold cross-validation. As it is the case with
the model from Fig. 6, the accuracy values obtained by the multitask
PCT model are comparable to those obtained by the single-task PCT
model and are better when compared to the default model. The mul-
titask random forest ensemble returned the best classification accuracy
for all targets. This model also has an improved classification accuracy
for dopamine agonists and MAO-B compared to models from Section
5.2 (see Fig. 6 and Table 4). This improvement can be explained with
the additional information available in the extended set of attributes
and non-trivial interactions between different targets, which can be
captured by ensembles. The main disadvantage of the ensemble mul-
titask models is their lack of model interpretability. The Wilcoxon [49]

Fig. 8. Pruned predictive clustering tree modeling the dosage changes for three groups of medications. The model is generated on the extended set of Parkinson's
disease patients symptoms. For improved model readability, the minimal number of covered instances is set to 20.

Table 7
Comparison of the classification accuracy obtained by the default model, the pruned multitask PCT model, the pruned single-task PCT models, and the random forest
ensemble model on the extended symptoms data set.

Medications group Default model Multitask PCT model Single-task PCT model Random forest ensemble

Levodopa 0.637 0.657 0.671 0.683
Dopamine agonists 0.501 0.631 0.630 0.642
MAO-B 0.518 0.583 0.572 0.615
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paired test revealed that for the target variable levodopa the random
forest ensemble performs significantly better than our multitask ap-
proach (α=0.05, p-value=0.012). For the target variable MAO-B, the
multitask approach performs significantly better than the single-task
approach (α=0.05, p-value=0.018). Other differences were not sig-
nificant. We used the same folds across approaches.

The classification accuracy of both the revised multitask PCT model
and the revised single-task PCT models are lower than the accuracies of
the models generated on the original symptoms data set (Table 2). A
reason for this difference may be the fact that our models are trained on
and reflect the history of clinicians’ decisions, and do not necessarily
reflect the actual symptoms clinicians should react to.

5.3.3. Medical evaluation of the results
For patients covered by rules from Path 1 and Path 2 it is reasonable

to introduce levodopa and try to provide the optimal dosage even in
younger patients (average age of 53 years) when they have on/off
fluctuations (i.e. disease is rapidly progressing). The presence of im-
pulsivity dictates the medications dosage changes the clinician should
make. Path 3.1 covers younger patients (average age of 52.42 years)
who suffer from severe bradykinesia (NP3BRADY=1.94 ± 0.846).
Their overall motor symptoms are severe, i.e. the sum of MDS-UPDRS
Part III (NP3SUM) is 34.03 ± 11.99. Patients’ quality of daily living is
affected, i.e. the sum of MDS-UPDRS Part II (NP2SUM) is
13.85 ± 6.36. Along with the presence of pain, many changes in
medications dosages are done in an effort to better manage the ad-
vanced disease severity. Patients who do not have problems with pain
and are treated with [no,yes,yes] medications dosage change pattern
are patients who also have severe motor symptoms
(NP3SUM=31.06 ± 0.84 and disturbing bradykinesia
(NP3BRADY=1.71 ± 0.84)). However, their overall status is slightly
better and the mild problems with pain lead to more dosage changes of
dopamine agonists and MAO-B inhibitors, and a stable treatment with
levodopa.

Patients covered by Path 4 are overall in a better condition that
patients mentioned in previous paths. Their motor symptoms are less
severe (NP3SUM=20.39 ± 9.15), they do not have problems with
on/off fluctuations, they have mild bradykinesia, and have no cognitive
problems. Their handwriting seems to be a useful marker of disease
progression which leads to dosage changes in levodopa. Changes of
medication dosages for patients covered by Path 3.2 are imposed by the
problematic impulsivity. Dosages of dopamine agonists are lowered to
stabilize impulsivity, while levodopa is increased in order to control the
motor symptoms. Younger patients who do not have problems with
impulsivity (nor problems with on/off fluctuations, hand pronation/
supination, handwriting) and are treated with [no,yes,yes] medications
dosage change pattern are patients who are in better condition than all
the other patients included in the predictive clustering tree from Fig. 8.
Reasonably, only dopamine agonists and MAO-B inhibitors are mod-
ified in an effort for better management of the disease. Levodopa is
either not prescribed or only low dosages are prescribed. Older patients
(average age of 68.45 ± 4.87 years) have problems with many symp-
toms. The disease is managed with levodopa, and an optimal regime is
sought through changes.

6. Conclusions

We present the methodology to detect trigger symptoms for change
of medications therapy of Parkinson's disease patients. We consider
trigger symptoms to be the ones which press the physicians to make
modifications of the treatment for their patients. We test the developed
methodology on a chosen subset of time-stamped PPMI data. The data

set offers an insight into the patients’ symptoms progression through
time, as well as the response of physicians following problematic states
of either motor or non-motor symptoms. We identify clinically con-
firmed patients’ symptoms indicating the need for medication changes.

The proposed approach allows identifying patient subgroups for
which certain medications modifications have either a positive or a
negative effect. By post analysis of the patients who respond well to the
medications modification and those who do not, and the underlying
characteristics of each group, we may be able to assist the physicians
with the therapy modifications for a given patient by narrowing the
number of possible medication prescriptions scenarios.

We also present an algorithm for determining the symptoms which
have the largest influence on the change of the Parkinson's disease
patients’ overall status. These are the symptoms that change most fre-
quently as the status of the patient improves/declines. We relate this
work with our previous work, where we developed a methodology for
determining groups of patients with similar severity of symptoms and
establishing how the disease progresses in terms of the severity of
several groups of symptoms.

Our results show that some of the most impactful symptoms for
changes in the patients’ overall status detected by Algorithm 1, are
currently not considered by the clinicians when deciding about the
change of antiparkinson medication dosages. This requires further
study and offers an opportunity for improved disease management in
the future.

In future work, we plan to apply model explanation approaches to
describe relevant subgroups of patients, therapy change patterns with a
positive influence on the control of symptoms, and therapy patterns
which are more likely to lead to side effects. There are some open op-
portunities in the analysis of more than one previous time point. Taking
longer history into account we might be able to detect groups of pa-
tients which do not react well to the changes in antiparkinson medi-
cations.
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